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LOG PLURICANONICAL REPRESENTATIONS AND
ABUNDANCE CONJECTURE

OSAMU FUJINO AND YOSHINORI GONGYO

Abstract. We prove the finiteness of log pluricanonical repre-
sentations for projective log canonical pairs with semi-ample log
canonical divisor. As a corollary, we obtain that the log canonical
divisor of a projective semi log canonical pair is semi-ample if and
only if so is the log canonical divisor of its normalization. We also
treat many other applications.
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1. Introduction

The following theorem is one of the main results of this paper (cf. The-
orem 3.13). It is a solution of the conjecture raised in [F1] (see [F1,
Conjecture 3.2]). For the definition of the log pluricanonical represen-
tation ρm, see Definitions 2.11 and 2.14 below.
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Theorem 1.1 (cf. [F1, Section 3], [G2, Theorem B]). Let (X,∆) be a
projective log canonical pair. Suppose that m(KX +∆) is Cartier and
that KX +∆ is semi-ample. Then ρm(Bir(X,∆)) is a finite group.

In the framework of [F1], Theorem 1.1 will play important roles in
the study of Conjecture 1.2 (see [Ft], [AFKM], [Ka2], [KMM], [F1],
[F8], [G2], and so on).

Conjecture 1.2 ((Log) abundance conjecture). Let (X,∆) be a pro-
jective semi log canonical pair such that ∆ is a Q-divisor. Suppose that
KX +∆ is nef. Then KX +∆ is semi-ample.

Theorem 1.1 was settled for surfaces in [F1, Section 3] and for the
case where KX +∆ ∼Q 0 by [G2, Theorem B]. In this paper, to carry
out the proof of Theorem 1.1, we introduce the notion of B̃-birational
maps and B̃-birational representations for sub kawamata log terminal
pairs, which is new and is indispensable for generalizing the arguments
in [F1, Section 3] for higher dimensional log canonical pairs. For the
details, see Section 3.

By Theorem 1.1, we obtain a key result.

Theorem 1.3 (cf. Proposition 4.3). Let (X,∆) be a projective semi
log canonical pair. Let ν : Xν → X be the normalization. Assume that
KXν +Θ = ν∗(KX +∆) is semi-ample. Then KX +∆ is semi-ample.

By Theorem 1.3, Conjecture 1.2 is reduced to the problem for log
canonical pairs.

Let X be a smooth projective n-fold. By our experience on the low-
dimensional abundance conjecture, we think that we need the abun-
dance theorem for projective semi log canonical pairs in dimension
≤ n − 1 in order to prove the abundance conjecture for X. There-
fore, Theorem 1.3 seems to be an important step for the inductive
approach to the abundance conjecture. The general strategy for prov-
ing the abundance conjecture is explained in the introduction of [F1].
Theorem 1.3 is a complete solution of Step (v) in [F1, 0. Introduction].

As applications of Theorem 1.3 and [F5, Theorem 1.1], we have the
following useful theorems.

Theorem 1.4 (cf. Theorem 4.2). Let (X,∆) be a projective log canon-
ical pair. Assume that KX +∆ is nef and log abundant. Then KX +∆
is semi-ample.

It is a generalization of the well-known theorem for kawamata log
terminal pairs (see, for example, [F4, Corollary 2.5]). Theorem 1.5
may be easier to understand than Theorem 1.4.
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Theorem 1.5 (cf. Theorem 4.6). Let (X,∆) be an n-dimensional pro-
jective log canonical pair. Assume that the abundance conjecture holds
for projective divisorial log terminal pairs in dimension ≤ n− 1. Then
KX +∆ is semi-ample if and only if KX +∆ is nef and abundant.

We have many other applications. In this introduction, we explain
only two of them. The first one is an answer to Professor János Kollár’s
question. For a more general result, see Corollary 4.11.

Theorem 1.6 (cf. Theorem 4.9). Let f : X → Y be a projective
morphism between projective varieties. Let (X,∆) be a log canonical
pair such that KX+∆ is numerically trivial over Y . Then KX+∆ ∼Q,Y

0.

The second one is a generalization of [Fk2, Theorem 0.1] and [CKP,
Corollary 3]. It also contains Theorem 1.4. For a further generalization,
see Remark 4.19.

Theorem 1.7 (cf. Theorem 4.18). Let (X,∆) be a projective log canon-
ical pair and let D be a Q-Cartier Q-divisor on X such that D is nef
and log abundant with respect to (X,∆). Assume that KX + ∆ ≡ D.
Then KX +∆ is semi-ample.

The reader can find many applications and generalizations in Section
4.

We summarize the contents of this paper. In Section 2, we collects
some basic notations and results. Section 3 is the main part of this
paper. In this section, we prove Theorem 1.1. We divide the proof into
the three steps: sub kawamata log terminal pairs in 3.1, log canoni-
cal pairs with big log canonical divisor in 3.2, and log canonical pairs
with semi-ample log canonical divisor in 3.3. Section 4 contains various
applications of Theorem 1.1. They are related to the abundance con-
jecture: Conjecture 1.2. For example, we give an affirmative answer to
Professor János Kollár’s question (cf. Theorem 1.6). In the subsection
4.2, we generalize the main theorem in [Fk2] (cf. [CKP, Corollary 3]),
the second author’s result in [G1], and so on. In Section 5, we discuss
the relationship among the various conjectures in the minimal model
program.

Acknowledgments. The first author was partially supported by The
Inamori Foundation and by the Grant-in-Aid for Young Scientists (A)
#20684001 from JSPS. He is grateful to Professors Yoichi Miyaoka,
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ments during the preparation of [F1], which was written as his master’s
thesis under the supervision of Professor Shigefumi Mori. This paper
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We will work over C, the complex number field, throughout this
paper. We will freely use the standard notations in [KM].

2. Preliminaries

In this section, we collects some basic notations and results.

2.1 (Convention). Let D be a Weil divisor on a normal variety X. We
sometimes simply write H0(X,D) to denote H0(X,OX(D)).

2.2 (Q-divisors). For a Q-divisor D =
∑r

j=1 djDj on a normal variety
X such that Dj is a prime divisor for every j and Di &= Dj for i &= j, we
define the round-down !D" =

∑r
j=1!dj"Dj, where for every rational

number x, !x" is the integer defined by x− 1 < !x" ≤ x. We put

D=1 =
∑

dj=1

Dj.

We note that ∼Z (∼, for short) denotes the linear equivalence of divi-
sors. We also note that ∼Q (resp. ≡) denotes the Q-linear equivalence
(resp. numerical equivalence) of Q-divisors. Let f : X → Y be a
morphism and let D1 and D2 be Q-Cartier Q-divisors on X. Then
D1 ∼Q,Y D2 means that there is a Q-Cartier Q-divisor B on Y such
that D1 ∼Q D2 + f ∗B.

2.3 (Log resolution). Let X be a normal variety and let D be a Q-
divisor on X. A log resolution f : Y → X means that

(i) f is a proper birational morphism,
(ii) Y is smooth, and
(iii) Exc(f) ∪ Supp f−1

∗ D is a simple normal crossing divisor on Y ,
where Exc(f) is the exceptional locus of f .

We recall the notion of singularities of pairs.

Definition 2.4 (Singularities of pairs). Let X be a normal variety
and let ∆ be a Q-divisor on X such that KX + ∆ is Q-Cartier. Let
ϕ : Y → X be a log resolution of (X,∆). We set

KY = ϕ∗(KX +∆) +
∑

aiEi,
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where Ei is a prime divisor on Y for every i. The pair (X,∆) is called

(a) sub kawamata log terminal (subklt, for short) if ai > −1 for all
i, or

(b) sub log canonical (sublc, for short) if ai ≥ −1 for all i.

If ∆ is effective and (X,∆) is subklt (resp. sublc), then we simply call
it klt (resp. lc).

Let (X,∆) be an lc pair. If there is a log resolution ϕ : Y → X
of (X,∆) such that Exc(ϕ) is a divisor and that ai > −1 for every
ϕ-exceptional divisor Ei, then the pair (X,∆) is called divisorial log
terminal (dlt, for short).

Let us recall semi log canonical pairs and semi divisorial log terminal
pairs (cf. [F1, Definition 1.1]). For the details of these pairs, see [F1,
Section 1].

Definition 2.5 (Slc and sdlt). Let X be a reduced S2 scheme. We
assume that it is pure n-dimensional and normal crossing in codimen-
sion one. Let ∆ be an effective Q-divisor on X such that KX + ∆ is
Q-Cartier. We assume that ∆ =

∑
i ai∆i where ai ∈ Q and ∆i is an

irreducible codimension one closed subvariety of X such that OX,∆i is
a DVR for every i. Let X = ∪iXi be the irreducible decomposition and
let ν : Xν := *iXν

i → X = ∪iXi be the normalization. A Q-divisor
Θ on Xν is defined by KXν +Θ = ν∗(KX +∆) and a Q-divisor Θi on
Xν

i by Θi := Θ|Xν
i
. We say that (X,∆) is a semi log canonical n-fold

(an slc n-fold, for short) if (Xν ,Θ) is lc. We say that (X,∆) is a semi
divisorial log terminal n-fold (an sdlt n-fold, for short) if Xi is normal,
that is, Xν

i is isomorphic to Xi, and (Xν ,Θ) is dlt.

We recall a very important example of slc pairs.

Example 2.6. Let (X,∆) be a Q-factorial lc pair. We put S = !∆".
Assume that (X,∆ − εS) is klt for some 0 < ε + 1. Then (S,∆S) is
slc where KS +∆S = (KX +∆)|S.
Remark 2.7. Let (X,∆) be a dlt pair. We put S = !∆". Then it is
well known that (S,∆S) is sdlt where KS +∆S = (KX +∆)|S.

The following theorem was originally proved by Professor Christo-
pher Hacon (cf. [F7, Theorem 10.4], [KK, Theorem 3.1]). For a simpler
proof, see [F6, Section 4].

Theorem 2.8 (Dlt blow-up). Let X be a normal quasi-projective va-
riety and let ∆ be an effective Q-divisor on X such that KX + ∆ is
Q-Cartier. Suppose that (X,∆) is lc. Then there exists a projective
birational morphism ϕ : Y → X from a normal quasi-projective variety
Y with the following properties:



6 OSAMU FUJINO AND YOSHINORI GONGYO

(i) Y is Q-factorial,
(ii) a(E,X,∆) = −1 for every ϕ-exceptional divisor E on Y , and
(iii) for

Γ = ϕ−1
∗ ∆+

∑

E:ϕ-exceptional

E,

it holds that (Y,Γ) is dlt and KY + Γ = ϕ∗(KX +∆).

The above theorem is very useful for the study of log canonical singu-
larities (cf. [F3], [F7], [G1], [G2], [KK], and [FG]). We will repeatedly
use it in the subsequent sections.

2.9 (Log pluricanonical representations). Nakamura–Ueno ([NU]) and
Deligne proved the following theorem (see [U, Theorem 14.10]).

Theorem 2.10 (Finiteness of pluricanonical representations). Let X
be a compact complex Moishezon manifold. Then the image of the group
homomorphism

ρm : Bim(X) → AutC(H
0(X,mKX))

is finite, where Bim(X) is the group of bimeromorphic maps from X
to itself.

For considering the logarithmic version of Theorem 2.10, we need
the notion of B-birational maps and B-pluricanonical representations.

Definition 2.11 ([F1, Definition 3.1]). Let (X,∆) (resp. (Y,Γ)) be
a pair such that X (resp. Y ) is a normal scheme with a Q-divisor ∆
(resp. Γ) such that KX +∆ (resp. KY + Γ) is Q-Cartier. We say that
a proper birational map f : (X,∆) ##$ (Y,Γ) is B-birational if there
exists a common resolution

W
α

!!!!
!!
!!
!! β

"""
""

""
""

"

X
f

######### Y

such that
α∗(KX +∆) = β∗(KY + Γ).

This means that it holds that E = F when we put KW = α∗(KX +
∆) + E and KW = β∗(KY + Γ) + F .

Let D be a Q-Cartier Q-divisor on Y . Then we define

f ∗D := α∗β
∗D.

It is easy to see that f ∗D is independent of the common resolution
α : W → X and β : W → Y .
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Finally, we put

Bir(X,∆) = {σ | σ : (X,∆) ##$ (X,∆) is B-birational}.
It is obvious that Bir(X,∆) has a natural group structure.

We give a basic example of B-birational maps.

Example 2.12 (Quadratic transformation). Let X = P2 and let ∆
be the union of three general lines on P2. Let α : W → X be the
blow-up at the three intersection points of ∆ and let β : W → X be
the blow-down of the strict transform of ∆ on W . Then we obtain the
quadratic transformation ϕ.

W
α

!!!!
!!
!!
!! β

""$
$$

$$
$$

$

X ϕ
######### X

For the details, see [H, Chapter V Example 4.2.3]. In this situation, it
is easy to see that

α∗(KX +∆) = KW +Θ = β∗(KX +∆).

Therefore, ϕ is a B-birational map of the pair (X,∆).

Remark 2.13. In Definition 2.11, let ψ : X ′ → X be a proper bi-
rational morphism from a normal scheme X ′ such that KX′ + ∆′ =
ψ∗(KX + ∆). Then we can easily check that Bir(X,∆) , Bir(X ′,∆′)
by g -→ ψ−1 ◦ g ◦ ψ for g ∈ Bir(X,∆).

Definition 2.14 ([F1, Definition 3.2]). Let X be a pure n-dimensional
normal scheme and let ∆ be a Q-divisor, and let m be a nonnegative
integer such that m(KX + ∆) is Cartier. A B-birational map σ ∈
Bir(X,∆) defines a linear automorphism of H0(X,m(KX +∆)). Thus
we get the group homomorphism

ρm : Bir(X,∆) → AutC(H
0(X,m(KX +∆))).

The homomorphism ρm is called a B-pluricanonical representation or
log pluricanonical representation for (X,∆). We sometimes simply de-
note ρm(g) by g∗ for g ∈ Bir(X,∆) if there is no danger of confusion.

In the subsection 3.1, we will consider B̃-birational maps and B̃-
pluricanonical representations for subklt pairs (cf. Definition 3.1). In
some sense, they are generalizations of Definitions 2.11 and 2.14. We
need them for our proof of Theorem 1.1.

We close this section with a remark on the minimal model program
with scaling. For the details, see [BCHM] and [B].
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2.15 (Minimal model program with ample scaling). Let f : X → Z be
a projective morphism between quasi-projective varieties and let (X,B)
be a Q-factorial dlt pair. Let H be an effective f -ample Q-divisor on
X such that (X,B + H) is lc and that KX + B + H is f -nef. Under
these assumptions, we can run the minimal model program on KX +B
with scaling of H over Z. We call it the minimal model program with
ample scaling.

Assume that KX + B is not pseudo-effective over Z. We note that
the above minimal model program always terminates at a Mori fiber
space structure over Z. By this observation, the results in [F1, Section
2] hold in every dimension. Therefore, we will freely use the results in
[F1, Section 2] for any dimensional varieties.

From now on, we assume thatKX+B is pseudo-effective and dimX =
n. We further assume that the weak non-vanishing conjecture (cf. Con-
jecture 5.1) for projective Q-factorial dlt pairs holds in dimension ≤ n.
Then the minimal model program on KX + B with scaling of H over
Z terminates with a minimal model of (X,B) over Z by [B, Theorems
1.4, 1.5].

3. Finiteness of log pluricanonical representations

In this section, we give a proof of Theorem 1.1. We divide the proof
into the three steps: subklt pairs in 3.1, lc pairs with big log canonical
divisor in 3.2, and lc pairs with semi-ample log canonical divisor in 3.3.

3.1. Klt pairs. In this subsection, we prove Theorem 1.1 for klt pairs.
More precisely, we prove Theorem 1.1 for B̃-pluricanonical representa-
tions for projective subklt pairs without assuming the semi-ampleness
of log canonical divisors. This formulation is indispensable for the proof
of Theorem 1.1 for lc pairs.

First, let us introduce the notion of B̃-pluricanonical representations
for subklt pairs.

Definition 3.1 (B̃-pluricanonical representations for subklt pairs).
Let (X,∆) be an n-dimensional projective subklt pair such that X
is smooth and that ∆ has a simple normal crossing support. We write
∆ = ∆+−∆− where ∆+ and ∆− are effective and have no common irre-
ducible components. Let m be a positive integer such that m(KX +∆)
is Cartier. In this subsection, we always see

ω ∈ H0(X,m(KX +∆))

as a meromorphic m-ple n-form on X which vanishes along m∆− and
has poles at most m∆+. By Bir(X), we mean the group of all the
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birational mappings of X onto itself. It has a natural group structure
induced by the composition of birational maps. We define

B̃irm(X,∆) =

{
g ∈ Bir(X)

∣∣∣∣
g∗ω ∈ H0(X,m(KX +∆)) for
every ω ∈ H0(X,m(KX +∆))

}
.

Then it is easy to see that B̃irm(X,∆) is a subgroup of Bir(X). An

element g ∈ B̃irm(X,∆) is called a B̃-birational map of (X,∆). By the

definition of B̃irm(X,∆), we get the group homomorphism

ρ̃m : B̃irm(X,∆) → AutC(H
0(X,m(KX +∆))).

The homomorphism ρ̃m is called the B̃-pluricanonical representation
of B̃irm(X,∆). We sometimes simply denote ρ̃m(g) by g∗ for g ∈
B̃irm(X,∆) if there is no danger of confusion. There exists a natu-

ral inclusion Bir(X,∆) ⊂ B̃irm(X,∆) by the definitions.

Next, let us recall the notion of L2/m-integrable m-ple n-forms.

Definition 3.2. Let X be an n-dimensional connected complex man-
ifold and let ω be a meromorphic m-ple n-form. Let {Uα} be an open
covering of X with holomorphic coordinates

(z1α, z
2
α, · · · , znα).

We can write

ω|Uα = ϕα(dz
1
α ∧ · · · ∧ dznα)

m,

where ϕα is a meromorphic function on Uα. We give (ω ∧ ω̄)1/m by

(ω ∧ ω̄)1/m|Uα =

(√
−1

2π

)n

|ϕα|2/mdz1α ∧ dz̄1α · · · ∧ dznα ∧ dz̄nα.

We say that a meromorphic m-ple n-form ω is L2/m-integrable if
∫

X

(ω ∧ ω̄)1/m < ∞.

We can easily check the following two lemmas.

Lemma 3.3. Let X be a compact connected complex manifold and let
D be a reduced normal crossing divisor on X. Set U = X \ D. If ω
is an L2-integrable meromorphic n-form such that ω|U is holomorphic,
then ω is a holomorphic n-form.

Proof. See, for example, [S, Theorem 2.1] or [Ka1, Proposition 16]. %
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Lemma 3.4 (cf. [G2, Lemma 4.8]). Let (X,∆) be a projective sub-
klt pair such that X is smooth and ∆ has a simple normal crossing
support. Let m be a positive integer such that m∆ is Cartier and let
ω ∈ H0(X,OX(m(KX + ∆))) be a meromorphic m-ple n-form. Then
ω is L2/m-integrable.

By Lemma 3.4, we obtained the following result. We note that the
proof of [G2, Proposition 4.9] works without any changes in our setting.

Proposition 3.5. Let (X,∆) be an n-dimensional projective subklt
pair such that X is smooth, connected, and ∆ has a simple normal
crossing support. Let g ∈ B̃irm(X,∆) be a B̃-birational map where m
is a positive integer such that m∆ is Cartier, and let

ω ∈ H0(X,m(KX +∆))

be a nonzero meromorphic m-ple n-form on X. Suppose that g∗ω = λω
for some λ ∈ C. Then there exists a positive integer Nm,ω such that
λNm,ω = 1 and Nm,ω does not depend on g.

Remark 3.6. By the proof of [G2, Proposition 4.9] and [U, Theorem
14.10], we know that ϕ(Nm,ω) ≤ bn(Y ′), where bn(Y ′) is the n-th Betti
number of Y ′ which is in the proof of [G2, Proposition 4.9] and ϕ is
the Euler function.

Proposition 3.7 (cf. [U, Proposition 14.7]). Let (X,∆) be a projec-
tive subklt pair such that X is smooth, connected, and ∆ has a simple
normal crossing support, and let

ρ̃m : B̃irm(X,∆) → AutC(H
0(X,m(KX +∆)))

be the B̃-pluricanonical representation of B̃irm(X,∆) where m is a pos-
itive integer such that m∆ is Cartier. Then ρ̃m(g) is semi-simple for

every g ∈ B̃irm(X,∆).

Proof. If ρ̃m(g) is not semi-simple, there exist two linearly independent
elements ϕ1, ϕ2 ∈ H0(X,m(KX +∆)) and nonzero α ∈ C such that

g∗ϕ1 = αϕ1 + ϕ2, g∗ϕ2 = αϕ2

by considering Jordan’s decomposition of g∗. Here, we denote ρ̃m(g) by
g∗ for simplicity. By Proposition 3.5, we see that α is a root of unity.
Let l be a positive integer. Then we have

(gl)∗ϕ1 = α
lϕ1 + lαl−1ϕ2.

Since g is a birational map, we have∫

X

(ϕ1 ∧ ϕ̄1)
1/m =

∫

X

((gl)∗ϕ1 ∧ (gl)∗ϕ̄1)
1/m.
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On the other hand, we have

lim
l→∞

∫

X

((gl)∗ϕ1 ∧ (gl)∗ϕ̄1)
1/m = ∞.

For details, see the proof of [U, Proposition 14.7]. However, we know∫
X(ϕ1 ∧ ϕ̄1)1/m < ∞ by Lemma 3.4. This is a contradiction. %
Proposition 3.8. The number Nm,ω in Proposition 3.5 is uniformly
bounded for every ω ∈ H0(X,m(KX + ∆)). Therefore, we can take a
positive integer Nm such that Nm is divisible by Nm,ω for every ω.

Proof. We consider the projective space bundle

π : M := PX(OX(−KX)⊕OX) → X

and

V := M × P(H0(X,OX(m(KX +∆))))

→ X × P(H0(X,OX(m(KX +∆)))).

We fix a basis {ω0, ω1, . . . , ωN} of H0(X,OX(m(KX +∆))). By using
this basis, we can identify P(H0(X,OX(m(KX + ∆)))) with PN . We
write the coordinate of PN as (a0 : · · · : aN) under this identification.
Set ∆ = ∆+−∆−, where ∆+ and ∆− are effective and have no common
irreducible components. Let {Uα} be coordinate neighborhoods of X
with holomorphic coordinates (z1α, z

2
α, · · · , znα). For any i, we can write

ωi locally as

ωi|Uα =
ϕi,α

δi,α
(dz1α ∧ · · · ∧ dznα)

m,

where ϕi,α and δi,α are holomorphic with no common factors, and ϕi,α

δi,α

has poles at most m∆+. We may assume that {Uα} gives a local
trivialization of M , i.e. M |Uα := π−1Uα , Uα×P1. We set a coordinate
(z1α, z

2
α, · · · , znα, ξ0α : ξ1α) of Uα × P1 with the homogeneous coordinate

(ξ0α : ξ1α) of P1. Note that

ξ0α
ξ1α

= kαβ
ξ0β
ξ1β

in M |Uα
⋂

Uβ
,

where kαβ = det(∂ziβ/∂z
j
α)1≤i,j≤n. Set

YUα = {(ξ0α)m
N∏

i=0

δi,α − (ξ1α)
m

N∑

i=0

δ̂i,αaiϕi,α = 0} ⊂ Uα × P1 × PN ,

where δ̂i,α = δ0,α · · · δi−1,α · δi+1,α · · · δN,α. By easy calculations, we see
that {YUα} can be patched and we obtain Y . We note that Y may have
singularities and be reducible. The induced projection f : Y → PN
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is surjective and equidimensional. Let q : Y → X be the natural
projection. By the same arguments as in the proof of [U, Theorem
14.10], we have a suitable stratification PN = *iSi, where Si is smooth
and locally closed in PN for every i, such that (f−1(Si)ν , q∗∆|f−1(Si)ν ) →
Si has a simultaneous log resolution for every i, where f−1(Si)ν is the
normalization of f−1(Si). Therefore, there is a positive constant b such
that for every p ∈ PN we have a resolution µp : Ỹp → Yp := f−1(p)

with the properties that bn(Ỹp) ≤ b and that µ∗
p(q

∗∆|Yp) has a simple
normal crossing support. Thus, by Remark 3.6, we obtain Proposition
3.8. %

Now we have the main theorem of this subsection. We will use it in
the following subsections.

Theorem 3.9. Let (X,∆) be a projective subklt pair such that X is
smooth, ∆ has a simple normal crossing support, and m(KX + ∆) is

Cartier where m is a positive integer. Then ρ̃m(B̃irm(X,∆)) is a finite
group.

Proof. By Proposition 3.7, we see that ρ̃m(g) is diagonalizable. More-
over, Proposition 3.8 implies that the order of ρ̃m(g) is bounded by a

positive constant Nm which is independent of g. Thus ρ̃m(B̃irm(X,∆))
is a finite group by Burnside’s theorem (see, for example, [U, Theorem
14.9]). %

As a corollary, we obtain Theorem 1.1 for klt pairs without assuming
the semi-ampleness of log canonical divisors.

Corollary 3.10. Let (X,∆) be a projective klt pair such that m(KX +
∆) is Cartier where m is a positive integer. Then ρm(Bir(X,∆)) is a
finite group.

Proof. Let f : Y → X be a log resolution of (X,∆) such that KY +
∆Y = f ∗(KX +∆). Since

ρm(Bir(Y,∆Y )) ⊂ ρ̃m(B̃irm(Y,∆Y )),

ρm(Bir(Y,∆Y )) is a finite group by Theorem 3.9. Therefore, we obtain
that ρm(Bir(X,∆)) , ρm(Bir(Y,∆Y )) is a finite group. %
3.2. Lc pairs with big log canonical divisor. In this subsection,
we prove the following theorem. The proof is essentially the same as
that of Case 1 in [F1, Theorem 3.5].

Theorem 3.11. Let (X,∆) be a projective sublc pair such that KX+∆
is big. Let m be a positive integer such that m(KX + ∆) is Cartier.
Then ρm(Bir(X,∆)) is a finite group.
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Before we start the proof of Theorem 3.11, we give a remark.

Remark 3.12. By Theorem 3.11, when KX +∆ is big, Theorem 1.1,
the main theorem of this paper, holds true without assuming thatKX+
∆ is semi-ample. Therefore, we state Theorem 3.11 separately for some
future usage. In Case 2 in the proof of Theorem 3.13, which is nothing
but Theorem 1.1, we will use the arguments in the proof of Theorem
3.11.

Proof. By taking a log resolution, we can assume that X is smooth and
∆ has a simple normal crossing support. By Theorem 3.9, we can also
assume that ∆=1 &= 0. Since KX +∆ is big, for a sufficiently large and
divisible positive integer m′, we obtain an effective Cartier divisor Dm′

such that
m′(KX +∆) ∼Z ∆

=1 +Dm′

by Kodaira’s lemma. It is easy to see that Supp g∗∆=1 = Supp∆=1 for
every g ∈ Bir(X,∆). This implies that g∗∆=1 ≥ ∆=1. Thus, we have
a natural inclusion

Bir(X,∆) ⊂ B̃irm′

(
X,∆− 1

m′∆
=1

)
.

We consider the B̃-birational representation

ρ̃m′ : B̃irm′

(
X,∆− 1

m′∆
=1

)
→ AutCH

0(X,m′(KX +∆)−∆=1).

Then, by Theorem 3.9,

ρ̃m′

(
B̃irm′

(
X,∆− 1

m′∆
=1

))

is a finite group. Therefore, ρ̃m′(Bir(X,∆)) is also a finite group.
We put a = |ρ̃m′(Bir(X,∆))| < ∞. In this situation, we can find a
Bir(X,∆)-invariant non-zero section s ∈ H0(X, a(m′(KX+∆)−∆=1)).
By using s, we have a natural inclusion

(♠) H0(X,m(KX +∆)) ⊆ H0(X, (m+m′a)(KX +∆)− a∆=1).

By the construction, Bir(X,∆) acts on the both vector spaces compat-
ibly. We consider the B̃-pluricanonical representation

ρ̃m+m′a : B̃irm+m′a

(
X,∆− a

m+m′a
∆=1

)

→ AutCH
0(X, (m+m′a)(KX +∆)− a∆=1).

Since (
X,∆− a

m+m′a
∆=1

)
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is subklt, we have that

ρ̃m+m′a

(
B̃irm+m′a

(
X,∆− a

m+m′a
∆=1

))

is a finite group by Theorem 3.9. Therefore, ρ̃m+m′a(Bir(X,∆)) is also
a finite group. Thus, we obtain that ρm(Bir(X,∆)) is a finite group by
the Bir(X,∆)-equivariant embedding (♠). %
3.3. Lc pairs with semi-ample log canonical divisor. Theorem
3.13 is one of the main results of this paper (see Theorem 1.1). We will
treat many applications of Theorem 3.13 in Section 4.

Theorem 3.13. Let (X,∆) be an n-dimensional projective lc pair such
that KX + ∆ is semi-ample. Let m be a positive integer such that
m(KX +∆) is Cartier. Then ρm(Bir(X,∆)) is a finite group.

Proof. We show the statement by the induction on n. By taking a dlt
blow-up (cf. Theorem 2.8), we may assume that (X,∆) is a Q-factorial
dlt pair. Let f : X → Y be a projective surjective morphism associated
to k(KX + ∆) for a sufficiently large and divisible positive integer k.
By Corollary 3.10, we may assume that !∆" &= 0.

Case 1. !∆h" &= 0, where ∆h is the horizontal part of ∆ with respect
to f .

In this case, we put T = !∆". Since m(KX +∆) ∼Q,Y 0, we see that

H0(X,OX(m(KX +∆)− T )) = 0.

Thus the restricted map

H0(X,OX(m(KX +∆))) → H0(T,OT (m(KT +∆T )))

is injective, where KT + ∆T = (KX + ∆)|T . Let ν : T ν → T be
the normalization such that KT ν + Ξ = ν∗(KT + ∆T ). Let (Ti,Ξi)
be the disjoint union of all the i-dimensional lc centers of (T ν ,Ξ) for
0 ≤ i ≤ n−1. We note that ρm(Bir(Ti,Ξi)) is a finite group for every i
by the induction on dimension. We put ki = |ρm(Bir(Ti,Ξi))| < ∞ for
0 ≤ i ≤ n−1. Let l be the least common multiple of ki for 0 ≤ i ≤ n−1.
Then we can check that (g∗)l = id onH0(T,OT (m(KT+∆T ))) for every
g ∈ Bir(X,∆) (see the proof of [F1, Lemma 4.9]). By the following
commutative diagram

0 ## H0(X,OX(m(KX +∆)))

(g∗)l

$$

## H0(T,OT (m(KT +∆T )))

(g∗)l=id
$$

0 ## H0(X,OX(m(KX +∆))) ## H0(T,OT (m(KT +∆T ))),
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we have that (g∗)l = id on H0(X,OX(m(KX + ∆))). Thus we obtain
that ρm(Bir(X,∆)) is a finite group by Burnside’s theorem (cf. [U,
Theorem 14.9]).

Remark 3.14. In the above argument, g ∈ Bir(X,∆) does not nec-
essarily induce a birational map g|T : T ##$ T (see Example 2.12).
However, g ∈ Bir(X,∆) induces an automorphism

g∗ : H0(T,OT (m(KT +∆T )))
∼−→ H0(T,OT (m(KT +∆T )))

(see the proof of [F1, Lemma 4.9]). More precisely, let

W
α

!!!!
!!
!!
!! β

""$
$$

$$
$$

$

X g
######### X

be a common log resolution such that

α∗(KX +∆) = KW +Θ = β∗(KX +∆).

Then we can easily see that

α∗OS , OT , β∗OS,

where T = !∆" and S = Θ=1, by the Kawamata–Viehweg vanishing
theorem. Thus we obtain an automorphism

g∗ : H0(T,OT (m(KT +∆T )))
β∗
−→ H0(S,OS(m(KS +ΘS)))

α∗−1

−→ H0(T,OT (m(KT +∆T )))

where (KW +Θ)|S = KS +ΘS.

Case 2. !∆h" = 0.

We can construct the commutative diagram

X ′

f ′

$$

ϕ
## X

f
$$

Y ′
ψ

## Y

with the following properties:

(a) ϕ : X ′ → X is a log resolution of (X,∆).
(b) ψ : Y ′ → Y is a resolution of Y .
(c) there is a simple normal crossing divisor Σ on Y ′ such that f ′ is

smooth and Suppϕ−1
∗ ∆ ∪ Exc(ϕ) is relatively normal crossing

over Y ′ \ Σ.
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(d) Supp f ′∗Σ and Supp f ′∗Σ∪Exc(ϕ)∪Suppϕ−1
∗ ∆ are simple nor-

mal crossing divisors on X ′.

Then we have

KX′ +∆X′ = f ′∗(KY ′ +∆Y ′ +M),

where KX′ +∆X′ = ϕ∗(KX +∆), ∆Y ′ is the discriminant divisor and
M is the moduli part of f ′ : (X ′,∆X′) → Y ′. Note that

∆Y ′ =
∑

(1− cQ)Q,

where Q runs through all the prime divisors on Y ′ and

cQ = sup{t ∈ Q |KX′+∆X′+tf ′∗Q is sublc over the generic point ofQ}.
We can further assume that Supp∆=1

X′ ⊂ Supp f ′∗∆=1
Y ′ by taking more

blow-ups. We can check that every g ∈ Bir(X ′,∆X′) = Bir(X,∆)
induces gY ′ ∈ Bir(Y ′,∆Y ′) which satisfies the following commutative
diagram (see [A, Theorem 0.2] for the subklt case, and [Ko, Proposition
8.4.9 (3)] for the sublc case).

X ′

f ′

$$

g
#####

&

X ′

f ′

$$

Y ′
gY ′

##### Y ′

Therefore, we have Supp g∗Y ′∆=1
Y ′ = Supp∆=1

Y ′ . This implies that

g∗Y ′∆=1
Y ′ ≥ ∆=1

Y ′ .

Thus there is an effective Cartier divisor Eg on X ′ such that

g∗f ′∗∆=1
Y ′ + Eg ≥ f ′∗∆=1

Y ′

and that the codimension of f ′(Eg) in Y ′ is ≥ 2. We note the definitions
of g∗ and g∗Y ′ (cf. Definition 2.11). Therefore, g ∈ Bir(X ′,∆X′) induces
an automorphism g∗ of H0(X ′,m′(KX′ + ∆X′) − f ′∗∆=1

Y ′ ) where m′ is
a sufficiently large and divisible positive integer m′. It is because

H0(X ′,m′(KX′ +∆X′)− g∗f ′∗∆=1
Y ′ )

⊂ H0(X ′,m′(KX′ +∆X′)− f ′∗∆=1
Y ′ + Eg)

, H0(X ′,m′(KX′ +∆X′)− f ′∗∆=1
Y ′ ).

Here, we used the facts that m′(KX′ +∆X′) = f ′∗(m′(KY ′ +∆Y ′ +M))
and that f ′

∗OX′(Eg) , OY ′ . Thus we have a natural inclusion

Bir(X ′,∆X′) ⊂ B̃irm′

(
X ′,∆X′ − 1

m′f
′∗∆=1

Y ′

)
.
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SinceKY ′+∆Y ′+M is (nef and) big, for a sufficiently large and divisible
positive integer m′, we obtain an effective Cartier divisor Dm′ such that

m′(KY ′ +∆Y ′ +M) ∼Z ∆
=1
Y ′ +Dm′ .

This means that

H0(X ′,m′(KX′ +∆X′)− f ′∗∆=1
Y ′ ) &= 0.

By considering the natural inclusion

Bir(X ′,∆X′) ⊂ B̃irm′

(
X ′,∆X′ − 1

m′f
′∗∆=1

Y ′

)
,

we can use the same arguments as in the proof of Theorem 3.11. Thus
we obtain the finiteness of B-pluricanonical representations. %
Remark 3.15. Although we did not explicitly state it, in Theorem
3.9, we do not have to assume that X is connected. Similarly, we can
prove Theorems 3.11 and 3.13 without assuming that X is connected.
For the details, see [G2, Remark 4.4].

We close this section with comments on [F1, Section 3] and [G2,
Theorem B]. In [F1, Section 3], we proved Theorem 3.13 for surfaces.
There, we do not need the notion of B̃-birational maps. It is mainly
because Y ′ in Case 2 in the proof of Theorem 3.13 is a curve if (X,∆)
is not klt and KX +∆ is not big. Thus, gY ′ is an automorphism of Y ′.
In [G2, Theorem B], we proved Theorem 3.13 under the assumption
that KX+∆ ∼Q 0. In that case, Case 1 in the proof of Theorem 3.13 is
sufficient. Therefore, we do not need the notion of B̃-birational maps
in [G2].

4. On abundance conjecture for log canonical pairs

In this section, we treat various applications of Theorem 1.1 on the
abundance conjecture for (semi) lc pairs (cf. Conjecture 1.2).

Let us introduce the notion of nef and log abundant Q-divisors.

Definition 4.1 (Nef and log abundant divisors). Let (X,∆) be a sublc
pair. A closed subvariety W of X is called an lc center if there exist a
resolution f : Y → X and a divisor E on Y such that a(E,X,∆) = −1
and f(E) = W . A Q-Cartier Q-divisor D on X is called nef and log
abundant with respect to (X,∆) if and only if D is nef and abundant,
and ν∗WD|W is nef and abundant for every lc center W of the pair
(X,∆), where νW : W ν → W is the normalization. Let π : X → S
be a proper morphism onto a variety S. Then D is π-nef and π-
log abundant with respect to (X,∆) if and only if D is π-nef and π-
abundant and (ν∗WD|W )|W ν

η
is abundant, where W ν

η is the generic fiber
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of W ν → π(W ). We sometimes simply say that D is nef and log
abundant over S.

The following theorem is one of the main theorems of this section
(cf. [F2, Theorem 0.1], [F9, Theorem 4.4]). For a relative version of
Theorem 4.2, see Theorem 4.12 below.

Theorem 4.2. Let (X,∆) be a projective lc pair. Assume that KX+∆
is nef and log abundant. Then KX +∆ is semi-ample.

Proof. By replacing (X,∆) with its dlt blow-up (cf. Theorem 2.8), we
can assume that (X,∆) is dlt and that KX+∆ is nef and log abundant.
We put S = !∆". Then (S,∆S), where KS + ∆S = (KX + ∆)|S, is
an sdlt (n − 1)-fold and KS + ∆S is semi-ample by the induction on
dimension and Proposition 4.3 below. By applying Fukuda’s theorem
(cf. [F5, Theorem 1.1]), we obtain that KX +∆ is semi-ample. %

We note that Proposition 4.3 is a key result in this paper. It heavily
depends on Theorem 1.1.

Proposition 4.3. Let (X,∆) be a projective slc pair. Let ν : Xν → X
be the normalization. Assume that KXν + Θ = ν∗(KX + ∆) is semi-
ample. Then KX +∆ is semi-ample.

Proof. The arguments in [F1, Section 4] work by Theorem 1.1. As we
pointed out in 2.15, we can freely use the results in [F1, Section 2]. The
finiteness of B-pluricanonical representations, which was only proved
in dimension ≤ 2 in [F1, Section 3], is now Theorem 1.1. Therefore,
the results in [F1, Section 4] hold in any dimension. %

By combining Proposition 4.3 with Theorem 4.2, we obtain an ob-
vious corollary (see also Corollary 4.13, Theorem 4.18, and Remark
4.19).

Corollary 4.4. Let (X,∆) be a projective slc pair and let ν : Xν → X
be the normalization. If KXν+Θ = ν∗(KX+∆) is nef and log abundant,
then KX +∆ is semi-ample.

We give one more corollary of Proposition 4.3.

Corollary 4.5. Let (X,∆) be a projective slc pair such that KX + ∆
is nef. Let ν : Xν → X be the normalization. Assume that Xν is a
toric variety. Then KX +∆ is semi-ample.

Proof. It is well known that every nef Q-Cartier Q-divisor on a projec-
tive toric variety is semi-ample. Therefore, this corollary is obvious by
Proposition 4.3. %
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Theorem 4.6. Let (X,∆) be a projective n-dimensional lc pair. As-
sume that the abundance conjecture holds for projective dlt pairs in
dimension ≤ n−1. Then KX +∆ is semi-ample if and only if KX +∆
is nef and abundant.

Proof. It is obvious that KX+∆ is nef and abundant if KX+∆ is semi-
ample. So, we show that KX +∆ is semi-ample under the assumption
thatKX+∆ is nef and abundant. By taking a dlt blow-up (cf. Theorem
2.8), we can assume that (X,∆) is dlt. By the assumption, it is easy
to see that KX + ∆ is nef and log abundant. Therefore, by Theorem
4.2, we obtain that KX +∆ is semi-ample. %

The following theorem is an easy consequence of the arguments in
[KMM, Section 7] and Proposition 4.3 by the induction on dimension.
We will treat related topics in Section 5 more systematically.

Theorem 4.7. Let (X,∆) be a projective Q-factorial dlt n-fold such
that KX+∆ is nef. Assume that the abundance conjecture for projective
Q-factorial klt pairs in dimension ≤ n. We further assume that the
minimal model program with ample scaling terminates for projective
Q-factorial klt pairs in dimension ≤ n. Then KX +∆ is semi-ample.

Proof. This follows from the arguments in [KMM, Section 7] by us-
ing the minimal model program with ample scaling with the aid of
Proposition 4.3. Let H be a general effective sufficiently ample Cartier
divisor on X. We run the minimal model program on KX +∆− ε!∆"
with scaling of H. We note that KX +∆ is numerically trivial on the
extremal ray in each step of the above minimal model program if ε is
sufficiently small by [B, Proposition 3.2]. We also note that, by the
induction on dimension, (KX +∆)|!∆" is semi-ample. For the details,
see [KMM, Section 7]. %
Remark 4.8. In the proof of Theorem 4.7, the abundance theorem
and the termination of the minimal model program with ample scaling
for projective Q-factorial klt pairs in dimension ≤ n−1 are sufficient if
KX +∆−ε!∆" is not pseudo-effective for every 0 < ε+ 1 by [BCHM]
(cf. 2.15).

The next theorem is an answer to Professor János Kollár’s question
for projective varieties. He was mainly interested in the case where f
is birational.

Theorem 4.9. Let f : X → Y be a projective morphism between
projective varieties. Let (X,∆) be an lc pair such that KX + ∆ is
numerically trivial over Y . Then KX +∆ ∼Q,Y 0.
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Proof. By replacing (X,∆) with its dlt blow-up (cf. Theorem 2.8), we
can assume that (X,∆) is a Q-factorial dlt pair. Let S = !∆" = ∪Si be
the irreducible decomposition. If S = 0, then KX+∆ ∼Q,Y 0 by Kawa-
mata’s theorem (see [F4, Theorem 1.1]). It is because (KX +∆)|Xη ∼Q
0, where Xη is the generic fiber of f , by Nakayama’s abundance the-
orem for klt pairs with numerical trivial log canonical divisor (cf. [N,
Chapter V. 4.9. Corollary]). By the induction on dimension, we can
assume that (KX +∆)|Si ∼Q,Y 0 for every i. Let H be a general effec-
tive sufficiently ample Q-Cartier Q-divisor on Y such that !H" = 0.
Then (X,∆+ f ∗H) is dlt, (KX +∆+ f ∗H)|Si is semi-ample for every
i. By Proposition 4.3, (KX +∆+ f ∗H)|S is semi-ample. By applying
[F5, Theorem 1.1], we obtain that KX + ∆+ f ∗H is f -semi-ample.
We note that (KX + ∆+ f ∗H)|Xη ∼Q 0 (see, for example, [G2, The-
orem 1.2]). Therefore, KX + ∆ is f -semi-ample. This means that
KX +∆ ∼Q,Y 0. %
Remark 4.10. In Theorem 4.9, if ∆ is an R-divisor, then we obtain
KX +∆ ∼R,Y 0 by the same arguments as in [G2, Lemma 6.2].

As a corollary, we obtain a relative version of the main theorem of
[G2].

Corollary 4.11 (cf. [G2, Theorem 1.2]). Let f : X → Y be a projec-
tive morphism from a projective slc pair (X,∆) to a (not necessarily
irreducible) projective variety Y . Assume that KX +∆ is numerically
trivial over Y . Then there is a Q-Cartier Q-divisor D on Y such that
KX +∆ ∼Q f ∗D.

Proof. Let ν : Xν → X be the normalization such that KXν + Θ =
ν∗(KX + ∆). By Theorem 4.9, KXν + Θ ∼Q,Y 0. Let H be a general
sufficiently ample Q-divisor on Y such that KXν +Θ+ ν∗f ∗H is semi-
ample and that (X,∆+f ∗H) is slc. By Proposition 4.3, KX+∆+ f ∗H
is semi-ample. In particular, KX +∆+ f ∗H is f -semi-ample. Then we
can find a Q-Cartier Q-divisor D on Y such that KX +∆ ∼Q f ∗D. %

By the same arguments as in the proof of Theorem 4.9 (resp. Corol-
lary 4.11), we obtain the following theorem (resp. corollary), which is
a relative version of Theorem 4.2 (resp. Corollary 4.4).

Theorem 4.12. Let f : X → Y be a projective morphism between
projective varieties. Let (X,∆) be an lc pair such that KX +∆ is f -nef
and f -log abundant. Then KX +∆ is f -semi-ample.

Corollary 4.13. Let f : X → Y be a projective morphism from a
projective slc pair (X,∆) to a (not necessarily irreducible) projective
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variety Y . Let ν : Xν → X be the normalization such that KXν +Θ =
ν∗(KX + ∆). Assume that KXν + Θ is nef and log abundant over Y .
Then KX +∆ is f -semi-ample.

4.1. Relative abundance conjecture. In this subsection, we make
some remarks on the relative abundance conjecture.

Let us recall the minimal model conjecture.

Conjecture 4.14 (Minimal model conjecture). Let f : X → Y be a
projective morphism between quasi-projective varieties and let (X,B)
be an lc pair. If KX + B is pseudo-effective over Y , then it has a
minimal model over Y .

Conjecture 4.14 is very useful for the relative abundance conjecture
by Lemma 4.15 below.

Lemma 4.15. Assume that Conjecture 4.14 holds. Let f : X → Y
be a projective morphism between quasi-projective varieties such that
(X,B) is lc and that KX + B is f -nef. Let f : X → Y be any pro-
jective completion of f : X → Y . Then we can construct a projective
morphism g : V → Y from a normal projective variety V and an ef-
fective Q-divisor BV on V such that (V,BV ) is a Q-factorial dlt pair,
KV +BV is g-nef, (V,BV )|g−1(Y ) is a minimal model of (X,B) over Y ,
and no lc center of (V,BV ) is contained in g−1(Y \ Y ).

In particular, if α : W → X, β : W → g−1(Y ) is a common res-
olution of X and g−1(Y ), then α∗(KX + B) = β∗((KV + BV )|g−1(Y )).
Therefore, KX +B is semi-ample over Y if and only if so is KV +BV .

Proof. Let h : Z → X be a resolution such that Supph−1
∗ B ∪Exc(h)∪

h−1(X \ X) is a simple normal crossing divisor. We take a minimal
model (V,BV ) of (Z, h−1

∗ B +
∑

E), where E runs through all the h-
exceptional prime divisors on Z with h(E) &⊂ X \X, over Y . Then it
is easy to see that (V,BV ) has the desired properties. %

We close this subsection with a remark on the relative abundance
conjecture.

Remark 4.16 (Relative setting). We assume that Conjecture 4.14
holds. Then, by Lemma 4.15, we can prove Theorems 4.9 and 4.12 for
any projective morphisms between (not necessarily quasi-projective)
algebraic varieties. We can also formulate and prove the relative version
of Theorem 4.6 by Lemma 4.15 (cf. the proof of Theorem 4.9). We do
not know how to prove Corollary 4.11 and Corollary 4.13 for projective
morphisms between arbitrary algebraic varieties even when Conjecture
4.14 holds. We think that there are no reasonable minimal model
theories for reducible varieties.
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4.2. Miscellaneous applications. In this subsection, we collect some
miscellaneous applications related to the base point free theorem and
the abundance conjecture.

The following theorem is the log canonical version of Fukuda’s result.

Theorem 4.17 (cf. [Fk2, Theorem 0.1]). Let (X,∆) be a projective
lc pair. Assume that KX +∆ is numerically equivalent to some semi-
ample Q-Cartier Q-divisor D. Then KX +∆ is semi-ample.

Proof. By taking a dlt blow-up (cf. Theorem 2.8), we can assume that
(X,∆) is dlt. By the induction on dimension and Proposition 4.3, we
have that (KX +∆)|!∆" is semi-ample. By [F5, Theorem 1.1], we can
prove the semi-ampleness of KX +∆. For the details, see the proof of
[G2, Theorem 6.3]. %

By using the deep result in [CKP], we have a slight generalization
of Theorem 4.17 and [CKP, Corollary 3]. It is also a generalization of
Theorem 4.2.

Theorem 4.18 (cf. [CKP, Corollary 3]). Let (X,∆) be a projective lc
pair and let D be a Q-Cartier Q-divisor on X such that D is nef and
log abundant with respect to (X,∆). Assume that KX +∆ ≡ D. Then
KX +∆ is semi-ample.

Proof. By replacing (X,∆) with its dlt blow-up (cf. Theorem 2.8), we
can assume that (X,∆) is dlt. Let f : Y → X be a log resolution. We
put KY + ∆Y = f ∗(KX + ∆) + F with ∆Y = f−1

∗ ∆ +
∑

E where E
runs through all the f -exceptional prime divisors on Y . We note that
F is effective and f -exceptional. By [CKP, Corollary 1],

κ(X,KX +∆) = κ(Y,KY +∆Y ) ≥ κ(Y, f ∗D + F ) = κ(X,D).

By the assumption, κ(X,D) = ν(X,D) = ν(X,KX + ∆). On the
other hand, ν(X,KX + ∆) ≥ κ(X,KX + ∆) always holds. Therefore,
κ(X,KX +∆) = ν(X,KX +∆), that is, KX +∆ is nef and abundant.
By applying the above argument to every lc center of (X,∆), we obtain
that KX+∆ is nef and log abundant. Thus, by Theorem 4.2, we obtain
that KX +∆ is semi-ample. %
Remark 4.19. By the proof of Theorem 4.18, we see that we can
weaken the assumption as follows. Let (X,∆) be a projective lc pair.
Assume thatKX+∆ is numerically equivalent to a nef and abundantQ-
Cartier Q-divisor and that ν∗W ((KX +∆)|W ) is numerically equivalent
to a nef and abundant Q-Cartier Q-divisor for every lc center W of
(X,∆), where νW : W ν → W is the normalization of W . Then KX+∆
is semi-ample.
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Theorem 4.20 is a generalization of [G1, Theorem 1.7]. The proof is
the same as [G1, Theorem 1.7] once we adopt [F5, Theorem 1.1].

Theorem 4.20 (cf. [G2, Theorems 6.4, 6.5]). Let (X,∆) be a projective
lc pair such that −(KX + ∆) (resp. KX + ∆) is nef and abundant.
Assume that dimNklt(X,∆) ≤ 1 where Nklt(X,∆) is the non-klt locus
of the pair (X,∆). Then −(KX +∆) (resp. KX +∆) is semi-ample.

Proof. Let T be the non-klt locus of (X,∆). By the same argument
as in the proof of [G1, Theorem 3.1], we can check that −(KX +∆)|T
(resp. (KX+∆)|T ) is semi-ample. Therefore, −(KX+∆) (resp.KX+∆)
is semi-ample by [F5, Theorem 1.1]. %

Similarly, we can prove Theorem 4.21.

Theorem 4.21. Let (X,∆) be a projective lc pair. Assume that −(KX+
∆) is nef and abundant and that (KX + ∆)|W ≡ 0 for every lc center
W of (X,∆). Then −(KX +∆) is semi-ample.

Proof. By taking a dlt blow-up (cf. Theorem 2.8), we can assume that
(X,∆) is dlt. By [G2, Theorem 1.2] (cf. Corollary 4.11), (KX +∆)|!∆"
is semi-ample. Therefore, KX + ∆ is semi-ample by [F5, Theorem
1.1]. %

5. Non-vanishing, abundance, and minimal model
conjectures

In this final section, we discuss the relationship among various con-
jectures in the minimal model program.

First, let us recall the weak non-vanishing conjecture for projective
lc pairs (cf. [B, Conjecture 1.3]).

Conjecture 5.1 (Weak non-vanishing conjecture). Let (X,∆) be a
projective lc pair such that ∆ is a Q-divisor. Assume that KX + ∆ is
pseudo-effective. Then there exists an effective Q-divisor D on X such
that KX +∆ ≡ D.

Conjecture 5.1 is known to be one of the most important problems
in the minimal model theory (cf. [B]).

Remark 5.2. By [CKP, Theorem 1], KX +∆ ≡ D ≥ 0 in Conjecture
5.1 means that there is an effective Q-divisor D′ such that KX +∆ ∼Q
D′.

By Remark 5.2 and Lemma 5.3 below, Conjecture 5.1 in dimension
≤ n is equivalent to Conjecture 1.3 of [B] in dimension ≤ n for Q-
divisors with the aid of dlt blow-ups (cf. Theorem 2.8).
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Lemma 5.3. Assume that Conjecture 5.1 holds in dimension ≤ n. Let
f : X → Z be a projective morphism between quasi-projective varieties
with dimX = n. Let (X,∆) be an lc pair such that KX +∆ is pseudo-
effective over Z. Then there exists an effective Q-Cartier Q-divisor M
on X such that KX +∆ ∼Q,Z M .

Proof. By applying Conjecture 5.1 and Remark 5.2 to the generic fiber
of f , there exists a positive integer a such that f∗OX(a(KX +∆)) &= 0.
Since Z is quasi-projective, we can find M ≥ 0 such that KX +∆ ∼Q,Z

M . %
Before we discuss the main result of this section, we give a remark

on Birkar’s paper [B].

Remark 5.4 (Absolute versus relative). Let f : X → Z be a projective
morphism between projective varieties. Let (X,B) be a Q-factorial dlt
pair and let (X,B+C) be an lc pair such that C ≥ 0 and thatKX+B+
C is nef over Z. LetH be a very ample Cartier divisor on Z. LetD be a
general member of |2(2 dimX+1)H|. In this situation, (X,B+ 1

2f
∗D)

is dlt, (X,B + 1
2f

∗D + C) is lc, and KX + B + 1
2f

∗D + C is nef by
Kawamata’s bound on the length of extremal rays. The minimal model
program on KX + B + 1

2f
∗D with scaling of C is the minimal model

program on KX + B over Z with scaling of C. By this observation,
the arguments in [B] work without appealing relative settings if the
considered varieties are projective. We also note that the arguments in
[B] work for Q-divisors.

The following theorem is the main theorem of this section.

Theorem 5.5. The abundance theorem for projective klt pairs in di-
mension ≤ n and Conjecture 5.1 for projective Q-factorial dlt pairs in
dimension ≤ n imply the abundance theorem for projective lc pairs in
dimension ≤ n.

Proof. Let (X,∆) be an n-dimensional projective lc pair such that
KX + ∆ is nef. As we explained in 2.15, by [B, Theorems 1.4, 1.5],
the minimal model program with ample scaling terminates for projec-
tive Q-factorial klt pairs in dimension ≤ n. Moreover, we can assume
that (X,∆) is a projective Q-factorial dlt pair by taking a dlt blow-
up (cf. Theorem 2.8). Thus, by Theorem 4.7, we obtain the desired
result. %

The final result is on a generalized abundance conjecture formulated
by Nakayama’s numerical Kodaira dimension κσ. For the details of κσ,
see [N] (see also [L]).
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Corollary 5.6 (Generalized abundance conjecture). Assume that the
abundance conjecture for projective klt pairs in dimension ≤ n and Con-
jecture 5.1 for Q-factorial dlt pairs in dimension ≤ n. Let (X,∆) be an
n-dimensional projective lc pair. Then κ(X,KX+∆) = κσ(X,KX+∆).

Proof. We can assume that (X,∆) is a Q-factorial projective dlt pair
by replacing it with its dlt blow-up (cf. Theorem 2.8). Let H be a
general effective sufficiently ample Cartier divisor on X. We can run
the minimal model program with scaling of H by 2.15. Then we obtain
a good minimal model by Theorem 5.5 if KX + ∆ is pseudo-effective.
When KX + ∆ is not pseudo-effective, we have a Mori fiber space
structure. In each step of the minimal model program, κ and κσ are
preserved. So, we obtain κ(X,KX +∆) = κσ(X,KX +∆). %
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