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INJECTIVITY THEOREM II

OSAMU FUJINO

Abstract. We treat a relative version of the main theorem in
[F1]: A transcendental approach to Kollár’s injectivity theorem.
More explicitly, we give a curvature condition that implies Kollár
type cohomology injectivity theorems in the relative setting. To
carry out this generalization, we use Ohsawa–Takegoshi’s twisted
version of Nakano’s identity.
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1. Introduction

The following theorem is the main theorem of this paper, which is a
relative version of the main theorem in [F1]. It is a generalization of
Kollár’s injectivity theorem (cf. [K1, Theorem 2.2]). More precisely, it
is a generalization of Enoki’s injectivity theorem, which is an analytic
version of Kollár’s theorem (see [En, Theorem 0.2] and [F1, Corollary
1.4]). We note that Kollár’s proofs and Esnault–Viehweg’s approach
are geometric (cf. [K1], [K2, Chapters 9 and 10], and [EV]) and are not
related to curvature conditions. Therefore, we do not know the true
relationship between Kollár’s injectivity theorem and Enoki’s one.
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Theorem 1.1 (Main Theorem). Let f : X → Y be a proper surjective
morphism from a Kähler manifold X to a complex variety Y . Let
(E, hE) (resp. (L, hL)) be a holomorphic vector (resp. line) bundle on X
with a smooth hermitian metric hE (resp. hL). Let F be a holomorphic
line bundle on X with a singular hermitian metric hF . Assume the
following conditions.

(i) There exists a subvariety Z of X such that hF is smooth on
X \ Z.

(ii)
√
−1Θ(F ) ≥ −γ̃ in the sense of currents, where γ̃ is a smooth

(1, 1)-form on X.
(iii)

√
−1(Θ(E) + IdE ⊗Θ(F )) ≥Nak 0 on X \ Z.

(iv)
√
−1(Θ(E) + IdE ⊗Θ(F )− ε0IdE ⊗Θ(L)) ≥Nak 0 on X \Z for

some positive constant ε0.

Here, ≥Nak 0 means the Nakano semi-positivity. Let s be a nonzero
holomorphic section of L. Then the multiplication homomorphism

×s : Rqf∗(KX ⊗E ⊗ F ⊗ J (hF )) → Rqf∗(KX ⊗ E ⊗ F ⊗ J (hF )⊗ L)

is injective for every q ≥ 0, where KX is the canonical line bundle of
X and J (hF ) is the multiplier ideal sheaf associated to the singular
hermitian metric hF of F . Note that ×s is the sheaf homomorphism
induced by the tensor product with s.

We note that Theorem 1.1 will be generalized slightly in Proposition
4.1 below. For the absolute case and the background of Kollár type
cohomology injectivity theorems, see the introduction of [F1]. The
reader who reads Japanese may find [F2] also useful. The essential part
of Theorem 1.1 is contained in Ohsawa’s injectivity theorem (see [O]).
Our formulation is much more suitable for geometric applications than
Ohsawa’s (cf. [F1, 4. Applications]). We note that the main ingredient
of our proof is Ohsawa–Takegoshi’s twisted version of Nakano’s identity
(cf. Proposition 2.20).

The next corollary directly follows from Theorem 1.1. It contains a
generalization of the Grauert–Riemenschneider vanishing theorem.

Corollary 1.2 (Torsion-freeness). Let f : X → Y be a proper sur-
jective morphism from a Kähler manifold X to a complex variety Y .
Let (E, hE) (resp. (F, hF )) be a holomorphic vector (resp. line) bundle
on X with a smooth hermitian metric hE (resp. a singular hermitian
metric hF ). Assume the conditions (i), (ii), and (iii) in Theorem 1.1.
Then, Rqf∗(KX ⊗ E ⊗ F ⊗ J (hF )) is torsion-free for every q ≥ 0. In
particular, Rqf∗(KX ⊗ E ⊗ F ⊗ J (hF )) = 0 for q > dim X − dim Y .
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We will describe the proof of Theorem 1.1 in Section 3, which may
help the reader to understand [O].

From now on, we discuss various vanishing theorems as applications
of Theorem 1.1.

Corollary 1.3 (Kawamata–Viehweg–Nadel type vanishing theorem).
Let f : X → Y be a proper surjective morphism from a complex mani-
fold X to a complex variety Y . Let E be a Nakano semi-positive vector
bundle on X and let L be a holomorphic line bundle on X such that
L⊗m 'M ⊗OX(D) where m is a positive integer, M is an f -nef-big
line bundle, and D is an effective Cartier divisor on X. Then

Rqf∗(KX ⊗E ⊗ L⊗ J ) = 0

for every q > 0 where J = J ( 1
m

D) is the multiplier ideal sheaf associ-

ated to 1
m

D.

In the log minimal model program for projective morphisms between
complex varieties, the Kawamata–Viehweg vanishing theorem plays
crucial roles. It was first obtained by Nakayama (cf. [N1, Theorem
3.7]).

Corollary 1.4 (Kawamata–Viehweg vanishing theorem for proper mor-
phisms). Let f : X → Y be a proper surjective morphism from a
complex manifold X to a complex variety Y . Let H be a Q-Cartier
Q-divisor on X such that Supp{H} is a normal crossing divisor on X
and that OX(mH) is an f -nef-big line bundle for some positive integer
m. Then

Rqf∗(KX ⊗OX(!H")) = 0

for every q > 0.

We can also prove a Kollár type vanishing theorem from Theorem
1.1. The proof of Corollary 1.5 is a routine work for experts.

Corollary 1.5 (Kollár type vanishing theorem). Let f : X → Y be
a proper surjective morphism from a Kähler manifold X to a complex
variety Y . Let g : Y → Z be a proper morphism between complex
varieties. Let E be a Nakano semi-positive vector bundle on X such
that L⊗m ' f ∗N ⊗OX(D) where m is a positive integer, N is a g-nef-
big line bundle, and D is an effective Cartier divisor on X. Then

Rpg∗R
qf∗(KX ⊗ E ⊗ L⊗ J ) = 0

for every p > 0 and every q ≥ 0 where J = J ( 1
m

D) in the multiplier

ideal sheaf associated to 1
m

D.
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All the statements in the introduction may look complicated. So it
seems to be worth mentioning that the following well-known vanish-
ing theorems easily follow from the main theorem: Theorem 1.1. The
proofs of Corollary 1.6 and Corollary 1.7 explain one of the reasons
why we think that injectivity theorems are generalizations of vanishing
theorems (cf. [F3], [F4]) and that the formulation of Theorem 1.1 is
useful for various applications.

Corollary 1.6 (Nakano vanishing theorem (cf. [D2, (4.9)])). Let X
be a compact complex manifold and let E be a Nakano positive vector
bundle on X. Then Hq(X, KX ⊗ E) = 0 for every q > 0.

Proof. Since E is Nakano positive, L = det E is a positive line bundle.
Therefore, X is projective and L is ample by Kodaira’s embedding
theorem. If ε is a small positive number, then

√
−1(Θ(E)− εIdE ⊗Θ(L)) ≥Nak 0.

Thus, by using Theorem 1.1, Hq(X, KX ⊗ E) can be embedded into
Hq(X, KX ⊗ E ⊗ L⊗m) for sufficiently large positive integer m. By
Serre’s vanishing theorem, Hq(X, KX ⊗ E) = 0 for every q > 0. #

Corollary 1.7 (Kawamata–Viehweg vanishing theorem). Let X be a
smooth projective variety and let L be a nef and big line bundle on X.
Then Hq(X, KX ⊗ L) = 0 for every q > 0.

Proof. By Kodaira’s lemma, we can write L⊗m ' A ⊗ OX(D) such
that m is a positive integer, A is an ample line bundle, and D is an
effective Cartier divisor on X with J ( 1

m
D) = OX . Let hD be the

singular hermitian metric of OX(D) naturally associated to D (cf. [F1,
Example 2.3]) and let hA be a smooth hermitian metric of A whose

curvature is positive. We put hL = h
1
m
A h

1
m
D . Then

√
−1Θ(L) ≥ 0 in the

sense of currents, hL is smooth on X \D, and
√
−1(Θ(L)−εΘ(A)) ≥ 0

on X\D for 0 < ε( 1. Therefore, we have inclusions Hq(X, KX⊗L) ⊂
Hq(X, KX ⊗ L ⊗ A⊗l) for every q and every sufficiently large positive
integer l by Theorem 1.1. Thus Hq(X, KX ⊗L) = 0 for every q > 0 by
Serre’s vanishing theorem. #

For related topics, see [N1, §3], [N2, II. §5.c, V. §3], and [T]. We
think that one of the most important open problems on vanishing the-
orems for the log minimal model program is to prove the results in [F6,
Sections 6 and 8] and [F7, Chapter 2] for projective morphisms between
complex varieties. We can not directly use the arguments in this paper
because the L2-method does not work for log canonical pairs. We note
that the arguments in [F5], [F6], and [F7] are geometric.
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We summarize the contents of this paper. In Section 2, we col-
lect basic definitions and results in the algebraic and analytic geome-
tries. In this section, we discuss Ohsawa–Takegoshi’s twisted version
of Nakano’s identity. It is a key ingredient of the proof of the main
theorem: Theorem 1.1. Section 3 is devoted to the proof of the main
theorem: Theorem 1.1. In Section 4, we discuss the proofs of the corol-
laries in Section 1 and some applications. In the final section: Section
5, we discuss various examples of nef, semi-positive, and semi-ample
line bundles. It is very important to understand the differences in the
notion of semi-ample, semi-positive, and nef line bundles.

Acknowledgments. The first version of this paper was written in
Nagoya in 2006. He was partially supported by The Sumitomo Foun-
dation and by the Grant-in-Aid for Young Scientists (A) #17684001
from JSPS when he prepared the first version. He thanks Professor
Takeo Ohsawa for giving him a preliminary version of [O]. He revised
this paper in Kyoto in 2011. He was partially supported by The In-
amori Foundation and by the Grant-in-Aid for Young Scientists (A)
#20684001 from JSPS. Finally, he thanks the referees for many useful
comments.

2. Preliminaries

In this section, we collect basic definitions and results in the algebraic
and analytic geometries.

2.1 (Projective morphisms). For details of projective morphisms of
complex varieties and ample line bundles, see, for example, [N1, §1]
and [N2, II. 1.10. Definition, Remark].

2.2 (Big line bundles). In this paper, we will freely use Iitaka’s D-
dimension κ, the numerical D-dimension ν, and so on, for algebraic
varieties.

Let us recall the definition of f -nef-big line bundles for proper mor-
phisms between complex varieties, which we need in corollaries in Sec-
tion 1.

Definition 2.3 (cf. [N1, Definition]). Let f : X → Y be a proper
surjective morphism from a complex variety X onto a complex variety
Y . Let L be a line bundle on X. Then L is called f -big if the relative
Iitaka D-dimension κ(X/Y, L) = dimX − dim Y . Furthermore, if L ·
C ≥ 0 for every irreducible curve C such that f(C) is a point, then L
is called f -nef-big.
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2.4 (Q-divisors). Let D =
∑

i diDi be a Q-divisor on a normal complex
variety X where Di is a prime divisor for every i and Di *= Dj for i *= j.
Then we define the round-up !D" =

∑
i!di"Di (resp. the round-down

$D% =
∑

i$di%Di), where for every real number x, !x" (resp. $x%) is
the integer defined by x ≤ !x" < x + 1 (resp. x − 1 < $x% ≤ x). The
fractional part {D} of D denotes D − $D%.

2.5 (Singular hermitian metric). Let L be a holomorphic line bundle
on a complex manifold X.

Definition 2.6 (Singular hermitian metric). A singular hermitian met-
ric on L is a metric which is given in any trivialization θ : L|Ω ' Ω×C
by

‖ξ‖ = |θ(ξ)|e−ϕ(x), x ∈ Ω, ξ ∈ Lx,

where ϕ ∈ L1
loc(Ω) is an arbitrary function, called the weight of the

metric with respect to the trivialization θ. Here, L1
loc(Ω) is the space

of the locally integrable functions on Ω.

2.7 (Multiplier ideal sheaf). The notion of multiplier ideal sheaves
introduced by Nadel is very important. First, we recall the notion of
(quasi-)plurisubharmonic functions.

Definition 2.8 (Plurisubharmonic function). Let X be a complex
manifold. A function ϕ : X → [−∞,∞) is said to be plurisubhar-
monic (psh, for short) if, on each connected component of X,

1. ϕ is upper semi-continuous, and
2. ϕ is locally integrable and

√
−1∂∂̄ϕ is positive semi-definite as

a (1, 1)-current,

or ϕ ≡ −∞. A smooth strictly plurisubharmonic function ψ on X is a
smooth function on X such that

√
−1∂∂̄ψ is a positive definite smooth

(1, 1)-form.

Definition 2.9. A quasi-plurisubharmonic (quasi-psh, for short) func-
tion is a function ϕ which is locally equal to the sum of a psh function
and of a smooth function.

Next, we define multiplier ideal sheaves.

Definition 2.10 (Multiplier ideal sheaf). If ϕ is a quasi-psh function
on a complex manifold X, the multiplier ideal sheaf J (ϕ) ⊂ OX is
defined by

Γ(U,J (ϕ)) = {f ∈ OX(U); |f |2e−2ϕ ∈ L1
loc(U)}

for every open set U ⊂ X. Then it is known that J (ϕ) is a coherent
ideal sheaf of OX . See, for example, [D2, (5.7) Proposition].
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Finally, we note the definition of J (hF ) in Theorem 1.1.

Remark 2.11. By the assumption (ii) in Theorem 1.1, the weight
of the singular hermitian metric hF is a quasi-psh function on any
trivialization. So, we can define multiplier ideal sheaves locally and
check that they are independent of trivializations. Thus, we can define
the multiplier ideal sheaf globally and denote it by J (hF ), which is an
abuse of notation. It is a coherent ideal sheaf on X.

2.12 (Kähler geometry). We collects the basic notion and results of
the hermitian and Kähler geometries (see also [D2]).

Definition 2.13 (Chern connection and its curvature form). Let X
be a complex hermitian manifold and let (E, h) be a holomorphic her-
mitian vector bundle on X. Then there exists the Chern connection
D = D(E,h), which can be split in a unique way as a sum of a (1, 0)
and of a (0, 1)-connection, D = D′

(E,h) + D′′
(E,h). By the definition of

the Chern connection, D′′ = D′′
(E,h) = ∂̄. We obtain the curvature form

Θ(E) = Θ(E,h) = Θh := D2
(E,h). The subscripts might be suppressed if

there is no danger of confusion.

Definition 2.14 (Inner product). Let X be an n-dimensional complex
manifold with the hermitian metric g. We denote by ω the fundamental
form of g. Let (E, h) be a hermitian vector bundle on X and let u, v
be E-valued (p, q)-forms with measurable coefficients. We set

‖u‖2 =

∫

X

|u|2dVω, 〈〈u, v〉〉 =

∫

X

〈u, v〉dVω,

where |u| is the pointwise norm induced by g and h on Λp,qT ∗
X ⊗ E,

and dVω = 1
n!ω

n. More explicitly, 〈u, v〉dVω = tu ∧ H∗v, where tu is
the transposed matrix of u, ∗ is the Hodge star operator relative to
ω, and H is the (local) matrix representation of h. When we need to
emphasize the metrics, we write |u|g,h, and so on.

Lemma 2.15 (Adjoint). Let θ ∈ Cs,t(X) where Cs,t(X) is the space of
smooth (s, t)-forms on X. Then θ∗ = (−1)(p+q)(s+t+1)∗θ̄∗ on Cp,q(X, E)
where Cp,q(X, E) is the space of smooth E-valued (p, q)-forms on X.
In particular, if θ is a 1-form, then θ∗ = ∗θ̄∗.

Proof. We take u ∈ Cp,q(X, E) and v ∈ Cp−s,q−t(X, E). Then

〈v, θ∗u〉dVω = 〈θ ∧ v, u〉dVω
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by the definition of θ∗. Let H be the local matrix representation of h.
Then we have

〈θ ∧ v, u〉dVω = t(θ ∧ v)H∗u
= (−1)(p+q−s−t)(s+t)(tv)Hθ∗u

= (−1)(p+q−s−t)(s+t)+(2n−p−q+s+t)(tv)H ∗ ∗θ̄ ∗ u

= (−1)(p+q)(s+t+1)(tv)H∗ ∗ θ̄ ∗ u.

Therefore, θ∗u = (−1)(p+q)(s+t+1) ∗ θ̄ ∗ u. #

Let Lp,q
(2)(X, E)(= Lp.q

(2)(X, (E, h))) be the space of square integrable
E-valued (p, q)-forms on X. The inner product was defined in Defi-
nition 2.14. When we emphasize the metrics, we write Lp,q

(2)(X, E)g,h,
where g (resp. h) is the hermitian metric of X (resp. E). As usual
one can view D′ and D′′ as closed and densely defined operators on
the Hilbert space Lp,q

(2)(X, E). The formal adjoints D′∗, D′′∗ also have
closed extensions in the sense of distributions, which do not necessarily
coincide with the Hilbert space adjoints in the sense of Von Neumann,
since the latter ones may have strictly smaller domains. It is well
known, however, that the domains coincide if the hermitian metric of
X is complete. See Lemma 2.16 below.

Lemma 2.16 (Density Lemma). Let X be a complex manifold with
the complete hermitian metric g and let (E, h) be a holomorphic her-
mitian vector bundle on X. Then Cp,q

0 (X, E) is dense in Dom(∂̄) ∩
Dom(D′′∗

(E,h)) with respect to the graph norm ‖v‖ + ‖∂̄v‖ + ‖D′′∗
(E,h)v‖,

where Dom(∂̄) (resp. Dom(D′′∗
(E,h))) is the domain of ∂̄ (resp. D′′∗

(E,h)).

Suppose that (E, h) is a holomorphic hermitian vector bundle and
that (eλ) is a holomorphic frame for E over some open set U . Then the
metric h is given by the r × r hermitian matrix H = (hλµ), where
hλµ = h(eλ, eµ) and r = rankE. Then we have h(u, v) = tuHv̄
on U for smooth sections u, v of E|U . This implies that h(u, v) =∑

λ,µ uλhλµv̄µ for u =
∑

eiui and v =
∑

ejvj. Then we obtain that
√
−1Θh(E) =

√
−1∂̄(H

−1
∂H) and t(

√
−1tΘh(E)H) =

√
−1tΘh(E)H

on U . Let Cp,q(X, E) (resp. Cp,q
0 (X, E)) be the space of smooth E-

valued (p, q)-forms (resp. smooth E-valued (p, q)-forms with compact
supports) on X. We define {u, v} = tu ∧ Hv̄ for u ∈ Cp,q(X, E) and
v ∈ Cr,s(X, E), where tu is the transposed matrix of u. We will use
{·, ·} in Section 3.

Definition 2.17 (Nakano positivity and semi-positivity). Let (E, h) be
a holomorphic vector bundle on a complex manifold X with a smooth
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hermitian metric h. Let Ξ be a Hom(E, E)-valued (1, 1)-form such that
t(tΞh) = tΞh. Then Ξ is said to be Nakano positive (resp. Nakano semi-
positive) if the hermitian form on TX ⊗E associated to tΞh is positive
definite (resp. semi-definite). We write Ξ >Nak 0 (resp. ≥Nak 0). We
note that Ξ1 >Nak Ξ2 (resp. Ξ1 ≥Nak Ξ2) means that Ξ1 − Ξ2 >Nak

0 (resp. ≥Nak 0). A holomorphic vector bundle (E, h) is said to be
Nakano positive (resp. semi-positive) if

√
−1Θ(E) >Nak 0 (resp. ≥Nak

0). We usually omit “Nakano”when E is a line bundle. We often simply
say that a holomorphic line bundle L is semi-positive if there exists a
smooth hermitian metric hL on L such that

√
−1Θ(L) ≥ 0.

The space of harmonic forms will play important roles in the proof
of Theorem 1.1. See also the introduction of [F1].

Definition 2.18 (Harmonic forms). Let X be an n-dimensional com-
plete Kähler manifold with a complete Kähler metric g. Let (E, hE)
be a holomorphic hermitian vector bundle on X. We put

Hp,q(X, (E, hE))g = {u ∈ Lp,q
(2)(X, E)|∂̄u = 0 and D′′∗

(E,hE)u = 0}.

Note that Hp,q(X, (E, hE))g ⊂ Cp,q(X, E) by the regularization theo-
rem for elliptic partial differential equations of second order.

2.19 (Ohsawa–Takegoshi twist). The following formula is a twisted
version of Nakano’s identity, which is now well known to the experts.

Proposition 2.20 (Ohsawa–Takegoshi twist). Let (E, h) be a holo-
morphic hermitian vector bundle on an n-dimensional Kähler mani-
fold X. Let η be any smooth positive function on X. Then, for every
u ∈ Cn,q

0 (X, E), the equality

‖√ηD′′∗
(E,h)u‖2 + ‖√η∂̄u‖2 − ‖√ηD′∗u‖2(♠)

=〈〈
√
−1(ηΘh − IdE ⊗ ∂∂̄η)Λu, u〉〉+ 2Re〈〈∂̄η ∧D′′∗

(E,h)u, u〉〉

holds true. Here, we denote by Λ the adjoint operator of ω ∧ · . Note
that D′′ = D′′

(E,h) = ∂̄ and D′∗ are independent of the hermitian metric

h.

Sketch of the proof. We quickly review the proof of this proposition for
the reader’s convenience. If A, B are the endomorphisms of pure degree
of the graded module C•,•(X, E), their graded Lie bracket is defined by

[A, B] = AB − (−1)deg A deg BBA.

Let

∆′ = D′D′∗ + D′∗D′
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and
∆′′ = D′′D′′∗ + D′′∗D′′

be the complex Laplace operators. Then it is well known that

∆′′ = ∆′ + [
√
−1Θ(E),Λ],

which is sometimes called Nakano’s identity. Let us consider the twisted
Laplace operators

D′ηD′∗ + D′∗ηD′ = η∆′ + (∂η)D′∗ − (∂η)∗D′,

and
D′′ηD′′∗ + D′′∗ηD′′ = η∆′′ + (∂̄η)D′′∗ − (∂̄η)∗D′′.

On the other hand, we can easily check that

[
√
−1∂∂̄η,Λ] = [D′′, (∂̄η)∗] + [D′∗, ∂η]

by (∂̄η)∗ = −
√
−1[∂η,Λ] and D′∗ = −

√
−1[∂̄,Λ]. Combining these

equalities, we find

D′′ηD′′∗ + D′′∗ηD′′ −D′ηD′∗ −D′∗ηD′ + [
√
−1∂∂̄η,Λ]

= η[
√
−1Θ(E),Λ] + (∂̄η)D′′∗ + D′′(∂̄η)∗ + (∂η)∗D′ + D′∗(∂η).

Apply this identity to a form u ∈ Cn,q
0 (X, E) and take the inner product

with u. Then we obtain the desired formula. #

The next proposition is [O, Lemma 2.1]. The proof is a routine work.
It easily follows from Lemmas 2.16, 2.22, and 2.23.

Proposition 2.21. Fix a complete Kähler metric g on X. We put

Dn,q = {u ∈ Ln,q
(2) (X, E) | ∂̄u ∈ Ln,q+1

(2) (X, E) and D′′∗u ∈ Ln,q−1
(2) (X, E)},

that is, Dn,q = Dom(∂̄)∩Dom(D′′∗
(E,h)) ⊂ Ln,q

(2) (X, E). Suppose that η is

bounded and that there exists a constant ε > 0 such that
√
−1(ηΘh − IdE ⊗ ∂∂̄η − εIdE ⊗ ∂η ∧ ∂̄η) ≥Nak 0

holds everywhere. Then the equality (♠) in Proposition 2.20 holds for
all u ∈ Dn,q.

Lemma 2.22. For every u ∈ Cn,q(X, E) and any positive real number
δ, we have

|2Re〈〈∂̄η ∧D′′∗
(E,h)u, u〉〉| = |2Re〈〈D′′∗

(E,h)u, (∂̄η)∗u〉〉|

≤ 1

δ
‖D′′∗

(E,h)u‖2 + δ‖(∂̄η)∗u‖2, and

‖(∂̄η)∗u‖2 = 〈〈(∂̄η)∗u, (∂̄η)∗u〉〉
= 〈〈

√
−1∂η ∧ ∂̄ηΛu, u〉〉
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since (∂̄η)∗u = −
√
−1∂ηΛu for u ∈ Cn,q(X, E). Note that (∂̄η)∗ is the

adjoint operator of ∂̄η ∧ · relative to the inner product 〈 , 〉.

By combining Proposition 2.20 with Lemma 2.22, we obtain the next
lemma.

Lemma 2.23. We use the same notation as in Proposition 2.20. As-
sume that

√
−1(ηΘh − IdE ⊗ ∂∂̄η − εIdE ⊗ ∂η ∧ ∂̄η) ≥Nak 0

holds everywhere for some positive constant ε. Then, for every u ∈
Cn,q

0 (X, E), we have

‖√ηD′∗u‖2 ≤ ‖√ηD′′∗
(E,h)u‖2 + ‖√η∂̄u‖2 +

1

ε
‖√ηD′′∗

(E,h)u‖2,

and

‖√ηD′′∗
(E,h)u‖2 + ‖√η∂̄u‖2 − ‖√ηD′∗u‖2 +

1

δ
‖√ηD′′∗

(E,h)u‖2

≥ (ε− δ)‖(∂̄η)∗u‖2

for any positive real number δ.

We close this section by the following remark on [T].

Remark 2.24. By Proposition 2.21, we can prove [T, Theorem 3.4
(ii)] under the slightly weaker assumption that ϕ is a bounded smooth
psh function on M . We do not have to assume that |dϕ| is bounded on
M . For the notations, see [T]. In this case, there are positive constants
C1 and C2 such that ϕ + C1 > 0 on M and C2 − (ϕ + C1)2 > 0 on
M . We can use Proposition 2.21 (and Lemmas 2.22, 2.23) for η :=
C2 − (ϕ + C1)2 and ε := 1

2C2
> 0. Then we obtain (∂̄ϕ)∗u = 0 and

〈
√
−1∂∂̄ϕΛu, u〉h = 0.

3. Proof of the main theorem

In this section, we prove Theorem 1.1. So, we freely use the notation
in Theorem 1.1. Let W & Y be any Stein open subset. We put
V = f−1(W ). Then V is a holomorphically convex weakly 1-complete
Kähler manifold. To prove Theorem 1.1, it is sufficient to show that

×s : Hq(V, KV ⊗E ⊗F ⊗J (hF ))→ Hq(V, KV ⊗E ⊗F ⊗J (hF )⊗L)

is injective for every q ≥ 0. Note that the above cohomology groups are
separated topological vector spaces since V is holomorphically convex
(cf. [R, Theoreme 10]).



12 OSAMU FUJINO

Remark 3.1. A weakly 1-complete manifold X is called a weakly pseu-
doconvex manifold in [D2]. A weakly 1-complete manifold is a complex
manifold equipped with a smooth plurisubharmonic exhaustion func-
tion. More explicitly, there exists a smooth plurisubharmonic function
ϕ on X such that Xc = {x ∈ X|ϕ(x) < c} is relatively compact in X
for every c.

We define bounded smooth functions from the given nonzero holo-
morphic section s of L.

Definition 3.2. Take a smooth plurisubharmonic exhaustion function
ϕ on V . Without loss of generality, we can assume that minx∈V ϕ(x) =
0. Let s be a holomorphic section of L. Let |s| be the pointwise norm
of s with respect to the fiber metric hL. Let λ : [0,∞) → [0,∞) be
a smooth convex increasing function such that 5|s|2 < eλ(ϕ). Thus,
|s|2λ(ϕ) < 1

5 < 1
4 , where |s|λ(ϕ) is the pointwise norm of s with respect

to the fiber metric hLe−λ(ϕ). We put µ(x) := λ(x) + x. Obviously, µ is
also a smooth convex increasing function.

Definition 3.3. We put χ(t) = t− log(−t) for t < 0. We define

σε,λ = log(|s|2λ(ϕ) + ε), and

ηε,λ =
1

ε
− χ(σε,λ)

= − log(|s|2λ(ϕ) + ε) + log(− log(|s|2λ(ϕ) + ε)) +
1

ε
.

We can also define σε,µ and ηε,µ similarly. Note that ηε,λ and ηε,µ are
smooth bounded functions on V with ηε,µ ≥ ηε,λ > 1

ε
. The subscripts

λ, µ, and ε might be suppressed if there is no danger of confusion.

We note the following obvious remark before we start various calcu-
lations.

Remark 3.4. We note that e < 2
√

2. Thus, 3
2 log 2 > 1. Therefore,

σε,µ ≤ σε,λ < 2 log 1
2 < −4

3 if ε is small since |s|2µ(ϕ) + ε ≤ |s|2λ(ϕ) + ε < 1
4

by |s|2λ(ϕ) < 1
5 . Of course, log(−σε,µ) ≥ log(−σε,λ) > log 4

3 > 0. We

have χ′(t) = 1 − 1
t

and χ′′(t) = 1
t2

. Thus, 1 < χ′(σε,µ) ≤ χ′(σε,λ) =
1 + 1

(−σε,λ) < 7
4 .

3.5 (Basic calculations). We calculate various differentials of ηε,λ. The
same arguments work for ηε,µ.

Definition 3.6. Let u ∈ Cp,q(V, L) and v ∈ Cr.s(V, L). We define

{u, v}λ(ϕ) = u ∧HLe−λ(ϕ)v̄,

where HL is the local matrix representation of hL.
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We have

∂σε,λ =
{D′s, s}λ(ϕ)

|s|2λ(ϕ) + ε
.

In the above equation, D′ is the (1, 0) part of the Chern connection of
L′ = (L, hLe−λ(ϕ)), that is, D′ = D′

(L,hLe−λ(ϕ))
. Thus, Θ(L′) = Θ(L) +

∂∂̄λ(ϕ). We obtain the following equation by the direct computation.

√
−1∂∂̄σε,λ =−

{
√
−1Θ(L′)s, s}λ(ϕ)

|s|2λ(ϕ) + ε

+

√
−1{D′s, D′s}λ(ϕ)

|s|2λ(ϕ) + ε
−
√
−1{D′s, s}λ(ϕ) ∧ {s, D′s}λ(ϕ)

(|s|2λ(ϕ) + ε)2
,

where L′ = (L, hLe−λ(ϕ)). By the Cauchy-Schwarz inequality, we have

√
−1{D′s, D′s}λ(ϕ)|s|2λ(ϕ) ≥

√
−1{D′s, s}λ(ϕ) ∧ {s, D′s}λ(ϕ).

Substituting the Cauchy-Schwarz inequality into the above equation,
we obtain

√
−1∂∂̄σε,λ ≥

ε

|s|2λ(ϕ)(|s|2λ(ϕ) + ε)2

√
−1{D′s, s}λ(ϕ) ∧ {s, D′s}λ(ϕ)

−
{
√
−1Θ(L′)s, s}λ(ϕ)

|s|2λ(ϕ) + ε

=
ε

|s|2λ(ϕ)

√
−1∂σε,λ ∧ ∂̄σε,λ −

{
√
−1Θ(L′)s, s}λ(ϕ)

|s|2λ(ϕ) + ε
.

Lemma 3.7. The next equations follow easily from the definition.

∂ηε,λ = −χ′(σε,λ)∂σε,λ,

∂̄ηε,λ = −χ′(σε,λ)∂̄σε,λ,

∂∂̄ηε,λ = −χ′′(σε,λ)∂σε,λ ∧ ∂̄σε,λ − χ′(σε,λ)∂∂̄σε,λ.



14 OSAMU FUJINO

Combining the above (in)equalities, we have

−
√
−1∂∂̄ηε,λ = χ′(σε,λ)

√
−1∂∂̄σε,λ + χ′′(σε,λ)

√
−1∂σε,λ ∧ ∂̄σε,λ

≥ εχ′(σε,λ)

|s|2λ(ϕ)

√
−1∂σε,λ ∧ ∂̄σε,λ + χ′′(σε,λ)

√
−1∂σε,λ ∧ ∂̄σε,λ

− χ′(σε,λ)
{
√
−1Θ(L′)s, s}λ(ϕ)

|s|2λ(ϕ) + ε

=

(
ε

χ′(σε,λ)|s|2λ(ϕ)

+
χ′′(σε,λ)

χ′(σε,λ)2

)
√
−1∂ηε,λ ∧ ∂̄ηε,λ

− χ′(σε,λ)
{
√
−1Θ(L′)s, s}λ(ϕ)

|s|2λ(ϕ) + ε
.

Lemma 3.8. We have the following inequality.

χ′′(σε,λ)

χ′(σε,λ)2
≥ η−2

ε,λ

Proof. By the definition, it is easy to see that

χ′(σε,λ)

χ′′(σε,λ)
=

(1− 1
σε,λ

)2

1
σ2

ε,λ

= (σε,λ − 1)2.

On the other hand, ηε,λ = 1
ε
− σε,λ + log(−σε,λ) > 1 − σε,λ. Thus, we

obtain the desired inequality. #

By the above calculations, we obtain a very important inequality.

Proposition 3.9. Under the curvature conditions

√
−1(Θ(E) + IdE ⊗Θ(F )) ≥Nak 0

on X \ Z and

√
−1(Θ(E) + IdE ⊗Θ(F )− ε0IdE ⊗Θ(L)) ≥Nak 0

on X \ Z for some positive real number ε0, we have a small positive
real number ε1 such that

√
−1(ηΘ(E⊗F,hEhF e−µ(ϕ)) − IdE ⊗ ∂∂̄η) ≥Nak

√
−1(IdE ⊗ η−2∂η ∧ ∂̄η)

holds on V \ Z for 0 < ε < ε1, where η = ηε,λ or ηε,µ.
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Proof. By the definitions of λ and µ, ∂∂̄µ(ϕ) = ∂∂̄λ(ϕ) + ∂∂̄ϕ, and
λ(ϕ) and µ(ϕ) are plurisubharmonic. Note that

Θ(E⊗F,hEhF e−µ(ϕ)) = Θ(E) + IdE ⊗Θ(F ) + IdE ⊗ ∂∂̄µ(ϕ)

= Θ(E) + IdE ⊗Θ(F ) + IdE ⊗ ∂∂̄λ(ϕ) + IdE ⊗ ∂∂̄ϕ,

Θ(L,hLe−µ(ϕ)) = Θ(L) + ∂∂̄µ(ϕ), and

Θ(L,hLe−λ(ϕ)) = Θ(L) + ∂∂̄λ(ϕ).

We also note that

0 ≤ χ′(σε,λ)
|s|2λ(ϕ)

|s|2λ(ϕ) + ε
<

7

4

and

0 ≤ χ′(σε,µ)
|s|2µ(ϕ)

|s|2µ(ϕ) + ε
<

7

4

by Remark 3.4. If ε1 is small, then

η ≥ max

{
7

4ε0
,
7

4

}

since η > 1
ε

> 1
ε1

. Therefore,
√
−1(ηΘ(E⊗F,hEhF e−µ(ϕ)) − IdE ⊗ ∂∂̄η) ≥Nak

√
−1(IdE ⊗ η−2∂η ∧ ∂̄η)

holds on V \ Z for 0 < ε < ε1 where η = ηε,λ or ηε,µ. #

We note that we need no assumptions on the sign of the curvature√
−1Θ(L) in Proposition 3.9. It is a very important remark.
In the next lemma, we obtain the relationship between the Chern

connections of (L, hL) and (L, hLe−λ(ϕ)).

Lemma 3.10. Let γ : [0,∞) → R be any smooth R-valued function.
Then we have the following equation by the definition of the Chern
connection.

D′
(L,hLe−γ(ϕ)) = (HLe−γ(ϕ))−1∂(HLe−γ(ϕ)· )

= ∂ + ∂ log(HLe−γ(ϕ)) ∧ ·
= ∂ + ∂ log HL ∧ · − γ′(ϕ)∂ϕ ∧ ·
= D′

(L,hL) − γ′(ϕ)∂ϕ ∧ · .

We note that HL = HL since L is a line bundle.

3.11 (Complete Kähler metrics). There exists a complete Kähler met-
ric g on V since V is weakly 1-complete. Let ω be the fundamental
form of g. We note the following well-known lemma (cf. [D3, Lemma
5]).
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Lemma 3.12. There exists a quasi-psh function ψ on X such that
ψ = −∞ on Z with logarithmic poles along Z and ψ is smooth outside
Z.

Without loss of generality, we can assume that ψ < −e on V & X.
We put ψ̃ = 1

log(−ψ) . Then ψ̃ is a quasi-psh function on V and ψ̃ < 1.

Thus, we can take a positive constant α such that
√
−1∂∂̄ψ̃ + αω > 0

on V \ Z. Let g′ be the Kähler metric on V \ Z whose fundamental
form is ω′ = ω + (

√
−1∂∂̄ψ̃ + αω). We note that we can check that

ω′ ≥
√
−1∂(log(log(−ψ))) ∧ ∂̄(log(log(−ψ)))

if we choose α6 0. It is because

∂∂̄ψ̃ = 2
−∂ψ
−ψ ∧

−∂̄ψ
−ψ

(log(−ψ))3
+

∂∂̄ψ
−ψ

(log(−ψ))2
+

−∂ψ∧(−∂̄ψ)
(−ψ)2

(log(−ψ))2
,

and

∂(log(log(−ψ))) =
−∂ψ
−ψ

log(−ψ)
.

Therefore, g′ is a complete Kähler metric on V \ Z by Hopf–Rinow
because log(log(−ψ)) tends to +∞ on Z. For similar arguments, see
[F1, Section 3]. We fix these Kähler metrics throughout this proof.

3.13 (Key Results). The following three propositions are the heart of
the proof of Theorem 1.1.

Proposition 3.14. For every u ∈ Hn,q(V \ Z, (E ⊗ F, hEhF e−µ(ϕ)))g′,
(∂̄η)∗u = 0 for η = ηε,λ and ηε,µ. This implies that ∂η ∧ ∗u = 0
for η = ηε,λ and ηε,µ. Thus, we obtain D′

(L,hLe−λ(ϕ))
s ∧ ∗u = 0 and

D′
(L,hLe−µ(ϕ))

s ∧ ∗u = 0.

Proof. The definition of Hn,q(V \Z, (E⊗F, hEhFe−µ(ϕ)))g′ implies that
∂̄u = 0 and D′′∗

(E⊗F,hEhF e−µ(ϕ))
u = 0. By Propositions 2.20, 2.21, and

3.9, we have

0 ≥ −‖√ηD′∗u‖2 ≥ 〈〈
√
−1η−2∂η ∧ ∂̄ηΛu, u〉〉 ≥ 0.

Thus, we have (∂̄η)∗u = 0 (cf. Lemma 2.22). Therefore, we obtain
∂η∧∗u = 0 because (∂̄η)∗ = ∗∂η∧∗ by Lemma 2.15. By the definition
of η, we obtain D′

(L,hLe−λ(ϕ))s ∧ ∗u = 0 (resp. D′
(L,hLe−µ(ϕ))s ∧ ∗u = 0)

if η = ηε,λ (resp. η = ηε,µ). #

Proposition 3.15. If D′
(L,hLe−λ(ϕ))

s∧∗u = 0 and D′
(L,hLe−µ(ϕ))

s∧∗u = 0,

then D′
(L,hL)s∧∗u = 0 and ∂ϕ∧∗u = 0. Therefore, D′

(L,hLe−ν(ϕ))
s∧∗u =

0 for any smooth R-valued function ν defined on [0,∞).
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Proof. We note that D′
(L,hLe−λ(ϕ))

= D′
(L,hL) − λ′(ϕ)∂ϕ ∧ · and

D′
(L,hLe−µ(ϕ)) = D′

(L,hL) − λ′(ϕ)∂ϕ ∧ · − ∂ϕ ∧ ·

since µ(x) = λ(x) + x. #

Proposition 3.16. If D′′∗
(E⊗F,hEhF e−µ(ϕ))

u = 0, then we obtain

D′′∗
(E⊗F⊗L,hEhF hLe−µ(ϕ)−ν(ϕ))(su) = 0

for any smooth R-valued function ν defined on [0,∞).

Proof. Let HE (resp. HF ) be the local matrix representation of hE

(resp. hF ). The condition D′′∗
(E⊗F,hEhF e−µ(ϕ))

u = 0 implies that

∂̄(e−µ(ϕ)HEHF∗u) = 0.

To prove D′′∗
(E⊗F⊗L,hEhF hLe−µ(ϕ)−ν(ϕ))

(su) = 0, it is sufficient to check

that ∂̄(HEHF e−µ(ϕ)−ν(ϕ)HL∗su) = 0. We note that

∂̄(HEHF e−µ(ϕ)−ν(ϕ)HL∗su) = ∂̄(HLse−ν(ϕ)) ∧ e−µ(ϕ)HEHF∗u

by the above condition. The right hand side is zero since D′
(L,HLe−ν(ϕ))

s∧
∗u = 0. #

The next theorem is a key result.

Theorem 3.17 (cf. [O, Proposition 3.1]). For any smooth R-valued
function defined on [0,∞) such that ν ≥ C for some constant C,

sHn,q(V \ Z, (E ⊗ F, hEhF e−µ(ϕ)))g′

is contained in

Hn,q(V \ Z, (E ⊗ F ⊗ L, hEhF hLe−µ(ϕ)−λ(ϕ)−ν(ϕ)))g′

for every q.

Proof. Let u ∈ Hn,q(V \ Z, (E ⊗ F, hEhF e−µ(ϕ)))g′ . Then it is obvious
that su ∈ Ln,q

(2) (E ⊗ F ⊗ L, hEhF hLe−µ(ϕ)−λ(ϕ)−ν(ϕ)) because |s|2λ(ϕ) < 1
5

and 0 < e−ν(ϕ) ≤ e−C . So, the claim is a direct consequence of
Proposition 3.16. Note that ∂̄(su) = 0 for u ∈ Hn,q(V \ Z, (E ⊗
F, hEhF e−µ(ϕ)))g′ since s is holomorphic and ∂̄u = 0. #

3.18 (Cohomology groups). Before we start the proof of the main the-
orem: Theorem 1.1, we represent the cohomology groups on V by the
objects on V \ Z.
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Definition 3.19 (Space of locally square integrable forms). We define
the space of locally (in V ) square integrable E ⊗F -valued (n, q)-forms
on V \ Z. It is denoted by Ln,q

loc,V (V \ Z, E ⊗ F ) or Ln,q
loc,V (V \ Z, (E ⊗

F, hEhF )). The vector space Ln,q
loc,V (V \Z, E ⊗F ) is spanned by (n, q)-

forms u on V \ Z with measurable coefficients such that
∫

U

|u|2g′,hEhF
dVω′ < ∞

for every U & V (not U & V \ Z), where | · |g′,hEhF
is the pointwise

norm with respect to g′ and hEhF . We note the following obvious
remark. Let h : V → (0,∞) be a smooth positive function. Then
Ln,q

loc,V (V \ Z, (E ⊗ F, hEhF )) = Ln,q
loc,V (V \ Z, (E ⊗ F, hEhF h)). We can

define Ln,q
loc,V (V \ Z, E ⊗ F ⊗ L) similarly.

The next lemma is essentially the same as [F1, Claim 1], which is
more or less known to experts (cf. [T, Proposition 4.6]).

Lemma 3.20. The following isomorphism holds.

Hq(V, KV ⊗ E ⊗ F ⊗ J (hF ))

' Hn,q
loc,V (V \ Z, E ⊗ F )g′

:=
Ker∂̄ ∩ Ln,q

loc,V (V \ Z, E ⊗ F )

Ln,q
loc,V (V \ Z, E ⊗ F ) ∩ ∂̄Ln,q−1

loc,V (V \ Z, E ⊗ F )
.

Sketch of the proof. Let V =
⋃

i∈I Ui be a locally finite Stein cover of
V such that each Ui is sufficiently small and Ui & V . We denote this
cover by U = {Ui}i∈I . By Cartan and Leray, we obtain

Hq(V, KV ⊗E ⊗ F ⊗ J (hF )) ' Ȟq(U , KV ⊗ E ⊗ F ⊗ J (hF )),

where the right hand side is the Čech cohomology group calculated
by U . By using a partition of unity {ρi}i∈I associated to U , we can
construct a homomorphism

ρ : Ȟq(U , KX ⊗E ⊗ F ⊗ J (hF )) → Hn,q
loc,V (V \ Z, E ⊗ F )g′.

See Remark 3.21 below. We can check that ρ is an isomorphism. Note
the following facts: (a) The open set Ui0 ∩ · · · ∩ Uik is Stein. So, Ui0 ∩
· · · ∩ Uik \ Z is a complete Kähler manifold (cf. [D1, Théorème 0.2]).
Therefore, E ⊗ F -valued ∂̄-equations can be solved with suitable L2

estimates on Ui0 ∩ · · ·∩Uik \Z by Lemma 3.22 below. (b) Let U be an
open subset of V . An E ⊗ F -valued holomorphic (n, 0)-form on U \ Z
with a finite L2 norm can be extended to an E⊗F -valued holomorphic
(n, 0)-form on U (cf. Remark 3.21). #



INJECTIVITY THEOREM II 19

Remark 3.21 (cf. [D1, Lemme 3.3]). Let u be an E ⊗ F -valued
(n, q)-form on V \ Z with measurable coefficients. Then, we have
|u|2g′,hEhF

dVω′ ≤ |u|2g,hEhF
dVω, where |u|g′,hEhF

(resp. |u|g,hEhF
) is the

pointwise norm induced by g′ and hEhF (resp. g and hEhF ) since g′ > g
on V \ Z. If u is an E ⊗ F -valued (n, 0)-form, then |u|2g′,hEhF

dVω′ =
|u|2g,hEhF

dVω.

The following lemma is [F1, Lemma 3.2], which is a reformulation of
the classical L2-estimates for ∂̄-equations for our purpose.

Lemma 3.22 (L2-estimates for ∂̄-equations on complete Kähler man-
ifolds). Let U be a sufficiently small Stein open set of V . If u ∈
Ln,q

(2)(U \Z, E ⊗F )g′,hEhF
with ∂̄u = 0, then there exists v ∈ Ln,q−1

(2) (U \
Z, E ⊗ F )g′,hEhF

such that ∂̄v = u. Moreover, there exists a positive
constant C independent of u such that

∫

U\Z

|v|2g′,hEhF
≤ C

∫

U\Z

|u|2g′,hEhF
.

We note that g′ is not a complete Kähler metric on U \Z but U \Z is
a complete Kähler manifold (cf. [D1, Théorème 0.2]).

By the same arguments, the isomorphism in Lemma 3.20 holds even
when we replace (E ⊗ F, hEhF ) with (E ⊗ F ⊗ L, hEhF hL).

3.23 (Proof of the main theorem: Theorem 1.1). Let us start the proof
of Theorem 1.1 (cf. [O]).

Proof of Theorem 1.1. Let u be any ∂̄-closed locally square integrable
E ⊗ F -valued (n, q)-form on V \ Z such that su = ∂̄v for some v ∈
Ln,q−1

loc,V (V \ Z, E ⊗ F ⊗ L). We choose λ such that |s|2λ(ϕ) < 1
5 and

u ∈ Ln,q
(2) (V \ Z, (E ⊗ F, hEhF e−λ(ϕ))). Since µ(ϕ) = λ(ϕ) + ϕ, u ∈

Ln,q
(2)(V \Z, (E⊗F, hEhF e−µ(ϕ))). By choosing ν suitably, we can assume

that v ∈ Ln,q−1
(2) (V \ Z, (E ⊗ F ⊗ L, hEhFhLe−µ(ϕ)−ν(ϕ))). In particular,

v ∈ Ln,q−1
(2) (V \Z, (E⊗F ⊗L, hEhF hLe−µ(ϕ)−λ(ϕ)−ν(ϕ))). Let Pu be the

orthogonal projection of u to Hn,q(V \ Z, (E ⊗ F, hEhF e−µ(ϕ)))g′. We
note that

Ln,q
(2) (V \ Z, (E ⊗ F, hEhF e−µ(ϕ)))

= Im∂̄ ⊕Hn,q(V \ Z, (E ⊗ F, hEhFe−µ(ϕ)))g′ ⊕ ImD′′∗
(E⊗F,hEhF e−µ(ϕ))

,

and

Ker∂̄ = Im∂̄ ⊕Hn,q(V \ Z, (E ⊗ F, hEhF e−µ(ϕ)))g′.
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Here, Im∂̄ (resp. ImD′′∗
(E⊗F,hEhF e−µ(ϕ))

) denotes the closure of ∂̄Cn,q−1
0 (V \

Z, E ⊗ F ) (resp. D′′∗
(E⊗F,hEhF e−µ(ϕ))

Cn,q+1
0 (V \ Z, E ⊗ F )) in Ln.q

(2) (V \
Z, (E ⊗ F, hEhF e−µ(ϕ))). Note that the fixed Kähler metric g′ is com-
plete. Therefore, u − Pu is in the closure of the image of ∂̄. Thus, so
is s(u− Pu) since s is holomorphic. On the other hand,

sPu ∈ Hn,q(V \ Z, (E ⊗ F ⊗ L, hEhFhLe−µ(ϕ)−λ(ϕ)−ν(ϕ)))g′

by Theorem 3.17. So, sPu coincides with the orthogonal projection of
su to Hn,q(V \Z, (E⊗F⊗L, hEhF hLe−µ(ϕ)−λ(ϕ)−ν(ϕ)))g′ , which must be
equal to zero since v ∈ Ln,q−1

(2) (V \Z, (E⊗F⊗L, hEhF hLe−µ(ϕ)−λ(ϕ)−ν(ϕ))).
Therefore, Pu = 0. Since Hq(V, KV ⊗ E ⊗ F ⊗ J (hF )) is a separated

topological vector space (cf. [R, Theoreme 10]) and u ∈ Im∂̄, there
exists w ∈ Ln,q−1

loc,V (V \ Z, E ⊗ F ) such that u = ∂̄w (cf. [T, Propo-
sition 4.6] and [F1, Claim 1]). This means that u represents zero in
Hq(V, KV ⊗ E ⊗ F ⊗ J (hF )). #

4. Corollaries and applications

In this section, we discuss the proofs of corollaries in Section 1 and
some applications of Theorem 1.1.

First, we give a proof of Corollary 1.2, which is obvious if we apply
Theorem 1.1 for L = OX ' f ∗OY .

Proof of Corollary 1.2. The statement is local. So, we can assume that
Y is Stein. Let s ∈ H0(Y,OY ) be an arbitrary nonzero section. By
Theorem 1.1,

×s : Rqf∗(KX ⊗ E ⊗ F ⊗ J (hF ))→ Rqf∗(KX ⊗E ⊗ F ⊗ J (hF ))

is injective for every q ≥ 0. Thus, Rqf∗(KX ⊗ E ⊗ F ⊗ J (hF )) is
torsion-free for every q ≥ 0. #

The following proposition is a slight generalization of Theorem 1.1.

Proposition 4.1. In Theorem 1.1, we can weaken the assumption that
X is Kähler as follows. For any point P ∈ Y , there exist an open
neighborhood U of P and a proper bimeromorphic morphism g : W →
V := f−1(U) from a Kähler manifold W .

Sketch of the proof. We put Z ′ = g−1(Z ∩ V ) ⊂ W . We can apply
Corollary 1.2 to g : W → V , Z ′, (g∗E, g∗hE), and (g∗F, g∗hF ). Then
we obtain Rqg∗(KW ⊗ g∗E ⊗ g∗F ⊗ J (g∗hF )) = 0 for every q > 0 and
it is well known (and easy to check) that

g∗(KW ⊗ g∗E ⊗ g∗F ⊗ J (g∗hF )) ' KV ⊗E ⊗ F ⊗ J (hF )
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(cf. [D2, (5.8) Proposition]). Therefore, by Leray’s spectral sequence,

Rq(f ◦ g)∗(KW ⊗ g∗E⊗ g∗F ⊗J (g∗hF )) ' Rqf∗(KV ⊗E⊗F ⊗J (hF ))

for every q ≥ 0. Apply Theorem 1.1 to f ◦g : W → U , Z ′, (g∗E, g∗hE),
(g∗L, g∗hL), and (g∗F, g∗hF ). Then we obtain that

×s : Rqf∗(KX ⊗E ⊗ F ⊗ J (hF )) → Rqf∗(KX ⊗ E ⊗ F ⊗ J (hF )⊗ L)

is injective for every q ≥ 0 by the above isomorphisms. #

The next result is related to the main theorem in [Le].

Corollary 4.2. Let f : X → ∆ be a smooth projective surjective
morphism from a Kähler manifold X to a disk ∆ and let E be a Nakano
semi-positive vector bundle on X. Assume that there exists D ∈ |K⊗l

X0
|

such that JX0(cD) ' OX0 for every 0 ≤ c < 1, where 0 ∈ Y and
X0 = f−1(0). Then there exists an open set U ⊂ ∆ such that 0 ∈ U
and Rqf∗(K

⊗m
X ⊗E) is locally free on U for every q ≥ 0 and 1 ≤ m ≤ l.

Equivalently, dimC Hq(Xt, K
⊗m
Xt
⊗E) is constant for every q ≥ 0 by the

base change theorem, where t ∈ U and Xt = f−1(t).

Proof. In this proof, we shrink ∆ without mentioning it for simplic-
ity of notation. Let s0 ∈ H0(X0, K

⊗l
X0

) such that D = (s0 = 0).
By Siu’s extension theorem (see [S, Theorem 0.1]), there exists s ∈
H0(X, K⊗l

X ) such that s|X0 = s0. We consider the singular hermitian

metric h
K

⊗(m−1)
X

= ( 1
|s|2 )

m−1
l of K⊗(m−1)

X . By the Ohsawa–Takegoshi L2-

extension theorem and the assumption JX0(cD) ' OX0 for 0 ≤ c < 1,
we obtain that JX(hK⊗m−1

X
) ' OX in a neighborhood of X0. There-

fore, we obtain that Rqf∗(K
⊗m
X ⊗ E) = Rqf∗(KX ⊗ K⊗(m−1)

X ⊗ E ⊗
JX(hK⊗m−1

X
)) is locally free by Corollary 1.2. #

Let us start the proof of the Kawamata–Viehweg–Nadel type van-
ishing theorem: Corollary 1.3.

Proof of Corollary 1.3. Let P be a point of Y . The problem is local.
So we repeatedly shrink Y around P without mentioning it explicitly.
Since M is f -big, we have a bimeromorphic map Φ : X ''( X ′ ⊂
Y ×PN over Y . By applying Hironaka’s Chow lemma (cf. [Hi, Corollary
2]), we can construct a bimeromorphic map ϕ : Z → X from a complex
manifold such that f ◦ ϕ : Z → Y is projective. It is easy to see that

ϕ∗

(
KZ ⊗ ϕ∗E ⊗ ϕ∗L⊗ J

(
1

m
ϕ∗D

))
' KX ⊗ E ⊗ L⊗ J

(
1

m
D

)
.

by the definition of J (cf. [La2, Theorem 9.2.33]).
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Claim. We have

Rqϕ∗

(
KZ ⊗ ϕ∗E ⊗ ϕ∗L⊗ J

(
1

m
ϕ∗D

))
= 0

for every q > 0

Proof of Claim. The problem is local. So we can shrink X and assume
that M is trivial. In particular, (ϕ∗L)⊗m ' OZ(ϕ∗D). Thus, by
Corollary 1.2, we obtain that Rqϕ∗(KZ ⊗ ϕ∗E ⊗ ϕ∗L ⊗ J ( 1

m
ϕ∗D)) is

torsion-free for every q. Thus, Rqϕ∗(KZ⊗ϕ∗E⊗ϕ∗L⊗J ( 1
m
ϕ∗D)) = 0

for every q > 0 since ϕ is bimeromorphic. #

Therefore, by replacing X with Z, we can assume that f : X → Y is
projective. By Kodaira’s lemma, we can write L⊗a ' A⊗OX(G) where
a is a positive integer, A is an f -ample line bundle on X, and G is an
effective Cartier divisor on X. Then L⊗(mb+a) ' (M⊗b⊗A)⊗OX(G+
bD). Note that M⊗b ⊗ A is f -ample and that J (G+bD

mb+a
) = J ( 1

m
D) if

b 6 0. Therefore, we can further assume that M is f -ample. Then,
by Theorem 1.1, we can construct inclusions

Rqf∗(KX ⊗ E ⊗ L⊗ J ) ⊂ Rqf∗(KX ⊗ E ⊗ L⊗ J ⊗M⊗k)

for every k > 0 with |M⊗k| *= ∅. Thus, by Serre’s vanishing theorem
(cf. [N2, p. 25 Remark (4)]), we obtain Rqf∗(KX ⊗E⊗L⊗J ) = 0 for
every q > 0. #

Proof of Corollary 1.4. Note that m{H} is Cartier. We have m!H" ∼
mH + m{−H}. We put E = OX , L = OX(!H"), M = OX(mH), and
D = m{−H}, and apply Corollary 1.3. Then we obtain Rqf∗(KX ⊗
OX(!H")) = 0 for every q > 0. We note that J ({−H}) = OX since
Supp{H} is a normal crossing divisor (cf. [La2, Lemma 9.3.44]). #

The proof of Corollary 1.5 is a routine work. So we only sketch the
proof here. For details, see, for example, the proofs of [F5, Theorem
1.1 (ii)], [F6, Theorem 6.3 (ii)], and [F7, Theorem 2.39 (ii)].

Sketch of the proof of Corollary 1.5. We can repeatedly shrink Z with-
out mentioning it. By Hironaka’s Chow lemma and Hironaka’s flatten-
ing theorem (cf. [Hi, Corollary 2, Flattening Theorem]), we can assume
that g : Y → Z is projective (cf. the proof of Corollary 1.3). By Ko-
daira’s lemma, we can assume that N is g-ample. Let A be a general
smooth sufficiently g-ample Cartier divisor on Y . We put B = f ∗A.
We consider the following short exact sequence

0→ KX ⊗E ⊗ L⊗ J → KX ⊗ E ⊗OX(B)⊗ L⊗ J
→ KB ⊗ E|B ⊗ L|B ⊗ J |B → 0.
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Since A is general, J |B = J ( 1
m

D|B), and

0→ Rqf∗(KX ⊗E ⊗ L⊗ J )→ Rqf∗(KX ⊗E ⊗OX(B)⊗ L⊗ J )

→ Rqf∗(KB ⊗ E|B ⊗ L|B ⊗ J |B) → 0

is exact for every q. By taking the long exact sequence, we obtain

Rpg∗R
qf∗(KX ⊗ E ⊗ L⊗ J ) = 0

for every p ≥ 2 and every q ≥ 0 because A is sufficiently g-ample and
the induction on dimension. Then we obtain the following commutative
diagram.

R1g∗Rqf∗(KX ⊗ E ⊗ L⊗ J )

!!

α "" R1+q(g ◦ f)∗(KX ⊗E ⊗ L⊗ J )

β

!!

R1g∗Rqf∗(KX ⊗ E ⊗OX(B)⊗ L⊗ J ) "" R1+q(g ◦ f)∗(KX ⊗ E ⊗OX(B)⊗ L⊗ J )

Note that α is injective by the above vanishing result and that β is
injective by Theorem 1.1. Since A is sufficiently g-ample, we have
R1g∗Rqf∗(KX ⊗E⊗OX(B)⊗L⊗J ) = 0. Thus, R1g∗Rqf∗(KX ⊗E⊗
L⊗ J ) = 0 for every q ≥ 0. So we finish the proof. #

5. Examples: nef, semi-positive, and semi-ample line
bundles

In this section, we collect some examples of nef, semi-positive, and
semi-ample line bundles. These examples help us understand our re-
sults in [F1] and this paper. We think that it is very important to
understand the differences in the notion of semi-ample, semi-positive,
and nef line bundles.

First, we recall the following well-known example. It implies that
there exists a nef line bundle that has no smooth hermitian metrics
with semi-positive curvature.

Example 5.1 (cf. [DPS, Example 1.7]). Let C be an elliptic curve
and let E be the rank two vector bundle on C which is defined by the
unique non-splitting extension

0 −→ OC −→ E −→ OC −→ 0.

We consider the ruled surface X := PC(E). On that surface there is a
unique section D := PC(OC) ⊂ X of X → C such that OD(D) ' OD

and OX(D) ' OPC(E)(1) is a nef line bundle (cf. [Ha2, V Proposi-
tion 2.8]). It is not difficult to see that H1(X, KX ⊗ OX(2D)) →
H1(X, KX ⊗OX(3D)) is a zero map, H1(X, KX ⊗OX(2D)) ' C, and
H1(X, KX⊗OX(3D)) ' C. We note that KX ∼ OX(−2D). Therefore,
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OX(D) has no smooth hermitian metrics with semi-positive curvature
by Enoki’s injectivity theorem (see [En, Theorem 0.2], [F1, Corollary
1.4]). Note that κ(X,OPC(E)(1)) = 0 and ν(X,OPC(E)(1)) = 1. We also
note that Kollár’s injectivity theorem implies nothing since OPC(E)(1)
is not semi-ample.

The next one is an example of nef and big line bundles that have no
smooth hermitian metrics with semi-positive curvature. I learned the
following construction from Dano Kim.

Example 5.2. We use the same notation as in Example 5.1. Let P ∈ C
be a closed point. We put F := E ⊕ OC(P ) and Y := PC(F). Then
it is easy to see that L := OPC(F)(1) is nef and big (cf. [La2, Example
6.1.23]). Since OPC(E)(1) has no smooth hermitian metrics with semi-
positive curvature, neither has L. In this case, H i(Y, KY ⊗L⊗k) = 0 for
i > 0 and every k ≥ 1 by the Kawamata–Viehweg vanishing theorem.

Let us recall some examples of semi-positive line bundles that are
not semi-ample.

Example 5.3 (cf. [DEL, p.145]). Let C be a smooth projective curve
with the genus g(C) ≥ 1. Let L ∈ Pic0(C) be non-torsion. We put
E := OC ⊕ L and X := PC(E). Then L := OPC(E)(1) is semi-positive,
but not semi-ample. We note that κ(X,L) = 0 since H0(X,L⊗k) =
H0(C, Sk(E)) = H0(C,OC) = C for every k ≥ 0, where Sk(E) is the
k-th symmetric product of E . We can easily check that

KX = π∗(KC ⊗ det E)⊗ L⊗(−2) = π∗(KC ⊗ L)⊗ L⊗(−2),

where π : X → C is the projection. Let m be an integer with m ≥ 2.
Then

H i(X, KX ⊗ L⊗m) = H i(X, π∗(KC ⊗ L)⊗ L⊗(m−2))

=
m−1⊕

k=1

H i(C, KC ⊗ L⊗k).

Thus, h0(X, KX ⊗ L⊗m) = (m − 1)(g − 1), h1(X, KX ⊗ L⊗m) = 0,
and h2(X, KX ⊗ L⊗m) = 0 for m ≥ 2. So, we obtain no interesting
results from injectivity theorems. Note that H2(X, KX ⊗L⊗m) = 0 for
m ≥ 1 also follows from the Kawamata–Viehweg vanishing theorem
since ν(X,L) = 1 and dimX = 2.

Example 5.4 (Cutkosky). We use the same notation as in Example
5.3. Let P ∈ C be a closed point. We put F := OC(P ) ⊕ L and
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Y := PC(F). Then it is easy to see that M := OPC(F)(1) is big and
semi-positive, but not semi-ample. We note that

⊕

m≥0

H0(Y,M⊗m)

is not finitely generated. For details, see, for example, [La1, Example
2.3.3].

The following example shows the difference between Enoki’s injec-
tivity theorem and Kollár’s one.

Example 5.5. Let C be a smooth projective curve with the genus
g(C) = g ≥ 1. Let L ∈ Pic0(C) be non-torsion. We put E := OC ⊕
L ⊕ L−1, X := PC(E), and L := OPC(E)(1). It is obvious that E has
a smooth hermitian metric whose curvature is Nakano semi-positive.
Thus, L is semi-positive since L is a quotient line bundle of π∗E , where
π : X → C is the projection. In particular, L is nef. On the other
hand, it is not difficult to see that L is not semi-ample. We have

KX = π∗(KC ⊗ det E)⊗ L⊗(−3) = π∗KC ⊗ L⊗(−3).

We can easily check that

Sm(E) =
⊕

0≤a+b≤m
a,b≥0

La−b.

Note that the rank of Sm(E) is 1
2(m + 2)(m + 1). Let m be an integer

with m ≥ 3. Then it is easy to see that

H i(X, KX ⊗L⊗m) = H i(X, π∗KC ⊗L⊗(m−3)) = H i(C, KC ⊗Sm−3(E)).

for all i. We need the following obvious lemma.

Lemma 5.6. We have h0(C, KC) = g and h1(C, KC) = 1. Moreover,
h0(C, KC ⊗ L⊗k) = g − 1 and h1(C, KC ⊗ L⊗k) = 0 for k *= 0.

Therefore, we obtain H3(X, KX ⊗ L⊗m) = H2(X, KX ⊗ L⊗m) = 0,
h1(X, KX ⊗ L⊗m) = $

m−3
2 % + 1 = $

m−1
2 %, and

h0(X, KX ⊗ L⊗m)

= g$
m− 1

2
% + (g − 1)

(
(m + 2)(m + 1)

2
− $

m− 1

2
%

)

= $
m− 1

2
% + (g − 1)

(m + 2)(m + 1)

2
.



26 OSAMU FUJINO

On the other hand, h0(X,L⊗k) = h0(C, Sk(E)) = $k
2% + 1 for k ≥ 0.

Let s ∈ |L⊗k| be a non-zero holomorphic section of L⊗k for k ≥ 0.
Then

×s : H1(X, KX ⊗ L⊗m) → H1(X, KX ⊗ L⊗(m+k))

is injective by Enoki’s injectivity theorem (cf. [En, Theorem 0.2], [F1,
Corollary 1.4]). Note that h1(X, KX⊗L⊗m) = $

m−1
2 % and h1(X, KX⊗

L⊗(m+k)) = $m+k−1
2 %. We have κ(X,L) = 1 by the above calculation.

Since L2 · F = 1, where F is a fiber of π : X → C, ν(X,L) = 2.
Thus, the nef line bundle L is not abundant. So, we think that there
are no algebraic proofs for the above injectivity theorem. Note that
H3(X, KX⊗L⊗m) = H2(X, KX⊗L⊗m) = 0 for m ≥ 1 follows from the
Kawamata–Viehweg vanishing theorem since ν(X,L) = 2 and dimX =
3.

The following two examples are famous ones due to Mumford and
Ramanujam.

Example 5.7 (Mumford). Let us recall the construction of Mumford’s
example (see [Ha1, Example 10.6]). We use the same notation as in
[Ha1, Example 10.6]. Let C be a smooth projective curve of genus
g ≥ 2 over C. Then there exists a stable vector bundle E of rank two
and deg E = 0 such that its symmetric powers Sm(E) are stable for
all m ≥ 1. We consider the ruled surface X := PC(E). Let D be
the divisor corresponding to OX(1). Since E is a unitary flat vector
bundle, L := OX(D) ' OPC(E)(1) is semi-positive by π∗E → L → 0,
where π : X → C is the projection. We know that H0(X,L⊗m) =
H0(C, Sm(E)) = 0 since Sm(E) is stable and c1(Sm(E)) = 0 for every
m ≥ 1. Thus, κ(X,L) = −∞. On the other hand, L · L = 0 and
L · C ′ > 0 for every curve C ′ on X. Then ν(X,L) = 1.

Example 5.8 (Ramanujam). Let us recall the construction of Ra-
manujam’s example (see [Ha1, Example 10.8]). We use the same no-
tation as in [Ha1, Example 10.8]. Let X be the ruled surface ob-
tained in Example 5.7. We assume that D is the divisor given in [Ha1,
Example 10.6] (see Example 5.7 above). Let H be an effective am-
ple divisor on X. We define X := PX(OX(D − H) ⊕ OX), and let
π : X → X be the projection. Let X0 be the section of π correspond-
ing to OX(D − H) ⊕ OX → OX(D − H) → 0 and D := X0 + π∗H .
We put M := OX(D). We write OX(1) = OPX(OX (D−H)⊕OX)(1).
Then OX(1) ' OX(X0). Therefore, M ' OX(1) ⊗ π∗OX(H) and
π∗(OX(D) ⊕ OX(H)) → M → 0. Thus, it is easy to see that M is
semi-positive, nef and big. By the construction, M · C ′ > 0 for every
curve C ′ on X. However, M is not semi-ample since M|X0 ' OX0(D)
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does not have sections on X0. In particular,
⊕

m≥0
H0(X,OX(mD)) is

not finitely generated.

I learned the following construction from the referee.

Example 5.9. Let X = PC(E) → C be as in Example 5.1. Let A be
a very ample divisor on X. We take a smooth member B ∈ |2A| and
take a double cover C̃ → C by B ∼ 2A. We consider the base change
diagram

X

!!

X̃
ϕ

##

!!

C C̃##

and A := ϕ∗OPC(E)(1) ' O eX(ϕ∗D). The natural map

α : H1(X̃, K eX ⊗O eX(2ϕ∗D)) → H1(X̃, K eX ⊗O eX(3ϕ∗D))

contains

β : H1(X, KX ⊗OX(2D))→ H1(X, KX ⊗OX(3D))

as a direct summand by the construction. Since β is zero (see Example
5.1), α is not injective. By Enoki’s injectivity theorem (cf. [En, Theo-
rem 0.2], [F1, Corollary 1.4]), A is not semi-positive. We note that C̃
is a smooth projective curve of genus g ≥ 2. Then there exists a stable
vector bundle F of rank two and deg F = 0 such that its symmetric
powers Sm(F ) are stable for all m ≥ 1 (cf. Example 5.7). We put
Y = P eC(F ) and B = OP eC

(F )(1). We take the fiber product

X̃

!!

V = X̃ × eC Y
p1

##

p2

!!

C̃ Y##

and put M = p∗1A⊗ p∗2B. Note that V is a smooth projective variety.
Then it is easy to see that M·C ′ > 0 for every curve C ′ on V . On the
other hand, M has no smooth hermitian metrics with semi-positive
curvature. It is because A is not semi-positive.

Remark 5.10. By the same way as in Example 5.9, we can construct
a smooth projective 5-fold V and a line bundle N on V such that
N · C ′ > 0 for every curve C ′ on V , N is nef and big, and N is
not semi-positive by using Example 5.2 and Example 5.8. Of course,⊕

m≥0 H0(V,N⊗m) is not finitely generated.
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Kōkyūroku No. 1550 (2007), 131-140.

[F3] O. Fujino, Multiplication maps and vanishing theorems for toric varieties,
Math. Z. 257 (2007), no. 3, 631–641.

[F4] O. Fujino, Vanishing theorems for toric polyhedra, Higher dimensional alge-
braic varieties and vector bundles, 81–95, RIMS Kôkyûroku Bessatsu, B9,
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