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A TRANSCENDENTAL APPROACH TO KOLLÁR’S
INJECTIVITY THEOREM

OSAMU FUJINO

Abstract. We treat Kollár’s injectivity theorem from the ana-
lytic (or differential geometric) viewpoint. More precisely, we give
a curvature condition which implies Kollár type cohomology injec-
tivity theorems. Our main theorem is formulated for a compact
Kähler manifold, but the proof uses the space of harmonic forms
on a Zariski open set with a suitable complete Kähler metric. We
need neither covering tricks, desingularizations, nor Leray’s spec-
tral sequence.
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1. Introduction

In [Ko1], János Kollár proved the following theorem. We call it
Kollár’s original injectivity theorem in this paper.

Theorem 1.1 (cf. [Ko1, Theorem 2.2]). Let X be a smooth projec-
tive variety defined over an algebraically closed field of characteristic
zero and let L be a semi-ample line bundle on X. Let s be a nonzero
holomorphic section of L⊗k for some k > 0. Then

×s : Hq(X, KX ⊗ L⊗m) → Hq(X, KX ⊗ L⊗m+k)
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is injective for every q ≥ 0 and every m ≥ 1, where KX is the canonical
line bundle of X. Note that ×s is the homomorphism induced by the
tensor product with s.

The following theorem is the main result of this paper. It is an
analytic formulation of Kollár type cohomology injectivity theorem.

Theorem 1.2 (Main Theorem). Let X be an n-dimensional compact
Kähler manifold. Let (E, hE) (resp. (L, hL)) be a holomorphic vector
(resp. line) bundle on X with a smooth hermitian metric hE (resp. hL).
Let F be a holomorphic line bundle on X with a singular hermitian
metric hF . Assume the following conditions.

(i) There exists a subvariety Z of X such that hF is smooth on
X \ Z.

(ii)
√
−1Θ(F ) ≥ −γ in the sense of currents, where γ is a smooth

(1, 1)-form on X.
(iii)

√
−1(Θ(E) + IdE ⊗ Θ(F )) ≥Nak 0 on X \ Z.

(iv)
√
−1(Θ(E) + IdE ⊗Θ(F )− εIdE ⊗ Θ(L)) ≥Nak 0 on X \ Z for

some positive constant ε.

Here, ≥Nak 0 means the Nakano semi-positivity. Let s be a nonzero
holomorphic section of L. Then the multiplication homomorphism

×s : Hq(X, KX ⊗E ⊗F ⊗J (hF )) → Hq(X, KX ⊗E ⊗F ⊗J (hF )⊗L)

is injective for every q ≥ 0, where J (hF ) is the multiplier ideal sheaf
associated to the singular hermitian metric hF of F .

The formulation of Theorem 1.2 was inspired by Ohsawa’s injectivity
theorem (see [O2]). Although the assumptions in Theorem 1.2 may
look artificial for algebraic geometers, our main theorem is useful and
have potentiality for various generalizations. As a direct consequence
of Theorem 1.2, we have the following corollary.

Corollary 1.3. Let X be an n-dimensional compact Kähler manifold.
Let (E, hE) (resp. (L, hL)) be a holomorphic vector (resp. line) bun-
dle on X with a smooth hermitian metric hE (resp. hL). Let F be a
holomorphic line bundle on X. Assume the following conditions.

(a) There exists an effective Cartier divisor D on X such that
OX(D) ' F⊗k for some positive integer k.

(b)
√
−1Θ(E) ≥Nak 0.

(c)
√
−1(Θ(E) − εIdE ⊗ Θ(L)) ≥Nak 0 for some positive constant

ε.
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Let s be a nonzero holomorphic section of L. Then the multiplication
homomorphism

×s : Hq(X, KX ⊗ E ⊗ F ⊗ J ) → Hq(X, KX ⊗ E ⊗ F ⊗ J ⊗ L)

is injective for every q ≥ 0, where J = J ( 1
kD) is the multiplier ideal

sheaf associated to 1
kD (cf. Definition 2.8).

One of the advantages of our formulation is that we are released from
sophisticated algebraic geometric methods such as desingularizations,
covering tricks, Leray’s spectral sequence, and so on both in the proof
and in various applications (see, for example, the proof of Proposition
4.1). The main ingredient of our proof of Theorem 1.2 is Nakano’s
identity (see Proposition 2.16).

We note that there are many contributors (Kollár, Esnault–Viehweg,
Kawamata, Ambro, ...) to this kind of cohomology injectivity theo-
rem. We just mention that the first result was obtained by Tankeev
[Tn, Proposition 1]. It inspired Kollár to obtain his famous injectivity
theorem (see [Ko1] or Theorem 1.1). After [Ko1], many generalizations
of Theorem 1.1 were obtained (see the books [EV] and [Ko2]). Kollár
did not refer to [E] in [Ko2]. However, we think that [E] is the first
paper where Kollár’s injectivity theorem is proved (and generalized) by
differential geometric arguments.

Let us recall Enoki’s theorem [E, Theorem 0.2], which is a very
special case of Theroem 1.2, for the reader’s convenience. To recover
Corollary 1.4 from Theorem 1.2, it is sufficient to put E = OX , F =
L⊗m, and L = L⊗k. The reader who reads Japanese can find [F2]
useful. It is a survey on Enoki’s injectivity theorem.

Corollary 1.4 (Enoki). Let X be an n-dimensional compact Kähler
manifold and let L be a semi-positive holomorphic line bundle on X.
Suppose L⊗k, k > 0, admits a nonzero global holomorphic section s.
Then

×s : Hq(X, KX ⊗ L⊗m) → Hq(X, KX ⊗ L⊗m+k)

is injective for every m > 0 and every q ≥ 0.

We recall Enoki’s idea of the proof in [E] because we will use the
same idea to prove Theorem 1.2.

1.5 (Enoki’s proof). From now on, we assume that k = m = 1 for
simplicity. It is well known that the cohomology group Hq(X, KX ⊗
L⊗l) is represented by the space of harmonic forms Hn,q(L⊗l) = {u :
smooth L⊗l-valued (n, q)-form on X such that ∂̄u = 0, D′′∗

L⊗lu = 0},
where D′′∗

L⊗l is the formal adjoint of ∂̄. We take u ∈ Hn,q(L). Then,
∂̄(su) = 0 because s is holomorphic. We can check that D′′∗

L⊗2(su) = 0
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by using Nakano’s identity and the semi-positivity of L. Thus, s in-
duces ×s : Hn,q(L) → Hn,q(L⊗2). Therefore, the required injectivity is
obvious.

Enoki’s theorem contains Kollár’s original injectivity theorem (cf. The-
orem 1.1) by the following well-known lemma.

Lemma 1.6. Let L be a semi-ample line bundle on a smooth projective
manifold X. Then L is semi-positive.

Proof. There exists a morphism f = Φ|L⊗m| : X → PN induced by the
complete linear system |L⊗m| for some m > 0 because L is semi-ample.
Let h be a smooth hermitian metric on OPN (1) with positive definite
curvature. Then (f ∗h)

1

m is a smooth hermitian metric on L whose
curvature is semi-positive. !

Remark 1.7. Let X be a complex analytic space and let E be a co-
herent sheaf on X. In order to prove Hp(X, E) = 0, it is sufficient
to construct a homomorphism ϕ : E → F of coherent sheaves on X
such that the induced map Hp(X, E) → Hp(X,F) is injective and that
Hp(X,F) = 0. This simple observation plays crucial roles for various
vanishing theorems on toric varieties (see, for example, [F3] and [F4]).
Anyway, injectivity theorems sometimes are very useful in proving var-
ious vanishing theorems. See the proof of Corollary 4.6 below.

We quickly review Kollár’s proof of his injectivity theorem in [Ko2],
which is much simpler than Kollár’s original proof in [Ko1], for the
reader’s convenience.

1.8 (Kollár’s proof). Let X be a smooth projective n-fold and let L
be a (not necessarily semi-ample) line bundle on X. Let s be a non-
zero holomorphic section of L⊗2. Assume that D = (s = 0) is a
smooth divisor on X for simplicity. We can take a double cover π :
Z → X ramifying along D. By the Hodge decomposition, we obtain
a surjection Hq(Z, CZ) → Hq(X,OZ) for every q. By taking the anti-
invariant part of the covering involution, we obtain that Hq(X, G) →
Hq(X, L−1) is surjective for every q, where π∗CZ = CX ⊕ G is the
eigen-sheaf decomposition. It is not difficult to see that there exists
a factorization Hq(X, G) → Hq(X, L−1 ⊗ OX(−D)) → Hq(X, L−1)
for every q. Therefore, ×s : Hq(X, KX ⊗ L) → Hq(X, KX ⊗ L ⊗
OX(D)) is injective by the Serre duality. In general, D is not necessarily
smooth. So, we have to use sophisticated algebraic geometric methods
such as desingularizations, relative vanishing theorems, Leray’s spectral
sequences, and so on, even when X is smooth and L is free.
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Remark 1.9. As we saw in 1.8, thanks to the Serre duality, the injec-
tivity of Hq(X, KX ⊗ L) → Hq(X, KX ⊗ L ⊗OX(D)) is equivalent to
the surjectivity of Hn−q(X, L−1 ⊗ OX(−D)) → Hn−q(X, L−1). How-
ever, injectivity seems to be much better and more natural for some
applications and generalizations. See Section 4.

Roughly speaking, Kollár’s geometric proof in [Ko2] (and Esnault–
Viehweg’s proof in [EV]) depends on the Hodge decomposition, or the
degeneration of the Hodge to de Rham type spectral sequence. So,
it works only when E is a unitary flat vector bundle (see [Ko2, 9.17
Remark]). On the other hand, our analytic proof (and the proofs in [E],
[O2], and [Tk]) relies on the harmonic representation of the cohomology
groups. We do not know the true relationship between the geometric
proof and the analytic one.

1.10 (More advanced topics). In [F1], we prove a relative version of
Theorem 1.2. In that case, X is not necessarily compact. When X is
not compact, a locally square integrable differential form u on X is not
necessarily globally square integrable. So, we use Ohsawa–Takegoshi’s
twisted version of Nakano’s identity to control the asymptotic behavior
of the L2-norm of u around the boundary of X. Thus, we need much
more analytic methods for the relative setting.

In [F12, Chapter 2], [F5], and [F11, Sections 5 and 6], we develop the
geometric approach (see 1.8) to obtain a very important generalization
of Kollár’s injectivity theorem. In those papers, we consider mixed
Hodge structures on compact support cohomology groups. Roughly
speaking, the decomposition

Hn
c (X \ Σ, C) '

⊕

p+q=n

Hq(X, Ωp
X(log Σ) ⊗OX(−Σ))

where X is a smooth projective variety and Σ is a simple normal cross-
ing divisor on X produces a generalization of Kollár type cohomology
injectivity theorem. The reader can find a thorough treatment of our
geometric approach in [F12, Chapter 2]. We have already obtained
many applications for the log minimal model program in [F10], [F12],
[F6], [F7], [F8], [FST], [F9], [F11], and [F13].

We summarize the contents of this paper. In Section 2, we fix no-
tation and collect basic results. Section 3 is the proof of the main
theorem: Theorem 1.2. We will represent the cohomology groups by
the spaces of harmonic forms on a Zariski open set with a suitable
complete Kähler metric. We will use L2-estimates for ∂̄-equations on
complete Kähler manifolds (see Lemma 3.2). It is a key point of our



6 OSAMU FUJINO

proof. In Section 4, we treat Kollár type injectivity theorem, Esnault–
Viehweg type injectivity theorem, and Kawamata–Viehweg–Nadel type
vanishing theorem as applications of Theorem 1.2. We recommend the
reader to compare them with usual algebraic geometric ones.

Acknowledgments. The first version of this paper was written in
Nagoya in 2006. The author would like to thank Professor Takeo Oh-
sawa for answering his questions. He was partially supported by The
Sumitomo Foundation and by the Grant-in-Aid for Young Scientists
(A) &17684001 from JSPS when he prepared the first version. He thanks
Doctor Dano Kim for useful comments. He revised this paper in Kyoto
in 2010. He was partially supported by The Inamori Foundation and
by the Grant-in-Aid for Young Scientists (A) &20684001 from JSPS.

2. Preliminaries

In this section, we collect basic definitions and results in algebraic
and analytic geometries. For details, see, for example, [D4].

2.1 (Singular hermitian metric). Let L be a holomorphic line bundle
on a complex manifold X.

Definition 2.2 (Singular hermitian metric). A singular hermitian met-
ric on L is a metric which is given in every trivialization θ : L|Ω ' Ω×C
by

‖ξ‖ = |θ(ξ)|e−ϕ(x), x ∈ Ω, ξ ∈ Lx,

where ϕ ∈ L1
loc(Ω) is an arbitrary function, called the weight of the

metric with respect to the trivialization θ. Here, L1
loc(Ω) is the space

of the locally integrable functions on Ω.

Throughout this paper, we basically use singular hermitian metrics
as in the following example.

Example 2.3. Let D =
∑

αjDj be a divisor with coefficients αj ∈ N.
Then OX(D) is equipped with a natural singular hermitian metric as
follows. Let f be a local section of OX(D), viewed as a meromorphic
function such that div(f) + D ≥ 0. We define ‖f‖2 = |f |2 ∈ [0,∞]. If
gj is a generator of the ideal of Dj on an open set Ω ⊂ X, then the
weight corresponding to this metric is ϕ =

∑

j αj log |gj|. It is obvious
that this metric is a smooth hermitian metric on X\D and its curvature
is zero on X \ D. Let L be a holomorphic line bundle on X. Assume
that L⊗k ' M ⊗OX(D) for some holomorphic line bundle M and an
effective divisor D on X. As above, OX(D) is equipped with a natural
singular hermitian metric hD. Let hM be any smooth hermitian metric
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on M . Then L has a singular hermitian metric hL := h
1

k

Mh
1

k

D. Note that
hL is smooth outside D and ΘhL

(L) = 1
kΘhM

(M) on X \ D.

2.4 (Multiplier ideal sheaf). The notion of multiplier ideal sheaves
introduced by Nadel [Nd] is very important in recent developments of
complex and algebraic geometries (cf. [L, Part Three]).

Definition 2.5 ((Quasi-)plurisubharmonic function and multiplier ideal
sheaf). Let X be a complex manifold. A function ϕ : X → [−∞,∞)
is said to be plurisubharmonic (psh, for short) if, on each connected
component of X,

1. ϕ is upper semi-continuous, and
2. ϕ is locally integrable and

√
−1∂∂̄ϕ is positive semi-definite as

a (1, 1)-current,

or ϕ ≡ −∞. A smooth strictly plurisubharmonic function ψ on X is a
smooth function on X such that

√
−1∂∂̄ψ is a positive definite smooth

(1, 1)-form. A quasi-plurisubharmonic (quasi-psh, for short) function is
a function ϕ which is locally equal to the sum of a psh function and of
a smooth function. If ϕ is a quasi-psh function on a complex manifold
X, the multiplier ideal sheaf J (ϕ) ⊂ OX is defined by

Γ(U,J (ϕ)) = {f ∈ OX(U); |f |2e−2ϕ ∈ L1
loc(U)}

for every open set U ⊂ X. Then it is known that J (ϕ) is a coherent
ideal sheaf of OX . See, for example, [D4, (5.7) Proposition].

Remark 2.6. By the assumption (ii) in Theorem 1.2, the weight of
the singular hermitian metric hF is a quasi-psh function on every triv-
ialization. So, we can define multiplier ideal sheaves locally and check
that they are independent of trivializations. Thus, we can define the
multiplier ideal sheaf globally and denote it by J (hF ), which is an
abuse of notation. It is a coherent ideal sheaf on X.

Example 2.7. Let X = { z ∈ C | |z| < r} for some 0 < r < 1 and
let L be a trivial line bundle on X. We consider a singular hermitian
metric hL = exp(

√

− log |z|2) of L. Then hL is smooth outside the
origin 0 ∈ X. The weight of hL is ϕ = −1

2

√

− log |z|2 and ϕ is a psh
function on X. The Lelong number of ϕ at 0 is

lim inf
z→0

ϕ(z)

log |z|
= 0.

Thus, we have J (hL) ' OX by Skoda. Note that ϕ is smooth outside
0, which is an analytic subvariety of X. However, ϕ does not have
analytic singularities around 0.
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Definition 2.8. Let X be a complex manifold and let D =
∑

αjDj be
an effective Q-divisor on X. Let gj be a generator of the ideal of Dj on
an open set Ω ⊂ X. We put J (D) := J (ϕ), where ϕ =

∑

j αj log |gj|.
Since J (ϕ) is independent of the choice of the generators gj’s, J (D) is
a well-defined coherent ideal sheaf on X. We call J (D) the multiplier
ideal sheaf associated to the effective Q-divisor D. We say that the
divisor D is integrable at a point x0 ∈ X if the function

∏

|gj|−2αj is
integrable on a neighborhood of x0, equivalently, J (D)x0

= OX,x0
. Let

D′ be another effective Q-divisors on X. Then, J (D) = J (D + εD′)
for 0 < ε . 1, ε ∈ Q.

Remark 2.9. In Definition 2.8, D is integrable at x0 if and only if the
pair (X, D) is Kawamata log terminal (klt, for short) in a neighborhood
of x0 (cf. [KM, Definition 2.34]).

Example 2.10. Let hL be the singular hermitian metric defined in
Example 2.3. Then the weight of the singular hermitian metric hL is
a quasi-psh function on every trivialization. Therefore, the multiplier
ideal sheaf J (hL) is well-defined and J (hL) = J ( 1

kD).

2.11 (Hermitian and Kähler geometries). We collect the basic notion
and results of hermitian and Kähler geometries (see also [D4]).

Definition 2.12 (Chern connection and its curvature form). Let X
be a complex hermitian manifold and (E, h) a holomorphic hermitian
vector bundle on X. Then there exists the Chern connection D =
D(E,h), which can be split in a unique way as a sum of a (1, 0) and
of a (0, 1)-connection, D = D′

(E,h) + D′′
(E,h). By the definition of the

Chern connection, D′′ = D′′
(E,h) = ∂̄. We obtain the curvature form

Θ(E) = Θ(E,h) = Θh := D2
(E,h). The subscripts might be suppressed if

there is no danger of confusion.

Let U be a small open set of X and (eλ) a local holomorphic frame
of E|U . Then the hermitian metric h is given by the hermitian matrix
H = (hλµ), hλµ = h(eλ, eµ), on U . We have h(u, v) = tuHv̄ on U for
smooth sections u, v of E|U . This implies that h(u, v) =

∑

λ,µ uλhλµv̄µ

for u =
∑

eiui and v =
∑

ejvj . Then we obtain that
√
−1Θh(E) =√

−1∂̄(H
−1

∂H) and t(
√
−1tΘh(E)H) =

√
−1tΘh(E)H on U .

Definition 2.13 (Inner product). Let X be an n-dimensional complex
manifold with the hermitian metric g. We denote by ω the fundamental
form of g. Let (E, h) be a hermitian vector bundle on X, and u, v are
E-valued (p, q)-forms with measurable coefficients, we set

‖u‖2 =

∫

X

|u|2dVω, 〈〈u, v〉〉 =

∫

X

〈u, v〉dVω,
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where |u| is the pointwise norm induced by g and h on Λp,qT ∗
X ⊗E, and

dVω = 1
n!ω

n. More explicitly, 〈u, v〉dVω = tu∧H∗v, where ∗ is the Hodge
star operator relative to ω and H is the (local) matrix representation
of h. When we need to emphasize the metrics, we write |u|g,h, and so
on.

Let Lp,q
(2)(X, E)(= Lp.q

(2)(X, (E, h))) be the space of square integrable
E-valued (p, q)-forms on X. The inner product was defined in Defi-
nition 2.13. When we emphasize the metrics, we write Lp,q

(2)(X, E)g,h,
where g (resp. h) is the hermitian metric of X (resp. E). As usual
one can view D′ and D′′ as closed and densely defined operators on
the Hilbert space Lp,q

(2)(X, E). The formal adjoints D′∗, D′′∗ also have
closed extensions in the sense of distributions, which do not necessarily
coincide with the Hilbert space adjoints in the sense of Von Neumann,
since the latter ones may have strictly smaller domains. It is well
known, however, that the domains coincide if the hermitian metric of
X is complete. See Lemma 2.17 below.

Definition 2.14 (Nakano positivity and semi-positivity). Let (E, h) be
a holomorphic vector bundle on a complex manifold X with a smooth
hermitian metric h. Let Ξ be a Hom(E, E)-valued (1, 1)-form such that
t(tΞh) = tΞh. Then Ξ is said to be Nakano positive (resp. Nakano semi-
positive) if the hermitian form on TX ⊗E associated to tΞh is positive
definite (resp. semi-definite). We write Ξ >Nak 0 (resp. ≥Nak 0). We
note that Ξ1 >Nak Ξ2 (resp. Ξ1 ≥Nak Ξ2) means that Ξ1 − Ξ2 >Nak 0
(resp. ≥Nak 0). A holomorphic vector bundle (E, h) is said to be Nakano
positive (resp. Nakano semi-positive) if

√
−1Θ(E) >Nak 0 (resp. ≥Nak

0). We usually omit “Nakano”when E is a line bundle.

Definition 2.15 (Graded Lie bracket). Let C∞(X, Λp,qT ∗
X ⊗E) be the

space of the smooth E-valued (p, q)-forms on X. If A, B are the endo-
morphisms of pure degree of the graded module M• = C∞(X, Λ•,•T ∗

X ⊗
E), their graded Lie bracket is defined by

[A, B] = AB − (−1)deg A deg BBA.

Let us recall Nakano’s identity, which is one of the main ingredients
of the proof of our main theorem: Theorem 1.2.

Proposition 2.16 (Nakano’s identity). We further assume that g is
Kähler. Let

∆′ = D′D′∗ + D′∗D′

and

∆′′ = D′′D′′∗ + D′′∗D′′
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be the complex Laplace operators acting on E-valued forms. Then

∆′′ = ∆′ + [
√
−1Θ(E), Λ],

where Λ is the adjoint of ω ∧ · .

The following lemma is now classical. See, for example, [D1, Lemme
4.3].

Lemma 2.17 (Density lemma). If g is complete, then Cp,q
0 (X, E) is

dense in DomD′′∗ ∩ Dom∂̄ with respect to the graph norm

u 4→ ‖u‖ + ‖∂̄u‖ + ‖D′′∗u‖,
where Cp,q

0 (X, E) is the space of the E-valued smooth (p, q)-forms on
X with compact supports and DomD′′∗ (resp. Dom∂̄) is the domain of
D′′∗ (resp. ∂̄).

Combining Proposition 2.16 with Lemma 2.17, we obtain the follow-
ing formula.

Proposition 2.18. Let u be a square integrable E-valued (n, q)-form on
X with dim X = n and let g be a complete Kähler metric on X. Let ω
be the fundamental form of g. Assume that

√
−1Θ(E) ≥Nak −cIdE ⊗ω

for some constant c. Then we obtain that

‖D′′∗u‖2 + ‖∂̄u‖2 = ‖D′∗u‖2 + 〈〈
√
−1Θ(E)Λu, u〉〉

for every u ∈ DomD′′∗ ∩ Dom∂̄.

The final remark in this section will play crucial roles in the proof
of the main theorem: Theorem 1.2. The proof is an easy calculation
(cf. [D1, Lemme 3.3]).

Remark 2.19. Let g′ be another hermitian metric on X such that
g′ ≥ g and ω′ be the fundamental form of g′. Let u be an E-valued
(n, q)-form with measurable coefficients. Then, we have |u|2g′,hdVω′ ≤
|u|2g,hdVω, where |u|g′,h (resp. |u|g,h) is the pointwise norm induced by g′

and h (resp. g and h). If u is an E-valued (n, 0)-form, then |u|2g′,hdVω′ =
|u|2g,hdVω. In particular, ‖u‖2 is independent of g when u is an (n, 0)-
form.

3. Proof of the main theorem

In this section, we prove the main theorem: Theorem 1.2. The idea
is very simple. We represent the cohomology groups by the space of
harmonic forms on X \ Z (not on X!). The manifold X \ Z is not
compact. However, it is a complete Kähler manifold and all hermitian
metrics are smooth on X\Z. So, there are no difficulties on X\Z. Note
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that we do not need the difficult regularization technique for quasi-psh
functions on Kähler manifolds (cf. [D1, Théorème 9.1]).

Proof of Theorem 1.2. Since X is compact, there exists a complete
Kähler metric g′ on Y := X \ Z such that g′ > g on Y . We sketch the
construction of g′ because we need some special properties of g′ in the
following proof. The next lemma is well known. See, for example, [D2,
Lemma 5].

Lemma 3.1. There exists a quasi-psh function ψ on X such that ψ =
−∞ on Z with logarithmic poles along Z and ψ is smooth outside Z.

Without loss of generality, we can assume that ψ < −e on X. We
put ϕ = 1

log(−ψ) . Then ϕ is a quasi-psh function on X and ϕ < 1.

Thus, we can take a positive constant α such that
√
−1∂∂̄ϕ + αω > 0

on Y . Let g′ be the Kähler metric on Y whose fundamental form is
ω′ = ω + (

√
−1∂∂̄ϕ + αω). We will show that

ω′ ≥ ∂(log(log(−ψ))) ∧ ∂̄(log(log(−ψ)))

if we choose α 6 0. We have

∂̄ϕ = −
−∂̄ψ
−ψ

(log(−ψ))2
,

and

∂∂̄ϕ = 2
−∂ψ
−ψ ∧ −∂̄ψ

−ψ

(log(−ψ))3
−

∂(−∂̄ψ
−ψ )

(log(−ψ))2

= 2
−∂ψ
−ψ ∧ −∂̄ψ

−ψ

(log(−ψ))3
−

−∂∂̄ψ
−ψ

(log(−ψ))2
+

−∂ψ∧(−∂̄ψ)
(−ψ)2

(log(−ψ))2

= 2
−∂ψ
−ψ ∧ −∂̄ψ

−ψ

(log(−ψ))3
+

∂∂̄ψ
−ψ

(log(−ψ))2
+

−∂ψ∧(−∂̄ψ)
(−ψ)2

(log(−ψ))2
.

On the other hand,

∂(log(log(−ψ))) =
−∂ψ
−ψ

log(−ψ)
.

Therefore,

∂(log(log(−ψ))) ∧ ∂̄(log(log(−ψ))) =

−∂ψ∧(−∂̄ψ)
(−ψ)2

(log(−ψ))2
.

This implies

ω′ ≥ ∂(log(log(−ψ))) ∧ ∂̄(log(log(−ψ)))
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if α 6 0. Therefore, g′ is a complete Kähler metric on Y by Hopf–
Rinow because log(log(−ψ)) tends to +∞ on Z. More precisely,

η :=
1√
2

log(log(−ψ))

is a smooth exhaustive function on Y such that |dη|g′ ≤ 1. We fix these
Kähler metrics throughout this proof. In general,

Ln,q
(2) (Y, E ⊗ F ) = Ln,q

(2) (Y, E ⊗ F )g′,hEhF

= Im∂̄ ⊕Hn,q(E ⊗ F ) ⊕ ImD′′∗
E⊗F ,

where

Hn,q(E ⊗ F ) := {u ∈ Ln,q
(2) (Y, E ⊗ F ) | ∂̄u = D′′∗

E⊗Fu = 0}

is the space of the E ⊗ F -valued harmonic (n, q)-forms. We note that
u ∈ Hn,q(E⊗F ) is smooth by the regularization theorem for the elliptic
operator ∆′′

E⊗F = D′′∗
E⊗F ∂̄ + ∂̄D′′∗

E⊗F . The claim below is more or less
known to experts (cf. [Tk, Proposition 4.6] and [O1, Theorem 4.13]).
We write it for the reader’s convenience.

Claim 1. We have the following equalities and an isomorphism of co-
homology groups for every q ≥ 0.

Im∂̄ = Im∂̄, ImD′′∗
E⊗F = ImD′′∗

E⊗F , and

Hq(X, KX ⊗ E ⊗ F ⊗ J (hF )) '
Ln,q

(2) (Y, E ⊗ F ) ∩ Ker∂̄

Im∂̄
.

If the claim is true, then Hq(X, KX ⊗E⊗F ⊗J (hF )) ' Hn,q(E⊗F )
because Ln,q

(2)(Y, E ⊗ F ) ∩ Ker∂̄ = Im∂̄ ⊕Hn,q(E ⊗ F ).

Proof of Claim. First, let X =
⋃

i∈I Ui be a finite Stein cover of X such
that each Ui is small (see the proof of Lemma 3.2). We denote this cover
by U = {Ui}i∈I . By Cartan and Leray, we obtain Hq(X, KX ⊗E⊗F ⊗
J (hF )) ' Ȟq(U , KX ⊗ E ⊗ F ⊗ J (hF )), where the right hand side is
the Čech cohomology group calculated by U . Let {ρi}i∈I be a partition
of unity associated to U . We put Ui0i1···iq = Ui0∩· · ·∩Uiq . Then Ui0i1···iq

is Stein. Let u = {ui0i1···iq} such that ui0i1···iq ∈ Γ(Ui0i1···iq , KX ⊗ E ⊗
F ⊗ J (hF )) and δu = 0, where δ is the coboundary operator of Čech
complexes. We put u1 = {u1

i0···iq−1
} with u1

i0···iq−1
=

∑

i ρiuii0···iq−1
.

Then δu1 = u and δ(∂̄u1) = 0. Thus, we can construct u2 such that
δu2 = ∂̄u1 as above by using {ρi}. By repeating this process, we obtain
∂̄uq ∈ Ln,q

(2)(Y, E ⊗ F ) ∩ Ker∂̄ by Remark 2.19 because X is compact.
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By the standard diagram chasing, we have a homomorphism

ᾱ : Ȟq(U , KX ⊗ E ⊗ F ⊗ J (hF )) →
Ln,q

(2) (Y, E ⊗ F ) ∩ Ker∂̄

Im∂̄
.

On the other hand, we take w ∈ Ln,q
(2) (Y, E ⊗ F ) ∩ Ker∂̄. We put

w0 = {wi0}, where wi0 = w|Ui0
\Z . We will use Ci to represent some

positive constants independent of w. By Lemma 3.2 below, we have
w1 = {w1

i0} such that ∂̄w1 = w on each Ui0 \ Z with

‖w1‖2 :=
∑

i

∫

Ui\Z

|w1
i |2g′,hEhF

≤ C1

∫

X\Z

|w|2g′,hEhF
= C1‖w‖2.

Since ∂̄(δw1) = 0, we can obtain w2 such that ∂̄w2 = δw1 on each
Ui0i1\Z with ‖w2‖2 ≤ C2‖w1‖2. By repeating this procedure, we obtain
wq such that ∂̄wq = δwq−1 with ‖wq‖2 ≤ Cq‖wq−1‖2. In particular,
‖δwq‖2 ≤ C0‖w‖2. We put β(w) := δwq =: {vi0···iq}. Then ∂̄vi0···iq = 0
and ‖vi0···iq‖2 < ∞. Thus, vi0···iq ∈ Γ(Ui0···iq , KX ⊗E ⊗F ⊗J (hF )) and
δ(β(w)) = 0. Note that an E ⊗ F -valued holomorphic (n, 0)-form on
U \ Z, where U is an open subset of X, with a finite L2 norm can be
extended to an E ⊗ F -valued holomorphic (n, 0)-form on U (see also
Remark 2.19). Therefore, we have a homomorphism

β̄ :
Ln,q

(2)(Y, E ⊗ F ) ∩ Ker∂̄

Im∂̄
→ Ȟq(U , KX ⊗ E ⊗ F ⊗ J (hF ))

by the standard diagram chasing. It is not difficult to see that ᾱ and
β̄ induce the desired isomorphism by the above arguments.

Next, we note that Im∂̄ = Im∂̄ if and only if ImD′′∗
E⊗F = ImD′′∗

E⊗F

(cf. [H, Theorem 1.1.1]). Thus, it is sufficient to prove that Im∂̄ = Im∂̄.

Let w ∈ Im∂̄. Then there exists a sequence {vk} ⊂ Im∂̄ such that ‖w−
∂̄vk‖2 → 0 if k → ∞. By the above construction, ‖β(w − ∂̄vk)‖2 → 0
when k → ∞. Therefore, the image of w in Ȟq(U , KX⊗E⊗F ⊗J (hF ))
is zero because Ȟq(U , KX ⊗ E ⊗ F ⊗ J (hF )) is a finite dimensional,
separated, Fréchet space (cf. [GR, Chap. VIII, Sec. A, 19. Theorem]).
Thus, w ∈ Im∂̄ by the above isomorphism. !

There are various formulations for L2-estimates for ∂̄-equations, which
originated from Hörmander’s paper [H]. The following one is suitable
for our purpose. We used it in the proof of Claim 1.

Lemma 3.2 (L2-estimates for ∂̄-equations on complete Kähler mani-
folds). Let U be a small Stein open set of X. If u ∈ Ln,q

(2) (U \ Z, E ⊗
F )g′,hEhF

with ∂̄u = 0, then there exists v ∈ Ln,q−1
(2) (U \Z, E⊗F )g′,hEhF
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such that ∂̄v = u. Moreover, there exists a positive constant C inde-
pendent of u such that

∫

U\Z

|v|2g′,hEhF
≤ C

∫

U\Z

|u|2g′,hEhF
.

Proof. We can assume that ω′ =
√
−1∂∂̄Ψ on U because U is a small

Stein open set. Then (E ⊗ F, hEhFe−Ψ) is Nakano positive and

C1hEhF ≤ hEhF e−Ψ ≤ C2hEhF

for some positive constants C1 and C2 on U \ Z. Note that Ψ is a
bounded function on X by the construction of g′. It is obvious that√
−1Θ(E⊗F,hEhF e−Ψ) ≥Nak IdE ⊗ ω′ on U \ Z by the assumption (iii) in

Theorem 1.2. Let w be an E ⊗ F -valued (n, q)-form on U \ Z with
measurable coefficients. We write

‖w‖2 =

∫

U\Z

|w|2g′,hEhF
dVω′ and ‖w‖2

0 =

∫

U\Z

|w|2g′,hEhF e−ΨdVω′.

Then ‖w‖ is finite if and only if ‖w‖0 is finite. By the well-known
L2 estimates for ∂̄-equations (cf. [D1, Théorème 4.1, Remarque 4.2] or
[D4, (5.1) Theorem]), we obtain an E ⊗ F -valued (n, q − 1)-form v on
U \ Z such that ∂̄v = u and ‖v‖2

0 ≤ C0‖u‖2
0, where C0 is a positive

constant independent of u. We note that g′ is not a complete Kähler
metric on U \ Z but U \ Z is a complete Kähler manifold (cf. [D1,
Thèoréme 0.2]). !

Therefore, we obtain

Ln,q
(2) (Y, E ⊗ F ) = Im∂̄ ⊕Hn,q(E ⊗ F ) ⊕ ImD′′∗

E⊗F .

Thus, Hq(X, KX ⊗ E ⊗ F ⊗ J (hF )) ' Hn,q(E ⊗ F ).
Let U be a small Stein open set of X. Then there exists a smooth

strictly psh function Φ on U such that (L, hLe−Φ) is semi-positive on
U . By applying the same argument as in Lemma 3.2 to (E ⊗ F ⊗
L, hEhF hLe−Ψ−Φ), we obtain

Ln,q
(2) (Y, E ⊗ F ⊗ L) = Im∂̄ ⊕Hn,q(E ⊗ F ⊗ L) ⊕ ImD′′∗

E⊗F⊗L

and

Hq(X, KX ⊗ E ⊗ F ⊗ J (hF ) ⊗ L) ' Hn,q(E ⊗ F ⊗ L)

similarly.

Claim 2. The multiplication homomorphism

×s : Hn,q(E ⊗ F ) → Hn,q(E ⊗ F ⊗ L)

is well-defined for every q ≥ 0.
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Proof of Claim. By Proposition 2.18, we obtain

‖D′′∗
E⊗Fu‖2 + ‖∂̄u‖2 = ‖D′∗u‖2 + 〈〈

√
−1Θ(E ⊗ F )Λu, u〉〉

for u ∈ Ln,q
(2) (Y, E⊗F ), where Λ is the adjoint of ω′∧ · . We note that the

Kähler metric g′ on Y is complete. If u ∈ Hn,q(E ⊗ F ), then D′∗u = 0
and 〈

√
−1(Θ(E) + IdE ⊗Θ(F ))Λu, u〉 = 0 by the assumption (iii). By

(iv), we have 〈
√
−1(IdE ⊗ Θ(L))Λu, u〉 ≤ 0. When u ∈ Hn,q(E ⊗ F ),

∂̄(su) = 0 by the Leibnitz rule and D′∗(su) = sD′∗u = 0 because s is
an L-valued holomorphic (0, 0)-form. Since |s|2hL

is a smooth function
on X, there exists a positive number C such that |s|2hL

< C everywhere
on X. Therefore,

∫

Y

|su|2g′,hLhEhF
dVω′ < C

∫

Y

|u|2g′,hEhF
dVω′ < ∞.

So, su is square integrable. Thus, we obtain

‖D′′∗
E⊗F⊗L(su)‖2 = 〈〈

√
−1Θ(E ⊗ F ⊗ L)Λ(su), su〉〉

by Proposition 2.18. We note that
√
−1(Θ(E) + IdE ⊗ Θ(F ) + IdE ⊗ Θ(L))

≥Nak (1 + ε)IdE ⊗ Θ(L)

≥Nak −c′IdE ⊗ ω′

on Y = X \ Z for some constant c′. On the other hand,

〈
√
−1Θ(E ⊗ F ⊗ L)Λ(su), su〉 = |s|2〈

√
−1(IdE ⊗ Θ(L))Λu, u〉 ≤ 0,

where |s| is the pointwise norm of s with respect to hL. Therefore,
D′′∗

E⊗F⊗L(su) = 0. This implies that su ∈ Hn,q(E ⊗ F ⊗ L). We finish
the proof of the claim. !

By the above claims, the theorem is obvious because ×s : Hn,q(E ⊗
F ) → Hn,q(E ⊗ F ⊗ L) is injective for every q. !

We close this section with the proof of Corollary 1.3.

Proof of Corollary 1.3. We put hF := h
1

k

D as in Example 2.3, where hD

is the natural singular hermitian metric on OX(D). Then hF is smooth
on X\D,

√
−1Θ(F ) ≥ 0 in the sense of currents, and J (hF ) = J ( 1

kD).
Therefore, we can apply Theorem 1.2. !
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4. Applications: injectivity and vanishing theorems

In this section, we treat only a few applications of Theorem 1.2. We
recommend the reader to see the results in [Tk] and the arguments in
[Ny, Chapter V, §3] for other formulations and generalizations. For ap-
plications in the log minimal model program, which can not be covered
by the results in this paper, see [F9], [F11], [F12], and so on.

The following formulation is due to Kollár (cf. [Ko2, 10.13 Theorem]).
He stated this result for the case where E is a trivial line bundle and
(X, ∆) is klt, that is, J (∆) ' OX .

Proposition 4.1 (Kollár type injectivity theorem). Let f : X → Y be
a proper surjective morphism from a compact Kähler manifold X to a
normal projective variety Y . Let L be a holomorphic line bundle on X
and let D be an effective divisor on X such that f(D) 7= Y . Assume
that L ≡ f ∗M + ∆, where M is a nef and big Q-divisor on Y and ∆
is an effective Q-divisor on X. Let (E, hE) be a Nakano semi-positive
holomorphic vector bundle on X. Then

Hq(X, KX ⊗E ⊗L⊗J (∆)) → Hq(X, KX ⊗E ⊗L⊗OX(D)⊗J (∆))

is injective for every q ≥ 0, where J (∆) is the multiplier ideal sheaf
associated to the effective Q-divisor ∆.

Proof. By taking P ∈ Pic0(X) suitably, we have L ⊗ P ∼Q f ∗M + ∆.
We can assume that L ∼Q f ∗M + ∆ by replacing L (resp. E) with
L ⊗ P (resp. E ⊗ P−1). By Kodaira’s lemma (see [KM, Proposition
2.61]), we can further assume that M is ample. Let h := Φ|mM | :
Y → PN be the embedding induced by the complete linear system
|mM | for a large integer m. Then OY (mM) ' h∗OPN (1). We can
take an effective divisor A on PN such that OPN (A) ' OPN (l) for some
positive integer l and D′ = f ∗h∗A − D is an effective divisor on X.
We add D′ to D and can assume that D = f ∗h∗A. Under these extra
assumptions, we can easily construct hermitian metrics satisfying the
assumptions in Theorem 1.2 (see Example 2.3). We finish the proof of
the proposition. !

Remark 4.2 (Numerical equivalence). In the above proposition, we
note that L ≡ f ∗M + ∆ means c1(L) = c1(f ∗M + ∆) in H2(X, R),
where c1 is the first Chern class of Q-divisors or line bundles.

Remark 4.3. Proposition 4.1 is a generalization of [Ko2, 10.13 The-
orem], which is stated for a compact Kähler manifold. However, the
proof of [Ko2, 10.13 Theorem] given in [Ko2] works only for projective
manifolds. In [Ko2, 10.17.3 Claim], we need an ample divisor on X to
prove local vanishing theorems.
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The following proposition is a reformulation of [EV, 5.12. Corollary
b)] from the analytic viewpoint. It is essentially the same as Proposi-
tion 4.1. In [EV], E is trivial and J ' OX .

Proposition 4.4 (Esnault–Viehweg type injectivity theorem). Let X
be a smooth projective variety and let D be an effective divisor on X.
Let (E, hE) be a Nakano semi-positive holomorphic vector bundle and
let L be a holomorphic line bundle on X. Assume that L⊗k(−D) is nef
and abundant, that is, κ(L⊗k(−D)) = ν(L⊗k(−D)), for some positive
integer k. Let B be an effective divisor on X such that

H0(X, (L⊗k(−D))⊗l ⊗OX(−B)) 7= 0

for some l > 0. Then

Hq(X, KX ⊗ E ⊗ L ⊗ J ) → Hq(X, KX ⊗ E ⊗ L ⊗ J ⊗OX(B))

is injective for every q, where J := J ( 1
kD) is the multiplier ideal sheaf

associated to the effective Q-divisor 1
kD.

Proof. Let π : Z → X be a projective birational morphism from a
smooth projective variety Z with the following properties: (i) There
exists a proper surjective morphism between smooth projective vari-
eties f : Z → Y with connected fibers, and (ii) there is a nef and big
Q-divisor M on Y such that π∗(L⊗k(−D)) ∼Q f ∗M . For the proof, see
[Ka, Proposition 2.1]. On the other hand, Riπ∗(KZ/X ⊗J ( 1

kπ∗D)) = 0
for i > 0 and π∗(KZ ⊗ J ( 1

kπ∗D)) ' KX ⊗ J ( 1
kD) by [L, Theorem

9.2.33, and Example 9.6.4]. We note that (π∗E, π∗hE) is Nakano semi-
positive on Z. So, we can assume that X = Z without loss of gen-
erality. It is not difficult to see that f(B) 7= Y by the assumption
that H0(X, (L⊗k(−D))⊗l ⊗ OX(−B)) 7= 0 for some l > 0. Thus, this
proposition follows from Proposition 4.1. !

Remark 4.5 (Vanishing theorem and torsion-freeness). Proposition
4.1 gives some generalizations of Kollár’s vanishing and torsion-free
theorems. We do not pursue them here. We just mention that [Ko2,
10.15 Corollary] holds for KX ⊗ E ⊗ J (∆), where we use the same
notation as in Proposition 4.1. We note [L, Example 9.5.9] when we
restrict the multiplier ideal sheaf J (∆) to a general hypersurface. Re-
lated topics are in [EV, 6.12 Corollary, and 6.17 Corollary].

By combining Proposition 4.1 with Serre’s vanishing theorem, we
obtain the next corollary. It may be better to be called Nadel type
vanishing theorem.

Corollary 4.6 (Kawamata–Viehweg type vanishing theorem). Let X
be a smooth projective variety and let L be a holomorphic line bundle
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on X. Assume that L ≡ M + ∆, where M is a nef and big Q-divisor
on X and ∆ is an effective Q-divisor on X. Let (E, hE) be a Nakano
semi-positive holomorphic vector bundle on X. Then Hq(X, KX ⊗E ⊗
L ⊗ J (∆)) = 0 for q ≥ 1. Moreover, if ∆ is integrable outside finitely
many points, then Hq(X, KX ⊗ E ⊗ L) = 0 for q ≥ 1.

Proof. We use Proposition 4.1 under the assumption that Y = X and
f = idX . We take an effective ample divisor D on X and apply Propo-
sition 4.1. Then we obtain that

Hq(X, KX ⊗E⊗L⊗J (∆)) → Hq(X, KX ⊗E⊗L⊗J (∆)⊗OX(mD))

is injective for m > 0 and q ≥ 0. By Serre’s vanishing theorem, we
have Hq(X, KX ⊗E ⊗L⊗J (∆)) = 0 for q ≥ 1. When ∆ is integrable
outside finitely many points, OX/J (∆) is a skyscraper sheaf. There-
fore, Hq(X, KX ⊗ E ⊗ L ⊗ OX/J (∆)) = 0 for q ≥ 1. By combining
it with the above mentioned vanishing result, we obtain the desired
result. !

The final result is a slight generalization of Demailly’s formulation
of Kawamata–Viehweg type vanishing theorem.

Corollary 4.7 (cf. [D3, Main Theorem]). Let L be a holomorphic line
bundle on an n-dimensional projective manifold X. Assume that some
positive power L⊗k can be written L⊗k ' M ⊗ OX(D), where M is
a nef line bundle and D is an effective divisor such that 1

kD is in-
tegrable on X \ B. Let ν = ν(M) be the numerical dimension of
the nef line bundle M . Let (E, hE) be a Nakano semi-positive holo-
morphic vector bundle on X. Then Hq(X, KX ⊗ E ⊗ L) = 0 for
q > n − min{max{ν, κ(L)}, codimB}.
Sketch of the proof. By the standard slicing arguments and Kodaira’s
lemma (cf. [KM, Lemma 2.60, Proposition 2.61]), we can reduce it to
the case where codimB = n and M is ample. We note that if A is a
general smooth very ample Cartier divisor on X then

0 → KX ⊗ E ⊗ L → KX ⊗ E ⊗ L ⊗OX(A) → KA ⊗ E|A ⊗ L|A → 0

is exact and J ( 1
kD)|A = J ( 1

kD|A). In particular, 1
kD|A is integrable

on A \ B|A. For the details of this reduction arguments, see the first
and second steps in the proof of the main theorem in [D3]. Therefore,
this corollary follows from the previous corollary: Corollary 4.6. !
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