ON THE AUGMENTATION QUOTIENTS OF
THE IA-AUTOMPORPHISM GROUP OF
A FREE GROUP AND A FREE METABELIAN GROUP

TAKAO SAaTOH!

Department of Mathematics, Graduate School of Science, Kyoto University,
Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto city 606-8502, Japan

ABSTRACT. In this paper, we study the augmentation quotients of the IA-automorphism
group of a free group and a free metabelian group. First, for any group G, we con-
struct a lift of the k-th Johnson homomorphism of the automorphism group of G to
the k-th augmentation quotient of the [A-automorphism group of G. Then we study
the images of them for the case where G is a free group and a free metabelian group.
As a corollary, we detect some Z-free part in each of the augmentation quotients,
which can not be detected by the abelianization of the IA-automorphism group.

1. INTRODUCTION

Let F), be a free group of rank n > 2, and Aut F,, the automorphism group of F},. Let
denote p : Aut F,, — Aut H the natural homomorphism induced from the abelianization
F,, — H. The kernel of p is called the TA-automorphism group of F;,, denoted by IA,,.
The subgroup IA,, reflects much of the richness and complexity of the structure of
Aut F,,, and plays important roles on various studies of Aut F,,. Although the study of
the IA-automorphism group has a long history since its finitely many generators were
obtained by Magnus [14] in 1935, the combinatorial group structure of TA,, is still quite
complicated. For instance, any presentation for IA,, is not known in general.

We have studied TA, mainly using the Johnson filtration of Aut F, so far. The
Johnson filtration is one of a descending central series

A, = A, (1) D Au(2) D - -

consisting of normal subgroups of Aut F},, which first term is IA,. (For detail, see
Subsection 2.3.) Each graded quotient gr*(A,) := A,(k)/A,(k + 1) naturally has a
GL(n, Z)-module structure, and from it we can extract some valuable information for
IA,,. For example, gr'(A,,) is just the abelianization of TA,, due to Cohen-Pakianathan
[6, 7]0 Farb [9] and Kawazumi [13]. Pettet [19] determined the image of the cup prod-
uct Uq : A?HY(TA,, Q) — H?*(IA,,Q) by using the GL(n, Q)-module structure of
gr?(A,) ®z Q. At the present stage, however, the structures of the graded quotients
grf(A,) are far from well-known.

On the other hand, compared with the Johnson filtration, the lower central series
[1a, (k) of TA,, and its graded quotients Lra, (k) := I'1a, (k)/T'1a, (K + 1) are somewhat
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easier to handle since we can obtain finitely many generators of L, (k) using the
Magnus generators of TA,,. Since the Johnson filtration is central, T'1a, (k) C A, (k) for
any k > 1. It is conjectured that I'1o, (k) = A, (k) for each & > 1 by Andreadakis who
showed I'1a, (k) = Ay(k) for each k > 1. Now, it is known that I'1s, (2) = A,(2) due to
Bachmuth [2], and that I'1a, (3) has at most finite index in A, (3) due to Pettet [19].

In this paper, we consider the augmentation quotients of TA,. Let Z[G] be the
integral group ring of a group G, and A(G) the augmentation ideal of Z[G]. We denote
by QF(G) := AF(G)/A*(G) the k-th augmentation quotient of G. The augmentation
quotients Q*(IA,) of TA,, are seemed to be closely related to the lower central series
I'ia, (k) as follows. If the Andreadakis’s conjecture is true, then each of the graded
quotients Lya, (k) is free abelian. Hence using a work of Sandling and Tahara [21],
(For details, see Subsection 4.1.), we obtain a conjecture for the Z-module structure of

QF(1A,,):
Conjecture 1. For any k > 1,

Q (1An) = D Q) ™ (L1a, (1)

as a Z-module. Here ) runs over all non-negative integers ay, . . ., ax such that Zle 1a; =
k, and S*(M) means the symmetric tensor product of a Z-module M such that S°(M) =
Z.

We see that this is true for £ = 1 and 2 from a general argument in group ring theory.
(For k = 2, see (1) below.) For k > 3, however, it is still open problem. In general,
one of the most standard methods to study the augmentation quotients Q*(IA,,) is to
consider a natural surjective homomorphism 7, : Q*(IA,) — Q*(IA*") induced from
the abelianization 1A, — IA®" of IA,,. Furthermore, since IA®" is free abelian, we have
a natural isomorphism Q*(IA) = S*(L1, (1)). Hence, in the conjecture above, we
can detect S*(La, (1)) in Q*(IA,) by the abelianization of IA,,.

Then we have a natural question to ask: Determine the structure of the kernel of
7. More precisely, clarify the GL(n,Z)-module structure of Ker(m). In order to
attack this problem, in this paper we construct and study a certain homomorphism
defined on Q*(IA,) which restriction to Ker(m;) is non-trivial. For a group G, let
ar = arg : Lao(k) — QF(G) be a homomorphism defined by o — o — 1. One of the
main purposes of the paper is to construct a GL(n, Z)-equivariant homomorphism

pr, » Q(IA,) — Homgz (H, cpy1 (Ln(k + 1))

where £,,(k) is the k-th graded quotient of the lower central series of F),. Furthermore,
for the k-th Johnson homomorphism

7t Lia, (k) — Homgz(H, L, (k + 1))

defined by o + (z + x7'27), (See Subsection 2.3 for details.), we show that p; o ay =
aj., o7, where o is a natural homomorphism induced from ;. Since ay f, is a
GL(n, Z)-equivariant injective homomorphism for each k > 1, if we identify £, (k) with
its image ax(L,(k)), we obtain u; o ap = 7. Hence, the homomorphism py can be
considered as a lift of the Johnson homomorphism 7;. In the following, we naturally
identify Homgz(H, L,,(k + 1)) with H* ®z L, (k + 1) for H* := Homg(H,Z).



Historically, the study of the Johnson homomorphisms was originally begun in 1980
by D. Johnson [11] who determined the abelianization of the Torelli subgroup of the
mapping class group of a surface in [12]. Now, there is a broad range of remarkable
results for the Johnson homomorphisms of the mapping class group. (For example, see
[10] and [15], [16], [17].) These works also inspired the study of the Johnson homo-
morphisms of Aut F,,. Using it, we can investigate the graded quotients gr*(A4,) and
Lia, (k). Recently, it has achieved good progress through the works of many authors,
for example, [6], [7], [9], [13], [15], [16], [17] and [19]. In particular, in our previous work
24], we determined the cokernel of the rational Johnson homomorphism 7, o := 77, ®idq
fork>2and n>k+ 2.

The main theorem of the paper is

Theorem 1. (See Theorem 4.4.) For k > 3 and n > k + 2, a GL(n, Z)-equivariant
homomorphism

e @, QNIA,) — (H* @z o1 (Lo (k + 1)) @Q (TAZ")
defined by o — (i (o), mp(0)) is surjective.

Next, we consider the framework above for a free metabelian group. Let FM :=
F,/[F,, F,), [Fn, F,.]] be a free metabelian group of rank n. By the same argument as
the free group case, we can consider the [A-automorphism group IA% and the Johnson
homomorphism

71, Liam (k) — H* ®g LM(k+1)
of Aut FM where Lypnm (k) is the k-th graded quotient of the lower central series of
IAM “and £M(k) is that of FM. In our previous work [23], we studied the Johnson

homomorphism of Aut FM | and determined its cokernel. In particular, we showed that
there appears only the Morita obstruction S*H in Coker(7]) for any k > 2 and n > 4.
We remark that in [23], we determined the cokernel of the Johnson homomorphism 7
which is defined on the graded quotient of the Johnson filtration of Aut FM. Observing

our proof, we verify that Coker(7;,) = Coker(7y,).

Now, similarly to the free group case, we can also construct a GL(n, Z)-equivariant
homomorphism

pr, - QF(IAY) — Homgz (H, cprr (LY (K + 1))

such that ju; o oy, = o, o 7. The second purpose of the paper is to show

Theorem 2. (See Theorem 5.3.) For k > 2 and n > 4, a GL(n, Z)-equivariant homo-
morphism

pr ® 0 QFIAN) — (H* @z anr (L) (k + 1)) @ S*(TAN)™)
defined by o — (ug(o), mp(0)) is surjective.

In this paper, for arbitrary group G, we construct a lift of the Johnson homomorphism
of the automorphism group of G to the augmentation quotients of G. In order to do
this, in Section 2, after fixing notation and conventions, we recall the associated graded
Lie algebra of a group G, the Johnson homomorphism of the automorphism group of
G, and the associated graded ring of the integral group ring Z[G] of G. In Section 3,



we construct an Aut G /IA(G)-equivariant homomorphism gy, which is considered as a
lift of the Johnson homomorphism. In Sections 4 and 5, we consider the case where G
is a free group and a free metabelian group respectively.
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2. PRELIMINARIES
2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G.

e The abelianization of G is denoted by G?P.

e The group Aut G of G acts on G from the right. For any 0 € Aut G and = € G,
the action of o on x is denoted by x.

e For an element g € GG, we also denote the coset class of g by g € G/N if there
is no confusion.

e For elements z and y of G, the commutator bracket [z, y] of  and y is defined
to be [z,y] := zyx 'y~

2.2. Associated graded Lie algebra of a group.
For a group G, we define the lower central series of G by the rule
FG<1) = G7 FG(k) = [FG(k - 1)7 G]7 k> 2.

We denote by Lg(k) :=T'g(k)/T'¢(k+ 1) the graded quotient of the lower central series
of G, and by Lg = @, Lc(k) the associated graded sum. The graded sum Lg



naturally has a graded Lie algebra structure induced from the commutator bracket on
G, and called the associated graded Lie algebra of G.

For any g¢1,...,9; € G, a commutator of weight k type of
H o Hgi1>gi2]7gi3]7 te ']7gik], ij c {1, .. ,t}

with all of its brackets to the left of all the elements occurring is called a simple k-fold
commutator among the components g1, ..., g;, and we denote it by

[gil)gizu e 7gzk]

for simplicity. In general, if G is generated by g1, ..., g;, then the graded quotient Lq(k)
is generated by the simple k-fold commutators

[g’i17gi27"'7gik]7 1§ZJ§t
as a Z-module.

Let pe : Aut G — Aut G® be the natural homomorphism induced from the abelian-
ization of G. The kernel IA(G) of pg is called the IA-automorphism group of G. Then
the automorphism group Aut G naturally acts on L (k) for each k > 1, and TA(G) acts
on it trivially. Hence the action of Aut G/IA(G) on L(k) is well-defined.

2.3. Johnson homomorphisms.

For k > 1, the action of Aut G on each nilpotent quotient G/T'¢(k + 1) induces a
homomorphism
Aut G — Aut(G/Tg(k +1)).
For k = 1, this homomorphism is just pg. We denote the kernel of the homomorphism
above by Ag(k). Then the groups Ag(k) define a descending central filtration

Ag = Ac(1) D Ac(2) D Aa(3) D -

(See [1] for details.) We call it the Johnson filtration of AutG. For each k£ > 1,
the group Aut G acts on Ag(k) by conjugation, and it naturally induces an action of
Aut G/IA(G) on gr*(Ag). The graded sum gr(Ag) := @, gr*(Ag) has a graded Lie
algebra structure induced from the commutator bracket on IA(G).

To study the Aut G/TA(G)-module structure of each graded quotient gr¥(Ag), we
define the Johnson homomorphisms of Aut G in the following way. For each k£ > 1, we
consider a homomorphism Ag(k) — Homg(G®, Lg(k + 1)) defined by

o (gr—gtg?), wedq.

Then the kernel of this homomorphism is just Ag(k + 1). Hence it induces an injective
homomorphism

T = Tox : e (Ag) — Homgz(G*™, La(k + 1)).
The homomorphism 7, is called the k-th Johnson homomorphism of Aut G. It is easily
seen that each 75 is an Aut G/IA(G)-equivariant homomorphism. Since each John-
son homomorphism 7, is injective, it is natural question to determine the image, or
equivalently, the cokernel of 74 in the study of the Aut G/IA(G)-module gr*(Ag).

Here, we consider another descending filtration of IA(G). Let I'taq)(k) be the k-
th subgroup of the lower central series of IA(G). Then for each k > 1, T'ia(g(k) is



a subgroup of Ag(k) since the Johnson filtration is a central filtration of IA(G). In
general, it is a natural question to ask whether I'1a(g) (k) coincides with Ag (k) or not.
For the case where G is a free group F, of rank n, it is conjectured that I'ia(s,)(k)
coincides with Ag, (k) by Andreadakis.

Consider Liac) (k) == Tiae) (k) /Tia)(k+1) for each k > 1. Similarly to gr(Ag), the
graded sum Lz q) = D, L A(e)(k) has a graded Lie algebra structure induced from
the commutator bracket on IA(G). The restriction of the homomorphism Ag(k) —
Homgz(G*, L(k + 1)) to Tia(g) (k) also induces an Aut G/IA(G)-equivariant homo-
morphism

T = T/G’k : Liae) (k) — Homg (G*™, Lg(k + 1)).

In this paper, we also call 7; the k-th Johnson homomorphism of AutG.

2.4. Associated graded ring of a group ring.

For a group G, let Z[G] be a group ring of G over Z, and A(G) the augmentation
ideal of Z[G]. Namely, A(G) is the kernel of the augmentation map ¢ : Z[G] — Z

defined by
Zagg — Zag, ag € 2.

geG geG

We denote by A*(G) := (A(G))* the k-times product of the augmentation ideal A(G)
in Z[G]. For each k > 1, set

Q(G) = AMG)/A(G),
gr(2[G]) = P ().

k>1

The quotients Q*(G) are called the augmentation quotients of G. The graded sum
gr(Z[G]) naturally has an associative graded ring structure induced from the product
in Z[G]. The ring gr(Z[G]) is called the associated graded ring of the group ring Z[G].

In general, one of the most standard methods to study Q*(G) is to consider a natural
surjective homomorphism 7, = 7, ¢ @ Q*(G) — QF(G?) induced from the abelianiza-
tion G — G®. Furthermore, if G® is free abelian, we have an natural isomorphism
QF(G*P) = Sk(G*P) = S*(L(1)). (See Corollary 8.2 in [18].) In Subsection 4.2, we
study the kernel of 7 for G = F,,. We remark that for a group G and k > 1, Ker(my)
is generated by elements

(=1 (g —1) = (go) = 1)+ (Gor) — 1)

as a Z-module for any ¢i,...,9r € G, 1 <i; < n and 0 € &;. Here &, denotes the
symmetric group of degree k.

Here we consider a relation between gr(Z[G]) and L. For any g € I'(k), it is well
known that an element g — 1 € Z[G] belongs to A¥(G). Then a map 'g(k) — AF(G)
defined by g — g — 1 induces a Z-linear map

. — ak,G : ﬁg(k’) — Qk(G)



and a Lie algebra homomorphism
ac =P ar: Lo — gr(Z[G))
k>1

where we consider gr(Z[G]) as a Lie algebra with a Lie bracket [z, y]| := zy — yx for any
z,y € Z|G]. We remark that for any group G, a; ¢ : G — Q'(G) is an isomorphism.
Hence, so is m;. For k > 2, however, 7 is not injective in general. For k = 2, if G is a
finitely generated, then we have a split exact sequence of Z-modules:

() 0= Lg(2) =5 Q¥(G) =5 Q(G™) = 0.
(For a proof, see Corollary 8.13 of Chapter VIII in [18].) We denote by
Qpy = Qg Homz(Gab, Lok+1)) — Homz(Gab, Qk“(G))

the natural homomorphism induced from oy 1.

3. A LIFT OF THE JOHNSON HOMOMORPHISMS TO THE AUGMENTATION QUOTIENTS

In this section, for a group G, we construct an Aut G /TA(G)-equivariant homomor-
phism py, : Q¥(G) — Homgz (G, Q"™ (G)) such that

* /
(2) Hi © QR JA(G) = Q1,6 © T

3.1. Construction of .

For any 0 € Aut G and = € G, set s,(z) := 27127 € G. First, we recall an important
and useful lemma due to Andreadakis [1]:

Lemma 3.1. Forany k, 1l > 1, 0 € Ag(k) and x € T'¢(l), we have s,(x) € Lg(k +1).

For the proof of Lemma 3.1, see in [1]. From this lemma, we see that s,(z) — 1 €
AMY@) for any 0 € Ag(k) and z € T¢(l). We often use these facts without any
quotation. In order to define a lift of the Johnson homomorphism, we prepare some
lemmas.

Lemma 3.2. For any o, 7 € IA(G

(1) sor(z) = 8-(2) - So(2)" =
(2) so(zy) =y s, (2)y - s0(y

Proof. The equations follow from

and z, y € G, we have
(

(G)
5r(2)5q(2)57(54(2)).
)=y, s0(2)]s0 ()50 (y).-

sor(x) =27 2T =" (2 ")T =2 " a2 - (2 2?) T ()T
so(zy) =y a7 ey =y~ laT %y YTy

0

Lemma 3.3. For any v € I'¢(k) and 0 € IA(G), we have

27—z =s,(x)—1 (mod AF3(@)).



Proof. This is clear from

2 —x=(2—-1)—(x—1)
= (z(z72%) = 1) = (z = 1)
= (z = 1)(s0(2) = 1) + (s5(x) = 1)

and s,(7) — 1 € AMY(G). O
Lemma 3.4. For any a € A*(G) and o € TA(G), we have a° — a € A*(G).

Proof. Any element of A*(G) can be written as a Z-linear combination of elements
types of

(x1—=1)-(xp—1) or (xq —1)-- (g1 — 1)

for z; € G. Hence it suffices to show the lemma for a = (x; — 1) --- (2 — 1). Then we
have

a” —a=((z'2]) = 1) (wp(zy 2f) = 1) = (21— 1)+ (2 — 1),
={(z1 = D(a'2] = 1) + (21 = 1) + (a1 2 — 1)}
Aoy = Dy taf — 1) + (zp — 1) + (2 'af —
—(xl—l)'--(xk—l),
=@ -1 (rp—1)—(r1—-1)---(z,—1) =0 (mod A"(@)).

D}

U
For any x € G, consider a Z-linear homomorphism ¢, : Z[IA(G)] — A(G) defined
by ¢ — sy(z) — 1 for any o € IA(G).

Lemma 3.5. For any k,l > 1, x € T'¢(l), and o4, ...,0, € IA(G), we have

al(o1=1) (06 = 1)) = 56, (5, (561 ()) ) =1 (mod AMFHG)).

Proof. We prove this lemma by the induction on £ > 1. For k£ = 1, it is obvious by
the definition. Assume that k > 2. Write

(1= 1) (o1 — 1) = > a,0 € Z[IA(G)]

o€IA(G)



for a, € Z. Then we have
¢a((01 = 1)+ (041 — 1) (0% — 1)),
= pa((01 = 1)+ (g1 = Lo — (01 = 1) -+ - (%1 — 1)),

:g%( Z Qg OO} — Z ac,0>,

o€IA(G) o€IA(G)
= " ar{(som(@) = 1) = (so(2) = D},
o€IA(G)
= Y ao{ (50, (@)s0(2) — 1) = (s4() — 1)},
c€lA(G)

= Y ao{(50 (@) = D)(50(2)7 — 1) + (50, (2) — 1)

o€IA(G)
+ (5,(2)7 = 1) = (s6(x) = D).
Here we see
> (s @) = Diso(@)™ = 1) = (s, (@) = (D anlsol@) = 1))
o€IA(G) o€IA(G)
=0 (mod AMH(@))

since sq, (2) — 1 € A*(G) and Y-, jx (g @o(s0(2) — 1) € AM7HG) by the inductive
hypothesis, and see

S aolsn (@) = 1) = (500 = 1) D] ap =0,
c€lA(G) c€lA(G)
On the other hand, by the inductive hypothesis, we have

S ao{(s0(@)™ — 1) — (s,(x) — 1)},

o€lA(G)

= ( Z g (85(x) — 1))

Ok

- Z as(55(x) — 1),

c€elA(G) c€IA(G)
= (Soy (- (80, (@) -+ ) = D)7 = ($o,_, (- (80, (2)) -+ ) — 1)
+a’* —a

for some a € A*(G). Then, by Lemmas 3.3 and 3.4, we see
= 550 (5001 (- (502 (@)) ) =1 (mod AFHHL(G)).
This completes the proof of Lemma 3.5. [
For each k > 1, since A*(IA(G)) is generated by elements types of
(o1 =1)-+- (o —1) or (o9 —1)-+(oks1 — 1)
for o; € IA(G) as a Z-module, by Lemma 3.5 we obtain
Corollary 3.6. For any k,l > 1 andx € T'¢(l), we have ¢, (A*(IA(G))) C AMIA(G)).



Remark 3.7. For any x € TU'¢(l) a homomorphism Z[IA(G)] — Q*(IA(G)) defined
by a — p.(a) is a polynomial map of degree < k.

Lemma 3.8. For any k, 1l > 1 and z,y € T'¢(l), we have

Soi (- (81 (29)) -+ +)
=50, (86, (2)) ) - 80 (- (56, (y)) -+ +)  (mod Tg(k + 20+ 1))

for any o4, ..., 0 € IA(G).

Proof. We prove this lemma by the induction on k£ > 1. If £ = 1, it is trivial from
the part (2) of Lemma 3.2. Assume k > 2. By the inductive hypothesis, we see

Sa'kfl(' e (501 (l’y))) = Cso'k—l(' o (501 (l‘))) ) 80’]@—1(. o (801 (y)))

for some ¢ € I'¢(k + 21). Then, using the part (2) of Lemma 3.2 we have

Say (S (- (50, (1))

= 50, (C5o_, (- (8,(7))) - 50, (- (50, (9)))),
= {8001 (- (30, (2))) 800, (- (80. (1))} s 80, (€)]

+50,(€) + 50, (S0, (- (50, (%)) - 50y, (- (56, (1)),
= So, (S, (+ (80, (2))) - 800, (- (50,(9))),
= [Son (- (50, (W))) ™ 803 (S0 (- (5604 (2))))]

“Sor (S 1 (7 (861 (2)))) S (S, (- (561 (¥)))),
= S04 (8021 (- (80, (2)))) - 501, (50,2, (- - (56, (1)))).

modulo I'¢(k + 20 +1). O

Lemma 3.9. For any k, |l > 1, z, y € T¢(l), and a € A*(IA(G)), we have
Pay(a) = pu(a) +¢y(a)  (mod AMFHG)).

Proof. First, we consider the case where a = (07 —1) - - - (o) — 1) for some o; € IA(G).
From Lemmas 3.5 and 3.8, we see

Par(0) = 50 (50, -+ (s, (2) ) = 1,
= 5oy (50, () ) 0 (2 (50, (9) ) = 1

for some ¢ € I'¢(k + 20 + 1). Hence we have

= (c=1)(so, (- ($0,(2)) ) 50, (- (50, (y)) -+ -) = 1),
+(e=1) + (50, (501 (2)) ) - 80, (- (86, (y)) - +) — 1),

= S, (- (801 () ) - 50, (- (S0 () -+ ) — 1,

= (8o, (- (80,(2)) - ) = D)0, (- - (50, () -+ ) — 1)
+ (80, (- (80, (@) -+ ) = 1) + (50, (- -+ (80, () - -+ ) = 1),

= (8, (- (80, (1)) ) = 1) 4 (50, (- -+ (56, (1) -+ ) = 1),

= ¢a(a) + ¢y(a)

modulo AMHL(G),

10



For a general case, a € AF(IA(G)) is written as a Z-linear combination of elements
types of

(61 —=1) (o, —1) or (o7 — 1)+ (0ks1 — 1).
Therefore, using the argument above, we obtain the Lemma for any a € A*(IA(G)). O

Lemma 3.10. For any a € AFIA(G)), a map px(a) : G — Q*Y(G) defined by
x +— pg(a) is a homomorphism.

Proof. To begin with, we check that py(a) is well-defined. Consider elements z,y € G
such that y = zc for some ¢ € I'¢(2). Then by Lemma 3.9,

py(a) = uc(a) = pula) + pe(a)  (mod A™2(G)).
On the other hand, by Corollary 3.6, we see ¢.(a) € A*?2(G). Hence p,(a) = p,(a) €
Q*(G).
To show p(a) is a homomorphism, take any = and y € G. Then by Lemma 3.9,
p(a)(xy) = pay(a) = pa(a) + ¢y(a) = p(a) (@) + () (y)
modulo A**2(G). This completes the proof of Lemma 3.10. O

Now, we are ready to define a lift of the Johnson homomorphism 7;. For any k& > 1,
define a map

p,  AF(IA(G)) — Homgz(G™, Q*(G))
by
a = (21— @a(a)).
The map ji; is a homomorphism. Furthermore A*1(IA(G)) is contained in Ker(uy).
Hence p; induces a homomorphism

Q*(IA(G)) — Homg(G™, Q*1(G)).
We also denote by i this induced homomorphism, and call it the k-th Johnson homo-
morphism of Z[IA(G)]. We see that the compatibility (2) follows by the definition of
77, and fu.
3.2. Actions of AutG.

Next we consider actions of Aut G. Since IA(G) is a normal subgroup of Aut G, the
group Aut G acts on Z[IA(G)] from the right by

Z aga>-T:: Z ao (77 o)
c€IA(G) c€IA(G)

for any 7 € AutG. For each k > 1, since A*(IA(G)) is preserved by the action of
Aut G, the group Aut G also acts on each of the graded quotient Q*(IA(G)). Then
IA(G) acts on QF(IA(G)) trivially. In fact, for any 7 € IA(G), we have

(o1 —1)-(op—1)-7=(T""ror—1)-- (77 opr — 1),
= ([t Yooy —1)---([t71 oplowr — 1),
={(r\a] -1 =D+ (o] = 1)+ (o1 = 1)}
Al o] = Dok = 1) + ([ ou] = 1) + (o3, = D},
=(o1—1)-(op — 1)

11



module A*TIA(G)) since [771,0;] € Tiae)(2) and [, 0] — 1 € A?(IA(G)). Since
QF(IA(Q)) is generated by elements (o; — 1) - -+ (03 — 1) for o; € IA(G) as a Z-module,
we verify that the action of IA(G) on QF(IA(G)) is trivial. Hence the quotient group
Aut G/TA(G) naturally acts on each of Q¥(IA(G)) from the right.

Now, Aut G naturally acts on Homgz (G, Q¥*1(G)). Then it is easily seen that the ac-
tion of IA(G) on Homgz (G, Q¥1(@)) is trivial. Hence the quotient group Aut G/IA(G)
also acts on it. To show that py is Aut G/IA(G)-equivariant, we prepare

Lemma 3.11. For any k > 1, and 0,04, ...,0, € Aut G, we have
(50, (-++ (801 (2)) -+ )7 = So-100 (- + (S0-1010(27)) - +).
We prove this lemma by the induction on k£ > 1. For k£ =1, it is clear by
501 ()7 = (@7 127)7 = (27) 7127 = (@) (27)7 7 = spmigy0 (7).
Assume k > 2. Using the inductive hypothesis, we obtain
(S0, (+ -~ (80, () -+ -))7
= ((Sos (- (301 (2)) -+ )T (Soes (- (80, (2)) -+ ))™) 7,
= ({5 (- (50, (@) )Y (S0, (- (500 (2)) )7},
= {80101 100 (So-1010(27)) - )} {0104 1o (- (801000 (7)) -2} 77,
— 50—1ako<' .. (50_1010(5[;‘7)) ce )
This completes the proof of Lemma 3.11. [J

Proposition 3.12. For any k > 1, the Johnson homomorphism py. is an Aut G/TA(G)-
equivariant homomorphism.

Proof. 1t suffices to show py(a”) = (ux(a))? for o0 € IA(G) and a = (01 — 1) -+ (0% —
1) € Q*(IA(Q)). Then, for any x € G* we have

px(a”)(x) = (0o = 1) -+ (0 oo — 1))(2),
= 50‘1%0(' e (30—101U($)) T ) - L

On the other hand, by Lemma 3.11,

—1 1

(e (a)7(2) = (@) (@7 )7 = (50, (- (50, (& 1)) --+) = 1)7,
= So-tg4o (- (Som1010(2)) -+ ) — L.

for any x € G®. This completes the proof of Proposition 3.12. [

3.3. Some properties of ji.

Here we observe some properties of p. First, we consider the image of . In general,
[k 18 not surjective.

Lemma 3.13. For each k > 1, the image of p is contained in that of aj, -

Proof. Since QF(IA(G)) is generated by (o7 — 1)--- (0}, — 1) for o; € IA(G) as a
Z-module, it suffices to show px(a) € Tm(aj,, ) for a = (o1 —1)--- (o) — 1). On the

12



other hand, using Lemma 3.1 recursively, we see that s,, (55, ,(- -+ (S5, (2)) - -+ )) belongs
to I'g(k + 1) for any € G. Hence

Sor (8011 (- (80,(2)) -+ )) = 1 € apr6(La(k +1)).

This completes the proof of Lemma 3.13. [J

By this lemma, in the following, we write the k-th Johnson homomorphism as

e s QF(TA(G)) — Homg(G™, ayy1.0(La(k + 1))).

Next, we consider a calculation of py,i(a(t — 1)) for a given a € Q*(IA(G)) and
7 € IA(G). Let
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= {m(a)(2)}" = p(a)(z)
modulo A*3(G). Hence we have
prs(a(r = 1)(@) = {pr(a) (@)} — p(a)(z) € Q**(IA(G)).

This formula is sometimes convenient for a calculation of the image of .

4. FREE GROUP CASE

In this section, we mainly consider the case where G = F},. For simplicity, we often
omit the capital F' from the subscript F,, if there is no confusion. For example, we
write L, L,(k), 1A, ...for Lr , Lg, (k), [A(F,), ...respectively. Here, we study the
structure of graded quotients Q*(IA,,) as a GL(n, Z)-module.
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4.1. Preliminary results for G = F,.

In this subsection, we recall some well-known properties of the TA-automorphism
group IA,,, the graded Lie algebra £, and the graded ring gr(Z[F,]). Let H := F2P
be the abelianization of F},. The natural homomorphism p = pp, : Aut F,, — Aut H
induced from the abelianization of F,, — H is surjective. Throughout the paper, we
identify Aut H with the general linear group GL(n,Z) by fixing a basis of H induced
from the basis x1, ..., x, of F,. Namely, we have GL(n,Z) = Aut F},/TA,,.

Magnus [14] showed that for any n > 3, TA,, is finitely generated by automorphisms

—1 o

Kot 2y r; o xxy, t=1,
1] - .
Ty, t#£1

for distinct 1 <4, j < n, and

rilzi, x|, t=1
Kijl Ty Z[ ! l] X
Xy, t#£1

for distinct 1 <4, j, [ <mn and j <. Recently, Cohen-Pakianathan [6, 7] Farb [9] and
Kawazumi [13] independently showed

(3) IA® >~ [I* @7 A°H

as a GL(n, Z)-module. In particular, from their result, we see that IAZb is a free abelian
group of rank 2n?(n — 1) with basis the coset classes of the Magnus generators K;; and
Kijl'

It is classically known due to Magnus that the graded Lie algebra L£,, is isomorphic
to the free Lie algebra generated by H over Z. (See [20], for example, for basic material
concerning the free Lie algebra.) Each of the degree k part L, (k) of L,, is a free abelian
group, which rank is given by Witt’s formula

(4) rankg (£, (k) = % S u(dn'

dlk
where p is the Mobius function.

Next, we consider an embedding of the free Lie algebra L, into the graded sum
gr(Z[F,]). In general, it is known that the graded Lie algebra homomorphism ap, :
L, — gr(Z[F,]) induced from x — x — 1 for any = € F, is a GL(n, Z)-equivariant
injective homomorphism, and that gr(Z[F,]) is naturally isomorphic to the universal
enveloping algebra U(L,,) of L£,. (See Theorem 6.2 of Chapter VIII in [18].) For
simplicity, in the following, we identify £, (k) with its image oy, (L,(k)) in Q*(F,).

Here we observe a conjecture for the Z-module structure of Q*(IA,,). For a group G
such that each of the graded quotients Lg(k) is a free abelian group for k > 1, Sandling
and Tahara [21] showed that as a Z-module,

Q@) =) Q)" (Lali))
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for each k > 1. Here ) runs over all non-negative integers ay, . .., a; such that

k
E 1a; = k,
i=1

and S%(L(i)) means the symmetric tensor product of L(i) of degree a such that
SY(Lal(i)) = 2.

On the other hand, it is conjectured by Andreadakis that the lower central series
I'1a, (k) coincides with the Johnson filtration A, (k). He [1] showed that this is true for
n = 2. Since each of the graded quotient gr*(A,) := A, (k)/A,(k + 1) of the Johnson
filtration A,,(k) is free abelian, the Andreadakis’s conjecture let us conjecture

Conjecture 4.1. For any k > 1,
k
QM(IA,) =) () 5" (Lia, (1))
i=1

as a Z-module. Here ), runs over all non-negative integers aq, . . ., ay such that ) ;_, ia; =

k.

To study QF(IA,), to begin with, we consider the surjective homomorphism 7 :
Q*(1A,) — Q*(IA®) induced from the abelianization of IA,, for k > 1. We remark that

~Y

each of 7, is an GL(n, Z)-equivariant surjective homomorphism, and that Q*(IA%) =
SE(IAZP) since IA™ is free abelian as mentioned before. For k = 1, 7, : Q'(IA,) —
Q'(IA?) is an isomorphism, and Q*(IA,) = IA*® = H* ®7z A>H. In general, however,
7 is not injective for £ > 2, and seems to have a large kernel from the conjecture
above. In this paper, to investigate the GL(n, Z)-module structure of Ker(my), we use
the Johnson homomorphism .

4.2. The image of [i;|ker(r)-
Here we study the image of the Johnson homomorphism
e QF(IA,) — H* @z Lo(k+1) C H* @7 Q*TY(F,)

restricted to the kernel of 7y, for a sufficiently large n. We remark that H*®z L, (k+1) =
H* ®z agi1(Ly(k + 1)) is generated by elements

$:®([Iil,...,$ik+l]—1), 1§2,2]§n
as a Z-module. First we consider the case where k£ > 3.

Proposition 4.2. For any k > 3 and n > k + 2, the homomorphism ,uk]Ker(Wk) :
Ker(my) — H* @z L,,(k + 1) is surjective.

Proof. For any z; ® ([@;,, ..., ] — 1), since n > k42, there exists some 1 < j <n
such that 7 #d1,..., 0541
Case 1. The case where i1 # i. Set
Q= <Kijik+1 - 1)(Kjik - 1) e (Kji?, - 1)(Kji1i2 - 1)7 it j #1,
(K = DGy, = 1) - (K = D(Kjii, = 1), i j =4

Tht1 ik
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Then we have y(a) = 2} ® ([@i,, ..., %;,,,] —1). On the other hand, if we set
_ ) Biiy = DGy = 1) -+ (K, = D(Kijisp, — 1), i 5 #4,
(Kjivio = D)(EGiy = 1) -+ (Ko, = D(KGiyp, = 1), iF j =14,
then y1(b) = 0. Hence we obtain p;(a—b) = 27 ® ([, ..., %,,,|—1) for a—b € Ker(my,).
Case 2. The case where 75,1 = 1. Set
L= (K = 1) (K, — 1) - (K, — 1) (KGiysy — 1),
Then jip(a’) = 2} @ ([z4,, ..., 2i,,] —1). On the other hand, if we set
V= (Kjiiy, — 1)(Kjiy — 1) -+ (K, — 1)(KG' = 1),
pr(b') = 0. Hence we obtain p(a’ —0') = 2} @ ([z4,, ..., x,,,] — 1) for &’ =¥ € Ker(my).
This completes the proof of Proposition 4.2. []

We remark that it seems to difficult to show above for 2 < n < k + 2 since we can
not take 1 < 7 < n such that j # iy,... 4,1 in general.

As a corollary to Proposition 4.2, we see the surjectivity of py of Z[IA(G)] for the
case where (G is a certain quotient group of F),. Let C' be a characteristic subgroup of F,
such that C C T',(2), and set G := F,,/C. Then we have a natural isomorphism G#> =
H. The natural projection ¢ : F,, — G induces homomorphisms Q*(F,) — Q*(G),
also denoted by ¢. Since C' is characteristic, ¢ : F,, — G induces a homomorphism
¢ : Aut F, — Aut(G). Clearly, ¢(IA,) C IA(G). Furthermore, ¢ naturally induces
homomorphisms Q*(IA,,) — Q*(IA(G)) which is also denoted by ¢.

Corollary 4.3. With the notation above, for any k > 3 and n > k + 2, the homomor-
phism py, : Ker(mpaq)) — H* ®z a1 (La(k + 1)) is surjective.

Proof. Tt is clear from a commutative diagram
Ker(mpia,) ——— H* @z app1(Ln(k+ 1))
(El lid®¢
Ker (7 1ac)) s H* @z ap (La(k + 1))
where the first row and id ® ¢ are surjective. [

For example, if G is a free metabelian group G = F,,/[I',(2),T,(2)], then the Johnson
homomorphism s, : Ker(mp1a(6)) — H* ®z apy1(La(k 4 1)) is surjective for any k > 3
and n > k + 2. In Section 5, we show that we can improve the condition £ > 3 and
n >k + 2 above for G = F,,/[I',,(2),[,(2)].

By Proposition 4.2 and Corollary 4.3, we have

Theorem 4.4. Let C' and G be as above. Fork > 3 andn > k+2, an Aut(G)/IA(G)-
equivariant homomorphism

i @ e QF(IA(G)) — (H' @z cnga(Lalk + 1)) D QF(IA(G

defined by o — (ux(0), mp(0)) is surjective.
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In particular, for ¢ = {1}, and hence G = F,,, we have a GL(n,Z)-equivariant
surjective homomorphism

e @ 7 QF(IA,) — (H* @z La(k + 1)) @D S*(1A)
for k>3 and n > k + 2.

Finally, we consider the case where k = 2. Observing a split exact sequence (1), we
see that Ker(ms) = asia(e)(Liae)(2)). Hence, from the compatibility (2), we see that
Im(pa|ker(ry)) = 5, (Im(73)). In [22], we showed that for any n > 2, Im(7;), which is
equal to Im(7y), satisfies an exact sequence

0— Im(Té) BER H*®Z£n(3) — S?’H -0
of GL(n, Z)-modules. Hence we see that

Proposition 4.5. Forn > 2, Im(p2|ker(r,)) 5 @ GL(n, Z)-equivariant proper submodule
of H*®za3(L,(3)), which rank is given by

1
gn(n +1)(2n? — 2n — 3).

Here we remark that uo is surjective.
Lemma 4.6. For anyn > 2, uy : Q*(IA,) — H* @z L,,(3) is surjective.

Proof. Take an element x} ® ([x;,, T, ;5] — 1). We may assume iy # iy. If i; # i for
1 <5 <3, we see that

p2((Kiig — 1) (Kiiyi, — 1)) = 27 @ ([4,, iy, i3] — 1).
If i3 =i and 41,15 # i, then
N2((K511 - 1)(Ki1i2 - 1)) = I;k ® ([$i1>$i2>$i] - 1)'
If iy =i and iy, i3 # i, then
p2((Kiiy — 1) (K, — 1)) = 27 @ ([74, Tiy, Tig] — 1).
If 1o =1 and il,ig 7é i, then
:u2<<Kii3 - 1)(Ki;11 - 1)) - l’: ® ([Iilaxbxi:%] - 1)'
If 1= ig = i, then
(K5 — 1)K — 1)) = 27 @ ([, 2y, 2] — 1),
If i = i3 =1, then
po((Ky) = DKy — 1) = 2} @ ([wi,, x4, 2] = 1).

Hence the generators of H* ®z L,,(3) are contained in the image of py. O

5. FREE METABELIAN CASE

In this section, we mainly consider the case where G = FM := F, /[T",,(2),[,(2)]. For
simplicity, we often omit the capital I from the subscript £ if there is no confusion.
For example, we write LM, LM (k), IAM . for Lpm, Ly (k), IA(FM), .. respectively.
Here, we study the structure of graded quotients Q*(IAY) as a GL(n, Z)-module.
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5.1. Preliminary results for G = FM.

In this subsection, we recall some properties of the IA-automorphism group IA% and
the graded Lie algebras £M.

To begin with, we have (FM)2> = H and hence Aut (FM)a = Aut(H) = GL(n, Z).
Since the surjective map pp, : Aut F,, — GL(n,Z) factors through Aut £, a map

pry = Aut F)Y — GL(n, Z) is also surjective. Hence we can identify Aut FM /TA(FM)
with GL(n, Z).

Let v, : Aut F,, — Aut Féw be the natural homomorphism induced from the action of
Aut F,, on FM. Restricting v, to IA,,, we obtain a homomorphism v,|1a, : IA, — IA% )
Bachmuth and Mochizuki [4] showed that v,|1a, is surjective for n > 4. They also
showed that in [3] v31a, is not surjective and TA2! is not finitely generated. Hence IAY
is finitely generated for n > 4 by the (coset classes of) Magnus generators ;; and Kj;.
We remark that since Ker(v,|1a, ) is contained in A4,,(3), we have isomorphisms

(IAM)ab >~ TA%D = [ @, A2 H

as a GL(n, Z)-module.

The associated Lie algebra LM = @51 LM (k) is called the free metabelian Lie algebra
generated by H or the Chen Lie algebra. It is also classically known due to Chen [5]
that each £ (k) is a GL(n, Z)-equivariant free abelian group of rank

rankz(£Y (k) == (k — 1) (" +Z N 2).
We remark that £,(k) = LY (k) for 1 < k < 3.

By the same argument as that in Subsection 4.1, for each & > 2, we can de-
tect SF((IAM)2P) in Q¥(IAYM) by the GL(n,Z)-equivariant surjective homomorphism
oM QF(IAYM) — QF((TAM)*P) induced from the abelianization of IAY. In order to
investigate the GL(n, Z)-module structure of Ker(m}'), we use the Johnson homomor-
phism .

5.2. The image of ,uk]Ker(ﬂéu).

Here we study the image of the Johnson homomorphism
i QEIAY) — H* @z apa (L) (k + 1))

restricted to the kernel of 73 for n > 4. First, in order to get a reasonable generators
of LM(k + 1), we consider some lemmas. Let &; be the symmetric group of degree .
Then we have

Lemma 5.1. Let | > 2 and n > 2. For any element [x;, Ty, T4, - .., 2] € LM(1 +2)
and any A € Gy,

[winxiza Ljys - 7sz] = [xiuxiz’ Lira) - - ?xjx(z)]'
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Proof. Since 6, is generated by transpositions (m m+1) for 1 < m < [—1, it suffices
to prove the lemma for each A = (m m + 1). Now we have

(i, Tig, Ty -5 @] o]y T ]]
= ([, Tjoia s [, i 1 - ]
= T [T, Tig, T - -5 @] 5],
= [llzi, ip, Tj s - T s T i
in £M(m + 3) by the Jacobi’s identity. Hence,
[Ty s Tigs Tjys ooy Ty = [Ty Tigy Ty oo s Tty Tjirs Timr - -+ s T
=[xy, Ty, Tjyqy - - - ,xjw)].
in £M(1+2). O

Similarly to H* ®zag1(L,(k+1)), the Z-module H*®@z a1 (LM (k+1)) is generated
by elements

T @ ([T, 2] — 1), 1<4,i; <n.
On the other hand, using Lemma 5.1, elements [z;,, 2, ..., 7, € LM (k +1) is
rewritten as
[Tiys Tigy Tigs ooy Tip_ |y Tiy T+« -, T

in LM(k 4 1) for some I, 3 < | < k + 2 such that i3, i4,...,4_1 # i. Hence H* @z
pr1 (LM (k + 1)) is generated by elements

T @ ([Tiy, Tigs Tigy o ooy Tiy_yy Ty Tiy - -, ) — 1)
for some [, 3 < | < k + 2 such that i3,...,%,_1 # i. Furthermore, without loss of
generality, we may assume 75 # 7 in the generators above.

Proposition 5.2. Forany k > 2 andn > 4, the homomorphism piy|ker(x1) : Ker(mM) —

H* @z a1 (LM (k + 1)) is surjective.

Proof. Take a generator =} @ ([Tiy, Tiy, Tigs -« s Tiy_ys Tis Tiy - .., ] — 1) of H* ®g
1 (LM (k + 1)) for some I, 3 < I < k + 2 such that iy,...,4_; # i as mentioned
above. Since n > 4, there exists some 1 < j < n such that j # 4,1, 4. First, consider
an element

a:=(K; = 1)(Kj — 1) (K — 1) € AM¥"2(1A))
where (K;; — 1) appears k — [ 4 1 times in the product. Then we see
p—i43(a) = o @ ([zj, ..., z5) — 1)

where x; appears k — [ 4+ 2 times among the component.

Next, set
S L e
Ky =1 if j =i,
ci= (K, — 1)Ky, — 1)+ (Ky, — 1) € ATHIAM)
and

gV Kinn =1 if i,
O K, — 1 if i=1i.
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Then we have

pr(abed) = xf @ ([Ti), Tiyy Tigy - oy Tiy_ |y Tiy Tiy « -, Ti] — 1).

On the other hand, py(dbac) = 0. Hence we have

pr(abed — dbac) =} @ ([Tiy, Tigs Tigy -+ oy Tiy_ys Tiy Tiy -, ;] — 1),

Therefore since abed — dbac € Ker(mM), we conclude that [|Ker(r2ry 18 surjective. This
completes the proof of Proposition 5.2. [

Then we have

Theorem 5.3. For k > 2 and n > 4, a GL(n, Z)-equivariant homomorphism

ik ® e QYIAN) — (H” @ apin (L) (k + 1)) D S*(1AY)™)

defined by o — (ux(0), mp(0)) is surjective.
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