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Abstract

Let ¥41 be a compact oriented surface of genus g with one boundary component,
and M, 1 its mapping class group. Morita showed that the image of the k-th Johnson
homomorphism T]é\/l of Mgy is contained in the kernel by 1(k) of an Sp-equivariant
surjective homomorphism H ®z Log(k + 1) = Log(k + 2), where H := H(¥41,Z)
and Log(k) is the degree k-part of the free Lie algebra Lo, generated by H.

In this paper, we study the Sp-module structure of the cokernel b?l(k) / Im(r,%)
of the rational Johnson homomorphism 7‘,% = 1M ®idq where b?,l(k') = bhg1(k)®z
Q. In particular, we show that the irreducible Sp-module corresponding to a parti-
tion [1¥] appears in the k-th Johnson cokernel for any k =1 (mod 4) and k > 5 with
multiplicity one. We also give a new proof of the fact due to Morita that the irre-
ducible Sp-module corresponding to a partition [k] appears in the Johnson cokernel
with multiplicity one for odd k > 3.

The strategy of the paper is to give explicit descriptions of maximal vectors with
highest weight [1¥] and [k] in the Johnson cokernel. Our construction is inspired by
the Brauer-Schur-Weyl duality between Sp(2¢g, Q) and the Brauer algebras, and our
previous work for the Johnson cokernel of the automorphism group of a free group.
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1 Introduction

Dennis Johnson established a new remarkable method to investigate the group structure of
the mapping class group of a surface and the Torelli group in a series of his pioneer works
[Joh1], [Joh2], [Joh3] and [Joh4] in 1980’s. Especially, he gave a finite set of generators of
the Torelli group, and constructed a homomorphism 7 to determine the abelianization of
the Torelli group. Now, his homomorphism 7 is called the first Johnson homomorphism,
and it is generalized to the Johnson homomorphisms of higher degrees. Over the last two
decades, the study of the Johnson homomorphisms of the mapping class group has achieved
a good progress by many authors including Morita [Mo2], Hain [Ha] and so on.

To put it plainly, the Johnson homomorphism are used to describe “one by one approx-
imations” of the Torelli group as follows. To explain it, let us fix some notations. For a
compact oriented surface ¥, ; of genus g with one boundary component, let M, be its
mapping class group. Namely, M, ; is a group of isotopy classes of orientation-preserving
diffeomorphisms of Y, ; which fix the boundary component pointwise. The fundamental
group (X1, *) of X, is isomorphic to a free group Fj, of rank 2¢. In this paper we fix
an isomorphism (2,1, %) = Fy,. Let 'y (k) be the lower central series of Fy, beginning
with T'y,(1) = Fyy, and set Loy(k) := T'yy(k)/Tag(k + 1). For each k > 1 let M, (k) be a
normal subgroup of M, ; consisting of elements which act Fy,/T'54(k + 1) trivially. Then
we have a descending filtration

Mg1(1) DMy1(2) D~ D Mgi(k)D---

of Mg such that the first term M,;(1) is just the Torelli group Z,;. This filtration
is called the Johnson filtration of M, . Set gr*(M, 1) :== M, 1(k)/My1(k + 1) for each
k > 1. Then each of gr*(M, 1) is an Sp(2g, Z)-equivariant free abelian group of finite rank,
and they are considered as one by one approximations of the Torelli group. Although to
clarify the Sp(2g,Z)-module structure of each of gr*(M, ;) plays an important role on
various studies of the Torelli group, even to determine its rank is quite a difficult problem
in general.

In order to study each graded quotients gr® (M,.1), the Johnson homomorphisms
M er* (M) = H* @z Log(k+1)

of Mg, are valuable tools where H := Hy(3,:,Z) and H* := Homy(H,Z). Here we
remark that H* is canonically isomorphic to H by the Poincaré duality. In general, the k-th
Johnson homomorphism is denoted by 75 simply. In this paper, however, to distinguish the
Johnson homomorphism of the mapping class group from that of the automorphism group
of a free group, we attach a subscript M to that of the mapping class group. (See Subsection
3.3 for details.) Since each of 7! is an Sp(2g, Z)-equivariant injective homomorphism, to
determine the image Im (") of 7{*! is one of the most basic problems. In particular, from
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a representation theoretic view, it is important to clarify the irreducible decomposition of
Im(T,ﬁ’é) as an Sp(2g, Q)-module where T]% := 1" ® idq. In the following, the subscript
Q always means tensoring with Q over Z. Now, we have Im(7{") = A3H due to Johnson
[Johl]. Furthermore the Sp(2g, Q)-module structure of Im(7'g,) are completely determined

for 1 < k < 4. (See a table in Subsection 3.3.)

On the other hand, Morita [Mo2] began to study the Johnson images systematically, and
gave many remarkable results. Here we recall some of them. First, Morita [Mo2] showed
that Tm(7{") is contained in the kernel b, (k) of H ®z Log(k + 1) — Loy(k + 2) for any
k > 2. (See Subsection 3.3.) Second, he also showed that Im(7*) does not coincide with
h,1(k) in general. Namely, the Johnson homomorphism 7 : grf(M, 1) < b, (k) is not
surjective in general. More precisely, he constructed an Sp(2g, Q)-equivariant surjective

homomorphisms
Try, : by (k) — S¥Hq

such that Try o T,% = 0 for any odd k& > 3 using the Magnus representation of M, ;.
Here S¥Hq is the symmetric tensor product of Hq of degree k, and is isomorphic to
the irreducible Sp(2g, Q)-module with highest weight [k]. Hence S*Hgq appears in the
irreducible decomposition of the cokernel Coker(7'g) := bgl(k) /Im(74) for odd &k > 3.

We should remark that throughout the paper Coker(7;'g,) denotes f)(g?l(k;) /Im(7*G,), not

Hg ®q [,;Qg(k +1)/Im(774). Now, the map Try is called the Morita trace, and S*Hq the
Morita obstruction. Here the term “obstruction” means an obstruction for the surjectivity
of the Johnson homomorphism T]%. We also remark that Hiroaki Nakamura, partially
Asada and Nakamura [AN], showed that the multiplicity of S*Hq in Coker(7}'g,) is exactly

one in his unpublished work.

From results for the irreducible decomposition of Coker(T,%) for low degrees, it seems
that the number of the irreducible components in Coker(Té’é) grows rapidly as degree
increases. At the present stage, however, there are few results for obstructions other than
the Morita obstruction for a general degree k. Thus, to establish a new method to detect
a non-trivial irreducible component in Coker(7{*) other than the Morita obstruction is an

important problem in the study of the Johnson homomorphisms.

The main purpose of the paper is to detect new series of obstructions in the Johnson
cokernels. To state our theorem, we will use the following notations. First, we remark
that for each £ > 1 the symmetric group G- of degree k 4 2 naturally acts on the space
Hgk“ from the right as a permutation of the components. For each 1 < ¢ < k + 1,
denote by s; € G0 the adjacent transposition between ¢ and 7+ 1, and by oj,o the cyclic
permutation Sgy1Sg---S2s1. Let P be a subgroup of &,y which fixes 1. The group P
is isomorphic to &y y1. The Dynkin-Specht-Wever element 6p for P in the group algebra
QG0 is defined to be

ep = (1 — 82)(1 — 8382) ce (1 — Sg+1Sk '82).
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Our main theorem is

Theorem 1. (= Theorem 7.7.) Suppose k =1 (mod4), k > 5 and g > k+2. An element
Pk = (W®(€1/\"'/\€k>)'9P'(1+0k+2+"'+0£j:%)

is an Sp-mazimal vector of weight [1¥] in hgl(k’). Moreover this gives a unique Sp-
irreducible component with highest weight [1¥] in Coker 774,

In addition to this, we also give a new proof of the fact that the Morita obstruction
uniquely appears in Coker(7{*!) for odd k > 3, due to Morita [Mo2] and Nakamura. (See
Theorem 7.6.)

In order to prove these, we use two key facts. The first one is a remarkable work
with respect to gr®(M,;) due to Hain [Ha]. In general, the graded sum gr(M,;) =
@kzlgrk(./\/lg,l) has a Lie algebra structure induced from the commutator bracket of Z, ;.
In [Ha], Hain showed that the Lie algebra grg(M,) is generated by the degree one part
grg(Mga) as a Lie algebra. This shows the following. Let M] (k) be the lower central
series of Zy, and set gr* (M |) := M_ | (k)/ M, (k+1). Then we can define the Johnson
homomorphism like homomorphism

gt (MG 1) = b (k).

(See Subsection 3.3.) Then Hain’s result above induces Im(7{’g,) = Im(T,::fS) for any k£ > 1.

The second is our previous result for the cokernel of the Johnson homomorphism of
the automorphism group of a free group. By a classical work of Dehn and Nielsen, it is
known that a natural homomorphism M,; — Aut F5, induced from the action of M,
of the fundamental group m(X,1,*) = I}, is injective. Namely, we can consider M,
as a subgroup of Aut F,,. From this view point, we can apply results for the Johnson
homomorphisms of Aut Fy, to the study of that of M,,. For any n > 2, in general, a
subgroup IA,, consisting of automorphisms of a free group F,, which acts on H,(F,,Z)
trivially is called the [A-automorphism group of F),. Let A/ (k) be the lower central series
of TA,,, and set gr®(A.) := A (k)/ A, (k+1) for any k > 1. Then we can define the Johnson
homomorphism 7}, : gr*(A!)) — H* ®z L,(k + 1) for each k > 1. Then, in our paper [Sa],
we showed that for £ > 2 and n > k + 2,

Coker(7; o) = C3(k)

where C, (k) := H®* {0, @ - @ a, —as @ -+ @ a, @ ay | a; € H). (See Subsection 3.3 for
details.)

~

In our previous paper [ES], we gave the irreducible decomposition of Coker(r; q) =
CQ(k) as a GL(n, Q)-module. Especially, we showed that S*Hq, which is also called the
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Morita obstruction, appears in Coker(7,27Q) with multiplicity one for any k£ > 2, and that
A¥Hgq appears with multiplicity one for odd k& > 3. Combining Hain’s result above and
the fact Coker(r] q) = C}(k) for n > k + 2, we can establish a new method to detect

non-trivial Sp-irreducible components in Coker(7{™). (For more details, see Section 7.1.)

The present paper produces the first successful results for the use of such method.

2 Notations

Throughout the paper, we use the following notations. Let G be a group and N a normal
subgroup of G.

e The binomial coefficient (:f) is denoted by ,,C..
e For any real number z, we set |z| := max{n € Z|n < z}.

e For any integer p, set

. 1 if p=a(modm),
p=a(modm) - 3 o if otherwise.

e The automorphism group Aut F;, of F,, acts on F,, from the right unless otherwise
noted. For any o € Aut F}, and = € F},, the action of ¢ on x is denoted by z°.

e For an element g € G, we also denote the coset class of g by g € G/N if there is no
confusion.

e The automorphism group Aut F,, acts on F,, from the right unless otherwise noted.
For any o € Aut F,, and x € F,,, the action of o on x is denoted by x°.

e For elements x and y of G, the commutator bracket [z, y| of  and y is defined to be

[z, y] := ayz~y~ .

e For elements ¢1,...,gr € G, a left-normed commutator
H te [[91792]793]7 T ]7gk]
of weight k is denoted by [gi,, Giys - -, 93, )-

e For any Z-module M and a commutative ring R, we denote M ®z R by the symbol
obtained by attaching a subscript R to M, like Mg or M%. Similarly, for any Z-linear
map f : A — B, the induced R-linear map Ar — Bp is denoted by fr or fF.

e For a semisimple G-module M and an irreducible G-module N, we denote by [N : M|
the multiplicity of /V in the irreducible decomposition of M.



3 Johnson homomorphisms of the mapping class groups
and the automorphism group of free groups

3.1 Mapping class groups of surfaces

Here we recall some properties of the mapping class groups of surfaces. For any integer
g >1,let ¥ ; be the compact oriented surface of genus g with one boundary component.
We denote by M, the mapping class group of ¥, ;. Namely, M, is the group of isotopy
classes of orientation preserving diffeomorphisms of >, ; which fix the boundary pointwise.

The mapping class group M, has an important normal subgroup called the Torelli
group. Let pa : My — Aut(H,(X,1,Z)) be the classical representation of M, ; induced
from the action of M, on the integral first homology group H;(X,1,Z) of ¥,;. The
kernel of pix is called the Torelli group, denoted by Z, ;. Namely, Z,; consists of mapping
classes of ¥, which act on Hy (3,1, Z) trivially.

Let us observe the image of pa. Take a base point * of 3, on the boundary. Then the
fundamental group m (2,1, %) of 3, is a free group of rank 2g. We fix a basis 1, ...,z
of m (341, *) as shown Figure 1.

Tog—1 Tg+r \
Ty : .
—

Figure 1: generators xy,...,Za, of m (2,1, *) and a simple closed curve ¢

Then the homology classes ey, ..., ez of x1,..., 29, form a symplectic basis of the ho-
mology group H(3,1,Z). Using this symplectic basis, we can identify Aut(H,(3,1,Z)) as
the general linear group GL(2g, Z). Under this identification, the image of p; is considered
as the symplectic group

Sp(29,Z) = {X € GL(29,2) | 'XJX = J} for J = < OI IS )
g

where [, is the identity matrix of degree g.

Next, we consider an embedding of the mapping class group M, into the automor-
phism group of a free group of rank 2g. For n > 2 let F,, be a free group of rank n
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with basis z1,...,x,. We denote by Aut F,, the automorphism group of F,,. Let H be
the abelianization Hi(F,,Z) of F,, and pu : Aut F,, — Aut H a natural homomorphism
induced from the abelianization map F,, — H. Throughout the paper, we identify Aut H
with the general linear group GL(n,Z) by fixing a basis ey, ..., e, of H induced from the
basis x1,...,z, of F,. By a classical work of Nielsen [Ni], a finite presentation of Aut F,
is obtained. Observing the images of the generators of Nielsen’s presentation, we see that
1 is surjective. The kernel TA,, of p is called the [A-automorphism group of F,. The
IA-automorphism group IA,, is a free group analogue of the Torelli group Z, ;.

Now, throughout the paper, we identify m (3,1, *) with Fy,, and Hy(X,1,Z) with H
for n = 2¢ using the basis above. Then the action of M, on m1(X,1, %) = Fy, induces a
natural homomorphism

©: Mg — Aut Fy,.

By a classical work due to Dehn and Nielsen, it is known that ¢ is injective. More precisely,
we have

Theorem 3.1 (Dehn and Nielsen). For any g > 1, we have
p(Mg1) = {o € Aut Fyy | (7 =(}

where ¢ = [x1, Tag|[T2, Tog—1] - - - [g, Tg11] € Foy, namely ¢ is a homotopy class of a simple
closed curve on X4, parallel to the boundary.

For n = 2g, we have pip = pop: My — Sp(2¢,Z), and a commutative diagram:

1 ——=TAy, —> Aut Iy, —5~ GL(2¢9,Z) — 1

jmg,l J ; J

1 Ig,l Mg,l e SP(29> Z) —1

3.2 Free Lie algebras

In this subsection, we recall the free Lie algebra generated by H, and its derivation algebra.
(See [Se] and [Re] for basic material concerning the free Lie algebra for instance.)

Let I'(1) D I'n(2) D -+ be the lower central series of a free group F), defined by the
rule
L,(1):=F,, T.k)=[.k—-1),F,), k>2.
We denote by L,,(k) :=T',(k)/Tn(k+1) the k-th graded quotient of the lower central series
of F,, and by L, := @,~,L,(k) the associated graded sum. The degree 1 part £, (1) of
L, is just H. Classically, Magnus showed that each of £, (k) is a free abelian, and Witt
[W] gave its rank as follows.

vankg (L (k) % S Mob(d)n' (1)
dlk



where Mob is the Mobius function. For any k&, [ > 1, let us consider a bilinear alternating
map

[y Juie : Lo(k) x L,(1) = Ln(k+1)

defined by [[a], [B]]uie = [|e, B]] for any [a] € £, (k) and [5] € L,(l), where [, 5] is a
commutator in F,,, and [[«, f]] is a coset class of [, 5] in £,,(k + ). Then [, | induces
a graded Lie algebra structure of the graded sum L£,. By a classical work of Magnus, the
Lie algebra L, is isomorphic to the free Lie algebra generated by H.

The Lie algebra L, is considered as a Lie subalgebra of the tensor algebra generated
by H as follows. Let
TH)=Z¢oHOH®D---

be the tensor algebra of H over Z. Then T'(H) is the universal enveloping algebra of the
free Lie algebra £,,, and the natural map ¢ : £,, — T'(H) defined by

X, Y]» XQY -Y®X

for X, Y € L, is an injective graded Lie algebra homomorphism. We denote by ¢ the
homomorphism of degree k part of ¢, and consider £, (k) as a submodule H®* through ¢.

Here, we recall the derivation algebra of the free Lie algebra. Let Der(L,,) be the graded
Lie algebra of derivations of £,,. Namely,

Der(La) i= {f : Lo =5 La] f((0,8]) = [£(@), 6] + [, fO)], 0,0 € La}.
For k > 0, the degree k part of Der(L,,) is defined to be
Der(L,)(k) :=={f € Der(L,)| f(a) € L,(k+ 1), a € H}.

Then, we have

Der(£,,) = €P Der(L,,)(k),

and can consider Der(L,)(k) as

Homyz(H,L,(k+ 1)) = H'®zL,(k+ 1)
for each & > 1 by the universality of the free Lie algebra. Let Der™(L,) be a graded Lie
subalgebra of Der(L,,)(k) with positive degree. (See Section 8 of Chapter II in [Bou].)

3.3 (Higher) Johnson homomorphisms

First we recall the Johnson filtration and the Johnson homomorphisms of the automorphism
group of a free group. Then we consider those of the mapping class group.



For each k > 1, let N, s, := F,,/T',,(k+1) of F,, be the free nilpotent group of class k and
rank n, and Aut N, x its automorphism group. Since the subgroup I',,(k+1) is characteristic
in F,,, the group Aut F,, naturally acts on N, from the right. This action induces a
homomorphism Aut F,, — Aut N, ;. Let A, (k) be the kernel of this homomorphism. Then
the groups A, (k) define a descending filtration

A, = Ay(1) D A (2) D -+

This filtration is called the Johnson filtration of Aut F,,. Set gr*(A,) := A, (k)/A.(k +
1). Andreadakis [An] originally studied the Johnson filtration, and obtained basic and
important properties of it as follows:

Theorem 3.2 (Andreadakis, [An]).
(i) Forany k,1>1,0¢€ Au(k) and x € T,(1), 27127 € T, (k +1).

(i7) For any k, 1 > 1, [A,(k), A.(1)] C A,(k+1). In other words, the Johnson filtration

is a descending central filtration of 1A,,.

(iii) For any k > 1, gr*(A,) is a free abelian group of finite rank.

In order to study the structure of gr®(.A4,,), the k-th Johnson homomorphism of Aut F,
is defined as follows.

Definition 3.3. For each k > 1, define a homomorphism 7, : A, (k) — Homg(H, L, (k+1))
by
o+ (zmod I',(2) = 27 '2” mod T'y(k +2)), z€F,.

Then the kernel of 7 is just A, (k + 1). Hence it induces an injective homomorphism
71 1 gr¥(Ay) — Homg(H, L,(k+1)) = H* @z L,(k +1).
This homomorphism is called the k-th Johnson homomorphism of Aut F,.

Here we consider actions of GL(n,Z) = Aut F,,/IA,,. First, since each term of the lower
central series of F), is a characteristic subgroup, Aut F;,, naturally acts on it, and hence
each of the graded quotient £,(k). By (i) of Theorem 3.2, we see that the action of 1A,
on L, (k) is trivial. Thus the action of GL(n,Z) = Aut F,,/IA,, on L, (k) is well-defined.
On the other hand, since each term of the Johnson filtration is a normal subgroup of Aut F,,
the group Aut F), naturally acts on A, (k) by conjugation, and hence each of the graded
quotient gr¥(A,). By (ii) of Theorem 3.2, we see that the action of IA,, on gr*(A,,) is trivial.
Namely, we may consider gr®(A,) as a GL(n,Z) = Aut F,,/TA,,-module. With respect to
the actions above, we see that The Johnson homomorphism 7 is GL(n, Z)-equivariant for
each k > 1.
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Furthermore, we remark that the sum of the Johnson homomorphisms forms a Lie
algebra homomorphism as follows. Let gr(A,) = @, er"(A,) be the graded sum of
gr®(A,). The graded sum gr(A,) has a graded Lie algebra structure induced from the
commutator bracket on IA, by an argument similar to that of the free Lie algebra L,.
Then the sum of the Johnson homomorphisms

T = @Tk s gr(Ay,) — Der (L)

k>1

is a graded Lie algebra homomorphism. (See also Theorem 4.8 in [Mo2].)

In the following, we consider three central subfiltration of the Johnson filtration of
Aut F,,, and “restrictions” of the Johnson homomorphism 7.

The first one is the lower central series of IA,,. Let A/ (k) be the lower central series
of IA,, with A, (1) =IA,,. Since the Johnson filtration is central, A/, (k) C A, (k) for each
k> 1. Set gr®(A.) := Al (k)/A,(k+1). Then GL(n,Z) naturally acts on each of gr*(A’),

and the restriction of 7 to A/ (k) induces a GL(n, Z)-equivariant homomorphism
gt (AL) — H* @z L, (k +1).

We also call 7{ the Johnson homomorphism of Aut F,,. We remark that if we denote by
ix » grf(A)) — gr*(A,) the homomorphism induced from the inclusion A’ (k) — A,(k),
then 77, = 75, 0 4 for each & > 1. Similarly to the sum 7 of 7ys, the sum 7" := @17, :
gr(Al) — Der"(L,) is a graded Lie algebra homomorphism.

Let C,(k) be a quotient module of H®* by the action of cyclic group Cyc, of order k
on the components:

Colk) =H" (01 ®a2® Q@ap — 2 Qa3 @ -+ @ a @ ay | a; € H).

In [Sa], we determined the cokernel of the rational Johnson homomorphisms 7, in stable
range. Namely, we have

Theorem 3.4 (Satoh, [Sa]). For any k > 2 and n > k + 2,
Coker(7; ) = C3 (k).

We also remark that in our previous paper [ES], we studied the GL-irreducible decom-
position of CQ(k). For more details, see Proposition 7.2 and Proposition 7.3.

Next, we consider the Johnson filtration of the mapping class group. By Dehn and
Nielsen’s classical work, we can consider M, ; as a subgroup of Aut F5, as above. Under
this embedding, set M, (k) := M1 N Ay, (k) for each k£ > 1. Then we have a descending
filtration

Zgy = Mga(1) D Mga(2) > -+

11



of the Torelli group Z,,. This filtration is called the Johnson filtration of M. Set
grf(My1) := My 1(k)/M,1(k +1). For each k > 1, the mapping class group M, acts
on gr®(M, ) by conjugation. This action induces that of Sp(2¢,Z) = M,1/Z,1 on it.

By an argument similar to that of Aut F,,, the Johnson homomorphisms of M, ; are
defined as follows. For n = 2¢ and k£ > 1, consider a restriction of 7, : Ay (k) —
Homgz (H, Log(k + 1)) to M, 1(k). Then its kernel is just M, 1(k+ 1). Hence we obtain an
injective homomorphism

M erf (M) < Homg(H, Log(k + 1)) = H* @z Log(k + 1).

The homomorphism 7" is Sp(2g, Z)-equivariant, and is called the k-th Johnson homo-
morphism of M,;. If we consider a GL(2g,Z)-module H as a Sp(2g,Z)-module, then
H* = H by the Poincaré duality. Hence, in the following, we canonically identify the
target H* @z Log(k + 1) of M with H ®gz Loy(k + 1).

Historically, the Johnson filtration of Aut F,, was originally studied by Andreadakis
[An] in 1960’s as mentioned above. On the other hand, the Johnson filtration and the
Johnson homomorphisms of M,; were begun to study by D. Johnson [Johl] in 1980’s
who determined the abelianization of the Torelli subgroup of the mapping class group of
a surface in [Joh4]. In particular, he showed that Im(7") = A3H as an Sp(2g, Z)-module,
and it gives the free part of Hy(Z,1,Z).

Now, let us recall the fact that the image of 7! is contained in a certain Sp(2g, Z)-
submodule of H ®z Log(k + 1), due to Morita [Mo2]. In general, for any n > 1, let
H®gz L,(k+1)— L,(k+2) be a GL(n, Z)-equivariant homomorphism defined by

a®X wa,X], for a€ H XeL,(k+1).
For n = 2g, we denote by b, (k) the kernel of this homomorphism:
f)g’l(k}) = Ker(H Xz L:gg(/{? + 1) — ﬁgg(/{? + 2))

Then Morita [Mo2] showed that the image Im(7{!) is contained in b, (k). Therefore,
to determine how different is Im(7{') from b, (k) is one of the most basic problems.
Throughout the paper, the cokernel Coker(7{"!) of 7! always means the quotient Sp(2g, Z)-
module by 1 (k)/Im(r"). So far, the Sp-module structure of Coker(7'g) is determined for
1 <k <4 as follows.

k Im(T,%) Coker(r%)

1| 13e ] 0 Johnson [Johl]

2| 2%e 1% @ (0] 0 Morita [Mol], Hain [Ha]
31[3,1%@[2,1] 3] Asada-Nakamura [AN], Hain [Ha)
4 [420@ B, 1o 2 @23, 1)@ (2,13 ®22] | [2,1%]@[2] | Morita [Mo3]
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Morita [Mo2] showed that the symmetric tensor product S*Hgq appears in the Sp-
irreducible decomposition of Coker(7}'g,) for each k > 2 using the Morita trace map. In
general, however, to determine the cokernel of 7 is a difficult problem.

Here, we recall a remarkable result of Hain. As an Sp(2g, Z)-module, we consider b, (k)
as a submodule of the degree k part Der(L,)(k) of the derivation algebra of £,. On the
other hand, the graded sum

by = @ bg,1(k)

k>1

naturally has a Lie subalgebra structure of Dert(L,). Therefore we obtain a graded Lie
algebra homomorphism

™ .= @T,?’l tgr(Mga) = bga.

k>1

Then we have

Theorem 3.5 (Hain [Ha]). The Lie subalgebra Im(74") is generated by the degree one part

Im(7{'4) = A*Hq as a Lie algebra.

Finally, we consider the lower central series of the Torelli group, and reformulate

Hain’s result above. Let M/ (k) be the lower central series of Z , and set gr*(M}, ) :=

yi(k)/ M, (k+1) for k > 1. Let Mg (M! ) — H &z Log(k + 1) be an Sp-

9,1
equivariant homomorphism induced from the restriction of 7 to M (k). Then we have

Proposition 3.6 (Hain, [Ha]). We have Im(7{'§) = Im(T,’CA(g) for each k > 1.

For n = 2g, we have the following commutative diagram:

I 7, ¢ HY @q LY (k+1) —= H ——= 5 (k)
] j
Im 774 == Im 7§ b3 (k)— Hq ®q Lo (k + 1) L3(k+1)

4 Highest weight theory for Sp(2g, Q)

4.1 Irreducible highest weight modules for Sp(2g, Q)

Let us consider the general linear group GL(n, Q) and the symplectic group

Sp(29,Q) == {X € GL(2¢,Q) | 'XJX = J} for J = ( _OI Iog )
9
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where [, is the identity matrix of degree g. We fix a maximal torus
T, = {diag(z1,...,z,) | z; #0, 1 < j <n}

of GL(n, Q). The intersection Sp(2g, Q) N Ty, = {diag(zy,...,z,, 2,1, ..., 27")} gives a

n

maximal torus of Sp(2¢g, Q). We also fix this maximal torus and write T: ZSgp .

We define one-dimensional representations ¢; of T, by ¢;(diag(z1, ..., z,)) = x;. Then
Pormg = {Mei+ 4+ e [ NEZ, 1<i<n}=Z"
P(J{L(mQ) = {1+ + e, € Parn,qQ) (A > >- > 0)

give the weight lattice and the set of dominant integral weights of GL(n, Q) respectively.
If n = 2g, we can restrict ¢; to TQSgp for 1 <i < g. Then

Pspogq) == {her+- -+ | N€EZ, 1<i< g =77,
Pyogq = 1M+ + gy € Papag) | A = X2 =+ 2 A > 0}

give the weight lattice and the set of dominant integral weights of Sp(2¢g, Q) respectively.
In particular, there exists a bijection between PS+p (20.Q) and the set of partitions such that
t(A) <g.

Let G be a classical group GL(n,Q) or Sp(2¢,Q), T its fixed maximal torus, P its
weight lattice and P* the set of dominant integral weight with respect to 7. For a rational
representation V' of G, there exists an irreducible decomposition V = @, p Vi as a T-
module where V) := {v € V | tv = A(t)v for any ¢ € T'}. We call this decomposition a
weight decomposition of V' with respect to T. If V), # {0}, then we call A a weight of V.
For a weight A\, a non-zero vector v € V), is call a weight vector of weight .

Let U be the subgroup of G consists of all upper unitriangular matrices in G. For a
rational representation V of G, we define VY := {v € V | uv = v for all u € U}. We call a
non-zero vector v € VY a maximal vector of V. This subspace V¥ is T-stable. Thus, as a
T-module, VY has a irreducible decomposition VY = @, V' where V7 := VU NV,

Theorem 4.1 (Cartan-Weyl’s highest weight theory).
(1) Any rational representation of V' is completely reducible.

(ii) SupposeV is an irreducible rational representation of G. Then VY is one-dimensional,
and the weight X of VU = VU belongs to P*. We call this \ the highest weight of V,
and any non-zero vector v € VU is called a highest weight vector of V.

(i4i) For any X\ € P%, there exists a unique (up to isomorphism) irreducible rational
representation L of G with highest weight X\. Moreover, for two A\, € P+, L* = L*
if and only if X = p.

14



(1v) The set of isomorphism classes of irreducible rational representations of G is parametrized
by the set PT of dominant integral weights.

(v) Let V be a rational representation of G and xv a character of V as a T-module.
Then for two rational representation V- and W, they are isomorphic as G-modules if

and only if xv = xw-

Remark 4.2. We can parametrize the set of isomorphism classes of irreducible rational
representations of GL(n, Q) by PérL(mQ). On the other hand, we define the determinant
representation by det® : GL(n,Q) 2 X — det X¢ € Q*. The highest weight of this
representation is given by (e,e,---,e) € PgL(mQ). If A\ € P* satisfies A\, < 0, then

LY = det ™ @ LM AnA2=2n0) - Moreover the set of isomorphism classes of polynomial
irreducible representations is parametrized by the set of partitions A such that ¢(\) < n.
We denote the polynomial representations corresponding to a partition A by L, L™ or
simply (A).

Remark 4.3. We can parametrize the set of isomorphism classes of irreducible rational
representations of Sp(2g, Q) by Psf;(zng) ={M>N>- >N >0\ eZ1<i<n},
namely the set of partitions A such that ¢(A) < g. In this paper, we denote the irreducible
representation corresponding to A by Lg\p, LW or simply [)].

Note that the natural representation Hq = Q* of Sp(2g, Q) is irreducible with highest
weight (1,0,...,0) and Hg = Hq by the Poincaré duality. More precisely, we set i’ :=
29 — i + 1 for each integer 1 <4 < 2g. Then for the standard basis {e;};%, of Hq, we see

(ei,ej) = 0= (e, ej), (e ej) =05 = —(ej,ei), (1<i<yg). (2)
There is an isomorphism Hq — Hg as Sp(2g, Q)-modules given by
Hq 3 v (o,0) € Hy,. (3)
In general, all irreducible rational representation [\ is isomorphic to its dual.

Let us recall Pieri’s formula, the simplest version of the decomposition of tensor product
representations. For two partition A and p satisfying A D pu, the skew shape A\ 1 is a vertical
strip if there is at most one box in each row.

Theorem 4.4 (Pieri’s formula). Let u be a partition such that ¢(u) < n. Then
1k ~
Ly, ® Ly, = @ Ly,
A

where A runs over the set of partitions obtained by adding a vertical k-strip to p such that
(N < n.
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4.2 Branching rules from GL(2g, Q) to Sp(2g, Q)

We regard Sp(2g, Q) as a subgroup of GL(2¢g,Q). We consider the restriction of an irre-
ducible polynomial representation Ly to Sp(2g, Q). We can give its irreducible decompo-
sition using the Littlewood-Richardson coefficients LR}, as follows.

Theorem 4.5 ([FH, 25.39],[KT, Proposition 2.5.1]). Let A= (A\; > Xg > --- > X, > 0) be
a partition such that ((\) < g. Then we have

(2 Q
ReSSp(2ggQ @ N/\)\L

where \ runs over all partitions such that {(\) < g. Here
Ny =Y LR
U

where n Tuns over all partitions n = (m =Ny > N3 =14 > - -+ ) with each part occurring an
even number of times, namely ' even. Here n' is a conjugate partition of 1.

Remark 4.6. We give a combinatorial description of the Littlewood-Richardson coeffi-
cients. (e.g. [FH], [Mac].) For two Young diagrams A and p satisfying A C pu, we denote by
A\p a skew Young diagram, which is the difference of A and u. For a skew Young diagram
A\p of size m, a semistandard tableau of shape A\p is an array T of positive integers
1,2,...,m of shape A\ that is weakly increasing in every row and strictly increasing in
every column.

(i) For two partitions A D u, a semi-standard tableau on \\u is a numbering on \\u —
Z>; such that the numbers inserted in A\p must increase strictly down each column
and weakly from left to right along each row. For a semistandard tableau on A\,
we denote the number of ¢ appearing in this semistandard tableau by m;. We call
(mq, ma,...) a weight of the semistandard tableau.

(ii) For a semistandard tableau 7" on A\u, we define a sequence w(T') of integers by
reading the numbers inserted in A\p from right to left in successive rows, starting
with top row.

(iii) For a sequence w = (ajaz---), we denote the number of i appearing in a sub-
sequence (ajag---a,) by mz( as---a.). A sequence w is a lattice permutation if
mi(aiag---a;) > mg(alag a,) > --- forany r > 1.

The Littlewood-Richardson coefficients LR;’)V is the number of semi-standard tableaux T’
on A\ u with weight v such that w(T) is a lattice permutation.
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4.3 Review on the classical Schur-Weyl duality

~J

For the natural representation Hq = LW of GL(n,Q), we consider the k-th tensor
product representation p; : GL(n, Q) — GL(HSI“) of Hg. For each k£ > 1, the symmetric

group & of degree k naturally acts on the space Hgk from the right as a permutation

of the components. Since these two actions are commutative, we can decompose Hgk
as a (GL(n,Q) x &)-module. Let us recall this irreducible decomposition, called the
Schur-Weyl duality for GL(n, Q) and &.

Theorem 4.7 (Schur-Weyl’s duality for GL(n, Q) and &).

(i) Let X\ be a partition of k such that £(\) < n. There exists a non-zero mazimal vector
vy with weight \ satisfying the following three conditions:

(a) The &y-invariant subspace S* := >
tion of &.

(b) The subspace (Hgk))[{ of weight X coincides with the subspace S*, where U is the
fized unipotent subgroup of GL(n, Q) consisting of upper unitriangular matrices.

ves, QUa - 0 gies an irreducible representa-

(¢) The GL(n, Q)-module generated by vy is isomorphic to the irreducible represen-
tation Lg\g of GL(n, Q) with highest weight \.

(ii) We have the irreducible decomposition:

®k A A
Hg & MRS

A=(A1>> Ay >0)k

I

as (GL(n, Q) x &y)-modules.

(i4i) Suppose n > k. Then {S* | X  k} gives a complete representatives of irreducible
representations of Sy.

Remark 4.8.

(i) The irreducible representation S* of & is isomorphic to the following &;-module.
For a partition X of k, we define two special Young subgroups C) := &, XSG, x- - -
and Ry 1= Gy x &y, x --- of &;. Here a partition X' = (A, A}, ...) is the conjugate
partition of A. In the group algebras of these two groups, we find idempotents

1 1
ay = — Z o€ QR,, and by = m Z sgn(o)o € QC,.
A

|R>\| 0ER) oceCy

Then ¢y = |R)||Cy|arby gives an idempotent in QSy, called the Young symmetrizer
for A. The right ideal c) - QG in Q6 gives an irreducible G-module which is
isomorphic to S* above.
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(ii) We construct vy appearing in the theorem above by the following way.
First, we define vy A vy A --- A v, to be an anti-symmetrizer

Z sgn(o)(v @ v @ ---®@v,) -0 € Hy'.

For the natural base {e;}"; of Hq, we define
U)\2:(61/\'”/\6/\/1)@)(@1/\-../\@)\/2)®...EHgk' (4)
Note that vy is a maximal vector of weight A and
n=(E1®  -Qey e @ - Qey @---)-Cy.

This vy, gives our desirable vector in the theorem above.

4.4 Brauer-Schur-Weyl’s duality
The first two subsection is based on [HY] and [Hu|. The last one is based on [Ra].

4.4.1 Brauer algebras
Let us define the Brauer algebra Bj(—2g) with a parameter —2g and size k.

Definition 4.9. The Brauer algebra Bj(—2g) over Q is a unital associative Q-algebra
with the following generators and defining relations:

generators 1 Si,...ySk—1,V1s-- - Vn-1,
relations : s; =1, ~7=(=29)v, vs =% =sv (1<i<k-—1),
SiSj = 8jSi, SV =S, V=7 (1<i<j-1<k=2),
SiSi415i = Si41SiSi4+1,  ViVi+1Vi = Viy  Vi+17ViVi+1 = Vi+1, (1 <1

Si%Yi+1Yi = Si+1%i,  Vi+17ViSi+1 = Vi+1Si, (1 <i<k-— 2)-

<k-2),

Remark 4.10. The Brauer algebra Bi(—2g) is obtained by the following diagrammatic
way.

First of all, the Brauer k£ diagram is a diagram with specific 2k vertices arranged in two
rows of k each, the top rows and the bottom rows, and exactly k edges such that every
vertex is joined to another vertex (distinct from itself) by exactly one edge.
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We define a multiplication of two diagrams as follows. We compose two diagrams D,
and D, by identifying the bottom row of D; with the top row of Dy such that the i-th
vertex in the bottom row of D; is coincided with the ¢-th vertex in the top row of Ds.
The result is a graph, with a certain number, n(Dy, Ds), of interior loops. After removing
the interior loops and the identified vertices, retaining the edges and remaining vertices,
we obtain a new Brauer k-diagram D; o Dy. Then we define a multiplication Dy - Dy by
(—2g)"PrD2) D) o D,

The Brauer algebra By(—2¢) is defined as Q-linear space with a basis being the set of the
Brauer k-diagrams and the multiplication of two elements given by the linear extension of
a product above.

The generators s; and ; correspond to the following diagrams.

1 i i+1 k
[ J [ [ ] [ J
Vi = (1<i<k—1)
[ ] [ ] [ J ®
1 % 141 k
[ [ ] [ J [ J
s = >< (1<i<k-—1)

4.4.2 Decomposition of tensor spaces (Brauer-Schur-Weyl’s duality)

Let us recall the inner product on Hq defined by (2). Set ¢’ := 2¢g —i+1 for each integer
1 <1 < 2g. For the standard basis {e; ?il of Hg, we see

(ei,e;) =0 =(ew,ey), (eiejr) =dij = —(ej, ), (1<i<y).
For each integer 1 <1 < 2g, we define

* €, <1SZ§g)7
€= { —ey, (g+1<1i<2g). (5)

Then both of {e;}27, and {e}}??, are basis for Hq such that one is dual to the other in the
sense that (e;, e}) = 0,5 for any 4, j.
The following lemma is obvious, but important to generalize the Schur-Weyl duality for

Sp(29, Q).
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Lemma 4.11. An element )
g

w::ZeZ-@efEHgQ

i=1

is invariant under the action of Sp(2g, Q) on HSQ.
We define a right action of By(—2¢g) on Hgk as follows.

Proposition 4.12. There is a right action of Bi(—2g) on Hgk which is defined on gen-
erators by

29

(U11®"'®’Uik)‘7j = —vi1®...®vij1®(Zek@)e,’;)@vmz@...@vik,
r=1

(Ui1®"'®vik)'sj = U @ QU Q0 BV QU Q0 & Uy,

for any v, ..., v; € Hq. Moreover, this action commutes with that of Sp(2g, Q).
Here we state the Brauer-Schur-Weyl duality.
Theorem 4.13 (Brauer-Schur-Weyl’s duality for Sp(2¢g, Q) and Bi(—2g)).

(i) Let X be a partition of k —2j for 0 < j < |%] such that ((\) < g. Then there

exists a mazximal vector vy € Hgk with highest weight \ satisfying the following three
conditions:

(a) A By(—2g)-submodule
D = Z Quy -0

o€B(—2g)
of Hg’k gives an irreducible representation of By(—2g).

(b) The subspace (Hgk:)g of Hgk coincides with D*. Here U is the fized unipotent
subgroup for Sp(2g,Q).

(¢) The Sp(2g,Q)-module generated by vy is isomorphic to the irreducible represen-
tation Lg\; of Sp(2g,Q) with highest weight \.

(11) We have the irreducible decomposition

HEF = @ @ L?I])XIDA.

J=0 A-k—27,0(\

as an (Sp(2g, Q) x Bi(—2g))-module.
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(iii) Suppose g > k. Then {D* | A+ k—2j (0 < j < [£])} gives a complete representatives
of irreducible representations of Br(—2g).

In our purpose of this paper, to observe an explicit construction of vy and a description
of D is important.

Theorem 4.14 ([Hu, Definition 3.9, Lemma 3.10, Lemma 4.8]).
(i) For a partition X of k —2j for 0 < j < |£] such that ((X) < g, a mazimal vector vy
15 given by A
=W @ (et A Aex) @ (et Ao Neyy) @ -
(ii) We regard a subalgebra generated by s; (1 < i < k—1) in Br(—2g) as a group algebra

QGy. Then the right module vy - Bi(—2g) coincides with vy - QS as a Q-vector
space.

4.4.3 Character values and decompositions of D* as an &;-module

We give a branching low of the irreducible Bj(—2¢g)-modules D* as &;-modules. But
confusingly, the algebra Q& has an involution ¢ : ¢ + sgn(o)o, and the action of a
subalgebra generated by s;’s in Bx(—2g) on Hgk is twisted by this involution. Therefore a
QGS-module D is isomorphic to sgn® D as an ((Q&)-module. Here sgn is the signature
representation of &;. Note that an irreducible &;-module S¥ is isomorphic to sgn @ S”.

In our purpose, we consider the ordinary (untwisted) action of &; on H, %’k in the following
theorem (ii).

Theorem 4.15 ([Ra, Theorem 5.1]).

(i) For a partition X of k —2j for 0 < j < [%] such that ((\) < g, let ng(_zg) be the
irreducible character of D*. Then we have

X%k(_2g)(0) = Z <Z LRK%) X6, ().
vEk,wvDN \B:reven

for any o € &) C (a subalgebra generated by {s;}=}). Here X&, s an irreducible
character of & associated to a partition v of k. The number LR is the Littlewood-

Richardson coefficient. The even partition B = (B, B2, ...) is a partition such that
any parts B; are even.

ii1) We have the irreducible decomposition of D> is given b
P g Yy

@ (57T s

vk vDN

with respect to the ordinary Gy-action on Hgk.
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Remark 4.16. For a partition A - k — 25, we have the following dimension formula:
dim D* = .Cy;(25 — 1)!! - dim S*.

This gives the multiplicity of Lé\p in Hgk.

5 Dynkin-Specht-Weyman’s idempotent and the free
Lie algebras

Let us consider the right action of G449 on Hg(k“). Set 0; := 8;_18;_2 -+ 87 for each
2<i<k+2, and
9k+2 = (1 - 0'2) cee (1 - O'k+2) € Q6k+2.

This element characterizes the degree (k+ 2)-nd part E%(l{: +2) of the free Lie algebra E%
generated by Hq = Q% as follows. (e.g., [Ga, Theorem 2.1], [Re, Theorem 8.16], [Mo3,
Lemma 4.5].)

Theorem 5.1 (Dynkin-Specht-Wever).

(1) 63y = (k+2)0k12. We call an element 150k12 the Dynkin-Specht-Wever idempotent.

(11) For v @uy® -+ QUgio € HS’HQ, a left-normed element [v1, vy, . .., Ugia] € £2Qg(k:+ 1)
coincides with (v; ® vy ® « -+ ® Vki2) - Opro. Hence the Tight action of Ox1o on Hgk+2
induces a projection HG"™? — L3 (k+1), and HE" - 0r 4 is isomorphic to LY (k+2).

(111) For v € Hg(k+2)’ the following two conditions are equivalent;

(a) veLy(k+2),
(b) v- 0o =(k+2)v.

Recall that we need to consider the Sp(2g, Q)-module
b2, (k) = Ker(Hq ®q L2 (k + 1) — L (k +2)).

To characterize bgl(k) in Hgk”, let us consider a subgroup P of G;o which fixes 1.
Namely, P is isomorphic to G 1. Set

Op := (1 —s9)(1 — s389) <+ (1 — Sgy18k - S2).

We can regard this element in QP as the Dynkin-Specht-Wever idempotent for P. Using
this element, we obtain a characterization of h&l(k) as the following theorem.
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Proposition 5.2 ([Mo3, Proposition 4.6]). Forv € HS(HQ), the following two conditions
are equivalent;

(i) v € hou(k),
(i1) v-0p = (k+1)v and v - o420 = 0.
Corollary 5.3. We have
Op - (14 opya + 04 o+ -+ 0p15) - 0p = (k+1)0p - (1 + 0o + 03p + - + 03 1)
on HSkH, Thus we obtain
v Op(L+ opz +0f e + o+ 0ply) € 02 (K)
for any v € Hgk”.

Proof. Let us recall the following expansions of a left-normed element in the free Lie alge-
bra:

w1, 20, ] =Y (1) 2, @ @ x, @11 @1y, @ @y, (6)

where the sum runs over all integers r and tuples (iy,...,4.) and (ji, ..., Jm—r_1) of integers
satisfying the conditions

0<r<m-1, m>u1>--->1>2, 2<j3<- - <Jmypr1<m.
(See e.g., [Re, Lemma 1.1].) The expansion above is equivalent to
(1) @ @x, @1 @a, @ Dy, (7)

where the sum runs over all integers r and tuples (iy,...,4.) and (ji, ..., jm—r_1) of integers
satisfying the conditions

0<r<m-1, m2>2u>--->4 21, 1< < <jJpopa<m

and il; c. 77/-7“7].17 c. >jmf7“71 7é 2.
Note that (v, ®@ -+ @ Vg42) - Op = v1 @ [Va, . . ., Vk42] for any vy, ..., ve10 € Hq. To prove
our statement, we shall prove

(U1®"‘®Uk+2)'9})'(1+O-+"'+O'k+1>
k+2

= 01 ® [Vg, ..., Vkya] — Zvj ® [[v2,v3, .01, [Vj41, [V420 -+ s [Org2, 0] -] (8)
j=2
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In the formula above, the righthand side is contained in Hg ®q E%(l{: + 1). Therefore if
(8) is true, by Theorem 5.1, we obtain our claim.
To prove the formula (8), we set

xr = [’Ul, e ,Ujfl], To = Uj, T3 — ’Uj+1, ceey Tpags = Vg2
Then applying the formula (7), we expand (v; ® - -+ ® vg12) - Op like as
U1®Z Yl ® T, T2 ®T; R QT

satisfying the similar condition for (7). Hence, in (v @+ ®vji9)-0p- (1+0+ -+t
the terms which first part is equal to v; are given by

v; ® Z @ ® Tjrrgsr @V O Ti Q-+ Q Ty, (9)
satisfying the conditions
0<r<k+3-s5 1<jH< - <Jp3s0r<k+2, k+2>20>--->i.2>1
and i1, ..y dpy G1s oo Jeraosr 7 2.

On the other hand, note that the following expansion of a right-normed element in a
free Lie algebra:

[‘/Elv [xQ’ cee [xm_l’xm] .. H — Z(_l)rle R ® xjmfrfl X T, X i, R R ;. ,

where the sum runs over all integers r, tuples (iy,...,%,) and (ji,..., Jm—r_1) of integers
satisfying the conditions

OSTSm_L m2i1>"'>ir21a 1§j1<"'<jm—r—1§m-
Applying this formula to (9), we obtain
—0; @ [z, [T, -+, [Tppa—s, v1]]]
for xy = [v1,...,vj_1], T2 = vj, T3 = V41, ..., Thia—s = Uk+2. Thus we have the formula
(8). O
L] L] . L] L] 6 . 4 . L]
6 Multiplicities in Resc}’f% S* via Kraskiewicz-Weyman’s
combinatorial description

Let Cyc;, be a cyclic group of order k. Take a generator o, of Cyc, and a primitive k-th
root (; € C of unity. In this section, we consider representations of the cyclic group Cyc,
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over an intermediate field Q(¢x) C K C C.

To begin with, we define one-dimensional representations (or characters) Xi : Cycy, —
K* by Xi(Uk) = C,‘i for 0 < j < k — 1. Especially, we denote the trivial representation x9
by trivy. The set of isomorphism classes of irreducible representations of Cyc, is given by
{x}, 0 < j < k—1}. Consider Cyc, as a subgroup of &; by an embedding o + (12 - - - k)’
for 0 <i < k — 1. Let us recall Kraskiewicz-Weyman’s combinatorial description for the
branching rules of irreducible &,-modules S* to the cyclic subgroup Cyc,. To do this, first
we define a major index of a standard tableau.

Definition 6.1. For a standard tableau T', we define the descent set of T" to be the set of
entries ¢ in 7" such that ¢ 4+ 1 is located in a lower row than that which 7 is located. We
denote by D(T') the descent set of T. The major index of T" is defined by

maj(T) := Z i

If D(T) = ¢, we set maj(T") = 0.

Theorem 6.2 ([KW], [Re, Theorem 8.8, 8.9], [Ga, Theorem 8.4]). The multiplicity of X, in

Resggck S* is equal to the number of standard tableaux with shape \ satisfying maj(T) = j

modulo k.

Example 6.3. For £ > 2, we have the following table on the multiplicities of trivy = X?
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A T major index mult. of triv,, | mult. of xI,
(m) 112 |m 0 1 0
2 m
(m—1,1) p—1 0 1
p
(2<p<m)
1
m(m — 1)
(1m) 2 2 1, m: odd 1, m=2
: 10 m : odd 0, m:even | |0, m#2
- -5, m: even
m
1P ( 3
m(m —
(2,1m2) 2 2 (=1 1, m: even 1, m+#
’ : = L=p, m : odd 0, m: odd 0, m=
- l-p—", m: even
m
(2<p<m)

Example 6.4. For m > 3 and a partition A = (m — 2,1?), we have

= {(m ~2)/2

if m :eve
(i) [triv,, : Resgm T eveR

Cyem (m—1)/2 if m : odd.
. ~3)/2  if m:odd
i) [xL : ResSm S = (m ’
(i) e Cre,, ) {(m —2)/2 if m : even.
In fact, for a partition
T=\|p ,
q

its major index is given by maj(7) = p+¢—2 for 2 < p < ¢ < m. Then maj(7) = 0
(mod m) if and only if p + ¢ = m + 2. Hence we have the number of standard tableaux of

m—1

shape A is equal to %— 1 for odd m and

(mod m) if and only if p 4+ ¢ = m + 3. Hence the number of standard tableaux of shape A

for odd m and

. m
is equal to for even m.
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Example 6.5. For m > 4 and a partition A = (22, 1™~%), we have

mT_?’ if m is odd,
[xp, : Resg;"c SN =< ™4 if m =0 (mod4),
m2 if m =2 (mod4).

To prove this, we consider the following two kind of standard tableaux of shape A:

p
2 q 2 v+ 1
Tyq = : 2<p<p+l<q<m), T,= : B3<p<m—1).
m m
Their major indices are given by
maj (Tp,q) = m<—m2 ) +2—p—¢q and maj(Tp) — % +1—p.

If m is odd, m(";_l) =0 (mod m). Thus maj(7,,) =1 (mod m) if and only if p+¢q = m+1.

The number of such (p, ¢)s is 252, There is no 7}, such that maj(7,) = 1 (mod m). If m
is even, w = % (mod m). Since m # 2, maj(T,) = 1 (mod m) if and only if p = F
for m > 4. If m = 4, there is no such T,,.

On the other hand, maj(7,,) = 1 (mod m) if and only if p+q = m+1+7% for m = 4,6,8
and p+q=m+1+7%, or 1+ % for m > 10. If m = 4, 6 or 8, the number of such (p, ¢)s is
0, 1 or 1 respectively. Suppose m > 10. If m = 4M, maj(7,,) =1 (mod m) if and only if
p+q = 6M+1or 2M +1. The number of such (p, g)s is (M —1)+(M —2) = 2M -3 = T —3.
If m =4M + 2, maj(T,,) = 1 (mod m) if and only if p+ ¢ = 6M + 4 or 2M + 2. The
number of such (p,q)s is M + (M — 1) = 2M — 1 = & — 2. Therefore we obtain the claim.

7 Sp-irreducible components of the Johnson cokernels

7.1 Our strategy for detecting Sp-irreducible components

In the rest of this paper, we assume g > k + 2. To explain our strategy for detecting Sp-
irreducible components in the Johnson cokernel of the mapping class group, let us recall
the following diagram as mentioned above:

Im 7, ¢ Hg ®q £§g(k: +1)—= HS'“ 4»02%(/5)
] j
Im 78 == Im 7§ b (k) Hq ®q Lo (k + 1) L3 (k+1)
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Here we may regard it as a diagram of Sp(2¢g, Q)-modules and Sp(2¢, Q)-equivariant ho-
momorphisms. By Theorem 3.4, we see Coker(Im 7;, o — Hg ®q £%(/{;+ 1)) coincides with
C;‘Z(k;) for 2g > k+2. Observing a natural isomorphism H*®q E%(l{;—i- 1) = H®q E;Qg(k—i-l)
induced from the Poincaré duality, we obtain Sp(2g, Q)-equivariant homomorphism ¢, :
bgl(k‘) — CZQg(k). Note that Im T,QAS C Im7;, . Then we have the following criterion for

detecting Sp-irreducible components in the Johnson cokernel Coker(Im 7',2/8 — l‘)?l(k‘))

Proposition 7.1. Let V' be an irreducible Sp(2g, Q)-submodule of bgl(k‘), If cx (V) is a
non-trivial (then automatically irreducible) component of C%(k:), then V' is an irreducible
Sp(2g, Q)-module in Coker(Im T,g/\él) In particular, if there is a mazimal vector v of weight
A in hgl k) such that ci(v) # 0 (then cix(v) is a mazximal in C%(k)), then v gives an
Sp(29,Q S

Q

(
)-irreducible component in Coker(Im7;’q) which is isomorphic to the irreducible
Sp(29,Q)

To find such a maximal vector, we use Theorem 4.14 and Corollary 5.3. Namely, for a

maximal vector vy as in Theorem 4.14, we consider ¢y :=vy-0p- (1+ 010+ -+ alljﬁ) If

¢ # 0, this is a maximal vector of weight A such that ¢, € h?l(k) by Corollary 5.3. Then
we investigate whether cx(¢)) € CQ%(k;) is 0 or not.

-module L[s)g-

7.2 Some multiplicity formulae

In this subsection, we give some explicit multiplicity formulae for [k] and [1¥] in bgl(k)
and C%(k:). First, let us recall the multiplicity formulae in our previous paper [ES].

Proposition 7.2.  Suppose n > k + 2.
(i) For a partition A of k,

(L : CR(K)] = [trivy : Resg”y“ck

5.
(i1) For a partition A of k + 2,

[LéL : ES(/@ +2)] =[x ResSk S)‘].

Cycy,
(i1i) For a partition A of k + 2,

[Len - Hq®q LAk +1)] =) [Lgy : L3k + 1))

I

where p runs over all partitions obtained by removing a single node.

Proposition 7.3.
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(i) The multiplicities of the Sp(2g, Q)-irreducible representation [k] in hgl(k;) and Cg(k’)
are given by

L8 - 52, (k)] = {1 hzodd i cagy 1.

0 if k:even,

(ii) The multiplicities of the Sp(2g, Q)-irreducible representation [1*] in [’ng(/ﬂ) and C%(k)
are given by

K] 1 if k=1,2 (mod4), K] 1 if k:odd,
D I St A 7 BV 175 R S
0 if otherwise, 0 if k:even.

Proof. ~ We will use irreducible decompositions of the restriction Ressp (See Theorem
4.5.) and Pier’s rule (See Theorem 4.4.).

(i) If Resg;“;gg(%) L@ﬁ has an Sp-irreducible component L

A= (k+1,1) or (k,1?). We have
(LS  Hooq L (k+1)] = [LGTY LRk + )] + (LS L2+ 1] =1
LT LRk +2)] = 1,

sps then a partition A is either

?

L4 Hoeq L3+ 1)) = (L& L2+ 1) + (25" - £ (k+ 1)),
%4—1 if k: even,

{E+1 if k:odd,

k if k:even

oL = 22 ! ’

| (k+2) EL i k:odd,
(L) C2 (k)] = [L&) k) = 1.

Thus we obtain the claim.

(i) If Resg;(;ggc?)) Lg\g has an Sp-irreducible component L[Sllf ], then a partition A is either
A= (22,1%72) (2,1%) or (1%72). We have

mm“>HQ®Q£(k+n]= L8 LRk +1)] =0,
[ 0Lk +2) = o0,

L&Y Hq®q Lk +1)] = [L4 ) L2k + 1))+ L3 ) Lk + 1)) = 1,
(L&) LY (k+2)] = 1,

1 if k:odd,

0 if k:even.

(L) eRk)] = (LY : (k)] = {
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Suppose k = 1,3 (mod4). Then

2 1k—2 2 1k—3 k—1
L& ) Hoeq L2 (k+1)] = (L& ) L3k + D))+ (LG ) L2k + 1),
{% if k=3 (mod4),

bt if k=1 (mod4),

2 (k=2 k—1
L&t ) Lk +2)] = —
Suppose k = 0,2 (mod4). Then
2 1k—2 2 1k-3 k—1
Ly i Ho@q Lg(k+1)] = [Lay" L2+ DI+ [La ) L3k + 1),

k

2

2 k-2 k=2 if k=2 (mod 4),
Le" ) Lok +2)] = {

k if k=0 (mod 4).
Hence we obtain the claim.
O

Remark 7.4. By the argument above, the Sp-irreducible component [1¥]g, appears in the
restriction of the GL-irreducible component (22, 1¥72)qp..

Remark 7.5. Our calculation above gives a combinatorial description of the GL (and Sp)
irreducible decomposition of hgl obtained by Kontsevich in [Konl] and [Kon2].

7.3 Descriptions of maximal vectors

To give an explicit description of maximal vectors, we use an (i, j)-expansion operator
D;; : HS”“ — HS(HQ) defined by

29
(V1 ®U2® -+ ®@vg) - Dyj ::ZU1®"‘®U7j71®€r®vi®"'®1}j72®€:®1}j71®"'®Uk
r=1

for 1 <1 < 7 < k+ 2. Using this, we obtain several maximal vectors satisfying the
condition of Proposition 7.1. First we consider a maximal vector which defines the Morita
obstruction [k] in Coker(Im 7'g,).

Theorem 7.6 (Morita). Let k be an odd integer such that k > 3. Suppose g > k+2. An
element

ou = @Be) Op (Lt opat - +obld)
k41 k—i+2
- (Z Z (_1)7"711601"71(6?]6) . Dz‘,w”) |
i=1 r=1
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is a mazimal vector with highest weight [k] in h;‘_‘?l(k). Moreover this gives a unique irre-
ducible component of [k] in Coker 7}'§,.

Second we consider a maximal vector which defines the Sp(2¢g, Q)-module with highest
weight [1¥] in Coker(Im 7},) for k = 1 (mod4) and k > 5.

Theorem 7.7. Suppose k =1 (mod4), k >5 and g > k+ 2. An element

opry = (W (et A Aeg))-Op- (1 +0pgo+ - —i—a’,ji%)
k+1 k—i+2
<Z Z Or=2,3 (mod 4) | _ 1OLT 1J(€1 A Aeg) - DZ.,H?A)
i=1 r=1

is a mazimal vector with highest weight [1¥] in hgl(k). Moreover this gives a unique irre-
ducible component of [1¥] in Coker 775,

7.4 Proofs of main theorems

We will give proofs of Theorem 7.6 and Theorem 7.7. But, since our proof for Theorem
7.6 is easier than that of Theorem 7.7, we omit the details for Theorem 7.6.

7.4.1 Proof of Theorem 7.7
Step.1 For r =2 (mod 4), we prove
(61 VANCIIRIVAN €k)D12(1 — 82)<1 — 8382) cee (1 — Sp 8382)

Z j =2,3(mod4) , QCLJ 1J(€1 A - /\ek;)D]_,]_-‘r]

by the induction on 7.
Indeed, if p = 2, the both side of the formula above coincide with (e A- - -Aeg)(D12—Ds3).
Suppose p > 2 and p +4 < k4 1. For simplicity we denote (e A -+ A ep)Dy; by D' We
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have

DL (1= sp1--59)(1 = sppa - 59) (1 — spp3 - 59) (1 — Sppa - 52)

= (DF = (CDPPDY ) (1 = spyz o 52) (1= spys - 52) (1= Spaa - 52)
P (DL 4 D)~ sy s2) (1= s 52) (1= spra )

= (D4 + D%y — (=170 — (17D ) (L — spas - s2)(1 = Spea o 52)
= ( igln—&-J ig§+]~)(1 — Sp+3 82)(1 — Spa 52)

= (D~ D — (1P + (C1PPD )1 = sy )
= (D + D%y — Di5yy — D) (1 = sppa- - s2)

= D¥, + D%, - D%y, - D, — (C0)P(D, + DY, - DY, — D)

p:even sgn sgn sgn
= Diyyy—2D73 + Digyye

Therefore, the action of (1 — sp1---52)(1 — Spp2---52)(1 — Spts---52)(1 — Spra---S2) on

Z(—l)‘;ﬁ“ (m°d4>r;22CL@JDigf+j is obtained by the following way:
2 k)
=1
Z( 1)%=23mod s, =2 Cl (DY — 2D7%,; + D% )

J=1

P
_ Z{(_l)& 2,3 (mod4) 2OL721J 2(_1)5]-50,1<mod4)]%2CL¥J +( 1)63 =2,3 (mod4) 2CL] SJ}Diglnﬂ

j=5
sgn sgn sgn _2 Sgn sgn sgn sgn sgn
10— D - LD P2 oDy - D+ DY, - DY)
p 2 sgn 2 sgn sgn sgn
_TDl%p-F?_‘_ 2 D1p+3+D1p+4 Dlgp+5
p+4
_ Z( 1)53 23(mod4)p+20|-] IJD11+]
j=1

Step.2 We have
(61 VANERIVAY ek)Dij5k+1 c+ 8951

_ k:even . .
_J (e Ao A er)(—1)F D101 = (e A Aeg)Digr it j#k+2,
—(er Ao ANeg)Diiga if j=k+2

for k=1 (mod4). Hence we obtain an explicit formula

(W& (er A Aep) O0p (L+ 0o+ +0pty)
k+1 k—i+2

:22 Z (— 0j= =2,3(mod4) ;_ ICLJ 1J(61/\"'/\6k)'Di,i+j-

i=1 j=1
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In fact,

k+1

Y (=)=t 1 Oy DY (L4 okga + -+ 04 3)

2
Jj=1

k+1 k+2—j j
— _ 9 j=2,3 (mod 4 . sgn sgn
- E ( 1) ! ( )%C\_%j Dz g+ Dz Jg+k+2—75

5k+2—j;2,3(mod4) o1 O ki1 j

0j=2,3 (mod4) ,_, (I kt1l—j

5 L 27 JDZH-]

5 | ==L 5 JDZZ+]

j=1 i=1 =1
k+1 k+2—1 k+1 k+1
— _1)%j=2,3 (mod 4 ) Sgn =2,3 (mod 4 . sgn
= E E (—1)%=23( )%CL] 1 D”+] 8j=2,3( )%CLngJD21+k+2 ~;
i=1 j=1 i=1 j=1
k41 k+2—i k+1 k+2—1i
—_ 6'5 3 (mod 4 . sgn
- Z Z (—1)=2s )%CV ! Dm+] 2: E :
i=1 j=1 i=1 j=1
k+1 k+2—i k+1 k+2—i
j— 6'5 3 (mod 4 . sgn
= E E (—1)%=23¢ )%CL] 1 DZZ+J+§ : 2 :
i=1 j=1 i=1 j=1
k+1 k+2—1
— _ mod 4
= 2> D (et Oy DI,
i=1 j=1

Step.3 Let us consider a surjective Sp-homomorphism

conty, : Hg(Hz)ﬁ)Ha ® Hg(kﬂ) -

by composing an Sp-isomorphism Hg(k+2

by (3) and a contraction homomorphism. Then we obtain
—2g)(ex N+ Aeg)

—1)72(e A Aey)
)

(
contg((eg A -+ Aeg)Dyj) = §_1 I3 (ey Ao+ Ney)
0

To prove these formulae, let us recall that

®k
Hg

) Hg ®Hg(k+1) induced from HQLﬂTﬁQ given

if i=1, j=2,
if 1=1,5>3,
it 1=2,52>3,
if  otherwise.
(1<i<yg).

(eisej) = 0= (e, ej), (esey) =0dij = —(ej, ei),

and

* {ei’7 (1§Z§g)7
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where ¢/ := 2g — i + 1 for each integer 1 <i < 2g.
Then we have

2g
conty(D}5") = conty (Z erRer@(eg A A ek)>
r=1

29
= Z(ei, eyer N ANep = (—2g)er A+ A ey
r=1
Moreover,
v
conty(D") = conty, Z Z sgn(o)e, ® €,1) @ o) @+ @ € D+ @ (k)
r=1 ceGy
j—2
v
- Z Y seu(o)(en) ) ® o @ ® € @ ® eoy
r=1 c€Gy
j—2
v
= Z SgN(0)es(2) ® - @ €1y @+ ® o)
ceGy
ji—2
\%
= = > sen(0)eom) ® - ® eop) @+ @ Cor)
cEeGy
= —<€1/\"'/\€k) © 8182553
= (=12  A--- Ney,
and similarly,
v
conty(Dy5") = conty, Z Z sgn(0)es1) D e @ p2) D - @ € @+ @ g (k)
r=1 ceGy
j—2
v
= Z Z sgn 6r, €o(1 )) ® €q(2) @ (%9 6: (%9 @ Eo(k)
r=1 c€Gy
j—2
WV
= Z Sgn( )60(2) & ® €o(1) & & €o(k)
oceGy
j—2
= Z sgn(0)eq(2) @ -+ ® (1) @+ @ €q(h)
ceSy,
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For ¢ > 3, because of g > k, it is clear that conty((e; A -+ Aeg)D;j) = 0.

Step.4 We obtain c(¢px)) # 0.
Indeed, for the natural surjection pr : Hgk — Cg(k), we have

C(@[lk})
k+1
Z<_1)5jz2’3(m0d4>%CL%Jck(el A A ele,l-‘rj)
=1
= 2 J %
+ (—1)5j52’3(m°d4)%CL%J%(Q N ANexDagyj)
j=1

k+1
—2g + Z(_1)6j52,3(mod4) ECL%J (_1)]'71
=2

2

. pr(eg A+ Aeg)

+ Z(_l)éjzzg(mm{‘l)%cl%] (_l)j—l

j=1

k
= 2| -29+2+2 Z(_l)j—l-kfsj_z,s(mod@k;lCLj;lJ> pr(e; A--- Aeg)
j=2

k+1

= 2(-2¢9—-2+ 22(_1)j_1+6j_2,3(mod4),C_ICLJ-;J> pr(e; A--- Aepg).
j=1

2

Here, we claim that
k41

Z(_l)j_1+6‘j52’3 (1110(:[4)%6’\_%J — 0

J=1

35



In fact, by setting k = 4K + 1, we have

k+1
(_1)j_1+6j52,3 (mod 4) k710 j—1
Z R Sl
Jj=1
k+1
— ( 1)5] 0,3 (mod 4) k IC j-1
Z [~
=1
— E ( 1)5] 3(mod4) , 1OL]21J + § = 0(mod4) , 1CL]21J
1<j<k+1 1<]<k+1
j:odd jreven
2K 2K+1
5 = 1 5 = 1
— § (_1) p=1( od2)2KC’p + E (_1) q=0( od2)2KCq_1
p=0 q=1

= 2 Z(_1)6p51(1110d2)2K0p — 2(1 . 1>2K — 0

Hence, we conclude c(¢pr) = —4(g + 1) pr(er A--- Aey).
Since [LI1"] - HEM = E Cg(k)] = 1and e; A- - Aeg is a maximal vector with highest
weight (1¥) of HG*, we have pr(e; A+ Aeg) # 0.

Step.5 By Proposition 7.1 and Proposition 7.3, the maximal vector ¢+ gives a unique
irreducible component of [1¥] in Coker 7',

This completes the proof of Theorem 7.7. n

7.4.2 Outline of proof of Theorem 7.6

To begin with, we can show
(¥ Dia)(1 = $2)(1 = s352) -+ (1 = 8, - - 5350) = »_(=1)71Cj_1(eF%) Dy gy

by using the induction on r. Secondly, we have

®k o

Qkpy. _ ) e Digag, i jFEREL2,

(€ Dig)sirash - 5281 { — Dy, i = k2.
Hence we get an explicit formula

k+1 k—i+2

(w®eP*)-0p - (1+ oppa + - ';ii% Z Z r1(eF") - D it

=1 r=1
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Thirdly, we have

(—29)(eF%) if i=1, j=2,

Rk . . .

k. _(61 ) if 2217]237

conti(e™Dy) =3 (ep¥) it i=2 j>3,
0 if otherwise,

and pr(e$*) # 0. Thus we obtain

k+1

crlen) = Y (-1 7%Ciy cr(eF*Dyy) +

Jj=1

= (—29 — Z(—l)j_lkC’j_l + Z(—l)j_lij_1> pr(ef™)

= ( 29 + (—1)" + Z {(-1)7C; + (1) 1Cja ) + 1) pr(ef*)

= (2—-2g)pr(ey )#0

Therefore, by Proposition 7.1 and Proposition 7.3, the maximal vector ¢y, gives a unique
irreducible component, of [k] in Coker 7%,

)7 Co1 cr(eF* Do)

IIMw

This completes the proof of Theorem 7.6. O

7.5 A conjecture for the Johnson cokernels

Finally, we conclude by suggesting a conjecture for the Johnson cokernels of the mapping
class group.

By observing the table of Coker(T%) for 1 < k < 4 in Subsection 3.3, we see that
Coker(r{*g) = Im(cx) for 1 < k < 4 as an Sp(2g, Q)-module, where ¢, : bgl(k:) — CQ(k)
is an Sp(2¢, Q)-equivariant homomorphism defined in Subsection 7.1. These facts let us
conjecture that

Conjecture 7.8. For any k > 1, as an Sp(2g, Q)-module,
Coker(7g) = Im(cy).

Namely, we conjecture that all of the Sp-irreducible components of the Johnson coker-
nels of the mapping class group can be detected by the map c.
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