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Abstract

The σ-finite measure Psup which unifies supremum penalisations for a stable Lévy
process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy
processes and Chaumont’s h-transform processes with respect to these functions are
utilized for the construction of Psup.
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1 Introduction

Roynette-Vallois-Yor ([18] and [19], see also [20] and [21]) have considered the limit laws of
Wiener measure weighted by various processes (Γt), and they call these studies Brownian
penalisations. Especially we call the case where the weight process is given by a function
of its supremum, i.e., (S) Γt = f(St), supremum penalisation. Concerning the Brownian
supremum penalisations, the authors [19] have obtained the following result: Let X =
((Xt), (Ft),W) be the canonical representation of a 1-dimensional standard Brownian
motion with W(X0 = 0) = 1 and let F∞ = σ(

∨
t Ft). Put St = sups≤tXs. If f is a

non-negative Borel function which satisfies

∫ ∞

0

f(x)dx = 1, (1.1)

then there exists a unique probability law W(f) on F∞ such that

W[f(St)Fs]

W[f(St)]
−→ W(f)[Fs] as t→ ∞, (1.2)

for any fixed s > 0 and for any bounded Fs-measurable functional Fs. Moreover the limit
measure W(f) is characterized by

W(f)|Fs
= M (f)

s · W|Fs
, (1.3)

(1)Department of Mathematics, Kyoto University.
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where (M
(f)
s , s ≥ 0) is a ((Fs),W)-martingale which has the form

M (f)
s = f(Ss)(Ss −Xs) +

∫ ∞

Ss

f(x)dx. (1.4)

We remark that these martingales (M
(f)
s ) which are known as the Azéma-Yor martingales

were applied to solve the Skorokhod embedding problem; see [1] and [2], and [15] and
references therein. In [19] the authors have also obtained the description of the probability
measure W(f) as follows.

Theorem 1.1 (Roynette-Vallois-Yor [19]). The following holds:

(i) W(f)(S∞ ∈ dx) = f(x)dx.

(ii) Let g = sup{t ≥ 0 : Xt = S∞}. Then W(f)(g <∞) = 1 and, under W(f), we have

(a) (Xu, u ≤ g) and (Xg −Xg+u, u ≥ 0) are independent;

(b) conditional on S∞ = x, the pre-supremum process (Xu, u ≤ g) is distributed as
a Brownian motion starting from 0 and stopped at its first hitting time of x;

(c) the post-supremum process (Xg−Xg+u, u ≥ 0) is distributed as a 3-dimensional
Bessel process starting from 0.

Theorem 1.1 implies that, under the limit measure W(f), the time g when the process
attains its overall supremum is finite, so that the supremum penalisation procedure can
be interpreted as looking for probabilities on canonical space, which are close to W, and
such that S∞ <∞ a.s.

Roynette-Vallois-Yor considered Brownian penalisations for many other kinds of weighted
processes. For instance, (L) Γt = f(Lt) where Lt denotes the local time of X at the ori-
gin, and (K) Γt = exp(−

∫
L(t, x)V (dx)) where L(t, x) denotes the local time of X at x;

we call the former case local time penalisation and the latter case Kac killing penalisa-
tion. Meanwhile Najnudel-Roynette-Yor [14] have introduced a certain σ-finite measure
W defined as follows:

W =

∫ ∞

0

du√
2πu

(Π(u) • P 3B), (1.5)

where Π(u) denotes the law of Brownian bridge from 0 to 0 of length u and P 3B =
(P 3B,+ + P 3B,−)/2 denotes the law of symmetrized 3-dimensional Bessel process; P 3B,+

is the law of 3-dimensional Bessel process starting from 0, BES(3), whereas P 3B,− is
the law of (−BES(3)). The authors in [14] have shown that the Brownian penalisations
including (S)(L)(K) can be understood in a unified manner, thanks to this measure W.
Especially in the supremum penalisation case, they have shown the following absolute
continuity relationship between W and W(f):

f(S∞) · W− = W(f) on F∞, (1.6)

where

W− = 1{S∞<∞} · W =

∫ ∞

0

du√
2πu

(
Π(u) • P

3B,−

2

)
. (1.7)
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As a generalisation of these studies, Yano-Yano-Yor [26] have considered the two kinds
of penalisations (L) and (K) in the case of symmetric α-stable Lévy process with index
α ∈ (1, 2]. Let us denote by ((Xt),P) such a stable Lévy process with P(X0 = 0) = 1. The
authors have introduced a σ-finite measure P defined as follows, which is the analogue of
W:

P =

∫ ∞

0

Γ(1/α)

απ

du

u1/α
(Q(u) • P×), (1.8)

where Q(u) denotes the law of the stable bridge from 0 to 0 of length u and P× denotes
the h-transform process with respect to the harmonic function |x|α−1 of the process killed
at the first hitting time of 0. We should remark that the process under the measure P×

is called conditioned to avoid 0, because of the following property obtained by K. Yano
[24]: If a functional Z is of the form Z = f(Xt1 , · · · , Xtn) for some 0 < t1 < · · · < tn and
some continuous function f : Rn → R which vanishes at ∞, then one has

P×[Z] = lim
t→∞

lim
ε→0+

P

[
Z ◦ θε

∣∣∣ ∀u ≤ t, Xu ◦ θε 6= 0
]
, (1.9)

where θ· is the shift operator: Xu ◦ θ· = X·+u. Moreover the following long-time behavior
of path under P× is also obtained by K. Yano [25]:

P×

(
lim sup

t→∞
Xt = lim sup

t→∞
(−Xt) = lim

t→∞
|Xt| = ∞

)
= 1. (1.10)

Thus we can see immediately that, under P, S∞ = ∞ a.e. That is, P cannot unify the
supremum penalisations (S) in the stable case.

Yano-Yano-Yor [27] have studied the supremum penalisation for a (α, ρ)-stable Lévy
process with index α ∈ (0, 2] and positivity parameter ρ ∈ (0, 1). The authors have

introduced a generalised Azéma-Yor martingale (M
(f)
s ) which is defined as

M (f)
s = f(Ss)(Ss −Xs)

αρ + αρ

∫ ∞

Ss

f(x)(x−Xs)
αρ−1dx, (1.11)

for any non-negative Borel function f satisfying

0 <

∫ ∞

0

f(x)xαρ−1dx <∞, (1.12)

and also introduced the probability measure P(f) given as

P(f)|Fs
=
M

(f)
s

M
(f)
0

· P|Fs
. (1.13)

The authors obtained the following result:

Theorem 1.2 (Yano-Yano-Yor [27]). Let f be a non-negative function which satisfies
either of the following two conditions:

(i) f(x) = 1{x≤a} for some a > 0;
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(ii) f is absolutely continuous with respect to the Lebesgue measure and satisfies

lim
x→∞

f(x) = 0 and 0 <

∫ ∞

0

|f ′(x)|xαρdx <∞. (1.14)

Then it holds that, for any s > 0 and any bounded Fs-measurable functional Fs,

P[f(St)Fs]

P[f(St)]
−→ P(f)[Fs] as t→ ∞. (1.15)

We remark that the condition (ii) in Theorem 1.2 is stronger than the condition (1.12)
because we have

∫ ∞

0

f ′(x)xαρdx = αρ

∫ ∞

0

f ′(x)dx

∫ x

0

yαρ−1dy

= αρ

∫ ∞

0

yαρ−1dy

∫ ∞

y

f ′(x)dx = −αρ
∫ ∞

0

f(y)yαρ−1dy.

One may conjecture that the assumption of Theorem 1.2 can be weakened to the condition
(1.12) that is sufficient to define the generalised Azéma-Yor martingale and the measure
P(f); however, this is still an open problem.

In the present paper we introduce a certain σ-finite measure Psup by using Chaumont’s
h-transform processes for Lévy processes (cf. Theorem 5.1 below):

Psup =

∫ ∞

0

dxψ(x)(P0↗x • Px↓x),

where ψ is the function stated below in (2.10), P0↗x denotes the law of the process starting
from 0 and conditioned to hit x continuously, and Px↓x denotes the law of the process
starting from x and conditioned to stay below level x. Psup is another analogue of W and
P, and it is a generalisation of W− given in (1.7). We remark that, in the Brownian case,
PBM

sup is given by the following:

PBM
sup =

∫ ∞

0

dx
(
W0↗x • P 3B,−

x

)
=

∫ ∞

0

dx

∫ ∞

0

du
x√
πu3

e−
x2

2u

(
W

(u)
0↗x • P 3B,−

x

)
, (1.16)

where W0↗x denotes the law of Brownian motion killed at the first hitting time at x

and W
(u)
0↗x(·) = W0↗x(·|T{x} = u), and P 3B,−

x denotes the law of the translation by x of
(−BES(3)). The latter equality is obtained from the well-known fact (see, e.g., [11]) that

W(T{x} ∈ du) = du
x√

2πu3
e−

x2

2u . (1.17)

We note that the measure PBM
sup equals W− by the agreement formula obtained by Pitman-

Yor [16].
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Figure 1. Sample path of Π(u) • P 3B,−

Figure 2. Sample path of W
(u)
0↗x • P 3B,−

x

We then show that the measure Psup unifies the supremum penalisations. More pre-
cisely, we shall define a probability measure P(f) as the transformation of the law P of
a Lévy process by the generalised Azéma-Yor martingale defined as (6.2) below. This
measure P(f) is the generalisation of (1.13) for a general Lévy process. We then prove
the absolute continuity relationship between Psup and P(f) in the Lévy case, which is the
analogue of (1.6) (cf. Theorem 7.3 below):

f(S∞) · Psup

Psup[f(S∞)]
= P(f) on F∞.

We obtain a detailed description of P(f) as a consequence of this result (cf. Theorem 7.4
below). To prove the absolute continuity relationship between Psup and P(f), we shall
introduce a path decomposition of the law P of a Lévy process up to a fixed time t with
respect to the position and the time where the process attains its supremum before time
t.
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The organization of the present paper is as follows. In Section 2 and 3, we recall some
preliminary facts about Lévy processes and (α, ρ)-stable Lévy processes, respectively. If a
reader needs to see details, he/she may refer to, e.g., [3], [10], [12] and [22]. In Section 4,
we review Chaumont’s two kinds of h-transform processes for a Lévy process. In Section
5, we establish a path decomposition of the law of a Lévy process at the position and
the time where the Lévy process attains its supremum up to a fixed time t. In Section
6, we introduce the generalised Azéma-Yor martingale in the general Lévy case, which is
the generalisation of (1.4) and (1.11). A certain probability measure which should appear
as the limit measure of the supremum penalisation is also introduced in this section. In
Section 7, we introduce the σ-finite measure Psup which unifies the supremum penalisations
and give some properties of the measure Psup. In Section 8, we compare Psup with P and
give some remarks on these measures.

2 Preliminaries about Lévy processes

Let D([0,∞)) be the space of càdlàg paths ω : [0,∞) → R ∪ {δ} with lifetime ζ(ω) =
inf{s : ω(s) = δ} where δ is a cemetery point. Let (Xt) denote the coordinate process,
Xt(ω) = ωt, and let (Ft) denote its natural filtration with F∞ = ∨t≥0Ft. Let P be the
law of a Lévy process X = (Xt, t ≥ 0) with P(X0 = 0) = 1 such that

P [exp{iλXt}] = e−tΨ(λ), t ≥ 0, λ ∈ R, (2.1)

where

Ψ(λ) = iγλ+
σ2λ2

2
+

∫
�
\{0}

(
1 − eiλx + iλx1{|x|<1}

)
ν(dx) (2.2)

for some constants γ, σ, and Lévy measure ν on R \ {0} which satisfies
∫

�
\{0}

(x2 ∧ 1)ν(dx) <∞. (2.3)

We denote by Px the law of X + x under P for every x ∈ R. Throughout this paper we
assume the following absolute continuity condition (A1):

(A1) For each α > 0, there exists an integrable function uα such that

Px

[∫ ∞

0

e−αtf(Xt)dt

]
=

∫ ∞

−∞

uα(y)f(x+ y)dy, (2.4)

for every non-negative Borel function f .

Let St and It be respectively the supremum and the infimum processes up to time t, that
is, for all t < ζ(ω),

St = sup{Xs : 0 ≤ s ≤ t} and It = inf{Xs : 0 ≤ s ≤ t}. (2.5)

Let TA denote the first entrance time of a Borel set A ⊂ R of X, i.e.,

TA = inf{s > 0 : Xs ∈ A}. (2.6)
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Define

R = S −X. (2.7)

The process R = (Rt, t ≥ 0) is called the reflected process of X at the supremum. We
recall that R is a strong Markov process (Bingham [5], see also [4]). We consider the
following condition (A2):

(A2) 0 is regular for (0,∞) with respect to X under P, i.e., P(T(0,∞) = 0) = 1.

Then 0 is regular for itself with respect to R, and hence we can define a local time
L = (Lt, t ≥ 0) at level 0 of R. We denote by τ the right-continuous inverse of L and let
H = X(τ) = I(τ). We recall that the pair (τ,H) is a bivariate subordinator, called the
(upwards) ladder process, in particular, τ and H are separately also subordinators, called
the (upwards) ladder time and the (upwards) ladder height process, respectively. Denote
by X∗ the dual process of X, i.e., X∗ = −X. Consider

(A2∗) 0 is regular for (−∞, 0) with respect to X under P.

Then we can define a local time L∗ at level 0 of R∗ = S∗ −X∗ = X − I, and also get the
(downwards) ladder time τ ∗ and the (downwards) ladder height time H∗ of R∗.

We denote by E the set of càdlàg paths e : [0,∞) → R ∪ {δ} such that

e(t)

{
∈ R \ {0}, 0 < t < ζe;
= δ, t ≥ ζe,

where

ζe = inf{t > 0 : e(t) = δ}. (2.8)

We call E the set of excursions and an element e ∈ E an excursion path. For e ∈ E, we
call ζe the lifetime of the excursion e. Set D = {l : τl − τl− > 0}. For each l ∈ D, we set

el(t) =

{
Rt+τl−

, 0 ≤ t < τl − τl−;
δ, t ≥ τl − τl−.

By Itô’s theorem, the point process (el, l ∈ D) which takes values on E is a Poisson point
process, and its characteristic measure n is called the Itô measure of excursions. Similarly,
we can introduce excursions e∗ with respect to R∗ and denote by n

∗ its Ito measure.
We recall the following important formula, see also p. 7 in [4], and Proposition (1.10)

in Chapter XII in [17]. Denote by P(Ft) the predictable σ-field relative to (Ft) (cf. p.
47 in [17]), and let E = σ{e(t)}.

Theorem 2.1 (Compensation formula). Let F = F (t, ω, e) be a positive process de-
fined on [0,∞)×D ×E, measurable with respect to P(Ft)⊗E and vanishing at δ. Then
one has

P

[
∑

l∈D

F (τl−, X, el)

]
= P ⊗ n̂

[∫ ∞

0

dLtF (t, X, X̂)

]
, (2.9)

where the symbol ̂ means independence.
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Under (A1) and (A2), there exists a unique coexcessive function ψ for the killed
process, i.e., P−x[ψ(X∗

t )1{t<T(0,∞)}] ≤ ψ(x) for x ≥ 0, which satisfies

∫ ∞

0

ψ(y)f(y)dy = P

[∫ ∞

0

f(Sτs
)ds

]
= P

[∫ ∞

0

f(St)dLt

]
, (2.10)

for any non-negative Borel function f on [0,∞). We remark that ψ is continuous and
satisfies that 0 < ψ(x) < ∞ for x ∈ (0,∞). Thanks to Silverstein [23], the function ψ is
coharmonic on (0,∞), that is,

P−x

[
ψ(X∗

TM
)1{TM <T(0,∞)}

]
= ψ(x), x > 0, (2.11)

where M denotes a subinterval of (−∞, 0) whose complement (−∞, 0) \M is open and
has compact closure. We assume further that

(A3) Px(T(−∞,0) <∞) = 1 for x > 0 (
iff⇐⇒ I∞ = −∞ P-a.s.).

Then the function h given by

h(x) =

∫ x

0

ψ(y)dy = P

[∫ ∞

0

1{St≤x}dLt

]
(2.12)

is coinvariant by Silverstein [23], that is,

P−x

[
h(X∗

t )1{t<T(0,∞)}

]
= h(x), x > 0; (2.13)

n

[
h(Xt)1{t<ζ}

]
= 1. (2.14)

We remark that the function h is finite, continuous, increasing and subadditive on [0,∞),
and that h(0) = 0 by (A2). We remark that every positive coinvariant function is also
coharmonic.

Similarly, under (A1) and (A2∗), there exists a version of the potential density of the
subordinator (Iτ∗

s
)s≥0. That is, there exists a unique coexcessive function ψ∗ for the killed

process, i.e., Px[ψ∗(Xt)1{t<T(−∞,0)}] ≤ ψ∗(x) for x ≥ 0, which satisfies

∫ ∞

0

ψ∗(y)f(y)dy = P

[∫ ∞

0

f(Iτ∗
s
)ds

]
= P

[∫ ∞

0

f(It)dL
∗
t

]
, (2.15)

for any non-negative Borel function f on (0,∞). Also thanks to Silverstein [23], the
function ψ∗ is coharmonic on (0,∞), that is,

Px

[
ψ∗(XTM′

)1{TM′<T(−∞,0)}

]
= ψ∗(x), x > 0, (2.16)

where M ′ denotes a subinterval of (0,∞) whose complement (0,∞) \M ′ is open and has
the compact closure. If we assume further that

(A3∗) P−x(T(0,∞) <∞) = 1 for x > 0 (
iff⇐⇒ S∞ = ∞ P-a.s.).
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Then the function h∗ given by

h∗(x) =

∫ x

0

ψ∗(y)dy = P

[∫ ∞

0

1{It≤x}dL
∗
t

]
(2.17)

is coinvariant, that is,

Px

[
h∗(Xt)1{t<T(−∞,0)}

]
= h∗(x), x > 0; (2.18)

n
∗
[
h∗(Xt)1{t<ζ}

]
= 1. (2.19)

3 Preliminaries about (α, ρ)-stable Lévy processes

Consider a probability measure P on D([0,∞)) with respect to which X is a strictly stable
Lévy process of index α ∈ (0, 2] with P(X0 = 0) = 1. That is,

P[eiλXt ] = e−tΨ(λ), t ≥ 0, λ ∈ R,

where

Ψ(λ) =





c|λ|α
(

1 − iβsgn(λ) tan
πα

2

)
, α ∈ (0, 1) ∪ (1, 2),

c|λ| + diλ, α = 1,
cλ2, α = 2,

for some constants c > 0, d ∈ (−∞,∞) and β ∈ [−1, 1]. The Lévy measure ν is given by

ν(dx) =





(c+1{x>0} + c−1{x<0})|x|−α−1dx, α ∈ (0, 1) ∪ (1, 2),
c̃|x|−2dx, α = 1,
0, α = 2,

where β = (c+− c−)/(c+ + c−), and for some constant c̃ > 0. When c+[−] = 0, the process
is spectrally negative[positive] (or, has no positive[negative] jumps). We remark that the
condition (A1) is also valid in the stable Lévy case because of the scaling property of X.

Put ρ = P(Xt ≥ 0). By the scaling property of X, ρ does not depend on t > 0. We
call ρ the positivity parameter. It is well-known that the value of ρ for α 6= 1, 2 can be
represented in terms of the parameter β as

ρ =
1

2
+

1

πα
arctan

(
β tan

πα

2

)
. (3.1)

See Section 2.6 in [28], and p. 218 in [3]. The range of the value of ρ is classified as
follows:

ρ





∈ [0, 1] if α ∈ (0, 1)
(when ρ = 0 or 1, the process is a subordinator or a negative subordinator),

∈ (0, 1) if α = 1,
∈ [1 − 1/α, 1/α] if α ∈ (1, 2)

(when ρ = 1 − 1/α or 1/α, the process is spectrally positive or spectrally negative),
= 1/2 if α = 2.

Assume that
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(B) ρ ∈ (0, 1) (
iff⇐⇒ |X| is not a subordinator).

Then αρ ∈ (0, 1). We note that the condition (B) for the stable Lévy case implies
the conditions (A2) and (A2∗), that is, 0 is regular for both (0,∞) and (−∞, 0) with
respect to X. Therefore we can define the local times L, L∗, etc. for the reflected and dual
reflected processes in this case. Moreover the condition (B) also implies the conditions
(A3) and (A3∗): More precisely, when α ∈ (1, 2], (A3) and (A3∗) hold since X is strictly
stable; when α ∈ (0, 1], they hold because of the condition (B).

Assuming (B), the function h is given by

h(x) = Cxαρ, x > 0 (3.2)

for some constant C > 0. This is obtained from the fact that the ladder time process τ
is a subordinator of index ρ and the ladder height process H is a stable process of index
αρ (see Lemma VIII 1 in [4]). Furthermore, in this case, we have

ψ(x) = Cαρxαρ−1, x > 0. (3.3)

Similarly, we have

h∗(x) = Dxα(1−ρ) and ψ∗(x) = Dα(1 − ρ)xα(1−ρ)−1, x > 0 (3.4)

for some constant D > 0. These constants C and D may depend upon the choice of the
local time L and L∗, respectively. In what follows we choose the versions of the local
times L and L∗ so that C = D = 1 for the sake of simplicity.

Example 3.1 (Brownian case). When α = 2 and ρ = 1/2, X is a 1-dimensional
Brownian motion up to a multiplicative constant. In this case we have

h(x) = x and ψ(x) = 1, x > 0. (3.5)

4 Chaumont’s two kinds of conditionings for a Lévy process

In this section we shall review two kinds of conditionings for a Lévy process introduced
by Chaumont [7, 6], which are obtained by Doob’s h-transform.

Let X = ((Xt),P) be a Lévy process with the conditions (A1), (A2) and (A3). The
functions ψ and h are stated as (2.10) and (2.17), respectively.

1◦ The process conditioned to stay negative.

For non-negative Ft-measurable functional Ft, define (P−x↓0, x ≥ 0) as

P−x↓0[Ft(X)] =
1

h(x)
P−x

[
h(X∗

t )1{t<T(0,∞)}Ft(X)
]
, x > 0, (4.1)

P0↓0[Ft(X)] = n

[
h(Xt)1{t<ζe}Ft(X

∗)
]
. (4.2)

The family (P−x↓0|Ft
, t ≥ 0) is proved to be consistent by the coinvariance of the function

h and hence P−x↓0 is well-defined as a probability measure on F∞. It is proved by
Chaumont-Doney [9] that P−x↓0 converges in the Skorokhod sense to P0↓0 as x→ 0. The
process (X,P−x↓0) is called the process starting from (−x) and conditioned to stay negative
since it has the following property:
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Theorem 4.1 ([6, Theorem 1]). Let e be an independent exponential random variable
with index 1. Then, for any x > 0, t ≥ 0 and any Ft-measurable functional Ft, it holds
that

lim
ε→0

P−x

[
1{t<e/ε}Ft

∣∣ Xs < 0, 0 ≤ s ≤ e/ε
]

= P−x↓0[Ft]. (4.3)

Theorem 4.1 implies the following: For x ≥ 0,

P−x↓0(X0 = −x; ζ = ∞; Xt < 0 for all t > 0; lim
t→∞

Xt = −∞) = 1. (4.4)

Here ζ denotes the lifetime.
For b ≤ a, denote by Pb↓a the law of X + a under Pb−a↓0, that is, (X,Pb↓a) is the

process starting from b and conditioned to stay below level a.

2◦ The process conditioned to hit 0 continuously.

Define (P−x↗0, x > 0) as

P−x↗0

[
1{t<ζ}Ft(X)

]
:=

1

ψ(x)
P−x

[
ψ(X∗

t )1{t<T(0,∞)}Ft(X)
]
, (4.5)

for non-negative Ft-measurable functional Ft. The process (X,P−x↗0) is called the pro-
cess starting from (−x) and conditioned to hit 0 continuously, or also called the process
conditioned to die at 0, and has the following property:

Theorem 4.2 ([6, Proposition 2]). For x > 0, it holds that

P−x↗0(X0 = −x; ζ <∞; Xt < 0 for all t < ζ; Xζ− = 0) = 1, (4.6)

where ζ denotes the lifetime.

The following result is also shown by Chaumont [6]:

Theorem 4.3 ([6, Proposition 3]). For any x > 0, k > 0, t ≥ 0 and any Ft-measurable
functional Ft,

lim
ε→0

P−x

[
1{t<T(−k,∞)}Ft

∣∣∣ ST(0,∞)− ≥ −ε
]

= P−x↗0

[
1{t<T(−k,0)}Ft

]
. (4.7)

Denote by P0↗x the law of X + x under P−x↗0, that is, (X,P0↗x) is the process
starting from 0 and conditioned to hit x continuously. For later use, we rewrite (4.5) by
translation to obtain

P0↗x

[
1{t<ζ}Ft(X)

]
=

1

ψ(x)
P

[
ψ(x−Xt)1{t<T(x,∞)}Ft(X)

]
, (4.8)

since we have

P0↗x

[
1{t<ζ}Ft(X)

]
= P−x↗0

[
1{t<ζ}Ft(X + x)

]

=
1

ψ(x)
P−x

[
ψ(X∗

t )1{t<T(0,∞)}Ft(X + x)
]

=
1

ψ(x)
P

[
ψ(x+X∗

t )1{t<T(x,∞)}Ft(X)
]
.
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5 Path decomposition at the position and the time where the
Lévy process attains its supremum up to time t

Our aim in this section is to prove Theorem 5.1, which consists of a path decomposition
with respect to the position and the time where the Lévy process attains its supremum
up to time t > 0.

Let us denote by X (u) the coordinate process considered up to time u, i.e.,

X
(u)
t =

{
Xt, t < u;
δ, t ≥ u,

and denote by P
(u)
x the law of X (u) under Px. We denote the concatenation between two

independent processes X (u) and X̂(v) by X (u) • X̂(v), i.e.,

(X(u) • X̂(v))t =





X
(u)
t , 0 ≤ t < u;

X̂
(v)
t−u, u ≤ t < u+ v;

δ, t ≥ u+ v.

We define the measure P
(u)
x •P

(v)
y as the law of the concatenation X (u) • X̂(v) between two

independent processes X (u) and X̂(v) where (X (u), X̂(v)) is considered under the product

measure P
(u)
x ⊗ P̂

(v)
y .

For t > 0, we denote the last time when the process attains its supremum before t by

gt = sup{s ≤ t : Xs = Ss}. (5.1)

Theorem 5.1. Let X = ((Xt),P) be a Lévy process with P(X0 = 0) = 1 and assume
(A1), as well as both (A2) and (A2∗). Let Ft(X

(t)) = F (t, Xt∧·). Then it holds that

P
[
Ft(X

(t))
]

=

∫
ρt(dxdu)

(
P

(u)
0↗x • M(t−u)

x

) [
Ft(X

(t))
]
, (5.2)

where the integral is taken over [0,∞) × [0, t) and

ρt(dxdu) = dxψ(x)P0↗x(ζ ∈ du)n(ζe > t− u); (5.3)

P
(u)
0↗x(·) = P0↗x(·|ζ = u) (ζ denotes the lifetime); (5.4)

M(s)
x [F (X)] =

n

[
F (x−X (s)); ζe > s

]

n(ζe > s)
(ζe denotes the lifetime). (5.5)

In other words, the following statements hold:

(i) ρt(dxdu) gives the joint distribution of St and gt, i.e.,

ρt(dxdu) = P(St ∈ dx, gt ∈ du); (5.6)

(ii) given gt = u, the pre-supremum process (Xs, s ≤ u) and the post-supremum process
(Xu −Xu+s, 0 ≤ s ≤ t− u) are independent under P;

12



(iii) given St = x and gt = u, (Xs, s ≤ u) under P is distributed as P
(u)
0↗x; the process

conditioned to hit x continuously, with duration u;

(iv) given St = x and gt = u, (x − Xu+s, 0 ≤ s ≤ t − u) under P is distributed as the

meander M(t−u) := M
(t−u)
0 .

Remark 5.2. The fact (ii) in Theorem 5.1 is well-known and can be found in Lemma VI
6 in [4].

Remark 5.3. We can also see that Xgt
= Xgt−, that is, the process does not jump at

gt; the last hitting time of its supremum up to time t. This fact is guaranteed by the
conditions (A2) and (A2*), see also [4], p. 160.

Remark 5.4. Theorem 5.1 is obtained independently by Chaumont [8] in his recent work
for some purpose different from ours.

Before the proof of Theorem 5.1, we recall the following lemma from Chaumont [7]:

Lemma 5.5 ([7, Lemma 3]). Let X = ((Xt),P) be a Lévy process with P(X0 = 0) = 1
satisfying conditions (A1), (A2) and (A2∗). Denote by L the local time at 0 of the
reflected process R = S −X. Let H be a predictable functional. Then it holds that

P

[∫ ∞

0

Ht(X)dLt

]
=

∫ ∞

0

P−x↗0[Hζ(X + x)]ψ(x)dx. (5.7)

The proof of Lemma 5.5 for the stable Lévy process is given in [7]. Lemma 5.5 for the
general Lévy process is proved in the same way, so we omit the proof.

Proof of Theorem 5.1. We have

∫ ∞

0

dtFt(X
(t)) =

∑

l∈D

∫ ζ(el)

0

Fτl−+r(X
(τl−) • (Xτl−

− el))dr. (5.8)

Hence we have

P

[∫ ∞

0

dtFt(X
(t))

]
= P

[
∑

l∈D

∫ ζ(el)

0

Fτl−+r

(
X(τl−) • (Xτl−

− el)
)

dr

]

= P ⊗ n̂

[∫ ∞

0

dLs

∫ �ζe

0

Fs+r(X
(s) • (Xs − X̂(r)))dr

]
, (5.9)

by the compensation formula (Theorem 2.1). By Lemma 5.5, we have

(5.9) =

∫ ∞

0

dxψ(x) (P−x↗0 ⊗ n̂)

[∫ ∞

0

Fζ+r

(
(X(ζ) + x) • (Xζ + x− X̂(r))

)
1{r< �ζe}

dr

]

=

∫ ∞

0

dxψ(x) (P−x↗0 ⊗ n̂)

[∫ ∞

0

Fζ+r

(
(X(ζ) + x) • (x− X̂(r))

)
1{r< �ζe}

dr

]
. (5.10)
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Here we use the fact that Xζ = 0. By translation by x of P−x↗0 and then changing of
variable ζ + r = u, we have

(5.10) =

∫ ∞

0

dxψ(x) (P0↗x ⊗ n̂)

[∫ ∞

0

Fζ+r

(
X(ζ) • (x− X̂(r))

)
1{r< �ζe}

dr

]

=

∫ ∞

0

dxψ(x) (P0↗x ⊗ n̂)

[∫ ∞

0

Fu

(
X(ζ) • (x− X̂(u−ζ))

)
1{u−ζ< �ζe}

1{u>ζ}du

]
.

(5.11)

This identity holds with Ft replaced by e−qtFt for any q > 0, and hence, by uniqueness of
the Laplace transform, we obtain

P
[
Ft(X

(t))
]

=

∫ ∞

0

dxψ(x) (P0↗x ⊗ n̂)
[
Ft

(
X(ζ) • (x− X̂(t−ζ))

)
1{t−ζ< �ζe}

1{t>ζ}

]
(5.12)

=

∫ ∞

0

dxψ(x)

∫ t

0

P0↗x(ζ ∈ du)
(
P

(u)
0↗x ⊗ n̂

) [
Ft

(
X(u) • (x− X̂(t−u))

)
1{t−u< �ζe}

]

(5.13)

=

∫ ∞

0

dxψ(x)

∫ t

0

P0↗x(ζ ∈ du)n(ζe > t− u)
(
P

(u)
0↗x ⊗ M̂(t−u)

x

) [
Ft

(
X(u) • X̂(t−u)

)]
,

(5.14)

which completes the proof.

Remark 5.6. (i) In the (α, ρ)-stable Lévy case with α ∈ (0, 2] and ρ ∈ (0, 1), it is
well-known that (see Lemma 3.2 in [13])

n(ζe > t) =
K · t−ρ

Γ(1 − ρ)
, (5.15)

where K > 0 is some constant, and hence we obtain from (3.3) and (5.3) that

P (St ∈ dx, gt ∈ du) = K · dxxαρ−1P0↗x(ζ ∈ du)
(t− u)−ρ

Γ(1 − ρ)
. (5.16)

Furthermore, together with the following well-known fact (see, e.g., [4]) that

P(gt ∈ du) =
1

Γ(1 − ρ)Γ(ρ)
uρ−1(t− u)−ρdu, (5.17)

then we obtain

P(St ∈ dx|gt = u)du = K · dxxαρ−1P0↗x(ζ ∈ du)Γ(ρ)u1−ρ. (5.18)

(ii) In the Brownian case, i.e., α = 2 and ρ = 1/2, we note that Xt
law
= W2t for a

1-dimensional standard Brownian motion (Wt), and we have the following:

P(St ∈ dx, gt ∈ du) = dxdu
x

2π
√
u3(t− u)

e−
x2

4u ; (5.19)

P0↗x(ζ ∈ du) = P(T{x} ∈ du) = du
x

2
√
πu3

e−
x2

4u , (5.20)
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because of the following well-known facts (see, e.g., p. 102 and p. 80 in [11], respectively):

P(S̃t ∈ dx, g̃t ∈ du) = dxdu
x

π
√
u3(t− u)

e−
x2

2u ; (5.21)

P(T̃{x} ∈ du) = du
x√

2πu3
e−

x2

2u , (5.22)

where S̃t = sups≤tWs, g̃t = sup{s ≤ t : Ws = S̃t}, and T̃A = inf{s > 0 : Ws ∈ A} for a
Borel set A ⊂ R. Thus we can easily check that the equality (5.16) is valid.

Remark 5.7. Assume moreover (A3). Then, thanks to Bertoin’s result; Corollary 3.2
in [3], it holds that

lim
t→∞

M(t)[F (X)] = P0↓0[F (X)], (5.23)

where

M(t)[F (X)] = M
(t)
0 [F (X)] =

n

[
F (−X (t)); ζe > t

]

n(ζe > t)
. (5.24)

6 Generalised Azéma-Yor martingales and definition of a prob-
ability measure P(f)

Let us introduce a generalisation of (1.4) and (1.11). Let X = ((Xt),P) be a Lévy process
with notation given in Section 2 and assume (A1), (A2) and (A3). Let ψ and h be the
functions given by (2.10) and (2.17), respectively. Let f be a non-negative Borel function
on [0,∞) satisfying

(0 <)

∫ ∞

0

f(x)ψ(x)dx <∞. (6.1)

We introduce the process (M
(f)
t , t ≥ 0) by

M
(f)
t = f(St)h(St −Xt) +

∫ ∞

St

f(x)ψ(x−Xt)dx. (6.2)

Theorem 6.1. (M
(f)
t , t ≥ 0) is a ((Ft),P)-martingale.

The proof of Theorem 6.1 is done in the same way as in [27] in the stable Lévy case;
the coinvariance of the function h plays a key role. Thus we omit it.

We introduce the probability measure P(f) on F∞ as follows:

P(f)|Ft
=
M

(f)
t

M
(f)
0

· P|Ft
. (6.3)

Since (M
(f)
t ) is a martingale, the consistency holds, and hence P(f) is well-defined.
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7 The σ-finite measure which unifies the supremum penalisa-
tions

Let us consider a Lévy process X = ((Xt),P) with P(X0 = 0) = 1. In this section we
assume:

(A1) absolute continuity condition for the resolvent;

(A2) & (A2∗) 0 is regular for both (0,∞) and (−∞, 0) with respect to X;

(A3) & (A3∗) I∞ = −∞ and S∞ = ∞ P-a.s.,

where I∞ and S∞ are the overall infimum and supremum of Xt, respectively, i.e., I∞ =
inf{Xt : t ≥ 0} and S∞ = sup{Xt : t ≥ 0}. Remark again that the condition (B) in the
(α, ρ)-stable Lévy case implies all the above conditions.

We introduce Psup as follows.

Definition 7.1. Define

Psup =

∫ ∞

0

dxψ(x)(P0↗x • Px↓x), (7.1)

where P0↗x denotes the law of X + x under P−x↗0, i.e., P0↗x denotes the law of the
process starting from 0 and conditioned to hit x continuously, and Px↓x denotes the law of
X+x under P0↓0, i.e., Px↓x denotes the law of the process starting from x and conditioned
to stay below level x.

Denote

g = sup{t ≥ 0 : Xt = S∞}. (7.2)

Theorem 7.2. The following statements hold:

(i) Psup(S∞ ∈ dx, g ∈ du) = dxψ(x)P0↗x(ζ ∈ du),
in particular, Psup(S∞ ∈ dx) = dxψ(x);

(ii) Psup is a σ-finite measure on F∞;

(iii) Psup is singular to P on F∞.

(iv) For each t > 0 and A ∈ Ft, it holds that

Psup(A) =

{
0, if P(A) = 0;
∞, if P(A) > 0.

(7.3)

Consequently, Psup is not σ-finite on Ft for t <∞.
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Proof. (i) We have

Psup =

∫ ∞

0

dxψ(x)

∫ ∞

0

P0↗x(ζ ∈ du)
(
P

(u)
0↗x • Px↓x

)
, (7.4)

and hence

Psup[F (S∞)G(g)] =

∫ ∞

0

dxψ(x)

∫ ∞

0

P0↗x(ζ ∈ du)
(
P

(u)
0↗x • Px↓x

)
[F (S∞)G(g)]

=

∫ ∞

0

dxψ(x)F (x)

∫ ∞

0

P0↗x(ζ ∈ du)G(u),

for any test functions F and G. Thus we obtain the desired result.
(ii) For each x > 0, Psup(S∞ < x) =

∫ x

0
ψ(y)dy is finite, which shows the desired

conclusion.
(iii) We have Psup(S∞ = ∞) = 0. On the other hand, we have P(S∞ <∞) = 0 by our

assumption (A3∗). This implies that Psup is singular to P on F∞.
(iv) Suppose that P(A) = 0 for A ∈ Ft. We have

Psup(A) =

∫ ∞

0

dxψ(x) (P0↗x • Px↓x) (A)

=

∫ ∞

0

dxψ(x) (P0↗x • Px↓x) [1A; t < ζ] +

∫ ∞

0

dxψ(x) (P0↗x • Px↓x) [1A; t ≥ ζ]

=: I1 + I2.

On one hand, we have

I1 =

∫ ∞

0

dxψ(x)P0↗x [1A; t < ζ]

=

∫ ∞

0

dxP

[
ψ(x−Xt)1{t<T(x,∞)}1A

]
(by (4.8))

= 0.

On the other hand, we have

I2 =

∫ ∞

0

dxψ(x) (P0↗x • Px↓x) [1A(X); t ≥ ζ]

=

∫ ∞

0

dxψ(x)
(

P0↗x ⊗ P̂0↓0

) [
1A

(
X(ζ) •

(
x + X̂(t−ζ)

))
1{t≥ζ}

]

=

∫ ∞

0

dxψ(x) (P0↗x ⊗ n̂)
[
h(X̂t−ζ)1{t−ζ< �ζe}

1A

(
X(ζ) •

(
x− X̂(t−ζ)

))
1{t≥ζ}

]
, (7.5)

by the definition of P0↓0. Then

(7.5) =

∫ ∞

0

dxψ(x) (P0↗x ⊗ n̂)
[
h

(
x− (x− X̂t−ζ)

)
1A(X)1{0≤t−ζ< �ζe}

]

=

∫ ∞

0

dxψ(x) (P0↗x ⊗ n̂)
[
h

(
x−

(
X(ζ) • (x− X̂(t−ζ))

)
t

)
1A(X)1{0≤t−ζ< �ζe}

]

= P [h(St −Xt)1A] (by Theorem 5.1)

= 0.
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Thus we obtain Psup(A) = 0.
Conversely, suppose that P(A) > 0 for A ∈ Ft. Then we see that

Psup(A) ≥
∫ ∞

0

dxψ(x)P0↗x [1A; t < ζ]

=

∫ ∞

0

dxP

[
ψ(x−Xt)1{t<T(x,∞)}1A

]

≥
∫ ∞

1

dxP

[
ψ(x−Xt)1{t<T(1,∞)}1A

]

= P

[
{h(∞) − h(1 −Xt)}1{t<T(1,∞)}1A

]
.

Since we have

h(∞) = lim
x→∞

h(x) = lim
x→∞

P

[∫ ∞

0

1{St≤x}dLt

]
= P

[∫ ∞

0

dLt

]
= P[L∞] = ∞,

thus Psup(A) = ∞. Therefore the proof is completed.

We shall give some relationships between the measures Psup, P and P(f).

Theorem 7.3. It holds that

Psup [f(S∞)Ft(X)] = P

[
M

(f)
t Ft(X)

]
. (7.6)

Consequently, one has

Psup [f(S∞)Ft(X)]

Psup [f(S∞)]
= P

[
M

(f)
t

M
(f)
0

Ft(X)

]
= P(f)[Ft(X)], (7.7)

and

f(S∞) · Psup

Psup[f(S∞)]
= P(f) on F∞. (7.8)

Proof. Recall the computation in the proof of Theorem 7.2 (iv). We have

Psup [f(S∞)Ft(X)] =

∫ ∞

0

dxψ(x)(P0↗x • Px↓x) [f(S∞)Ft(X)]

=

∫ ∞

0

dxψ(x)f(x)(P0↗x • Px↓x) [Ft(X)] , (7.9)

since S∞ = x under the measure P0↗x • Px↓x. Then

(7.9) =

∫ ∞

0

dxψ(x)f(x)(P0↗x • Px↓x) [Ft(X); t < ζ]

+

∫ ∞

0

dxψ(x)f(x)(P0↗x • Px↓x) [Ft(X); t ≥ ζ]

=: I1 + I2.
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On one hand, we have

I1 =

∫ ∞

0

dxψ(x)f(x)P0↗x [Ft(X); t < ζ] =

∫ ∞

0

dxf(x)P
[
ψ(x−Xt)1{t<T(x,∞)}Ft(X)

]

= P

[
Ft(X)

∫ ∞

0

dxf(x)ψ(x −Xt)1{St≤x}

]
. (7.10)

On the other hand, we obtain from the same computation in the proof of (iv) in the
previous theorem that

I2 =

∫ ∞

0

dxψ(x)f(x)(P0↗x • Px↓x) [Ft(X); t ≥ ζ]

=

∫ ∞

0

dxψ(x)f(x)(P0↗x ⊗ n̂)
[
h(x−Xt)Ft(X)1{0≤t−ζ< �ζe}

]

=

∫ ∞

0

dxψ(x)(P0↗x ⊗ n̂)
[
f(St)h(St −Xt)1{t−ζ< �ζe}

Ft(X)1{t≥ζ}

]
. (7.11)

By Theorem 5.1, we get

(7.11) = P [f(St)h (St −Xt)Ft (X)] . (7.12)

Combining (7.10) and (7.12), we obtain

Psup [f(S∞)Ft] = P

[
Ft(X)

∫ ∞

St

dxf(x)ψ(x−Xt)

]
+ P [Ft(X)f(St)h (St −Xt)]

= P

[
Ft(X)

{∫ ∞

St

dxf(x)ψ(x−Xt) + f(St)h (St −Xt)

}]
, (7.13)

that is,

Psup [f(S∞)Ft] = P

[
M

(f)
t Ft

]
. (7.14)

Especially, when t = 0, we have

Psup [f(S∞)] =

∫ ∞

0

dxf(x)ψ(x). (7.15)

Therefore we obtain

Psup [f(S∞)Ft(X)]

Psup [f(S∞)]
= P

[
M

(f)
t

M
(f)
0

Ft(X)

]
= P(f)[Ft(X)]. (7.16)

This completes the proof.

The measure Psup does not depend upon f . Recall that P(f) is the limit measure
of supremum penalisation. The measure Psup implies the following fact that gives the
detailed description of P(f).
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Theorem 7.4. One has

P(f) =

∫ ∞

0

P(f)(S∞ ∈ dx)(P0↗x • Px↓x). (7.17)

That is, it holds that, under P(f),

(i) P(f)(S∞ ∈ dx) =
1

M
(f)
0

ψ(x)f(x)dx where M
(f)
0 =

∫ ∞

0

ψ(x)f(x)dx;

(ii) given g = u, (Xs, s ≤ u) and (Xu −Xu+s, s ≥ 0) are independent;

(iii) given S∞ = x and g = u, (Xs, s ≤ u) is distributed as the process conditioned to hit
x continuously with duration u;

(iv) given S∞ = x and g = u, (x−Xu+s, s ≥ 0) is distributed as the process conditioned
to stay negative.

Under our assumption in this section, the following result for the martingale (M
(f)
t )

can be proved.

Theorem 7.5. Let X = ((Xt),P) be a Lévy process with (A1), (A2), (A2∗), (A3) and

(A3∗), and let M
(f)
t be the process given in (6.2). Then M

(f)
t converges to 0 P-a.s. as

t→ ∞.

Proof. We show that M
(f)
t → 0 a.s. through the measure Psup. Since (M

(f)
t ) is a non-

negative P-martingale as proved before, there exists a F∞-measurable functional M
(f)
∞

such that M
(f)
t →M

(f)
∞ P-a.s. by the martingale convergence theorem. For a > 0,

P
[
M (f)

∞

]
= P

[
M (f)

∞ 1{S∞≥a}

]
(by the fact that P(S∞ = ∞) = 1)

≤ lim inf
t→∞

P

[
M

(f)
t 1{St≥a}

]
(by Fatou’s lemma)

= lim inf
t→∞

Psup

[
f(S∞)1{St≥a}

]
(by (7.7))

= Psup

[
f(S∞)1{S∞≥a}

]
. (by the dominated convergence theorem)

Letting a → ∞, then Psup

[
f(S∞)1{S∞≥a}

]
→ 0 � Thus P[M

(f)
∞ ] = 0, and therefore we

obtain P(M
(f)
∞ = 0) = 1.

Finally, we mention the following relationship between Psup and the law P.

Proposition 7.6. It holds that

Psup[1{g≤t}Ft(X)] = P[h(St −Xt)Ft(X)], (7.18)

for every Ft-measurable functional Ft.
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Proof. For λ > 0, let fλ(x) = e−λx. We note that

M
(fλ)
t = e−λSth(St −Xt) +

∫ ∞

St

e−λxψ(x−Xt)dx, (7.19)

where M
(f)
t is defined as (6.2). By Theorem 7.3, we have

P

[
M

(fλ)
t eλStFt(X)

]
= Psup

[
fλ(S∞)eλStFt(X)

]

= Psup

[
e−λ(S∞−St)Ft(X)

]

= Psup

[
e−λ(S∞−St)1{g≤t}Ft(X)

]
+ Psup

[
e−λ(S∞−St)1{g>t}Ft(X)

]

= Psup

[
1{g≤t}Ft(X)

]
+ Psup

[
e−λ(S∞−St)1{g>t}Ft(X)

]
.

Letting λ→ ∞, we obtain the desired conclusion.

8 Some remarks on P and Psup

Recall the σ-finite measure P which is given in [26] (see also [24]):

P =

∫ ∞

0

P[dLX
u ](Q(u) • P×), (8.1)

where LX
t denotes the local time at 0 of X itself, Q(u) denotes the law of the stable bridge

from 0 to 0 with length u and P× denotes the h-transform process with respect to the
harmonic function |x|α−1 of the process killed at the first hitting time of 0. On comparison,
it becomes clear that the two σ-finite measures Psup and P are quite different: Psup is
based on the excursion theory for the reflected process of a Lévy process, whereas P comes
from the excursion theory for a Lévy process itself. We stress that this difference cannot

appear in the Brownian case because of the fact that (St, St − Xt)t≥0
law
= (LX

t , |Xt|)t≥0

which is known as Lévy’s theorem.
Finally, we mention the relationship between Psup and P as follows:

(i) P ⊥ Psup on F∞;

(ii) if A ∈ Ft, then

P(A) > 0 ⇐⇒ Psup(A) > 0, (8.2)

and both are infinite.
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cess. Appl., 64, 39–54, 1996.
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