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Abstract. In this paper, we study the augmentation quotients of the IA-automorphism
group of a free group and a free metabelian group. First, for any group G, we con-
struct a lift of the k-th Johnson homomorphism of the automorphism group of G to
the k-th augmentation quotient of the IA-automorphism group of G. Then we study
the images of them for the case where G is a free group and a free metabelian group.
As a corollary, we detect some Z-free part in each of the augmentation quotients,
which can not be detected by the abelianization of the IA-automorphism group.

1. Introduction

Let Fn be a free group of rank n ≥ 2, and AutFn the automorphism group of Fn. Let
denote ρ : AutFn → AutH the natural homomorphism induced from the abelianization
Fn → H. The kernel of ρ is called the IA-automorphism group of Fn, denoted by IAn.
The subgroup IAn reflects much of the richness and complexity of the structure of
AutFn, and plays important roles on various studies of AutFn. Although the study of
the IA-automorphism group has a long history since its finitely many generators were
obtained by Magnus [14] in 1935, the combinatorial group structure of IAn is still quite
complicated. For instance, any presentation for IAn is not known in general.

We have studied IAn mainly using the Johnson filtration of AutFn so far. The
Johnson filtration is one of a descending central series

IAn = An(1) ⊃ An(2) ⊃ · · ·
consisting of normal subgroups of AutFn, which first term is IAn. (For detail, see
Subsection 2.3.) Each graded quotient grk(An) := An(k)/An(k + 1) naturally has a
GL(n,Z)-module structure, and from it we can extract some valuable information for
IAn. For example, gr1(An) is just the abelianization of IAn due to Cohen-Pakianathan
[6, 7]，Farb [9] and Kawazumi [13]. Pettet [19] determined the image of the cup prod-
uct ∪Q : Λ2H1(IAn,Q) → H2(IAn,Q) by using the GL(n,Q)-module structure of
gr2(An) ⊗Z Q. At the present stage, however, the structures of the graded quotients
grk(An) are far from well-known.

On the other hand, compared with the Johnson filtration, the lower central series
ΓIAn(k) of IAn and its graded quotients LIAn(k) := ΓIAn(k)/ΓIAn(k + 1) are somewhat
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easier to handle since we can obtain finitely many generators of LIAn(k) using the
Magnus generators of IAn. Since the Johnson filtration is central, ΓIAn(k) ⊂ An(k) for
any k ≥ 1. It is conjectured that ΓIAn(k) = An(k) for each k ≥ 1 by Andreadakis who
showed ΓIA2(k) = A2(k) for each k ≥ 1. Now, it is known that ΓIAn(2) = An(2) due to
Bachmuth [2], and that ΓIAn(3) has at most finite index in An(3) due to Pettet [19].

In this paper, we consider the augmentation quotients of IAn. Let Z[G] be the
integral group ring of a group G, and ∆(G) the augmentation ideal of Z[G]. We denote
by Qk(G) := ∆k(G)/∆k+1(G) the k-th augmentation quotient of G. The augmentation
quotients Qk(IAn) of IAn are seemed to be closely related to the lower central series
ΓIAn(k) as follows. If the Andreadakis’s conjecture is true, then each of the graded
quotients LIAn(k) is free abelian. Hence using a work of Sandling and Tahara [21],
(For details, see Subsection 4.1.), we obtain a conjecture for the Z-module structure of
Qk(IAn):

Conjecture 1. For any k ≥ 1,

Qk(IAn) ∼=
∑ k⊗

i=1

Sai(LIAn(i))

as a Z-module. Here
∑

runs over all non-negative integers a1, . . . , ak such that
∑k

i=1 iai =
k, and Sa(M) means the symmetric tensor product of a Z-module M such that S0(M) =
Z.

We see that this is true for k = 1 and 2 from a general argument in group ring theory.
(For k = 2, see (1) below.) For k ≥ 3, however, it is still open problem. In general,
one of the most standard methods to study the augmentation quotients Qk(IAn) is to
consider a natural surjective homomorphism πk : Qk(IAn) → Qk(IAab

n ) induced from
the abelianization IAn → IAab

n of IAn. Furthermore, since IAab
n is free abelian, we have

a natural isomorphism Qk(IAab
n ) ∼= Sk(LIAn(1)). Hence, in the conjecture above, we

can detect Sk(LIAn(1)) in Qk(IAn) by the abelianization of IAn.

Then we have a natural question to ask: Determine the structure of the kernel of
πk. More precisely, clarify the GL(n,Z)-module structure of Ker(πk). In order to
attack this problem, in this paper we construct and study a certain homomorphism
defined on Qk(IAn) which restriction to Ker(πk) is non-trivial. For a group G, let
αk = αk,G : LG(k) → Qk(G) be a homomorphism defined by σ 7→ σ − 1. One of the
main purposes of the paper is to construct a GL(n,Z)-equivariant homomorphism

µk : Qk(IAn)→ HomZ(H,αk+1(Ln(k + 1)))

where Ln(k) is the k-th graded quotient of the lower central series of Fn. Furthermore,
for the k-th Johnson homomorphism

τ ′k : LIAn(k)→ HomZ(H,Ln(k + 1))

defined by σ 7→ (x 7→ x−1xσ), (See Subsection 2.3 for details.), we show that µk ◦ αk =
α∗k+1 ◦ τ ′k where α∗k+1 is a natural homomorphism induced from αk+1. Since αk,Fn is a
GL(n,Z)-equivariant injective homomorphism for each k ≥ 1, if we identify Ln(k) with
its image αk(Ln(k)), we obtain µk ◦ αk = τ ′k. Hence, the homomorphism µk can be
considered as a lift of the Johnson homomorphism τ ′k. In the following, we naturally
identify HomZ(H,Ln(k + 1)) with H∗ ⊗Z Ln(k + 1) for H∗ := HomZ(H,Z).
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Historically, the study of the Johnson homomorphisms was originally begun in 1980
by D. Johnson [11] who determined the abelianization of the Torelli subgroup of the
mapping class group of a surface in [12]. Now, there is a broad range of remarkable
results for the Johnson homomorphisms of the mapping class group. (For example, see
[10] and [15], [16], [17].) These works also inspired the study of the Johnson homo-
morphisms of AutFn. Using it, we can investigate the graded quotients grk(An) and
LIAn(k). Recently, it has achieved good progress through the works of many authors,
for example, [6], [7], [9], [13], [15], [16], [17] and [19]. In particular, in our previous work
[24], we determined the cokernel of the rational Johnson homomorphism τ ′k,Q := τ ′k⊗idQ

for k ≥ 2 and n ≥ k + 2.

The main theorem of the paper is

Theorem 1. (See Theorem 4.4.) For k ≥ 3 and n ≥ k + 2, a GL(n,Z)-equivariant
homomorphism

µk ⊕ πk : Qk(IAn)→ (H∗ ⊗Z αk+1(Ln(k + 1)))
⊕

Qk(IAab
n )

defined by σ 7→ (µk(σ), πk(σ)) is surjective.

Next, we consider the framework above for a free metabelian group. Let FM
n :=

Fn/[[Fn, Fn], [Fn, Fn]] be a free metabelian group of rank n. By the same argument as
the free group case, we can consider the IA-automorphism group IAM

n and the Johnson
homomorphism

τ ′k : LIAMn
(k)→ H∗ ⊗Z LMn (k + 1)

of AutFM
n where LIAMn

(k) is the k-th graded quotient of the lower central series of

IAM
n , and LMn (k) is that of FM

n . In our previous work [23], we studied the Johnson
homomorphism of AutFM

n , and determined its cokernel. In particular, we showed that
there appears only the Morita obstruction SkH in Coker(τ ′k) for any k ≥ 2 and n ≥ 4.
We remark that in [23], we determined the cokernel of the Johnson homomorphism τk
which is defined on the graded quotient of the Johnson filtration of AutFM

n . Observing
our proof, we verify that Coker(τ ′k) = Coker(τk).

Now, similarly to the free group case, we can also construct a GL(n,Z)-equivariant
homomorphism

µk : Qk(IAM
n )→ HomZ(H,αk+1(LMn (k + 1)))

such that µk ◦ αk = α∗k+1 ◦ τ ′k. The second purpose of the paper is to show

Theorem 2. (See Theorem 5.3.) For k ≥ 2 and n ≥ 4, a GL(n,Z)-equivariant homo-
morphism

µk ⊕ πk : Qk(IAM
n )→ (H∗ ⊗Z αk+1(LMn (k + 1)))

⊕
Sk((IAM

n )ab)

defined by σ 7→ (µk(σ), πk(σ)) is surjective.

In this paper, for arbitrary group G, we construct a lift of the Johnson homomorphism
of the automorphism group of G to the augmentation quotients of G. In order to do
this, in Section 2, after fixing notation and conventions, we recall the associated graded
Lie algebra of a group G, the Johnson homomorphism of the automorphism group of
G, and the associated graded ring of the integral group ring Z[G] of G. In Section 3,
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we construct an AutG/IA(G)-equivariant homomorphism µk which is considered as a
lift of the Johnson homomorphism. In Sections 4 and 5, we consider the case where G
is a free group and a free metabelian group respectively.
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2. Preliminaries

2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G.

• The abelianization of G is denoted by Gab.
• The group AutG of G acts on G from the right. For any σ ∈ AutG and x ∈ G,

the action of σ on x is denoted by xσ.
• For an element g ∈ G, we also denote the coset class of g by g ∈ G/N if there

is no confusion.
• For elements x and y of G, the commutator bracket [x, y] of x and y is defined

to be [x, y] := xyx−1y−1.

2.2. Associated graded Lie algebra of a group.

For a group G, we define the lower central series of G by the rule

ΓG(1) := G, ΓG(k) := [ΓG(k − 1), G], k ≥ 2.

We denote by LG(k) := ΓG(k)/ΓG(k+ 1) the graded quotient of the lower central series
of G, and by LG :=

⊕
k≥1LG(k) the associated graded sum. The graded sum LG
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naturally has a graded Lie algebra structure induced from the commutator bracket on
G, and called the associated graded Lie algebra of G.

For any g1, . . . , gt ∈ G, a commutator of weight k type of

[[· · · [[gi1 , gi2 ], gi3 ], · · · ], gik ], ij ∈ {1, . . . , t}
with all of its brackets to the left of all the elements occurring is called a simple k-fold
commutator among the components g1, . . . , gt, and we denote it by

[gi1 , gi2 , · · · , gik ]
for simplicity. In general, if G is generated by g1, . . . , gt, then the graded quotient LG(k)
is generated by the simple k-fold commutators

[gi1 , gi2 , . . . , gik ], 1 ≤ ij ≤ t

as a Z-module.

Let ρG : AutG→ AutGab be the natural homomorphism induced from the abelian-
ization of G. The kernel IA(G) of ρG is called the IA-automorphism group of G. Then
the automorphism group AutG naturally acts on LG(k) for each k ≥ 1, and IA(G) acts
on it trivially. Hence the action of AutG/IA(G) on LG(k) is well-defined.

2.3. Johnson homomorphisms.

For k ≥ 1, the action of AutG on each nilpotent quotient G/ΓG(k + 1) induces a
homomorphism

AutG→ Aut(G/ΓG(k + 1)).

For k = 1, this homomorphism is just ρG. We denote the kernel of the homomorphism
above by AG(k). Then the groups AG(k) define a descending central filtration

IAG = AG(1) ⊃ AG(2) ⊃ AG(3) ⊃ · · · .
(See [1] for details.) We call it the Johnson filtration of AutG. For each k ≥ 1,
the group AutG acts on AG(k) by conjugation, and it naturally induces an action of
AutG/IA(G) on grk(AG). The graded sum gr(AG) :=

⊕
k≥1 grk(AG) has a graded Lie

algebra structure induced from the commutator bracket on IA(G).

To study the AutG/IA(G)-module structure of each graded quotient grk(AG), we
define the Johnson homomorphisms of AutG in the following way. For each k ≥ 1, we
consider a homomorphism AG(k)→ HomZ(Gab,LG(k + 1)) defined by

σ 7→ (g 7→ g−1gσ), x ∈ G.
Then the kernel of this homomorphism is just AG(k+ 1). Hence it induces an injective
homomorphism

τk = τG,k : grk(AG) ↪→ HomZ(Gab,LG(k + 1)).

The homomorphism τk is called the k-th Johnson homomorphism of AutG. It is easily
seen that each τk is an AutG/IA(G)-equivariant homomorphism. Since each John-
son homomorphism τk is injective, it is natural question to determine the image, or
equivalently, the cokernel of τk in the study of the AutG/IA(G)-module grk(AG).

Here, we consider another descending filtration of IA(G). Let ΓIA(G)(k) be the k-
th subgroup of the lower central series of IA(G). Then for each k ≥ 1, ΓIA(G)(k) is
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a subgroup of AG(k) since the Johnson filtration is a central filtration of IA(G). In
general, it is a natural question to ask whether ΓIA(G)(k) coincides with AG(k) or not.
For the case where G is a free group Fn of rank n, it is conjectured that ΓIA(Fn)(k)
coincides with AFn(k) by Andreadakis.

Consider LIA(G)(k) := ΓIA(G)(k)/ΓIA(G)(k+1) for each k ≥ 1. Similarly to gr(AG), the
graded sum LIA(G) :=

⊕
k≥1 LIA(G)(k) has a graded Lie algebra structure induced from

the commutator bracket on IA(G). The restriction of the homomorphism AG(k) →
HomZ(Gab,LG(k + 1)) to ΓIA(G)(k) also induces an AutG/IA(G)-equivariant homo-
morphism

τ ′k = τ ′G,k : LIA(G)(k)→ HomZ(Gab,LG(k + 1)).

In this paper, we also call τ ′k the k-th Johnson homomorphism of AutG.

2.4. Associated graded ring of a group ring.

For a group G, let Z[G] be a group ring of G over Z, and ∆(G) the augmentation
ideal of Z[G]. Namely, ∆(G) is the kernel of the augmentation map ε : Z[G] → Z
defined by

∑
g∈G

agg 7→
∑
g∈G

ag, ag ∈ Z.

We denote by ∆k(G) := (∆(G))k the k-times product of the augmentation ideal ∆(G)
in Z[G]. For each k ≥ 1, set

Qk(G) := ∆k(G)/∆k+1(G),

gr(Z[G]) :=
⊕

k≥1

Qk(G).

The quotients Qk(G) are called the augmentation quotients of G. The graded sum
gr(Z[G]) naturally has an associative graded ring structure induced from the product
in Z[G]. The ring gr(Z[G]) is called the associated graded ring of the group ring Z[G].

In general, one of the most standard methods to study Qk(G) is to consider a natural
surjective homomorphism πk = πk,G : Qk(G) → Qk(Gab) induced from the abelianiza-
tion G → Gab. Furthermore, if Gab is free abelian, we have an natural isomorphism
Qk(Gab) ∼= Sk(Gab) = Sk(LG(1)). (See Corollary 8.2 in [18].) In Subsection 4.2, we
study the kernel of πk for G = Fn. We remark that for a group G and k ≥ 1, Ker(πk)
is generated by elements

(g1 − 1) · · · (gk − 1)− (gσ(1) − 1) · · · (gσ(k) − 1)

as a Z-module for any g1, . . . , gk ∈ G, 1 ≤ ij ≤ n and σ ∈ Sk. Here Sk denotes the
symmetric group of degree k.

Here we consider a relation between gr(Z[G]) and LG. For any g ∈ ΓG(k), it is well
known that an element g − 1 ∈ Z[G] belongs to ∆k(G). Then a map ΓG(k) → ∆k(G)
defined by g 7→ g − 1 induces a Z-linear map

αk = αk,G : LG(k)→ Qk(G)
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and a Lie algebra homomorphism

αG :=
⊕

k≥1

αk : LG → gr(Z[G])

where we consider gr(Z[G]) as a Lie algebra with a Lie bracket [x, y] := xy− yx for any
x, y ∈ Z[G]. We remark that for any group G, α1,G : Gab → Q1(G) is an isomorphism.
Hence, so is π1. For k ≥ 2, however, πk is not injective in general. For k = 2, if G is a
finitely generated, then we have a split exact sequence of Z-modules:

(1) 0→ LG(2)
α2,G−−→ Q2(G)

π2,G−−→ Q2(Gab)→ 0.

(For a proof, see Corollary 8.13 of Chapter VIII in [18].) We denote by

α∗k+1 = α∗k+1,G : HomZ(Gab,LG(k + 1))→ HomZ(Gab, Qk+1(G))

the natural homomorphism induced from αk+1.

3. A lift of the Johnson homomorphisms to the augmentation quotients

In this section, for a group G, we construct an AutG/IA(G)-equivariant homomor-
phism µk : Qk(G)→ HomZ(Gab, Qk+1(G)) such that

(2) µk ◦ αk,IA(G) = α∗k+1,G ◦ τ ′k.

3.1. Construction of µk.

For any σ ∈ AutG and x ∈ G, set sσ(x) := x−1xσ ∈ G. First, we recall an important
and useful lemma due to Andreadakis [1]:

Lemma 3.1. For any k, l ≥ 1, σ ∈ AG(k) and x ∈ ΓG(l), we have sσ(x) ∈ ΓG(k + l).

For the proof of Lemma 3.1, see in [1]. From this lemma, we see that sσ(x) − 1 ∈
∆k+l(G) for any σ ∈ AG(k) and x ∈ ΓG(l). We often use these facts without any
quotation. In order to define a lift of the Johnson homomorphism, we prepare some
lemmas.

Lemma 3.2. For any σ, τ ∈ IA(G) and x, y ∈ G, we have

(1) sστ (x) = sτ (x) · sσ(x)τ = sτ (x)sσ(x)sτ (sσ(x)).
(2) sσ(xy) = y−1sσ(x)y · sσ(y) = [y−1, sσ(x)]sσ(x)sσ(y).

Proof. The equations follow from

sστ (x) = x−1xστ = x−1xτ · (x−1xσ)τ = x−1xτ · x−1xσ · (x−1xσ)−1 · (x−1xσ)τ ,

sσ(xy) = y−1x−1xσyσ = y−1x−1xσy · y−1yσ.

�

Lemma 3.3. For any x ∈ ΓG(k) and σ ∈ IA(G), we have

xσ − x ≡ sσ(x)− 1 (mod ∆k+2(G)).
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Proof. This is clear from

xσ − x = (xσ − 1)− (x− 1)

= (x(x−1xσ)− 1)− (x− 1)

= (x− 1)(sσ(x)− 1) + (sσ(x)− 1)

and sσ(x)− 1 ∈ ∆k+1(G). �

Lemma 3.4. For any a ∈ ∆k(G) and σ ∈ IA(G), we have aσ − a ∈ ∆k+1(G).

Proof. Any element of ∆k(G) can be written as a Z-linear combination of elements
types of

(x1 − 1) · · · (xk − 1) or (x1 − 1) · · · (xk+1 − 1)

for xi ∈ G. Hence it suffices to show the lemma for a = (x1 − 1) · · · (xk − 1). Then we
have

aσ − a = (x1(x−1
1 xσ1 )− 1) · · · (xk(x−1

k xσk)− 1)− (x1 − 1) · · · (xk − 1),

= {(x1 − 1)(x−1
1 xσ1 − 1) + (x1 − 1) + (x−1

1 xσ1 − 1)}
· · · {(xk − 1)(x−1

k xσk − 1) + (xk − 1) + (x−1
k xσk − 1)}

− (x1 − 1) · · · (xk − 1),

≡ (x1 − 1) · · · (xk − 1)− (x1 − 1) · · · (xk − 1) = 0 (mod ∆k+1(G)).

�
For any x ∈ G, consider a Z-linear homomorphism ϕx : Z[IA(G)] → ∆(G) defined

by σ 7→ sσ(x)− 1 for any σ ∈ IA(G).

Lemma 3.5. For any k, l ≥ 1, x ∈ ΓG(l), and σ1, . . . , σk ∈ IA(G), we have

ϕx((σ1 − 1) · · · (σk − 1)) ≡ sσk(sσk−1
(· · · (sσ1(x)) · · · ))− 1 (mod ∆k+l+1(G)).

Proof. We prove this lemma by the induction on k ≥ 1. For k = 1, it is obvious by
the definition. Assume that k ≥ 2. Write

(σ1 − 1) · · · (σk−1 − 1) =
∑

σ∈IA(G)

aσσ ∈ Z[IA(G)]
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for aσ ∈ Z. Then we have

ϕx((σ1 − 1) · · · (σk−1 − 1)(σk − 1)),

= ϕx((σ1 − 1) · · · (σk−1 − 1)σk − (σ1 − 1) · · · (σk−1 − 1)),

= ϕx

( ∑

σ∈IA(G)

aσ σσk −
∑

σ∈IA(G)

aσσ
)
,

=
∑

σ∈IA(G)

aσ{(sσσk(x)− 1)− (sσ(x)− 1)},

=
∑

σ∈IA(G)

aσ{(sσk(x)sσ(x)σk − 1)− (sσ(x)− 1)},

=
∑

σ∈IA(G)

aσ{(sσk(x)− 1)(sσ(x)σk − 1) + (sσk(x)− 1)

+ (sσ(x)σk − 1)− (sσ(x)− 1)}.
Here we see

∑

σ∈IA(G)

aσ(sσk(x)− 1)(sσ(x)σk − 1) = (sσk(x)− 1)
( ∑

σ∈IA(G)

aσ(sσ(x)− 1)
)σk

≡ 0 (mod ∆k+l+1(G))

since sσk(x) − 1 ∈ ∆2(G) and
∑

σ∈IA(G) aσ(sσ(x) − 1) ∈ ∆k+l−1(G) by the inductive
hypothesis, and see

∑

σ∈IA(G)

aσ(sσk(x)− 1) = (sσk(x)− 1)
∑

σ∈IA(G)

aσ = 0.

On the other hand, by the inductive hypothesis, we have
∑

σ∈IA(G)

aσ{(sσ(x)σk − 1)− (sσ(x)− 1)},

=
( ∑

σ∈IA(G)

aσ(sσ(x)− 1)
)σk −

∑

σ∈IA(G)

aσ(sσ(x)− 1),

= (sσk−1
(· · · (sσ1(x)) · · · )− 1)σk − (sσk−1

(· · · (sσ1(x)) · · · )− 1)

+ aσk − a
for some a ∈ ∆k+l(G). Then, by Lemmas 3.3 and 3.4, we see

≡ sσk(sσk−1
(· · · (sσ1(x)) · · · ))− 1 (mod ∆k+l+1(G)).

This completes the proof of Lemma 3.5. �
For each k ≥ 1, since ∆k(IA(G)) is generated by elements types of

(σ1 − 1) · · · (σk − 1) or (σ1 − 1) · · · (σk+1 − 1)

for σi ∈ IA(G) as a Z-module, by Lemma 3.5 we obtain

Corollary 3.6. For any k, l ≥ 1 and x ∈ ΓG(l), we have ϕx(∆
k(IA(G))) ⊂ ∆k+l(IA(G)).
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Remark 3.7. For any x ∈ ΓG(l) a homomorphism Z[IA(G)] → Qk+l(IA(G)) defined
by a 7→ ϕx(a) is a polynomial map of degree ≤ k.

Lemma 3.8. For any k, l ≥ 1 and x, y ∈ ΓG(l), we have

sσk( · · · (sσ1(xy)) · · · )
≡ sσk(· · · (sσ1(x)) · · · ) · sσk(· · · (sσ1(y)) · · · ) (mod ΓG(k + 2l + 1))

for any σ1, . . . , σk ∈ IA(G).

Proof. We prove this lemma by the induction on k ≥ 1. If k = 1, it is trivial from
the part (2) of Lemma 3.2. Assume k ≥ 2. By the inductive hypothesis, we see

sσk−1
(· · · (sσ1(xy))) = c sσk−1

(· · · (sσ1(x))) · sσk−1
(· · · (sσ1(y)))

for some c ∈ ΓG(k + 2l). Then, using the part (2) of Lemma 3.2 we have

sσk(sσk−1
(· · · (sσ1(xy))))

= sσk(c sσk−1
(· · · (sσ1(x))) · sσk−1

(· · · (sσ1(y)))),

= [{sσk−1
(· · · (sσ1(x)))sσk−1

(· · · (sσ1(y)))}−1, sσk(c)]

· sσk(c) · sσk(sσk−1
(· · · (sσ1(x))) · sσk−1

(· · · (sσ1(y)))),

≡ sσk(sσk−1
(· · · (sσ1(x))) · sσk−1

(· · · (sσ1(y)))),

= [sσk−1
(· · · (sσ1(y))))−1, sσk(sσk−1

(· · · (sσ1(x))))]

· sσk(sσk−1
(· · · (sσ1(x)))) · sσk(sσk−1

(· · · (sσ1(y)))),

≡ sσk(sσk−1
(· · · (sσ1(x)))) · sσk(sσk−1

(· · · (sσ1(y)))).

modulo ΓG(k + 2l + 1). �

Lemma 3.9. For any k, l ≥ 1, x, y ∈ ΓG(l), and a ∈ ∆k(IA(G)), we have

ϕxy(a) ≡ ϕx(a) + ϕy(a) (mod ∆k+l+1(G)).

Proof. First, we consider the case where a = (σ1−1) · · · (σk−1) for some σi ∈ IA(G).
From Lemmas 3.5 and 3.8, we see

ϕxy(a) ≡ sσk(sσk−1
(· · · (sσ1(xy)) · · · ))− 1,

= csσk(· · · (sσ1(x)) · · · ) · sσk(· · · (sσ1(y)) · · · )− 1

for some c ∈ ΓG(k + 2l + 1). Hence we have

= (c− 1)(sσk(· · · (sσ1(x)) · · · ) · sσk(· · · (sσ1(y)) · · · )− 1),

+ (c− 1) + (sσk(· · · (sσ1(x)) · · · ) · sσk(· · · (sσ1(y)) · · · )− 1),

≡ sσk(· · · (sσ1(x)) · · · ) · sσk(· · · (sσ1(y)) · · · )− 1,

= (sσk(· · · (sσ1(x)) · · · )− 1)(sσk(· · · (sσ1(y)) · · · )− 1)

+ (sσk(· · · (sσ1(x)) · · · )− 1) + (sσk(· · · (sσ1(y)) · · · )− 1),

≡ (sσk(· · · (sσ1(x)) · · · )− 1) + (sσk(· · · (sσ1(y)) · · · )− 1),

= ϕx(a) + ϕy(a)

modulo ∆k+l+1(G).
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For a general case, a ∈ ∆k(IA(G)) is written as a Z-linear combination of elements
types of

(σ1 − 1) · · · (σk − 1) or (σ1 − 1) · · · (σk+1 − 1).

Therefore, using the argument above, we obtain the Lemma for any a ∈ ∆k(IA(G)). �
Lemma 3.10. For any a ∈ ∆k(IA(G)), a map µk(a) : Gab → Qk+1(G) defined by
x 7→ ϕx(a) is a homomorphism.

Proof. To begin with, we check that µk(a) is well-defined. Consider elements x, y ∈ G
such that y = xc for some c ∈ ΓG(2). Then by Lemma 3.9,

ϕy(a) = ϕxc(a) ≡ ϕx(a) + ϕc(a) (mod ∆k+2(G)).

On the other hand, by Corollary 3.6, we see ϕc(a) ∈ ∆k+2(G). Hence ϕy(a) = ϕx(a) ∈
Qk+1(G).

To show µk(a) is a homomorphism, take any x and y ∈ G. Then by Lemma 3.9,

µk(a)(xy) = ϕxy(a) ≡ ϕx(a) + ϕy(a) = µk(a)(x) + µk(a)(y)

modulo ∆k+2(G). This completes the proof of Lemma 3.10. �
Now, we are ready to define a lift of the Johnson homomorphism τ ′k. For any k ≥ 1,

define a map
µk : ∆k(IA(G))→ HomZ(Gab, Qk+1(G))

by
a 7→ (x 7→ ϕx(a)).

The map µk is a homomorphism. Furthermore ∆k+1(IA(G)) is contained in Ker(µk).
Hence µk induces a homomorphism

Qk(IA(G))→ HomZ(Gab, Qk+1(G)).

We also denote by µk this induced homomorphism, and call it the k-th Johnson homo-
morphism of Z[IA(G)]. We see that the compatibility (2) follows by the definition of
τ ′k and µk.

3.2. Actions of AutG.

Next we consider actions of AutG. Since IA(G) is a normal subgroup of AutG, the
group AutG acts on Z[IA(G)] from the right by( ∑

σ∈IA(G)

aσσ
)
· τ :=

∑

σ∈IA(G)

aσ(τ−1στ)

for any τ ∈ AutG. For each k ≥ 1, since ∆k(IA(G)) is preserved by the action of
AutG, the group AutG also acts on each of the graded quotient Qk(IA(G)). Then
IA(G) acts on Qk(IA(G)) trivially. In fact, for any τ ∈ IA(G), we have

(σ1 − 1) · · · (σk − 1) · τ = (τ−1σ1τ − 1) · · · (τ−1σkτ − 1),

= ([τ−1, σ1]σ1 − 1) · · · ([τ−1, σk]σkτ − 1),

= {([τ−1, σ1]− 1)(σ1 − 1) + ([τ−1, σ1]− 1) + (σ1 − 1)}
· · · {([τ−1, σk]− 1)(σk − 1) + ([τ−1, σk]− 1) + (σk − 1)},

≡ (σ1 − 1) · · · (σk − 1)
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module ∆k+1(IA(G)) since [τ−1, σi] ∈ ΓIA(G)(2) and [τ−1, σi] − 1 ∈ ∆2(IA(G)). Since
Qk(IA(G)) is generated by elements (σ1− 1) · · · (σk − 1) for σi ∈ IA(G) as a Z-module,
we verify that the action of IA(G) on Qk(IA(G)) is trivial. Hence the quotient group
AutG/IA(G) naturally acts on each of Qk(IA(G)) from the right.

Now, AutG naturally acts on HomZ(Gab, Qk+1(G)). Then it is easily seen that the ac-
tion of IA(G) on HomZ(Gab, Qk+1(G)) is trivial. Hence the quotient group AutG/IA(G)
also acts on it. To show that µk is AutG/IA(G)-equivariant, we prepare

Lemma 3.11. For any k ≥ 1, and σ, σ1, . . . , σk ∈ AutG, we have

(sσk(· · · (sσ1(x)) · · · ))σ = sσ−1σkσ(· · · (sσ−1σ1σ(xσ)) · · · ).
We prove this lemma by the induction on k ≥ 1. For k = 1, it is clear by

sσ1(x)σ = (x−1xσ1)σ = (xσ)−1xσ1σ = (xσ)−1(xσ)σ
−1σ1σ = sσ−1σ1σ(xσ).

Assume k ≥ 2. Using the inductive hypothesis, we obtain

(sσk(· · · (sσ1(x)) · · · ))σ
=
(
(sσk−1

(· · · (sσ1(x)) · · · ))−1(sσk−1
(· · · (sσ1(x)) · · · ))σk)σ,

= {(sσk−1
(· · · (sσ1(x)) · · · ))σ}−1{(sσk−1

(· · · (sσ1(x)) · · · ))σ}σ−1σkσ,

= {sσ−1σk−1σ(· · · (sσ−1σ1σ(xσ)) · · · )}−1{sσ−1σk−1σ(· · · (sσ−1σ1σ(xσ)) · · · )}σ−1σkσ,

= sσ−1σkσ(· · · (sσ−1σ1σ(xσ)) · · · ).
This completes the proof of Lemma 3.11. �

Proposition 3.12. For any k ≥ 1, the Johnson homomorphism µk is an AutG/IA(G)-
equivariant homomorphism.

Proof. It suffices to show µk(a
σ) = (µk(a))σ for σ ∈ IA(G) and a = (σ1− 1) · · · (σk −

1) ∈ Qk(IA(G)). Then, for any x ∈ Gab we have

µk(a
σ)(x) = µk((σ

−1σ1σ − 1) · · · (σ−1σkσ − 1))(x),

= sσ−1σkσ(· · · (sσ−1σ1σ(x)) · · · )− 1.

On the other hand, by Lemma 3.11,

(µk(a))σ(x) = (µk(a)(xσ
−1

))σ = (sσk(· · · (sσ1(xσ
−1

)) · · · )− 1)σ,

= sσ−1σkσ(· · · (sσ−1σ1σ(x)) · · · )− 1.

for any x ∈ Gab. This completes the proof of Proposition 3.12. �

3.3. Some properties of µk.

Here we observe some properties of µk. First, we consider the image of µk. In general,
µk is not surjective.

Lemma 3.13. For each k ≥ 1, the image of µk is contained in that of α∗k+1,G.

Proof. Since Qk(IA(G)) is generated by (σ1 − 1) · · · (σk − 1) for σi ∈ IA(G) as a
Z-module, it suffices to show µk(a) ∈ Im(α∗k+1,G) for a = (σ1 − 1) · · · (σk − 1). On the
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other hand, using Lemma 3.1 recursively, we see that sσk(sσk−1
(· · · (sσ1(x)) · · · )) belongs

to ΓG(k + 1) for any x ∈ G. Hence

sσk(sσk−1
(· · · (sσ1(x)) · · · ))− 1 ∈ αk+1,G(LG(k + 1)).

This completes the proof of Lemma 3.13. �
By this lemma, in the following, we write the k-th Johnson homomorphism as

µk : Qk(IA(G))→ HomZ(Gab, αk+1,G(LG(k + 1))).

Next, we consider a calculation of µk+1(a(τ − 1)) for a given a ∈ Qk(IA(G)) and
τ ∈ IA(G). Let

a =
∑

σ1,...,σk∈IA(G)

mσ1,...,σk(σ1 − 1) · · · (σk − 1)

for mσ1,...,σk ∈ Z. Then for any x ∈ G, we have

µk+1(a(τ − 1))(x) =
∑

σ1,...,σk∈IA(G)

mσ1,...,σkµk+1((σ1 − 1) · · · (σk − 1)(τ − 1))(x),

≡
∑

σ1,...,σk∈IA(G)

mσ1,...,σk{sτ (sσk(· · · (sσ1(x)) · · · ))− 1}

modulo ∆k+3(G). If we set X := sσk(· · · (sσ1(x)) · · · ) ∈ ΓG(k + 1), then

=
∑

σ1,...,σk∈IA(G)

mσ1,...,σk{X−1Xτ − 1},

=
∑

σ1,...,σk∈IA(G)

mσ1,...,σk{(X−1 − 1)(Xτ − 1) + (X−1 − 1) + (Xτ − 1)},

≡
∑

σ1,...,σk∈IA(G)

mσ1,...,σk{(Xτ − 1)− (X − 1)},

=

{ ∑

σ1,...,σk∈IA(G)

mσ1,...,σk(X − 1)

}τ
−

∑

σ1,...,σk∈IA(G)

mσ1,...,σk(X − 1),

≡ {µk(a)(x)}τ − µk(a)(x)

modulo ∆k+3(G). Hence we have

µk+1(a(τ − 1))(x) = {µk(a)(x)}τ − µk(a)(x) ∈ Qk+2(IA(G)).

This formula is sometimes convenient for a calculation of the image of µk.

4. Free group case

In this section, we mainly consider the case where G = Fn. For simplicity, we often
omit the capital F from the subscript Fn if there is no confusion. For example, we
write Ln, Ln(k), IAn, . . . for LFn , LFn(k), IA(Fn), . . . respectively. Here, we study the
structure of graded quotients Qk(IAn) as a GL(n,Z)-module.
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4.1. Preliminary results for G = Fn.

In this subsection, we recall some well-known properties of the IA-automorphism
group IAn, the graded Lie algebra Ln and the graded ring gr(Z[Fn]). Let H := F ab

n

be the abelianization of Fn. The natural homomorphism ρ = ρFn : AutFn → AutH
induced from the abelianization of Fn → H is surjective. Throughout the paper, we
identify AutH with the general linear group GL(n,Z) by fixing a basis of H induced
from the basis x1, . . . , xn of Fn. Namely, we have GL(n,Z) ∼= AutFn/IAn.

Magnus [14] showed that for any n ≥ 3, IAn is finitely generated by automorphisms

Kij : xt 7→
{
xj
−1xixj, t = i,

xt, t 6= i

for distinct 1 ≤ i, j ≤ n, and

Kijl : xt 7→
{
xi[xj, xl], t = i,

xt, t 6= i

for distinct 1 ≤ i, j, l ≤ n and j < l. Recently, Cohen-Pakianathan [6, 7]，Farb [9] and
Kawazumi [13] independently showed

(3) IAab
n
∼= H∗ ⊗Z Λ2H

as a GL(n,Z)-module. In particular, from their result, we see that IAab
n is a free abelian

group of rank 2n2(n− 1) with basis the coset classes of the Magnus generators Kij and
Kijl.

It is classically known due to Magnus that the graded Lie algebra Ln is isomorphic
to the free Lie algebra generated by H over Z. (See [20], for example, for basic material
concerning the free Lie algebra.) Each of the degree k part Ln(k) of Ln is a free abelian
group, which rank is given by Witt’s formula

(4) rankZ(Ln(k)) =
1

k

∑

d|k
µ(d)n

k
d

where µ is the Möbius function.

Next, we consider an embedding of the free Lie algebra Ln into the graded sum
gr(Z[Fn]). In general, it is known that the graded Lie algebra homomorphism αFn :
Ln → gr(Z[Fn]) induced from x 7→ x − 1 for any x ∈ Fn is a GL(n,Z)-equivariant
injective homomorphism, and that gr(Z[Fn]) is naturally isomorphic to the universal
enveloping algebra U(Ln) of Ln. (See Theorem 6.2 of Chapter VIII in [18].) For
simplicity, in the following, we identify Ln(k) with its image αk(Ln(k)) in Qk(Fn).

Here we observe a conjecture for the Z-module structure of Qk(IAn). For a group G
such that each of the graded quotients LG(k) is a free abelian group for k ≥ 1, Sandling
and Tahara [21] showed that as a Z-module,

Qk(G) ∼=
∑ k⊗

i=1

Sai(LG(i))

14



for each k ≥ 1. Here
∑

runs over all non-negative integers a1, . . . , ak such that

k∑
i=1

iai = k,

and Sa(LG(i)) means the symmetric tensor product of LG(i) of degree a such that
S0(LG(i)) = Z.

On the other hand, it is conjectured by Andreadakis that the lower central series
ΓIAn(k) coincides with the Johnson filtration An(k). He [1] showed that this is true for
n = 2. Since each of the graded quotient grk(An) := An(k)/An(k + 1) of the Johnson
filtration An(k) is free abelian, the Andreadakis’s conjecture let us conjecture

Conjecture 4.1. For any k ≥ 1,

Qk(IAn) ∼=
∑ k⊗

i=1

Sai(LIAn(i))

as a Z-module. Here
∑

runs over all non-negative integers a1, . . . , ak such that
∑k

i=1 iai =
k.

To study Qk(IAn), to begin with, we consider the surjective homomorphism πk :
Qk(IAn)→ Qk(IAab

n ) induced from the abelianization of IAn for k ≥ 1. We remark that
each of πk is an GL(n,Z)-equivariant surjective homomorphism, and that Qk(IAab

n ) ∼=
Sk(IAab

n ) since IAab
n is free abelian as mentioned before. For k = 1, πk : Q1(IAn) →

Q1(IAab
n ) is an isomorphism, and Q1(IAn) ∼= IAab

n = H∗ ⊗Z Λ2H. In general, however,
πk is not injective for k ≥ 2, and seems to have a large kernel from the conjecture
above. In this paper, to investigate the GL(n,Z)-module structure of Ker(πk), we use
the Johnson homomorphism µk.

4.2. The image of µk|Ker(πk).

Here we study the image of the Johnson homomorphism

µk : Qk(IAn)→ H∗ ⊗Z Ln(k + 1) ⊂ H∗ ⊗Z Q
k+1(Fn)

restricted to the kernel of πk for a sufficiently large n. We remark that H∗⊗ZLn(k+1) =
H∗ ⊗Z αk+1(Ln(k + 1)) is generated by elements

x∗i ⊗ ([xi1 , . . . , xik+1
]− 1), 1 ≤ i, ij ≤ n

as a Z-module. First we consider the case where k ≥ 3.

Proposition 4.2. For any k ≥ 3 and n ≥ k + 2, the homomorphism µk|Ker(πk) :
Ker(πk)→ H∗ ⊗Z Ln(k + 1) is surjective.

Proof. For any x∗i ⊗ ([xi1 , . . . , xik+1
]−1), since n ≥ k+ 2, there exists some 1 ≤ j ≤ n

such that j 6= i1, . . . , ik+1.

Case 1. The case where ik+1 6= i. Set

a :=

{
(Kijik+1

− 1)(Kjik − 1) · · · (Kji3 − 1)(Kji1i2 − 1), if j 6= i,

(Kjik+1
− 1)(Kjik − 1) · · · (Kji3 − 1)(Kji1i2 − 1), if j = i.
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Then we have µk(a) = x∗i ⊗ ([xi1 , . . . , xik+1
]− 1). On the other hand, if we set

b :=

{
(Kji1i2 − 1)(Kji3 − 1) · · · (Kjik − 1)(Kijik+1

− 1), if j 6= i,

(Kji1i2 − 1)(Kji3 − 1) · · · (Kjik − 1)(Kjik+1
− 1), if j = i,

then µk(b) = 0. Hence we obtain µk(a−b) = x∗i⊗([xi1 , . . . , xik+1
]−1) for a−b ∈ Ker(πk).

Case 2. The case where ik+1 = i. Set

a′ := (K−1
ij − 1)(Kjik − 1) · · · (Kji3 − 1)(Kji1i2 − 1).

Then µk(a
′) = x∗i ⊗ ([xi1 , . . . , xik+1

]− 1). On the other hand, if we set

b′ := (Kji1i2 − 1)(Kji3 − 1) · · · (Kjik − 1)(K−1
ij − 1),

µk(b
′) = 0. Hence we obtain µk(a

′− b′) = x∗i ⊗ ([xi1 , . . . , xik+1
]−1) for a′− b′ ∈ Ker(πk).

This completes the proof of Proposition 4.2. �
We remark that it seems to difficult to show above for 2 ≤ n ≤ k + 2 since we can

not take 1 ≤ j ≤ n such that j 6= i1, . . . , ik+1 in general.

As a corollary to Proposition 4.2, we see the surjectivity of µk of Z[IA(G)] for the
case where G is a certain quotient group of Fn. Let C be a characteristic subgroup of Fn
such that C ⊂ Γn(2), and set G := Fn/C. Then we have a natural isomorphism Gab ∼=
H. The natural projection φ : Fn → G induces homomorphisms Qk(Fn) → Qk(G),
also denoted by φ. Since C is characteristic, φ : Fn → G induces a homomorphism
φ̄ : AutFn → Aut(G). Clearly, φ̄(IAn) ⊂ IA(G). Furthermore, φ̄ naturally induces
homomorphisms Qk(IAn)→ Qk(IA(G)) which is also denoted by φ̄.

Corollary 4.3. With the notation above, for any k ≥ 3 and n ≥ k + 2, the homomor-
phism µk : Ker(πk,IA(G))→ H∗ ⊗Z αk+1(LG(k + 1)) is surjective.

Proof. It is clear from a commutative diagram

Ker(πk,IAn)
µk−−−→ H∗ ⊗Z αk+1(Ln(k + 1))

φ̄

y
yid⊗φ

Ker(πk,IA(G))
µk−−−→ H∗ ⊗Z αk+1(LG(k + 1))

where the first row and id⊗ φ are surjective. �
For example, if G is a free metabelian group G = Fn/[Γn(2),Γn(2)], then the Johnson

homomorphism µk : Ker(πk,IA(G))→ H∗ ⊗Z αk+1(LG(k + 1)) is surjective for any k ≥ 3
and n ≥ k + 2. In Section 5, we show that we can improve the condition k ≥ 3 and
n ≥ k + 2 above for G = Fn/[Γn(2),Γn(2)].

By Proposition 4.2 and Corollary 4.3, we have

Theorem 4.4. Let C and G be as above. For k ≥ 3 and n ≥ k+ 2, an Aut(G)/IA(G)-
equivariant homomorphism

µk ⊕ πk : Qk(IA(G))→ (H∗ ⊗Z αk+1,G(LG(k + 1)))
⊕

Qk(IA(G)ab)

defined by σ 7→ (µk(σ), πk(σ)) is surjective.
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In particular, for C = {1}, and hence G = Fn, we have a GL(n,Z)-equivariant
surjective homomorphism

µk ⊕ πk : Qk(IAn)→ (H∗ ⊗Z Ln(k + 1))
⊕

Sk(IAab
n )

for k ≥ 3 and n ≥ k + 2.

Finally, we consider the case where k = 2. Observing a split exact sequence (1), we
see that Ker(π2) = α2,IA(G)(LIA(G)(2)). Hence, from the compatibility (2), we see that
Im(µ2|Ker(π2)) = α∗3,Fn(Im(τ ′2)). In [22], we showed that for any n ≥ 2, Im(τ ′2), which is
equal to Im(τ2), satisfies an exact sequence

0→ Im(τ ′2)
τ ′2−→ H∗⊗ZLn(3)→ S2H → 0

of GL(n,Z)-modules. Hence we see that

Proposition 4.5. For n ≥ 2, Im(µ2|Ker(π2)) is a GL(n,Z)-equivariant proper submodule
of H∗⊗Zα3(Ln(3)), which rank is given by

1

6
n(n+ 1)(2n2 − 2n− 3).

Here we remark that µ2 is surjective.

Lemma 4.6. For any n ≥ 2, µ2 : Q2(IAn)→ H∗ ⊗Z Ln(3) is surjective.

Proof. Take an element x∗i ⊗ ([xi1 , xi2 , xi3 ]− 1). We may assume i1 6= i2. If ij 6= i for
1 ≤ j ≤ 3, we see that

µ2((Kii3 − 1)(Kii1i2 − 1)) = x∗i ⊗ ([xi1 , xi2 , xi3 ]− 1).

If i3 = i and i1, i2 6= i, then

µ2((K−1
ii1
− 1)(Ki1i2 − 1)) = x∗i ⊗ ([xi1 , xi2 , xi]− 1).

If i1 = i and i2, i3 6= i, then

µ2((Kii3 − 1)(Kii2 − 1)) = x∗i ⊗ ([xi, xi2 , xi3 ]− 1).

If i2 = i and i1, i3 6= i, then

µ2((Kii3 − 1)(K−1
ii1
− 1)) = x∗i ⊗ ([xi1 , xi, xi3 ]− 1).

If i1 = i3 = i, then

µ2((K−1
ii2
− 1)(K−1

i2i
− 1)) = x∗i ⊗ ([xi, xi2 , xi]− 1).

If i2 = i3 = i, then

µ2((K−1
ii1
− 1)(K−1

i1i
− 1)) = x∗i ⊗ ([xi1 , xi, xi]− 1).

Hence the generators of H∗ ⊗Z Ln(3) are contained in the image of µ2. �

5. Free metabelian case

In this section, we mainly consider the case where G = FM
n := Fn/[Γn(2),Γn(2)]. For

simplicity, we often omit the capital F from the subscript FM
n if there is no confusion.

For example, we write LMn , LMn (k), IAM
n , . . . for LFMn , LFMn (k), IA(FM

n ), . . . respectively.

Here, we study the structure of graded quotients Qk(IAM
n ) as a GL(n,Z)-module.
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5.1. Preliminary results for G = FM
n .

In this subsection, we recall some properties of the IA-automorphism group IAM
n and

the graded Lie algebras LMn .

To begin with, we have (FM
n )ab = H, and hence Aut (FM

n )ab = Aut(H) = GL(n,Z).
Since the surjective map ρFn : AutFn → GL(n,Z) factors through AutFM

n , a map
ρFMn : AutFM

n → GL(n,Z) is also surjective. Hence we can identify AutFM
n /IA(FM

n )
with GL(n,Z).

Let νn : AutFn → AutFM
n be the natural homomorphism induced from the action of

AutFn on FM
n . Restricting νn to IAn, we obtain a homomorphism νn|IAn : IAn → IAM

n .
Bachmuth and Mochizuki [4] showed that νn|IAn is surjective for n ≥ 4. They also
showed that in [3] ν3|IA3 is not surjective and IAM

3 is not finitely generated. Hence IAM
n

is finitely generated for n ≥ 4 by the (coset classes of) Magnus generators Kij and Kijl.
We remark that since Ker(νn|IAn) is contained in An(3), we have isomorphisms

(IAM
n )ab ∼= IAab

n
∼= H∗ ⊗Z Λ2H

as a GL(n,Z)-module.

The associated Lie algebra LMn = ⊕k≥1LMn (k) is called the free metabelian Lie algebra
generated by H or the Chen Lie algebra. It is also classically known due to Chen [5]
that each LMn (k) is a GL(n,Z)-equivariant free abelian group of rank

rankZ(LMn (k)) := (k − 1)

(
n+ k − 2

k

)
.

We remark that Ln(k) = LMn (k) for 1 ≤ k ≤ 3.

By the same argument as that in Subsection 4.1, for each k ≥ 2, we can de-
tect Sk((IAM

n )ab) in Qk(IAM
n ) by the GL(n,Z)-equivariant surjective homomorphism

πMk : Qk(IAM
n ) → Qk((IAM

n )ab) induced from the abelianization of IAM
n . In order to

investigate the GL(n,Z)-module structure of Ker(πMk ), we use the Johnson homomor-
phism µk.

5.2. The image of µk|Ker(πMk ).

Here we study the image of the Johnson homomorphism

µk : Qk(IAM
n )→ H∗ ⊗Z αk+1(LMn (k + 1))

restricted to the kernel of πMk for n ≥ 4. First, in order to get a reasonable generators
of LMn (k + 1), we consider some lemmas. Let Sl be the symmetric group of degree l.
Then we have

Lemma 5.1. Let l ≥ 2 and n ≥ 2. For any element [xi1 , xi2 , xj1 , . . . , xjl ] ∈ LMn (l + 2)
and any λ ∈ Sl,

[xi1 , xi2 , xj1 , . . . , xjl ] = [xi1 , xi2 , xjλ(1)
. . . , xjλ(l)

].
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Proof. Since Sl is generated by transpositions (m m+1) for 1 ≤ m ≤ l−1, it suffices
to prove the lemma for each λ = (m m+ 1). Now we have

[[[xi1 , xi2 , xj1 , . . . , xjm−1 ], xjm ], xjm+1 ]]

= −[[xjm , xjm+1 ], [xi1 , xi2 , xj1 , . . . , xjm−1 ]]

− [[xjm+1 , [xi1 , xi2 , xj1 , . . . , xjm−1 ]], xjm ],

= [[[xi1 , xi2 , xj1 , . . . , xjm−1 ], xjm+1 ], xjm ]

in LMn (m+ 3) by the Jacobi’s identity. Hence,

[xi1 , xi2 , xj1 , . . . , xjl ] = [xi1 , xi2 , xj1 , . . . , xjm−1 , xjm+1 , xjm , . . . , xjl ],

= [xi1 , xi2 , xjλ(1)
. . . , xjλ(l)

].

in LMn (l + 2). �
Similarly to H∗⊗Zαk+1(Ln(k+1)), the Z-module H∗⊗Zαk+1(LMn (k+1)) is generated

by elements
x∗i ⊗ ([xi1 , . . . , xik+1

]− 1), 1 ≤ i, ij ≤ n.

On the other hand, using Lemma 5.1, elements [xi1 , xi2 , . . . , xik+1
] ∈ LMn (k + 1) is

rewritten as
[xi1 , xi2 , xi3 , . . . , xil−1

, xi, xi, . . . , xi]

in LMn (k + 1) for some l, 3 ≤ l ≤ k + 2 such that i3, i4, . . . , il−1 6= i. Hence H∗ ⊗Z

αk+1(LMn (k + 1)) is generated by elements

x∗i ⊗ ([xi1 , xi2 , xi3 , . . . , xil−1
, xi, xi, . . . , xi]− 1)

for some l, 3 ≤ l ≤ k + 2 such that i3, . . . , il−1 6= i. Furthermore, without loss of
generality, we may assume i2 6= i in the generators above.

Proposition 5.2. For any k ≥ 2 and n ≥ 4, the homomorphism µk|Ker(πMk ) : Ker(πMk )→
H∗ ⊗Z αk+1(LMn (k + 1)) is surjective.

Proof. Take a generator x∗i ⊗ ([xi1 , xi2 , xi3 , . . . , xil−1
, xi, xi, . . . , xi] − 1) of H∗ ⊗Z

αk+1(LMn (k + 1)) for some l, 3 ≤ l ≤ k + 2 such that i2, . . . , il−1 6= i as mentioned
above. Since n ≥ 4, there exists some 1 ≤ j ≤ n such that j 6= i, i1, i2. First, consider
an element

a := (K−1
ij − 1)(Kji − 1) · · · (Kji − 1) ∈ ∆k−l+2(IAM

n )

where (Kji − 1) appears k − l + 1 times in the product. Then we see

µk−l+3(a) = x∗i ⊗ ([xj, xi, . . . , xi]− 1)

where xi appears k − l + 2 times among the component.

Next, set

b :=

{
Kjiil−1

− 1 if j 6= il−1,

K−1
ji − 1 if j = il−1,

c := (Kiil−2
− 1)(Kiil−3

− 1) · · · (Kii3 − 1) ∈ ∆l−4(IAM
n )

and

d :=

{
Kii1i2 − 1 if i 6= i1,

Kii2 − 1 if i = i1.
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Then we have

µk(abcd) = x∗i ⊗ ([xi1 , xi2 , xi3 , . . . , xil−1
, xi, xi, . . . , xi]− 1).

On the other hand, µk(dbac) = 0. Hence we have

µk(abcd− dbac) = x∗i ⊗ ([xi1 , xi2 , xi3 , . . . , xil−1
, xi, xi, . . . , xi]− 1).

Therefore since abcd− dbac ∈ Ker(πMk ), we conclude that µk|Ker(πMk ) is surjective. This
completes the proof of Proposition 5.2. �

Then we have

Theorem 5.3. For k ≥ 2 and n ≥ 4, a GL(n,Z)-equivariant homomorphism

µk ⊕ πk : Qk(IAM
n )→ (H∗ ⊗Z αk+1(LMn (k + 1)))

⊕
Sk((IAM

n )ab)

defined by σ 7→ (µk(σ), πk(σ)) is surjective.
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