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Introduction

Let K be a number field, or a function field of a curve over a base field k. We fix an
algebraic closure K of K. Let A be an abelian variety over K and let L be an ample line
bundle on A, and assume it is even, i.e., [−1]∗L = L. Then the canonical height function

ĥL associated with L, also called the Néron-Tate height, is a semi-positive definite quadratic
form on A

(
K

)
. It is well-known that ĥL(x) = 0 if x is a torsion point.

Let X be a closed subvariety of A. We put

X(ϵ; L) :=
{

x ∈ X
(
K

) ∣∣∣ĥL(x) ≤ ϵ
}

for a positive real number ϵ > 0. Then the Bogomolov conjecture for abelian varieties insists
that there should be ϵ > 0 such that X(ϵ; L) is not Zariski dense in X, unless X is a kind of
“exceptional” closed subvarieties, such as torsion subvarieties for example.

In the case where K is a number field, namely, in the arithmetic case, this conjecture was
solved more than ten years ago, known as a theorem of Zhang:

Theorem 0.1 (Corollary 3 of [21], arithmetic version of Bogomolov conjecture for abelian
varieties). Let K be a number field. If X is not a torsion subvariety, then there is ϵ > 0 such
that X(ϵ; L) is not Zariski dense in X.

The Bogomolov conjecture is originally a statement concerning the jacobian of a curve
and an embedding of the curve, that is, A is a jacobian and X is an embedded curve. This
is called the Bogomolov conjecture for curves, which is proved by Ullmo in [17] in case that
K is a number field at the same time when Zhang proved Theorem 0.1. The ideas of Ullmo
and Zhang are same — based on the equidistribution theory, which will be recalled in this
introduction.

When K is a finitely generated field over Q, a kind of arithmetic height functions can be
defined, after a choice of polarizations of K, due to Moriwaki [16]. It is still an arithmetic
setting namely, and the Bogomolov conjecture for abelian varieties with respect to the height
associated with a big polarization has been proved by Moriwaki himself. The classical
geometric height is also a kind of Moriwaki’s arithmetic height, but it does not arise from
a big polarization — rather a degenerate one. Hence we cannot say anything about the
geometric version of the conjecture with Moriwaki’s theory.
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How about the geometric case, namely the case where K is a function field over an
algebraically closed field k and the height is the classical geometric height? In this case,
we cannot expect the same statement as Theorem 0.1 because a subvariety defined over
the constant field can have dense small points. Accordingly, we have to reformulate the
conjecture, or have to consider it in a restricted situation.

The Bogomolov conjecture for curves is one of the problems studied for a long time. In
characteristic 0, Cinkir proved this conjecture in [7] recently. In positive characteristic, the
conjecture for curves is still open, but there are some partial answers such as in [15] by
Moriwaki and in [18, 19] by the author. In this case, the exceptional X’s are the isotrivial
curves. Another important result is the one due to Gubler. He proved in [9] the following
theorem:

Theorem 0.2 (Theorem 1.1 of [9]). Assume that there is a place v at which the abelian
variety A is totally degenerate. Then X(ϵ; L) is not Zariski dense in X for some ϵ > 0 unless
X is a torsion subvariety.

The exceptional X’s are the torsion subvarieties in this theorem as in the arithmetic case,
because there do not appear constant subvarieties in the totally degenerate case.

There are two things to do in this paper. One is to give the precise statement of our
geometric Bogomolov conjecture for abelian varieties, which is a reformulation of Zhang’s
theorem after consideration of subvarieties defined over k. The other is to give partial answers
to it for abelian varieties with some kind of degeneration.

We would like to give the statement of our conjecture now. Let GX be the stabilizer of
X of a closed subvariety of an abelian variety A, and put B := A/GX and Y := X/GX . We
call X a special subvariety of A if Y is the image of a closed subvariety of the K/k-trace of
B defined over k, up to the translation by a torsion point of B (cf. § 2.2). Note that if there
is a place v at which A is totally degenerate, then the notion of special subvarieties coincides
with that of torsion subvarieties since the K/k-trace is trivial. In §1, we will see that the
special subvariety has dense small points (cf. Corollary 2.8). Our geometric Bogomolov
conjecture insists that the converse should hold true:

Conjecture 0.3 (cf. Conjecture 2.9 and Remark 5.4). Let K be a function field. Let all A,
L and X be as above. Then there exists ϵ > 0 such that X(ϵ; L) is not Zariski dense in X
unless X is a special subvariety.

For an irreducible closed subvariety X ⊂ A and a place v of K, we can define an integer
b(Xv), which we need in proposing our main result. Let us give rough description of it
although we refer to § 4.3 for the precise definition in terms of Raynaud extension. For
simplicity, we assume that A and X are defined over K and v is a place K. Further assume
that A has a model A over the ring of v-integers such that the reduction Ã is a semi-abelian
variety. Then we have a surjective homomorphism q̃′ from Ã to an abelian variety B over k
such that Ker q̃′ is an algebraic torus. Let X be the closure of X in A. Then the reduction
X̃ is a closed subset of Ã and our b(Xv) coincides with dim q̃′(X̃ ).

We can see that if there is a place v with dim(X/GX) > b((X/GX)v), then X is not a
special subvariety (cf. Proposition 5.1). Hence if our conjecture holds true, then such X
should not have dense small points. In fact, we will show the following result, which is our
main theorem of this paper:
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Theorem 0.4 (cf. Theorem 5.2 and Remark 5.4). Assume that there exists a place v such
that dim(X/GX) > b((X/GX)v). Then X(ϵ; L) is not Zariski dense for some ϵ > 0.

This theorem roughly says that a non-special subvariety of “relatively large” dimension in
some sense cannot have dense small points. By virtue of Theorem 0.4 together with Cinkir’s
theorem, we can see that the geometric Bogomolov conjecture almost holds for an abelian
variety A having a place v with b(Av) = 1 in characteristic 0. (cf. Theorem 5.3). Note that
the above theorem itself holds true in the case that K is a higher dimensional function field
as well as Theorem 0.2 (cf. Remark 5.4).

In the rest of this introduction, we would like to describe the idea of our proof. Before
that, let us recall the proof of Theorem 0.1 and that of Theorem 0.2, which gives us a basic
strategy.

First we recall the admissible metric. Let A be an abelian variety over C. Let L be an
even ample line bundle on X. It is well known that there is a canonical hermitian metric
hcan on L, called the canonical metric, such that [n]∗c1(L, hcan) = n2c1(L, hcan) and that
the curvature form c1(L, hcan) is smooth and positive. For a closed subvariety X ⊂ A of
dimension d, put

µX,L :=
1

degL(X)
c1(L, hcan)d.

It has the total volume 1 and is smooth and positive on X.
Now let K be a number field. We recall what the equidistribution theorem says. Let X

be a closed subvariety of A. Let (xl)l∈N be a generic sequence of small points. Let σ be an
archimedean place, Xσ the complex analytic space of X over σ, and let Lσ be the restriction
of L to Xσ. Roughly speaking, the equidistribution theorem says that the Galois orbit of
(xl)l, approximatively as l → ∞, are equidistributed in Xσ with respect to µXσ,Lσ .

Let us recall the proof in the arithmetic case due to Ullmo and Zhang. It is done by
contradiction. Suppose we have a counterexample X for the Bogomolov conjecture. Then
taking the quotient if necessary, we can easily reduce ourselves to the case where the stabilizer
is trivial and d := dim X > 0. Consider, for N ∈ N, a morphism

α : XN → AN−1, α(x1, . . . , xN) = (x2 − x1, . . . , xN − xN−1).

For large N , we can see that α gives a birational morphism XN → α(XN). We fix such
an N , writing X ′ := XN and Y := α(X ′) for simplicity. Then it induces an isomorphism
between some Zariski-dense open subsets U ⊂ X ′ and V ⊂ Y . Let L′ and M be even ample
line bundles on X ′ and Y respectively. Then we can see that X ′ is again a counterexample
for the Bogomolov conjecture with respect to the line bundle L′. That implies that we can
find a generic sequence of small points (xl)l∈N, and we may assume they sit in U . Moreover,
we can see that the image (α(xl))l∈N is also a generic sequence of small points. By virtue
of the equidistribution theorem, (xl)l∈N and (α(xl))l∈N are equidistributed in X ′ and Y with
respect to µX′

σ ,L′
σ

and µYσ,Mσ respectively, for an archimedean place σ. Furthermore since α
gives an isomorphism between U and V , we can conclude

µX′
σ,L′

σ
|U = α∗(µYσ,Mσ |V ).

Since both µX′
σ ,L′

σ
and α∗(µYσ ,Mσ) are smooth forms, we have

µX′
σ,L′

σ
= α∗(µYσ ,Mσ)
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on Xσ. The right-hand side however cannot be positive over the diagonal of X ′ = XN . It is
a contradiction since the left-hand side is positive.

How about the case of Gubler? In contrast to the arithmetic case, there are no archimedean
places in the geometric case. That fact had prevented us from enjoying an analogous proof
of the arithmetic case. To overcome that difficulty, Gubler used non-archimedean analytic
spaces over a non-archimedean place and their tropicalizations.

Let X ⊂ A be a closed subvariety of dimension d. To a place v of K, it is well-known that
the Berkovich spaces Xv ⊂ Av can be associated. Gubler defined the canonical Chambert-
Loir measure µXv ,Lv on Xv. Suppose here that Av is totally degenerate. Then Gubler defined

the tropicalization Xtrop
v , which is denoted by val(Xv) in his article, of Xv and showed that

it is a “d-dimensional polytope”. This plays the role of a counterpart of the complex space
over an archimedean place. Furthermore he investigated in detail the push-out µtrop

Xv ,Lv
to

the tropicalization of µXv ,Lv , describing it very concretely. In fact he showed that it is a
d-dimensional positive Lebesgue measure on the equi-d-dimesional polytope Xtrop

v .
Now the idea of Ullmo and Zhang can be applied to this situation. If there is a coun-

terexample to the Bogomolov conjecture, we can make the similar situation α : X ′ → Y to
that of the arithmetic case, where X ′ and Y are some closed subvarieties of abelian varieties.
Recall that X ′ is also a counterexample of dimension d′ > 0 and that it has a generic net of
small points. We should note also that α is a generically finite morphism and the image of
the diagonal by α is one point. Tropicalizing them, we have

αtrop : (X ′
v)

trop → Y trop
v ,

which is a morphism of polytopes. Since the subset corresponding to the diagonal contracts
to a point, there is a d′-dimensional face E such that F := αtrop(E) is a lower dimensional
face. Using the equidistribution theorem of himself to a generic net of small points, we can
obtain

αtrop
∗ (µtrop

Xv,L′
v
) = µtrop

Yv ,Mv

as well, where L′ and M respectively are even ample line bundles as before. It is impossible:
the left-hand side has a positive measure at a lower dimensional F , but the right one is the
d′-dimensional usual Lebesgue measure as mentioned. Thus a contradiction comes out.

Then how about the non-totally degenerate case? The basic strategy for the proof is
same—the equidistribution method. It is known that the canonical measure µXv ,L exists on
the Berkovich space Xv. Gubler defined in [11] the tropicalization Xtrop

v and studied the
push-out µtrop

Xv ,L of the canonical measure. He actually proved that Xtrop
v has the structure of

a simplicial set and that µtrop
Xv ,L can be described as

µtrop
Xv ,L =

N∑
i=1

riδ∆i
,(0.4.0)

where ∆i runs through faces and δ∆i
is a usual relative Lebesgue measure on the simplex

∆i. On the other hand, he also proved in [10] that the equidistribution theorem holds true
in this situation. Thus we seem to have everything we need for the Bogomolov conjecture,
but we do not in fact. Then what we need more?

When we obtain the contradiction by using the equidistribution theorem, it was impor-
tant that the canonical form, or the canonical measure, is a “regular” one. If the canonical
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form was not smooth or positive in the arithmetic case, a contradiction would not come
out. In Gubler’s case also, it was the key that the tropicalization of the canonical measure
is the Lebesgue measure on the equi-d′-dimensional polytope. In the general case however,
lower dimensional ∆i’s often appear in (0.4.0), and that is troublesome. In fact we can
make the same situation as before, that is, we have a morphism αtrop : (X ′

v)
trop → Y trop

v

and αtrop
∗

(
µtrop

X′
v ,L′

v

)
= µtrop

Yv,Mv
if we have a counterexample, but it is not sufficient to reach a

contradiction because µtrop
Yv ,Mv

may contain a relative Lebesgue measure with a lower dimen-
sional support. That problem requires us more detailed analysis on the canonical measure.
We will show in the proof that µtrop

Yv ,Mv
does not have a component with lower dimensional

support than we expect.
This article is organized as follows. We will give some remarks on the trace of an abelian

variety in § 1. Those who are familiar with the trace will not have to read this section. In § 2,
we will formulate the geometric Bogomolov conjecture for abelian varieties. We will recall
in § 3 some results concerning our conjecture and will prove some immediate consequences.
We will describe in § 4 some basic properties on Berkovich spaces and their tropicalization
as far as we will need later. Our main results will be stated in § 5. In § 6, we will note some
properties on the canonical measures and will complete the proof of our main result. The
appendix is due to W. Gubler. In communicating with the author on the previous version
of this paper, he found a proof of the fact that the minimal dimension of the support of the
components of µtrop

Xv,L for ample L is exactly dim X − b(Xv). Although we do not need this
detailed information in the proof of our main theorem, it is quite interesting and will often
play an important role when you use the canonical measures.

Acknowledgments. The author would like to thank Prof. F. Kato, who gave lectures on
non-archimedean geometry to the author. The author also thanks Prof. W. Gubler for
giving a lot of valuable comments and suggestions, and for his appendix. This work has
been partially supported by KAKENHI(21740012).

Conventions and terminology. Throughout of this paper, let k be a fixed algebraically
closed field, and let K be the function field of a reduced irreducible smooth curve over k.
We fix an algebraic closure K.

Let K ′/k be a field extension. For a scheme X over k, we write XK′ := X ×Spec k Spec K ′.
If ϕ : X → Y is a morphism of schemes over k, we write ϕK′ : XK′ → YK′ for the base
extension to K ′.

When we say “height”, it means an absolute logarithmic height, for F = K with the
notation of [14, Chapter 3 §1].

For a finite extension K ′ of K, let MK′ denote the set of places of K ′. If K ′′ is a finite
extension of K ′, then there is a natural surjective map MK′′ → MK′ . We put MK :=
lim←−K′ MK′ , where the K ′ runs through all the finite extension of K in K, and call an element

of MK a place of K. A place can be naturally regarded as a valuation of height 1. For a
place v ∈ MK , let Kv be the completion of K with respect to v.
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1. Descent of the base field of abelian varieties

We let L/k be any field extension, keeping our assumption k = k. We will discuss in this
section when an abelian variety over L can be defined over k, and will give remark on the
trace of an abelian variety.

We begin with a lemma:

Lemma 1.1. Let A and B be abelian varieties over L and k respectively. If ϕ : BL → A is
an étale isogeny, then A and ϕ are defined over k: precisely, there exists a subgroup scheme
G of B over k such that Ker ϕ = G ⊗k L and hence A = (B/G)L.

Proof. Let N be the degree of ϕ. Let (BL)[N ] be the kernel of the N -times homomorphism.
Then Ker ϕ ⊂ (BL)[N ]red since Ker ϕ is reduced by our assumption. Taking account that
the field extension L/k is regular, we have

Ker ϕ ⊂ (BL)[N ]red = ((B[N ])L)red = ((B[N ])red)L ,

which tells us that Ker ϕ is defined over k, namely, there exists a subgroup scheme G of B
over k such that Ker ϕ = G ⊗k L.

We recall a quite fundamental theorem due to Chow here:

Theorem 1.2 (cf. II §1 Theorem 5 of [13]). Let A be an abelian variety over k and let B be
an abelian subvariety of AL. Then there exists an abelian subvariety B′ ⊂ A with B′

L = B.

We can now show the following slight generalization of Theorem 1.2:

Proposition 1.3. Let A be an abelian variety over k and let G be a reduced closed subgroup
of AL. Then there exists a closed subgroup G′ of A with (G′)L = G.

Proof. By Theorem 1.2, there exists an abelian subvariety G◦ ⊂ A such that G◦
L is the

identity component of G. Consider the natural homomorphism ϕ′ : (A/G◦)L → (AL)/G. It
is an étale isogeny since G is reduced, so by Lemma 1.1, there exist an abelian variety H
over k and a homomorphism ψ : A/G◦ → H such that ψL coincides with ϕ′. Now let G′ be
the kernel of the composition A → A/G◦ → H. Then we immediately find G′

L = G.

Let B be an abelian variety over k and let ϕ : BL → A be a smooth homomorphism
between abelian varieties over L. Then, as a corollary of Proposition 1.3, we can take an
abelian variety A′ over k and a homomorphism ϕ′ : B → A′ such that A = A′

L and ϕ′
L = ϕ.

In fact, there exists a reduced closed subgroup G′ of B with Ker ϕ = G′
L by Proposition 1.3.

Then A′ := B/G′ suffices our requirement.
Next we will give remark on the Chow trace. Let F/L be a field extension. Let A be an

abelian variety over L. Recall that a pair
(
AF/k, Tr

F/k
A

)
of an abelian variety AF/k over k

and a homomorphism Tr
F/k
A : (AF/k)F → A ×SpecL

Spec F over F is called a F/k-trace, or
Chow trace, if it satisfies the following universal property: for any abelian variety B over k
and for any homomorphism ϕ : BF → A×SpecL

Spec F , there exists a unique homomorphism

ϕ′ : B → AF/k over k such that Tr
F/k
A ◦ϕ′

F = ϕ (cf. [13] and [14]).

Lemma 1.4. Tr
F/k
A is finite and purely inseparable.
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Proof. By virtue of Proposition 1.3, we can take a closed subgroup G′ ⊂ AF/k such that

G′
F =

(
Ker Tr

F/k
A

)
red

. Let π : AF/k → AF/k/G′ =: B be the quotient by G′. Then we have

naturally a homomorphism ϕ : BF → A×SpecL
Spec F . By the universal property, we obtain

the factorization ϕ′ : B → AF/k over k, and the universality also says that ϕ′ ◦ π = idAF/k .

That concludes π is an isomorphism and hence
(
Ker Tr

F/k
A

)
red

= 0, namely, Tr
F/k
A is finite

and purely inseparable.

The uniqueness of the F/k-trace is immediate from the definition. We can find in [13] a
proof for the existence, but we should note one thing: in the definition of F/k-trace of [13,

VIII §8], Lang assumed that Tr
F/k
A is finite. This assumption is not necessary since it follows

from the definition automatically by virtue of Lemma 1.4 (cf. [14, the last line in p.138]).
Finally, we give remark on the homomorphism between the F/k-traces in char(k) = 0,

although it will not be needed in the sequel. Let A and B be abelian varieties over L and let
ϕ : A → B be a homomorphism. Then ϕ induces a unique homomorphism Tr(ϕ) : AF/k →
BF/k by the universal property.

Proposition 1.5 (char(k) = 0). Suppose that ϕ is surjective. Then Tr(ϕ) : AF/k → BF/k is
surjective.

Proof. Let us take an abelian subvariety A′ ⊂ A finite and surjective over B. Then we have
a composition of homomorphism (A′)F/k → AF/k → BF/k by the universality, and hence
we may assume that A is finite from the beginning, namely, ϕ is an isogeny. Let G be the
identity component of (

BF/k
)

F
×(B×Spec LSpec F ) (A ×Spec L Spec F ).

Then it is an abelian variety over F and we have a natural homomorphism ψ : G →
(
BF/k

)
F
.

It is also an isogeny, and its dual isogeny ψ̂ is an étale isogeny since char(k) = 0. By virtue
of Lemma 1.1, we can take an isogeny ψ′ : G′ → BF/k such that ψ′

F = ψ. Applying the
universality of the F/k-trace to the natural homomorphism G′

F = G → A ×Spec L Spec F ,
we see that ψ′ factors as

G′ −−−→ AF/k Tr(ϕ)−−−→ BF/k.
Consequently, the induced homomorphism Tr(ϕ) is surjective since so is ψ.

2. Geometric Bogomolov conjecture

2.1. Small points. Let A be an abelian variety over K. For an even ample line bundle L
on A, let us consider the canonical height function ĥL. It is known to be a semi-positive
quadratic form on A(K). Let X be a closed subvariety of A. For each ϵ > 0, we put

X(ϵ; L) :=
{

x ∈ X(K)
∣∣∣ĥL(x) ≤ ϵ

}
.

Lemma 2.1. Let A and X be as above. Let ϕ : A → B be a surjective homomorphism of
abelian varieties over K and put Y := ϕ(X). Let L and M be even ample line bundles on
A and B respectively. Then if X(ϵ; L) is Zariski-dense in X for any ϵ > 0, then Y (ϵ′; M) is
Zariski dense in Y for any ϵ′ > 0.
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Proof. Since L is ample, we can find a positive integer n such that L⊗n ⊗ϕ∗(M)−1 is ample.

Then we have nĥL ≥ ϕ∗ĥM , and hence

Y (ϵ; M) = ϕ
({

x ∈ X(K)
∣∣∣ĥM(ϕ(x)) ≤ ϵ

})
⊃ ϕ

({
x ∈ X(K)

∣∣∣nĥL(x) ≤ ϵ
})

= ϕ(X(ϵ/n; L)).

The right-hand side is Zariski dense in Y by our assumption, and thus we have our assertion.

Let L1 and L2 be even ample line bundles on A. Then X(ϵ; L1) is Zariski dense for any
ϵ > 0 if and only if so is X(ϵ′; L2) for any ϵ′ > 0, by virtue of the above lemma. Accordingly,
the following definition makes sense:

Definition 2.2. We say that X has dense small points if X(ϵ; L) is Zariski dense in X(K)
for any ϵ > 0 and for some, hence any, even ample line bundle L on A.

We end this subsection with the following two basic lemmas on small points, which will
be used later:

Lemma 2.3. Let ϕ : A → B be a homomorphism of abelian varieties over K. Let X ⊂ A
be a closed subvariety and put Y := ϕ(X). Suppose that ϕ is a finite morphism.

(1) X has dense small points if Y has dense small points.
(2) Suppose further that ϕ is surjective. Then X has dense small points if and only if Y

has dense small points.

Proof. Let M be an even ample line bundle on B. Then L := ϕ∗M is also even and ample
and we have ϕ(X(ϵ; L)) = Y (ϵ; M). Then if X(ϵ; L) is not Zariski dense for any ϵ > 0, then
neither is not Y (ϵ; M) since ϕ is finite. This proves (1).

The assertion (2) follows immediately from (1) and Lemma 2.1.

Lemma 2.4. Let A and B be abelian varieties over K and let X ⊂ A and Y ⊂ B be closed
subvarieties. If X and Y has dense small points, then the closed subvariety X × Y ⊂ A×B
has also dense small points.

Proof. Let p : A×B → B and q : A×B → B be the canonical projections. For even ample
line bundles L and M on A and B respectively, we write L £ M := p∗L ⊗ q∗M . It is even
ample and we have ĥLˆM = p∗ĥL + q∗ĥM . Accordingly we have

(X × Y )(2ϵ; L £ M) ⊃ X(ϵ; L) × Y (ϵ; M),

and hence we obtain our assertion.

2.2. Special subvarieties and the conjecture. First of all, we would like to define the

notion of special subvarieties. For an abelian variety A over K, let
(
AK/k, Tr

K/k
A

)
denote

the K/k-trace of A. We refer to [14, Chapter 6] or 1 for its definition. Since AK/k is defined

over k, we have the notion of k-points. We note AK/k(k) ⊂ AK/k
(
K

)
naturally.

Definition 2.5. Let A be an abelian variety over K.
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(1) Let X ⊂ A be an irreducible closed subvariety. Put B := A/GX and Y := X/GX ⊂
B, where GX is the stabilizer of X. We call X a special subvariety if there exist a
torsion point τ ∈ B(K)tors, and a closed subvariety Y ′ ⊂ BK/k over k such that

Y = Tr
K/k
B (Y ′

K) + τ.

(2) A point σ ∈ A(K) is called a special point of A if the closed subvariety {σ} is a
special subvariety. We denote by Asp the set of special points of A.

Let L be an even ample line bundle. Then we have

Asp = A(K)tors + Tr
K/k
A

(
AK/k(k)

)
=

{
x ∈ A(K)

∣∣∣ĥL(x) = 0
}

.(2.5.1)

In fact, the first equality is immediate from the definition. The second one follows from [14,
Theorem 4.5 and 5.4.2]. In particular, a special point is a point of height 0.

Lemma 2.6. Let ϕ : A → B be a surjective homomorphism of abelian varieties over K.
Then it induces a surjective homomorphism Asp → Bsp.

Proof. The inclusion ϕ
(
A

(
K

)
tors

)
⊂ B

(
K

)
tors

is obvious. Moreover, the homomorphism ϕ

induces a homomorphism TrK/k(ϕ) : AK/k → BK/k (cf. 1). Now it is clear that ϕ(Asp) ⊂ Bsp.
Let us show the other inclusion. We can take an abelian subvariety J ⊂ A such that ϕ|J

is a finite surjective homomorphism. Since a point x ∈ J
(
K

)
is of height 0 if and only if so

is ϕ(x). Therefore the induced map Jsp → Bsp is surjective by (2.5.1). Since Jsp ⊂ Asp, we
thus obtain our assertion.

Here is a remark. Suppose that ϕ is surjective. If char k = 0, we see that the induced

homomorphism TrK/k(ϕ) in the above proof is also surjective (cf. Proposition 1.5), but the
author does not know whether it holds in positive characteristic or not.

The following assertion says that the special subvarieties have dense small points:

Proposition 2.7. If X is a special subvariety of A, then X ∩ Asp is dense in X.

Proof. First let us consider the case where GX = 0. Since our assertion is independent of

the translation by a torsion point, we may assume τ = 0 and hence Tr
K/k
A (Y ′

K) = X for

some Y ′ ⊂ AK/k. Then our assertion is trivial since Tr
K/k
A (Y ′(k)) ⊂ Asp and Y ′(k) is dense

in Y ′
K .

Next let us consider the general case. Let ϕ : A → B := A/GX be the quotient, and
put Y := X/GX = ϕ(X). We have X = ϕ−1(Y ) since GX is the stabilizer of X. From the
surjectivity of ϕ, we see

ϕ
(
X

(
K

)
∩ Asp

)
= Y

(
K

)
∩ Bsp(2.7.2)

by Lemma 2.6. Since Y is a special subvariety of B and is stabilizer-free, we see that
Y

(
K

)
∩Bsp is dense in Y as shown above. By (2.7.2), we thus conclude that ϕ

(
X

(
K

)
∩ Asp

)
is dense in ϕ(X). On the other hand, take any x ∈ X

(
K

)
∩ Asp with y = ϕ(x) for each

y ∈ ϕ
(
X

(
K

)
∩ Asp

)
. Since ϕ−1(Y ) = X, we have

x + (GX)sp ⊂ ϕ−1(y) ∩ Asp.
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Since x + (GX)sp is dense in x + GX = ϕ−1(y), we find therefore ϕ−1(y) ∩ Asp is dense in
ϕ−1(y). That says that the set of special points in the fiber of ϕ|X : X → Y over y is also
dense in the fiber. Together with the fact that (2.7.2) is dense in Y , we can conclude that
X

(
K

)
∩ Asp is dense in X.

In particular, we have the following:

Corollary 2.8. A special subvariety has dense small points.

Now let us propose the statement of our geometric Bogomolov conjecture for abelian
varieties, which insists that the converse of Corollary 2.8 should hold true:

Conjecture 2.9 (Geometric Bogomolov conjecture for abelian varieties (cf. Remark 5.4)).
X should not have dense small points unless it is a special subvariety.

We end this section with the following characterization of the special subvarieties.

Proposition 2.10. Let X ⊂ A be a closed subvariety and let GX be the stabilizer of X. Put
B := A/GX and Y := X/GX . Then the following statements are equivalent to each other:

(a) X is a special subvariety of A.
(b) Y is a special subvariety of B.
(c) There exist an abelian variety C over k, a homomorphism ϕ : CK → B, a closed

subvariety Z ′ ⊂ C, and a special point σ ∈ Y such that Y = ϕ(Z ′
K) + σ.

(d) There exist a variety W ′ over k, a k-point w0 ∈ W ′(k), a special point σ ∈ Y (K)
and a surjective morphism ψ : W ′

K → Y such that ψ(w0) = σ.

Proof. The equivalence between the first and the second statements is trivial from the defi-
nition. The implication from (b) to (c) and that from (c) to (d) are also trivial. Let us show
that (d) implies (b).

Let W ′, w0, σ and ψ be as in (d). For a fixed y ∈ B(K), we define Ty : B → B by

Ty(x) = x + y. First note that we can write σ = Tr
K/k
B (t) + τ with some t ∈ BK/k(k)

and τ ∈ B(K)tors by (2.5.1). Then, by considering T−τ (Y ) and T−τ ◦ ψ instead of Y and

ψ respectively, we may assume that σ = Tr
K/k
B (t). Further, taking an alteration of W ′ if

necessary, we may and do assume that W ′ is nonsingular.
Let us consider the albanese morphism

α′
w0

: W ′ → Alb(W ′)

with respect to the base point w0. Then

αw0 := (α′
w0

)K : W ′
K → Alb(W ′)K = Alb(W ′

K)

is the albanese morphism of W ′
K with respect to w0. By applying the universal property of

αw0 to the morphism T−σ ◦ ψ, we obtain a homomorphism

ϕ : Alb(W ′
K) → B

with ϕ ◦αw0 = T−σ ◦ψ. Then by the universal property of the K/k-trace, ϕ factors through

the K/k-trace, that is, there is a homomorphism ϕ′ : Alb(W ′) → BK/k such that

Tr
K/k
B ◦(ϕ′

K) = ϕ.
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We now consider a closed subvariety Y ′ := ϕ′(α′
w0

(W ′)) + t of AK/k. Then we have

Tr
K/k
B (Y ′

K) = ϕ(αw0(W
′
K)) + Tr

K/k
B (t) = (T−σ ◦ ψ)(W ′

K) + σ = (Y − σ) + σ = Y

as required.

3. Known results on the conjecture

In this section, we recall some known results concerning the geometric Bogomolov conjec-
ture and give remarks on their consequences.

3.1. Totally degenerate case. There are few abelian varieties for which the geometric
Bogomolov conjecture is proved. The following beautiful theorem due to Gubler, which is a
restatement of Theorem 0.2, is the only case proved with full generality on X.

Theorem 3.1 (Theorem 1.1 of [9]). Let A be an abelian variety over K. The geometric
Bogomolov conjecture holds true for A if there is a place v at which A is totally degenerate.

3.2. 0-dimensional case. It is easy to obtain the result when dim X/GX = 0:

Lemma 3.2. Let A be an abelian variety over K and let X ⊂ A be a irreducible closed
subvariety such that dim X/GX = 0. If X is not a special subvariety, then it does not have
dense small points.

Proof. We can write X/GX = {σ}. If X has dense small points, then so does X/GX by
Lemma 2.1 and hence σ is a special point. That implies that X/GX and hence X are
special.

3.3. Jacobian case and its immediate consequence. Although we do not know other
abelian varieties for which Conjecture 2.9 holds true, we still have some partial answers in
the case where the subvariety X in consideration is a curve and the abelian variety is its
jacobian variety: Let C be a curve over K, and let JC be the Jacobian variety of C. For
each divisor on C of degree 1, let jD : C → JC be the embedding defined by jD(x) = D − x.
For each σ ∈ JC , we note jD(x) + σ = jD+σ(x). The following assertion is an immediate
consequence of the theorem of Zhang and that of Cinkir. We recall here that a curve C over
K is isotrivial if it is a base extension to K of a curve over k.

Proposition 3.3. Fix c0 ∈ C
(
K

)
. For each σ ∈ JC

(
K

)
, we put X±

c0,σ := [±1](jc0(C) + σ),
where [±1] is the ±1-multiplication on JC.

(1) Suppose that C is isotrivial. Let ψ : Z ′
K
∼= C be an isomorphism, where Z ′ is a curve

over k. We assume further that c0 ∈ ψ(Z ′(k)). Then X±
c0,σ has dense small points if

and only if σ is a special point.
(2) Assume char k = 0. If C is non-isotrivial, then X±

c0,σ does not have dense small
points.

Proof. It is enough to consider Xc0,σ := X+
c0,σ only. Taking a finite extension of K if necessary,

we may assume C is a curve defined over K with stable reduction at any place, and c0 ∈
C(K). Then the assertion (2) is immediate from [7, Theorem 2.12] and [20, Theorem 5.6].

To see the assertion (1), we first note that the admissible pairing (ωa, ωa) vanishes in this
case. By virtue of [20, Theorem 5.6], we find that Xc0,σ has dense small points if and only
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if the canonical height of the point corresponding to the divisor class (2g − 2)(c0 + σ) − ωC

in the jacobian vanishes. That is equivalent to σ being special in this case by (2.5.1). Thus
we obtain our assertion.

In the rest of this subsection, we will see what follows from Proposition 3.3. Let us prepare
a technical lemma:

Lemma 3.4. Let X be a closed subvariety of A, and let H ⊂ A be an abelian subvariety.
Suppose that there exists x0 with X−x0 ⊂ H and that X has dense small points. Then there
exists a special point σ of A such that X −σ ⊂ H. Moreover, X −σ has dense small points.

Proof. The last statement follows form [14, Theorem 4.5 and 5.4.2] since X has dense small
points. To complete the proof, we may assume H ( A. Let ϕ : A → A/H be the quotient.
Since X−x0 ⊂ H, we have ϕ(X) = ϕ(x0). Since X has dense small points, ϕ(x0) is a special
point by Lemma 2.1. By virtue of Lemma 2.6, there exists σ ∈ Asp with ϕ(σ) = ϕ(x0). Then
we have X − σ ⊂ H.

Now we can show the following assertion, which is a partial answer to the geometric
Bogomolov conjecture when the closed subvariety X is a curve:

Proposition 3.5 (char k = 0). Let X be an irreducible closed subvariety of A of dimension
1, and let ν : Y → X be the normalization. Let JY be the jacobian variety of Y . Suppose
that JY is simple. Then X does not have dense small points unless it is a special subvariety.

Proof. For a fixed y0 ∈ Y (K), we put x0 := ν(y0) and X0 := X − x0. Then 0 ∈ X0(K) and
we have naturally ν0 : Y → X0 with ν(y0) = 0, by composing the translation by −x0 to ν.
Then we can draw a commutative diagram

Y
jy0−−−→ JY

ν0

y yϕ

X0 −−−→ A,

in which X0 → A is the inclusion.
We require an additional condition on y0 in case that Y is an isotrivial curve: we can take

a variety Y ′ over k and an isomorphism ψ : Y ′
K
∼= Y , and our requirement is y0 ∈ ψ(Y ′(k)).

Under the setting above, we will show it by contradiction. Suppose that X is not a special
subvariety but it has dense small points. Let H be the image of the homomorphism ϕ. Then
by Lemma 3.4, there is σ ∈ Asp such that X1 := X − σ ⊂ H, and moreover X1 has dense
small points. We put z := σ − x0. Then we have X1 = X0 − z and z ∈ H. We take w ∈ JY

with ϕ(w) = z and consider Y1 := Y − w. Note ϕ(Y1) = X1. The homomorphism ϕ is finite
since JY is simple by our assumption. Therefore, we see that Y1 has dense small points by
Lemma 2.3.

Here we divide ourselves into two cases. The first one is the case where Y is non-isotrivial.
Then Y1 cannot have dense small points by Proposition 3.3 (2), hence the contradiction
immediately comes out.

Let us consider the other case, namely, the case where Y is isotrivial. Since Y1 has dense
small points and Y1 = jy0(Y ) − w, we see that w is a special point by Proposition 3.3
(1). That says that z = ϕ(w) is a special point, which implies X1 a special subvariety by
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Proposition 2.10. Accordingly X = X1 + σ is also a special subvariety by Proposition 2.10,
which contradicts our assumption. Thus we have proved our assertion.

4. Preliminary

We fix our conventions and terminology. When we write K, it is a field which is complete
with respect to a non-archimedean absolute value | · | : K× → R. Our Kv is a typical example
of K. We put

K◦ := {a ∈ K | |a| ≤ 1},
the ring of integers of K, and put

K◦◦ := {a ∈ K | |a| < 1},

the maximal ideal of the valuation ring K◦. Further we write K̃ := K◦/K◦◦. When we say
X is a formal scheme, it always means an admissible formal scheme over K◦, that is, X is
locally the Spf of an admissible algebra over K◦ (cf. [8, 11]). For a formal scheme X , we

write X̃ := X ×Spf K◦ Spec K̃.

4.1. Berkovich spaces. In the theory of rigid analytic geometry, there are several kind
of “visualization” or in other words, some kind of spaces that realize the theory of rigid
analytic geometry. In this article, we adopt the spaces introduced by Berkovich which are
called Berkovich spaces. Here let us recall some properties of Berkovich spaces associated
to algebraic varieties or formal schemes, as far as we use later. For details, we refer to his
original papers [1, 2, 3, 4], or to Gubler’s expositions in his papers [8, 11], which would be
good reviews to that theory.

First recall that we can associate a Berkovich space to an algebraic variety. We denote
by Xan the Berkovich space associate to an algebraic variety X over K. Note that we have
naturally X(K) ⊂ Xan.

Next let X be a formal scheme over K◦. Then we can also associate a Berkovich space
X an, and we have X (K◦) ⊂ X an. There is a reduction map redX : X an → X̃ . Let Z

an irreducible component of X̃ with the generic point ξZ . Then there is a unique point
ηZ ∈ X an with redX (ηZ) = ξZ . Thus we can naturally regard the generic point of each
irreducible component of the special fiber as a point of the associated Berkovich spaces.

Let us compare the Berkovich space associated to an algebraic variety and that done to
a formal scheme. Let X be an algebraic scheme over K. Let X be a model of X, that
is, X is a scheme flat and of finite type over K◦ with the generic fiber X. Let X̂ be the
completion with respect to a nontrivial principal open ideal of K◦. Then it is an admissible
formal scheme and X̂ an is an analytic subdomain of Xan. Moreover if X is proper over K◦,
then X̂ an = Xan.

Finally, let X be a proper algebraic variety over K and let Y be its closed subvariety.
We can take a formal scheme X such that X an = Xan. Then there is a unique formal
subscheme Y ⊂ X with Y an = Y an. We call this Y the closure of Y in X .

Let X be an algebraic scheme over K, and let v be a place of K. Then we have a Berkovich
space associated to X ×K Spec Kv. We denote it by Xv. It is a typical Berkovich space that
we will mainly deal with in the sequel.
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4.2. Raynaud extension, tropicalization and Mumford models. For simplicity, we
assume further that K is algebraically closed. We recall here the Raynaud extension, the
tropicalization, and the Mumford models, as far as need in the sequel. See [5, §1] and [11,
§4] for details.

Let A be an abelian variety over K. According to [5, Theorem 1.1], there exists a unique
subgroup A◦ ⊂ Aan, that is, a unique analytic subdomain with the subgroup space structure,
such that there is a formal group scheme A ◦ with the following properties:

• (A ◦)an ∼= A◦.
• There is a short exact sequence

1 −−−→ T ◦ −−−→ A ◦ −−−→ B −−−→ 0,

where T ◦ is a formal torus and B is a formal abelian variety.

Consider the associated exact sequence of rigid analytic ones, that is, an exact sequence

1 −−−→ T ◦ −−−→ A◦ q◦−−−→ B −−−→ 0

of analytic groups, where B := Ban and T ◦ := (T ◦)an. Naturally T ◦ is a quasi-compact
open subgroup of the rigid torus T , and hence we can obtain the push-out of the above
extension:

1 −−−→ T −−−→ E
qan

−−−→ B −−−→ 0.(4.0.3)

Note that there is a natural inclusion A◦ → E. Now [5, Theorem 1.2] says that the homomor-
phism T ◦ ↪→ Aan extends uniquely to a homomorphism T → Aan and hence to pan : E → Aan.
This pan is called the Raynaud extension of A. It is known that pan is a surjective homomor-
phism and moreover M := Ker pan is a lattice. Thus Aan can be described as a quotient of
E by a lattice M . The dimension of T is called the torus rank of A.

We recall the tropicalization next. Taking into account that the transition function of the
T -torsor (4.0.3) can be valued in T ◦, we can define a continuous map

val : E → Rn,

as in [5]. In fact, we can take an analytic subdomain V ⊂ B and a trivialization

(qan)−1(V ) ∼= V × T(4.0.4)

such that its restriction induces a trivialization

(q◦)−1(V ) ∼= V × T ◦.

Let us consider the composition rV : (qan)−1(V ) ∼= V × T → T of (4.0.4) and the second
projection. We see that if x ∈ (qan)−1(V ), then val(x) = (v(rV (x)1), . . . , v(rV (x)n)), where
rV (x)j is the j-th coordinate of rV (x). Moreover, the lattice M is mapped by val to a lattice
Λ ⊂ Rn and we have a diagram

E
val−−−→ Rny y

Aan val−−−→ Rn/Λ

(4.0.5)



GEOMETRIC BOGOMOLOV CONJECTURE 15

that commutes. If X is a closed subvariety of A, then the image val(Xan) is a closed subset
of Rn/Λ. We put

Xtrop := val(Xan),

calling it the tropicalization of X. It is well-known that Xtrop has the structure of a polytopal
set (cf. [11, Theorem 1.1]).

The following assertion will be used in the proof of our main result:

Lemma 4.1. Let A1 and A2 be abelian varieties over K and let X1 ⊂ A1 and X2 ⊂ A2 be
closed subvarieties. Then we have naturally

(X1 × X2)
trop = X1

trop × X2
trop.

Proof. From the definition of the tropicalization, we immediately see

A1
trop × A2

trop = Rn1/Λ1 × Rn2/Λ2 = Rn1+n2/Λ1 × Λ2 = (A1 × A2)
trop,

where ni is the torus rank of Ai and Λi is the lattice as in (4.0.5) for Ai. Both (X1 ×X2)
trop

and X1
trop × X2

trop are subsets of the above real torus. On the other hand, we have the
natural surjective map (X1 × X2)

trop → X1
trop × X2

trop associated to the natural surjective
continuous map

|(X1 × X2)
an| → |(X1)

an| × |(X2)
an| ,

where |Xan| stands for the underlying topological space of a Berkovich space Xan. Thus we
conclude (X1 × X2)

trop = X1
trop × X2

trop.

Let C be a Λ-periodic polytopal decomposition of Rn (cf. [8, §6.1]). Taking the quotient
by Λ, we have a polytopal decomposition of Rn/Λ. Gubler constructed the Mumford model
p = pC : E → A associated to C . We also call A the Mumford model of A. We refer to
[11, §4] for details, and recall some properties that will be needed:

• The surjection qan : E → B extends to q : E → B uniquely. If T denote the closure
of T in E , then

q : E → B(4.1.6)

is a fiber bundle with the fiber T .
• The lattice M acts freely on E and E /M = A . In particular p is locally isomorphic.
• If C ′ is a polytopal decomposition of Rn finer than C , and if E ′ → A ′ is the Mumford

model associated to C ′, then there is a natural morphism E ′ → E and A ′ → A .

4.3. The dimension of the abelian part of a closed subvariety. In this subsection,
let A be an abelian variety over K and let X ⊂ A be an irreducible closed subvariety.

Lemma 4.2. For i = 0, 1, let pi : Ei → Ai be a Mumford model of the Raynaud extension
of A and let qi : Ei → B be the morphism as (4.1.6). Let Xi be the closure of X in Ai and
let Yi be a quasicompact open subscheme of p−1(Xi) such that p(Yi) = Xi. Then we have

dim q̃1(Ỹ1) = dim q̃2(Ỹ2).

Proof. We can take a Mumford model p : E → A such that A dominates both A0 and A1.
Let q : E → B be the morphism as (4.1.6). We also have a dominant morphism X → Xi for
i = 0, 1, where X is the closure of X in A . Set Y ′

i := X ×Xi
Yi. Then Y ′

i is a quasicompact

open formal subscheme of p−1(X ) such that Y ′
i → X is surjective. Moreover Ỹ ′

i → Ỹi is
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surjective, and hence dim(q̃(Ỹ ′
i )) = dim(q̃i(Ỹi)). Accordingly, by pulling everything back

to A , we may assume A1 = A0 = A and hence X1 = X0 = X , E1 = E0 =: E and
Y0,Y1 ⊂ p−1(X ).

Let us fix an irreducible component W of X̃ . There are irreducible components Z0 and
Z1 of Ỹ0 and Ỹ1 lying over W . Since A = E /M , there exist m ∈ M such that Z1 ∩ (Z0 +m)
is a Zariski dense open subset of both Z1 and Z0 + m. Accordingly,

dim q̃(Z1) = dim q̃(Z1 ∩ (Z0 + m)) = dim q̃(Z0 + m) = dim q̃(Z0).

Consequently, the number dim q̃(Z), where Z is an irreducible component over W , depends
only on W . If we write α(W ) for this number, we see, for each i, that

dim q̃(Ỹi) = max
W

α(W ),

where W runs through the irreducible components of the quasicompact scheme X̃ . Thus
our assertion follows.

By virtue of the above lemma, we can make the following definition:

Definition 4.3. For an an irreducible closed subvariety X of A, we define b(X) to be the

number dim q̃1(Ỹ1) = dim q̃2(Ỹ2) in Lemma 4.2. We call it the dimension of the abelian part
of X.

Note b(A) = 0 if and only if A is totally degenerate.

Remark 4.4. Suppose that A is a semi-abelian model over K◦ of A. Let Ã denote the
reduction. Then we have a surjective homomorphism q̃′ from Ã to an abelian variety over K̃
such that Ker q̃′ is an algebraic torus over K̃. Let X ⊂ A be an irreducible closed subvariety
and let X be the closure of X in A. Then the reduction X̃ is a closed subset of Ã, and it
follows from the definition that b(X) = dim q̃′

(
X̃

)
.

Lemma 4.5. Let X ⊂ A be an irreducible closed subvariety and let GX be the stabilizer of
X. Then b(X) ≥ b(X/GX).

Proof. Let ϕ : A → A/GX be the quotient homomorphism. Then ϕ lifts to a homomorphism
between the Raynaud extensions of A and A/GX by [5, Theorem 1.2]. Therefore, if B and C
are the formal abelian varieties such that Ban and C an are the abelian parts of the Raynaud
extensions of A and A/GX respectively, then we have an induced homomorphism B → C .
Now our assertion follows immediately from the definition of b(X).

5. Partial answers to the conjecture

We recall the following notation: for a projective variety Y over K, let Yv denote the
Berkovich space associated with Y ×Spec K Spec Kv over v ∈ MK (cf. § 4.1).

5.1. Special subvariety and the dimension of the abelian part. Here we note the
following assertion.

Proposition 5.1. Let X be an irreducible closed subvariety of A.

(1) If there is a place v with dim X/GX > b((X/GX)v), then X is not a special subvariety.



GEOMETRIC BOGOMOLOV CONJECTURE 17

(2) If X is a special subvariety and dim X/GX ≥ b((A/GX)v), then there is a special
point σ such that X = GX + σ, namely, X is an abelian subvariety up to a special
point.

Proof. Suppose that X is a special subvariety. Taking the quotient by GX , we may assume
GX = 0, and further, taking the translation of X by a torsion point if necessary, we may
assume that there is a closed subvariety Y ′ ⊂ AK/k, such that

Tr
K/k
A (Y ′

K) = X.

We write K := Kv. By the existence of the Néron model and the semistable reduction
theorem, we can take a semi-abelian scheme A over K◦ and a homomorphism

τ : AK/k ×Spec k Spec K◦ → A

extending Tr
K/k
A . Note that τ is finite by Lemma 1.4. Let Ã be the special fiber. It is a

semi-abelian variety, and we have a surjective homomorphism q̃′ from Ã to an abelian variety

over k such that Ker q̃′ is an algebraic torus. Let τ̃ be the reduction of τ . Since τ̃
(
AK/k

)
is

proper over k and Ker q̃′ is affine, we see q̃′|τ̃(AK/k) is finite. Taking account that τ is finite,

we conclude q̃′ ◦ τ̃ is also finite. Accordingly we have b(Xv) = dim q̃′(τ̃(Y ′)) = dim Y ′ and

b(Av) ≥ dim AK/k (cf. Remark 4.4).
Now (1) follows immediately since

dim Y ′ = dim X ≥ b(Xv) = dim Y ′.

To show (2), we suppose further dim X ≥ b(Av). Then we have

dim Y ′ = dim X ≥ b(Av) ≥ dim AK/k ≥ dim Y ′,

which says Y ′ = AK/k and X is an abelian subvariety. Since GX = 0, we have X = 0, as
required.

Accordingly to the above proposition and Lemma 4.5, any special subvariety is a torsion
subvariety if there is a place at which A is totally degenerate (cf. Theorem 3.1). If there
is a place v with b(Av) = 1, then a special subvariety is an abelian subvariety up to the
translation by a special point (cf. Theorem 5.3).

5.2. Main results. According to Proposition 5.1, an irreducible closed subvariety with
dim(X/GX) > b((X/GX)v) for some v is not a special subvariety. If the geometric Bogomolov
conjecture holds true, then such a closed subvariety should not have dense small points. In
fact, it is our main assertion:

Theorem 5.2 (cf. Theorem 0.4). Let A be an abelian variety over K and let X be an
irreducible closed subvariety of A. Let GX ⊂ A be the stabilizer of X. Suppose dim(X/GX) >
b((X/GX)v) for some place v. Then X does not have dense small points.

Roughly speaking, we see from the above theorem that non-special closed subvariety of
“relatively large” dimension cannot have dense small points. The proof will be delivered in
the next section.

As a consequence of Proposition 3.5 and Theorem 5.2 together with the facts in § 3, we
obtain the following theorem.
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Theorem 5.3 (char k = 0). Let A be an abelian variety such that b(Av) = 1 for some place
v ∈ MK. Let X ⊂ A be an irreducible closed subvariety. Suppose X is not special, and
further suppose one of the following holds:

(a) dim X/GX ̸= 1.
(b) b((X/GX)v) = 0.
(c) dim X/GX = 1, and the jacobian variety of the normalization of X/GX is simple.

Then X does not have dense small points.

Proof. We may assume dim X/GX > 0 by Lemma 3.2. Then if (a) or (b) holds, then we
have dim X/GX > b((X/GX)v) and hence obtain our assertion by Theorem 5.2.

If we assume (c), then this theorem follows from Proposition 3.5 immediately.

Theorem 5.3 says that if there exists a place v of K with b(Av) = 1, then the geometric
Bogomolov conjecture almost holds true for A. The only case we have not yet know the
validity is the case where dim X/GX = b((X/GX)v) = 1 and the jacobian variety of the
normalization of X/GX is not simple.

Remark 5.4. We can consider Conjecture 2.9 also in the case where K is the function field
of a higher dimensional normal projective variety. Theorem 5.2 holds true in such a case as
well as Theorem 0.2, because our proof will be given by a local methods which hold for any
discrete valuation. However, Theorem 5.3 needs the assumption that K is the function field
of a curve since we have applied Cinkir’s result.

6. Proof of Theorem 5.2

The basic strategy of the proof will be same as that of the totally degenerate case due to
Gubler, but we need technically more information on the canonical Chambert-Loir measures
and their tropicalization.

6.1. Chambert-Loir measures. The purpose of this subsection is to give a remark on
the product of them. We refer to [11, §3] for all the notions such as admissible metric and
Chambert-Loir measures.

Let X be a projective variety over K. To an admissibly metrized line bundle L on X (cf.
[11, §3.5]), we can associate a Borel measure

µXv ,L :=
1

degL X
c1(L)d

on |Xv| (cf. [11, Proposition 3.8]), where we emphasize with | · | that |Xv| is the underlying
topological space of the Berkovich space Xv.

The following formula is the one mentioned in [6, §2.8] essentially, but we restate it with
a proof for readers’ convenience.

Proposition 6.1 (§2.8 of [6]). Let X and Y be projective varieties over K and let L and M
be admissibly metrized line bundles on X and Y respectively. Let p and q be the canonical
projections from X × Y to X and Y respectively, and let r : |Xv × Yv| → |Xv| × |Yv| be the
canonical continuous map induced from the projections. Then we have

µXv ,L × µYv ,M = r∗
(
µXv×Yv ,LˆM

)
,

where L £ M = p∗L ⊗ q∗M and µXv ,L × µYv ,M is the product measure on |Xv| × |Yv|.
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Proof. First let us consider the case where the admissible metric on L and M are the formal
metrics arising from models (X , L ) and (Y , M ) respectively (cf. [8, §3]). Then L £ M is
the formally metrized line bundles arising from the model (X × Y ,L £ M ). By virtue of
[8, Proposition 3.11], we have explicit formulas

µL =
1

degL X

∑
A∈Irr(X̃ )

(degL A) δηA

µM =
1

degL X

∑
B∈Irr(Ỹ )

(degM B) δηB

µM =
1

degLˆM X × Y

∑
C∈Irr

“

X̂ ×Y
”

(degL ˆM C) δηC
,

where “Irr” means the set of irreducible components and ηA denotes the point of the

Berkovich space corresponding to A (cf. § 4.1). Since X̃ × Y = X̃ × Ỹ , we have nat-

urally Irr
(
X̃ × Y

)
= Irr

(
X̃

)
× Irr

(
Ỹ

)
. If C = A × B, then it is easy to see

degL ˆM C =

(
d + e

d

)
(degL A) · (degM B)

and r∗δηC
= δηA

× δηB
, where d := dim X and e := dim Y . Accordingly, we have

r∗ ((degL ˆM C) δηC
) =

(
d + e

d

)
((degL A) δηA

) × ((degM B) δηB
) .

Since

degLˆM X × Y =

(
d + e

d

)
(degL X) · (degM Y ),

we thus have our formula in this case.
Now let us consider the general case. Let (Xn,Ln) and (Yn,Mn) be approximating se-

quences of models of L and M respectively. Then (Xn × Yn, Ln £ Mn) is an approximating
sequence of L £ M , and we have

r∗ (µLnˆMn) = µLn × µMn

as we have shown. Taking the limit as n → +∞, we obtain our assertion.

6.2. Non-degenerate strata. We recall the notion of non-degenerate strata here. First of
all, let us recall the notion of stratification of a variety (cf. [1], [11]). Let Z be a reduced
scheme of finite type over a field k. Put Z(0) := Z. For r ∈ Z≥0, define Z(r+1) ⊂ Z(r) to be
the compliment of the set of normal points of Z(r). Then Z(r+1) is a proper closed subset of
Z(r), and we obtain a chain of closed subsets

Z = Z(0) ) Z(1) ) · · · ) Z(s−1) ) Z(s) = ∅

for some s ∈ N. The irreducible component of Z(r) \ Z(r+1) for any r ∈ Z≥0 is called a
stratum of Z, and the set of the strata of Z is denoted by str(Z).
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We use here the same notations and conventions as those in § 4. Let X ′ be a strictly
semistable formal scheme (cf. [11, 5.1]). Berkovich defined in [4, §5] the skeleton S(X ′). It
is a closed subset of (X ′)an, with important properties:

• There is a continuous map Val : (X ′)an → S(X ′) that restricts to the identity on
S(X ′).

• S(X ′) has a canonical structure of metrized simplicial set: there is a family of
metrized simplicial sets {∆S}S∈str(X̃ ′) which covers S(X ′).

Let us describe ∆S above a little more. By the definition of strict semistability, we can take
π ∈ K◦◦ \ {0} and an open subset U ′ ⊂ X ′ with an étale morphism

ϕ : U ′ → Spf K◦⟨⟨x′
0, . . . , x

′
d⟩⟩/(x′

0 . . . x′
r − π)

such that S ∩ Ũ ′ dominates x′
0 . . . x′

r = 0. Then we have an identification{
u′ ∈ Rr+1

≥0

∣∣ u′
0 + · · · + u′

r = v(π)
} ∼= ∆S.

Let A be an abelian variety over K. Recall that we have a continuous map val : Aan →
Rn/Λ, where n = dim A − b(A) and Λ is a lattice (cf. (4.0.5)). Let A be a Mumford model
of A, X ′ a quasicompact strictly semistable formal scheme, and let f : X ′ → A be a
morphism. Gubler found in [11, Proposition 5.11] a unique continuous map f aff : S(X ′) →
Rn/Λ such that faff ◦ Val = val ◦ f . Let S be a stratum of X̃ ′. We consider the cartesian
diagram:

Y ′ g−−−→ E

p′

y yp

X ′ f−−−→ A .

Since p′ is locally isomorphic, we can take an irreducible locally closed subset T ⊂ Ỹ ′ such
that p̃′|T : T → S is an isomorphism. With this notation, we say S is non-degenerate with
respect to f if dim f aff(∆S) = dim(∆S) and dim (q̃ ◦ g̃(T )) = dim S. We also say ∆S is
non-degenerate with respect to f if S is non-degenerate with respect to f , following Gubler’s
terminology (cf. [11, § 6.3]).

6.3. Minimum of the dimension of the components of the canonical measure.
Let A be an abelian variety over K and let X ⊂ A be an irreducible closed subvariety of
dimension d. From now on, we consider only canonical metrics on line bundles on abelian
varieties, hence when we write L, it always means a line bundle L with a canonical metric.

Let v be a place of K and put n := dim A − b(Av). Since we have a continuous map
val : Av → Rn/Λ, we can consider the tropicalization

µtrop

Xv ,L
:= val∗(µXv ,L)

of the canonical measure, which we call the tropical canonical measure. The measures µXv ,L

and µtrop

Xv ,L
were studied in [11]. We first recall the explicit description obtained there:

Theorem 6.2 (The case of L1 = · · · = Ld = L in Theorem 1.1 of [11]). With the notation
above, suppose that L is ample. Then there are rational simplexes ∆1, . . . , ∆N in Rn/Λ with
the following properties:
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(a) d − b(Av) ≤ dim ∆j ≤ d for all j = 1, . . . , N .

(b) Xtrop
v =

⋃N
j=1 ∆j.

(c) There are r1, . . . , rN > 0 such that

µtrop

Xv ,L
=

N∑
j=1

rjδ∆j
,

where δ∆j
is the pushforward to Rn/Λ of the canonical Lebesgue measure on ∆j.

In general, let µ be a measure on a polytopal subset of Rn/Λ of form

µ =
N∑

i=1

riδ∆i
(ri > 0).

Then we define σ(µ) by

σ(µ) := min
i
{dim ∆i}.

Let X be the closure of Xv in a Mumford model of Av. We can take a semistable alteration
f : X ′ → X of a model X of Xv by virtue of [12, Theorem 6.5]. We can write

c1(f
∗L)d =

∑
S

rSδ∆S

by [11, Corollary 6.9], where S ranges over all the non-degenerate strata of X̃ ′ with respect
to f , and rS is positive. By [11, Propositions 3.9 and 5.11], we have

val∗
(
c1(L)d

)
= (deg f)(f aff)∗(c1(f

∗L)d).

Therefore we can write

µtrop

Xv ,L
=

∑
S

r′Sδfaff(∆S)

for some r′S > 0. Since ∆S is non-degenerate, we have dim ∆S = dim faff(∆S). Taking
account of dim ∆S = d − dim S, we thus obtain

σ
(
µtrop

Xv ,L

)
= d − max

{
dim S

∣∣∣S ∈ str
(
X̃ ′

)
is non-degenerate with respect to f

}
.

(6.2.7)

6.4. Proof. Let us start the proof of Theorem 5.2. We argue by contradiction. Suppose
there exists a counterexample X to Theorem 5.2. Then, the closed subvariety X/GX ⊂
A/GX has dense small points by Lemma 2.1. That tells us that X/GX is again a coun-
terexample. Accordingly we may assume GX = 0 and our assumption in the theorem says
d := dim X > b(Xv). Since GX = 0, there exists an integer N > 0 such that

α : XN → AN−1, (x1, . . . , xN) 7→ (x2 − x1, . . . , xN − xN−1)

is generically finite. We put X ′ := XN and Y := α(X ′). The closed subvariety X ′ ⊂ AN

also has dense small points by Lemma 2.4.
Let L and M be even ample line bundles on X and Y respectively. Then the line bundle

L′ := LˆN of AN is even and ample. Let µ and ν be the tropical canonical measures on
(X ′

v)
trop = (Xtrop

v )N and Y trop
v arising from L′ and M respectively. We simply write ĥX′ and
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ĥY for the canonical heights on them associated with L′ and M respectively. Since X ′ has
dense small points, we can find a generic net (Pm)m∈I , where I is a directed set, such that

limm ĥX′(Pm) = 0. The image (α(Pm))m∈I is also a generic net of Y with limm ĥY (α(Pm)) =
0. Then by using the equidistribution theorem [10, Theorem 1.2], we can obtain

(αtrop)∗µ = ν

in the usual way (cf. [9, Proof of Theorem 1.1]), where αtrop : (X ′
v)

trop → Y trop
v is the map

between tropical varieties associated to α. (In the Gubler’s article, it is denoted by αval.)
Let us take Mumford models A1 of AN

v and A2 of AN−1
v such that α : X ′

v → Yv extends to
the morphism of models h : X ′ → Y , where X ′ is the closure of X ′

v in A1 and Y is that
of Y in A2. Let f : X ′′ → X ′ be a strictly semistable alteration. Then g := h ◦ f is also a
strictly semistable alteration for Y since h is a generically finite surjective morphism. Let S
be a stratum of X̃ ′′. Then, we immediately see from the definition of non-degeneracy that
S is non-degenerate with respect to f if so is S with respect to g. In particular we have

max{dim S | S is non-degenerate with respect to f}
≥ max{dim S | S is non-degenerate with respect to g},

and by (6.2.7), we find

σ(µ) ≤ σ(ν).(6.2.8)

Let us write

µtrop

Xv ,L
=

N∑
j=1

rjδ∆j

as in Theorem 6.2. Renumbering them if necessary, we may assume dim ∆1 = σ
(
µtrop

Xv ,L

)
.

Since d > b(Xv), which is our assumption, we have dim S < d for non-degenerate S and
hence dim ∆1 > 0 by (6.2.7). Taking account of Lemma 4.1 and Proposition 6.1, we can
write

µ =
∑

j1,...,jN

rj1 . . . rjN

(
δ∆j1

× · · · × δ∆jN

)
=

∑
j1,...,jN

rj1 . . . rjN

(
δ∆j1

×···×∆jN

)
.

The coefficients in the summation are all positive, and we have

dim ∆1
N

= σ(µ) = Nσ
(
µtrop

Xv ,L

)
> 0.

Since α contracts the diagonal of X ′ to the origin of AN−1, we see αtrop also contracts

that of ∆1
N

to 0. Therefore, there exists a σ(µ)-dimensional simplex ∆ ⊂ ∆1
N

such that
dim αtrop(∆) < σ(µ). On the other hand, we have ν(τ) = 0 for any simplex τ of dimension
less than σ(µ) by (6.2.8), which says ν(αtrop(∆)) = 0 in particular. Accordingly, for any
ϵ > 0, there exists a continuous function f on Y trop

v with 0 ≤ f ≤ 1, f |αtrop(∆) = 1 and∫
Y trop

v
fdν < ϵ. Then we have

µ(∆) ≤
∫

(X′
v)trop

f ◦ αtropdµ =

∫
Y trop

v

fdν < ϵ,

which says µ(∆) = 0. That is a contradiction, and thus we complete the proof.
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Appendix by Walter Gubler. The minimal dimension of a canonical measure

Let K be a field with a discrete valuation v and let K = CK be a minimal algebraically
closed field which is complete with respect to a valuation extending v. The valuation ring
of K is denoted by K◦.

We consider an irreducible d-dimensional closed subvariety X of an abelian variety A
defined over K. We will recall in A.4 that the Berkovich analytic space Xan over K associated
to X has a canonical piecewise linear subspace T which is the support of every canonical
measure on X. Let b(X) be the dimension of the abelian part of X (see § 4.3). We will
also use the uniformization p : E → Aan = E/M from the Raynaud extension and the
corresponding tropicalization maps val : E → Rn and val : Aan → Rn/Λ (see § 4.2).

The goal of this appendix is to show the following result.

Theorem A.1. There are rational simplices ∆1, . . . , ∆N in T with the following five prop-
erties:

(a) For j = 1, . . . , N , we have dim(∆j) ≤ d.

(b) T =
⋃N

j=1 ∆j.

(c) The restriction of val to ∆j induces a linear isomorphism onto a simplex ∆j of Rn/Λ.
(d) For canonically metrized line bundles L1, . . . , Ld on A, there are rj ∈ R with

c1(L1|X) ∧ · · · ∧ c1(Ld|X) =
N∑

j=1

rj · δ∆j
,

where δ∆j
is the pushforward of the Lebesgue measure on ∆j normalized by δ∆j

(∆j) =
(dim(∆j)!)

−1.
(e) If all line bundles in (d) are ample, then rj > 0 for all j ∈ {1, . . . , N}.

For any such covering of T , we have min{dim(∆j) | j = 1, . . . , N} = d − b(X).

The proof will be given in A.6.

Corollary A.2. Let ∆1, . . . , ∆N be the components of the tropical canonical measure µtrop

Xan,L

considered in Theorem 6.2. Then we have

min
j=1,...,N

dim(∆j) = d − b(X).

Proof. The tropical canonical measure satisfies

µtrop

Xan,L
=

1

degL X
val∗

(
c1(L|X)∧d

)
and hence Corollary A.2 follows from Theorem A.1.

A.3. Let A0 be the Mumford model of A over K◦ associated to a rational polytopal decom-
position C0 of Rn/Λ. We denote the closure of Xan in A0 by X0 which is a formal K◦-model
of Xan. It follows easily from de Jong’s alteration theorem that there is a proper surjective
morphism φ0 : X ′ → X0 from a strictly semistable formal scheme X ′ over K◦ whose generic
fibre is an irreducible d-dimensional proper algebraic variety X ′ (see [11, 6.2]). The generic
fibre of φ0 is denoted by f .
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A.4. The canonical subset T of Xan is defined as the support of a canonical measure
c1(L1|X) ∧ · · · ∧ c1(Ld|X). Similarly as in [11, Remark 6.11], the definition of T does not
depend on the choice of the canonically metrized ample line bundles L1, . . . , Ld of A. By
[11, Theorem 6.12] T is a rational piecewise linear space. The piecewise linear structure
is characterized by the fact that the restriction of f to the union of all canonical simplices
which are non-degenerate with respect to f induces a piecewise linear map onto T with finite
fibres. This structure does not depend on the choice of A0 and f in (A.3).

Theorem A.5. Let φ : X ′ → X0 be a strictly semistable alteration as in A.3 with generic
fibre f : (X ′)an → Xan. Then there is a b(X)-dimensional stratum S of X̃ ′ such that the
canonical simplex ∆S of S(X ′) is non-degenerate with respect to f .

Proof. We use the same method as in the proofs of Theorem 6.7 and Lemma 7.1 in [11].
Let Σ be the collection of simplices of Xtrop = val(Xan) given by f aff(∆S) together with

all their closed faces where S ranges over all strata of X̃ ′. There is a rational polytopal
decomposition C1 of Rn/Λ which is transversal to Σ, i.e. ∆∩σ is either empty or of dimension
dim(∆)+dim(σ)−n for all ∆ ∈ C1 and σ ∈ Σ. Note that the existence of such a transversal
C1 is much easier than the construction in [11, Lemma 6.5], and no extension of the base
field is needed here.

We consider the polytopal decomposition C := {∆0 ∩ ∆1 | ∆0 ∈ C 0, ∆1 ∈ C 1} which is
the coarsest refinement of C0 and C1. Let A1, A be the Mumford models associated to C1

and C . Then we get the following commutative diagram of canonical morphisms of formal
schemes over K◦:

X ′′ φ−−−→ A
ι1−−−→ A1yι′

yι0

X ′ φ0−−−→ A0

Here the formal scheme X ′′ with reduced special fibre is determined by the fact that the
rectangle is cartesian on the level of formal analytic varieties (see [11, 5.17]).

Let E0,E1,E be the K◦-models of the uniformization E associated to C0,C1,C (see § 4.2).
For i = 1, 2, let ι′i : E → Ei be the unique morphism extending the identity on the generic
fibre. By construction, we have Ai := Ei/M and A = E /M with quotient morphisms pi and
p. The homomorphism q : E → B from the Raynaud extension is the generic fibre of unique
morphisms qi : E → B and q : E → B. Let X1 (resp. X ) be the closure of X in A1 (resp.
A ) and let Y1 := p−1

1 (X1), Y := p−1(X ). By definition of b(X), there is an irreducible

component W1 of Ỹ1 with

(A.5.9) dim q̃1(W1) = b(X).

Since Y1 = ι′1(Y ), there is an irreducible component W of Ỹ with W1 = ι̃′1(W ). By [11,
Propositions 5.7 and 5.13], there is a bijective correspondence between the vertices of the
polytopal subdivision

D := {∆S ∩ f
−1

aff (∆) | S stratum of X̃ ′ and ∆ ∈ C }
of the skeleton S(X ′) and the d-dimensional strata of X̃ ′′. Since p̃ is a local isomorphism,

it is clear that p̃(W ) is an irreducible component of X̃ . Using the fact that φ̃ is a proper
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surjective morphism onto X̃ , there is a d-dimensional stratum R of X̃ ′ with φ̃(R) dense in

p̃(W ). Let u′ be the vertex of D corresponding to R and let S be the unique stratum of X̃ ′

with u′ contained in the relative interior relint(∆S).

By [11, Lemma 5.15], we have ι̃′(R) = S, the map φ̃0 : S → Ã0 = Ẽ0/M has a lift

Φ̃0 : S → Ẽ0 and there is a unique lift Φ̃ : R → Ẽ of φ̃ : R → Ã = Ẽ /M with Φ̃0 ◦ ι̃′ = ι̃′0 ◦ Φ̃
on R. The lift Φ̃0 is unique up to M -translation and hence we may fix it by requiring that
Φ̃(R) is dense in W . It follows that

(A.5.10) q̃0(Φ̃0(S)) = q̃0 ◦ Φ̃0 ◦ ι̃′(R) = q̃0 ◦ ι̃′0 ◦ Φ̃(R) = q̃1 ◦ ι̃′1 ◦ Φ̃(R)

is dense in q̃1(W1). By (A.5.9), we get

(A.5.11) dim q̃0(Φ̃0(S)) = b(X).

Since u′ is a vertex of D contained in relint(∆S), it is clear that

(A.5.12) dim f aff(∆S) = dim ∆S

(see also the argument after (25) in [11, Remark 5.17]). There is a unique ∆1 ∈ C1 with
f aff(u′) ∈ relint(∆1). Since faff(u′) is also contained in faff(∆S) ∈ Σ, the transversality of
C1 and Σ yields

(A.5.13) codim ∆1 ≤ dim f aff(∆S) = dim ∆S.

By [11, Proposition 5.14], ι̃1 ◦ φ̃(R) is contained in the stratum of Ã1 corresponding to
relint(∆1). This correspondence is described in [11, Proposition 4.8], showing also that

W ◦
1 := ι̃′1 ◦ Φ̃(R) is contained in the stratum Z∆1 of Ẽ1 corresponding to relint(∆1) for a

suitable polytope ∆1 of Rn with image ∆1 in Rn/Λ. By [11, Remark 4.9], this stratum is a

torsor q̃1 : Z∆1 → B̃ with fibres isomorphic to a torus of dimension equal to codim(∆1). Since
Φ̃(R) is dense in W , it follows that W ◦

1 is dense in W1. We conclude that W ◦
1 is contained

in a fibre bundle over q̃1(W
◦
1 ) with codim(∆1)-dimensional fibres. This and (A.5.10) yield

(A.5.14) dim S ≥ dim q̃0(Φ̃0(S)) = dim q̃1(W
◦
1 ) ≥ dim W1 − codim ∆1.

Since W1 is an irreducible component of Ỹ1, we have dim W1 = d. By (A.5.13), we get

dim W1 − codim ∆1 ≥ d − dim ∆S = dim S.

We conclude that equality occurs everywhere in (A.5.14) proving

(A.5.15) dim S = dim q̃0(Φ̃0(S)).

By (A.5.11) and (A.5.15), the canonical simplex ∆S is non-degenerate with respect to f .

Using (A.5.11) and (A.5.15), we conclude that S is a b(X)-dimensional stratum of X̃ ′.

A.6. It remains to proof Theorem A.1. We choose a strictly semistable alteration φ0 :
X ′ → X0 as in A.3 with generic fibre f : (X ′)an → Xan. Moreover, we may assume that
the restriction of f to ∆S is a linear isomorphism onto a rational simplex of the canonical
subset T for all canonical simplices ∆S of S(X ′) which are non-degenerate with respect to
f (see the proof of [11, Theorem 6.12]). We number these simplices of T by ∆1, . . . , ∆N . By
projection formula ([11, Proposition 3.8]), we have

f∗
(
c1(f

∗L1|X) ∧ · · · ∧ c1(f
∗Ld|X)

)
= deg(f)c1(L1|X) ∧ · · · ∧ c1(Ld|X).
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By [11, Theorem 6.7 and Remark 6.8], there are numbers rS with

c1(f
∗L1|X) ∧ · · · ∧ c1(f

∗Ld|X) =
∑

S

rSδ∆S

where S ranges over all strata of X̃ ′ such that the canonical simplex ∆S of the skeleton
S(X ′) is non-degenerate with respect to f . Note that the numbers rS are positive if all line
bundles are ample. This yields already properties (a)–(e) in Theorem A.1 and the last claim
follows from Theorem A.5. ¤
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