ON THE AUGMENTATION QUOTIENTS OF THE IA-AUTOMPORPHISM GROUP OF A FREE GROUP AND A FREE METABELIAN GROUP

TAKAO SATOH¹

Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto city 606-8502, Japan

ABSTRACT. In this paper, we study the augmentation quotients of the IA-automorphism group of a free group and a free metabelian group. First, for any group G, we construct a lift of the k-th Johnson homomorphism of the automorphism group of G to the k-th augmentation quotient of the IA-automorphism group of G. Then we study the images of them for the case where G is a free group and a free metabelian group. As a corollary, we detect some **Z**-free part in each of the augmentation quotients, which can not be detected by the abelianization of the IA-automorphism group.

1. INTRODUCTION

Let F_n be a free group of rank $n \ge 2$, and Aut F_n the automorphism group of F_n . Let denote ρ : Aut $F_n \to \text{Aut } H$ the natural homomorphism induced from the abelianization $F_n \to H$. The kernel of ρ is called the IA-automorphism group of F_n , denoted by IA_n. The subgroup IA_n reflects much of the richness and complexity of the structure of Aut F_n , and plays important roles on various studies of Aut F_n . Although the study of the IA-automorphism group has a long history since its finitely many generators were obtained by Magnus [14] in 1935, the combinatorial group structure of IA_n is still quite complicated. For instance, any presentation for IA_n is not known in general.

We have studied IA_n mainly using the Johnson filtration of Aut F_n so far. The Johnson filtration is one of a descending central series

$$IA_n = \mathcal{A}_n(1) \supset \mathcal{A}_n(2) \supset \cdots$$

consisting of normal subgroups of Aut F_n , which first term is IA_n. (For detail, see Subsection 2.3.) Each graded quotient $\operatorname{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k+1)$ naturally has a GL (n, \mathbb{Z}) -module structure, and from it we can extract some valuable information for IA_n. For example, $\operatorname{gr}^1(\mathcal{A}_n)$ is just the abelianization of IA_n due to Cohen-Pakianathan [6, 7], Farb [9] and Kawazumi [13]. Pettet [19] determined the image of the cup product $\cup_{\mathbb{Q}}$: $\Lambda^2 H^1(\operatorname{IA}_n, \mathbb{Q}) \to H^2(\operatorname{IA}_n, \mathbb{Q})$ by using the GL (n, \mathbb{Q}) -module structure of $\operatorname{gr}^2(\mathcal{A}_n) \otimes_{\mathbb{Z}} \mathbb{Q}$. At the present stage, however, the structures of the graded quotients $\operatorname{gr}^k(\mathcal{A}_n)$ are far from well-known.

On the other hand, compared with the Johnson filtration, the lower central series $\Gamma_{\text{IA}_n}(k)$ of IA_n and its graded quotients $\mathcal{L}_{\text{IA}_n}(k) := \Gamma_{\text{IA}_n}(k)/\Gamma_{\text{IA}_n}(k+1)$ are somewhat

²⁰⁰⁰ Mathematics Subject Classification. 20F28(Primary), 16S34(Secondly).

Key words and phrases. IA-automorphism group of a free group, Augmentation quotients, Johnson homomorphism.

¹e-address: takao@math.kyoto-u.ac.jp

easier to handle since we can obtain finitely many generators of $\mathcal{L}_{IA_n}(k)$ using the Magnus generators of IA_n . Since the Johnson filtration is central, $\Gamma_{IA_n}(k) \subset \mathcal{A}_n(k)$ for any $k \geq 1$. It is conjectured that $\Gamma_{IA_n}(k) = \mathcal{A}_n(k)$ for each $k \geq 1$ by Andreadakis who showed $\Gamma_{IA_2}(k) = \mathcal{A}_2(k)$ for each $k \geq 1$. Now, it is known that $\Gamma_{IA_n}(2) = \mathcal{A}_n(2)$ due to Bachmuth [2], and that $\Gamma_{IA_n}(3)$ has at most finite index in $\mathcal{A}_n(3)$ due to Pettet [19].

In this paper, we consider the augmentation quotients of IA_n . Let $\mathbf{Z}[G]$ be the integral group ring of a group G, and $\Delta(G)$ the augmentation ideal of $\mathbf{Z}[G]$. We denote by $Q^k(G) := \Delta^k(G)/\Delta^{k+1}(G)$ the k-th augmentation quotient of G. The augmentation quotients $Q^k(IA_n)$ of IA_n are seemed to be closely related to the lower central series $\Gamma_{IA_n}(k)$ as follows. If the Andreadakis's conjecture is true, then each of the graded quotients $\mathcal{L}_{IA_n}(k)$ is free abelian. Hence using a work of Sandling and Tahara [21], (For details, see Subsection 4.1.), we obtain a conjecture for the **Z**-module structure of $Q^k(IA_n)$:

Conjecture 1. For any $k \ge 1$,

$$Q^{k}(\mathrm{IA}_{n}) \cong \sum \bigotimes_{i=1}^{k} S^{a_{i}}(\mathcal{L}_{\mathrm{IA}_{n}}(i))$$

as a **Z**-module. Here \sum runs over all non-negative integers a_1, \ldots, a_k such that $\sum_{i=1}^k ia_i = k$, and $S^a(M)$ means the symmetric tensor product of a **Z**-module M such that $S^0(M) = \mathbf{Z}$.

We see that this is true for k = 1 and 2 from a general argument in group ring theory. (For k = 2, see (1) below.) For $k \geq 3$, however, it is still open problem. In general, one of the most standard methods to study the augmentation quotients $Q^k(IA_n)$ is to consider a natural surjective homomorphism $\pi_k : Q^k(IA_n) \to Q^k(IA_n^{ab})$ induced from the abelianization $IA_n \to IA_n^{ab}$ of IA_n . Furthermore, since IA_n^{ab} is free abelian, we have a natural isomorphism $Q^k(IA_n^{ab}) \cong S^k(\mathcal{L}_{IA_n}(1))$. Hence, in the conjecture above, we can detect $S^k(\mathcal{L}_{IA_n}(1))$ in $Q^k(IA_n)$ by the abelianization of IA_n .

Then we have a natural question to ask: Determine the structure of the kernel of π_k . More precisely, clarify the $\operatorname{GL}(n, \mathbb{Z})$ -module structure of $\operatorname{Ker}(\pi_k)$. In order to attack this problem, in this paper we construct and study a certain homomorphism defined on $Q^k(\operatorname{IA}_n)$ which restriction to $\operatorname{Ker}(\pi_k)$ is non-trivial. For a group G, let $\alpha_k = \alpha_{k,G} : \mathcal{L}_G(k) \to Q^k(G)$ be a homomorphism defined by $\sigma \mapsto \sigma - 1$. One of the main purposes of the paper is to construct a $\operatorname{GL}(n, \mathbb{Z})$ -equivariant homomorphism

$$\mu_k : Q^k(\mathrm{IA}_n) \to \mathrm{Hom}_{\mathbf{Z}}(H, \alpha_{k+1}(\mathcal{L}_n(k+1)))$$

where $\mathcal{L}_n(k)$ is the k-th graded quotient of the lower central series of F_n . Furthermore, for the k-th Johnson homomorphism

$$\tau'_k : \mathcal{L}_{\mathrm{IA}_n}(k) \to \mathrm{Hom}_{\mathbf{Z}}(H, \mathcal{L}_n(k+1))$$

defined by $\sigma \mapsto (x \mapsto x^{-1}x^{\sigma})$, (See Subsection 2.3 for details.), we show that $\mu_k \circ \alpha_k = \alpha_{k+1}^* \circ \tau'_k$ where α_{k+1}^* is a natural homomorphism induced from α_{k+1} . Since α_{k,F_n} is a GL (n, \mathbb{Z}) -equivariant injective homomorphism for each $k \ge 1$, if we identify $\mathcal{L}_n(k)$ with its image $\alpha_k(\mathcal{L}_n(k))$, we obtain $\mu_k \circ \alpha_k = \tau'_k$. Hence, the homomorphism μ_k can be considered as a lift of the Johnson homomorphism τ'_k . In the following, we naturally identify $\operatorname{Hom}_{\mathbb{Z}}(H, \mathcal{L}_n(k+1))$ with $H^* \otimes_{\mathbb{Z}} \mathcal{L}_n(k+1)$ for $H^* := \operatorname{Hom}_{\mathbb{Z}}(H, \mathbb{Z})$.

Historically, the study of the Johnson homomorphisms was originally begun in 1980 by D. Johnson [11] who determined the abelianization of the Torelli subgroup of the mapping class group of a surface in [12]. Now, there is a broad range of remarkable results for the Johnson homomorphisms of the mapping class group. (For example, see [10] and [15], [16], [17].) These works also inspired the study of the Johnson homomorphisms of Aut F_n . Using it, we can investigate the graded quotients $\operatorname{gr}^k(\mathcal{A}_n)$ and $\mathcal{L}_{\operatorname{IA}_n}(k)$. Recently, it has achieved good progress through the works of many authors, for example, [6], [7], [9], [13], [15], [16], [17] and [19]. In particular, in our previous work [24], we determined the cokernel of the rational Johnson homomorphism $\tau'_{k,\mathbf{Q}} := \tau'_k \otimes \operatorname{id}_{\mathbf{Q}}$ for $k \geq 2$ and $n \geq k + 2$.

The main theorem of the paper is

Theorem 1. (See Theorem 4.4.) For $k \ge 3$ and $n \ge k+2$, a $GL(n, \mathbb{Z})$ -equivariant homomorphism

$$\mu_k \oplus \pi_k : Q^k(\mathrm{IA}_n) \to (H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n(k+1))) \bigoplus Q^k(\mathrm{IA}_n^{\mathrm{ab}})$$

defined by $\sigma \mapsto (\mu_k(\sigma), \pi_k(\sigma))$ is surjective.

Next, we consider the framework above for a free metabelian group. Let $F_n^M := F_n/[[F_n, F_n], [F_n, F_n]]$ be a free metabelian group of rank n. By the same argument as the free group case, we can consider the IA-automorphism group IA_n^M and the Johnson homomorphism

$$\tau'_k : \mathcal{L}_{\mathrm{IA}^M_n}(k) \to H^* \otimes_{\mathbf{Z}} \mathcal{L}^M_n(k+1)$$

of Aut F_n^M where $\mathcal{L}_{\mathrm{IA}_n^M}(k)$ is the k-th graded quotient of the lower central series of IA_n^M , and $\mathcal{L}_n^M(k)$ is that of F_n^M . In our previous work [23], we studied the Johnson homomorphism of Aut F_n^M , and determined its cokernel. In particular, we showed that there appears only the Morita obstruction $S^k H$ in $\mathrm{Coker}(\tau'_k)$ for any $k \geq 2$ and $n \geq 4$. We remark that in [23], we determined the cokernel of the Johnson homomorphism τ_k which is defined on the graded quotient of the Johnson filtration of Aut F_n^M . Observing our proof, we verify that $\mathrm{Coker}(\tau'_k) = \mathrm{Coker}(\tau_k)$.

Now, similarly to the free group case, we can also construct a $\operatorname{GL}(n, \mathbb{Z})$ -equivariant homomorphism

$$\iota_k : Q^k(\mathrm{IA}_n^M) \to \mathrm{Hom}_{\mathbf{Z}}(H, \alpha_{k+1}(\mathcal{L}_n^M(k+1)))$$

such that $\mu_k \circ \alpha_k = \alpha_{k+1}^* \circ \tau'_k$. The second purpose of the paper is to show

Theorem 2. (See Theorem 5.3.) For $k \ge 2$ and $n \ge 4$, a $GL(n, \mathbb{Z})$ -equivariant homomorphism

$$\mu_k \oplus \pi_k : Q^k(\mathrm{IA}_n^M) \to (H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n^M(k+1))) \bigoplus S^k((\mathrm{IA}_n^M)^{\mathrm{ab}})$$

defined by $\sigma \mapsto (\mu_k(\sigma), \pi_k(\sigma))$ is surjective.

In this paper, for arbitrary group G, we construct a lift of the Johnson homomorphism of the automorphism group of G to the augmentation quotients of G. In order to do this, in Section 2, after fixing notation and conventions, we recall the associated graded Lie algebra of a group G, the Johnson homomorphism of the automorphism group of G, and the associated graded ring of the integral group ring $\mathbf{Z}[G]$ of G. In Section 3, we construct an Aut G/IA(G)-equivariant homomorphism μ_k which is considered as a lift of the Johnson homomorphism. In Sections 4 and 5, we consider the case where G is a free group and a free metabelian group respectively.

CONTENTS

1. Introduction	1
2. Preliminaries	4
2.1. Notation and conventions	4
2.2. Associated graded Lie algebra of a group	4
2.3. Johnson homomorphisms	5
2.4. Associated graded ring of a group ring	6
3. A lift of the Johnson homomorphisms to the augmentation quotients	7
3.1. Construction of μ_k	7
3.2. Actions of $\operatorname{Aut} G$	11
3.3. Some properties of μ_k	12
4. Free group case	13
4.1. Preliminary results for $G = F_n$	14
4.2. The image of $\mu_k _{\text{Ker}(\pi_k)}$	15
5. Free metabelian case	17
5.1. Preliminary results for $G = F_n^M$	18
5.2. The image of $\mu_k _{\mathrm{Ker}(\pi_k^M)}$	18
6. Acknowledgments	20
References	20

2. Preliminaries

2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a group and N a normal subgroup of G.

- The abelianization of G is denoted by G^{ab} .
- The group Aut G of G acts on G from the right. For any $\sigma \in \text{Aut } G$ and $x \in G$, the action of σ on x is denoted by x^{σ} .
- For an element $g \in G$, we also denote the coset class of g by $g \in G/N$ if there is no confusion.
- For elements x and y of G, the commutator bracket [x, y] of x and y is defined to be $[x, y] := xyx^{-1}y^{-1}$.

2.2. Associated graded Lie algebra of a group.

For a group G, we define the lower central series of G by the rule

$$\Gamma_G(1) := G, \quad \Gamma_G(k) := [\Gamma_G(k-1), G], \quad k \ge 2.$$

We denote by $\mathcal{L}_G(k) := \Gamma_G(k)/\Gamma_G(k+1)$ the graded quotient of the lower central series of G, and by $\mathcal{L}_G := \bigoplus_{k>1} \mathcal{L}_G(k)$ the associated graded sum. The graded sum \mathcal{L}_G naturally has a graded Lie algebra structure induced from the commutator bracket on G, and called the associated graded Lie algebra of G.

For any $g_1, \ldots, g_t \in G$, a commutator of weight k type of

$$[[\cdots [[g_{i_1}, g_{i_2}], g_{i_3}], \cdots], g_{i_k}], \quad i_j \in \{1, \dots, t\}$$

with all of its brackets to the left of all the elements occurring is called a simple k-fold commutator among the components g_1, \ldots, g_t , and we denote it by

$$[g_{i_1}, g_{i_2}, \cdots, g_{i_k}]$$

for simplicity. In general, if G is generated by g_1, \ldots, g_t , then the graded quotient $\mathcal{L}_G(k)$ is generated by the simple k-fold commutators

$$[g_{i_1}, g_{i_2}, \dots, g_{i_k}], \quad 1 \le i_j \le t$$

as a **Z**-module.

Let ρ_G : Aut $G \to \operatorname{Aut} G^{\operatorname{ab}}$ be the natural homomorphism induced from the abelianization of G. The kernel IA(G) of ρ_G is called the IA-automorphism group of G. Then the automorphism group Aut G naturally acts on $\mathcal{L}_G(k)$ for each $k \geq 1$, and IA(G) acts on it trivially. Hence the action of Aut $G/\operatorname{IA}(G)$ on $\mathcal{L}_G(k)$ is well-defined.

2.3. Johnson homomorphisms.

For $k \geq 1$, the action of Aut G on each nilpotent quotient $G/\Gamma_G(k+1)$ induces a homomorphism

Aut
$$G \to \operatorname{Aut}(G/\Gamma_G(k+1))$$
.

For k = 1, this homomorphism is just ρ_G . We denote the kernel of the homomorphism above by $\mathcal{A}_G(k)$. Then the groups $\mathcal{A}_G(k)$ define a descending central filtration

$$IA_G = \mathcal{A}_G(1) \supset \mathcal{A}_G(2) \supset \mathcal{A}_G(3) \supset \cdots$$

(See [1] for details.) We call it the Johnson filtration of Aut G. For each $k \geq 1$, the group Aut G acts on $\mathcal{A}_G(k)$ by conjugation, and it naturally induces an action of Aut G/IA(G) on $\operatorname{gr}^k(\mathcal{A}_G)$. The graded sum $\operatorname{gr}(\mathcal{A}_G) := \bigoplus_{k\geq 1} \operatorname{gr}^k(\mathcal{A}_G)$ has a graded Lie algebra structure induced from the commutator bracket on IA(G).

To study the Aut G/IA(G)-module structure of each graded quotient $\operatorname{gr}^k(\mathcal{A}_G)$, we define the Johnson homomorphisms of Aut G in the following way. For each $k \geq 1$, we consider a homomorphism $\mathcal{A}_G(k) \to \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, \mathcal{L}_G(k+1))$ defined by

$$\sigma \mapsto (g \mapsto g^{-1}g^{\sigma}), \quad x \in G.$$

Then the kernel of this homomorphism is just $\mathcal{A}_G(k+1)$. Hence it induces an injective homomorphism

$$\tau_k = \tau_{G,k} : \operatorname{gr}^k(\mathcal{A}_G) \hookrightarrow \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, \mathcal{L}_G(k+1)).$$

The homomorphism τ_k is called the k-th Johnson homomorphism of Aut G. It is easily seen that each τ_k is an Aut G/IA(G)-equivariant homomorphism. Since each Johnson homomorphism τ_k is injective, it is natural question to determine the image, or equivalently, the cokernel of τ_k in the study of the Aut G/IA(G)-module $\operatorname{gr}^k(\mathcal{A}_G)$.

Here, we consider another descending filtration of IA(G). Let $\Gamma_{IA(G)}(k)$ be the kth subgroup of the lower central series of IA(G). Then for each $k \geq 1$, $\Gamma_{IA(G)}(k)$ is a subgroup of $\mathcal{A}_G(k)$ since the Johnson filtration is a central filtration of IA(G). In general, it is a natural question to ask whether $\Gamma_{\text{IA}(G)}(k)$ coincides with $\mathcal{A}_G(k)$ or not. For the case where G is a free group F_n of rank n, it is conjectured that $\Gamma_{\text{IA}(F_n)}(k)$ coincides with $\mathcal{A}_{F_n}(k)$ by Andreadakis.

Consider $\mathcal{L}_{\mathrm{IA}(G)}(k) := \Gamma_{\mathrm{IA}(G)}(k)/\Gamma_{\mathrm{IA}(G)}(k+1)$ for each $k \geq 1$. Similarly to $\mathrm{gr}(\mathcal{A}_G)$, the graded sum $\mathcal{L}_{\mathrm{IA}(G)} := \bigoplus_{k \geq 1} \mathcal{L}_{\mathrm{IA}(G)}(k)$ has a graded Lie algebra structure induced from the commutator bracket on IA(G). The restriction of the homomorphism $\mathcal{A}_G(k) \to \mathrm{Hom}_{\mathbf{Z}}(G^{\mathrm{ab}}, \mathcal{L}_G(k+1))$ to $\Gamma_{\mathrm{IA}(G)}(k)$ also induces an Aut $G/\mathrm{IA}(G)$ -equivariant homomorphism

$$\tau'_k = \tau'_{G,k} : \mathcal{L}_{\mathrm{IA}(G)}(k) \to \mathrm{Hom}_{\mathbf{Z}}(G^{\mathrm{ab}}, \mathcal{L}_G(k+1)).$$

In this paper, we also call τ'_k the k-th Johnson homomorphism of Aut G.

2.4. Associated graded ring of a group ring.

For a group G, let $\mathbf{Z}[G]$ be a group ring of G over \mathbf{Z} , and $\Delta(G)$ the augmentation ideal of $\mathbf{Z}[G]$. Namely, $\Delta(G)$ is the kernel of the augmentation map $\varepsilon : \mathbf{Z}[G] \to \mathbf{Z}$ defined by

$$\sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g, \quad a_g \in \mathbf{Z}.$$

We denote by $\Delta^k(G) := (\Delta(G))^k$ the k-times product of the augmentation ideal $\Delta(G)$ in $\mathbb{Z}[G]$. For each $k \ge 1$, set

$$Q^{k}(G) := \Delta^{k}(G) / \Delta^{k+1}(G),$$

gr(**Z**[G]) := $\bigoplus_{k \ge 1} Q^{k}(G).$

The quotients $Q^k(G)$ are called the augmentation quotients of G. The graded sum $\operatorname{gr}(\mathbf{Z}[G])$ naturally has an associative graded ring structure induced from the product in $\mathbf{Z}[G]$. The ring $\operatorname{gr}(\mathbf{Z}[G])$ is called the associated graded ring of the group ring $\mathbf{Z}[G]$.

In general, one of the most standard methods to study $Q^k(G)$ is to consider a natural surjective homomorphism $\pi_k = \pi_{k,G} : Q^k(G) \to Q^k(G^{ab})$ induced from the abelianization $G \to G^{ab}$. Furthermore, if G^{ab} is free abelian, we have an natural isomorphism $Q^k(G^{ab}) \cong S^k(G^{ab}) = S^k(\mathcal{L}_G(1))$. (See Corollary 8.2 in [18].) In Subsection 4.2, we study the kernel of π_k for $G = F_n$. We remark that for a group G and $k \ge 1$, $\operatorname{Ker}(\pi_k)$ is generated by elements

$$(g_1 - 1) \cdots (g_k - 1) - (g_{\sigma(1)} - 1) \cdots (g_{\sigma(k)} - 1)$$

as a **Z**-module for any $g_1, \ldots, g_k \in G$, $1 \leq i_j \leq n$ and $\sigma \in \mathfrak{S}_k$. Here \mathfrak{S}_k denotes the symmetric group of degree k.

Here we consider a relation between $\operatorname{gr}(\mathbf{Z}[G])$ and \mathcal{L}_G . For any $g \in \Gamma_G(k)$, it is well known that an element $g - 1 \in \mathbf{Z}[G]$ belongs to $\Delta^k(G)$. Then a map $\Gamma_G(k) \to \Delta^k(G)$ defined by $g \mapsto g - 1$ induces a **Z**-linear map

$$\alpha_k = \alpha_{k,G} : \mathcal{L}_G(k) \to Q^k(G)$$

and a Lie algebra homomorphism

$$\alpha_G := \bigoplus_{k>1} \alpha_k : \mathcal{L}_G \to \operatorname{gr}(\mathbf{Z}[G])$$

where we consider $\operatorname{gr}(\mathbf{Z}[G])$ as a Lie algebra with a Lie bracket [x, y] := xy - yx for any $x, y \in \mathbf{Z}[G]$. We remark that for any group $G, \alpha_{1,G} : G^{\operatorname{ab}} \to Q^1(G)$ is an isomorphism. Hence, so is π_1 . For $k \geq 2$, however, π_k is not injective in general. For k = 2, if G is a finitely generated, then we have a split exact sequence of **Z**-modules:

(1)
$$0 \to \mathcal{L}_G(2) \xrightarrow{\alpha_{2,G}} Q^2(G) \xrightarrow{\pi_{2,G}} Q^2(G^{\mathrm{ab}}) \to 0.$$

(For a proof, see Corollary 8.13 of Chapter VIII in [18].) We denote by

$$\alpha_{k+1}^* = \alpha_{k+1,G}^* : \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, \mathcal{L}_G(k+1)) \to \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, Q^{k+1}(G))$$

the natural homomorphism induced from α_{k+1} .

3. A LIFT OF THE JOHNSON HOMOMORPHISMS TO THE AUGMENTATION QUOTIENTS

In this section, for a group G, we construct an Aut G/IA(G)-equivariant homomorphism $\mu_k : Q^k(G) \to \operatorname{Hom}_{\mathbf{Z}}(G^{ab}, Q^{k+1}(G))$ such that

(2)
$$\mu_k \circ \alpha_{k, \mathrm{IA}(G)} = \alpha_{k+1, G}^* \circ \tau_k'.$$

3.1. Construction of μ_k .

For any $\sigma \in \operatorname{Aut} G$ and $x \in G$, set $s_{\sigma}(x) := x^{-1}x^{\sigma} \in G$. First, we recall an important and useful lemma due to Andreadakis [1]:

Lemma 3.1. For any $k, l \ge 1, \sigma \in \mathcal{A}_G(k)$ and $x \in \Gamma_G(l)$, we have $s_{\sigma}(x) \in \Gamma_G(k+l)$.

For the proof of Lemma 3.1, see in [1]. From this lemma, we see that $s_{\sigma}(x) - 1 \in \Delta^{k+l}(G)$ for any $\sigma \in \mathcal{A}_G(k)$ and $x \in \Gamma_G(l)$. We often use these facts without any quotation. In order to define a lift of the Johnson homomorphism, we prepare some lemmas.

Lemma 3.2. For any $\sigma, \tau \in IA(G)$ and $x, y \in G$, we have

(1)
$$s_{\sigma\tau}(x) = s_{\tau}(x) \cdot s_{\sigma}(x)^{\tau} = s_{\tau}(x)s_{\sigma}(x)s_{\tau}(s_{\sigma}(x)).$$

(2) $s_{\sigma}(xy) = y^{-1}s_{\sigma}(x)y \cdot s_{\sigma}(y) = [y^{-1}, s_{\sigma}(x)]s_{\sigma}(x)s_{\sigma}(y).$

Proof. The equations follow from

$$s_{\sigma\tau}(x) = x^{-1}x^{\sigma\tau} = x^{-1}x^{\tau} \cdot (x^{-1}x^{\sigma})^{\tau} = x^{-1}x^{\tau} \cdot x^{-1}x^{\sigma} \cdot (x^{-1}x^{\sigma})^{-1} \cdot (x^{-1}x^{\sigma})^{\tau},$$

$$s_{\sigma}(xy) = y^{-1}x^{-1}x^{\sigma}y^{\sigma} = y^{-1}x^{-1}x^{\sigma}y \cdot y^{-1}y^{\sigma}.$$

Lemma 3.3. For any $x \in \Gamma_G(k)$ and $\sigma \in IA(G)$, we have

$$x^{\sigma} - x \equiv s_{\sigma}(x) - 1 \pmod{\Delta^{k+2}(G)}.$$

Proof. This is clear from

$$x^{\sigma} - x = (x^{\sigma} - 1) - (x - 1)$$

= $(x(x^{-1}x^{\sigma}) - 1) - (x - 1)$
= $(x - 1)(s_{\sigma}(x) - 1) + (s_{\sigma}(x) - 1)$

and $s_{\sigma}(x) - 1 \in \Delta^{k+1}(G)$. \Box

Lemma 3.4. For any $a \in \Delta^k(G)$ and $\sigma \in IA(G)$, we have $a^{\sigma} - a \in \Delta^{k+1}(G)$.

Proof. Any element of $\Delta^k(G)$ can be written as a **Z**-linear combination of elements types of

$$(x_1-1)\cdots(x_k-1)$$
 or $(x_1-1)\cdots(x_{k+1}-1)$

for $x_i \in G$. Hence it suffices to show the lemma for $a = (x_1 - 1) \cdots (x_k - 1)$. Then we have

$$a^{\sigma} - a = (x_1(x_1^{-1}x_1^{\sigma}) - 1) \cdots (x_k(x_k^{-1}x_k^{\sigma}) - 1) - (x_1 - 1) \cdots (x_k - 1),$$

$$= \{(x_1 - 1)(x_1^{-1}x_1^{\sigma} - 1) + (x_1 - 1) + (x_1^{-1}x_1^{\sigma} - 1)\}$$

$$\cdots \{(x_k - 1)(x_k^{-1}x_k^{\sigma} - 1) + (x_k - 1) + (x_k^{-1}x_k^{\sigma} - 1)\}$$

$$- (x_1 - 1) \cdots (x_k - 1),$$

$$\equiv (x_1 - 1) \cdots (x_k - 1) - (x_1 - 1) \cdots (x_k - 1) = 0 \pmod{\Delta^{k+1}(G)}.$$

For any $x \in G$, consider a **Z**-linear homomorphism $\varphi_x : \mathbf{Z}[\mathrm{IA}(G)] \to \Delta(G)$ defined by $\sigma \mapsto s_{\sigma}(x) - 1$ for any $\sigma \in \mathrm{IA}(G)$.

Lemma 3.5. For any $k, l \ge 1$, $x \in \Gamma_G(l)$, and $\sigma_1, \ldots, \sigma_k \in IA(G)$, we have

$$\varphi_x((\sigma_1 - 1) \cdots (\sigma_k - 1)) \equiv s_{\sigma_k}(s_{\sigma_{k-1}}(\cdots (s_{\sigma_1}(x)) \cdots)) - 1 \pmod{\Delta^{k+l+1}(G)}.$$

Proof. We prove this lemma by the induction on $k \ge 1$. For k = 1, it is obvious by the definition. Assume that $k \ge 2$. Write

$$(\sigma_1 - 1) \cdots (\sigma_{k-1} - 1) = \sum_{\sigma \in IA(G)} a_\sigma \sigma \in \mathbf{Z}[IA(G)]$$

for $a_{\sigma} \in \mathbf{Z}$. Then we have

$$\begin{split} \varphi_{x}((\sigma_{1}-1)\cdots(\sigma_{k-1}-1)(\sigma_{k}-1)), \\ &= \varphi_{x}((\sigma_{1}-1)\cdots(\sigma_{k-1}-1)\sigma_{k}-(\sigma_{1}-1)\cdots(\sigma_{k-1}-1)), \\ &= \varphi_{x}\Big(\sum_{\sigma\in \mathrm{IA}(G)}a_{\sigma}\,\sigma\sigma_{k}-\sum_{\sigma\in \mathrm{IA}(G)}a_{\sigma}\sigma\Big), \\ &= \sum_{\sigma\in \mathrm{IA}(G)}a_{\sigma}\big\{(s_{\sigma\sigma_{k}}(x)-1)-(s_{\sigma}(x)-1)\big\}, \\ &= \sum_{\sigma\in \mathrm{IA}(G)}a_{\sigma}\big\{(s_{\sigma_{k}}(x)s_{\sigma}(x)^{\sigma_{k}}-1)-(s_{\sigma}(x)-1)\big\}, \\ &= \sum_{\sigma\in \mathrm{IA}(G)}a_{\sigma}\big\{(s_{\sigma_{k}}(x)-1)(s_{\sigma}(x)^{\sigma_{k}}-1)+(s_{\sigma_{k}}(x)-1)\\ &+(s_{\sigma}(x)^{\sigma_{k}}-1)-(s_{\sigma}(x)-1)\big\}. \end{split}$$

Here we see

$$\sum_{\sigma \in \mathrm{IA}(G)} a_{\sigma}(s_{\sigma_k}(x) - 1)(s_{\sigma}(x)^{\sigma_k} - 1) = (s_{\sigma_k}(x) - 1) \Big(\sum_{\sigma \in \mathrm{IA}(G)} a_{\sigma}(s_{\sigma}(x) - 1)\Big)^{\sigma_k}$$
$$\equiv 0 \pmod{\Delta^{k+l+1}(G)}$$

since $s_{\sigma_k}(x) - 1 \in \Delta^2(G)$ and $\sum_{\sigma \in IA(G)} a_\sigma(s_\sigma(x) - 1) \in \Delta^{k+l-1}(G)$ by the inductive hypothesis, and see

$$\sum_{\sigma \in \mathrm{IA}(G)} a_{\sigma}(s_{\sigma_k}(x) - 1) = (s_{\sigma_k}(x) - 1) \sum_{\sigma \in \mathrm{IA}(G)} a_{\sigma} = 0.$$

On the other hand, by the inductive hypothesis, we have

$$\sum_{\sigma \in \mathrm{IA}(G)} a_{\sigma} \{ (s_{\sigma}(x)^{\sigma_{k}} - 1) - (s_{\sigma}(x) - 1) \},$$

$$= \left(\sum_{\sigma \in \mathrm{IA}(G)} a_{\sigma}(s_{\sigma}(x) - 1) \right)^{\sigma_{k}} - \sum_{\sigma \in \mathrm{IA}(G)} a_{\sigma}(s_{\sigma}(x) - 1),$$

$$= (s_{\sigma_{k-1}}(\cdots (s_{\sigma_{1}}(x)) \cdots) - 1)^{\sigma_{k}} - (s_{\sigma_{k-1}}(\cdots (s_{\sigma_{1}}(x)) \cdots) - 1)$$

$$+ a^{\sigma_{k}} - a$$

for some $a \in \Delta^{k+l}(G)$. Then, by Lemmas 3.3 and 3.4, we see

$$\equiv s_{\sigma_k}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_1}(x))\cdots)) - 1 \pmod{\Delta^{k+l+1}(G)}.$$

This completes the proof of Lemma 3.5. \Box

For each $k \geq 1$, since $\Delta^k(IA(G))$ is generated by elements types of

$$(\sigma_1 - 1) \cdots (\sigma_k - 1)$$
 or $(\sigma_1 - 1) \cdots (\sigma_{k+1} - 1)$

for $\sigma_i \in IA(G)$ as a **Z**-module, by Lemma 3.5 we obtain

Corollary 3.6. For any $k, l \geq 1$ and $x \in \Gamma_G(l)$, we have $\varphi_x(\Delta^k(\mathrm{IA}(G))) \subset \Delta^{k+l}(\mathrm{IA}(G))$.

Remark 3.7. For any $x \in \Gamma_G(l)$ a homomorphism $\mathbb{Z}[IA(G)] \to Q^{k+l}(IA(G))$ defined by $a \mapsto \varphi_x(a)$ is a polynomial map of degree $\leq k$.

Lemma 3.8. For any $k, l \ge 1$ and $x, y \in \Gamma_G(l)$, we have

$$s_{\sigma_k}(\cdots(s_{\sigma_1}(xy))\cdots)$$

$$\equiv s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) \cdot s_{\sigma_k}(\cdots(s_{\sigma_1}(y))\cdots) \pmod{\Gamma_G(k+2l+1)}$$

for any $\sigma_1, \ldots, \sigma_k \in IA(G)$.

Proof. We prove this lemma by the induction on $k \ge 1$. If k = 1, it is trivial from the part (2) of Lemma 3.2. Assume $k \ge 2$. By the inductive hypothesis, we see

$$s_{\sigma_{k-1}}(\cdots(s_{\sigma_1}(xy))) = c \, s_{\sigma_{k-1}}(\cdots(s_{\sigma_1}(x))) \cdot s_{\sigma_{k-1}}(\cdots(s_{\sigma_1}(y)))$$

for some $c \in \Gamma_G(k+2l)$. Then, using the part (2) of Lemma 3.2 we have

$$\begin{split} s_{\sigma_{k}}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(xy)))) &= s_{\sigma_{k}}(c\,s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x))) \cdot s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(y)))), \\ &= [\{s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x)))s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(y)))\}^{-1}, s_{\sigma_{k}}(c)] \\ &\cdot s_{\sigma_{k}}(c) \cdot s_{\sigma_{k}}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x))) \cdot s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(y)))), \\ &\equiv s_{\sigma_{k}}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x))) \cdot s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x)))), \\ &= [s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(y))))^{-1}, s_{\sigma_{k}}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(y))))] \\ &\cdot s_{\sigma_{k}}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x)))) \cdot s_{\sigma_{k}}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(y)))), \\ &\equiv s_{\sigma_{k}}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x)))) \cdot s_{\sigma_{k}}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(y)))). \end{split}$$

modulo $\Gamma_G(k+2l+1)$. \Box

Lemma 3.9. For any $k, l \ge 1, x, y \in \Gamma_G(l)$, and $a \in \Delta^k(IA(G))$, we have

$$\varphi_{xy}(a) \equiv \varphi_x(a) + \varphi_y(a) \pmod{\Delta^{k+l+1}(G)}$$

Proof. First, we consider the case where $a = (\sigma_1 - 1) \cdots (\sigma_k - 1)$ for some $\sigma_i \in IA(G)$. From Lemmas 3.5 and 3.8, we see

$$\varphi_{xy}(a) \equiv s_{\sigma_k}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_1}(xy))\cdots)) - 1,$$

= $cs_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) \cdot s_{\sigma_k}(\cdots(s_{\sigma_1}(y))\cdots) - 1$

for some $c \in \Gamma_G(k+2l+1)$. Hence we have

$$= (c-1)(s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) \cdot s_{\sigma_k}(\cdots(s_{\sigma_1}(y))\cdots) - 1),$$

+ $(c-1) + (s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) \cdot s_{\sigma_k}(\cdots(s_{\sigma_1}(y))\cdots) - 1),$
$$\equiv s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) \cdot s_{\sigma_k}(\cdots(s_{\sigma_1}(y))\cdots) - 1,$$

= $(s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) - 1)(s_{\sigma_k}(\cdots(s_{\sigma_1}(y))\cdots) - 1))$
+ $(s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) - 1) + (s_{\sigma_k}(\cdots(s_{\sigma_1}(y))\cdots) - 1),$
$$\equiv (s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) - 1) + (s_{\sigma_k}(\cdots(s_{\sigma_1}(y))\cdots) - 1),$$

= $\varphi_x(a) + \varphi_y(a)$

modulo $\Delta^{k+l+1}(G)$.

For a general case, $a \in \Delta^k(IA(G))$ is written as a **Z**-linear combination of elements types of

$$(\sigma_1 - 1) \cdots (\sigma_k - 1)$$
 or $(\sigma_1 - 1) \cdots (\sigma_{k+1} - 1)$

Therefore, using the argument above, we obtain the Lemma for any $a \in \Delta^k(IA(G))$. \Box

Lemma 3.10. For any $a \in \Delta^k(IA(G))$, a map $\mu_k(a) : G^{ab} \to Q^{k+1}(G)$ defined by $x \mapsto \varphi_x(a)$ is a homomorphism.

Proof. To begin with, we check that $\mu_k(a)$ is well-defined. Consider elements $x, y \in G$ such that y = xc for some $c \in \Gamma_G(2)$. Then by Lemma 3.9,

$$\varphi_y(a) = \varphi_{xc}(a) \equiv \varphi_x(a) + \varphi_c(a) \pmod{\Delta^{k+2}(G)}.$$

On the other hand, by Corollary 3.6, we see $\varphi_c(a) \in \Delta^{k+2}(G)$. Hence $\varphi_y(a) = \varphi_x(a) \in Q^{k+1}(G)$.

To show $\mu_k(a)$ is a homomorphism, take any x and $y \in G$. Then by Lemma 3.9,

$$\mu_k(a)(xy) = \varphi_{xy}(a) \equiv \varphi_x(a) + \varphi_y(a) = \mu_k(a)(x) + \mu_k(a)(y)$$

modulo $\Delta^{k+2}(G)$. This completes the proof of Lemma 3.10. \Box

Now, we are ready to define a lift of the Johnson homomorphism τ'_k . For any $k \ge 1$, define a map

$$\mu_k : \Delta^k(\mathrm{IA}(G)) \to \mathrm{Hom}_{\mathbf{Z}}(G^{\mathrm{ab}}, Q^{k+1}(G))$$

by

$$a \mapsto (x \mapsto \varphi_x(a)).$$

The map μ_k is a homomorphism. Furthermore $\Delta^{k+1}(IA(G))$ is contained in $Ker(\mu_k)$. Hence μ_k induces a homomorphism

$$Q^k(\mathrm{IA}(G)) \to \mathrm{Hom}_{\mathbf{Z}}(G^{\mathrm{ab}}, Q^{k+1}(G)).$$

We also denote by μ_k this induced homomorphism, and call it the k-th Johnson homomorphism of $\mathbf{Z}[IA(G)]$. We see that the compatibility (2) follows by the definition of τ'_k and μ_k .

3.2. Actions of $\operatorname{Aut} G$.

Next we consider actions of Aut G. Since IA(G) is a normal subgroup of Aut G, the group Aut G acts on $\mathbb{Z}[IA(G)]$ from the right by

$$\left(\sum_{\sigma\in \mathrm{IA}(G)} a_{\sigma}\sigma\right) \cdot \tau := \sum_{\sigma\in \mathrm{IA}(G)} a_{\sigma}(\tau^{-1}\sigma\tau)$$

for any $\tau \in \operatorname{Aut} G$. For each $k \geq 1$, since $\Delta^k(\operatorname{IA}(G))$ is preserved by the action of $\operatorname{Aut} G$, the group $\operatorname{Aut} G$ also acts on each of the graded quotient $Q^k(\operatorname{IA}(G))$. Then $\operatorname{IA}(G)$ acts on $Q^k(\operatorname{IA}(G))$ trivially. In fact, for any $\tau \in \operatorname{IA}(G)$, we have

$$(\sigma_{1}-1)\cdots(\sigma_{k}-1)\cdot\tau = (\tau^{-1}\sigma_{1}\tau-1)\cdots(\tau^{-1}\sigma_{k}\tau-1),$$

$$= ([\tau^{-1},\sigma_{1}]\sigma_{1}-1)\cdots([\tau^{-1},\sigma_{k}]\sigma_{k}\tau-1),$$

$$= \{([\tau^{-1},\sigma_{1}]-1)(\sigma_{1}-1)+([\tau^{-1},\sigma_{1}]-1)+(\sigma_{1}-1)\},$$

$$\cdots\{([\tau^{-1},\sigma_{k}]-1)(\sigma_{k}-1)+([\tau^{-1},\sigma_{k}]-1)+(\sigma_{k}-1)\},$$

$$\equiv (\sigma_{1}-1)\cdots(\sigma_{k}-1)$$

module $\Delta^{k+1}(\mathrm{IA}(G))$ since $[\tau^{-1}, \sigma_i] \in \Gamma_{\mathrm{IA}(G)}(2)$ and $[\tau^{-1}, \sigma_i] - 1 \in \Delta^2(\mathrm{IA}(G))$. Since $Q^k(\mathrm{IA}(G))$ is generated by elements $(\sigma_1 - 1) \cdots (\sigma_k - 1)$ for $\sigma_i \in \mathrm{IA}(G)$ as a **Z**-module, we verify that the action of $\mathrm{IA}(G)$ on $Q^k(\mathrm{IA}(G))$ is trivial. Hence the quotient group $\mathrm{Aut} G/\mathrm{IA}(G)$ naturally acts on each of $Q^k(\mathrm{IA}(G))$ from the right.

Now, Aut G naturally acts on $\operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, Q^{k+1}(G))$. Then it is easily seen that the action of $\operatorname{IA}(G)$ on $\operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, Q^{k+1}(G))$ is trivial. Hence the quotient group $\operatorname{Aut} G/\operatorname{IA}(G)$ also acts on it. To show that μ_k is $\operatorname{Aut} G/\operatorname{IA}(G)$ -equivariant, we prepare

Lemma 3.11. For any $k \ge 1$, and $\sigma, \sigma_1, \ldots, \sigma_k \in \operatorname{Aut} G$, we have

$$(s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots))^{\sigma}=s_{\sigma^{-1}\sigma_k\sigma}(\cdots(s_{\sigma^{-1}\sigma_1\sigma}(x^{\sigma}))\cdots).$$

We prove this lemma by the induction on $k \ge 1$. For k = 1, it is clear by

$$s_{\sigma_1}(x)^{\sigma} = (x^{-1}x^{\sigma_1})^{\sigma} = (x^{\sigma})^{-1}x^{\sigma_1\sigma} = (x^{\sigma})^{-1}(x^{\sigma})^{\sigma^{-1}\sigma_1\sigma} = s_{\sigma^{-1}\sigma_1\sigma}(x^{\sigma})^{\sigma^{-1}\sigma_1\sigma}$$

Assume $k \geq 2$. Using the inductive hypothesis, we obtain

$$(s_{\sigma_{k}}(\cdots(s_{\sigma_{1}}(x))\cdots))^{\sigma}$$

$$= ((s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x))\cdots))^{-1}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x))\cdots))^{\sigma_{k}})^{\sigma},$$

$$= \{(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x))\cdots))^{\sigma}\}^{-1}\{(s_{\sigma_{k-1}}(\cdots(s_{\sigma_{1}}(x))\cdots))^{\sigma}\}^{\sigma^{-1}\sigma_{k}\sigma},$$

$$= \{s_{\sigma^{-1}\sigma_{k-1}\sigma}(\cdots(s_{\sigma^{-1}\sigma_{1}\sigma}(x^{\sigma}))\cdots)\}^{-1}\{s_{\sigma^{-1}\sigma_{k-1}\sigma}(\cdots(s_{\sigma^{-1}\sigma_{1}\sigma}(x^{\sigma}))\cdots)\}^{\sigma^{-1}\sigma_{k}\sigma},$$

$$= s_{\sigma^{-1}\sigma_{k}\sigma}(\cdots(s_{\sigma^{-1}\sigma_{1}\sigma}(x^{\sigma}))\cdots).$$

This completes the proof of Lemma 3.11. \Box

Proposition 3.12. For any $k \ge 1$, the Johnson homomorphism μ_k is an Aut G/IA(G)-equivariant homomorphism.

Proof. It suffices to show $\mu_k(a^{\sigma}) = (\mu_k(a))^{\sigma}$ for $\sigma \in IA(G)$ and $a = (\sigma_1 - 1) \cdots (\sigma_k - 1) \in Q^k(IA(G))$. Then, for any $x \in G^{ab}$ we have

$$\mu_k(a^{\sigma})(x) = \mu_k((\sigma^{-1}\sigma_1\sigma - 1)\cdots(\sigma^{-1}\sigma_k\sigma - 1))(x),$$

= $s_{\sigma^{-1}\sigma_k\sigma}(\cdots(s_{\sigma^{-1}\sigma_1\sigma}(x))\cdots) - 1.$

On the other hand, by Lemma 3.11,

$$(\mu_k(a))^{\sigma}(x) = (\mu_k(a)(x^{\sigma^{-1}}))^{\sigma} = (s_{\sigma_k}(\cdots(s_{\sigma_1}(x^{\sigma^{-1}}))\cdots)-1)^{\sigma}, = s_{\sigma^{-1}\sigma_k\sigma}(\cdots(s_{\sigma^{-1}\sigma_1\sigma}(x))\cdots)-1.$$

for any $x \in G^{ab}$. This completes the proof of Proposition 3.12. \Box

3.3. Some properties of μ_k .

Here we observe some properties of μ_k . First, we consider the image of μ_k . In general, μ_k is not surjective.

Lemma 3.13. For each $k \geq 1$, the image of μ_k is contained in that of $\alpha_{k+1,G}^*$.

Proof. Since $Q^k(IA(G))$ is generated by $(\sigma_1 - 1) \cdots (\sigma_k - 1)$ for $\sigma_i \in IA(G)$ as a **Z**-module, it suffices to show $\mu_k(a) \in Im(\alpha_{k+1,G}^*)$ for $a = (\sigma_1 - 1) \cdots (\sigma_k - 1)$. On the

other hand, using Lemma 3.1 recursively, we see that $s_{\sigma_k}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_1}(x))\cdots))$ belongs to $\Gamma_G(k+1)$ for any $x \in G$. Hence

$$s_{\sigma_k}(s_{\sigma_{k-1}}(\cdots(s_{\sigma_1}(x))\cdots))-1\in\alpha_{k+1,G}(\mathcal{L}_G(k+1)).$$

This completes the proof of Lemma 3.13. \Box

By this lemma, in the following, we write the k-th Johnson homomorphism as

$$\mu_k : Q^k(\mathrm{IA}(G)) \to \mathrm{Hom}_{\mathbf{Z}}(G^{\mathrm{ab}}, \alpha_{k+1,G}(\mathcal{L}_G(k+1))).$$

Next, we consider a calculation of $\mu_{k+1}(a(\tau - 1))$ for a given $a \in Q^k(IA(G))$ and $\tau \in IA(G)$. Let

$$a = \sum_{\sigma_1, \dots, \sigma_k \in IA(G)} m_{\sigma_1, \dots, \sigma_k} (\sigma_1 - 1) \cdots (\sigma_k - 1)$$

for $m_{\sigma_1,\ldots,\sigma_k} \in \mathbf{Z}$. Then for any $x \in G$, we have

$$\mu_{k+1}(a(\tau-1))(x) = \sum_{\sigma_1,\dots,\sigma_k \in \mathrm{IA}(G)} m_{\sigma_1,\dots,\sigma_k} \mu_{k+1}((\sigma_1-1)\cdots(\sigma_k-1)(\tau-1))(x),$$

$$\equiv \sum_{\sigma_1,\dots,\sigma_k \in \mathrm{IA}(G)} m_{\sigma_1,\dots,\sigma_k} \{ s_\tau(s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots)) - 1 \}$$

modulo $\Delta^{k+3}(G)$. If we set $X := s_{\sigma_k}(\cdots(s_{\sigma_1}(x))\cdots) \in \Gamma_G(k+1)$, then

$$= \sum_{\sigma_1,...,\sigma_k \in IA(G)} m_{\sigma_1,...,\sigma_k} \{ X^{-1} X^{\tau} - 1 \},\$$

$$= \sum_{\sigma_1,...,\sigma_k \in IA(G)} m_{\sigma_1,...,\sigma_k} \{ (X^{-1} - 1)(X^{\tau} - 1) + (X^{-1} - 1) + (X^{\tau} - 1) \},\$$

$$\equiv \sum_{\sigma_1,...,\sigma_k \in IA(G)} m_{\sigma_1,...,\sigma_k} \{ (X^{\tau} - 1) - (X - 1) \},\$$

$$= \left\{ \sum_{\sigma_1,...,\sigma_k \in IA(G)} m_{\sigma_1,...,\sigma_k}(X - 1) \right\}^{\tau} - \sum_{\sigma_1,...,\sigma_k \in IA(G)} m_{\sigma_1,...,\sigma_k}(X - 1),\$$

$$\equiv \{ \mu_k(a)(x) \}^{\tau} - \mu_k(a)(x)$$

modulo $\Delta^{k+3}(G)$. Hence we have

$$\mu_{k+1}(a(\tau-1))(x) = \{\mu_k(a)(x)\}^{\tau} - \mu_k(a)(x) \in Q^{k+2}(\mathrm{IA}(G)).$$

This formula is sometimes convenient for a calculation of the image of μ_k .

4. Free group case

In this section, we mainly consider the case where $G = F_n$. For simplicity, we often omit the capital F from the subscript F_n if there is no confusion. For example, we write \mathcal{L}_n , $\mathcal{L}_n(k)$, IA_n , ... for \mathcal{L}_{F_n} , $\mathcal{L}_{F_n}(k)$, $\mathrm{IA}(F_n)$, ... respectively. Here, we study the structure of graded quotients $Q^k(\mathrm{IA}_n)$ as a $\mathrm{GL}(n, \mathbb{Z})$ -module.

4.1. Preliminary results for $G = F_n$.

In this subsection, we recall some well-known properties of the IA-automorphism group IA_n, the graded Lie algebra \mathcal{L}_n and the graded ring $\operatorname{gr}(\mathbf{Z}[F_n])$. Let $H := F_n^{\operatorname{ab}}$ be the abelianization of F_n . The natural homomorphism $\rho = \rho_{F_n}$: Aut $F_n \to \operatorname{Aut} H$ induced from the abelianization of $F_n \to H$ is surjective. Throughout the paper, we identify Aut H with the general linear group $\operatorname{GL}(n, \mathbf{Z})$ by fixing a basis of H induced from the basis x_1, \ldots, x_n of F_n . Namely, we have $\operatorname{GL}(n, \mathbf{Z}) \cong \operatorname{Aut} F_n/\operatorname{IA}_n$.

Magnus [14] showed that for any $n \geq 3$, IA_n is finitely generated by automorphisms

$$K_{ij}: x_t \mapsto \begin{cases} x_j^{-1} x_i x_j, & t = i, \\ x_t, & t \neq i \end{cases}$$

for distinct $1 \leq i, j \leq n$, and

$$K_{ijl}: x_t \mapsto \begin{cases} x_i[x_j, x_l], & t = i, \\ x_t, & t \neq i \end{cases}$$

for distinct $1 \le i, j, l \le n$ and j < l. Recently, Cohen-Pakianathan [6, 7], Farb [9] and Kawazumi [13] independently showed

(3)
$$\operatorname{IA}_{n}^{\operatorname{ab}} \cong H^{*} \otimes_{\mathbf{Z}} \Lambda^{2} H$$

as a $GL(n, \mathbb{Z})$ -module. In particular, from their result, we see that IA_n^{ab} is a free abelian group of rank $2n^2(n-1)$ with basis the coset classes of the Magnus generators K_{ij} and K_{ijl} .

It is classically known due to Magnus that the graded Lie algebra \mathcal{L}_n is isomorphic to the free Lie algebra generated by H over \mathbb{Z} . (See [20], for example, for basic material concerning the free Lie algebra.) Each of the degree k part $\mathcal{L}_n(k)$ of \mathcal{L}_n is a free abelian group, which rank is given by Witt's formula

(4)
$$\operatorname{rank}_{\mathbf{Z}}(\mathcal{L}_n(k)) = \frac{1}{k} \sum_{d|k} \mu(d) n^{\frac{k}{d}}$$

where μ is the Möbius function.

Next, we consider an embedding of the free Lie algebra \mathcal{L}_n into the graded sum $\operatorname{gr}(\mathbf{Z}[F_n])$. In general, it is known that the graded Lie algebra homomorphism α_{F_n} : $\mathcal{L}_n \to \operatorname{gr}(\mathbf{Z}[F_n])$ induced from $x \mapsto x - 1$ for any $x \in F_n$ is a $\operatorname{GL}(n, \mathbf{Z})$ -equivariant injective homomorphism, and that $\operatorname{gr}(\mathbf{Z}[F_n])$ is naturally isomorphic to the universal enveloping algebra $\mathcal{U}(\mathcal{L}_n)$ of \mathcal{L}_n . (See Theorem 6.2 of Chapter VIII in [18].) For simplicity, in the following, we identify $\mathcal{L}_n(k)$ with its image $\alpha_k(\mathcal{L}_n(k))$ in $Q^k(F_n)$.

Here we observe a conjecture for the **Z**-module structure of $Q^k(IA_n)$. For a group G such that each of the graded quotients $\mathcal{L}_G(k)$ is a free abelian group for $k \geq 1$, Sandling and Tahara [21] showed that as a **Z**-module,

$$Q^k(G) \cong \sum \bigotimes_{i=1}^k S^{a_i}(\mathcal{L}_G(i))$$

for each $k \ge 1$. Here \sum runs over all non-negative integers a_1, \ldots, a_k such that

$$\sum_{i=1}^{k} ia_i = k$$

and $S^a(\mathcal{L}_G(i))$ means the symmetric tensor product of $\mathcal{L}_G(i)$ of degree *a* such that $S^0(\mathcal{L}_G(i)) = \mathbf{Z}$.

On the other hand, it is conjectured by Andreadakis that the lower central series $\Gamma_{\text{IA}_n}(k)$ coincides with the Johnson filtration $\mathcal{A}_n(k)$. He [1] showed that this is true for n = 2. Since each of the graded quotient $\operatorname{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k+1)$ of the Johnson filtration $\mathcal{A}_n(k)$ is free abelian, the Andreadakis's conjecture let us conjecture

Conjecture 4.1. For any $k \ge 1$,

$$Q^{k}(\mathrm{IA}_{n}) \cong \sum \bigotimes_{i=1}^{k} S^{a_{i}}(\mathcal{L}_{\mathrm{IA}_{n}}(i))$$

as a **Z**-module. Here \sum runs over all non-negative integers a_1, \ldots, a_k such that $\sum_{i=1}^k ia_i = k$.

To study $Q^k(IA_n)$, to begin with, we consider the surjective homomorphism $\pi_k : Q^k(IA_n) \to Q^k(IA_n^{ab})$ induced from the abelianization of IA_n for $k \ge 1$. We remark that each of π_k is an $GL(n, \mathbb{Z})$ -equivariant surjective homomorphism, and that $Q^k(IA_n^{ab}) \cong S^k(IA_n^{ab})$ since IA_n^{ab} is free abelian as mentioned before. For k = 1, $\pi_k : Q^1(IA_n) \to Q^1(IA_n^{ab})$ is an isomorphism, and $Q^1(IA_n) \cong IA_n^{ab} = H^* \otimes_{\mathbb{Z}} \Lambda^2 H$. In general, however, π_k is not injective for $k \ge 2$, and seems to have a large kernel from the conjecture above. In this paper, to investigate the $GL(n, \mathbb{Z})$ -module structure of $Ker(\pi_k)$, we use the Johnson homomorphism μ_k .

4.2. The image of $\mu_k|_{\operatorname{Ker}(\pi_k)}$.

Here we study the image of the Johnson homomorphism

$$\mu_k: Q^k(\mathrm{IA}_n) \to H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(k+1) \subset H^* \otimes_{\mathbf{Z}} Q^{k+1}(F_n)$$

restricted to the kernel of π_k for a sufficiently large *n*. We remark that $H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(k+1) = H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n(k+1))$ is generated by elements

 $x_i^* \otimes ([x_{i_1}, \dots, x_{i_{k+1}}] - 1), \quad 1 \le i, i_j \le n$

as a **Z**-module. First we consider the case where $k \geq 3$.

Proposition 4.2. For any $k \geq 3$ and $n \geq k+2$, the homomorphism $\mu_k|_{\text{Ker}(\pi_k)}$: $\text{Ker}(\pi_k) \to H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(k+1)$ is surjective.

Proof. For any $x_i^* \otimes ([x_{i_1}, \ldots, x_{i_{k+1}}] - 1)$, since $n \ge k+2$, there exists some $1 \le j \le n$ such that $j \ne i_1, \ldots, i_{k+1}$.

Case 1. The case where $i_{k+1} \neq i$. Set

$$a := \begin{cases} (K_{iji_{k+1}} - 1)(K_{ji_k} - 1) \cdots (K_{ji_3} - 1)(K_{ji_1i_2} - 1), & \text{if } j \neq i, \\ (K_{ji_{k+1}} - 1)(K_{ji_k} - 1) \cdots (K_{ji_3} - 1)(K_{ji_1i_2} - 1), & \text{if } j = i. \end{cases}$$

Then we have $\mu_k(a) = x_i^* \otimes ([x_{i_1}, \ldots, x_{i_{k+1}}] - 1)$. On the other hand, if we set

$$b := \begin{cases} (K_{ji_1i_2} - 1)(K_{ji_3} - 1) \cdots (K_{ji_k} - 1)(K_{iji_{k+1}} - 1), & \text{if } j \neq i, \\ (K_{ji_1i_2} - 1)(K_{ji_3} - 1) \cdots (K_{ji_k} - 1)(K_{ji_{k+1}} - 1), & \text{if } j = i, \end{cases}$$

then $\mu_k(b) = 0$. Hence we obtain $\mu_k(a-b) = x_i^* \otimes ([x_{i_1}, \ldots, x_{i_{k+1}}] - 1)$ for $a-b \in \text{Ker}(\pi_k)$.

Case 2. The case where $i_{k+1} = i$. Set

$$a' := (K_{ij}^{-1} - 1)(K_{ji_k} - 1) \cdots (K_{ji_3} - 1)(K_{ji_1i_2} - 1).$$

Then $\mu_k(a') = x_i^* \otimes ([x_{i_1}, \ldots, x_{i_{k+1}}] - 1)$. On the other hand, if we set

$$b' := (K_{ji_1i_2} - 1)(K_{ji_3} - 1) \cdots (K_{ji_k} - 1)(K_{ij}^{-1} - 1)$$

 $\mu_k(b') = 0$. Hence we obtain $\mu_k(a'-b') = x_i^* \otimes ([x_{i_1}, \dots, x_{i_{k+1}}] - 1)$ for $a'-b' \in \text{Ker}(\pi_k)$. This completes the proof of Proposition 4.2. \Box

We remark that it seems to difficult to show above for $2 \le n \le k+2$ since we can not take $1 \le j \le n$ such that $j \ne i_1, \ldots, i_{k+1}$ in general.

As a corollary to Proposition 4.2, we see the surjectivity of μ_k of $\mathbb{Z}[\mathrm{IA}(G)]$ for the case where G is a certain quotient group of F_n . Let C be a characteristic subgroup of F_n such that $C \subset \Gamma_n(2)$, and set $G := F_n/C$. Then we have a natural isomorphism $G^{\mathrm{ab}} \cong$ H. The natural projection $\phi : F_n \to G$ induces homomorphisms $Q^k(F_n) \to Q^k(G)$, also denoted by ϕ . Since C is characteristic, $\phi : F_n \to G$ induces a homomorphism $\bar{\phi} : \operatorname{Aut} F_n \to \operatorname{Aut}(G)$. Clearly, $\bar{\phi}(\operatorname{IA}_n) \subset \operatorname{IA}(G)$. Furthermore, $\bar{\phi}$ naturally induces homomorphisms $Q^k(\operatorname{IA}_n) \to Q^k(\operatorname{IA}(G))$ which is also denoted by $\bar{\phi}$.

Corollary 4.3. With the notation above, for any $k \ge 3$ and $n \ge k+2$, the homomorphism $\mu_k : \text{Ker}(\pi_{k,\text{IA}(G)}) \to H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_G(k+1))$ is surjective.

Proof. It is clear from a commutative diagram

where the first row and $id \otimes \phi$ are surjective. \Box

For example, if G is a free metabelian group $G = F_n/[\Gamma_n(2), \Gamma_n(2)]$, then the Johnson homomorphism $\mu_k : \operatorname{Ker}(\pi_{k,\operatorname{IA}(G)}) \to H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_G(k+1))$ is surjective for any $k \geq 3$ and $n \geq k+2$. In Section 5, we show that we can improve the condition $k \geq 3$ and $n \geq k+2$ above for $G = F_n/[\Gamma_n(2), \Gamma_n(2)]$.

By Proposition 4.2 and Corollary 4.3, we have

Theorem 4.4. Let C and G be as above. For $k \ge 3$ and $n \ge k+2$, an Aut(G)/IA(G)-equivariant homomorphism

$$\mu_k \oplus \pi_k : Q^k(\mathrm{IA}(G)) \to (H^* \otimes_{\mathbf{Z}} \alpha_{k+1,G}(\mathcal{L}_G(k+1))) \bigoplus Q^k(\mathrm{IA}(G)^{\mathrm{ab}})$$

defined by $\sigma \mapsto (\mu_k(\sigma), \pi_k(\sigma))$ is surjective.

In particular, for $C = \{1\}$, and hence $G = F_n$, we have a $GL(n, \mathbb{Z})$ -equivariant surjective homomorphism

$$\mu_k \oplus \pi_k : Q^k(\mathrm{IA}_n) \to (H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(k+1)) \bigoplus S^k(\mathrm{IA}_n^{\mathrm{ab}})$$

for $k \ge 3$ and $n \ge k+2$.

Finally, we consider the case where k = 2. Observing a split exact sequence (1), we see that $\operatorname{Ker}(\pi_2) = \alpha_{2,\operatorname{IA}(G)}(\mathcal{L}_{\operatorname{IA}(G)}(2))$. Hence, from the compatibility (2), we see that $\operatorname{Im}(\mu_2|_{\operatorname{Ker}(\pi_2)}) = \alpha_{3,F_n}^*(\operatorname{Im}(\tau_2'))$. In [22], we showed that for any $n \geq 2$, $\operatorname{Im}(\tau_2')$, which is equal to $\operatorname{Im}(\tau_2)$, satisfies an exact sequence

$$0 \to \operatorname{Im}(\tau_2') \xrightarrow{\tau_2'} H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(3) \to S^2 H \to 0$$

of $GL(n, \mathbb{Z})$ -modules. Hence we see that

Proposition 4.5. For $n \ge 2$, $\operatorname{Im}(\mu_2|_{\operatorname{Ker}(\pi_2)})$ is a $\operatorname{GL}(n, \mathbb{Z})$ -equivariant proper submodule of $H^* \otimes_{\mathbb{Z}} \alpha_3(\mathcal{L}_n(3))$, which rank is given by

$$\frac{1}{6}n(n+1)(2n^2 - 2n - 3).$$

Here we remark that μ_2 is surjective.

Lemma 4.6. For any $n \ge 2$, $\mu_2 : Q^2(IA_n) \to H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(3)$ is surjective.

Proof. Take an element $x_i^* \otimes ([x_{i_1}, x_{i_2}, x_{i_3}] - 1)$. We may assume $i_1 \neq i_2$. If $i_j \neq i$ for $1 \leq j \leq 3$, we see that

$$u_2((K_{ii_3}-1)(K_{ii_1i_2}-1)) = x_i^* \otimes ([x_{i_1}, x_{i_2}, x_{i_3}] - 1).$$

If $i_3 = i$ and $i_1, i_2 \neq i$, then

$$u_2((K_{ii_1}^{-1} - 1)(K_{i_1i_2} - 1)) = x_i^* \otimes ([x_{i_1}, x_{i_2}, x_i] - 1).$$

If $i_1 = i$ and $i_2, i_3 \neq i$, then

$$_{2}((K_{ii_{3}}-1)(K_{ii_{2}}-1)) = x_{i}^{*} \otimes ([x_{i}, x_{i_{2}}, x_{i_{3}}] - 1).$$

If $i_2 = i$ and $i_1, i_3 \neq i$, then

$$\iota_2((K_{ii_3}-1)(K_{ii_1}^{-1}-1)) = x_i^* \otimes ([x_{i_1}, x_i, x_{i_3}] - 1).$$

If $i_1 = i_3 = i$, then

$$\mu_2((K_{ii_2}^{-1}-1)(K_{i_2i}^{-1}-1)) = x_i^* \otimes ([x_i, x_{i_2}, x_i] - 1).$$

If $i_2 = i_3 = i$, then

$$\mu_2((K_{ii_1}^{-1}-1)(K_{i_1i}^{-1}-1)) = x_i^* \otimes ([x_{i_1}, x_i, x_i] - 1).$$

Hence the generators of $H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(3)$ are contained in the image of μ_2 . \Box

5. Free metabelian case

In this section, we mainly consider the case where $G = F_n^M := F_n/[\Gamma_n(2), \Gamma_n(2)]$. For simplicity, we often omit the capital F from the subscript F_n^M if there is no confusion. For example, we write $\mathcal{L}_n^M, \mathcal{L}_n^M(k), \operatorname{IA}_n^M, \ldots$ for $\mathcal{L}_{F_n^M}, \mathcal{L}_{F_n^M}(k), \operatorname{IA}(F_n^M), \ldots$ respectively. Here, we study the structure of graded quotients $Q^k(\operatorname{IA}_n^M)$ as a $\operatorname{GL}(n, \mathbb{Z})$ -module.

5.1. Preliminary results for $G = F_n^M$.

In this subsection, we recall some properties of the IA-automorphism group IA_n^M and the graded Lie algebras \mathcal{L}_n^M .

To begin with, we have $(F_n^M)^{ab} = H$, and hence $\operatorname{Aut}(F_n^M)^{ab} = \operatorname{Aut}(H) = \operatorname{GL}(n, \mathbb{Z})$. Since the surjective map ρ_{F_n} : $\operatorname{Aut} F_n \to \operatorname{GL}(n, \mathbb{Z})$ factors through $\operatorname{Aut} F_n^M$, a map $\rho_{F_n^M}$: $\operatorname{Aut} F_n^M \to \operatorname{GL}(n, \mathbb{Z})$ is also surjective. Hence we can identify $\operatorname{Aut} F_n^M / \operatorname{IA}(F_n^M)$ with $\operatorname{GL}(n, \mathbb{Z})$.

Let ν_n : Aut $F_n \to \operatorname{Aut} F_n^M$ be the natural homomorphism induced from the action of Aut F_n on F_n^M . Restricting ν_n to IA_n, we obtain a homomorphism $\nu_n|_{\operatorname{IA}_n} : \operatorname{IA}_n \to \operatorname{IA}_n^M$. Bachmuth and Mochizuki [4] showed that $\nu_n|_{\operatorname{IA}_n}$ is surjective for $n \ge 4$. They also showed that in [3] $\nu_3|_{\operatorname{IA}_3}$ is not surjective and IA₃^M is not finitely generated. Hence IA_n^M is finitely generated for $n \ge 4$ by the (coset classes of) Magnus generators K_{ij} and K_{ijl} . We remark that since $\operatorname{Ker}(\nu_n|_{\operatorname{IA}_n})$ is contained in $\mathcal{A}_n(3)$, we have isomorphisms

$$(\mathrm{IA}_n^M)^{\mathrm{ab}} \cong \mathrm{IA}_n^{\mathrm{ab}} \cong H^* \otimes_{\mathbf{Z}} \Lambda^2 H$$

as a $GL(n, \mathbf{Z})$ -module.

The associated Lie algebra $\mathcal{L}_n^M = \bigoplus_{k \ge 1} \mathcal{L}_n^M(k)$ is called the free metabelian Lie algebra generated by H or the Chen Lie algebra. It is also classically known due to Chen [5] that each $\mathcal{L}_n^M(k)$ is a $\operatorname{GL}(n, \mathbb{Z})$ -equivariant free abelian group of rank

$$\operatorname{rank}_{\mathbf{Z}}(\mathcal{L}_{n}^{M}(k)) := (k-1)\binom{n+k-2}{k}.$$

We remark that $\mathcal{L}_n(k) = \mathcal{L}_n^M(k)$ for $1 \le k \le 3$.

By the same argument as that in Subsection 4.1, for each $k \geq 2$, we can detect $S^k((\mathrm{IA}_n^M)^{\mathrm{ab}})$ in $Q^k(\mathrm{IA}_n^M)$ by the $\mathrm{GL}(n, \mathbb{Z})$ -equivariant surjective homomorphism $\pi_k^M : Q^k(\mathrm{IA}_n^M) \to Q^k((\mathrm{IA}_n^M)^{\mathrm{ab}})$ induced from the abelianization of IA_n^M . In order to investigate the $\mathrm{GL}(n, \mathbb{Z})$ -module structure of $\mathrm{Ker}(\pi_k^M)$, we use the Johnson homomorphism μ_k .

5.2. The image of $\mu_k|_{\operatorname{Ker}(\pi_k^M)}$.

Here we study the image of the Johnson homomorphism

$$\mu_k : Q^k(\mathrm{IA}_n^M) \to H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n^M(k+1))$$

restricted to the kernel of π_k^M for $n \ge 4$. First, in order to get a reasonable generators of $\mathcal{L}_n^M(k+1)$, we consider some lemmas. Let \mathfrak{S}_l be the symmetric group of degree l. Then we have

Lemma 5.1. Let $l \geq 2$ and $n \geq 2$. For any element $[x_{i_1}, x_{i_2}, x_{j_1}, \ldots, x_{j_l}] \in \mathcal{L}_n^M(l+2)$ and any $\lambda \in \mathfrak{S}_l$,

$$[x_{i_1}, x_{i_2}, x_{j_1}, \dots, x_{j_l}] = [x_{i_1}, x_{i_2}, x_{j_{\lambda(1)}}, \dots, x_{j_{\lambda(l)}}].$$

Proof. Since \mathfrak{S}_l is generated by transpositions $(m \ m+1)$ for $1 \le m \le l-1$, it suffices to prove the lemma for each $\lambda = (m \ m+1)$. Now we have

$$\begin{split} [[[x_{i_1}, x_{i_2}, x_{j_1}, \dots, x_{j_{m-1}}], x_{j_m}], x_{j_{m+1}}]] \\ &= -[[x_{j_m}, x_{j_{m+1}}], [x_{i_1}, x_{i_2}, x_{j_1}, \dots, x_{j_{m-1}}]] \\ &\quad - [[x_{j_{m+1}}, [x_{i_1}, x_{i_2}, x_{j_1}, \dots, x_{j_{m-1}}]], x_{j_m}], \\ &= [[[x_{i_1}, x_{i_2}, x_{j_1}, \dots, x_{j_{m-1}}], x_{j_{m+1}}], x_{j_m}] \end{split}$$

in $\mathcal{L}_n^M(m+3)$ by the Jacobi's identity. Hence,

$$[x_{i_1}, x_{i_2}, x_{j_1}, \dots, x_{j_l}] = [x_{i_1}, x_{i_2}, x_{j_1}, \dots, x_{j_{m-1}}, x_{j_{m+1}}, x_{j_m}, \dots, x_{j_l}],$$

= $[x_{i_1}, x_{i_2}, x_{j_{\lambda(1)}}, \dots, x_{j_{\lambda(l)}}].$

in $\mathcal{L}_n^M(l+2)$. \Box

Similarly to $H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n(k+1))$, the **Z**-module $H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n^M(k+1))$ is generated by elements

$$x_i^* \otimes ([x_{i_1}, \dots, x_{i_{k+1}}] - 1), \quad 1 \le i, i_j \le n.$$

On the other hand, using Lemma 5.1, elements $[x_{i_1}, x_{i_2}, \ldots, x_{i_{k+1}}] \in \mathcal{L}_n^M(k+1)$ is rewritten as

$$[x_{i_1}, x_{i_2}, x_{i_3}, \dots, x_{i_{l-1}}, x_i, x_i, \dots, x_i]$$

in $\mathcal{L}_n^M(k+1)$ for some $l, 3 \leq l \leq k+2$ such that $i_3, i_4, \ldots, i_{l-1} \neq i$. Hence $H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n^M(k+1))$ is generated by elements

$$x_i^* \otimes ([x_{i_1}, x_{i_2}, x_{i_3}, \dots, x_{i_{l-1}}, x_i, x_i, \dots, x_i] - 1)$$

for some $l, 3 \leq l \leq k+2$ such that $i_3, \ldots, i_{l-1} \neq i$. Furthermore, without loss of generality, we may assume $i_2 \neq i$ in the generators above.

Proposition 5.2. For any $k \ge 2$ and $n \ge 4$, the homomorphism $\mu_k|_{\operatorname{Ker}(\pi_k^M)} : \operatorname{Ker}(\pi_k^M) \to H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n^M(k+1))$ is surjective.

Proof. Take a generator $x_i^* \otimes ([x_{i_1}, x_{i_2}, x_{i_3}, \dots, x_{i_{l-1}}, x_i, x_i, \dots, x_i] - 1)$ of $H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n^M(k+1))$ for some $l, 3 \leq l \leq k+2$ such that $i_2, \dots, i_{l-1} \neq i$ as mentioned above. Since $n \geq 4$, there exists some $1 \leq j \leq n$ such that $j \neq i, i_1, i_2$. First, consider an element

$$a := (K_{ij}^{-1} - 1)(K_{ji} - 1) \cdots (K_{ji} - 1) \in \Delta^{k-l+2}(\mathrm{IA}_n^M)$$

where $(K_{ji} - 1)$ appears k - l + 1 times in the product. Then we see

$$\mu_{k-l+3}(a) = x_i^* \otimes ([x_j, x_i, \dots, x_i] - 1)$$

where x_i appears k - l + 2 times among the component.

Next, set

$$b := \begin{cases} K_{jii_{l-1}} - 1 & \text{if } j \neq i_{l-1}, \\ K_{ji}^{-1} - 1 & \text{if } j = i_{l-1}, \end{cases}$$
$$c := (K_{ii_{l-2}} - 1)(K_{ii_{l-3}} - 1) \cdots (K_{ii_3} - 1) \in \Delta^{l-4}(\mathrm{IA}_n^M)$$

and

$$d := \begin{cases} K_{ii_1i_2} - 1 & \text{if } i \neq i_1, \\ K_{ii_2} - 1 & \text{if } i = i_1. \end{cases}$$

Then we have

$$u_k(abcd) = x_i^* \otimes ([x_{i_1}, x_{i_2}, x_{i_3}, \dots, x_{i_{l-1}}, x_i, x_i, \dots, x_i] - 1).$$

On the other hand, $\mu_k(dbac) = 0$. Hence we have

$$\mu_k(abcd - dbac) = x_i^* \otimes ([x_{i_1}, x_{i_2}, x_{i_3}, \dots, x_{i_{l-1}}, x_i, x_i, \dots, x_i] - 1).$$

Therefore since $abcd - dbac \in \text{Ker}(\pi_k^M)$, we conclude that $\mu_k|_{\text{Ker}(\pi_k^M)}$ is surjective. This completes the proof of Proposition 5.2. \Box

Then we have

Theorem 5.3. For $k \ge 2$ and $n \ge 4$, a $GL(n, \mathbb{Z})$ -equivariant homomorphism

$$\mu_k \oplus \pi_k : Q^k(\mathrm{IA}_n^M) \to (H^* \otimes_{\mathbf{Z}} \alpha_{k+1}(\mathcal{L}_n^M(k+1))) \bigoplus S^k((\mathrm{IA}_n^M)^{\mathrm{ab}})$$

defined by $\sigma \mapsto (\mu_k(\sigma), \pi_k(\sigma))$ is surjective.

6. Acknowledgments

This research is supported by JSPS Research Fellowship for Young Scientists and the Global COE program at Kyoto University.

References

- S. Andreadakis; On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239-268.
- [2] S. Bachmuth; Induced automorphisms of free groups and free metabelian groups, Trans. Amer. Math. Soc. 122 (1966), 1-17.
- [3] S. Bachmuth and H. Y. Mochizuki; The non-finite generation of Aut(G), G free metabelian of rank 3, Trans. Amer. Math. Soc. 270 (1982), 693-700.
- [4] S. Bachmuth and H. Y. Mochizuki; $\operatorname{Aut}(F) \to \operatorname{Aut}(F/F'')$ is surjective for free group for rank ≥ 4 , Trans. Amer. Math. Soc. 292, no. 1 (1985), 81-101.
- [5] K. T. Chen; Integration in free groups, Ann. of Math. 54, no. 1 (1951), 147-162.
- [6] F. Cohen and J. Pakianathan; On Automorphism Groups of Free Groups, and Their Nilpotent Quotients, preprint.
- [7] F. Cohen and J. Pakianathan; On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint.
- [8] T. Church and B. Farb; Infinite generation of the kernels of the Magnus and Burau representations, preprint, arXiv:math.GR/0909.4825.
- [9] B. Farb; Automorphisms of F_n which act trivially on homology, in preparation.
- [10] R. Hain; Infinitesimal presentations of the Torelli group, Journal of the American Mathematical Society 10 (1997), 597-651.
- [11] D. Johnson; An abelian quotient of the mapping class group, Math. Ann. 249 (1980), 225-242.
- [12] D. Johnson; The structure of the Torelli group III: The abelianization of \mathcal{I}_g , Topology 24 (1985), 127-144.
- [13] N. Kawazumi; Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.
- [14] W. Magnus; Über *n*-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353-367.
- [15] S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke Mathematical Journal 70 (1993), 699-726.
- [16] S. Morita; Structure of the mapping class groups of surfaces: a survey and a prospect, Geometry and Topology Monographs Vol. 2 (1999), 349-406.
- [17] S. Morita; Cohomological structure of the mapping class group and beyond, Proc. of Symposia in Pure Math. 74 (2006), 329-354.
- [18] I. B. S. Passi; Group Rings and their Augmentation Ideals, Lecture Notes in Mathematics 715, Springer (1979).

- [19] A. Pettet; The Johnson homomorphism and the second cohomology of IA_n , Algebraic and Geometric Topology 5 (2005) 725-740.
- [20] C. Reutenauer; Free Lie Algebras, London Mathematical Society monographs, new series, no. 7, Oxford University Press (1993).
- [21] R. Sandling and K Tahara; Augmentation quotients of group rings and symmetric powers, Math. Proc. Camb. Phil. Soc., 85 (1979), 247-252.
- [22] T. Satoh; New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group, Journal of the London Mathematical Society, (2) 74 (2006) 341-360.
- [23] T. Satoh; The cokernel of the Johnson homomorphisms of the automorphism group of a free metabelian group, Transactions of American Mathematical Society, 361 (2009), 2085-2107.
- [24] T. Satoh; On the lower central series of the IA-automorphism group of a free group, preprint.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, KYOTO UNIVERSITY, KI-TASHIRAKAWAOIWAKE CHO, SAKYO-KU, KYOTO CITY 606-8502, JAPAN

 $E\text{-}mail\ address: \verb+takao@math.kyoto-u.ac.jp+$