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ABUNDANCE OF NON-UNIFORM HYPERBOLICITY IN
BIFURCATIONS OF SURFACE ENDOMORPHISMS

HIROKI TAKAHASI

Abstract. We study an interplay between homoclinic behavior and singularities in surface
endomorphisms. We show that appropriate rescalings near homoclinic orbits intersecting fold
singularities yield families of non-invertible Hénon-like maps. Then we construct positive
measure sets of parameters corresponding to maps which exhibit nonuniformly hyperbolic
behavior. This implies an extension of the celebrated theorem of Benedicks and Carleson,
and that of Mora and Viana to surface endomorphisms.

1. Introduction

It is well-known that unfoldings of non-transverse homoclinic orbits of diffeomorphisms
unleash incredibly rich arrays of complicated behaviors. A program was proposed by Palis [14],
which aims to understand all dynamical complexities beyond uniform hyperbolicity through
the study of homoclinic bifurcations. The aim of this paper is to contribute to advancing this
program to endomorphisms.

For endomorphisms, interactions of invariant manifolds with singularities (points where the
Jacobian of the map is singular) bring new phenomena which are not well-understood (see e.g.
[10, 16]). In this paper we reveal an interplay between homoclinic points and fold singularities
which leads to the emergence of chaotic attractors.

Landmark theorems on the abundance of nonuniform hyperbolicity, or chaotic attrac-
tors, were obtained by Jakobson [11] for one-dimensional maps with critical points, and by
Benedicks and Carleson [2] for the Hénon map. Mora and Viana [13], Dı́az, Rocha and Viana
[8] pushed their argument further and proved the existence of chaotic attractors in very gen-
eral global bifurcations of diffeomorphisms. See Wang and Young [22] for more advanced
properties of the attractor. For other subsequent developments in the creation of the theory
of nonuniformly hyperbolic dynamics for Hénon-like maps, see [3, 4, 5, 6, 21, 23].

A characteristic of these developments is an almost exclusive concentration on invertible
systems. Unfortunately, substantial overhauls are necessary for extensions to non-invertible
systems. Moreover, in many applications of practical interest, (e.g. control theory, economics,
electronics, neural networks, etc.) systems are often modelled by non-invertible maps. We
aim to narrow this gap.

1.1. Homoclinic points on singularities. Let M be a surface and f0 a C∞ endomorphism
on M . Let p0 ∈ M be a hyperbolic fixed point of f0. Let λ, ρ denote the eigenvalues of
Df0(p0). We assume 0 < λ < 1 < ρ and λρ < 1. Let W u(p0) denote the unstable manifold of
p0, which is a smoothly immersed real line possibly with self-intersections. Let W s

loc(p0) denote
the local stable manifold of p0. The stable set of p0 is defined by W s(p0) =

⋃
n≥0 f

−n
0 W s

loc(p0),
which is not necessarily a manifold. Let S0 denote the set of singularities of f0.
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Definition 1.1. (Simple homoclinic points) A homoclinic point q ∈ W u(p0) ∩ W s(p0) is
simple if there exists a sequence {qn}n∈Z such that q0 = q, f0qn = qn+1 for every n ∈ Z and
${n ∈ Z : qn ∈ S0} = 1.

Let q ∈ W u(p0) ∩W s(p0) be a simple homoclinic point. We may assume q ∈ S0. We write
q0 for q, and assume that q0 is a fold singularity, namely there exist neighborhoods U , V in
R2 of the origin and C∞ orientation-preserving diffeomorphisms φ : U → M , ψ : V → M such
that φ(0, 0) = q0, ψ(0, 0) = f0(q0), and

ψ−1 ◦ f0 ◦ φ(x, y) = (x2, y).

Since q0 is simple, there exist a short compact curve #u0 in W u(p0) which contains q0 in its
interior and has an well-defined sequence of preimages not intersecting S0. We assume there
exists a short smooth compact curve #s0 in W s(p0) which contains q0 in its interior. Since q0 is
simple, #s0 is obtained as a preimage of a compact curve in W s

loc(p0). We assume the following,
the geometric meanings of which are in the parentheses:

(T1) the tangent direction of #u0 (resp. #s0) at q0 is transverse to that of S0 at q0, and to the
kernel of Df0(q0) ( f0#u0 (resp. f0#s0) makes a quadratic tangency to f0S0 at f0q0);

(T2) #u0 and #s0 meet transversely to each other at q0 (the curvature of f0#u0 at f0q0 is different
from that of f0#s0 at f0q0).

Let N denote the smallest positive integer such that fN
0 q0 ∈ W s

loc(p0). In order to get
recurrent dynamics involving S0, we assume the component of fN

0 S0 containing fN
0 q0 is on the

same side of W s
loc(p0) as that of the branch of W u

loc(p0) containing q0 (See Figure 1).
We consider a generic arc (fµ) of endomorphisms on M through f0. Unlike the case of

homoclinic tangencies of surface diffeomorphisms, it is not possible two pull the two parabolas
f0#u0 , f0#

s
0 meeting tangentially at f0q0 apart. Nevertheless, it is possible to slide one to the

other, as indicated in Figure 2.
For a generic (fµ), we show that an appropriate re-scaling near the f0-orbit of q0 yields a

family of Hénon-like endomorphisms of the form

(1) (x, y) '→ (1− ax2, 0) + b ·R(a, b, x, y),
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µ = 0 µ #= 0
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Figure 2. f0#u0 and f0#s0 are tangent to f0S0 (left).

where the components of R are bounded continuous functions. Moreover, there is a vertical
line close to the y-axis which is the set of fold singularities. Hence the map is non-invertible,
and similar to the “twisted horseshoe map”, considered in [9, 11].

Unfortunately, the non-uniform theory mentioned previously fails to apply for this class of
families. For instance, the existence of singularities is an intrinsic hurdle for an extension of
the solution of the basin problem, given by Benedicks and Viana [3], and subsequently Wang
and Young [22]. Some regularity conditions of the Jacobian of the maps were assumed in
these papers and they no longer hold for maps with singularities. This leads us to the study
of Hénon-like endomorphisms, a broad class of planar endomorphisms including the above as
a prime example.

Mora and Viana [13], adapting the idea of Benedicks and Carleson [2], proved the abun-
dance of non-uniform hyperbolicity in generic unfoldings of dissipative quadratic homoclinic
tangencies of surface diffeomorphisms. The next theorem extends their result to surface endo-
morphisms. What we mean by “chaotic attractors” in the statement is explained in Sect.1.3.

Theorem A. Let (fµ) be a C∞ arc of endomorphisms on surfaces through f0 as above. Under
open and dense assumptions, there exists a positive measure set E accumulating µ = 0 such
that for µ ∈ E the corresponding fµ exhibits a “chaotic attractor” near the f0-orbit of q0.

1.2. Re-scaling near simple homoclinic points. To prove Theorem A, we introduce a
re-scaling near the simple homoclinic point q0 which converges uniformly to families as in (1).
Let pµ denote the continuation of p0 for fµ. Let r ≥ 4 be an integer. By the linearization
theorem [17], under open and dense conditions on λ, ρ there exists a Cr coordinate (x, y)
near pµ such that fµ(x, y) = (λx, ρy). Moreover, these coordinates are taken to be Cr in µ.
We extend the domain of linearization so that it contains q0 and fN

0 q0. In what follows we
suppress any linearizing coordinate from notation.

For µ small, let #sµ denote the continuation of #s0. This makes sense becauseW s
loc(pµ) depends

on µ in a continuous way. Analogously, let #uµ denote the continuation of #u. Let Sµ denote
the set of singularities of fµ. Let qµ denote the point of intersection between #uµ and Sµ. Since
q0 is a simple homoclinic point, qµ is a fold singularity of fN

µ . For all µ #= 0 we assume qµ /∈ #sµ.
This gives rise to a displacement of the two parabolas, indicated in Figure 2.

We adapt our µ-dependent linearizing coordinates in such a way that for all µ, qµ = (0, 1)
and the x-coordinate of fN

µ qµ is 1. We re-parametrize µ in such a way that the y-coordinate of
fN
µ qµ is µ. Since qµ is a fold singularity, there exist µ-dependent local coordinates φµ near qµ
and ϕµ near fN

µ qµ such that φµ(0, 0) = (0, 1), ϕµ(0, 0) = (1, µ) and ϕ−1
µ ◦fN

µ ◦φµ(x̃, ỹ) = (x̃2, ỹ).
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Clearly, φµ and ϕµ are taken to be Cr in µ. Let

Dφ−1
µ (0, 1) =

(
a1 a2
a3 a4

)
and Dϕµ(0, 0) =

(
b1 b2
b3 b4

)
.

For (x, y) near (0, 0) we have

φ−1
µ (x, y + 1) =

(
a1x+ a2y +G1(x, y), a3x+ a4y +G2(x, y)

)
,

and at (x, y) = (0, 0) we have

(2) G1 = G2 = ∂xG1 = ∂yG1 = ∂xG2 = ∂yG2 = 0.

Similarly, for (x̂, ŷ) near (0, 0) we have

ϕµ(x̂, ŷ) =
(
1, µ

)
+
(
b1x̂+ b2ŷ +H1(x̂, ŷ), b3x̂+ b4ŷ +H2(x̂, ŷ)

)
,

and at (x̂, ŷ) = (0, 0),

(3) H1 = H2 = ∂x̂H1 = ∂ŷH1 = ∂x̂H2 = ∂ŷH2 = 0.

Keep in mind that a1, a2, · · · , b3, b4 are functions of µ, and G1, G2, H1, H2 are functions of
µ, x, y. For µ = 0, since ϕ−1

0 fN0
0 S0 = {(0, ŷ)}, the second component of Dϕ0(0, ŷ) ( 0

1 ) attains
a local minimum or maximum at ŷ = 0. This implies

(4) ∂ŷŷH2(0, 0) = 0 for µ = 0.

Lemma 1.1. We have: (a) a2(0)b2(0)b3(0) #= 0; (b) b4(0) =
db4
dµ (0) = 0.

Proof. The tangent direction of S0 at q0 is spanned by Dφ−1
0 (0, 0) ( 0

1 ) =
(

a2(0)
a4(0)

)
. By (T1),

it is transverse to the y-direction ( 0
1 ) in the linearizing coordinate. Hence a2(0) #= 0 holds.

The tangent direction of fN
µ Sµ at fN

µ qµ is spanned by Dϕµ(0, 0) ( 0
1 ) =

(
b2(µ)
b4(µ)

)
. For µ = 0,

it is tangent to the x-direction and thus b4(0) = 0. Since b4(µ) attains a local minimum
or maximum at µ = 0, we have db4

dµ (0) = 0. Since ϕ0 is a diffeomorphism, detDϕ0(0, 0) =
−b2(0)b3(0) #= 0 holds. !

We now define our rescaling as follows:

ζn(ξ, η) =
(
ρ−n/2ξ + 1, ρ−2nη + ρ−n

)
, µn(θ) = ρ

−2nθ + ρ−n,

and
ψn(θ, ξ, η) = ζ

−1
n ◦ fn+N0

µn(θ)
◦ ζn(ξ, η).

Let αµ = a2(µ)2b3(µ). (a) in Lemma 1.1 gives αµ #= 0.

Proposition 1.1. The map (θ, ξ, η) → ψn(θ, ξ, η) converges uniformly on any compact set in
R3 in the Cr topology to (θ, ξ, η) → (0, α0η2 + θ) as n → ∞.

We finish the proof of Theorem A assuming the conclusion of this proposition (and Theorem
B). Set b = ρ−n/2 and write ψn(θ, ξ, η) =

(
bT1(θ, b, ξ, η), α0η2 + θ + bT2(θ, b, ξ, η)

)
. By the

substitution ξ = x, η = −ay/α0, θ = −a/α0, this transforms into

(a, x, y) →
(
bT̃1(a, b, x, y), 1− ay2 + bT̃2(a, b, x, y)

)
.

By the definition of the rescaling, this map has a line of fold singularities close to the x-axis.
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Proof of Proposition 1.1. Let (x̃, ỹ) = φ−1
µ ◦ fn

µn(θ)
◦ ζn(ξ, η). Then

x̃ = a1λ
n(ρ−n/2ξ + 1) + a2ρ

−nη +G1(λ
n(ρ−n/2ξ + 1), ρ−nη),

ỹ = a3λ
n(ρ−n/2ξ + 1) + a4ρ

−nη +G2(λ
n(ρ−n/2ξ + 1), ρ−nη),

Let (x̂, ŷ) = (x̃2, ỹ). A direct computation shows ψn(θ, ξ, η) = (0, αµη2 + θ) + (I, II), where

I = ρn/2(b1x̂+ b2ŷ +H1(x̂, ŷ)),

II = ρ2n(b3(x̂− a22ρ
−2nη2) + b4ŷ +H2(x̂, ŷ)).

It suffices to show that I, II converge uniformly to zero (the null function) as n → ∞, in the
Cr topology on any compact set.

C0-convergence. By G1(0, 0) = G2(0, 0) = 0 in (2) we have x̃ = O(ρ−n) and ỹ = O(ρ−n).
Moreover, (2) gives G1(x, y) = O(ρ−2n) and G2(x, y) = O(ρ−2n). Hence x̂ = O(ρ−2n). Using
(3) and the estimates for x̂, ŷ = ỹ we have H1(x̂, ŷ) = O(ρ−2n). Altogether these yield
I = ρn/2 · o(ρ−n/2), and thus the uniform C0-convergence of I as n → ∞.

Regarding II, x̂ = x̃2 and the estimate for G1 give x̂ − a22ρ
−2nη2 = O(λnρ−n), which is

o(ρ−2n) by λρ < 1. Lemma 1.1 gives b4 = O(ρ−2n). For the last term H2, (3) gives

(5) H2(x̂, ŷ) =
1

2
∂x̂x̂H2(0, 0)x̂

2 + ∂x̂ŷH2(0, 0)x̂ŷ +
1

2
∂ŷŷH2(0, 0)ŷ

2 + h.o.t.,

where h.o.t. denotes the higher order terms in x, y, with coefficients depending on µ. Substi-
tuting the previous estimates of x̂, ŷ and then using (4) givesH2(x̂, ŷ) = o(ρ−2n). Consequently
we obtain II = ρ2n · o(ρ−2n).

C1-convergence. (2) gives G1(x, y) = Aµx2 + Bµxy + Cµy2 +h.o.t. Substituting (x, y) =
(λn(ρ−n/2ξ+1), ρ−nη) into this and then differentiating the result gives ∂G1 = O(ρ−2n), where
∂ = ∂ξ, ∂η, ∂θ. The same estimates hold for G2. Hence ∂x̃ = O(ρ−n) and ∂ỹ = O(ρ−n), and
therefore ∂x̂ = o(ρ−3n). An estimate analogous to that of G1 gives ∂H1 = o(ρ−n). We obtain
∂I = ρn/2 ·O(ρ−n).

The estimate of ∂x̂ gives ∂(x̂−a22ρ
−2nη2) = o(ρ−2n). By (b) in Lemma 1.1, we have ∂θ(b4ŷ) =

o(ρ−2n) and ∂ξ(b4ŷ) = o(ρ−2n) = ∂η(b4ŷ). For II, an analogous estimate to that of ∂H1 (i.e.
substituting the formula for x̂, ŷ into (5) and differentiating the result) we obtain ∂H2 =
o(ρ−2n). Hence ∂II = ρ2n · o(ρ−2n) holds.

Cs-convergence, 2 ≤ s ≤ r. Let (i, j, k) be such that 2 ≤ i + j + k ≤ s. By the chain rule
and λρ < 1, for any function F = x̃, ỹ, x̂, G1, G2, H1, H2 we have ∂iθ∂

j
ξ∂

k
ηF = O(ρ−2ni− 3

2nj−nk).
This readily yields the desired uniform convergence on I.

For II we also have the uniform convergence, except for the case (i, j, k) = (0, 0, 2). In
this exceptional case, the worst factor in the first term of II is G2

1. A direct computation
gives ∂2η(G

2
1) = 2G1∂ηηG1 + 2(∂ηG1)2 = o(ρ−2n). For the second term, Lemma 1.1 gives

∂2η(b4ŷ) = b4∂2η ŷ = o(ρ−2n). For the last H2, it suffices to show that the derivatives of
the first three terms in (5) are o(ρ−2n). The previous estimates give ∂2η x̂

2 = o(ρ−2n) and
∂2η(x̂ŷ) = o(ρ−2n). For the third term, (4) gives ∂ŷŷH2(0, 0) · ∂2η(ŷ2) = o(ρ−2n). This completes
the proof of Proposition 1.1. !
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Wu(p)

Figure 3. critical points on the unstable manifold with self-intersection

1.3. Nonuniform hyperbolicity for Hénon-like endomorphisms. We are concerned
with a parametrized family fa : [−2, 2]2 → R2 of maps of the form

(6) fa : (x, y) '→ (gax, 0) + b ·R(a, b, x, y),

where (a, b) is close to (a∗, 0), and R is bounded, continuous, C4 in (a, x, y). The ga is a map
on [−2, 2] with the following properties:

(A1) ga[−1, 1] ⊂ [−1, 1] for a ≤ a∗ and (a, x) → gax is C4;
(A2) ga has a nonempty critical set Crit = {x0 ∈ [−1, 1] : g′ax0 = 0} in (−1, 1). We assume

Crit does not depend on a and g′′ax0 #= 0 for each x0 ∈ Crit.

For ga∗ we assume:

(A3)
⋃

i≥1 g
i
a∗(Crit)

⋂
Crit = ∅;

(A4) all periodic points of ga∗ are hyperbolic repelling;
(A5) by (A3) (A4), ga∗(Crit) belongs to a hyperbolic setKa∗ . LetKa denote the continuation

of Ka∗ , which is a hyperbolic set of ga. For each x0 ∈ Crit, let x1(a) = gax0. Let r(a)
denote the point in Ka whose kneading sequence relative to Crit is the same as that
of x1(a∗). We assume for each x0 ∈ Crit,

(7) p(x0, a
∗) :=

dx1

da
(a∗)− dr

da
(a∗) #= 0.

The next theorem asserts the abundance of non-uniformly hyperbolic parameters, extending
the theorem of Benedicks and Carleson [2] to Hénon-like endomorphisms. Let | · | denote the
one-dimensional Lebesgue measure.

Theorem B. For sufficiently small b > 0 there exists a set ∆ =∆ b of a-values near 0 for
which |∆| > 0 and the following holds for all f ∈ {fa : a ∈ ∆}: for each fixed saddle p of f
with W u(p) ⊂ [−2, 2]2, there exists a countable set C ⊂ W u(p) near Crit× {0} such that each
ζ ∈ C satisfies:

(a) ‖Dfn(fζ) ( 1
0 ) ‖ ≥ eλn for every n ≥ 0, where λ > 0 is a constant which depends only

on ga∗;
(b) ζ admits a tangent direction which is exponentially contracted by both positive and

negative iterations.

Elements of C are called (dynamically) critical points [2, 13]. Each ζ ∈ C is obtained as
a limit: there exist a monotone increasing sequence n1 < n2 < · · · of positive integers, and
a sequence ζn1 , ζn2 , · · · of points on the unstable manifold with ζ = limi→∞ ζni , and ζni is a
critical point of order ni (see Sect.3.2).

For the family (1), it is not hard to show the existence of a positively invariant region which
contains the fixed saddle near 1/2 in its interior. Theorem B applies. In addition, along the
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line of [2] one can show that the closure of the unstable manifold contains a dense orbit. (b)
implies that this set is not uniformly hyperbolic, that we call a “chaotic attractor” in the
statement of Theorem A. To really deserve the name of attractor, the basin of attraction
should have nonempty interior. We do not know if this is the case.

1.4. Sketch of the contents. The rest of this paper consists of five sections and one appen-
dix, entirely for the proof of Theorem B. In the first two sections we pursue the study of one
fixed map. In the remaining sections we deal with parameter issues. To keep the length of this
paper within reasonable bounds, we put the emphasis on those of our arguments which are new
or differ non-trivially from previous ones, giving precise references to published computations
in [2, 13, 22].

In the context of one-dimensional maps on intervals or the circle, the worst enemy for
nonuniform hyperbolicity is the set of critical points. It is now classical [7] that, an exponential
growth of derivatives along the orbits of critical points, called Collet-Eckmann condition,
implies the existence of a nonuniformly hyperbolic behavior. It is also classical [1, 11] that,
by excluding undesirable parameters inductively (looking at the recurrence of the critical
points), one can construct a positive measure set of parameters corresponding to nonuniformly
hyperbolic behavior.

In the work [2] of pivotal historic importance, Benedicks and Carleson extended their pa-
rameter exclusion argument in one dimension [1] to the Hénon family. As the Hénon map
is a diffeomorphism, there is no critical point in the usual sense. Nevertheless, they showed
that it is possible to define dynamical critical points for certain Hénon maps, allowing them
to perform a parameter exclusion with some resemblance to the one-dimensional case. At
this point, a significant difference from the one-dimensional case is that, the construction of
critical points constitutes an integral component of the whole inductive scheme.

For the purpose of presenting a clearer perspective, we elect to recover the one-dimensional
scenario to the extent that is possible. We do this in the following steps:

• define (approximations of) critical points explicitly;
• introduce three conditions (G1)n, (G2)n, (G3)n in terms of derivatives along the or-
bits of these critical points (“temporal Collet-Eckmann condition for two-dimensional
maps”);

• show that these conditions to hold for every n ensures the existence of a recognizable
source of nonuniform hyperbolicity;

• show that the set of parameters for which this holds has positive Lebesgue measure.

The contents of each section are briefly outlined as follows. In Sect.2 we develop preliminary
estimates and constructions, including the (partial) definition of critical points. In Sect.3,
under the assumptions of (G1-3)n on certain critical points we develop a procedure for choosing
binding points, to recover the loss of hyperbolicity due to returns to critical regions. We also
show that these assumptions to hold for every n ensures the existence of the set C as in
Theorem B.

In Sect.4 we commence the study of the dependence of critical points on parameter. This
preliminary step is important to handle the issue that critical points do not persist when the
parameter is varied, because of their dynamical definition. This issue was successfully tackled
in [2, 13, 22], by introducing continuations of critical points. However, their construction of
continuations is deeply rooted in the whole inductive scheme. We introduce continuations
(deformations in our terms) in a different way, well-adapted to our critical points. In Sect.5,
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Sect.6 we construct a parameter set ∆ as in Theorem B and show |∆| > 0. At this point we
follow the combinatorics of Tsujii [19, 20] instead of [2, 13, 22], primarily because the extension
of this approach is more transparent in our dealing with multiple critical points, and moreover
allows us to dispense with a large deviation argument in parameter space altogether.

Proofs of some lemmas originating in [2, 13, 22] necessitate slight adaptations, because of
the differences of formulations and the non-invertibility. These proofs are given in appendix,
in which we closely follow the ideas or the arguments of those of the published papers.

Acknowledgments. I thank Masato Tsujii for a personal communication which led me to
this subject. Most of this work has been done while I was visiting IMPA, Rio de Janeiro,
Brazil. I thank Marcelo Viana for his hospitality during this visit.

2. Preliminaries

In this section we develop preliminary estimates and constructions needed for later sections.

2.1. Hyperbolicity, quadratic behavior and curvature estimate. For r > 0, define

I(r) =
⋃

x0∈Crit

(x0 − r, x0 + r)× [−
√
b,
√
b].

The next lemma follows from the properties of the interval map ga∗ .

Lemma 2.1. There exist c, λ0 > 0 independent of M, δ such that the following holds for
f = fa with (a, b) close to (a∗, 0): let z ∈ [−2, 2] × [−

√
b,
√
b] and v be a tangent vector at z

with slope ≤
√
b.

(i) if z ∈ fI(
√
b), then ‖Df jv‖ ≥ c‖Df iv‖ for 0 ≤ i < j ≤ M ;

(ii) if z, fz, · · · , fn−1z /∈ I(δ), then:
(a) slope(Dfnv) ≤

√
b and ‖Dfnv‖ ≥ cδeλ0n‖v‖;

(b) if, in addition, fnz ∈ I(δ), then ‖Dfnv‖ ≥ ceλ0n‖v‖.

2.2. Constants. Fix C0 > 0 once and for all so that the norms of all the partial derivatives
of (a, z) '→ faz are bounded by C0. The letter C is used to denote generic constants which
only depends on (fa).

We are concerned with positive constants λ, α,M, δ, b, chosen in this order. Sufficiently
small b is chosen last. Some of the purposes of these are the following:

• λ = 99
100λ0 are concerned with rates of growth of derivatives along critical orbits;

• α0 1 determines the rate of approach to criticalities;
• M 1 1 is the minimal order of critical points, and is chosen so that 2C0ne−3αn ≤ log 2
holds for n ≥ M ;

• δ 0 1 determines the size of a critical region.

Set κ0 = C−10
0 , θ = α3 and N =

[
log 1/δ

θ

]
, where the square bracket denotes the integer

part. Some of the purposes of these are the following:

• κ0 is the rate of growth of derivatives needed for various constructions:
• θ bounds the number of critical points needed to be considered at step n of induction
for the construction of the parameter set;

• N 1 M is the minimal order of critical points needed to deal with returns to I(δ).
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In the next lemma, proved in Appendix A.1, we assume γ is a horizontal curve, namely,
a C2-curve such that the slopes of its tangent directions are ≤ 1/10 and the curvature is
everywhere ≤ 1/10. For z ∈ γ, let t(z) denote any unit vector tangent to γ at z. We assume
slope(Dft(ζ)) ≥ C/

√
b holds for some ζ ∈ γ. Let e denote any unit vector tangent to fγ

at fζ. Split Dft(z) = A(z) ( 1
0 ) + B(z)e. Let us agree that for two positive numbers, a ≈ b

indicates that there exists C1 > 0, C2 > 0 such that C1 ≤ a/b ≤ C2.

Lemma 2.2. For all z ∈ γ ∩ I(δ), |A(z)| ≈ |z − ζ| and |B(z)| ≤ C
√
b.

A version of the next curvature estimate was in [[22], Lemma 2.4] for Hénon-like diffeomor-
phisms. It is straightforward to check that the same proof works for endomorphisms.

Lemma 2.3. Let γ be a C2 curve tangent to a nonzero vector v at z. Let i ≥ 0 and suppose
that Dfv, · · · , Df iv are nonzero. Let κi(z) denote the curvature of f iγ at f iz. Then

κi(z) ≤ (Cb)i
‖v‖3

‖Df iv‖3κ0(z) +
i∑

j=1

(Cb)j
‖Df i−jv‖3

‖Df iv‖3 .

2.3. Most contracting directions. Some versions of results in this subsection were obtained
in [2, 13, 22]. Although diffeomorphisms are treated in these papers, it is straightforward to
check that they hold for endomorphisms. Our presentation closely follows [[22], Section 2.1].

Let M be a 2×2 matrix. Denote by e the unit vector (up to sign) such that ‖Me‖ ≤ ‖Mu‖
holds for any unit vector u. We call e, when it exists, the most contracting direction of M . For
a sequence of matrices M1, M2 · · · , we use M (i) to denote the matrix product Mi · · ·M2M1,
and ei to denote the mostly contracting direction of M (i).

Hypothesis for Sect.2.2. The matrices Mi satisfy | detMi| ≤ Cb and ‖Mi‖ ≤ C0.

Lemma 2.4. ([22] Lemma 2.1) Let i ≥ 2, and suppose that ‖M (i)‖ ≥ κi and ‖M (i−1)‖ ≥ κi−1

for some κ ≥ b1/10. Then ei and ei−1 are well-defined, and satisfy

‖ei × ei−1‖ ≤
(
Cb

κ2

)i−1

.

Corollary 2.1. ([22] Corollary 2.1) If ‖M (i)‖ ≥ κi for 1 ≤ i ≤ n, then:

(a) ‖en − e1‖ ≤ Cb
κ2 ;

(b) ‖M (i)en‖ ≤
(
Cb
κ2

)i
holds for 1 ≤ i ≤ n.

Next we consider for each i a parametrized family of matrices Mi(s1, s2, s3) such that
‖∂j detMi(s1, s2, s3)‖ ≤ C i

0b, and |∂jMi(s1, s2, s3)| ≤ Ci
0 for each 0 ≤ j ≤ 3. Here, ∂j

represents any one of the partial derivatives of order j with respect to s1, s2, or s3.

Corollary 2.2. ([22] Corollary 2.2) Suppose that ‖M (i)(s1, s2, s3)‖ ≥ κi for 1 ≤ i ≤ n. Then
for j = 1, 2, 3 and 2 ≤ i ≤ n,

(8) |∂j(ei × ei−1)| ≤
(

Cb

κ2+j

)i−1

,

(9) ‖∂j(M (i)ei)‖ ≤
(

Cb

κ2+j

)i

.
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Let e1(z) denote the most contracting direction of Df(z) when it makes sense. From the
form of our map (6), e1(z) is defined for all z /∈ I(

√
b). In view of [[13] pp. 21], we have

(10) slope(e1) ≥ C/
√
b and ‖∂e1‖ ≤ C

√
b.

We say z is κ-expanding up to time n, or simply expanding, if there exists a tangent vector
v at z and κ ≥ b1/10 such that for every 1 ≤ i ≤ n,

‖Df iv‖ ≥ κi‖v‖.

With a slight abuse of language, we also say v is κ-expanding up to time n. For n ≥ 1, let
en(z) denote the most contracting direction of Dfn(z) when it makes sense. From Corollaries
2.1, 2.2 and (10) we get

Corollary 2.3. If z is κ-expanding up to time n, then slope(en) ≥ C/
√
b and ‖∂en‖ ≤ Cb

κ3 .

2.4. Long stable leaves. A C2-curve Γ of the form

Γ = {(x(y), y) : |y| ≤
√
b, |x′(y)| ≤ C

√
b, |x′′(y)| ≤ C

√
b}.

is called a vertical curve. By a vertical strip of radius r > 0 around Γ we mean the region
{(x, y) : |x− x(y)| ≤ r, |y| ≤

√
b}. A C2-distance between two vertical curves is measured by

regarding them as C2-functions on [−
√
b,
√
b].

Lemma 2.5. Let κ ≥ C−10
0 . If z is κ-expanding up to time n, then for 1 ≤ i ≤ n, the maximal

integral curve Γi(z) of ei through z contains a vertical curve. In addition, for 1 < i ≤ n,

dC2(Γi(z),Γi−1(z)) ≤
(
Cb
κ4

)i−1
.

Proof. For the construction of Γi(z), see [[13] Section 6]. The bound on the C2-distance follows
from this construction and Lemma 2.4, Corollary 2.2. !

By a long stable leaf of order i through z we mean the curve Γi(z) in the statement.

2.5. Bounded Distortion. In the next lemma, we assume v is a unit tangent vector at z
which is κ-expanding up to time n ≥ M. Let

(11) Dn(v) = e−3αn min
i∈[0,n−1]

min
j∈[i,n]

‖Df jv‖2

‖Df iv‖3 .

Let γ be a C2 curve tangent to v such that length(γ) ≤ Dn(v), and the curvature is everywhere
≤ 1.

Lemma 2.6. (Bounded distortion on properly sized curves) For all ξ1, ξ2 ∈ γ we have

‖Dfnt(ξ1)‖
‖Dfnt(ξ2)‖

≤ 2 and

∣∣∣∣
‖Dfnt(ξ1)‖
‖Dfnt(ξ2)‖

− 1

∣∣∣∣ ≤
|ξ1 − ξ2|
Dn(v)

,

where t(ξσ) denotes any unit vector tangent to γ at ξσ, σ = 1, 2.

Proof. For i ≥ 0, let vi = Df iv and γi = f iγ. Let κi denote the maximum of the curvature of
γi. The first inequality would hold if for 0 ≤ i < n,

(12) (1 + κi) · length(γi) ≤ 2C0e
−3αn‖vi+1‖

‖vi‖
.
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Indeed, for all ξ ∈ γ we have

n−1∑

i=0

∣∣∣∣log
‖vi+1‖
‖vi‖

− log
‖Df i+1t(ξ)‖
‖Df it(ξ)‖

∣∣∣∣ ≤ 2C0

n−1∑

i=0

(1 + κi)length(γi)
‖vi+1‖
‖vi‖

,

and therefore

log
‖Dfnt(ξ1)‖
‖Dfnt(ξ2)‖

≤ 4C2
0ne

−3αn ≤ log 2.

We prove (12) by induction on i. Let

dn(i) = min
j∈[i,n]

‖vj‖2

‖vi‖3
.

We have length(γ0) ≤ Dn(v)dn(0)−1dn(0) ≤ Dn(v)dn(0)−1‖v1‖2 ≤ C0e−3αn‖v1‖. This and the
assumption κ0 ≤ 1 give (12) for i = 0.

Assume (12) holds for 0 ≤ i < k. The choice of M In Sect.2.2 ensures ‖Dfkt(ξ)‖
‖Dfkt(η)‖ ≤ 2 for all

ξ, η ∈ γ, and therefore

length(γk) ≤ 2 · ‖vk‖length(γ) ≤ 2 ·Dn(v0)‖vk‖.

Lemma 2.3 gives (1 + κk) · length(γk) ≤ Dn(v0) (I + II + III) , where

I = 2‖vk‖, II =
22(Cb)k

‖vk‖2
, III = 28

k∑

i=1

(Cb)i
‖vk−i‖3

‖vk‖2
.

By definition,

(13) 1 = dn(k)
−1dn(k) ≤ dn(k)

−1‖vk+1‖2

‖vk‖3
,

and thus

I ≤ C0dn(k)
−1‖vk+1‖

‖vk‖
.

Multiplying (13) with the definition of II,

II ≤ 4(Cb)kdn(k)
−1‖vk+1‖2

‖vk‖5
≤ 4C0(Cb)kb

−3k
4 dn(k)

−1‖vk+1‖
‖vk‖

≤ b
1
5dn(k)

−1‖vk+1‖
‖vk‖

,

where we have used the assumption on v0 and ‖Df‖ ≤ C0 for the second inequality.
The most problematic term III is treated as follows. First,

dn(k − i)−1dn(k − i)
‖vk−i‖3

‖vk‖2
= dn(k − i)−1 min

k−i≤j≤n

‖vj‖2

‖vk‖2
≤ dn(k − i)−1‖vk+1‖

‖vk‖
,

where the last inequality follows from mink−i≤j≤n ‖vj‖2 ≤ ‖vk‖‖vk+1‖. Consequently,

III ≤ ‖vk+1‖
‖vk‖

k∑

i=1

(Cb)i · dn(k − i)−1.

Plugging the three inequalities into the previous one and then using the definition of Dn(v)
yields (12) for i = k.
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For the second inequality, let γ′i denote the curve in γi which connects f iξ1 and f iξ2. The
same reasoning as above, replacing γi by γ′i, and Dn(v) by |ξ1 − ξ2|, shows for 0 ≤ i < n,

(14) (1 + κi)length(γ
′
i) ≤

2C0|ξ1 − ξ2|
min0≤j≤n−1 dn(j)

.

This yields

log
‖Dfnt(ξ1)‖
‖Dfnt(ξ2)‖

≤
n−1∑

i=0

(1 + κi)length(γ
′
i) ≤

2C0ne−3αn|ξ1 − ξ2|
e−3αn min0≤i≤n−1 dn(i)

≤ |ξ1 − ξ2|
Dn(v0)

,

and the second inequality holds. !

For z ∈ [−2, 2]2, let us write v(z) = ( 1
0 ) ∈ TzR2.

Lemma 2.7. (Bounded distortion in vertical strips) Let κ ≥ C−10
0 , and let z be κ-expanding

up to time n ≥ M . For all ξ1, ξ2 in the vertical strip of radius Dn(v(z)) around Γn(z) and for
1 ≤ i ≤ n,

‖Df iv(ξ1)‖
‖Df iv(ξ2)‖

≤ 3.

Proof. Let ησ denote the point on Γn(z) with the same y-coordinate as that of ξσ (σ = 1, 2).
By a result of [[13], Section 6], we have for 1 ≤ i ≤ n, ‖Df iv(η1)‖/‖Df iv(η2)‖ ≤ 1+ ε, ε0 1.
It follows that |ξσ − ησ| ≤ Dn(v(ξσ)). Hence, the desired inequality follows from Lemma
2.6. !

2.6. Recovering expansion. Let γ be a horizontal curve in I(δ) and n ≥ M . We say z ∈ γ
is a critical point of order n on γ if:

(i) f i+1ζ ∈ [−2, 2]2 for 1 ≤ i < n and ‖Df i(fz)‖ ≥ c/10 for 1 ≤ i ≤ n;
(ii) en(fz) is tangent to Dft(z), where t(z) is any unit vector tangent to γ at z.

We now introduce three conditions on derivatives along orbits of critical points, which will
be taken as assumptions of induction for the construction of the parameter set ∆. Let ζ be
a critical point of order n and assume that f i+1ζ ∈ [−2, 2]2 for 1 ≤ i ≤ 20n. For i ≥ 1, let
wi(ζ) = Df i−1(fζ) ( 1

0 ) . We say ζ has good critical behavior up to time k ≥ M if the following
holds:

(G1) ‖wi(ζ)‖ ≥ eλ(i−1) for M ≤ i ≤ k;
(G2) ‖wj(ζ)‖ ≥ e−2αi‖wi(ζ)‖ for M ≤ i < j ≤ k;
(G3) there exists a monotone increasing integer-valued function on χ : [M, 20n]∩N such that

for each j ∈ [M, 20n] there exists χ(j) ∈ [(1−
√
α)j, j] such that ‖wχ(j)(ζ)‖ ≥ cδ‖wi(ζ)‖

holds for 1 ≤ i < χ(j).

Besides the mere exponential growth in (G1), a certain information on oscillations of deriva-
tives are necessary. (G2) is a variant of basic assumption in [1, 2]. One implication of (G3) is
that the set {i ∈ [1, 20n] : slope(wi) ≤

√
b} is quite dense in [1, 20n].

Hypothesis for the rest of Sect.2.6: ζ is a critical point of order n on a horizontal curve
γ, with good critical behavior up to time 20n.
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Under this hypothesis, we establish key analytic estimates. For each M ≤ k ≤ 20n, write
Dk for Dk(w1(ζ)). Write Γn(fζ) = {(xn(y), y) : |y| ≤

√
b}. Let

Vk =

{
(x, y) : |x− xn(y)| ≤

1

2
Dk, |y| ≤

√
b

}
.

Take a monotone increasing function χ satisfying the condition in (G3). Let v denote any
nonzero vector tangent to γ at z. If fz ∈ Vk \ Vk+1, then we say v is in admissible position
relative to ζ. Define a bound period p = p(ζ, z) by

p = χ(k),

and a fold period q = q(ζ, z) by

q = min
{
1 ≤ i < p : |ζ − z|β · ‖wj+1(ζ)‖ ≥ 1 for every i ≤ j < p

}
,

where

(15) β =
2 logC0

log 1/b
0 1.

It is easy to check that q makes sense, by (G1-3) and the assumption on z. If fz ∈ V20n−1,
then we say v is in critical position relative to ζ.

Proposition 2.1. Let γ, ζ, z, v be as above.

(i) If v is in admissible position relative to ζ and z ∈ Vk \ Vk+1, then:

(a) log |ζ − z|−
3

logC0 ≤ p ≤ log |ζ − z|− 3
λ .

(b) log |ζ − z|−
β

logC0 ≤ q ≤ log |ζ − z|− 2β
λ .

(c) ‖Df iv‖ ≈ |ζ − z| · ‖wi(ζ)‖ for q < i ≤ k;
(d) |ζ − z|‖v‖ ≤ ‖Df qv‖ ≤ |ζ − z|1−β‖v‖;
(e) ‖Df pv‖ ≥ |ζ − z|−1+ α

logC0 ‖v‖ ≥ e
λp
3 ‖v‖;

(f) ‖Df iv‖ < ‖v‖ for 1 ≤ i ≤ q;
(g) ‖Df pv‖ ≥ (cδ/10)‖Df iv‖ for 0 ≤ i < p;
(h) |f iζ − f iz| ≤ e−2αp for 1 ≤ i ≤ p:

(ii) If v is in critical position relative to ζ, then ‖Dfnv‖ ≤ e−8λn‖v‖.

Proof of Proposition 2.1. A central idea follows the well-known line [2, 13, 22]. We split Dfv
into the direction of ek and that of ( 1

0 ), iterate them separately, and put them together after
the fold period is expired. We divide the proof of (i) into five steps.

Step 1(Estimate of the horizontal distance between fz and Γ(fζ)). For a point r near fζ,
write

r = fζ + ξ(r)w1(ζ)
T + η(r)en(fζ)

T ,

where T denotes the transpose. Integrations of the inequalities in Lemma 2.2 along γ from ζ
to z give

|ξ(fz)| ≈ |z − ζ|2, |η(fz)| ≤ C
√
b|z − ζ|.

Write fz = (x0, y0). Let y1 denote the y-coordinate of fζ. Since fγ is tangent to the vertical
curve Γn(fζ) at fζ,

dξ(xn(y), y)

dy
(y1) = 0,

∣∣∣∣
d2ξ(xn(y), y)

dy2

∣∣∣∣ ≤ C
√
b.
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Then
|ξ(xn(y0), y0)| ≤ C

√
b|y0 − y1|2 ≤ C

√
b|η(fz)|2 ≤ Cb

3
2 |ξ(fz)|.

Since |x0 − xn(y0)| = |ξ(fz)− ξ(xn(y0), y0)|, we get

(16) |x0 − xn(y0)| ≈ |z − ζ|2.
Step 2(Proofs of (a), (b)). (G1) gives

Dk ≤ ‖wk−1(ζ)‖−1 ≤ e−λ(k−2).

(G2) and the definition (11) give

Dk+1 ≥ e−3α(k+1)C−k
0 min(c2, e−4αk) ≥ C−2k

0 .

By the assumption on z and (16),

C−2k
0 ≤ Dk+1 ≤ C|ζ − z|2 ≤ CDk ≤ Ce−λ(k−2).

Taking logs we obtain

(17)
1

logC0
log |ζ − z|−1 ≤ k ≤ 2

λ
log |ζ − z|−1.

The definition of p and (G3) give (1−
√
α)k ≤ p ≤ k, and thus (a) holds.

(G1) and the definition of q give

eλ(q−1) ≤ ‖wq(ζ)‖ < |ζ − z|−β.

Taking logs and then rearranging the result yields the upper estimate in (b). The lower
estimate follows from

1 ≤ |ζ − z|β‖wq+1(ζ)‖ ≤ |ζ − z|βCq
0 .

Step 3(Existence of contractive fields). Write Γk(fζ) = {(xk(y), y) : |y| ≤
√
b}. Using the

assumption on z, Lemma 2.7 and k ≤ 20n we have

|x0 − xk(y0)| ≤ |x0 − xn(y0)|+ |xn(y0)− xk(y0)| ≤
1

2
Dk + (Cb)

k
20 ≤ Dk.

Hence, the contractive fields e1, · · · , ek are well-defined in a neighborhood containing fz, fζ
and all the estimates in Sect.2.3 are in place.

Step 4(Correctness of splitting). Split Dfv = A ( 1
0 ) +Bek(fz). Write en(z) =

(
cos θn(z)
sin θn(z)

)
and

ρ ·Dfv =
(
cosψ
sinψ

)
, θn, ψ ∈ [0, π), ρ > 0 being the normalizing constant. Lemma 2.2 gives

|θn(fζ)− ψ| ≈ ρ−1|ζ − z|‖v‖ 1 |ζ − z|.
Thus |θn(fζ)− θn(fz)| ≤ C|f(ζ)− f(z)| 0| θn(fζ)− ψ|, which implies

|θn(fz)− ψ| ≈ |θn(fζ)− ψ|.
We also have |θn(fz) − θk(fz)| ≤ (Cb)n 0 |ζ − z|, where the first inequality follows from
Lemma 2.4 and the last one from the assumptionon z. Hence |θk(fz) − ψ| ≈ |θn(fz) − ψ|.
Consequently we obtain

(18) |A| ≈ ρ|θk(fz)− ψ| ≈ ρ|θn(fz)− ψ| ≈ ρ|θn(fζ)− ψ| ≈ |ζ − z|‖v‖.
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Step 5(Proofs of (c-h)). Let q < i ≤ k. We have

|A| · ‖Df i−1(fz) ( 1
0 ) ‖ ≥ C|ζ − z|‖v‖ · ‖wi(ζ)‖ ≥ C|ζ − z|1−β‖v‖,

where we have used Lemma 2.6 and (18) for the first inequality; the definition of q for the
second. We also have

|B| · ‖Df i−1ek(fz)‖ ≤ (Cb)i‖v‖ ≤ (Cb)q‖v‖ ≤ |ζ − z| 32‖v‖,
where we have used the lower estimate of q and (15) for the last inequality. These two estimates
yield (c). (c) for i = q and the definition of q gives the upper estimate in (d). The lower
estimate follows from ‖wq(ζ)‖ ≥ 1.

Proof of (e). We have

‖Dfkv‖ ≥ C‖wk(ζ)‖ · |ζ − z|‖v‖ ≥ |ζ − z|−1e−10αk‖v‖,
where we have used (18) for the first inequality; ‖wk(ζ)‖|ζ − z|2 ≥ e−9αk for the second
inequality which follows from (G2) and the assumption on ζ. Hence we obtain

‖Df pv‖ ≥ C−
√
αk

0 ‖Dfkv‖ ≥ |ζ − z|−1+ α
logC0 ‖v‖.

For the last inequality we have used the second inequality in (17). This yields the first
inequality. Substituting |ζ − z|−1 ≥ eλk/2 into this yields the second one.

Proof of (f). Let 1 ≤ i ≤ q. The definition of q and (G2) give

|A| · ‖Df i−1(fz)‖ ≤ |ζ − z| · ‖v‖ · ‖wq(ζ)‖
‖wi(ζ)‖
‖wq(ζ)‖

≤ |ζ − z|1−2β‖v‖ 0 ‖v‖.

The other component of Df iv is exponentially contracted, and hence (f) holds.

Proof of (g). The ratio of the two quantities in (18) can be made arbitrarily close to a uniform
constant, by choosing sufficiently small δ and b. With this and the bounded distortion in
Proposition 2.4, for q < i < p,

‖Df pv‖
‖Df iv‖ ≥ 1

10
· ‖wp(ζ)‖
‖wi(ζ)‖

≥ cδ

10
,

where the last inequality follows from (G3). For 1 ≤ i ≤ q, using (e,f),

‖Df pv‖
‖Df iv‖ ≥ e

λp
3

‖v‖
‖Df iv‖ ≥ e

λp
3 .

Proof of (h). Let z′ = (xn(y0), y0). (16) gives |fz − fz′| ≤ Dk(ζ), and thus |f iz − f iz′| ≤
C‖wi(ζ)‖|fz − fz′| ≤ Ce−3αp. Here, we have used Lemma 2.6 for the first inequality and
the definition of Dk(ζ) for the second. We also have |f iζ − f iz′| ≤ (Cb)i−1|fζ − fz′|. Hence
|f iζ − f iz| ≤ |f iζ − f iz′|+ |f iz′ − f iz| ≤ Ce−3αp ≤ e−2αp.

Finally we prove (ii). Split Dfv = A ( 1
0 ) + Ben(fζ). Lemma 2.2 gives |A| ≈ |ζ − z|‖v‖.

The assumption on z and ‖Dfn−1(fz)‖ ≤ C‖wn(ζ)‖ give ‖A · Dfn−1(fz) ( 1
0 ) ‖ ≤ e−9λn. We

also have

‖B ·Dfn−1(fz)en(fζ)‖ ≤ ‖Dfn−1(fz)en(fz)‖+ ‖Dfn−1(fz)(en(fζ)− en(fz))‖
≤ (Cb)n + C‖wn(ζ)‖|ζ − z| ≤ e−9λn.

This completes the proof of Proposition 2.1. !
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3. Choice of binding points

To recover the loss of hyperbolicity due to returns to I(δ), we carry on the same strategy
as in [2, 13, 22]: look for a suitable critical point and use it as a guide. Such a critical point,
if exists, is called a binding point. The aim of this section is to establish the choice of binding
points.

3.1. Binding points for returns near the boundary of I(δ). Let I(j)(δ), j = 1, 2, · · · , $Crit
denote the components of I(δ). Using Corollary 2.2 (and borrowing some arguments in Sect.4),
it is possible to construct for each I(j)(δ) a smooth map a → cj(a) defined in a neighborhood
of a∗ such that:

• cj = cj(a) is a critical point of order N of fa with good critical behavior;

•
∣∣∣dcjda

∣∣∣ ≤ C.

These critical points will be chosen as binding points for returns near the boundary of I(δ).
For returns deep inside I(δ), we construct other critical points and choose them as binding
points.

3.2. Construction of new critical points. A C2 curve is called a C2(b)-curve if the slopes
of all its tangent vectors are ≤

√
b and the curvature is everywhere ≤

√
b. The next two

lemmas, the proofs of which are given in appendix, are used to construct new critical points
around the existing ones. For corresponding versions, see: [2] p.113, Lemma 6.1; [13] Sect.7A,
7B; [22] Lemma 2.10, 2.11.

Lemma 3.1. Let γ be a C2(b)-curve in I(δ) parameterized by arc length and such that γ(0)
is a critical point of order n. Suppose that:

(i) γ(s) is defined for s ∈ [−b
n
4 , b

n
4 ];

(ii) there exists m ∈ [n/3, 20n] such that ‖Df i(fγ(0))‖ ≥ c for 1 ≤ i ≤ m.

There exists s0 ∈ [−b
n
4 , b

n
4 ] such that γ(s0) is a critical point of order m on γ.

Next we consider two C2(b)-curves γ1, γ2 in I(δ) parametrized by arc length, in a way that
the x-coordinate of γ1(0) coincide with that of γ2(0). Let tσ(s) denote any unit vector tangent
to γσ at γσ(s), σ = 1, 2.

Lemma 3.2. Let γ1, γ2 be as above and suppose that:

(i) γ1(s), γ2(s) are defined for s ∈ [−εn
2 , ε

n
2 ], ε ≤ C−5

0 ;
(ii) γ1(0) is a critical point of order n on γ1 and ‖Df i(fγ1(0))‖ ≥ c for 1 ≤ i ≤ n;
(iii) |γ1(0)− γ2(0)| ≤ εn and angle(t1(0), t2(0)) ≤ εn.

There exists s0 ∈ [−εn
2 , ε

n
2 ] such that γ2(s0) is a critical point of order n on γ2.

Remark 3.1. The corresponding versions to Lemma 3.2 in [2, 13, 22] assume that γ1 and
γ2 are pairwise disjoint. The smallness of the angle as in (iii) automatically follows from
this. We allow γ1 to intersect γ2, and therefore need to take the smallness of the angle as an
independent assumption.
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u Df [θn]+1uDf [θn]u Df [θn]+nu

Figure 4. The evolution of u under iteration. the horizontal segment tangent
to Df [θn]u indicates γ, and the curves indicate images of γ.

3.3. Hyperbolic times and nice critical points. Let1

(19) r0 = c ·min

{
ceλ0

10
, 1

}
.

Definition 3.1. (Hyperbolic times)Let v be a tangent vector at z and let m ≥ 1. We say v is
r-regular up to time m if for 0 ≤ i < m,

‖Dfmv‖ ≥ rδ‖Df iv‖.

We say µ ∈ [0,m] is an m-hyperbolic time of v if Dfµ+iv is κ
1
2
0 -expanding up to time m− µ.

The next lemma, the proof of which is given in appendix, ensures the existence of hyperbolic
times. See [2] Lemma 6.6, [13] Lemma 9.1, [22] Claim 5.1 for related issues.

Lemma 3.3. Let m ≥ log(1/δ) and suppose that a tangent vector v at z is r0/10-regular up
to time m. There exist s ≥ 2 and a sequence µ1 < µ2 < · · · < µs of m-hyperbolic times of v
such that:

(a) Dfµjv is κ
1
4
0 -expanding up to time m− µj;

(b) 1/16 ≤ (m− µj+1)/(m− µj) ≤ 1/4 for 1 ≤ j ≤ s− 1;
(c) 0 ≤ µ1 < m/2 and m− log(1/δ) ≤ µs ≤ m− log(1/δ)/2.

Definition 3.2. (Nice critical points) Let γ be a horizontal curve in I(δ). A critical point ζ
of order n ≥ N on γ is nice if (cf. FIGURE 4):

(C1) ‖Df i(fζ)‖ ≥ c for 1 ≤ i ≤ n;
(C2) there exist ξ ∈ f−[θn]ζ and a unit vector u at ξ such that:

- u is κ
1
3
0 -expanding and r0/10-regular, both up to time [θn];

- Df [θn]u is tangent to γ.

3.4. Binding procedure. For the rest of this section we assume m, n are integers with
m ≥ log(1/δ), n ≥ N , and:

(H1) each nice critical point ζ of order ≤ n has a good critical behavior;
(H2) a tangent vector v at z is r0-regular up to time m, and fmz ∈ I(j)(δ) ⊂ I(δ).

We indicate how to choose a binding point for Dfmv. First of all, if Dfmv is in admissible
position relative to cj, then we choose cj as a binding point. If Dfmv is in critical position

1In the case ga = 1− ax2, one can take c = 1, r0 = 1/10.
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ζi+1

ζi fmz

γi

γi+1

Figure 5. critical points on C2(b)-curves

relative to cj, then in view of Lemma 3.3, fix once and for all a sequence µ1 < µ2 < · · · < µs

of m-hyperbolic times of v satisfying

(20) m− µ1 ≤ θn,
1

2
log(1/δ) ≤ m− µs ≤ log(1/δ),

1

16
≤ m− µi+1

m− µi
for 1 ≤ i < s.

Correspondingly, fix once and for all a sequence n ≥ n1 > · · · > ns of integers such that

(21) m− µi = [θni] for 1 ≤ i ≤ s.

Let li denote the straight segment of length 2κ3θni
0 centered at fµiz and tangent to Dfµiv. Let

γi = fm−µili. By Lemma 2.6, the distortion of f j|li (1 ≤ j ≤ m − µi) is uniformly bounded
and consequently γi is a C2(b)-curve extending to both sides around fmz to length ≥ κ4θni

0 . In

particular, γs extends to both sides around fmz to length ≥ κ4 log(1/δ)0 . By Lemma 3.2, there
exists a nice critical point of order ns on γs, which we denote by ζs. If Dfmv is in admissible
position relative to ζs, then we choose ζs as a binding point. Otherwise we appeal to the next

Lemma 3.4. (Existence of nice critical points of higher order) Let i ∈ [2, s] and suppose
that there exists a nice critical point ζi of order ni on γi relative to which Dfmv is in critical
position. Then there exists a nice critical point ζi−1 of order ni−1 on γi−1 relative to which
Dfmv is in admissible or critical position.

Recursively using Lemma 3.4, we end up with two cases as below. The choice of binding
points splits into these two cases:

Case 1; there exist j ∈ [1, s], and for each i ∈ [j, s] a nice critical point ζi of order ni on γi such
that Dfmv is in critical position relative to ζs, · · · , ζj+1, and in admissible position
relative to ζj. In this case, choose ζj as a binding point.

Case 2; there exists a nice critical point of order n1 on γ1 relative to which Dfmv is in critical
position. In this case, choose ζ1 as a binding point.

As a corollary we obtain

Corollary 3.1. Let ζ0 denote the binding point for Dfmv and let k0 denote the order of ζ. If
Dfmv is in admissible position relative to ζ0 and ζ0 /∈ {c1, · · · , c,Crit}, then

− log |ζ0 − z| ≈ k0.

3.5. Recovering hyperbolicity. Having established the choices of binding points, we now
apply Proposition 2.1. If Dfmv is in admissible position relative to the binding point, then
all the estimates in Proposition 2.1(i) are in place: the loss of hyperbolicity and regularity
suffered from the return to I(δ) are recovered at the end of the bound period.

In addition, in this case one can repeat the binding procedure in the following manner.
Write m = m1. Let ζ denote any binding point for Dfmv and let p1 = p(ζ, fmz) denote
the bound period. (e,g) Proposition 2.1 implies that v is c/10-regular up to time m1 + p1.



NON-UNIFORM HYPERBOLICITY IN BIFURCATIONS OF SURFACE ENDOMORPHISMS 19

Let m2 ≥ m1 + p1 denote the smallest such that fm2z ∈ I(δ). By Lemma 2.1, v is r0-
regular up to time m2. Subsequently the binding procedure is performed once again, replacing
m, fmz,Dfmv by m2, fm2v,Dfm2v correspondingly.

In this way, one may define integers

m1 < m1 + p1 ≤ m2 < m2 + p2 ≤ m3 < · · ·

inductively as follows: for k ≥ 1, pk is the bound period of fmkz; nk+1 is the smallest
j ≥ mk + pk such that f jz ∈ I(δ). (Note that an orbit may return to I(δ) during its bound
periods, i.e. (mk) are not the only return times to I(δ).) This decomposes the orbit of z into
segments corresponding to time intervals (mk,mk + pk) and [mk + pk,mk+1], during which
we describe the orbit of z as being“bound” and “free” states respectively; mk are called free
return times of z.

Proof of Lemma 3.4. Let γ = fµi−µi−1li−1. Parametrize γ by arc length and assume γ(0) =
fµiz. Then γ(s) is well-defined for s ∈ [−κ60θni

0 , κ60θni
0 ], because

(1/2)κ3θni−1κ
1
4 (µi−µi−1)
0 ≥ (1/2)κ

(3+ 1
4 )(m−µi−1)

0 ≥ κ60θni
0 .

The last inequality follows from (20).
We use “·” to denote the differentiation on s. Let ϕ(s) = angle(em−µi−1(γ(s)), γ̇(s)). For

all s ∈ [−κ500θni
0 , κ500θni

0 ], we show

(22) ϕ(s) ≥ κ
1
3 θni

0 .

We finish the proof of Lemma 3.4 assuming this estimate. Let ξ = f−(m−µi)ζi ∩ li. We have

|ξ − fµiz| ≤ 2κ
− 1

4 (m−µi)
0 |ζi − fmz| 0

∫ κ
500θni
0

0

ϕ(s)ds.

For the second inequality we have used (22), θ 0 1 and the assumption that Dfmv is in
critical position relative to ζi. This implies that the long stable leaf of order m− µi through
ξ intersects γ. Let γ(s0) denote any point of the intersection. Then

(23) |ζi − fm−µiγ(s0)| ≤ (Cb)m−µi .

By the bounded distortion and Sublemma 3.1 below,

(24) angle(Dfm−µit(ξ), Dfm−µi γ̇(s0)) ≤ (Cb)m−µi .

Here, t(ξ) is any unit vector tangent to li at ξ. By Lemma 3.2, there exists a critical point of
order ni on γi−1 = fm−µi−1li−1, denoted by ζ ′i−1, such that |γ(s0)− ζ ′i−1| ≤ (Cb)

1
2 (m−µi). By the

bounded distortion, the exponential growth in (G1) for the orbit of ζi is passed onto that of
ζ ′i−1 up to time 20ni, which is > ni−1 by (20). Lemma 3.1 yields a critical point of order ni−1

on γi−1, which we denote by ζi−1. We claim that ζi−1 is a nice critical point of order ni−1 on
γi−1. Indeed, (C1) holds as a consequence of the above exponential growth, and (C2) follows
from the bounded distortion and Lemma 3.3.

It is left to prove (22). We have ϕ(s) ≥ ϕ(0)− I − II, where

I = angle(em−µi−1(γ(s)), em−µi−1(γ(0))), II = angle(γ̇(0), γ̇(s)).
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We estimate the right-hand-side term by term. Note that γ̇(0) is collinear to Dfµiv. Since
µi is an m-hyperbolic time, ϕ(0) is bounded from below as follows. Splitting γ̇(0) into the
direction of em−µi(γ(0)) and the direction orthogonal to it,

κ
1
4 (m−µi)
0 ≤ ‖Dfmv‖

‖Dfµiv‖ ≤
√

(Cb)m−µi + C2
0 sin

2 ϕ(0),

which implies ϕ(0) ≥ κ
2
7 θni

0 .
To conclude, it suffices to show max(I, II) 0 ϕ(0). This holds for I from Lemma 2.4 and

|s| ≤ κ500θni
0 . Regarding II, as li is a straight segment, Lemma 2.3 gives

|γ̈(s)| ≤
µi−1∑

j=µi−1

(Cb)µi−j ‖Df jv‖3

‖Dfµiv‖3 .

We have
‖Df jv‖ ≤ Cj−µi−1

0 ‖Dfµi−1v‖ ≤ Cµi−µi−1
0 ‖Dfµi−1v‖

and
‖Dfµiv‖ ≥ κ

1
4 (µi−µi−1)
0 ‖Dfµi−1v‖.

Replacing these in the fraction and the using Lemma 3.3, |γ̈(s)| ≤ C3(µi−µi−1)
0 ≤ C3(m−µi−1)

0 ≤
κ−480θni
0 . Therefore III ≤ |γ̈(s)||s| 0 ϕ(0) holds.

Sublemma 3.1. If |f iξ− f iη| ≤ (Cb
κ )i for 0 ≤ i < n, then for any nonzero tangent vectors v,

w at ξ, η,

angle(Dfnv,Dfnw) ≤
(
Cb

κ

)n−1 n−1∑

i=0

‖Df iv‖
‖Dfnv‖

‖Df iw‖
‖Dfnw‖ .

Proof. From the proof of [[22] Claim 5.3]. !
3.6. Source of nonuniform hyperbolicity: the set C. In this subsection we assume that
every critical point has good critical behavior, and show that this assumption implies the
occurrence of nonuniformly hyperbolic behavior. The issue on the abundance of parameters
for which this assumption holds is adduced to later sections.

Proposition 3.1. The following statement holds for all f = fa with (a, b) sufficiently close
to (a∗, 0); if all nice critical points of f of order ≥ N have good critical behavior, then for
each fixed saddle p of f with W u(p) ⊂ [−2, 2]2, there exists a countable set C ⊂ W u(p) near
Crit× {0} such that each ζ ∈ C satisfies:

(a) ‖Dfn(fζ) ( 1
0 ) ‖ ≥ eλn for every n ≥ 0;

(b) ζ admits a tangent direction which is exponentially contracted by both positive and
negative iterations.

Proof. Fix a fundamental domain F in W u
loc(p), and let z ∈ F . Let t(z) denote a nonzero unit

vector tangent to W u
loc(p) at z. Define a sequence n1 < n1 + p1 ≤ n2 < n2 + p2 ≤ n3 < · · ·

inductively as follows: n1 is the smallest such that fn1z ∈ I(δ) and p1 is the bound period of
fn1z; nk ≥ nk−1 + pk−1 is the smallest such that fnkz ∈ I(δ), and pk is the bound period of
fnkz. From the fact that p is a fixed saddle, it follows that this sequence is defined indefinitely,
or else there exists an integer m such that Dfmt(z) is in critical position relative to critical
points of arbitrarily high order. If the latter case occurs, we let fmz ∈ C.
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The set C thus defined is a countable set, because the defining map F → C is surjective and
any point of the inverse image of the map is isolated in F . (a)(b) follow from the fact that
each element of C is accumulated by nice critical points for which (G1) holds. !

4. Parameter dependence of critical points

In the remaining three sections we construct a set ∆ of positive Lebesgue measure for
which every critical point has good critical behavior. The construction of ∆ is done by
induction. At each step we exclude all parameters from further consideration for which some
nice critical points may not have good critical behavior and necessary analytic estimates fail
for proceeding to the next step. At this point we face an intrinsic difficulty, not present in
one-dimension: critical points do not persist when the parameter is varied, because they are
dynamically defined. In this section, we resolve this difficulty by introducing a parametrized
family of critical points.

4.1. Deformations of quasi critical points. We relax the definition of nice critical points
as follows.

Definition 4.1. (Quasi critical points) Let γ be a C2(b)-curve in I(δ). Let n ≥ N , and let ζ
be a critical point of order n on γ. We say ζ is a quasi critical point of order n on γ if there
exist ξ ∈ f−[θn]ζ and a unit vector u at ξ such that:

(i) Df [θn]u is tangent to γ;

(ii) u is κ
1
2
0 -expanding up to time [θn].

Hypothesis for the rest of Sect.4.1: ζ is a quasi critical point of order n ≥ N on a
C2(b)-curve γ such that:

(Q1)n ‖Df i(fζ)‖ ≥ c for 1 ≤ i ≤ n;
(Q2)n there exist ξ ∈ f−[θn]ζ and a unit vector u at ξ such that:

– Df [θn]u is tangent to γ;

– u is κ
1
3
0 -expanding and r0/160-regular, both up to time [θn].

Let H = [−2, 2] × {
√
b}. Let r denote the point of intersection between H and the long

stable leaf of order [θn] through ξ. Let l ⊂ H denote the horizontal of length 2κ3θn0 centered
at r. Let

In(â) = [â− κn0 , â+ κn0 ].
We now introduce a C3 map a ∈ In(â) '→ ζ(a) called a deformation of ζ. Here, ζ(a) is a

quasi critical point of order n of fa given by the next

Proposition 4.1. The following holds for all a ∈ In(â):

(a) f [θn]
a l is a C2(b)-curve extending both sides around f [θn]

a r to length ≥ κ5θn0 ;

(b) there exists a quasi critical point ζ(a) of order n on f [θn]
a l. In addition, |ζ − ζ(â)| ≤

(Cb)
θn
4 ;

(c) a ∈ In(â) '→ ζ(a) is C3, and there exists C > 1 such that for j = 1, 2, 3,
∥∥∥ dj

daζ(a)
∥∥∥ ≤

Cθn.

Before entering a proof of this proposition we prove the next lemma on iterates of fâ.
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Lemma 4.1. f [θn]
â l is a C2(b)-curve extending both sides around f [θn]

â r to length ≥ κ4θn0 .

Moreover, there exists a quasi critical point ζ(â) of order n on f [θn]
â l. Furthermore, |ζ−ζ(â)| ≤

(Cb)
θn
4 .

Proof. Write f for fâ. For a point p ∈ [−2, 2]2, let us write v(p) = ( 1
0 ). The next comparison of

derivatives is used: ‖Df iv(ξ)‖ ≈ ‖Df iv(z)‖ for z ∈ l and 1 ≤ i ≤ [θn]. This follows from the
bounded distortion in a neighborhood containing ξ and l in consequence of the assumption
on ξ and Lemma 2.7. Lemma 4.1 follows from this and ‖Df [θn]v(r)‖ ≥ 1

2‖Df [θn]v(ξ)‖ ≥
1
2‖Df [θn]u‖ ≥ 1

2κ
θn
3
0 .

By Lemma 2.3, the curvature of f [θn]l is bounded from above by

C
[θn]−1∑

i=0

(Cb)[θn]−i ‖Df iv(ξ)‖3

‖Df [θn]v(ξ)‖3 .

We evaluate the fraction as follows. For 0 ≤ i ≤ θn/2,

‖Df iv(ξ)‖
‖Df [θn]v(ξ)‖ ≤ Ci

0κ
−θn/2
0 ≤ κ−2([θn]−i)

0 .

For θn/2 < i < [θn], split u = A ( 1
0 ) + Bei(ξ). An analogous reasoning to the proof of (22)

shows ‖Df iu‖ ≈ |A| · ‖Df iv(ξ)‖. By the bounded distortion and (Q2)n,

‖Df iv(ξ)‖
‖Df [θn]v(ξ)‖ ≤ C · ‖Df iu‖

‖Df [θn]u‖ ≤ C

δ
.

Replacing all these in the summand, we obtain the curvature is everywhere ≤
√
b. The second

inequality with i = [θn]−1 implies that the slopes of the tangent directions of f [θn]l are ≤
√
b.

Subemma 3.1 gives angle(Df [θn]u,Df [θn]v(r)) ≤ (Cb)
θn
2 , and also |f [θn]ξ− f [θn]r| ≤ (Cb)

θn
2 .

By Lemma 3.2, there exists a critical point of order n on f [θn]l. The bounded distortion and
(Q2)n together imply that this critical point is a quasi critical point of order n. The last
assertion follows from Lemma 3.2. !
Proof of Proposition 4.1. Let z ∈ l, a ∈ In(â) and 1 ≤ i ≤ [θn]. Then

‖Df i
âv(r)−Df i

av(r)‖ ≤ κ
9n
10
0 .

(Q2)n and the bounded distortion give

‖Df i
âv(r)‖ ≥ C‖Df i

âv(ξ)‖ ≥ Cκ
i
2
0 .

Hence, ‖Df i
âv(r)‖ ≈ ‖Df i

av(r)‖ holds. The bounded distortion in Lemma 2.6 gives ‖Df i
av(r)‖ ≈

‖Df i
av(z)‖, and consequently ‖Df i

âv(r)‖ ≈ ‖Df i
av(z)‖. From this and the proof of Lemma

4.1 we obtain (a).

We divide the rest of the proof of Proposition 4.1 into three steps. In the first two steps we
prove (b). In the last step we prove (c).

Step 1(Construction of a critical point of fâ on f [θn]
a l). Parametrize l by arc length s. For

a ∈ In(â), let x(a) ∈ l denote the point such that the x-coordinate of f [θn]
a x(a) coincides with

that of ζ(â). Then

(25) |f [θn]
a x(a)− f [θn]

â x(â)| ≤ 2|f [θn]
a x(â)− f [θn]

â x(â)| ≤ κ
9n
10
0 ,
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|f [θn]
a x(a)− f [θn]

a x(â)| ≤ |f [θn]
a x(a)− f [θn]

â x(â)|+ |f [θn]
â x(â)− f [θn]

a x(â)| ≤ 2κ
9n
10
0 .

By the C2(b)-property,

angle(Df [θn]
a v(x(a)), Df [θn]

a v(x(â))) ≤ 2
√
bκ

9n
10
0 .

The proof of Lemma 4.1 implies

angle(Df [θn]
a v(x(â)), Df [θn]

â v(x(â))) ≤ κ
9n
10
0 .

Hence

(26) angle(Df [θn]
a v(x(a)), Df [θn]

â v(x(â))) ≤ 2κ
9n
10
0 .

(25) (26) permit us to use Lemma 3.2 to construct a critical point of fâ of order n on f [θn]
a l,

which we denote by z, located within κ
4n
5
0 of ζ(â). By the bounded distortion, ‖Df i

â(fâz)‖ ≥
c/3 holds for 1 ≤ i ≤ n.

Step 2(Construction of a quasi critical point of fa on f [θn]
a l). Let γ denote the C2(b)-curve in

f [θn]
a l which extends both sides around z to length κ

n
2
0 . Since |fâz− faz| ≤ C0κn0 , the bounded

distortion gives, for 1 ≤ i ≤ n,

‖Df i
âv(faz)‖ ≥ (1/2)‖Df i

âv(fâz)‖ ≥ c/6.

As a ∈ In(â),

‖Df i
av(faz)‖ ≥ ‖Df i

âv(faz)‖ − ‖Df i
a(faz)−Df i

â(faz)‖ ≥ c/6− κ
9n
10
0 .

Namely, faz is expanding up to time n under the iteration of Dfa. By Proposition 2.4 and

diam(faγ) ≤ Cκ
n
2
0 , the most contracting direction of Df i

a, denoted by ea,i, is well-defined in a
neighborhood of faγ.

Parametrize γ by arc length and assume γ(0) = z. Let t(s) denote any unit vector tangent
to γ at γ(s). Split

Dfât(s) = A(s) ( 1
0 ) + B(s)eâ,n(fâz),

Dfat(s) = A′(s) ( 1
0 ) +B′(s)ea,n(faγ(s)).

These two equalities and ‖Dfa(γ(s))−Dfâ(γ(s))‖ ≤ C|â− a| altogether imply

A′(s) = A(s) +B(s) cos θâ(fâz)− B′(s) cos θa(faγ(s)) +R,

0 = B(s) sin θâ(fâz)−B′(s) sin θa(faγ(s)) +R,

where ea,n(·) =
(

cos θa(·)
sin θa(·)

)
and |R| ≤ C|â− a| ≤ Cκn0 . Letting ψ(s) = |θâ(fâz)− θa(faγ(s))|,

|B(s)− B′(s)| ≤ Cψ(s) + C|R| and |A(s)− A′(s)| ≤ Cψ(s) + C|R|.

From the results in Sect.2.3,

ψ(s) ≤ |θâ(fâz)− θâ(faγ(s))|+ |θâ(faγ(s))− θa(faγ(s))| ≤ C
√
b (|s|+ |â− a|) .

Lemma 2.2 gives |A(±κ
n
2
0 )| ≈ κ

n
2
0 , A(κ

n
2
0 )A(−κ

n
2
0 ) < 0 and |B(s)| ≤ C

√
b, and hence

|A(±κ
n
2
0 )− A′(±κ

n
2
0 )| ≤ C

√
bκ

n
2
0 + Cκn0 < |A(±κ

n
2
0 )|.
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This implies A′(κ
n
2
0 )A

′(−κ
n
2
0 ) < 0, and therefore A′(s) = 0 has a solution. Lemma 2.2 implies

that this solution is unique, and by definition, it corresponds to a critical point of fa of order
n on γ, denoted by ζ(a). By construction, ζ(a) is a quasi critical point of fa of order n.

Step 3(Derivative estimates). Parametrize l by arc length s. Let 7(a) denote the unique
parameter such that

(27) ζ(a) = f [θn]
a l(7(a)).

Consider the unit vector F (s, a) = ρ ·Df [θn]+1
a v(l(s)), where ρ > 0 is the normalizing constant.

Let G(s, a) denote the most contracting direction of Dfn
a at f [θn]+1

a l(s), so that

F (7(a), a)−G(7(a), a) = 0.

Let v0 = Df [θn]
a v(l(7(a))) and v1 = Dfav0. Let κ0 denote the curvature of f [θn]l at ζ(a). We

claim

(28) κ0 ≥ C‖v0‖2/‖v1‖2,

and

‖∂aF‖ ≥ κ−5θn
0 , ‖∂sF‖ = κ0‖v1‖ ≥ ‖v0‖2‖v1‖−1 1 ‖v0‖,

‖∂aG‖ ≤ C
√
b, ‖∂sG‖ ≤ C

√
b‖v0‖,

where all the partial derivatives are taken at (7(a), a). The factor
√
b in the upper estimate

of ‖∂sG‖ comes from (10) and Corollary 2.2. Hence ‖∂s(F −G)‖ ≥ Cκ
θn
2
0 holds. The implicit

function theorem yields
∣∣∣∣
d

da
7

∣∣∣∣ ≤ κ−9θn
0 .

Differentiating (27) with a and using this we obtain the desired bound of
∣∣ d
daζ

∣∣. Higher order
derivatives are bounded in the same way.

It is left to prove (28). Write γ0 = f [θn]
a l. Parametrize γ0 by arc length s so that γ(0) =

ζ(a), and let γ1(s) = fγ0(s). Let “·” denote the differentiation with respect to s. We have
γ̈1(0) = Df(γ0(0))γ̈0(0) +Xγ̇0(0), where

Df(γ0(0)) =

(
A B
C D

)
and X =

(
〈∇A, γ̇0(0)〉 〈∇B, γ̇0(0)〉
〈∇C, γ̇0(0)〉 〈∇D, γ̇0(0)〉

)
.

From the form of our map (6) and the fact that γ0 is C2(b), we have ‖γ̈0(0)‖ ≤ C
√
b and

|〈∇A, γ̇0(0)〉| ≥ C > 0. In addition, all the other entries of X are ≤ Cb in norm. Hence
‖γ̈1(0)‖ ≥ C > 0 and slope(γ̈1(0)) ≤ C

√
b hold. Since slope(γ̇1(0)) ≥ C/

√
b , the curvature is

‖γ̇1(0)× γ̈1(0)‖
‖γ̇1(0)‖3

≥ C

‖γ̇1(0)‖2
.

This proves (28). !
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4.2. Uniform derivative estimates. From this point on, we use “·” to denote the a-
derivatives. Since the construction of deformations of quasi critical points of order n involve
n iterations, and now n is arbitrary, the next uniform bounds on derivatives of deformations
are highly nontrivial.

Proposition 4.2. Let ζ be a quasi critical point of order n ≥ N of fâ on a C2(b)-curve γ.
Assume:

(i) ‖Df i(fζ)‖ ≥ 2c for 1 ≤ i ≤ n;
(ii) there exist ξ ∈ f−[θn]ζ and a unit vector u at ξ such that:

- Df [θn]u is tangent to γ;

- u is κ
i
3
0 -expanding and r0/40-regular, both up to time [θn].

For the deformation a ∈ In(â) '→ ζ(a) and j = 1, 2 we have

‖ζ̇(a)‖ ≤ κ−10 log(1/δ)
0 .

Proof. We divide the proof into three steps. First, in a slightly different way from Proposition
4.1 we construct a smooth map a ∈ In(â) → z(a) such that z(a) is a quasi critical point of
order n of fa. Next, we repeat similar constructions for lower orders. Finally we put these
together and complete the proof.

Step 1(Construction of a parametrized quasi critical point of order n). Let γ denote the
straight segment of length κ5θn0 centered at ξ and tangent to u.

Lemma 4.2. For all a ∈ In(â) we have:

(a) | log ‖Df i
â(ξ)u‖ − log ‖Df i

a(ξ)u‖| ≤ 1 for 1 ≤ i ≤ [θn];

(b) f [θn]
a γ is a C2(b)-curve extending both sides around f [θn]

a ξ to length ≥ κ6θn0 ;

(c) there exists a quasi critical approximation z(a) of order n on f [θn]
a γ;

(d) for all η ∈ γ,

(29) |f i
aη − f i

âξ| ≤ κ4θn0 0 ≤ i ≤ [θn].

Proof. (a-c) follow from slight modifications of the arguments in Sect.4.1, 4.1. The Hausdorff
distance between f i

âγ and f i
aγ is ≤ κ4θn0 , and (d) follows. !

Step 2(Construction of parametrized quasi critical points of lower order). In view of the
assumption n ≥ N and Lemma 3.3, fix once and for all a maximal sequence 0 = µ1 <
µ2 < · · · < µs of [θn]-hyperbolic times of the tangent vector u at ξ under the iteration of fâ.
Correspondingly, fix once and for all a sequence n =: n1 > n2 > · · · > ns of integers such that
[θni] = [θn] − µi holds for 1 ≤ i ≤ s. Let ξ(a) ∈ γ be such that f [θn]

a ξ(a) = z(a). Let γi(a)
denote the straight segment of length 2κ3θni

0 centered at fµi
a ξ(a) and tangent to fµi

a γ.

Lemma 4.3. For every 1 ≤ i ≤ s and all a ∈ In(â) we have:

(a) f [θni]
a γi(a) is a C2(b)-curve extending both sides around z(a) to length ≥ κ6θni

0 ;

(b) there exists a quasi critical point zi(a) of order ni on f [θni]
a γi(a) such that

(30) |zi(a)− z(a)| ≤
i∑

k=1

b
θnk
5 .
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q

z

pzj

f [θnj+1]γj+1

f [θnj ]γj

x = x0

zj+1

Figure 6

Proof. (a) follows from a slight modification of the proof of Lemma ??. We prove (b) by
induction on i. The argument is parameter-independent. So, let us suppress a from notation
and write z(a) = z, zi(a) = zi and so on.

(b) for i = 1 follows from the fact z1 = z. Assume (b) for i = j ≥ 1. The lower estimate of
length in (a) for i = j permits us to use Lemma 3.1 to construct a critical point of order nj+1

on f [θnj ]γj, denoted by p, such that

(31) |zj − p| ≤ (Cb)
nj+1

4 .

We regard the two C2(b)-curves f [θnj ]γj, f [θnj+1]γj+1 as graphs of functions yj(x), yj+1(x)
correspondingly. Let x0 be such that p = (x0, yj(x0)). The assumption of the induction gives
length(f [θnj ]γj) 1 |z − p|. Hence, yj+1(x0) makes sense. Let q = (x0, yj+1(x0)). Let s ∈ γ be
such that f [θnj ]s = p.

The bounded distortion on γ gives |fµj+1ξ − s| ≤ 2κ
− 1

3 ([θnj+1]
0 |z − p| ≤ (Cb)

1
10 θnj+1 . From

this and the lower estimate of the length of γj+1, it follows that the long stable leaf of order
[θnj+1] through s intersects γj+1. Then |yj(x0) − yj+1(x0)| ≤ (Cb)θnj+1 , and Sublemma 3.1

gives |y′j(x0)−y′j+1(x0)| ≤ (Cb)
θnj+1

2 . By Lemma 3.2, there exists a quasi critical point of order

nj on γj+1, denoted by zj+1, such that |zj+1 − q| ≤ (Cb)
θnj+1

4 . Consequently we obtain

|zj+1 − z| ≤ |zj+1 − q|+ |q − p|+ |p− zj|+ |zj − z|

≤ (Cb)
θnj+1

4 + (Cb)
θnj+1

2 + (Cb)
nj+1

4 +
j∑

k=1

b
θnk
5 ≤

j+1∑

k=1

b
θnk
5 .

This proves (b) for i = j + 1. !
Step 3(Overall estimates). Put a = â in Lemma 4.3. Then we obtain a sequence ζ1, · · · , ζs of
quasi critical points of fâ, of order n1 > · · · > ns correspondingly. By the initial assumption on
ζ, ξ, u, (Q1)ni , (Q2)ni holds for ζi, for each i ∈ [1, s]. Hence, the deformation a ∈ Ini(â) '→ ζi(a)
of ζi is well-defined by virtue of Proposition 4.1. As n1 = n, ζ1 = ζ, and ζ1(a) = ζ(a) holds
for all a ∈ In(â).

Lemma 4.4. For each i ∈ [1, s] and for all a ∈ Ini(â), |ζi(a)− zi(a)| ≤ (Cb)
θni
4 .

We finish the proof of Proposition 4.2 assuming the conclusion of this lemma. We appeal
to the next

Lemma 4.5. (Hadamard) Let g ∈ C2[0, L] be such that |g| ≤ M0 and |g′′| < M2. If 4M0 < L2

then |g′| ≤
√
M0(1 +M2).
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Write ζi(a) = ζi, ζ̇i(a) = ζ̇i, ζ̈i(a) = ζ̈i and zi(a) = zi. Proposition 4.1 gives |ζ̈i+1 − ζ̈i| ≤
2κ−3θni

0 . Lemma 4.3 and Lemma 4.4 give

|ζi+1 − ζi| ≤ |ζi+1 − zi+1|+ |ζi − zi|+ |zi+1 − zi| ≤ (Cb)
θni
5 .

This permits us to use Lemma 4.5 to get ‖ζ̇i+1−ζ̇i‖ ≤ (Cb)
θni
6 . Summing this over all 1 ≤ i < s

and ‖ζ̇s‖ ≤ κ−3θns
0 ≤ κ3 log δ

0 from Proposition 4.1,

‖ζ̇‖ ≤ ‖ζ̇s‖+
s−1∑

i=1

‖ζ̇i+1 − ζ̇i‖ ≤ κ4 log δ
0 .

For the second order derivative estimate, use Lemma 4.5 with respect to ζ̇i+1 − ζ̇i together
with the third order derivative estimate in Proposition 4.1.

It is left to prove Lemma 4.4. To this and we need some notation. Let ξi(a) ∈ γi(a) be

such that f [θni]
a ξi(a) = zi(a). Let a, a′ ∈ In(â). Let xi(a, a′) denote the point of intersection

between H and the long stable leaf of fa of order [θni] through ξi(a′). Let δi(a) denote the
horizontal of length 2κ3θni

0 centered at xi(a, a). Analogously to the proof of Lemma 4.1, it

is possible to show that f [θni]
a δi(a) is a C2(b)-curve, and there exists a critical point z̄i(a) of

order ni on δi(a) such that |z̄i(a)− zi(a)| ≤ (Cb)
θni
4 .

To conclude, it suffices to show z̄i(a) = ζi(a). Let I = |xi(â, â) − xi(a, â)| and II =
|xi(a, â) − xi(a, a)|. Corollary 2.2 gives I ≤ C|â − a| ≤ 2κn0 . Meanwhile we have II ≤
C|ξi(â) − ξi(a)| ≤ Cκ4θn0 . Here, the first inequality follows from the Lipschitz continuity of
e[θni], and the second from (d) in Lemma 4.2. We obtain

(32) |xi(â, â)− xi(a, a)| ≤ Cκ4θni
0 .

By the construction of the deformation, there exists a horizontal li ⊂ H of length 2κ3θni
0

centered at xi(â, â) such that f [θni]
a li is a C2(b)-curve on which ζi(a) lies. By (32), li intersects

δi. Therefore f [θni]
a (li ∪ δi) is a C2(b)-curve as well, on which lie two critical points z̄i(a) and

ζi(a). As they are of order ni, they coincide with each other. !

5. Parameter exclusion I: preliminaries

In this last two sections we define the parameter set ∆ in Theorem B and show that it has
positive Lebesgue measure. In this section we do some preliminary works.

The definition of ∆ is inductive: at step n, we define a parameter set ∆n by excluding from
∆n−1 all those undesirable parameters for which some nice critical points do not behave in a
good manner, in a possible violation of (G1-3). We set ∆ =

⋂
n≥0∆n. In Sect.5.1 we give a

formal definition of ∆n.
To conclude |∆| > 0, the main step is to show that |∆n−1 \ ∆n| decreases exponentially

in n. Our strategy is briefly outlined as follows. We first decompose ∆n−1 \∆n into a finite
number of subsets, based on certain combinatorics describing itineraries of critical points. We
then estimate the measure of each subset separately, and unify them at the end. In Sect.5.2,
5.3 we introduce an integral part of this combinatorics.
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5.1. Definition of parameter sets. We give a formal inductive definition of ∆n. Choose
small ε > 0, so that if b is small, then for any f ∈ {fa : a ∈ [a∗ − 2ε, a∗ − ε]} and any critical
point of ζ of f we have:

(a) ‖wi(ζ)‖ ≥ eλ(i−1) for M ≤ i ≤ 20N ;
(b) ‖wj(ζ)‖ ≥ e−2αi‖wi(ζ)‖ for M ≤ i < j ≤ 20N .

This choice is feasible by the fact that any critical point is contained in I(
√
b). Set ∆n =

[a∗ − 2ε, a∗ − ε] for 0 ≤ n ≤ N.
Let n > N , a ∈ ∆n−1 and suppose that every nice critical point of fa of order < n has a

good critical behavior. Let 20(n− 1) ≤ m < 20n. We say a nice critical point ζ of fa of order
≥ n satisfies (G)m if:

(i) the orbit fζ, f 2ζ, · · · , fmζ into is decomposed into bound and free segments in the
sense of Sect.3.4;

(ii) let n1 < n2 < · · · < ns ≤ m denote all the free return times of ζ, with z1, · · · , zs the
corresponding binding points. They are of order < n and

(33)
∑

1≤i≤s

log |fniζ − zi| ≥ −αm.

For n > N , define ∆n to be the set of all a ∈ ∆n−1 for which every nice critical point of
order ≥ n satisfies (G)20n−1. In other words,

∆n−1 \∆n =

{
a ∈ ∆n−1 : (G)m fails for some m ∈ [20(n− 1), 20n)

and some nice critical point of order ≥ n of fa

}
.

The next proposition indicates that, for parameters in ∆n, nice critical points of order n
can be used as binding points, and thus allows us to proceed to the definition of ∆n+1.

Proposition 5.1. Let n > N , a ∈ ∆n−1 and let ζ be a critical point of order ≥ n of fa. If
(G)20n−1 holds for ζ, then:

(a) ‖wi(ζ)‖ ≥ eλ(i−1) for M ≤ i ≤ 20n,
(b) ‖wj(ζ)‖ ≥ e−2αi‖wi(ζ)‖ for M ≤ i < j ≤ 20n;
(c) if ζ is of order n, then it has good critical behavior.

Let f ∈ {fa : a ∈ ∆}. By the definition of ∆ and Proposition 5.1, every critical point of
f has good critical behavior. Then Proposition 3.1 ensures the existence of the set C as in
Theorem B. Hence, to complete the proof of Theorem B it is left to show |∆| > 0.

Proof of Proposition 5.1. We divide the proof into three steps. In the first two steps we show
(G1-2) for every 20(n− 1) < k ≤ 20n. Lastly we show (G3).

Step 1(Proof of (G1)). We begin with the elementary case where there is no return to I(δ)
before time k. In this case, Lemma 2.1 and cδeα(k−1) ≥ 1 from the definition of N give
‖wk(ζ)‖ ≥ cδe(λ0−α)(k−1)eα(k−1) ≥ eλ(k−1), and in addition, ‖wk(ζ)‖ ≥ cδeλ0(k−i)‖wi(ζ)‖ ≥
cδeα(k−i)‖wi(ζ)‖ ≥ e−αi‖wi(ζ)‖ for i < k.

Proceeding to the general case, let n1 < · · · < ns denote all the free return times of ζ before
k, with p1, · · · , ps, q1, · · · , qs the corresponding bound and fold periods. Proposition 2.1 and
condition (G) give

(34)
s∑

i=1

pi ≤
3

λ
α(k − 1).
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The chain rule gives

‖wns+ps(ζ)‖ = ‖wn1(ζ)‖
s−1∏

l=1

‖wnl+1
(ζ)‖

‖wnl+pl(ζ)‖

s∏

l=1

‖wnl+pl(ζ)‖
‖wnl

(ζ)‖ ,

where

‖wn1(ζ)‖ ≥ δ−1eλn1 ,
‖wnl+1

(ζ)‖
‖wnl+pl(ζ)‖

≥ ceλ0(nl+1−nl−ql),
‖wnl+pl(ζ)‖
‖wnl

(ζ)‖ ≥ c−1.

The first inequality holds for (a, b) sufficiently close to (a∗, 0); the second follows from Lemma
2.1; the last from Proposition 2.1. Putting all these together,

(35) ‖wns+ps(ζ)‖ ≥ (cδ)−1eλ0(ns+ps−
∑s

i=1 pi).

If fkζ is bound, namely ns + ps > k, then using C−ps
0 ≥ C

3α(k−1)
λ

0 ,

‖wk(ζ)‖ ≥ C−ps
0 ‖wns+ps(ζ)‖ ≥ e

λ0

(
−
(

logC0
λ0

+1
)

3α
λ (k−1)+k

)

≥ eλ(k−1),

where we have used (34) for the third inequality. If fkζ is free, namely ns + ps ≤ k, then
Proposition 2.1 gives ‖wk(ζ)‖ ≥ cδeλ(k−ns−ps)‖wns+ps(ζ)‖. Combining this with (35) we obtain
‖wk(ζ)‖ ≥ eλ0(k−

∑
pi) ≥ eλ0(k−αk) ≥ eλ(k−1), and hence (G1) holds.

Step2(Proof of (G2)). We deal with five cases separately.

Case I: both f iζ and f jζ are free. Suppose that no return takes place in [i, k]. This case can
be covered by the argument in the beginning of the proof. Otherwise, we split the orbit into
free and bound segments. Using Lemma 2.1 for each free segment and Lemma 2.1 for each
bound segment we have

(36) ‖wj(ζ)‖ ≥ cδe
λ
3 (j−i)‖wi(ζ)‖ ≥ e−αi‖wi(ζ)‖.

The last inequality is because cδe
λj
3 ≥ 1 because j is large as there is a return time.

Case II: f iζ is free and j ∈ (nl+ ql, nl+pl) for some l ∈ [1, s]. Let z denote the binding point
for fnlζ. Then

‖wj(ζ)‖ ≥ C|fnlζ − z|eλ(j−nl)‖wn̂(ζ)‖ ≥ Ce
λ
3 (j−i)−αnl‖wi(ζ)‖

≥ Ce
α
2 j−

3
2αie(

λ
3−

3
2α)(j−i)‖wi(ζ)‖ ≥ e−

3
2αi‖wi(ζ)‖,

where the first inequality is because j is out of fold period; for the second inequality we have
used (36) from time i to nl (δ is dropped by Lemma 2.1) and |fnlζ − z| ≥ e−αnl from (G);
nl < j for the third; the last inequality is because j is large.

Case III: f iζ is free and j ∈ [nl + 1, nl + ql] for some l ∈ [1, s]. The upper estimate of

fold periods in Proposition 2.1 and condition (G) give ‖wj(ζ)‖ ≥ C
− 2αα̃

λ j
0 ‖wnl+ql(ζ)‖. For the

segment from time i to nl + ql, Case II applies and therefore

‖wnl+ql(ζ)‖
‖wi(ζ)‖

‖wj(ζ)‖
‖wnl+ql(ζ)‖

≥ Ce
α
2 j−

3
2αie(

λ
3−

3
2α)(nl+ql−i)C

− 2αα̃
λ j

0 ≥ e−
3
2αi.

Case V: i ∈ (nl, nl + ql) for some l ∈ [1, s]. From the proof of Proposition 2.1, ‖wi(ζ)‖ <
‖wnl

(ζ)‖ holds. This and the estimates in Cases II, III yield the desired one.
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Case IV: i ∈ [nl + ql, nl + pl) for some l ∈ [1, s]. If j ∈ [nl + ql, nl + pl), then the bounded

distortion gives ‖wj(ζ)‖
‖wi(ζ)‖ ≥ cδ

10 ≥ e−αi. Otherwise, nl + pl ≤ (1 + 3α
λ )nl from (G) and from Cases

I, II, III,
‖wnl+pl(ζ)‖
‖wi(ζ)‖

‖wj(ζ)‖
‖wnl+pl(ζ)‖

≥ cδ

10
e−

3
2α(nl+pl) ≥ e−2αi.

Step 3(Proof of (G3)). Let j ∈ [M, 20n]. Define a finite sequence

j =: h0 > h1 > · · · > ht(j)

of free return times of ζ inductively as follows. Let ĥk+1 denote the largest free return time
before hk, when it makes sense. Let pk+1 denote the corresponding bound period. If

(37) hk − ĥk+1 − pk+1 ≤
1

λ0
log(10/(cδ)),

then let hk+1 = ĥk+1. In all other cases, hk+1 is undefined, namely k = t(j). Define χ(j) =
ht(j). Obviously, χ(j) ≤ j holds. It is left to show for 1 ≤ i ≤ χ(j),

(38) ‖wχ(j)(ζ)‖ ≥ cδ‖wi(ζ)‖,
and

(39) (1−
√
α)j ≤ χ(j).

If there exists no return time before χ(j), then (38) follows from Lemma 2.1. Otherwise, we
first observe ‖wχ(j)(ζ)‖ ≥ cδ‖wi(ζ)‖ for ĥt(j)+1 + pt(j)+1 ≤ i ≤ χ(j), from Lemma 2.1. For all
other i, ‖wĥt(j)+1+pt(j)+1

(ζ)‖ ≥ (cδ/10)‖wi(ζ)‖ holds. Using all these and the reverse inequality

of (37) for k = t(j),

‖wχ(j)(ζ)‖ ≥ cδeλ0(χ(j)−ĥt(j)+1−pt(j)+1)‖wĥt(j)+1+pt(j)+1
(ζ)‖ ≥ 10‖wĥt(j)+1+pt(j)+1

‖.

Hence (38) holds for 1 ≤ i < ĥt(j)+1 + pt(j)+1.
We show (39). If t(j) = 0, there is nothing to prove. If t(j) = 1, then the inequality

follows from a condition (G). Suppose t(j) > 1, and that ht(j) < (1 −
√
α)j. We derive a

contradiction. Let k0 ∈ [0, t(j)] denote the smallest such that hk0 < (1−
√
α)j. Condition (G)

and (37) together implies k0 > 1. Let B = {i ∈ [(1 −
√
α)j, j] : f iζ is bound} and F = {i ∈

[(1 −
√
α)j, j] : f iζ is free}. By definition and the assumption, [hk, hk + pk] ⊂ [(1 −

√
α)j, j]

holds for every i ∈ [1, k0 − 1]. The lower estimate of bound periods in Proposition 2.1
gives $B ≥ 1

logC0
(k0 − 1) log(1/δ). Summing (37) over all i = 0, 1, · · · , k0 − 2 gives $F ≤

C (k0−1)
λ0

log 1/δ. Hence
√
αj ≤ C$B holds, where this C depends only on C0, λ0, c. On the

other hand, condition (G) and (a) Proposition 2.1 give $B ≤ 3αj
λ . These two estimates are

incompatible, if α is chosen sufficiently small, depending only on C0, λ0, c. !
5.2. Expansion at deep returns. Let n > N and f ∈ {fa : a ∈ ∆n−1 \ ∆n}. Let ζ be a
nice critical point of f order ≥ n, having ν < 20n as its free return time. If ν is not the first
return time to I(δ), then let n1 < · · · < nt < ν denote all the free return times of ζ before ν,
with z1, · · · , zt and p1, · · · , pt the corresponding binding points and the bound periods. For
each i ∈ [1, ν) \

⋃
1≤s≤t[ns, ns + ps − 1], let

σi(ζ) =
‖wi+1(ζ)‖
‖wi(ζ)‖2

,
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and let

σns(ζ) =
|fnsζ − zs|

10
9

‖wns(ζ)‖
.

Let K0 = infc∈Crit,n>0 d(gna∗c,Crit), where d denotes the minimal distance apart. Define

(40) Θν(ζ) =
K0

10

[
ν−1∑

i=1

σi(ζ)
−1

]−1

.

It is understood that the sum runs over all i such that f iζ is free. The ga∗ is the interval map
in Sect.1.3 with the critical set Crit and d denotes the minimal distance apart. By (A3), the
infimum is nonzero.

Lemma 5.1. For the above f, ζ, ν, ‖wν(ζ)‖Θν(ζ) ≥ e−2α(β−1)ν .

Proof. We estimate ‖wν(ζ)‖−1σi(ζ)−1 for each 1 ≤ i < ν such that f iζ is free.

Step1 (estimates for free returns): Let nt+1 = ν. For 1 ≤ s ≤ t we have

‖wns+1(ζ)‖−1σns(ζ)
−1 =

‖wns+ps(ζ)‖
‖wns+1(ζ)‖

‖wns(ζ)‖
‖wns+ps(ζ)‖

|fnsζ − zs|−
10
9

≤ ‖wns(ζ)‖
‖wns+ps(ζ)‖

|fnsζ − zs|−
10
9 ≤ |fnsζ − zs|−

1
10 .

For the last inequality we have used (d,e) Proposition 2.1. As ‖wν(ζ)‖ ≥ ‖wns+1(ζ)‖ we obtain

‖wν(ζ)‖−1σns(ζ)
−1 ≤ |fnsζ − zs|−

1
10 ≤ eα(β−1)ns ,

where the last inequality follows from (G). Summing this over all s gives

(41)
t∑

s=1

‖wν(ζ)‖−1σns(ζ)
−1 ≤ 2eα(β−1)ν .

Step2 (estimates for free segments): Let F := [0, n1)
⋃
∪1≤s≤t[ns + ps, ns+1). Let

(42) C1 = max
{
2, 4λ−1 logC0

}
, C2 = 1− 1/C1 ∈ (0, 1), C3 = min{1/2, C2}.

Put s0 = − log δ
λC1

. For each i ∈ F , Lemma 2.1 gives

‖wν(ζ)‖σi(ζ) =
‖wν(ζ)‖‖wi+1(ζ)‖

‖wi(ζ)‖2
≥ cδeλ(ν−i) = cδC2eλ(ν−i−s0).

Split F = F1 ∪ F2, where F1 = {i ∈ F : i ≤ ν − s0} and F2 = {i ∈ F : i > ν − s0}. Summing
the reciprocals of the above inequality over all i ∈ F1,

∑

i∈F1

‖wν(ζ)‖−1 · σi(ζ)−1 ≤ C

δC2
.

We claim f iζ /∈ I(3
√
δ) for each i ∈ F2. Indeed, if this is not the case, then ‖wν(ζ)‖

‖wi(ζ)‖ ≤
3
√
δ ·CCν−i

0 holds. On the other hand, Lemma 2.1 and Proposition 2.1 give ‖wν(ζ)‖
‖wi(ζ)‖ ≥ c. These
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two inequalities yield ν − i ≥ − log δ
4 logC0

, a contradiction to the assumption i ∈ F2. Hence the
claim holds and ∑

i∈F2

‖wν(ζ)‖−1 · σ−1
i ≤ C$F2

3
√
δ

≤ Cs0
3
√
δ
≤ 1√

δ
.

These two estimates yield

(43)
∑

i∈F

‖wν(ζ)‖−1 · σi(ζ)−1 ≤ C

δC3
.

Step3 (Overall estimate): (41) (43) give

ν−1∑

i=1

‖wν(ζ)‖−1 · σi(ζ)−1 ≤ 2eα(β−1)ν +
C

δC3
≤ 3eα(β−1)ν ,

where the last inequality is because of the fact that ν is a return time of ζ. Taking reciprocals
we obtain the desired inequality. !

The expansion estimate in Lemma 5.1 does not reflect the depth of the return at time ν.
Hence, it is useless for our purpose if the depth of the return is shallow, compared with αν.
However, the exclusion rule in (33) does allow this case to occur. A solution to this problem
is to introduce a particular type of returns for which another expansion estimate is available,
and do exclusions only at these returns.

Definition 5.1. (Deep return times) Let f ∈ {fa : a ∈ ∆n−1 \ ∆n}. Let ζ be a nice critical
point of f order ≥ n, having ν < 20n as a free return time, with z the binding point. If ν is
not the first return time to I(δ), then let n1 < · · · < nt < ν denote all the free return times
of ζ before ν, with z1, · · · , zt the corresponding binding points. Write nt+1 = ν and zt+1 = z.
We say ν is a deep return time, if it is the first return time to I(δ), or else for 1 ≤ s ≤ t,

t+1∑

j=s+1

2 log |fnjζ − zj| ≤ log |fnsζ − zs|.

Let

(44) C4 = max{1/5, C3} ∈ (0, 1).

Lemma 5.2. For the above f, ζ, ν, z, if ν is a deep return time of ζ, then

‖wν(ζ)‖Θν(ζ) ≥ |f νζ − z|C4 .

Proof. If ν is the first return time, then the desired estimate is a consequence of (43). Assume
that ν is not the first return time. As ν is an deep return,

|fnsζ − zs|−1 ≤
t+1∏

j=s+1

|fnjζ − zj|−2.

The proof of Lemma 5.1 gives ‖wns+1(ζ)‖−1σ−1
ns
(ζ) ≤ |fnsζ − zs|−

1
10 , and so

(45) ‖wns+1(ζ)‖−1σ−1
ns
(ζ) ≤

t+1∏

j=s+1

|fnjζ − zj|−
1
5 .
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For 1 ≤ s < t,

‖wns+1(ζ)‖
‖wν(ζ)‖

=
t∏

j=s+1

‖wnj+pj(ζ)‖
‖wnj+1(ζ)‖

‖wnj(ζ)‖
‖wnj+pj(ζ)‖

≤
t∏

j=s+1

‖wnj(ζ)‖
‖wnj+pj(ζ)‖

.

Multiplying these,

(46) ‖wν(ζ)‖−1σ−1
ns
(ζ) ≤ |f νζ − z|− 1

5

t∏

j=s+1

‖wnj(ζ)‖
‖wnj+pj(ζ)‖

|fnjζ − zj|−
1
5 .

For each term in the product, (e) Proposition 2.1 gives

‖wnj(ζ)‖
‖wnj+pj(ζ)‖

|fnjζ − zj|−
1
5 ≤ |fnjζ − zj|

1
2 ≤

√
δ.

Hence

‖wν(ζ)‖−1σns(ζ)
−1 ≤ |f νζ − z|− 1

5 δ
t−s
2 .

Summing this over all 1 ≤ s < t and (45) for s = t gives

‖wν(ζ)‖−1 ·
t∑

s=1

σ−1
ns
(ζ) ≤ |f νζ − z|− 1

5

t∑

s=1

δ
t−s
2 ≤ |f νζ − z|− 1

5 .

The estimate for free segments in (43) and the above inequality yield

‖wν(ζ)‖−1 ·
ν−1∑

i=1

σ−1
i (ζ) ≤ C

δC3
+ |f νζ − z|− 1

5 ≤ |f νζ − z|−C4 .

Taking the reciprocals of both sides yields the desired inequality. !

5.3. Grid coordinates. For each µ ≥ θN , fix a subdivision of R × {
√
b} into right-open

horizontals of equal length κµ0 . We label all of them intersecting H with l = 1, 2, 3, · · · , from
the left to the right. By a µ-grid coordinate of a point x on H we mean the integer l which is
a label of the horizontal containing x.

In general, let ζ be a nice critical point of order n on a horizontal curve γ. By definition,
there exists ξ ∈ f−[θn]ζ and a tangent vector u at ξ for which (C2) in Definition 3.2 holds.
Let µ be any [θn]-hyperbolic time of u. We call µ a hyperbolic time of ζ. The long stable
leaf through fµξ of order [θn] − µ intersects H exactly at one point. Let A(ζ, µ) denote the
([θn]− µ)-grid coordinate of the point of the intersection.

6. Parameter exclusion II: positive measure

In this last section we show |∆| > 0. In Sect.6.1 we decompose ∆n−1 \ ∆n into a finite
number of subsets, based on the combinatorics introduced in the previous sections. Assuming
a key measure estimate (Proposition 6.1) on each of these subsets, we conclude |∆| > 0. All
the remaining subsections is devoted to a proof of the key measure estimate.
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6.1. Decomposition of parameter sets excluded at step n. We decompose ∆n−1 \∆n

as follows. Fix the following combinatorics:

(D1) positive integers m ∈ [20(n− 1), 20n), s, t, R;
(D2) sequences (µ1, · · · , µs), (x1, · · · , xs) of s positive integers;
(D3) sequences (ν1, · · · , νt), (l1, · · · , lt), (n1, · · · , nt), (r1, · · · , rt), (y1, · · · , yt) of t positive

integers.

Let En(∗) = En(m, s, t, R, · · · ) denote the set of all a ∈ ∆n−1 \∆n for which there exists a
nice critical point ζ of fa = f of order ≥ n such that the following holds:

(Z1) (G)m−1 holds, and (G)m fails;
(Z2) {µ1 < · · · < µs} ⊂ [0, [θn]] is a sequence of hyperbolic times of ζ satisfying

(47)
1

2
≤ [θn]− µs

log(1/δ)
≤ 1, [θn]− µ1 ≥

1

2
θn,

1

16
≤ [θn]− µi+1

[θn]− µi
≤ 1

4
for 1 ≤ i < s.

Lemma 3.3 ensures the existence of such a sequence;
(Z3) xi = A(ζ, µi) for every 1 ≤ i ≤ s;
(Z4) ν1 < · · · < νt = m are all the free return times in the first m iterates of ζ, with

z1, · · · , zt the corresponding binding points;
(Z) for each k ∈ [1, t], lk ∈ [1, $Crit] is such that f νkζ ∈ I(lk)(δ);
(Z) nk < n, and

nk =

{
the order of zk if zk #= clk
0 if zk = clk .

(Z5) If νk < m, then |f νkζ − zk| ∈ [e−rk , e−rk+1). If νk = m (which means k = t and
νt = m), then rt is defined as follows. If |fmζ − zt| > e−αm, then rt is such that
|fmζ − zt| ∈ [e−rt , e−rt+1) holds. Otherwise, rt = αm;

(Z6) If nk #= 0, then yk = A(zk, 0). Otherwise, yk = 0.

If a ∈ En(∗), then any nice critical point of fa of order ≥ n for which (Z1-6) hold is called
responsible for a, or a responsible critical point of fa. The parameter set En(∗) is called an
n-class. By definition, any parameter in ∆n−1 \∆n belongs to some n-class.

Before proceeding let us record constraints on the above integers. Corollary 3.1 gives

(48) nk ≈ rk if νk < m.

By the definition of rt in (Z5),

(49) nt ≤ α−1rt if νk = νt = m.

(G) and the definition of rk in (Z5) give

(50) rk ≤ ανk for 1 ≤ k ≤ t.

Proposition 6.1. |En(∗)| < e−
1
3R|∆0|, where R = r1 + r2 · · ·+ rt.

We finish the proof of Theorem B assuming the conclusion of Proposition 6.1. We begin
by counting the number of all feasible n-classes. The number of all feasible (µ1, · · · , µs) is
bounded by the number of ways of choosing s objects from [θn] objects, which is ( [θn]

s ) . For

one such way, there are at most
∏s

i=1 κ
−(m−µi)
0 number of ways to choose (x1, · · · , xs). (47)
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gives m− µi ≤ 4i−s(m− µs), and therefore
s∑

i=1

(m− µj) ≤
s∑

i=1

4j−s(m− µs) ≤ 2(m− µs) ≤ 2θn.

Hence, it is possible to choose C > 1 such that the number of all feasible sequences in (D2) is

≤
(
[θn]
s

) s∏

i=1

κ−(m−µi)
0 ≤ Cθn.

The number of all feasible (ν1, · · · , νt) is ≤ ( n
t ). The number of all feasible (r1, · · · , rt)

is equal to the total number of combinations of dividing R objects into t groups, which is
( R+t

t ). (48) (49) give n1 + · · · + nt ≤ Cα−1R. Hence, the number of all feasible (n1, · · · , nt)

and that of (y1, · · · , yt) are correspondingly ≤
(

R
20λ+t

t

)
and ≤ κ

−θ
∑t

k=1 nk

0 ≤ eCθα−1R. Using

max {t/R, t/n} ≤ C/ log(1/δ) and Stirling’s formula for factorials, we have that the number
of all feasible sequences in (D3) is

≤
(
n
t

)(
R + t
t

)(
R
20λ + t

t

)
eCθα−1R ≤ eτ(δ)n+Cθα−1R,

where τ(δ) → 0 as δ → 0.
The next lemma asserts that the the sum of deep return depths has a positive definite

proportion.

Lemma 6.1. R ≥ αm/2.

Proof. Let a ∈ En(∗) and ζ be a responsible critical point of fa. Write f for fa. If the orbit of
ζ does not return to I(δ) before time m, then necessarily fmζ ∈ I(δ) holds, and r1 = rt ≥ αm,
because of (Z1). Hence the desired inequality holds in this case.

Suppose that there exist return times of ζ in (0,m). For a non deep return time η ∈ (0,m),
let η′ denote the smallest integer in [0, η − 1] such that

(51)
∑

η′+1≤i≤η
free return

2 log |f iζ − ζ̃i| > log |f η′ζ − ζ̃η′ |,

where ζ̃i denotes the binding point for f iζ. By definition, there exists no deep return time in
[η′ + 1, η]. Define a strictly decreasing sequence η1 > η2 > · · · > ηu of integers in (0,m] as
follows: η1 is the largest non deep return time in (0,m]. Given ηl, let ηl+1 denote the largest
non deep return time which is < η′l+1. By definition, the intervals [η′l+1, ηl] for (l = 1, · · · , u)
are mutually disjoint and cover all the non deep return times in (0,m]. In view of (51) we
have

∑

0<i≤m : non deep

2 log |f iζ − ζ̃i| >
u∑

l=1

log |f η′lζ − ζ̃η′l | ≥
∑

0<i≤m

log |f iζ − ζ̃i|.

Hence we obtain
t∑

k=1

rk ≥
t∑

k=1

− log |f νkζ − ζk| ≥ −1

2

∑

0<i≤m

log |f iζ − ζ̃i| ≥
αm

2
.

The last inequality follows from (33). !
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Using R ≥ αm/2 ≥ 10α(n− 1) and max(τ(δ), θ) 0 α, we have

eτ(δ)n+
θR
α e−C5R ≤ eτ(δ)

R
9α+ θR

α e−C5R ≤ e−
1
2C5R.

Hence

|∆n−1 \∆n| ≤ |∆0|
∑

m,s,t,R

∑

R≥αm/2

∑

r1+···+rt=R

|En(∗)| ≤ |∆0|eτ(δ)n+
θR
α

∑

R≥αm/2

e−
C5R
2

≤ |∆0|e−
C5αm

5 ≤ |∆0|e−4C5α(n−1).

Since ∆0 = ∆N we obtain

|∆| = |∆N | −
∑

n>N

|∆n−1 \∆n| ≥ |∆N |
(
1−

∑

n>N

e−4C5α(n−1)

)
> 0.

6.2. Structure of the rest of this section. The rest of this section is entirely devoted
to the proof of Proposition 6.1. The main step is to analyze the parameter dependence of
positions of responsible critical points at each return time ν1, · · · νt in the definition of En(∗).
In the next three subsections we treat this main step. Building on this we give combinatorial
considerations. In Sect. we complete the proof of Proposition 6.1.

Hypothesis for Sect.6.3, 6.4, 6.5: â ∈ En(∗), and ζ is a responsible critical point of fâ of
order ≥ n.

6.3. Critical curves. We need to consider all responsible nice critical points of order ≥ n,
while bad parameters are excluded at each deep return time ν1, · · · , νt, which are ≤ 20n. This
necessitates working with deformations commensurate with each νk. We argue as follows.

Fix once and for all sequence m1 > · · · > ms of integers such that for each i ∈ [1, s],

[θmi] = [θn]− µi.

A slight modification of the proof of Lemma 4.3 shows the existence of a sequence ζ(1), · · · , ζ(s)
of quasi critical points of order m1, · · · ,ms such that for 1 ≤ i ≤ s,

(52) |ζ − ζ(i)| ≤ (Cb)
θmi
10 .

For each νk, let

(53) ηk = min
{
1 ≤ i ≤ s : e−λνk/2 ≤ κmi

0

}
.

Definition 6.1. (Adapted deformations) The deformation a ∈ Imηk
(â) '→ ζ(ηk)(a) of ζ(ηk) is

called a νk-adapted deformation of ζ.

We prove a couple of lemmas surrounding the νk-adapted deformation of ζ. The next lemma
indicates that the fâ-orbits of ζ and ζ(ηk) are indistinguishable up to time νk.

Lemma 6.2. |f i
âζ − f i

âζ
(ηk)| ≤ (Cb)

θνk
200 for 0 ≤ i ≤ νk.

Proof. Suppose ηk > 1. The definition gives e−λνk/2 > κ
mηk−1

0 , and thusmηk−1 ≥ λνk/(2 log(1/κ0)).
(47) gives 1

16 ≤ mηk
mηk−1

, and hence mηk ≥ λνk/(32 log(1/κ0)). This yields

|f i
âζ − f i

âζ
(ηk)| ≤ C i

0|ζ − ζ(ηk)| ≤ Cνk
0 (Cb)

θmηk
10 ≤ (Cb)

θνk
200 .

Suppose ηk = 1. Then mηk = m1 ≥ n. Since 20n ≥ νk, we get mηk ≥ νk/20, and the same
inequality holds. !
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Let

(54) Jνk(â, ζ) = [â−Θνk(ζ), â+Θνk(ζ)].

Lemma 6.3. Jνk(â, ζ) ⊂ Imηk
(â). If moreover nk #= 0, then Imηk

(â) ⊂ Ink
(â). In particular,

the deformation of the binding point for f νk
â ζ is well-defined on Jνk(â, ζ).

Proof. (G) implies that there is some i ∈ [(2/3)νk, νk] such that f iζ is free. Hence Θνk(ζ) ≤
e−λνk/2 holds. On the other hand, (53) gives e−λνk/2 ≤ κ

mηk
0 . Hence the first inclusion holds.

For the second inclusion, it suffices to show mηk ≥ nk. This holds for the case νk = νt = m,
from nk < n and mηk = m1 ≥ n. Suppose νk < m. (G) gives nk ≤ Cανk ≤ Cαn. If ηk = 1,
then mηk = m1 ≥ n, and hence mηk ≥ nk. If ηk > 1, then the inequality in the proof of
Lemma 6.2 gives the same inequality. !

In what follows, we consider the evolution of parametrized curves:

a ∈ Jνk(â, ζ) '→ ζi(a, k) =: f i
a(ζ

(ηk)(a)), i = 0, 1, 2, · · · , νk,
and show that this evolution is similar to that of a curve under the iteration of the fixed map
fâ. A central idea follows the well-known line [2, 13, 22] and consists of two parts; to establish
an equivalence between space and a-derivatives (Sect.6.4) and then; to transfer phase-space
analyses to parameter space (Sect.6.5).

6.4. Equivalence between space and a-derivatives. Recall that (ga) is the unperturbed
family of maps on [−1, 1]. For each x0 ∈ Crit and i ≥ 0, let xi(a) := giax0. Let

Qk(x0, a) :=
dxk
da (a)

(gk−1
a )′x1(a)

.

According to [18], we have

(55) Qk(x0, a
∗) → p(x0, a

∗) #= 0 as k → ∞,

where p(x0, a∗) is the one in (7). Pick a positive integer k0 such that |Qk(x0)| ≥ p(x0, a∗)/2 > 0
holds for all k ≥ k0 and each x0 ∈ Crit. For i ≥ 1, write wi(ζ) = Df i−1

â (fâζ) ( 1
0 ).

Lemma 6.4. There exist C1 > 0, C2 > 0 such that for a ∈ Imk̃
(â) → ζ0(a, k) we have

C1‖wi(ζ)‖ ≤ ‖ζ̇i(â, k)‖ ≤ C2‖wi(ζ)‖ for k0 ≤ i ≤ νk.

In addition, the second inequality remains to hold for all 1 ≤ i < k0.

Let θi = angle(wi(ζ), ζ̇i(â, k)).

Lemma 6.5. For every i ≥ k0 such that f i
âζ is free, θi ≤ C

δ‖wi(ζ)‖ .

Proofs of these lemmas are given in Appendices A.5, A.6.

6.5. Evolution of critical curves. For i ∈ [k0 + 1, νk], define

ρi =
∑

k0<j<i : free

e−
λj
3 + σ−1

j (ζ)Θνk(ζ) +
∑

k0<j<i : free return

length(γj)
1
10 .

For i ≥ 1, write wi(a) := Df i−1
a (ζ1(a, k)) ( 1

0 ).

Lemma 6.6. The following holds for k0 < i ≤ νk such that f i
âζ is free:
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(a)
∣∣∣log ‖ζ̇i(â, k)‖ − log ‖ζ̇i(a, k)‖

∣∣∣ ≤ ρi ≤ 1 for a ∈ Jνk(â, ζ);

(b) ‖ζ̈j(a, k)‖ ≤ (Cδ)−3(i−j)‖ζ̇i(a, k)‖3 for a ∈ Jνk(â, ζ) and k0 ≤ j ≤ i;
(c) the curvature of γi := {ζi(a, k) : a ∈ Jνk(â, ζ)} is everywhere ≤ 1

100 .

We postpone a lengthy proof of this lemma to Sect.6.9 and instead derive two corollaries.
For r ∈ (0, 1) and a compact interval J centered at â, denote by r · J the interval of length
r|J | centered at â. Fix C5 ∈ (0, 1) such that

(56) C4 + C5 ∈ (0, 1).

Corollary 6.1. For all a ∈ Jνk(â, ζ) \ e−C5rk · Jνk(â, ζ),

|ζνk(â, k)− ζνk(a, k)| ≥ e−(C4+C5)rk .

Proof. From Lemma 6.6(d), γνk is a horizontal curve. Lemma 6.6(a) gives

|ζνk(â, k)− ζνk(a, k)| ≥ C
∥∥∥ζ̇νk(â, k)

∥∥∥ |â− a| ≥ C‖wνk(ζ)‖|â− a|,

where the second inequality follows from Lemma 6.4. From the assumption on a, the right hand
side is ≥ C‖wνk(ζ)‖|Jνk(â, ζ)| · e−C5rk . If νk < m, then Lemma 5.2 gives ‖wνk(ζ)‖|Jνk(â, ζ)| ≥
e−C4rk . If νk = m, which means k = t and νt = m, then rt ≤ αm, β = 10/9, C4 ≥ 1/5 and
Lemma 5.1 give

‖wνk(ζ)‖|Jνk(â, ζ)| ≥ e−2α(β−1)νk = e−2α(β−1)m ≥ e−C4rt .

Consequently, in either of the two cases we obtain the desired inequality. !
Definition 6.2. (Critical parameter) From the second inclusion in Lemma 6.3, the deforma-
tion a ∈ Ink

(â) '→ zk(a) of the binding point for f νk
â ζ is well-defined on Jνk(â, ζ). Proposition

4.2 and Corollary 6.1 together imply the existence of a unique parameter c0 ∈ e−C5rk ·Jνk(â, ζ)
such that the x-coordinate of ζνk(c0, k) coincides with that of zk(c0). We call c0 a critical
parameter in Jνk(â, ζ).

6.6. Combinatorial lemmas. We shall reduce the measure estimate of En(∗) to elementary
combinatorial considerations. To this end we need three key lemmas, based primarily on the
expansion estimate in Corollary 6.1 and the notion of critical parameters.

Lemma 6.7. Let a1, a2 ∈ En(∗) and let ζ1, ζ2 be responsible critical points correspondingly.
If k < t and a1 ∈ e−rk/10 · Jνk(a2, ζ2), then Jνk+1

(a1, ζ1) ⊂ 2e−rk/10 · Jνk(a2, ζ2).

Proof. The next sublemma allows us to “relate” critical points responsible for different pa-
rameters through their deformations.

Sublemma 6.1. Let a1, a2 ∈ En(∗) and ζ1, ζ2 be responsible critical points correspondingly.
Let zσk denote the binding point for f νk

aσ ζ
σ and let zσk (·) denote its deformation (σ = 1, 2). If

Jνk(a1, ζ1) ∩ Jνk(a2, ζ2) #= ∅, then for all c ∈ Jνk(a1, ζ1) ∩ Jνk(a2, ζ2), ζ
1
0 (c, k) = ζ20 (c, k) and

z1k(c) = z2k(c).

Proof. By the construction of deformations in Sect.4, there exists a horizontal l1 ⊂ H of length

2κ
3θmηk
0 such that f

[θmηk ]
c l1 is a C2(b)-curve and ζ10 (c, k) lies on it. Correspondingly, there exists

a horizontal l2 ⊂ H of length 2κ
3θmηk
0 such that f

[θmηk ]
c l2 is C2(b) and ζ20 (c, k) lies on it. By

(Z3), the midpoints of l1, l2 have the same [θmηk ]-grid coordinate. Hence, l1 intersects l2 and
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f
[θληk ]
c (l1 ∪ l2) is C2(b). From the elementary fact that one C2(b)-curve does not admit more
than two critical points of the same order, ζ10 (c, k) = ζ

2
0 (c, k) follows. An analogous argument

with (Z6) in the place of (Z3) gives z1k(c) = z2k(c). !
Returning to the proof of Lemma 6.7, let c0 denote the critical parameter in Jνk(a2, ζ

2). We
claim c0 /∈ Jνk+1

(a1, ζ1). This claim and the assumption on a together imply that one of the
components of Jνk+1

(a1, ζ1)\{a1} is contained in e−rk/10 ·Jνk(a2, ζ
2). This yields the inclusion.

It is left to prove the claim. We argue by contradiction assuming c0 ∈ Jνk+1
(a1, ζ1). The

last inequality in (61) implies that ζ1νk(c0, k + 1) is in admissible position relative to z1k(c0).
Hence, ζ1νk(c0, k) is in admissible position relative to z1k(c0) as well. The assumption c0 ∈
Jνk(a1, ζ

1) ∩ Jνk(a2, ζ
2) and Sublemma 6.1 give z1k(c0) = z2k(c0) and ζ1νk(c0, k) = ζ2νk(c0, k).

Hence, ζ2νk(c0, k) is in admissible position relative to z2k(c0). This means that c0 is not a
critical parameter in Jνk(a2, ζ

2), a contradiction. !
Lemma 6.8. Let a1, a2 ∈ En(∗) and let ζ1, ζ2 be responsible critical points correspondingly.
If a2 /∈ Jνk(a1, ζ

1), then Jνk(a1, ζ
1) ∩ Jνk(a2, ζ

2) = ∅.

Proof. We derive a contradiction assuming the intersection is nonempty. Using Sublemma 6.1
and Lemma 6.6, it is possible to show |Jνk(a1, ζ

1)| ≈ |Jνk(a2, ζ
2)|. Let cσ denote the critical

parameter in Jνk(aσ, ζσ) (σ = 1, 2). Since a2 /∈ Jνk(a1, ζ
1), c1 #= c2 holds.

Let zσk denote the binding point for f νk
aσ ζ

σ and let zσk (·) denote its deformation (σ = 1, 2).
Sublemma 6.1 gives z1k(c2) = z2k(c2). Hence

|z1k(c1)− z2k(c2)| = |z1k(c1)− z1k(c2)| ≤ C− log δ|c1 − c2|,
where we have used Proposition 4.2 for the last inequality. On the other hand, Lemma 6.6
and (G1) give

|ζ1νk(c1, k)− ζ
2
νk
(c2, k)| = |ζ1νk(c1, k)− ζ

2
νk
(c2, k)| ≥ Ceλνk |c1 − c2|.

Since c1 #= c2, |ζ1νk(c1, k)− ζ
2
νk
(c2, k)| 1 |z1k(c1)− z2k(c2)| holds. This yields a contradiction to

the fact that c1 and c2 are critical parameters. !
Lemma 6.9. Let a1 ∈ En(∗) and let ζ1 denote any responsible critical point for a1. Then
Jνk(a1, ζ

1) \ e−C5rk · Jνk(a1, ζ
1) does not intersect En(∗).

Proof. Let a2 ∈ Jνk(a1, ζ
1)\e−C5rk ·Jνk(a1, ζ

1). We argue by contradiction assuming a2 ∈ En(∗).
Let ζ2 denote any critical point responsible for a2. Let zσk denote the binding point for f νk

aσ ζ
σ

and let zσk (·) denote its deformation (σ = 1, 2). As a2 ∈ Jνk(a1, ζ
1) ∩ Jνk(a2, ζ

2), Sublemma
6.1 gives

(57) ζ10 (a2, k) = ζ
2
0 (a2, k), z1k(a2) = z2k(a2).

By the construction of deformations in Sect.4,

(58) |zσk − zσk (aσ)| ≤ (Cb)
θnk
4 ≤ e−rk .

If νk < m, then the last inequality follows from (48). If νk = νt = m, it follows from the
definition of rt.

Claim 6.1. For σ = 1, 2, |ζσνk(aσ, k)− f νk
aσ ζ

σ| ≤ e−rk .

Proof. Lemma 6.2 and (50) give |ζσνk(aσ, k)− f νk
aσ ζ

σ| ≤ (Cb)
θνk
200 ≤ e−νk ≤ e−rk . !
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Using (58) and Claim 6.1, we have

|f νk
a2 ζ

2 − z2k| ≥ |ζ2νk(a2, k)− z2k(a2)| −| ζ2νk(a2, k)− f νk
a2 ζ

2| −| z2k(a2)− z2k|
≥ |ζ2νk(a2, k)− z2k(a2)| − 2e−rk .

For the first term of the last line,

|ζ2νk(a2, k)− z2k(a2)| ≥ |ζ2νk(a2, k)− ζ
1
νk
(a1, k)| − |ζ1νk(a1, k)− z1k(a1)| −| z1k(a1)− z2k(a2)|

= |ζ1νk(a2, k)− ζ
1
νk
(a1, k)| −| ζ1νk(a1, k)− z1k(a1)| −| z1k(a1)− z1k(a2)|,

where the equality follows from (57). We estimate the three terms in the last line one by one.
For the first term, Corollary 6.1 gives

|ζ1νk(a2, k)− ζ
1
νk
(a1, k)| ≥ Ce−(C4+C5)rk .

For the second term, (58) Claim 6.1 give

|ζ1νk(a1, k)− z1k(a1)| ≤ |ζ1νk(a1, k)− f νk
a1 ζ

1|+ |f νk
a1 ζ

1 − z1k|+ |z1k − z1k(a1)| ≤ 3e−rk .

For the third term, Proposition 4.2 gives

|z1k(a1)− z2k(a2)| ≤ C− log δ|a1 − a2| ≤ e−
λνk
2 ≤ e−

λ
2α rk .

For the last inequality we have used (50). Consequently we obtain |f νk
a2 ζ

2−z2k| ≥ Ce−(C4+C5)rk .
It follows that ζ2 is not a responsible critical point for a2, a contradiction. !
6.7. Proof of Proposition 6.1. By induction, for each k ∈ [1, t] we choose a finite sequence
Jk,1, Jk,2, · · · , of parameter intervals with the following properties:

(i) each Jk,i has the form Jk,i = Jνk(ak,i, zk,i), where ak,i ∈ En(∗) and zk,i is a critical point
responsible for ak,i;

(ii) Jk,1, Jk,2, · · · are pairwise disjoint and En(∗) ⊂
⋃

i e
−C5rk · Jk,i;

(iii) if t > 1, then for each k ∈ [2, t] and (ak,i, zk,i) there exists (ak−1,j, zk−1,j) such that
Jk,i ⊂ 2e−C5rk−1 · Jk−1,j;

(iv)
∑

i |J1,i| ≤ 10|∆0|.
A simple computation gives

|En(∗)| ≤ 2te−C5R
∑

i

|J1,i| ≤ e−
C5R
2 |∆0|.

To choose the intervals as required, start with k = 1. We claim that it is possible to
choose a1,1, a1,2, · · · , in En(∗) and responsible critical points z1,1, z1,2, · · · correspondingly, for
which the intervals J1,1, J1,2, · · · satisfy (ii). Indeed, choose some a1,1 ∈ En(∗) and define J1,1
choosing some responsible critical point for a1,1. If J1,1 covers En(∗), then the claim holds.
Otherwise, choose some a1,2 ∈ En(∗)− J1,1, and define J2,1 choosing some responsible critical
point for a2,1. By Lemma 6.8, J1,1, J1,2 are pairwise disjoint. Repeat this. As the length of
these intervals are uniformly bounded from below, there must come a point at which our claim
is fulfilled.

Given Jk−1,1, Jk−1,2, · · · for which (ii) (iii) hold, Jk,1, Jk,2, · · · are defined as follows. For
each Jk−1,i, in the same way as the previous paragraph it is possible to choose a finite number
of parameters ak,1, ak,2, · · · in E(∗) ∩ e−C5rk−1 · Jk−1,i such that the corresponding intervals
Jk,1, Jk,2, · · · are pairwise disjoint and satisfy En(∗) ∩ e−C5rk−1 · Jk−1,i ⊂

⋃
j Jk,j . Lemma 6.7

gives
⋃

j Jk,j ⊂ 2e−C5rk−1 · Jk−1,i. Repeat the same construction for every Jk−1,i. (ii) (iii) for
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Jk,1, Jk,2, · · · follow from the construction. (iv) follows from the pairwise disjointness of the
intervals and the next

Lemma 6.10. For every i, |J1,i| ≤ 4|∆0|.

Proof. Recall that J1,i = Jν1(a1,i, ζ1,i), where a1,i ∈ ∆n−1 \ ∆n and ζ1,i is a critical point
responsible for a1,i. If ν1 − 1 ≥ − log ε/λ, then |J1,i| ≤ ‖wν1(ζ1,i)‖−1 ≤ e−λ(ν1−1) ≤ ε. As
∆0 = [a∗ − 2ε, a∗ − ε], the desired inequality follows.

Suppose that ν1 − 1 < − log ε/λ. As a1,i ∈ ∆0, it suffices to show a∗ /∈ J1,i. We derive a
contradiction assuming a∗ ∈ J1,i. By condition (A3) on the interval map ga∗ , it is possible to
choose sufficiently small b depending only on ε so that all quasi critical points of fa∗ are apart
from I(δ) in a distance by at least 1

2K0 during their first [− log ε/λ] iterates. Consider the
ν1-adapted deformation a ∈ J1,i '→ z(a) of ζ1,i, and write zν1(a) = f ν1

a z(a). Since ν1 is a return
time of ζ1,i, zν1(a1,i) ∈ I(2δ) holds. Hence |zν1(a∗) − zν1(a1,i)| ≥ 1

3K0. On the other hand,
Lemma 6.6 and (40) together imply |zν1(a∗)− zν1(a1,i)| ≤ 1

5K0. We reach a contradiction. !

6.8. Hölder distortion. For the proof of Lemma 6.6 we need the next distortion estimate.
We assume ζ is a critical point on a horizontal curve γ. Let ω be a curve in γ containing
a point having p with its bound period, and length(ω) ≤ d(ζ, ω)1+ε. Here, d denotes the
minimal distance apart and δ 0 ε. For our purpose, ε = 1/3 suffices. For z ∈ ω, let t(z)
denote any unit vector tangent to ω at z.

Sublemma 6.2. For all ξ, η ∈ ω,
∣∣∣∣
‖Df pt(ξ)‖
‖Df pt(η)‖ − 1

∣∣∣∣ ≤ C|f pξ − f pη|
ε

1+ε .

Proof. From the assumption, the contractive fields ei, 1 ≤ i < p are well-defined in a neigh-
borhood of fω. Let z denote both ξ and η. Split Dft(z) = A(z) ( 1

0 ) + B(z)ep−1(fz). Then
‖Df pt(ξ)−Df pt(η)‖ ≤ I1 + I2 + I3 + I4, where

I1 = |A(ξ)− A(η)|‖Df p−1(fξ)‖,
I2 = |B(ξ)− B(η)|‖Df p−1(fξ)‖,
I3 = |B(η)|‖Df p−1(fξ)ep−1(fξ)−Df p−1(fη)ep−1(fη)‖,
I4 = |A(η)|‖Df p−1(fξ) ( 1

0 )−Df p−1(fη) ( 1
0 ) ‖.

We divide the rest of the proof into three steps. First we estimate I1, I2, I3. Next we estimate
I4. In the last step we glue all these estimate together and complete the proof.

Step 1(Estimates of I1, I2, I3). The proof of Lemma 2.2 implies |A(ξ) − A(η)| ≤ C|ξ − η|.
Hence

I1 ≤ C|ξ − η|‖wp(ζ)‖ ≤ Cd(ζ, ω)|ξ − η|
ε

1+ε‖wp(ζ)‖.
The last inequality follows from the assumption on ω. The same reasoning gives

I2 ≤ Cd(ζ, ω)|ξ − η|
ε

1+ε‖wp(ζ)‖.

The second estimate in Corollary 2.2 gives

I3 ≤ (Cb)p−1|ξ − η| ≤ |ξ − η|‖wp(ζ)‖.
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Step 2(Estimate of I4). Take a point r such that the long stable leaf of order p − 1 through
fη intersects the horizontal line through fξ at fr. For a point y and i ≥ 1, let wi(y) =
Df i−1(fy) ( 1

0 ). Let

θi = angle(wi(ξ), wi(η), θ
′
i = angle(wi(η), wi(r)), θ

′′
p = angle(wp(ξ), wp(r)).

Integrations of the two inequalities as in Lemma 2.2 along the path in ω connecting ξ and η
give |fξ − fr| ≤ Cd(ζ, ω)|ξ − η| and |fη − fr| ≤ C

√
b|ξ − η|. The second estimate in Lemma

2.6 give ∣∣∣∣
‖wp(r)‖
‖wp(ξ)‖

− 1

∣∣∣∣ ≤ C
|fξ − fr|
d2(ζ, ω)

≤ C|ξ − η|
ε

1+ε .

(G2) on ζ and the bounded distortion give ‖wi+1(η)‖ ≥ Ce−αi‖wi(η)‖ and ‖wi+1(r)‖ ≥
Ce−αi‖wi(r)‖ for 1 ≤ i < p. Hence

∣∣∣∣log
‖wp(η)‖
‖wp(r)‖

∣∣∣∣ ≤
p−1∑

i=1

∣∣∣∣log
‖wi+1(η)‖
‖wi(η)‖

− log
‖wi+1(r)‖
‖wi(r)‖

∣∣∣∣ ≤ C
p−1∑

i=1

eαi(|f iη − f ir|+ θ′i).

Using |f iη − f ir| ≤ (Cb)i−1|fη − fr| and θ′i ≤ (Cb)i−1|fη − fr| which follows from the proof
of Sublemma 3.1, we get

∣∣∣∣log
‖wp(η)‖
‖wp(r)‖

∣∣∣∣ ≤ C|fη − fr|
p−1∑

i=1

eαi(Cb)i−1 ≤ C|ξ − η|.

These two estimates yield ∣∣∣∣
‖wp(η)‖
‖wp(ξ)‖

− 1

∣∣∣∣ ≤ C|ξ − η|
ε

1+ε .

Let l denote the horizontal connecting fξ and fr. Then f p−1l is C2(b) and

θ′′p ≤
√
b|f pξ − f pr| ≤ C

√
b|f pξ − f pη|.

The second is because of the definition of r and the fact that f pω is C2(b). Together with the
upper estimate of θ′p and |f pξ − f pη| ≥ |ξ − η|, we obtain

θp ≤ θ′p + θ
′′
p ≤ C

√
b|f pξ − f pη|.

Using |A(η)| ≤ Cd(ζ, ω) and ‖wp(z)‖ ≈ ‖wp(ζ)‖,

I4 ≤ Cd(ζ, ω)‖wp(ξ)− wp(η)‖ ≤ Cd(ζ, ω)‖wp(ζ)‖
(
θp +

∣∣∣∣
‖wp(ξ)‖
‖wp(η)‖

− 1

∣∣∣∣

)

≤ Cd(ζ, ω)‖wp(ζ)‖|f pξ − f pη|
ε

1+ε .

Step 3(Overall estimate). Gluing all the estimates together, we obtain

‖Df pt(ξ)−Df pt(η)‖ ≤ C‖wp(ζ)‖d(ζ, ω)|f pξ − f pη|
ε

1+ε .

Combining this with ‖Df pt(z)‖ ≥ C‖wp(ζ)‖d(ζ, ω) yields the desired inequality. !
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6.9. Proof of Lemma 6.6. We proceed by induction on i. To ease notation, let us write
ζ(a, k) = z(a), and for i ≥ 0, f i

az(a) = zi(a). When no ambiguity arises, we drop a from
notation and write fa = f , zi(a) = zi.

Step1(i = k0 + 1). (a) for i = k0 + 1 follows from Lemma 6.4.

Proof of (b). It suffices to show the next

Sublemma 6.3. For i = k0, k0 + 1 and all a ∈ In(â), ‖z̈i‖ ≤ 10−3‖żi‖3.

Proof. We have żi = Df(zi−1)żi−1 + ψ(zi−1), where ψ(z) =
∂(fãz)

∂ã (a). Using this inductively,

(59) żi = Df i−1(z1)ż1 +
i−1∑

s=1

Df i−s−1(zs+1)ψ(zs).

For each 0 ≤ s < i − 1, using
∏i−1

j=s+1 ‖Df(zj)‖ ≈ ‖Df i−s−1(zs+1)‖ ≈ ‖wi(ζ)‖/‖ws+1(ζ)‖
because of i ∈ {k0, k0 + 1},

∥∥∥∥
d

da
Df i−s−1(zs+1)

∥∥∥∥ ≤ ‖Df i−s−1(zs+1)‖
i−1∑

j=s+1

C + C‖żj‖
‖Df(zj)‖

≤ C
‖wi(ζ)‖
‖ws+1(ζ)‖

i−1∑

j=s+1

‖wj(ζ)‖.

From ‖żi‖ ≥ C‖wi(ζ)‖ in Lemma 6.4, we have

1

‖żi‖2

∥∥∥∥
d

da
Df i−s−1(zs+1)

∥∥∥∥ ≤ C

‖ws+1(ζ)‖

i−1∑

j=s+1

‖wj(ζ)‖
‖wi(ζ)‖

≤ C.

Using this for s = 0 and the uniform boundedness of ‖ż1‖, ‖z̈1‖ from Proposition 4.2,

1

‖żi‖2

(∥∥∥∥
d

da
Df i−1(z1)

∥∥∥∥ ‖ż1‖+ ‖Df i−1(z1)‖‖z̈1‖
)

≤ Cκ−10 log(1/δ)
0 .

On the other hand, for each 1 ≤ s ≤ i− 1 we have
∥∥∥∥
d

da
ψ(zs)

∥∥∥∥ ≤ C‖żs‖ ≤ C‖ws(ζ)‖.

Hence

1

‖żi‖2

∥∥∥∥Df i−s−1(zs+1) ·
d

da
ψ(zs)

∥∥∥∥ ≤ C‖ws(ζ)‖
‖wi(ζ)‖‖ws+1(ζ)‖

≤ C.

Differentiating (59) and substituting these estimates yields

‖z̈i‖
‖żi‖3

≤ C

‖żi‖

(
κ−10 log(1/δ)
0 + i

)
≤ 10−3.

The last inequality holds for sufficiently large k0. !
Proof of (c) for i = k0 + 1. Let j ≥ k0 and let Aj denote the curvature of γj at zj. Let

A′
j+1 =

‖Df(zj)żj × z̈j+1‖
‖z̈j+1‖3

, A′′
j+1 =

‖ψ(zj)× z̈j+1‖
‖z̈j+1‖3

,

Note that Aj+1 ≤ A′
j+1 + A′′

j+1.
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Sublemma 6.4. For every j ≥ k0,

A′
j+1 ≤ Cb

‖żj‖3

‖żj+1‖3
(
A′

j + A′′
j + 1

)
.

Proof. Write F (a, z) = faz. Differentiating zj+1 = F (a, zj) twice and then substituting the
result into the definition of A′

j+1, we have A′
j+1 ≤ I + II + III, where

I = ‖żj+1‖−3 ‖Df(zj)żj × (∂zaF żj + ∂aaF )‖ ,
II = ‖żj+1‖−3

∥∥Df(zj)żj ×
(
D2f(żj) + ∂azF

)
żj
∥∥ ,

III = ‖żj+1‖−3 ‖Df(zj)żj ×Df(zj)z̈j‖ .

All the partial derivatives are taken at (a, zj). The D2f(żj) in II is defined as follows. Let
Df(zj) =

(
f11 f12
f21 f22

)
, ∇ = ∂x + ∂y, and

D2f(żj) =

(
〈∇f11, żj〉 〈∇f12, żj〉
〈∇f21, żj〉 〈∇f22, żj〉

)
,

where 〈·, ·〉 denotes the scholar product.
The second components of the vectors involved in the product in I has a factor b. Hence

I ≤ Cb
‖żj‖2 + ‖żj‖

‖żj+1‖3
≤ b

‖żj‖3

‖żj+1‖3
.

For the last inequality we have used ‖żj‖ 1 1 which follows from Lemma 6.4. In the same
way,

II ≤ b
‖żj‖3

‖żj+1‖3
.

For the last term,

III ≤ Cb
‖żj‖3

‖żj+1‖3
‖żj × z̈j‖
‖żj‖3

≤ Cb
‖żj‖3

‖żj+1‖3
(A′

j + A′′
j ).

Putting these three inequalities together we obtain the desired one. !

Lemma 6.3 for i = k0 gives A′
k0 ≤ C, A′′

k0 ≤ C. Hence Sublemma 6.4 gives A′
k0+1 ≤ Cb.

Together with A′′
k0+1 ≤ 1/1000 which follows from Lemma 6.3 we obtain Ak0+1 ≤ 1/100.

Step2(j → j + p). Suppose that (a), (b), (c) hold for some j ∈ [k0 + 1, νk) such that f j
âζ is

free. If f j
âζ ∈ I(δ), then let p denote the bound period. Otherwise, let p = 1. In either of the

two cases, f j+p
â ζ is free and j + p ≤ νk.

Proof of (a) for i = j + p.

Sublemma 6.5. For all a ∈ Jνk(â, ζ),
∥∥∥∥Df p(zj)

żj
‖żj‖

− wj+p(ζ)

‖wj(ζ)‖

∥∥∥∥ ≤ 1

4
(ρj+p − ρj)

‖wj+p(ζ)‖
‖wj(ζ)‖

.
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Proof. The left hand side is ≤ I + II + III, where

I =

∥∥∥∥Df p
â (zj(â))

żj(â)

‖żj(â)‖
− wj+p(ζ)

‖wj(ζ)‖

∥∥∥∥ ,

II = ‖Df p
â (zj(a))−Df p

a (zj(a))‖ ,

III =

∥∥∥∥Df p
â (zj(a))

żj(a)

‖żj(a)‖
−Df p

â (zj(â))
żj(â)

‖żj(â)‖

∥∥∥∥ .

Recall that θj(â) is the angle made by wj(ζ) and żj(â). Then

(60) I ≤ Cθj(â)‖Df p
â (zj(â))‖+ ‖Df p

â (zj(â))−Df p
â (f

j
âζ)‖ ≤ e−

λj
4 .

To bound the first term of the right-hand-side, we have used (d) for i = j and p ≤ Cαj 0 j.

By Lemma 6.2, the second term is bounded by (Cb)
θνk
200 .

To estimate I we deal with two cases separately.

Case (i): p = 1. Since the curvature of γj is ≤ 1/100 from the inductive assumption (c),

III ≤ 1

20
|zj(â)− zj(a)|+ II.

II + III ≤ 1

20
|zj(â)− zj(a)|+ 2II ≤ 1

10
|zj(â)− zj(a)|.

By the definition of Θνk(ζ),

II + III ≤ 1

10
length(γj) ≤

1

5
‖żj(â)‖Θνk(ζ) ≤ ‖wj(ζ)‖Θνk(ζ) =

‖wj+1(ζ)‖
‖wj(ζ)‖

σ−1
j (ζ)Θνk(ζ).

Combining this with (60) we get the desired inequality.

Case (ii): p > 1. Let z denote the binding point for f j
âζ. As p 0 j we have

(61) II ≤ Cp|â− a| ≤ |zj(â)− zj(a)| ≤ C · length(γj) ≤ |z − f j
âζ|

10
9 σ−1

j (ζ)Θνk(ζ).

length(γj) ≤ |z − f j
âζ|

10
9 . It is possible to choose a horizontal curve γ̃ containing γj, on which

z lies. This allows us to use Sublemma 6.2 with ε = 1/3 to get

III ≤ ‖wj+p(ζ)‖
‖wj(ζ)‖

length(γj)
1
9 .

This and (60) yield the desired estimate. !
Sublemma 6.5 and ρj+p − ρj ≤ 1 gives

(62)

∥∥∥∥Df p(zj)
żj

‖żj‖

∥∥∥∥ ≥ 3

4

‖wj+p(ζ)‖
‖wj(ζ)‖

.

Hence

(63)

∣∣∣∣log
∥∥∥∥Df p(zj)

żj
‖żj‖

∥∥∥∥− log
‖wj+p(ζ)‖
‖wj(ζ)‖

∣∣∣∣ ≤
1

3
(ρj+p − ρj) .

Dividing the both sides of ‖żj+p −Df p(zj)żj‖ ≤ Cp by ‖żj‖ ≈ ‖wj(ζ)‖ and then using p 0 j,

(64)

∣∣∣∣
‖żj+p‖
‖żj‖

−
∥∥∥∥Df p(zj)

żj
‖żj‖

∥∥∥∥

∣∣∣∣ ≤ ‖wj(ζ)‖−1/2.
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This and (62) together imply

(65)
‖żj+p‖
‖żj‖

≥ 3

4

‖wj+p(ζ)‖
‖wj(ζ)‖

− ‖wj(ζ)‖−
1
2 ≥ 1

2

‖wj+p(ζ)‖
‖wj(ζ)‖

.

This implies
∣∣∣∣log

∥∥∥∥Df p(zj)
żj

‖żj‖

∥∥∥∥− log
‖żj+p‖
‖żj‖

∣∣∣∣ ≤ 2‖wj(ζ)‖−
1
2

‖wj(ζ)‖
‖wj+p(ζ)‖

≤ 1

6
‖wj(ζ)‖−

1
2 ≤ 1

6
(ρj+p − ρj).

Hence, for all a ∈ Jνk(â, ζ),∣∣∣∣log
‖żj+p(a)‖
‖żj(a)‖

− log
‖wj+p(ζ)‖
‖wj(ζ)‖

∣∣∣∣ ≤
1

2
(ρj+p − ρj) .

This yields ∣∣∣∣log
‖żj+p(a)‖
‖żj+p(â)‖

− log
‖żj(a)‖
‖żj(â)‖

∣∣∣∣ ≤ ρj+p − ρj.

This and the assumption
∣∣∣log ‖żj(a)‖

‖żj(â)‖

∣∣∣ ≤ ρj yield
∣∣∣log ‖żj+p(a)‖

‖żj+p(â)‖

∣∣∣ ≤ ρj+p. This proves the first half

of (a) for i = j + p.

For every free return time i < j, (64) implies ‖żj‖ ≥ e
λ
4 (j−i)‖żi‖, and thus length(γj) ≥

e
λ
4 (j−i)length(γi). This yields

∑

i≤j
free return

length(γi)
1
10 ≤ length(γj)

1
10

∑

i≤j

e−
λ
40 (j−i),

which implies ρj+p ≤ 1. This proves the second half of (a) for i = j + p.

Proof of (b) for i = j + p. For every k0 ≤ i ≤ j we have

‖z̈i‖ ≤ (Cδ)−3(j−i)‖żj‖3 ≤ (Cδ)−3(j−i+1)‖żj+p‖3 ≤ (Cδ)−3(j+p−i)‖żj+p‖3,

where we have used: (b) for the previous step for the first inequality; ‖żj‖ ≤ (Cδ)−1‖żj+p‖
for the second inequality. Hence, it suffices to show for j + 1 ≤ i ≤ j + p,

(66) ‖z̈i‖ ≤ ‖żj+p‖3.
Write G(a, z) = f i−j

a z. Let ∂zG = ( g11 g12
g21 g22 ), ∇ = ∂x + ∂y, and define

∂zzG(·) =
(
〈∇g11, ·〉 〈∇g12, ·〉
〈∇g21, ·〉 〈∇g22, ·〉

)
,

where 〈·, ·〉 denotes the scholar product. Differentiating zi = G(a, zj) gives

z̈i = ∂zaGżj + ∂aaG+ (∂zzG(żj) + ∂a (∂zG)) żj + ∂zGz̈j,

where all the partial derivatives are taken at (a, zj). We have:

‖∂zaG‖ ≤ Cp, ‖∂aaG‖ ≤ Cp, ‖∂a (∂zG)‖ ≤ Cp, ‖∂zzG(żj)‖ ≤ Cp‖żj‖;

‖∂zG‖ ≤ C|z − f j
âζ|

−1‖wj+p(ζ)‖
‖wj(ζ)‖

if p > 1;

‖∂zG‖ ≤ C if p = 1.
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We first treat the case p > 1. Using the above estimates and ‖z̈j‖ ≤ ‖żj‖3 ≤ C‖wj(ζ)‖3 from
the assumption of the induction,

‖z̈i‖ ≤ Cp‖żj‖2 + C|z − f j
âζ|

−1‖wj+p(ζ)‖
‖wj(ζ)‖

‖z̈j‖

≤ Cp‖wj(ζ)‖2 + C|z − f j
âζ|

−1‖wj+p(ζ)‖‖wj(ζ)‖2.
On the first term of the right-hand-side, p 0 j gives

Cp‖wj(ζ)‖2 ≤
1

10
‖wj+p(ζ)‖3.

On the second term, (e) Proposition 2.1 gives

|z − f j
âζ|

−1‖wj+p(ζ)‖‖wj(ζ)‖2 = |z − f j
âζ|

−1‖wj+p(ζ)‖3
‖wj(ζ)‖2

‖wj+p(ζ)‖2

≤ |z − f j
âζ|

1
3‖wj+p(ζ)‖3 ≤ δ

1
3‖wj+p(ζ)‖3.

Plugging these into the right-hand-side yields (66). In the case p = 1, use the alternative
estimate of ‖∂zG‖.
Proof of (c) for i = j + p. Using Sublemma 6.4 inductively,

A′
j+p ≤(Cb)j+p−k0

‖żk0‖3

‖żj+p‖3
· A′

k0 +
j+p−k0∑

i=1

(Cb)i
‖żj+p−i‖3

‖żj+p‖3
(
A′′

j+p−i + C
)
.

Lemma 6.4 gives
‖żk0‖
‖żj+p‖

≤ C
‖wk0(ζ)‖
‖wj+p(ζ)‖

≤ Cδ−1.

(b) gives
‖żj+p−i‖3

‖żj+p‖3
· A′′

j+p−i ≤ (Cδ)−i.

Plugging these into the above inequality gives A′
j+p ≤ Cb. Combining this with A′′

j+p ≤ 1
which follows from (b), we obtain Aj+p ≤ 1/100. This recovers the assumption of induction
and completes the proof of Lemma 6.6. !

Appendix: computational proofs

A.1. Proof of Lemma 2.2. We regard γ as a graph of a function γ0 and write z = (x, γ0(x)).

Let e = ( e1
e2 ) and S =

(
1 e1
0 e2

)−1
. Let R(x) denote the rotation matrix by the angle made by t(z)

and ( 1
0 ), which we denote by θ(x). Then A(z), B(z) are equal to the (1, 1), (2, 1) entries of the

matrix S ·Df(z) ·R(x)−1 correspondingly. Write S =
(
1+ε1 ε2
ε3 1+ε4

)
and Df(z) =

(
g′a(x)+α1 α2

α3 α4

)
.

A direct computation gives

A(z) = (1 + ε1)(g
′
a(x) cos θ + α1 sin θ) + ε2(α3 cos θ + α4 sin θ),

B(z) = ε3(g
′
a(x) cos θ + α1 sin θ) + (1 + ε4)(α3 cos θ + α4 sin θ).

To evaluate A′ = dA/dx, we use |θ| ≤ 1/10, |θ′| ≤ 1/5, |εi| ≤ C
√
b, |αi| ≤ Cb (i = 1, 2, 3, 4),

and the non-degeneracy of Crit. Then |A′| ≈ 1 holds. Since A(ζ) = 0, the mean value theorem
gives the desired estimate of |A|. The estimate of |B| is straightforward from the formula. !
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A.2. Proof of Lemma 3.1. By (i) (ii), the vector fields ei (i = 1, 2, · · · ,max{m,n}) are
well-defined in a neighborhood of fγ. Let t(s) denote any unit vector tangent to γ at γ(s).
Let γ̂(s) = fγ(s). Split Dft(s) in two different ways:

A(s) ( 1
0 ) + B(s)en(γ̂(0)) = Dft(s) = A′(s) ( 1

0 ) +B′(s)em(γ̂(s)).

Let ψ(s) = angle(en(γ̂(0)), em(γ̂(s))). Comparing the two components of the vectors on both
sides,

(67) |A(s)− A′(s)| ≤ 2|B(s)|ψ(s) ≤ C
√
bψ(s),

where the second inequality follows from Lemma 2.2. From the results in Sect.2.3,

ψ(s) ≤ angle(en(γ̂(0)), en(γ̂(s))) + angle(en(γ̂(s)), em(γ̂(s))) ≤ C
√
b|s|+ (Cb)

n
3 .

This gives ψ(±b
n
4 ) ≤ Cb

n
4 , and therefore |A(±b

n
4 ) − A′(±b

n
4 )| ≤ Cb

1
2+

n
4 . Lemma 2.2 gives

|A(±b
n
4 )| ≈ b

n
4 and A(−b

n
4 )A(b

n
4 ) < 0. Then A′(−b

n
4 )A′(b

n
4 ) < 0 follows. Hence there exists

s0 ∈ [−b
n
4 , b

n
4 ] such that A′(s0) = 0. In other words, γ(s0) is a critical approximation of order

m on γ. !

A.3. Proof of Lemma 3.2. Let γ̂σ(s) = fγσ(s), σ = 1, 2. Split

Dft2(s) = A(s) ( 1
0 ) +B(s)en(γ̂1(0)).

Since γ2 is C2(b), it is possible to choose a horizontal curve which is tangent to t1(0), t2(ε
n
2 ),

t2(−ε
n
2 ). Lemma 2.2 applied to this curve implies A(ε

n
2 )A(−εn

2 ) < 0. Hence, A(s0) = 0 holds
for some s0. Since γ2 is a horizontal curve, the uniqueness of such s0 follows from Lemma 2.2.

By (i) (ii), the contractive fields e1, · · · , en are well-defined in a neighborhood of f(γ2). Split

Dft2(s) = A′(s) ( 1
0 ) +B′(s)en(γ̂2(s)).

Let ψ(s) = angle(en(γ̂1(0)), en(γ̂2(s))). Comparing the components of the above two equalities,

(68) |A(s)− A′(s)| ≤ 2|B(s)|ψ(s) ≤ C
√
bψ(s),

where the last inequality follows from Lemma 2.2. By the results in Sect.2.3,

ψ(s) ≤ angle(en(γ̂1(0)), en(γ̂1(s))) + angle(en(γ̂1(s)), en(γ̂2(s)))

≤ C
√
b|s|+ C

√
b(|s|+ εn).

To estimate the second term of the right-hand-side of the first inequality we have used

|γ̂1(s)− γ̂2(s)| ≤ |γ̂1(s)− γ̂1(0)|+ |γ̂1(0)− γ̂2(0)|+ |γ̂2(0)− γ̂2(s)| ≤ C|s|+ Cεn,

which follows from (iii). Then ψ(±εn
2 ) ≤ C

√
bε

n
2 , and hence |A(±εn

2 ) − A′(±εn
2 )| 0 εn/2

follows. Lemma 2.2 gives |A(±εn
2 )| ≈ ε

n
2 , and therefore A′(−εn

2 )A′(ε
n
2 ) < 0 follows. Hence

A′(s0) = 0 holds for some s0 ∈ [−εn
2 , ε

n
2 ]. !

A.4. Proof of Lemma 3.3. Let Ĥ = {µ̂1 < µ̂2 < · · · < µ̂ŝ} denote any sequence of integers
in [0,m] with the following properties:

(i) µ̂1 < m/2 and µ̂s ≥ m− log(1/δ);

(ii) ‖Df µ̂i+jv‖ ≥ κ
j
4
0 ‖Df µ̂iv‖ for 1 ≤ j ≤ m− µ̂i;

(iii) 4(m− µ̂i) ≥ m− µ̂i−1.
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We finish the proof of the lemma assuming the existence of such a sequence. Define a
subsequence H of Ĥ inductively as follows. Let µ̂ŝ ∈ H. If µ̂j ∈ H, let ψ(j) < j denote
the largest such that 4(m − µ̂j) ≥ m − µ̂ψ(j). Let µ̂j−1, · · · , µ̂ψ(j) /∈ H. Unless ψ(j) = 1, let
µ̂ψ(j)−1 ∈ H.

Write H = {µ1 < µ2 < · · · < µs}. By definition, µs ≥ m− log(1/δ), 4(m− µ1) ≥ m/2 and
4(m − µi+1) < m − µi. To finish, we prove the lower estimate in (b). Let µi+1 = µ̂j. Then
µi = µ̂ψ(j)−1, and

m− µi+1 = m− µ̂j ≥ (1/4)(m− µ̂ψ(j)) ≥ (1/16)(m− µ̂ψ(j)−1) ≥ (1/16)(m− µi).

To prove the existence of such a sequence, we borrow an argument in the proof of [[22],
Claim 5.1]].

Sublemma 6.6. For each i ∈ [log(1/δ),m] there exists i′ ∈ [m − i,m − [i/2]] such that

‖Df i′+jv‖ ≥ κ
j
4
0 ‖Df i′v‖ holds for 1 ≤ j ≤ m− i′.

Proof. Let G denote the graph of the function k ∈ [0,m] → log ‖Dfkv‖. Let L denote the
infinite line through the point (m, log ‖Dfmv‖) with slope logC0. All points of G lies above
L. Let P denote the point of intersection between L and the vertical line {x = m− [i/2]}. Let
L be pivoted at P and rotate it clockwise until it hits G. Let i′ be such that (i′, log ‖Df i′v‖)
belongs to the set of points of the first hit. We clearly have i′ ∈ [m− i,m− [i/2]]. The slope
of the rotated L in its final position is bigger than

log(1/C0) + (m− i′)−1 log
‖Dfmv‖
‖Df i′v‖ ≥ 1

4
log κ0,

where we have used m − i′ ≥ i ≥ log(1/δ) and ‖Dfmv‖ ≥ (r0δ/10) · ‖Df i′v‖ for the first
inequality. Since G lies above L in its final position, the desired inequality holds. !

Consider the maximal monotone decreasing sequence in {i′}log(1/δ)≤i≤m. By Sublemma 6.6
and m ≥ 3 log(1/δ), it contains multiple integers and satisfies (i) (ii). It also satisfies (iii), by
the next

Sublemma 6.7. If i′ < j′ and k′ /∈ (i′, j′) for every k ∈ [log(1/δ),m], then 4(m−j′) ≥ m− i′.

Proof. We have i′ ≤ m− [i/2] ≤ [i/2]′. Hence j′ ≤ [i/2]′ ≤ m− i/4, and thus 4(m− j′) ≥ i.
We also have i ≥ m− i′. !
A.5. Proof of Lemma 6.4. We adapt the proof of [[22] Proposition 6.1] to our setting. We
have żi = Df(zi−1)żi−1 + ψ(zi−1), where ψ(z) =

∂(faz)
∂a (â). Using this inductively,

żi = Df i−1(z1)ż1 +
i−1∑

s=1

Df i−s−1(zs+1)ψ(zs).

Sublemma 6.8. For each i ∈ [k0, νk] we have

‖Df i−s(f sζ)‖ ≤ e−λs/2‖wi(ζ)‖ for 0 ≤ s ≤ i.

By the sublemma and the uniform boundedness of ż1 from Proposition 4.2,

‖żi‖
‖wi(ζ)‖

≤ C
∞∑

s=0

e−λs/2 ≤ C.
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Hence the second inequality holds.

To prove the first inequality, split żi = I + II, where

I = Df i−1(z1)ż1 +
k0∑

s=1

Df i−s−1(zs+1)ψ(zs),

II =
i−1∑

s=k0+1

Df i−s−1(zs+1)ψ(zs).

Write
I = Df i−k0(zk0)V,

where

V = Dfk0−1(z1)ż1 +
k0−1∑

s=1

Dfk0−s−1(zs+1)ψ(zs).

Sublemma 6.9. There exists C > 0 such that ‖V ‖ ≥ C‖wk0(ζ)‖.

Proof. Let x0 ∈ Crit be such that (x0, 0) and ζ belong to the same component of I(δ). Let xi =
gia∗x0. As (a, b) → (a∗, 0) we have z1 → (x1, 0), ‖wk0(ζ)‖ → ±(gk0−1

a∗ )′x1, ż1 →
(
dx1
da (a

∗), 0
)
.

The last convergence is because of ż1 = Df(z0)ż0 +ψ(z0) and the uniform boundedness of ż0.
Hence

1

‖wk0(ζ)‖
Dfk0−1(z1)ż1 →

(
±dx1

da
(a∗), 0

)
.

We also have ψ(zs) → ∂g
∂a(a

∗, xs), where g(a, x) = gax. Hence

1

‖wk0(ζ)‖

k0−1∑

s=1

Dfk0−s−1(zs+1)ψ(zs) →
(
±

k0−1∑

s=1

∂g
∂a(a

∗, xs)

(gsa∗)′x1
, 0

)
,

and therefore
1

‖wk0(ζ)‖
V →

(
±

k0−1∑

s=0

∂g
∂a(a

∗, xs)

(gsa∗)′x1
, 0

)
= (±Qk0(x0), 0).

To get the equality, differentiate xk0(a) = g(a, xk0−1(a)), divide the result by (gk0−1
a )′x1 =

g′axk0−1 · · · g′ax1 and use the result inductively. By (55), the claim holds. !
Sublemma 6.8 gives

‖II‖
‖wi(ζ)‖

≤ C
i∑

s=k0+1

e−λs/2.

Taking k0 sufficiently large and then taking (a, b) close to (a∗, 0), we obtain

‖I‖ ≥ C‖Df i−k0(zk0)‖‖V ‖ ≥ C‖Df i−k0(zk0)‖ · ‖wk0(ζ)‖ ≥ C‖wi(ζ)‖ 1 ‖II‖.
This proves the first inequality.

Proof of Sublemma 6.8. Let qt denote the bound period of a free return t ≤ i, and let
It = [t− qt, t+ qt].

Claim 6.2. For each s /∈ ∪tIt, ‖ws+j(ζ)‖ ≥ δmin
(
c, C−j

0

)
‖ws(ζ)‖ for 1 ≤ j ≤ i− s.
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Proof. If s + j is free, then, as s is free, (36) and Lemma 2.1 give ‖ws+j(ζ)‖ ≥ cδ‖ws(ζ)‖. If
s + j ∈ (r, r + qr) for some free return r, then r − s ≤ j. Since s /∈ Ir, s < r − qr holds, and
hence qr ≤ j. It follows that ‖wr+qr(ζ)‖ ≥ ‖wr(ζ)‖ and ‖wr(ζ)‖ ≥ cδ‖ws(ζ)‖, and therefore

‖ws+j(ζ)‖ ≥ C−(r+qr−s−j)
0 ‖wr+qr(ζ)‖ ≥ C−qr

0 ‖wr+qr(ζ)‖ ≥ δC−j
0 ‖ws(ζ)‖. !

Returning to the proof of Sublemma 6.8, we argue with subdivision into cases.

Case I: s /∈ ∪tIt. By the claim, ej(zs) is well-defined for 1 ≤ j ≤ i − s. Since s is free,
slope(ws(ζ)) ≤

√
b holds. Hence we obtain

‖Df i−s(f sζ)‖ ≤ C
‖wi(ζ)‖
‖ws(ζ)‖

≤ Ce−λs‖wi(ζ)‖.

Case II: s ∈ ∪tIt. Let r0 denote the last free return such that s ∈ Ir0 . Condition (G) gives
qr0 ≤ 3αr0/λ, and hence (1− 3α/λ)r0 ≤ r0 − qr0 ≤ s. We get qr0 ≤ Cαs.

Case II-a: i ∈ Ir0. Since i− s ≤ qr0 , ‖Df i−s(f sζ)‖ ≤ C
qr0
0 ≤ e−λs/2‖wi(ζ)‖.

Case II-b: i /∈ Ir0 and i−s ≤ 3αi/λ. We have ‖Df i−s(f sζ)‖ ≤ C10αi
0 ≤ C10αs

0 ≤ e−λs/2‖wi(ζ)‖.

Case II-c: i /∈ Ir0 and i − s > 3αi/λ. Define a strictly increasing sequence s0 < s1 < · · · of
integers inductively as follows: Start with s0 := s. Given sk, let rk denote the last free return
such that sk ∈ Irk . Put sk+1 = rk + qrk . If sk /∈ ∪It, then sk+1 is undefined. By definition,
sk+1 − sk ≤ 2qrk holds.

Suppose that s2 ≥ i holds for some #. Then 2
∑2−1

k=0 qrk ≥ s2 − s0 ≥ i− s0 > 3αi/λ. On the
other hand, (G) gives

∑2−1
k=0 qrk ≤ 3αi/λ. We reach a contradiction. Hence, for the largest

integer in the sequence, denoted by s2, s2 /∈ ∪It and s2 < i hold. Then the estimate in Case I
gives ‖Df i−s)(f s)ζ)‖ ≤ Ce−λs)‖wi(ζ)‖, and

‖Df i−s(f sζ)‖ ≤ ‖Df i−s)(f s)ζ)‖
2−1∏

k=0

‖Df sk+1−sk(f skζ)‖

≤ e−λs)‖wi(ζ)‖C
2
∑)−1

k=0 qk
0 ≤ e−

λs
2 ‖wi(ζ)‖.

This completes the proof of Sublemma 6.8.

A.6. Proof of Lemma 6.5. Since ‖żj × wj(ζ)‖ = ‖żj‖‖wj(ζ)‖ sin θj,

sin θj ≤
1

‖żj‖

(
j∑

s=1

1

‖wj(ζ)‖
‖wj(ζ)×Df j−s(zs)ψ(zs−1)‖+

‖wj(ζ)×Df j(z0)ż0‖
‖wj(ζ)‖

)

≤ 1

‖żj‖

(
j∑

s=1

‖ws(ζ)‖
‖wj(ζ)‖

∥∥∥∥
ws(ζ)

‖ws(ζ)‖
× ψ(zs−1)

∥∥∥∥ (Cb)j−s +
‖ż0‖

‖wj(ζ)‖
(Cb)j

)

≤ C

δ‖żj‖

∞∑

s=0

(Cb)s +
‖ż0‖

‖żj‖‖wj(ζ)‖
(Cb)j ≤ C

δ‖żj‖
,

where the third inequality follows from ‖wj(ζ)‖ ≥ Cδ‖ws(ζ)‖. For the last inequality we have
used the boundedness of ‖ż0‖ in Proposition 4.2 and that k0 is a large integer.
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