ZARISKI DECOMPOSITIONS ON ARITHMETIC SURFACES

ATSUSHI MORIWAKI

ABSTRACT. Inthis paper, we establish the Zariski decompositions of arithmetic R-divisors
of continuous type on arithmetic surfaces and investigate several properties. We also de-
velop the general theory of arithmetic R-divisors on arithmetic varieties.
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INTRODUCTION

Let S be a non-singular projective surface over an algebraically closed field and let
Div(S) be the group of divisors on S. An element of Div(S) ® R is called an R-divisor
on S. In addition, it is said to be effective if it is a linear combination of curves with non-
negative real numbers. The problem of the Zariski decomposition for an effective R-divisor
D is to find a decomposition D = P + N with the following properties:

(1) P,N € Div(S) ® R.

(2) P isnef, thatis, (P - C) > 0 for all reduced and irreducible curves C on S.

(3) N is effective.

(4) Assuming N # 0, let N = ¢1C1 + -+ - + ¢;C} be the decomposition such that
c1,...,¢ € Rygand C, ..., C; are reduced and irreducible curves on S. Then
the following (4.1) and (4.2) hold:

4.1) (P-C;) =0 forall i.

(4.2) The [ x I matrix given by ((C; - C}))1<i<; is negative definite.
1<5<1

In 1962, Zariski [19] established the decomposition in the case where D € Div(S). By
the recent work due to Bauer [1] (see also Section 1), P is characterized by the greatest
element in

{M € Div(S) ® R | D — M is effective and M is nef}.

Date: 21/June/2010, 15:00 (Kyoto), (Version 1.80).
1991 Mathematics Subject Classification. Primary 14G40; Secondary 11G50.
1



2 ATSUSHI MORIWAKI

In this paper, we would like to consider an arithmetic analogue of the above problem on an
arithmetic surface. In order to make the main theorem clear, we need to introduce a lot of
concepts and terminology.

o Green functions for R-divisors. Let V' be an equidimensional smooth projective variety
over C. An element of Div(V)g := Div(V) ® R is called an R-divisor on V. For an R-
divisor D on V', we would like to introduce several types of Green functions for D. We
set D =a1Di+ -+ a;D;, where ay,...,a; € R and D;’s are reduced and irreducible
divisorson V. Let g : V' — R U {£00} be a locally integrable function on V. We say ¢
is a D-Green function of C>®-type (resp a D-Green function of C°-type) on V if, for each
point x € V, there are a small open neighborhood U, of z, local equations fi, ..., f; of
Dy, ..., D;over U, respectively and a C'°°-function (resp. continuous function) u, over
U, such that
l
g=1us+ Y (—ai)log|fi]* (ae.)
i=1

holds on U,. These definitions are counterparts of C'*°-metrics and continuous metrics.
Besides them, it is necessary to introduce a degenerated version of semipositive metrics.
We say ¢ is a D-Green function of PSHr-type on V if the above u, is taken as a real
valued plurisubharmonic function on Uy, (i.e., u, is a plurisubharmonic function on U, and
ug(y) € R forall y € U,). To say more generally, let [,lloc be the sheaf consisting of
locally integrable functions, that is,

Elloc(U) ={g:U — RU{+£o0} | g is locally integrable}

for an open set U of V/, and let us fix a subsheaf .7 of L] _ satisfying the following condi-
tions (in the following (1), (2) and (3), U is an arbitrary open set of V'):

(1) fu,v € J(U)and a € R>g, thenu+v € 7 (U) and au € .7 (U).

(2) Ifu,v € J(U) and u < v almost everywhere, then u < v.

(3) If € O (U) (i.e., ¢ is a nowhere vanishing holomorphic function on U), then

log |62 € T(U).

This subsheaf .7 is called a type for Green functions on V. Moreover, 7 is said to be
real valued if u(x) € R for any open set U, u € 7 (U) and x € U. Using 7, we say g
is a D-Green function of 7 -type on V if the above u, is an element of 7 (U,,) for each
x € V. The set of all D-Green functions of .7 -type on V' is denoted by G »(V; D). If
x & Supp(D), then, by using (2) and (3) in the properties of .7, we can see that the value

l

ug(2) + Y (—a;) log| fy(x)|?

i=1
does not depend on the choice of the local expression

l

g=us+) (—a)log|fil* (ae)

=1

of g, so that u,(x) + Zézl(—ai) log | f;()|? is called the canonical value of g at x and
it is denoted by gean(x). Note that gean € 7 (V \ Supp(D)) and ¢ = gean (a.e.) on
V' \ Supp(D). Further, if 7 is real valued, then gean(x) € R.
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x H(V, D) for an R-divisor D and its norm arising from a Green function. Let D be an
R-divisor. If V is connected, then H°(V, D) is defined by
0 . ¢ is a non-zero rational function
H(V’D)'—{¢ on V with (¢) + D > 0 }U{O}‘

In general, let V = V7 U --- U V. be the decomposition into connected components of V.
Then

T
H°(V,D) := @ H"(Vi, D|y,).
i=1
Let g be a D-Green function of C°-type on V.. For ¢ € H'(V, D), it is easy to see that
|¢lg := exp(—g/2)|¢| coincides with a continuous function almost everywhere on V, so
that the supremum norm ||¢||4 of ¢ with respect to g is defined by

|¢llg := ess sup {|@|q(x) |z € V}.

o Arithmetic R-divisors. Let X be a d-dimensional generically smooth normal projective
arithmetic variety. Let Div(X) be the group of Cartier divisors on X. As before, an
element of Div(X)r := Div(X) ® Ris called an R-divisor on X. It is said to be effective
if it is a linear combination of prime divisors with non-negative real numbers. In addition,
for D, E € Div(X)g, if D — E is effective, then it is denoted by D > E or E < D.

Let D be an R-divisor on X and let g be a locally integrable function on X (C). A
pair D = (D, g) is called an arithmetic R-divisor if F%(g) = g (a.e.), where Fy is
the complex conjugation map on X (C). Moreover, D is said to be of C™-type (resp.
of CO-type, of PSHg-type) if g is a D-Green function of C™-type (resp. of C-type, of
PSHg-type). More generally, for a fixed type .7 for Green functions, D is said to be of
T -type if g is a D-Green function of .7-type. For arithmetic R-divisors D1 = (D1, g1)
and Dy = (D3, g2), we define D1 = Dy and D1 < D5 as follows:

Di=Dy &L D/ =Dyand g1 = g2 (a.e.),
bl < EQ g D1 < DQ and a1 < g2 (a.e.).

If D > (0,0), then D is said to be effective. Further, the set
{M | M is an arithmetic R-divisor on X and M < D}

is denoted by (—o0, D).

* Volume of arithmetic R-divisors of C°-type. Let ]SR/CO (X)r be the group of arithmetic
R-divisors of C°-type on X. For D € Diveo(X)g, we define HO(X, D), H(X, D),
h°(X, D) and vol(D) as follows:

p

0 o 1) is a non-zero rational function
HY(X, D) = {T/J on X with (¢) + D >0 } L0},
H°(X,D) := {y € H'(X, D) | [[¢]ly < 1},

(X, D) :=log #(H(X, D)),

—~ — ) hO(X,nD)
vol(D) := hrrlrisolip Tl

Note that

1) is a non-zero rational function

ﬁ“(x,p):{w on X with () + D > (0,0) }U{O}'
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The continuity of
vol : Pic(X)g — R
is proved in [13], where lsi\c(X)@ = Pic( ) ® Q. Moreover in [14], we introduce

f’i\cco (X)r as a natural extension of Pic(X)q and prove that vol : PIC(X )o — R has the
continuous extension

\7(;1 : P/)i\Cco(X)R — R.
Theorem 5.2.2 shows that there is a natural surjective homomorphism

6]1{ : ]:/)FICO (X)]R — f)i\CCo (X)]R

such that \a(ﬁ) = \a(@R(ﬁ)) forall D € ISR/CO (X)Rr. In particular, by using results in
[5], [6], [13], [14], [15] and [17], we have the following properties of vol : Divgo(X)r —
R (cf. Theorem 5.2.2 and Theorem 6.6.1):

(1) vol : DIVCO (X)r — Ris positively 'homogeneous of degree d, that is, \781(@5) =
a vol(D) foralla € R>gand D € Divco (X)R.

2) vol : DlVCO (X)r — R is continuous in the following sense: for arithmetic R-
divisors Dy, ..., D,, Zh o ’ZL ofiCO—typeL there is a positive constant C' de-
pending only on X and D1, ..., D,, Ay,..., A, such that

r r’ r
vol [ Y aiDi+ ) 6;4; 4 (0,¢) | — vol (Z aiDZ»)
i=1 j=1 i=1
d—1

r r’ r/
<C{ D lail + 151 Illsup + > 1651
i=1 =1 =1

forall ai,...,a,,d1,...,0 € Rand ¢ € CO(X).
(3) vol(D) is given by “lim”, that is,

—~ hO(¢tD)
vol(D) = A td/d!
where D € fﬁoo (X)r and t € Ryy.
4) vol(:)l/ 4 is concave, that is, for arithmetic R-divisors D1, Do of C-type, if D;
and D, are pseudo-effective (for the definition of pseudo-effectivity, see SubSec-
tion 6.1), then

vol(Dy + D3)"/% > vol(Dy)"/% + vol(Dy) /.

(5) (Fujita’s approximation theorem for R-divisors) If D is an arithmetic R-divisor of
CP-type and @(E) > 0, then, for any positive number ¢, there are a birational
morphism g : Y — X of generically smooth and normal projective arithmetic
varieties and an ample arithmetic Q-divisor A of C*-type on Y (cf. Section 6)
such that A < p*(D) and \781(2) > \751(5) — €.

(6) (The generalized Hodge index theorem for R-divisors) If D is an arithmetic R-
divisor of (CO N PSH)-type and D is nef on every fiber of X — Spec(Z), then
vol( ) > deg( d) (see descriptions in “Pos1t1v1ty of arithmetic R-divisors” below

or Proposition 6.4.2 for the definition of deg( )).
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* Intersection number of an arithmetic R-divisor with a 1-dimensional subscheme. Let
be a real valued type for Green functions such that C° C 7 and —u € .7 whenever
u € 7. Let D = (D, g) be an arithmetic R-divisor of .7 -type. Let C be a 1-dimensional
closed integral subscheme of X. Let D = a1 D1 + --- + a;D; be a decomposition such
that a1,...,a; € R and D;’s are Cartier divisors. For simplicity, we assume that D;’s are

effective, C' Z Supp(D;) for all ¢ and that C' is flat over Z. In this case, Ec%(ﬁ‘c) is
defined by

deg D|C Zazlog# Oc(D i)/Oc)—i-% Z Jean ().

i=1 2€C(C)
In general, see Section 5.3. Let Z be a 1-cycle on X with coefficients in R, that is, there

are ay,...,a; € R and 1-dimensional closed integral subschemes C1,...,C; on X such
that Z = a1Cy + - -+ + @;C;. Then deg (D | Z) is defined by

deg (D|2): Zaﬂeg(D‘c)

% Positivity of arithmetic R-divisors. An arithmetic R-divisor D is called nef if D is of
PSHRg-type and deg(D|~) > 0 for all 1-dimensional closed integral subschemes C' of

X. The cone of all nef arithmetic R-divisors on X is denoted by N-e\f( X)r. Moreover,
the cone of all nef arithmetic R-divisors of C*°-type (resp. C°- type) on X is denoted by

NefCoo( )R (resp. Nefco( )r). Further, we say D is big if vol( ) > 0.
f _ —_—
Let DIVCO (X )R be the vector subspace of Divo (X )r generated by Nef o (X )r. Then,
by Proposition 6.4.2,
_ - /_\Nef
Divoe (X)R + Diveonpsu (X)R - DIVCO (X)R
and the symmetric multi-linear map
ISRICoo(X)R X oo X ISR’COO(X)R — R
given by (D1,...,Dg) — deg(Dy - -- Dy) (cf. Proposition-Definition 6.4.1) extends to a
unique symmetric multi-linear map

——Nef ——Nef

Divco (X)R X oo X DiVCO (X)R — R
such that (D, ..., D) — ;al(ﬁ) for D € N&’Co (X)r.

e Zariski decompositions on arithmetic surfaces. Let X be a regular projective arith-
metic surface. The main theorem of this paper is the following:

Theorem A (cf. Theorem 9.2.1 and Theorem 9.3.4). Let D be an arithmetic R-divisor of
CO-type on X such that the set

(=00, D] N Ne\f(X)R = {M | M is a nef arithmetic R-divisor on X and M < D}
is not empty. Then there is a nef arithmetic R-divisor P of C°- -type Su such that P gives the
greatest element of (—oo, D] N Nef(X)g, that is, P € (—oo, D] N Nef(X)R and M < P
forall M € (—oc, D] N Nef(X)g. Moreover, if we set N = D — P, then the following
properties hold:

(1) vol(D) = vol(P) = deg(P’

)-
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(2) d/(%(ﬁ| C’) = 0 for all 1-dimensional closed integral subschemes C with C' C
Supp(N). -

(3) If L is an arithmetic R-divisor of PSHg-type on X such that 0 < L < N and
deg(L‘ o) = 0 for all 1-dimensional closed integral subschemes C with C C

Supp(N), then L = 0.

The above decomposition D = P + N is called the Zariski decomposition of D and we
say P (resp. N) is the positive part (resp. the negative part) of the decomposition. For
example, let P}, = Proj(Z[z,y]), Co = {x = 0}, 2 = z/y and o, B € R5o witha > 1
and 8 < 1. Then the positive part of an arithmetic divisor

(Co, —log |2[? + log max{a?||?, 5°})
of (C° N PSH)-type on P, is
(0Co, —0log |2[* + log max{a®|z|*", 1}),

where § = log a/(loga — log 3) (cf. Subsection 9.4). This example shows that an R-
divisor is necessary for the arithmetic Zariski decomposition. In addition, an example in
Remark 9.4.3 shows that the Arakelov Chow group consisting of admissible metrics due to
Faltings is insufficient to get the Zariski decomposition.

We assume that N # 0. Let N = ¢;C] + - - - 4+ ¢;C; be the decomposition of N such
that c1,...,¢; € Ry and C;’s are 1-dimensional closed integral subschemes on X. Let
(C1,91),---,(C1, g1) be effective arithmetic divisors of PSHp-type such that

Cl(Clagl) + - +Cl(Clvgl) S Nv

which is possible by Proposition 2.4.2 and Lemma 9.1.3. Then, by using Lemma 1.2.3, the
above (3) yields an inequality

(1) det (deg ((Ci,90)lc, ) ) > 0.

This is a counterpart of the property (4.2) of the Zariski decomposition on an algebraic
surface. On the other hand, our Zariski decomposition is a refinement of Fujita’s approxi-
mation theorem due to Chen [6] and Yuan [17] on an arithmetic surface. Actually Fujita’s
approximation theorem on an arithmetic surface is a consequence of the above theorem (cf.
Proposition 9.3.6).

Let D be an effective arithmetic R-divisor of C°-type. For each n > 1, we set F,(D)

and M, (D) as follows:

£y (D) = % S~ min {multc(6) + nD) | 6 € A°(X,nD)\ {0} } €,
C

M, (D) = D — F,(D).
Let V (nD) be a complex vector space generated by HO(X,nD). It is easy to see that

1 . D)
Gat,0) =9+ log dist(V (nD); ng)

is an M, (D)-Green function of C*-type (for the definition of distorsion functions, see
Subsection 3.2). Then we have the following:

Theorem B (Asymptotic orthogonality). If D is big, then

Jim deg ((Ma(D), 0ur, ) | Fa(D)) = 0.
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e Technical results for the proof of the arithmetic Zariski decomposition. In order to
get the greatest element of (—oo, D] N Ne\f(X )r, we need to consider the nefness of the
limit of a convergent sequence of nef arithmetic R-divisors. The following theorem is our
solution for this problem:

Theorem C (cf. Theorem 7.1). Let X be a regular projective arithmetic surface. Let
{M,, = (M, hy)}5°, be a sequence of nef arithmetic R-divisors on X with the following
properties:
(a) There is an arithmetic divisor D = (D, g) of CO-type such that M,, < D for all
n > 1.
(b) There is a proper closed subset E of X such that Supp(D) C E and Supp(M,,) C
E foralln > 1.
(¢) lim,,—,oo multc(M,,) exists for all 1-dimensional closed integral subschemes C' on
X.
(d) limsup,, o (hn)can(x) exists in R for all x € X(C) \ E(C).

Then there is a nef arithmetic R-divisor M = (M, h) on X such that M < D,
M = ZC: (nlggo multC(Mn)> C

and that heay| X(C\E(C) IS the upper semicontinuous regularization of the function given
by x + limsup,,_, .. (hn)can () over X (C) \ E(C).

Moreover, for the first property \7(;1(?) = ;(;l(ﬁ) of the arithmetic Zariski decomposi-
tion, it is necessary to observe the following behavior of distorsion functions, which is a
consequence of Gromov’s inequality for an R-divisor (cf. Proposition 3.1.1).

Theorem D (cf. Theorem 3.2.3). Let V be an equidimensional smooth projective variety
over C and let D be an R-divisor on V. Let R = €, -, Ry be a graded subring of
@D, H*(V,nD). If g is a D-Green function of C*-type, then there is a positive constant
C with the following properties:
(1) dist(Ry;ng) < C(n+1)34V foralln > 0.

@) dist(Rp;ng)  dist(Rm;mg) < dist(Ry4m; (n +m)g)
Cln+1)3dmV " C(m + 1)3dmV = "C(p + m 4 1)3dimV

The most difficult point for the proof of the arithmetic Zariski decomposition is to check

the continuous property of the positive part. For this purpose, the following theorem is
needed:

foralln,m > 0.

Theorem E (cf. Theorem 4.6). Let V' be an equidimensional smooth projective variety
over C. Let A and B be R-divisors on V with A < B. If there is an A-Green function
h of C*°-type such that dd°([h]) + d  is represented by either a positive C*-form or the
zero form, then, for a B-Green function gp of C°-type, there is an A-Green function g of
(C° N PSH)-type such that g is the greatest element of the set

Gpsug (V3 A)<gp = {u € Gpsup (V5 A) [u < gp (ae)}
modulo null functions, that is, g € Gpsu,(V;A)<gy and u < g (a.e.) for all u €
Grse (Vi A)<gp-

For the proof, we actually use a recent regularity result due to Berman-Demailly [3].
Even starting from an arithmetic divisor D of C"*°-type, it is not expected that the positive
part P is of C*°-type again (cf [16]). It could be that P is of C'1!-type.
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1. ZARISKI DECOMPOSITIONS IN VECTOR SPACES

Logically the contexts of this section are not necessary except Lemma 1.2.3. They how-
ever give an elementary case for our considerations and provide a good overview of our
paper without any materials.

1.1. In the paper [1], Bauer presents a simple proof of the existence of Zariski decompo-
sitions on an algebraic surface. Unfortunately, he uses liner series on the algebraic surface
to show the negative definiteness of the negative part of the Zariski decomposition. In this
section, we would like to give a linear algebraic proof without using any materials of alge-
braic geometry. The technical main result for our purpose is Lemma 1.2.3. After writing
the first draft of this paper, Bauer, Caibar and Kennedy kindly informed me that, in the
paper [2], they had independently obtained several results similar to the contexts of this
section. Their paper is written for a general reader.

Let V be a vector space over R. Let e = {e)} ca be a basis of V and let @ = {d» }ren
be a family of elements of Homp (V, R) such that ¢5(e,) > 0 for A # p. This pair (e, ¢)
of e and ¢ is called a system of Zariski decompositions in V.

Let us fix several notations which work only in this section. For A € A, the coefficient
of x at ey, in the linear combination of = with respect to the basis e is denoted by z(A;e),
thatis, = ), z(\;e)ey. Let < be an order relation of V' given by

r<ey &L z(A;e) <y(Ae) forall A € A.

We often use y >, z instead of z <. y. Supp(z;e), [z, yle, (—00, Z]e, [z, 00)e, Nef (@)
and Num(¢) are defined as follows:
Supp(z;e) := {A € A | z()\;e) # 0},
[T,yle ={veV |z <ev<ey},
(—o0,zle : ={v eV |v <z},
[€,00)e :={v €V | V> x},
Nef(¢) :=={v eV | px(v) > 0forall A € A},
(Num(¢) :={v eV | ¢gr(v) =0forall A € A}.
For an element x of V, a decomposition x = y + z is called a Zariski decomposition of
x with respect to (e, @) if the following conditions are satisfied:
(1) y € Nef(¢) and z > 0.
(2) ¢a(y) = 0forall A € Supp(z;e).
3) {x € D reSupp(ze) Rz0€x | oa(x) = 0 forall A € Supp(z;e)} = {0}.

We call y (resp. z) the positive part of x (resp. negative part of x).
The purpose of this section is to give the proof of the following proposition.

Proposition 1.1.1. For an element x of V', we have the following:

(1) The following are equivalent:
(1.1) A Zariski decomposition of x with respect to (e, ) exists.
(1.2) (—o0,x]e N Nef(¢) # 0.

(2) If a Zariski decomposition exists, then it is uniquely determined.
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(3) If a Zariski decomposition of x with respect to (e, @) exists and the negative part z
of x is non-zero, then z has the following properties:
(3.1) Let Q be the matrix given by (¢x(eu))x pesupp(ze)- Then

(=1)#(Surp(ze) det @ > 0.

Moreover, if Q) is symmetric, then @ is negative definite.
(3.2) {ea}resupp(zie) I8 linearly independent on V// Num(@).

1.2. Proofs. Here let us give the proof of Proposition 1.1.1.

For z1,...,2, € V, maxe{z1,...,2,} € V is given by
maxe{xy1,...,Tp} = Z max{zi(\;e),...,z.(A;e)}ey.
AEA

Let us begin with the following lemma.

Lemma 1.2.1. [fz1,...,z, € Nef(¢), then max{x1,...,z,} € Nef(¢).

Proof. 1t is sufficient to see that if ¢ (z;) > 0 for all ¢, then ¢)(maxe{z1,...,z,}) > 0.
We set z = maxe{x1,...,z,}. Note that Supp(z — z1;€) N--- N Supp(z — z,;e) = .
Thus there is ¢ with A ¢ Supp(z — x;;e). Then ¢y (z — ;) > 0, and hence
oA(2) = oAz — i) + Pa(zi) = 0.
U

Lemma 1.2.2. Let x be an element of V' such that (—oo, x]e N Nef(¢) # (). Then there is
the greatest element y in (—oo, x]e N Nef(@), that is, y € Nef(¢) N (—o0, z]e and y > v
forall v € Nef(@) N (—o0, x|e. This greatest element y is denoted by

max(Nef(¢) N (—o0, z]e).
Further, y and z := x — y satisfy the following properties:
(a) y € Nef(¢), z > Oand x =y + 2.
(b) da(y) = 0 forall X € Supp(z;e).
() {U € D reSupp(ze) Rz0€x | da(v) = 0 forall X € Supp(z;e)} = {0}.

Proof. We choose 2’ € (—o0, z]e N Nef(¢). Let us see the following claim.
Claim 1.2.2.1. There is the greatest element y of Nef(¢) N [2/, x]e.

Proof. Note that [z, x]e = 2/ + [0, 2 — 2/]e. Moreover, it is easy to see that

Nef(¢) N [z, 7]e
=2’ +{ve0,z— 2| pxr(v) > —¢xr(2') forall A € Supp(z — 2';e)} .

Therefore, Nef(4) N [2/, x]e is a translation of a bounded convex polyhedral set in a fi-
nite dimensional vector space €D, cqupp(z—a7:e) Rex- Hence Nef(¢) N [27, z]e is a convex
polytope, that is, there are ~q,...,v; € Nef(¢) N [z, z]e such that Nef(@) N [2/, z]e =
Conv{vi,...,v} (cf. [18, Theorem 3.2.5 or Finite basis theorem]). If we set y =
max{v1,...,7}, then, by Lemma 1.2.1, y € Nef(4) N [2/,z]e. Moreover, for v =
aiy1 + -+ ay € Nef(¢) N 2/, zle (a1,...,a; € Rypand a1 + -+ + a; = 1), we
have
y=amy+---+ayzeamn+---+ay =0
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This y is actually the greatest element of (—oo, z]e N Nef(¢). Indeed, if v € (—o0, z]eN
Nef(¢), then max{v,y} € [z/,z]e N Nef(¢) by lemma 1.2.1, and hence

v < max{v,y} <y.

Let us check the properties (a), (b) and (c). First of all, (a) is obvious. In order to see (b)
and (c), we may assume that z # 0.

(b) We assume that ¢ (y) > 0 for A € Supp(z;e). Let € be a sufficiently small positive
number. Then y + ee) <. z and

bu(y +een) = du(y) + epulern) >0

for all 4 € A because 0 < € < 1. Thus y + ee) € Nef(¢), which contradicts to the
maximality of y. Therefore, ¢, (y) = 0 for A € Supp(z;e).

(c) Next we assume that there is v € (Z)\ESupp(z;e) Rzoex) \ {0} such that ¢)(v) > 0

for all A\ € Supp(z;e). Then there is a sufficiently small positive number ¢ such that
y + €v <, x. Note that ¢,(y + €'v) > 0 for all y, which yields a contradiction, as
before. U

Lemma 1.2.3. Let W be a vector space over R. Let eq,...,e, € W and ¢1,...,0, €
Hompg (W, R) with the following properties:

(@ {(a1,...,an) € R%, | arer + -+ ane, =0} ={(0,...,0)}.

(b) ¢i(ej) > 0 foralli # j.

(©) {x € Rspe1 + -+ Rxpep | ¢i(z) > 0foralli} = {0}.
Then we have the following:

(1) Let Q be the (n x n)-matrix given by (¢;(e;)). Then there are (n x n)-matrices A
and B with the following properties:
(1.1) A (resp. B) is a lower (resp. upper) triangle matrix consisting of non-negative
numbers.
(1.2) det A > 0, det B > 0 and

-1 -+ 0
4QB= | : ;
0o --- -1
(1.3) If Q is symmetric, then B =t A.
(2) The vectors ey, . .., ey, are linearly independent in
W/{x e W | ¢1(x) = -+ = ¢p(x) = 0}.

Proof. (1) Let us begin with the following claim.
Claim 1.2.3.1. ¢;(e;) < 0 for all i.

Proof. If gbl(el) >0, thene; € {ZL‘ € Rzoel + -+ Rzoen | (Z)J(.%) > 0 for allj}. This is
a contradiction because e; # 0. O

The above claim proves (1) in the case where n = 1. Here we set
¢; = —¢1(e1)gi + gier)r (i > 2), € = —¢1(e1)e; + di(ej)er (5 > 2).
We claim the following:

Claim 1.2.3.2. (i) ¢i(e1) = 0and ¢1 (e;-) =0foralli>2andj > 2.
(i) €y, ... el and ¢y, ... @) satisfy all assumptions (a) ~ (c) of the lemma.
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(iii) Let Q' be the matrix given by (¢;(€};))2<i,j<n- Then
0
AlQBl = (¢1%€1) Ql) ’

where A1 and By are matrices given by

1 0 0 0 1 ¢i(e2) d1(ez) - di(en)
p2(e1) —oi(er) 0 0 0 —¢i(er) 0 0
¢3(e1) 0 —¢1(e1) 0 0 0 —¢1(e1) - 0
¢n<€1) 0 0 —¢>1'(€1) 0 0 0 —¢1'(€1)

respectively. Note that if Q) is symmetric, then By = ' Ay and Q' is also symmetric.

Proof. (i) is obvious.
(i) It is easy to see (a) for €, ..., e}, by using Claim 1.2.3.1. For 7,5 > 2 with i # j,
by Claim 1.2.3.1,

oi(e}) = pr(e1)*diles) + (—gr(er))diler)di(e;) > 0.

1(
Finally let z € .., R>oej such that ¢j(z) > 0 for all i > 2. Note that ¢j(z) =
>0

(—¢1(e1))¢i(z) for i > 2. Therefore, ¢;(z) for all # > 1, and hence x = 0 because
ijz RZO‘% - Ejzl R>oe;.

(iii) is a straightforward calculation. Il

We prove (1) by induction on n. By hypothesis of induction, there are matrices A’ and
B’ satisfying (1.1), (1.2) and (1.3) for ', that is,

-1 --- 0
AIQIB/ — :
0 -1
Therefore,
) 0 ) 0 -1 --- 0
—p1(e1) A1QBy —¢1(e1) = : :
0 A 0 B’ A ’
0 ... -1
Thus (1) follows.

(2) Let aje1 + - - - + apen, = 0 be a linear relation on

W/{z e W | ¢i1(x) =+ = ¢pn(x) = 0}.
Then there is x € W such that x = aje; + - -+ + ape, and ¢1(x) = -+ = ¢p(x) = 0.
Thus 0 = ¢i(x) = > ¢i(ej)a;. Hence (1) yields (2). O

Proof of Proposition 1.1.1. (1) Clearly (1.1) implies (1.2). If we assume (1.2), then (1.1)
follows from Lemma 1.2.2.

(2) Let z = y + z be a Zariski decomposition of x with respect to (e,¢) and 3y’ =
max(Nefy N(—00, zle). Theny <. y'. As ¢»(y) = 0 forall A € Supp(z;e),

/ .
vy —ye {m € Z,\eSupp(z;e) R>pey | ¢a(x) > 0forall X € Supp(z,e)} ,

and hence ¢/ = y.
(3) follows from Lemma 1.2.3. Il



12 ATSUSHI MORIWAKI

Remark 1.2.4. We assume that ¢(e,) € Q for all \,x € A. Let z € @, Qey such
that (—oo,z]e N Nefy # (. Let © = y + z be the Zariski decomposition of z with
respect to (e, ). Then y, z € @, Qe,. Indeed, if we set Supp(z;e) = {A1,..., A} and
z =) ajey,, then

Z oa;(ex;)a; = oy, (r) € Q.

On the other hand, by our assumption and (3.1) in Proposition 1.1.1, (¢/\i(€>\j))1§i,j§n €
GL,(Q). Thus (a1, ...,a,) € Q™.

2. GREEN FUNCTIONS FOR R-DIVISORS

2.1. Plurisubharmonic functions. Here we recall plurisubharmonic functions and the
upper semicontinuous regularization of a function locally bounded above.

Let 7" be a metric space with a metric d. A function f : 7' — {—oo0} U R is said to be
upper semicontinuous if {x € T'| f(x) < c} is open for any ¢ € R. In other words,

fla) = timsup f(a) (= int(up(f) | dla.n) < )

r—a

foralla € T. Letu : T'— {—oo} U R be a function such that « is locally bounded above.
The upper semicontinuous regularization u* of u is given by
u*(x) = limsup u(y).
y—z
Note that u™* is upper semicontinuous and u < u*.
Let D be an open set in C. A function u : D — {—oo} U R is said to be subharmonic
if w is upper semicontinuous and

Lo V=T0
u(a) < ula+re de
2T 0

holds forany a € Dandr € Rygwith {z € C | |z —a| <7} C D.

Let X be a d-equidimensional complex manifold. A function u : X — {—oo} UR
is said to be plurisubharmonic if v is upper semicontinuous and u o ¢ is subharmonic for
any analyticmap ¢ : {z € C | |z| < 1} — X. We say u is a real valued plurisubhar-
monic function if u(x) # —oo for all z € X. If X is an open set of C%, then an upper
semicontinuous function v : X — R U {—o0} is plurisubharmonic if and only if

27
u(a) < 1/0 u(a + € exp(v/—16))do

27
holds for any @ € X and & € C? with {a + fexp(v/—10) | 0 < 0 < 27} C X.
As an example of plurisubharmonic functions, we have the following: if fi,..., f. are

holomorphic functions on X, then
log(If1]* + -+ 1 f+[*)

is a plurisubharmonic function on X. In particular, if

vg{ze X | filz) == fr(2) =0},
then dd“(log(| f1|* + - - - + | f;|?)) is semipositive around .

Let {u)}xea be a family of plurisubharmonic functions on X such that {u) } e is lo-
cally uniformly bounded above. If we set u(x) := supycp{ua(z)} for z € X, then the
upper semicontinuous regularization v* of u is plurisubharmonic and u = u* (a.e.) (cf. [9,
Theorem 2.9.14 and Proposition 2.6.2]). Moreover, let {v,, }7° | be a sequence of plurisub-
harmonic functions on X such that {v,, }2° ; is locally uniformly bounded above. If we set
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v(x) := limsup,,_,, vn(z) for z € X, then the upper semicontinuous regularization v* of
v is plurisubharmonic and v = v* (a.e.) (cf. [9, Proposition 2.9.17 and Theorem 2.6.3]).

2.2. R-divisors. Let X be either a d-equidimensional smooth algebraic scheme over C,
or a d-equidimensional complex manifold. Let Div(X') be the group of divisors on X. An
element D of Div(X)g := Div(X)®zR s called an R-divisoron X. Let D = "' | a; D;
be the irreducible decomposition of D, that is, ay,...,a, € R and D;’s are reduced and
irreducible divisors on X. For a prime divisor I" on X (i.e., a reduced and irreducible
divisor on X), the coefficient of D at I" in the above irreducible decomposition is denoted
by multp (D), that is,

ltr (D) a; ifI' = D; for some 1,
mu =
: 0 ifT # D foralli,

and D = 3 pmultr(D)I. The support Supp(D) of D is defined by Uyt (pyzo I+ If
a; > 0 for all 7, then D is said to be effective and it is denoted by D > 0. More generally,
for Dl, Dy € DiV(X)R,

Dy < Dy(orDy>Dy) &% Dp,— D, >0.

The round-up [ D] of D and the round-down | D| of D are defined by

n n

[D] =) [a]]D; and |D| = |a;|D;,
i=1 i=1
where [z] = min{a € Z | x < a}and |x] =max{a € Z|a <z} forz € R.
We assume that X is algebraic. Let Rat(X) be the ring of rational functions on X . Note
that X is not necessarily connected, so that Rat(X') is not necessarily a field. In the case
where X is connected, H(X, D) is defined to be

H°(X, D) :={¢ € Rat(X)* | (¢) + D > 0} U{0}.
In general, let X = [[ X, be the decomposition into connected components, and let

Do = Dy, . Then H°(X, D) is defined to be
HY(X,D) := P H*(Xa, Da).
e

Note that if D is effective, then H°(X, D) is generated by
{¢ € Rat(X)™ [ (¢) + D > 0}.
Indeed, for ¢, € H°(X,, D, ), if we choose ¢ € C* with ¢, + ¢ # 0, then
(0,...,0,00,0,...,0) =(1,...,1, 00 +¢,1,...;1) = (1,...,1,¢,1,...,1),
which shows the assertion. Since
(¢a) + Do 20 <= (¢a)+ [Da] 20,
we have H°(X, D) = H°(X, | D]).

In the case where X is not necessarily algebraic, the ring of meromorphic functions on
X is denoted by M(X). By using M(X) instead of Rat(X), we can define H},(X, D)
in the same way as above, that is, if X is connected, then

H3(X, D) :={¢ € M(X)* | (¢) + D = 0} U {0}.

If X is a proper smooth algebraic scheme over C, then Rat(X) = M(X) by GAGA, and
hence H'(X, D) = HY (X, D).
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2.3. Definition of Green functions for R-divisors. Let X be a d-equidimensional com-

plex manifold. Let /Jllo . be the sheaf consisting of locally integrable functions, that is,

Ll (U):={g:U — RU {400} | gis locally integrable}
for an open set U of X. Let .7 be a subsheaf of £ and let S be a subset of R U {+o0}.
Then J5, 7% and —.7 are defined as follows:

Is(U):={g€ T(U) | g(x) € Sforallz € U},
TYU) :={g € T(U) | gis locally bounded on U},
~T(U) = {~g € Line(U) | g€ T(U)}.

Let .7/ be another subsheaf of ,Cllo .- We assume that u + u’ is well-defined as functions for
any openset U, u € 7 (U) and v’ € 7'(U). Then .7 + .7 is defined to be

For any z € U, we can find an open
(7 + 7)) (U) :={ g € L,.(U)]| neighborhood V., u € 7 (V) and
u' € J'(Vy) such that gly, =u+u'.

Similarly, if u — u’ is well-defined as functions for any open set U, u € 7 (U) and v’ €
T'(U), then F — 7" is defined to be

For any z € U, we can find an open
(7 — 7" U) :={ g € L .(U)| neighborhood V., u € 7 (V) and
u' € J'(Vy) such that gly, =u— .

Note that 7 — 7" = 7 + (—7'). A subsheaf 7 of L _ is called a type for Green
functions on X if the following conditions are satisfied (in the following (1), (2) and (3), U
is an arbitrary open set of X):

(1) fu,ve J(U)and a € R>g, thenu+v € J(U) and au € 7 (U).

(2) fu,v € J(U)and u < v (a.e.), then u < v.

(3) Ifp € (’))X((U ) (i.e., ¢ is a nowhere vanishing holomorphic function on U), then

log |¢|? € T (U).

Note that, for u,v € T (U),u = vifu =v (a.e.). If 7 = T, that is, u(x) € R for any
openset U, u € 7 (U) and x € U, then .7 is called a real valued type. As examples of
types for Green functions on X, we have the following CY, C*° and PSH:

CcP : the sheaf consisting of continuous functions.

(Ohe : the sheaf consisting of C°°-functions.

PSH : the sheaf consisting of plurisubharmonic functions.
Note that

PSHr(U) = {g € PSH(U) | g(x) # —oo forall z € U}

for an open set U of X. Let .7 and .7 be types for Green functions on X. We say .7 is a
subjacent type of 7 if the following property holds for any open set U of X:

v <wu(ae)onUforu' € 7'(U)andu € T(U) = o' <wuonU.

Lemma 2.3.1. Let .7 be either C° + PSH or C° + PSHg — PSHg. Then .7 is a type for
Green functions on X. Moreover, PSH is a subjacent type of 7.

Proof. The conditions (1) and (3) are obvious for .7. Letus see (2). Forz = (z1,...,24) €
C4, we set ||z]| = v/]z1]2 + - - - + |24|?- Moreover, for a € C? and r > 0,

{zeC||z—all <r}

is denoted by B%(a; ).
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The assertion of (2) is local, so that we may assume that X = B((0,...,0);1). It is
sufficient to see that, for uy,us € 7(X), if u1 < ug (a.e.), then u; < ug. Let us fix
a € BY((0,...,0);1). There are a sufficiently small » > 0 and v;; € L] (B%(a;r))
(:=1,2and j = 1, 2, 3) with the following properties:

(@) wuy =wvi1 +v12 — vz and up = vo1 + V22 — Vo3.

(b) wvi1,v91 € CO(Ba;7)).

(¢) wvi2,v92 € PSH(B%(a;r)) in the case 7 = C° + PSH.

(¢) vi2,v92 € PSHR(B%a;7)) in the case .7 = C° + PSHg — PSHg.

(d) w13 = v93 = 0 in the case .7 = C° 4+ PSH.

(d)’ vi3,v93 € PSHR(Bd(a; 7’)) in the case .7 = CY + PSHRr — PSHg.
Let xe (¢ > 0) be the standard smoothing kernels on C? (cf. [9, Section 2.5]). It is well
known that v;;(a) = limc_(vi; * xc)(a) fori = 1,2 and j = 1,2,3 (cf. [9, Proposi-
tion 2.5.2 and Theorem 2.9.2]). In the case .7 = C° + PSH, since v11(a),vo1(a) € R,
7)12(0,), UQQ(CL) eRU {—OO} and v13 = vo3 = 0,

lim (u; * xe)(a) = lm ((vir * xe)(a) + (vi2 % xe) (@) = (viz * xe)(a))
= lim (vi1 * xe)(a) + Hm (v * xe)(a) — im(viz * xe)(a)
e—0 e—0 e—0
= vi1(a) + vie(a) — viz(a) = u;(a).
If 7 = C° + PSHR — PSHg, then, in the same way as above, we can also see u;(a) =
lime_.o(u; * xc)(a) for i = 1,2 because v;j(a) € Rfori =1,2and j = 1, 2, 3. Therefore,

(2) follows from inequalities (u1 * x)(a) < (u2 * x¢)(a) (Ve > 0). The last assertion can
be checked similarly. U

Let .7 be a type for Green functions on X. Let g be a locally integrable function on
X andlet D = 22:1 a;D; be an R-divisor on X, where D;’s are reduced and irreducible
divisors on X. We say g is a D-Green function of 7 -type (or a Green function of 7 -type
for D) if, for each point x € X, g has a local expression

l

g=u+ S (—a)log|fi (ae)

i=1
over an open neighborhood U, of x such that u € 7 (U,), where fi,..., f; are local
equations of D1, ..., D; on U, respectively. Note that this definition does not depend on

the choice of local equations fi, ..., f; on U, by the properties (1) and (3) of .7. The set
of all D-Green functions of .7 -type is denoted by G 7 (X; D).

Let g be a D-Green function of .7 -type. We say g is of upper bounded type (resp. of
lower bounded type) if, in the above local expression g = u + S>-_, (—a;)log|fi]? (a.e.)
around each point of X, u is locally bounded above (resp. locally bounded below). If g is
of upper and lower bounded type, then g is said to be of bounded type. These definitions
also do not depend on the choice of local equations. Note that the set of all D-Green
functions of .7 -type and of bounded type is nothing more than G 5+ (X; D).

We assume = ¢ Supp(D). Let g be a D-Green function of .7 -type. Let f1,..., f; and
fis- .., f] be two sets of local equations of Dy, ..., D; on an open neighborhood U, of x.
Let

l

!
g=u-+ Z(—ai) log |fi]? (a.e.) and g=1u'+ Z(—ai) log | £/? (a.e.)

=1 =1
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be two local expressions of g over Uy, where u,u’ € 7 (U,). Since & Supp(D), there
is an open neighborhood V,, of « such that V, C U, and fi,..., fi, f1,..., f| € Ox(Va).
Thus, by the properties (1) and (3) of 7,
1 !
u+ Y (—a)logl|fil’, o'+ (—ai)log|fi]* € 7(Vo),
i=1 i=1
and hence

l l
u+ Y (—ai)log|fil* =u' + > (—a;)log|f]|> € 7(Vy)
i=1 i=1
over V,, by the second property of .7. This observation shows that

l
) + ) _(—a;)log | fi(x)[?
i=1
does not depend on the choice of the local expression of g. In this sense, the value

l
)+ ) _(~a;)log | fi(x)[?
i=1
is called the canonical value of g at x and it is denoted by gcan(x). Note that gean €
J (X \ Supp(D)) and g = gean (a.e.) on X \ Supp(D). Moreover, if .7 is real valued,
then gean(z) € R. It is easy to see the following propositions.

Proposition 2.3.2. Let g be a D-Green function of C*°-type. Then the current dd°([g])+0 4
is represented by a unique C*>°-form «, that is, dd°([g]) + 04 = [«]. We often identifies the
current dd°([g]) + 6.4 with o

Proposition 2.3.3. Let 7' and 7" be two types for Green functions on X such that

T T"C T. Then G719 (X; D) =G4/(X; D) NG 71 (X; D).

Proposition 2.3.4. (1) If g is a D-Green function of 7 -type and a € R>, then ag is
an (aD)-Green function of 7 -type. Moreover, if x & Supp(D), then (ag)can(z) =
agecan ().

(2) If g1 (resp. g2) is a D1-Green function of 7 -type (resp. Da-Green function of
T -type), then g1 + go is a (D1 + D3)-Green function of 7 -type. Moreover, if
x & Supp(D1) U Supp(Da), then (g1 + 92)can(%) = (91)can(x) + (92)can ().

(3) We assume that —7 C 7. If g is a D-Green function of 7 -type, then —g is a
(—D)-Green function of 7 -type. Moreover, if x & Supp(D), then (—g)can(x) =
_gcan('r)'

(4) Let g be a D-Green function of 7 -type. If g > 0 (a.e.) and x & Supp(D), then
gcan(x) > 0.

Finally let us consider the following two propositions.
Proposition 2.3.5. Let D = by E1+- - -+ b, E,. be an R-divisor on X such that by, ...,b, €
R and E;’s are Cartier divisors on X. Let g be a D-Green function of 7 -type on X.

Let U be an open set of X and let ¢1,...,¢, be local equations of F1, ..., E, over U
respectively. Then there is a unique expression

g—u+z Dogloil® (ae)  (ue ()

on U modulo null ﬁmcnons. Thzs expression is called the local expression of g over U with
respect to ¢1, ..., ¢p.
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Proof. Let us choose reduced and irreducible divisors D1, ..., D; and «;; € Z such that
E;, = 22:1 a;;Dj for each i. If we set aj = Y., bjcyj, then D = 22:1 a;D;. For
each point x € U, there are an open neighborhood U, of x, local equations f1 z,..., fiz
of D1,...,D;on U, and u, € 7 (U,) such that U, C U and

l

g=us+ Y (—a;)log|fj.|* (ae.)

j=1
on U,. Note that

g =ug; + Z i) log H f] (a.e.)

and H =1 f] “ is a local equation of F; over Uz, so that we can find nowhere vanishing
= e;»¢; on U, for all

OL'L]

holomorphic functions ej 4, ..., e, on U, such that H ] I

1=1,...,r. Then
g—ux+z log\ezx|2+z O log ¢l (a.e.)
on U,. Thus, for z, 2’ € U

uw—l—z ) 1og |e; x| = Uy +Z ) loglei|?  (ae.)

on U, NU,s, and hence
UI+Z log’61x| = Uy’ +Z 10g’€zx‘

on U, N U,. This means that there is u € .7 (U) such that v is locally given by u, +
Sl (=bi)log|ei,|*. Therefore, g = u+ > I_,(—b;)log ;| (a.e.) on U. The unique-
ness of the expression modulo null functions is obvious by the second property of 7. [
Proposition 2.3.6. Let g be a D-Green function of 7 -type. Then we have the following:
(1) If g is of lower bounded type, then locally |¢| exp(—g/2) is essentially bounded
above for ¢ € H%/I(X, D).
(2) If g is of upper bounded type, then there is a D-Green function g’ of C*-type such
that g < ¢’ (a.e.).

Proof. We set D = Zi-:l a;D; such that aq,...,a; € R and D;’s are reduced and irre-
ducible divisors on X.
(1) Clearly we may assume that X is connected. For z € X, let

l
g=u+) (—a)log|fil* (ae)
=1

be a local expression of g around x, where fi,..., f; are local equations of Dy, ..., D;.
For ¢ € H/({,l (X,D), we set ¢ = f{“ e flb’ - v around x such that v has no factors of
fi,y--., fi. Then, as (¢) + D > 0, we can see that a; + b; > 0 for all 7, and that v is a
holomorphic function around x. On the other hand,

exp(—g/2)|¢| = exp(—u/2)| A1 01 | fu|HP0 0] (ae.),
as required.



18 ATSUSHI MORIWAKI

(2) By our assumption, there is a locally finite open covering {U) } e with the follow-
ing properties:
(a) There are local equations fy 1,..., fxn, of D1,..., Dy, onU,.
(b) There is a constant C, such that g < C — 3" a;log | f1:|? (a.e.) on Uj.
Let {px} rc be a partition of unity subordinate to the covering {U) } xcx. We set
g => (CA - a;log |f>\,i’2> :
AEX

Clearly g < ¢ (a.e.). Moreover, by Lemma 2.4.1, ¢’ is a D-Green function of C'°-
type. 0

2.4. Partitions of Green functions. Let X be a d-equidimensional complex manifold.
Let .7 be a type for Green functions. Besides the properties (1), (2) and (3) as in Subsec-
tion 2.3, we assume the following additional property (4):

(4) Foran openset U, ifu € 7 (U) and v € C*(U), then vu € 7 (U).
As examples, C° and C™ satisfy the property (4).
Lemma 2.4.1. Let D be an R-divisor on X. Let {U\} be a locally finite covering of X
and let {px} e be a partition of unity subordinate to the covering {Uy}en. Let gy be a

D -Green function of 7 -type on Uy for each \. Then g := A\g» is a D-Green
(Dly, typ g APAY
Sfunction of T -type on X.

Proof. We set D = a1D1 + --- + a,D,. Let f; , be alocal equation of D; on an open
neighborhood U, of z. As gy is a (D], )-Green function of .7-type on U, for A with
z € Uy,

gr = Unaz — Z ailog|fiz|* (ae)
around x, where vy , € .7 (Uy N U,). Thus

9=>_p(nn.—Y ailog|fizl’) (ae)
)\

= (Z pwm> — Zai log | f; x|
X

around z, as required. 0

The main result of this subsection is the following proposition.
Proposition 2.4.2. Let g be a D-Green function of 7 -type on X and let
D=bE1+- --+b.E,

be a decomposition such that E, . .., E, € Div(X) and by, ...,b, € R. Note that E; is
not necessarily a prime divisor. Then we have the following:

(1) There are locally integrable functions g1, . .., g, such that g; is an E;-Green func-
tion of T -type for each i and g = big1 + - - - + byg, (a.e.).

(2) If En, ..., E, are effective, by,...,by € R>o, g > 0 (a.e.) and g is of lower
bounded type, then there are locally integrable functions g, ..., g, such that g;
is a non-negative E;-Green function of .7 -type for each i and g = bygy + -+ +
brgr (a.e.).
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Proof. (1) Clearly we may assume that b; # 0 for all i. Let g} be an E;-Green function of
C®°-type. Then there is f € .7 (X)) such that f = g — (b1g] + -+ + brg..) (a.e.). Thus

g="bi(gy + [/b1) +b2gy + -+ brg, (ae.).
(2) Clearly we may assume that b; > 0 for all ¢. First let us see the following claim:

Claim 2.4.2.1. For each x € X, there are locally integrable functions g1 z, . . ., gr . and an
open neighborhood U, of x such that g; , is a non-negative E;-Green function of 7 -type
on Uy, for every i, and that g = b1g1,2 + - - - + brgr.2 (a.e.) on U,.

Proof. Let U, be a sufficiently small open neighborhood of x and let f; ;. be alocal equation
of E; on U, for every i. Let g = vy + > i_;(—b;) log | f; »|* (a.e.) be the local expression
of g on U, with respect to f14,..., frz. WesetI = {i | fi,(z) = 0}and J = {i |

First we assume I = (). Then, shrinking U, if necessarily, we may assume that
T
ve+ Y (=bi)log |fizl? € T (Us)
i=1
and F/; = 0 on Uy, for all ¢. Thus if we set

Gix = (1/sz) (U:v + Z(_bz) IOg |f1,x|2>
=1

for each ¢, then we have our assertion.

Next we consider the case where I # (. We put f = v, +3 i ;(—b;) log | fj|%. Then,
shrinking U,, if necessarily, we may assume that f € .7 (U,) and is bounded below. We
set

e — {f/a»#u» ~log|fial? i€,

0 ifi e J.
Note that g = >, b;g;» (a.e.) and that g; , > 0 around x for i € I. Thus, shrinking U,
if necessarily, we have our assertion. U

By using the above claim, we can construct an open covering {Uy}xca and locally
integrable functions g1 y, ..., g, x» on Uy with the following properties:

(i) {Ux}xen is locally finite and the closure of U is compact for every A.
(ii) g; x is a non-negative E;-Green function of .7 -type on U}, for every 1.
(iil) g = bigix + -+ brgr (a.e.) on Uy.
Let {px}rca be a partition of unity subordinate to the covering {U)}en. We set g; =
> _x PAgi- Clearly g; > 0 and

T T
9= ngly, =S 00> bigia =3 big.
A =1 i=1

A
Moreover, by Lemma 2.4.1, g; is an E;-Green function of .7 -type. O

2.5. Norms arising from Green functions. Let X be a d-equidimensional complex man-
ifold. Let g be a locally integral function on X. For ¢ € M(X), we define |$|, to be

|6y := exp(—g/2)|¢].

Moreover, the essential supremum of |¢|4 is denoted by ||¢|| 4, that is,
[6llg == ess sup {|¢ly(z) | 2 € X}
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Lemma 2.5.1. (1) || - || satisfies the following properties:
(1.1) [|A@llg = [M|l|@llg for all X € C and ¢ € M(X).
(12) [[6+ blly < 01l + 16l for all 6, > € M(X).
(1.3) For ¢ € M(X), ||¢|lg = 0if and only if = 0.

(2) Let V' be a vector subspace of M(X) over C. If ||¢||y < oo forall ¢ € V, then
||-|g yields a norm on V. In particular, if D is an R-divisor, g is a D-Green function
of T -type and g is of lower bounded type, then || - ||4 is a norm ofHﬁ]\A (X, D) (cf
Proposition 2.3.6), where 7 is a type for Green functions.

Proof. (1) (1.1) and (1.2) are obvious. If ||¢|y = 0, then |¢|, = O (a.e.). Moreover, as g
is integrable, the measure of {z € X | g(z) = oo} is zero. Thus |¢| = 0 (a.e.), and hence

¢ =0.
(2) follows from (1). [

Let ® be a continuous volume form on X. For ¢,1) € M(X), if ¢1p exp(—g) is inte-
grable, then we denote its integral

/ ¢ exp(—g)®
X
by <¢7 ¢>g

We assume that g is a D-Green function of C-type. We set
D=aD1+ -+ aqbDy,

where D;’s are reduced and irreducible divisors on X and aq,...,a, € R. Let us fix
x € X. Let f1,..., f; be local equations of D1, ..., D; around z, and let

z
g=u+Y (—a)log|fil’> (ae)

i=1
be the local expression of g around x with respect to f1, ..., f;. For ¢ € H?V‘ (X,D), we

set ¢ = f{’l . flblv around x, where v has no factors of fi,..., f;. Note that by, ..., b; do
not depend on the choice of fi, ..., f;. Since (¢) + D > 0, we have a; + b; > 0 for all
and v is holomorphic around x. Then

|lg = || ol exp(—u/2)  (ae.).
Let us choose another local equations f],. .., fl’ of D1,...,D; around x, and let

!
g=u'+) (~a)log|fi]® (ae)

i=1

be the local expression of g around = with respect to fi, ..., f/. Moreover, we set ¢ =

1b1 . prby
l

1 v" around x as before. Then

|6l =[]0 [ f]| 90 [ exp(—u'/2)  (ace.).
Note that
[Ful 0 | o exp(—u/2) and £ A [ exp(—u!/2)
are continuous, so that
|0 Al o] exp(—u/2) = [ 7|90 A9 exp(—u /2)

around x. This observation shows that there is a unique continuous function i on X such
that |¢|, = h (a.e.). In this sense, in the case where g is of CY-type, we always assume
that |¢|, means the above continuous function h. Then we have the following proposition.
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Proposition 2.5.2. Let g be a D-Green function of C°-type.
(1) For ¢ € HY,(X, D), ||q is locally bounded above.
(2) If X is compact, then (¢, )4 exists for ¢, € HRA (X, D). Moreover, ( , ), yields
a hermitian inner product on H?vt (X, D).

3. GROMOV’S INEQUALITY AND DISTORSION FUNCTIONS FOR R-DIVISORS

Let X be a d-equidimensional compact complex manifold. Let D be an R-divisor on X
and let g be a D-Green function of C°-type. Let us fix a continuous volume form ® on X.
Recall that |¢|4, ||¢||4 and (¢, ¥), for ¢, € HY, (X, D) are given by

[Py := [¢] exp(—g/2),
[¢]lg := ess sup{|¢]y(z) | € X},

(6, 10)g = /X o exp(—g)®.

As described in Subsection 2.5, we can view |¢|, as a continuous function, so that |¢|, is
always assumed to be continuous.

In this section, let us consider Gromov’s inequality and distorsion functions for R-
divisors.

3.1. Gromov’s inequality for R-divisors. Here we observe Gromov’s inequality for R-
divisors.

Proposition 3.1.1 (Gromov’s inequality for an R-divisor). Let Dy, ..., D; be R-divisors
on X and let g1, ..., q; be locally integrable functions on X such that g; is a D;-Green
Sfunction of C*°-type for each i. Then there is a positive constant C' such that

H¢H§lgl+...+algl <C(+lar]+---+ ‘al’>2d<¢7 ¢>a1g1+~--+azgz
holds for all ¢ € HRA(X,alDl +--4+aqD))and ay,...,a; € R

Proof. We can find distinct prime divisors I'1, ..., ', on X, locally integrable functions
M-, on X, C-functions fi,. .., f; and real numbers «;; such that -y, is a I';-Green
functions of C'*°-type foreach j =1,...,r,

r r
D; = Z aijl“j and g¢g; = fi + Z Q75 (a.e.).
J=1 J=1

Then

r l l
a1Dy+ - +aqD; = Z (Z aiaij> I+ Z a;(the zero divisor),

j=1 \i=1 =1
r l l
a1gi1 +---+ argr = Z <Z aia¢j> Yj + Zalfz (a.e.).
7j=1 \=1 =1

Moreover, if we set A = max{|a;;|}, then

l r l l l
L) ail + Y01 aiag| <1+ (Ar+ 1)) Jai| < (Ar+1) (1—}—2\@\).
=1 =1 =1

j=1 li=1
Thus we may assume that Dy, ... D, are distinct prime divisors and
Dyy1=---=D;=0.
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Let U be an open set of X over which there are local equations fi,..., frof D1,..., D,
respectively.

Claim 3.1.1.1. Forall ¢ € ]'{JO\/[(X7 a1D1+ -+ aqDy)and ay,...,a €R,
ofi - gl

is holomorphic over U, that is, there are by, . .., b, € Z and a holomorphic function f on
Usuchthatgb:f{’1~-f£”“fandb1+a1 >0,...,b.+a, >0.

Proof. Fixx € U. Let f; = e; fi1 - - - fic, be the prime decomposition of f; in Ox ,, where
e; € O% , and f;;’s are distinct prime elements of Ox ;. Let D;; be the prime divisor
given by f;; around x. Since ¢ € HRA(X, a1Dy + -+ + a;D;), we have

(¢) +a1D1+ -+ + Dy
:(¢)+GID11+"'+CL1D101+"'+arDr1+"'+arDrc,« >0

around z. Note that D11,...,Dicy,...,Dr1,..., Dy, are distinct prime divisors around
x. Thus gbflLflJ e fngllJ e }fTJ e ,Lng is holomorphic around x. Therefore, as

Fldoplarl = elenkelar] glon) "'fﬁzlﬂ cogland L plard

req
¢ fltalj .. fTL‘“J is holomorphic around z. O

By the above observation, the assertion of the proposition follows from the following
local version. 0

Lemma 3.1.2. Let a, b, c be real numbers with a > b > ¢ > 0. We set
U=1{2€C?||z|<a}l, V={2€C?||z| <bland W = {z € C? | |2| < c}.
Let ® be a continuous volume form on U, f1,..., fi € Oy(U), v1,...,v € C®(U) and
gi = v; — log \fi\Q
fori=1,...,1 Forai,...,a; € R, we set

V(a1,...,al)—{ b phy f€OuU)andby,... b € Zwith }

by+a1 >0,....,bp+a; >0
(Note that V (a1, . ..,a;) is a complex vector space.) Then there is a positive constant C
such that

max{|¢|* exp(—a1g1 — - — aq1)(2)}
zeW

< C(laa] + -+ |ar] + 1)2d/ |6? exp(—argr — -+ — aig))®
\%

holds for all p € V(ay,...,a;) and all ay,...,a; € R.
Proof. We set

up = exp(—vy),...,u; = exp(—vp), uj41 = exp(v1),. .., uzy = exp(vy).
Then in the same way as [13, Lemma 1.1.1], we can find a positive constant D with the
following properties:
(a) For w9,z € V, ui(x) > u;i(z0)(1 — D]z — z0|') for all i = 1,...,2l, where
|2|" = |z1| + - + |zq| for z = (21,...,2q) € C
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(b) If zg € W, then B(xg,1/D) C V, where
B(x9,1/D) = {zx € C? | [z — x| < 1/D}.
We set
V-1

Deon = <2> dzi NdZi N -+~ Ndzg N dZg

Then we can choose a positive constant e with & > e®,,. For
_ g1 by v
¢_f1 lfe (alv"'aal)a

we assume that the continuous function

|9|? exp(—aigr — - -+ — a1q1)

= | fo[2Orran) 200t £12 exp(—agvy — - — qvy)

on W takes the maximal value at zq € W. Let us choose ¢; € {£1} such that a; = €;|a;|.
Note that

!
exp(—ajvi(x) — - —aqu(z)) = Hexp(—eivi(m))m”
i=1

I
> <H GXP(—eivi(xo))“”) (1 — Dz — xo|')larl+-Flal
i=1

= exp(—a1vi(xo) — - -+ — qyvi(x0))(1 — D|x — $O|’)\al|+--~+\az|

on B(xg,1/D). Therefore,

/ 0|2 exp(—a1g1 — -+ — ayg))® > eexp(—avy (zo) — - - - — avy(xg)) X
v

/B( . ’fl‘Q(bl‘i’al) ... |fl|2(bl+al)‘f|2(1 ~ Dl - $0|’)‘a1‘+'"+‘al|q>can_
Z0,

If we set © — 29 = (riexp(v/—1601),...,rqexp(v/—16,)), then, by using [8, Theo-
rem 4.1.3] and the pluriharmonicity of | f;|2(01Fe1) ... | f;|2(Bita)| £12,

/ PO PO £2(1 = Dz — )1 HHl g,
B(z0,1/D)

27 27
= 2(bitar) .| £ 12(00Far)| g2
B %1+~~+rd<1/p </0 /0 4N N I /1 e ¥ il e 1 d9d>

r120,...,7r¢>0
Xrye-- Td(l — D(/rl + -+ rd))|a1|+~~-+|al‘dr1 N drd

> (2m) | f1 (o) PO - | fy (o) PO | f (o)

X / r1 .- Td(l — D(’f’l + -+ Td))‘aleHal'dT‘l e dT’d.
[0,1/(dD)]¢
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Therefore, we have

/V (¢ exp(—a1g1 = -+ — wg))®
d
- (60(537;)% géaWX{Wz exp(—a1g1 — -~ — agr)(2)}

x/ ty-tq(1 = (1/d)(ty + - - -+ tg)) - Fladgr . at,.
[0,1)¢

Hence our assertion follows from [13, Claim 1.1.1.1 in Lemma 1.1.1]. O

3.2. Distorsion functions for R-divisors. Let D be an R-divisor on X and let g be a
D-Green function of C%-type. Let V be a complex vector subspace of HJQA(X ,D). Let

é1, ..., ¢; be an orthonormal basis of V' with respect to ( , )4. It is easy to see that
|o1l5 + -+ ol
does not depend on the choice of the orthonormal basis ¢1, . . . , ¢; of V, so that it is denoted

by dist(V'; g) and it is called the distorsion function of V' with respect to g.

Proposition 3.2.1. Let V be a complex vector subspace of HY(X, D). Then an inequality
s2(2) < {5, 8)g dist(Vig)(x) (Ve € X)

holds for all s € V. In particular,

1/2
|s|g<x><</x @) Isll, /A Vg @) (Ve € X).

Proof. Let ey, ..., ey be an orthonormal basis of V' with respect to ( , ),. If we set s =
aie1 + -+ +anyepn for s € V, then
(5,8)g = laa]* + -+ + lan ",
Therefore, by the Cauchy-Schwarz inequality,
[slg(2) < lanllerlg(z) +--- + lanllenlq(2)

< VIaP+ -+ lanPyflei3@) + -+ len ()

=1/ (s,8)41/dist(V; L)(z).

g

Lemma 3.2.2. Let ¢’ be another D-Green function of CO-type such that g < g’ (a.e.). Let
V be a complex vector subspace of H*(X, D). Then dist(V; g) < exp(g’ — g) dist(V; ¢').

Proof. We can find a continuous function u on X such that w > Oon X and ¢’ = g +

u (a.e.). Let ¢1,..., ¢ be an orthonormal basis of V' with respect to ( , ), such that
é1, ..., ¢ are orthogonal with respect to (, )4. This is possible because any hermitian
matrix can be diagonalizable by a unitary matrix. Then

®1 o1

Vienong VoLl

form an orthonormal basis of V' with respect to ( , ),. Thus

o1)? o2
oy ol

dist(V;g) = (61,01), (d1,P1)g
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On the other hand, as \@-]!2], exp(u) = |;

2
g’
0,00, = [ 1oy emwe> [ |afo-1
X X
Therefore the lemma follows. O

Let us consider the following fundamental estimate.

Theorem 3.2.3. Let R = ,,- Ry, be a graded subring of @,,~o H(X,nD). If g is
a D-Green function of C*°-type, then there is a positive constant C with the following
properties:

(1) dist(Ry,;ng) < C(n+ 1) foralln > 0.

) dist(Ry;ng)  dist(Lem; mg) - dist(Ry4m; (n +m)g)
Cn+1)3  Cim+1)3¥ —  Cln+m+1)3d

foralln,m > 0.

Proof. Let us begin with the following claim:

Claim 3.2.3.1. There is a positive constant Cy such that dist(R,;ng) < C1(n + 1)3? for
alln >0

Proof. First of all, by Gromov’s inequality for an R-divisor (cf. Proposition 3.1.1), there is
a positive constant C” such that

18]Iy < C"(n +1)°4¢, )ng
for all ¢ € H%A(X, nD) and n > 0. Let ¢1, ..., ¢, be an orthonormal basis of R,,. Then
dist(Rn;ng) < é1llng + - + 01, llng
< C'(n+ 12 (1,31 )ng + - + (D1, D1, ng) < C'(n+1)* dim R,
as required. U
Claim 3.2.3.2. There is a positive constant Cy such that
dist(Rp; ng) - dist(Rm; mg) < Co(m + 1)>? dist(Rprm; (n + m)g)
forn >m > 0.

Proof. Letty,..., t; be an orthonormal basis of R,,. Foreach j = 1,...,[, we choose an
orthonormal basis s1,..., s, of R, such that sit;,...,s.t; are orthogonal in I, ,,. We
set I = {1 <i<r|st; #0} As

Sitj

\/ (sitj, Siti) (ntm)g

can be extended to an orthonormal basis of R,,,, we have

el

2
| S’itj | (n+m)g

< dist(Rp4m; (n +m)g).

= (sitj, Sitj) (n+m)g
By using Gromov’s inequality as in the previous claim,

<sitja 5itj>(n+m)g < <5ia 8i>n9||tj||72ng < C,(m + 1)2d<tja tj>mg = Cl(m + 1)2d'
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Hence
dlSt(Rm ng |tj Z |S t]|(n+m Z |Sltj (n+m)g
el
Cl(m + 1)2d

2
|Sitj |(n+m)g

= (sity, Sitj) (nm)g
< C'(m + 1)24dist(Rym; (n +m)g),
which implies
dist(Ry; ng) - dist(Rp; mg) < dim(R,,)C" (m + 1)*? dist(Ry,1m; (n +m)g),
as required. O

We set C' = max{C], 8d02}. Then, forn > m > 0,

C(n+1)%C(m +1)3¢ sded [ M1\
> 1 _
C(n+m+1)3d = Ca(m+1)78 n+m+1
13
> 3ded [ Mt
> Co(m +1)°8 (2n+1

3d
> Cy(m +1)3784 <;> = Cy(m +1)3.

Thus the proposition follows from the above claims. 0

4. PLURISUBHARMONIC UPPER ENVELOPES

The main result of this section is the continuity of the upper envelope of a family of
Green functions of PSHp-type bounded above by a Green function of C-type. This will
give the continuity of the positive part of the Zariski decomposition.

Throughout this section, let X be a d-equidimensional complex manifold. Let us begin
with the following fundamental estimate.

Lemma 4.1. Let f1,..., fr be holomorphic functions on X such that f1,..., f, are not
zero on each connected component of X. Let ay, . ..,a, € R>qand M € R. We denote by
PSH(X; fi1,..., fr,a1,...,ar, M) the set of all plurisubharmonic functions uw on X such
that

u< M- Zai log|fi]? (a.e.)

i=1
holds over X. Then, for each point x € X, there are an open neighborhood U, of x and a
constant M. depending only on f1, ..., f, and x such that

u< M+ M,(a; + -+ a,)
on U, forany w € PSH(X; f1,..., fr,a1,...,ar, M).
Proof. Let us begin with the following claim:
Claim 4.1.1. Forany w € PSH(X; f1,..., fr,a1,...,ar, M),
T
u< M= alogl|f;?

i=1
holds over X .
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Proof. Clearly we may assume that a; > 0 for all 4. Let us fix z € X. If f;(z) = 0 for
some %, then the right hand side is oo, so that the assertion is obvious. We assume that
fi(x) # 0 for all 4. Then the right hand side is continuous around z. Thus it follows from
Lemma 2.3.1. O

Claim 4.1.2. Lete € R.g, a1,...,aq € R>p, and M € R. Then
u< M —2log(e/4)(a1 + -+ + aq)
holds on Ag/4for any u € PSH(A%; 21,...,24,a1,...,aq, M), where (21, ..., zq) is the
coordinate of C* and
A ={(z1,...,2q) €EC| |21 < t,...,|2a| < t}.

fort € Ryy.
Proof. Note that if (z1,...,24) € A?/4, then

{(21 + (€/2)®™ ... zq + (¢/2)e*™ 1) | 01,...,04 € [0,1]} C AL
Moreover, as

¢/2 = |(e/2)e"™% | = |2 + (¢/2)e™ — 2]
< 2+ (/)€™ | + |25] < |z + (€/2)e*™% | + ¢/4,

we have |z; + (€/2)e*™%| > ¢/4 for j = 1,...,d. Thus, by [8, Theorem 4.1.3],

1 1
u(zl,...,zd)g/ / u(z1 + (€/2)e2™ 0 zq + (e/2)e*™04)db, - - - dby
0 0

1 1 n
g/ / M = ajlog|z; + (¢/2)e”™ > | dby - - dbg
0 0 .
7j=1

d 1
=M - Z a; / log |2 + (¢/2)e* % |2 dg;
j=1 70

IA

d 1 d
M — Zaj/ log(e/4)%d0; = M — 2log(e/4) Zaj.
j=1 70 j=1

Next we observe the following claim:

Claim 4.1.3. If Supp{z € X | fi(x)--- fr(x) = 0} is a normal crossing divisor on X,
then the lemma holds.

Proof. We choose an open neighborhood V; such that V,, = Acf and
Supp{z € X | fi(z)--- fr(z) = O}

is given by {21 - - - z; = 0}. Then there are b;; € Z>( and nowhere vanishing holomorphic
functions v1, ..., v, on A‘li such that

b b
fi= zll’“ My, fr = zll’“ ez v
Thus

r r l r
M — Zai log|fi|2 =M — Zai 10g|vi]2 — Z (Z aibij> log |zj|2.

=1 i=1 j=1 \i=1
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We choose Mi, My € R such that My = max{b;; | ¢ = 1,...,r,j = 1,...,l} and
My > maXzeAf/2{_ log |v;(2)|?} for all 4. Then

r l
M—Zailog|fi|2 SM+M2(a1+~-+ar)—ZMl(al—i--”—Far)log\zj\z
i=1 j=1

on Ail/Q. Thus, by the previous claim, for any v € PSH(X; f1,..., fr,a1,...,a,, M),
u< M+ (My—2log(1/8)IMy)(ar + - - + ay)

on A¢

¢ O

Let us start a general case. Let 7 : X’ — X be a proper bimeromorphic map such
that Supp({7*(f1)---7*(f-) = 0}) is a normal crossing divisor on X’. Note that if
w is a plurisubharmonic function on X, then 7*(u) is also plurisubharmonic on X’ (cf.
[9, Corollary 2.9.5]). By the above claim, for each point y € 7~!(x), there is an open
neighborhood Uy, of y and a constant Mz// depending only on fi, ..., f, and y such that, for
any u € PSH(X; f1,..., fr,a1,...,ar, M),

fr(u) <M+ My(ay + -+ ay)

on Uy. As 7 1(x) C Uyer-1(s) Uy and 7' (2) is compact, there are y1, ..., ys such
that 7~ 1(z) C Uy, U--- U U,,. We can choose an open neighborhood U, of x such that

7 (Uy) C Uy, U---UUy,. Thus, if we set M/, = max{M, ,..., M, }, then
[f(u) <M+ M(ar+ -+ ay)
on 7~ 1(U,), and hence the lemma follows. O

Let « be a continuous (1, 1)-form on X. We set
i) ¢:X — {—oc}UR.
PSH(X:a) =< ¢ | (i) ¢ e (C>+PSH)(X).
(i) [o] + dde([¢]) > 0.
First we observe the following lemma.

Lemma 4.2. We assume that X is compact and that o + dd®(vy) is either positive or zero
for some C™-function vy on X. If ¢ € PSH(X;a) N C°(X), then there are sequences

{(ﬁn}?ozozl and {‘Pn}zozl in
PSH(X;a) N C™(X)

such that ¢, < ¢ < oy, on X forall n > 1 and that
Tim (16— dnlswp = lim_ [lgn — dllawp = 0.
Proof. First we assume that o = dd®(—1)y) for some C'*°-function ¢y on X. Then
PSH(X; o) = {¢ho + ¢ | c € RU{—00}}

because X is compact. Thus the assertion of the lemma is obvious.
Next we assume that « is positive. By [4, Theorem 1], there is a sequence of {¢;, }5°
in PSH(X; o) N C*°(X) such that

p1(z) > pa(x) 2 -+ 2 op(T) = pntr(@) 2 -+ > ¢(2)
and ¢(x) = lim,, o pn(x) forall x € X. Since X is compact and ¢ is continuous, it is
easy to see that lim, . ||¢n — @|lsup = 0. We set ¢y, = vy, — ||on — @||sup for all n > 1.
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Then ¢, € PSH(X;a) N C*°(X) and ¢, < ¢. Note that ||¢ — ¢y |sup < 2[|on — @llsup-
Thus limn_wo H¢ — ¢n”sup =0.

Finally we assume that o/ = « 4 dd(1)p) is positive for some C'*°-function )y on X.
Then
¢ = ¢ — by € PSH(X;a') N C°(X).
Thus, by the previous observation, there are sequences {¢/,}>2 ; and {¢],}5° in
PSH(X; /) NC™(X)

such that ¢/, < ¢/ < ¢! on X forall n > 1 and that

lim H¢, - ¢;LHSUP = lim H“IO;’L - fb/Hsup = 0.

n—oo n—oo
We set ¢y, := @), + 1o and @, := ¢/, + 1 for every n > 1. Then

Onyon € PSH(X;0)NC®(X) and ¢, < ¢ <,

for all n > 1. Moreover, lim,, . ||¢n, — @[lsup = limp—o0 [[on — @lsup = 0. O

Let A be an R-divisor and let g4 be an A-Green function of C*°-type on X. Let o be a
(C°°-form such that

[a] = dd“([ga]) +da
(cf. Proposition 2.3.2). Here let us consider the natural correspondence between Gpgy (X ; A)
and PSH(X; o) in terms of g 4.

Proposition 4.3. If ¢ € PSH(X; «), then ¢ + g4 € Gpsu(X; A). Moreover, we have the
following:

(1) Foru € Gpgu(X; A), there is ¢ € PSH(X; «) such that ¢ + g4 = u (a.e.).

(2) For ¢1,¢2 € PSH(X; ),

01 < o <=  P1+9a < P2+ ga (ae.).
(3) For ¢ € PSH(X; ),
p(z) # —0o (Vz € X) <= ¢+ ga € Gpguy (X; A).
(4) For ¢ € PSH(X; ),
peCT(X) = ¢+ga€Go=(X;A).
(5) For ¢ € PSH(X; ),
¢ € CO(X) <~ ¢+9ga€Goo(X;A).

Proof. Weset A =a1D1+---+ a;D;, where D;’s are reduced and irreducible divisors on
X and ay,...,a; € R. Let U be an open set of X and let f1,..., f; be local equations of
Dy, ..., D;on U respectively. Let

!
ga=h— Zai log|fi]? (a.e.)
i=1
be the local expression of g4 with respect to fi, ..., f;, where h € C°°(U). Then
l
gaté=(h+¢) = alog|fi’ (ae).
i=1

Since a = dd°(h) on U, we have

dd*([h + ¢]) = [o] + dd*([¢]) > 0.
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Thus g4 + ¢ € Gpsu(X; A) and

ga+ ¢ =(h+¢)— Zazlog]fll2 (a.e.).

is the local expression of g4 + ¢ with respect to f1, ..., fi.
(1) For u € Gpgn(X; A), let

!
u=p-— Zai log | fi|? (a.e.)

i=1
be the local expression of u with respect to fi,..., f;, where p is plurisubharmonic. It is
easy to see that p — h does not depend on the choice of the local equations f1, ..., f;. Thus

there is a function ¢ : X — {—oo} U R such that ¢ is locally given by p — h. Moreover
dd*([p — h]) + o] = dd*([p]) > 0.
Hence ¢ € PSH(X; ) and ¢ + g4 = u (a.e.).
(2) Clearly
01 < ¢g(ae.) <= 1 +9ga <2+ ga(ae.).
On the other hand, by Lemma 2.3.1,

$1 <2 = ¢1 < 2 (ae).
(3), (4) and (5) are obvious because

¢+ga=(h+¢) - Zazloglfll2 (a.e.)

=1

is a local expression of ¢ + g4 and h is C'*°. O

Let .7 be a type for Green functions on X such that PSH is a subjacent type of .7, that
is, the following property holds for an arbitrary open set U of X: if u < v (a.e.) on U for
uwe PSH(U) andv € .7 (U), thenu <vonU.

Proposition 4.4. Let A and B be R-divisors on X with A < B. Let h be a B-Green
function of 7 -type on X such that h is of upper bounded type. Let {gx} xca be a family of
A-Green functions of PSH-type on X. We assume that g\ < h (a.e.) for all X € A. Then
there is an A-Green function g of PSH-type on X with the following properties:

(a) Let us fix an A-Green function g of C*°-type. Let o be a unique C*°-form with
[a] = dd([ga])+0a. If we choose ¢ € PSH(X; ) and ¢ € PSH(X; o) for each
A € Asuchthat g = ga + ¢ (a.e.) and g, = ga + ¢, (a.e.) (¢f. Proposition 4.3),
then ¢ is the upper semicontinuous regularization of the function given by

> sup{¢px(z)}.
AEA

In particular, geay is the upper semicontinuous regularization of the function given
by
T = Sup{(g)\)can(x)}
AEA
over X \ Supp(A).
(b) g < h (a.e.).
(c) Ifthere is gy such that gy € Gpsu, (X; A), then g € Gpsh, (X; A).
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Proof. Let A =a1Dy+ -+ aqD;and B = b1 D1 + - -+ 4+ b;D; be the decompositions

of A and B such that D;’s are reduced and irreducible divisors, a1, ...,a;,b1,...,b; € R
and Dy U -+ U D; = Supp(A4) U Supp(B). Let U be an open set of X and let fi,..., f;
be local equations of Dy, ..., D; over U respectively. Let

h=uv+ Z(—bi) log |fi]> (ae.)

be the local expression of A with respect to f1,..., f;. Moreover, let

!
g =ur+ Y (—a)log|fil* (ae.)
=1

be the local expression of gy with respect to fi, ..., f;. Then
!

uy <v—Y (b —a;)log|fi]* (ae)

i=1
holds for every A € A. Note that v is locally bounded above. Thus {u) } e is uniformly
locally bounded above by Lemma 4.1. Let u be the function on U given by

u(z) = sup{uy(z) | A € A}

Let @ be the upper semicontinuous regularization of u. Then 4 is plurisubharmonic on U
(cf. Subsection 2.1). Let fi,..., f/ be another local equations of Dy, ..., D;. Then there
are e, ..., e, € OF(U) such that f] = e; f; for all 4, so that

l
gy = (u,\+2ai 10g|ei|2> Z —a;)log [fII* (ae.)

i=1 =1
is the local expression of gy with respect to f1, ..., f/. Thus, if we denote the plurisubhar-
monic function arising from f1, ..., f/ by @/, then, by Lemma 2.3.1,

!
o =1+ Z a;log |e;|?.
i=1

This means that
l

Z —a; 10g|f1

does not depend on the choice of fi, ..., fyover U\Supp(A). Thus thereis g € Gpsp(X; A)
such that

l
g|U=ﬂ—|—Z —a;)log |fi> (ae.).
=1

Letga = ug + Zizl(—ai) log | f;|? (a.e.) be the local expression of g4 with respect to
fi,---, fi. Then ¢ = uy — ug and ¢ = @ — u4. Thus (a) follows.

By (@), gcan is the upper semicontinuous regularization of the function ¢’ given by
g'(x) = supyea{(gr)can(z)} over X \ Supp(A). As PSH is a subjacent type of .7, we
have (gx)can < hean 0n X \ (Supp(A) U Supp(B)) for all A € A. Note that g = ¢’ (a.e.)
(cf. Subsection 2.1). Thus we have g < h (a.e.).

Finally we assume that gy € Gpgp, (X; A) for some A\. Then uy < @ (a.e.), so that
uy < @by Lemma 2.3.1. Thus @(z) # —oc. Therefore, g € Gpsp, (X; A). O
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Let A be an R-divisor on X and let g be a locally integrable function on X. We set
G7(X;A)<g ={ue Gz (X;A) |u<g(ae)},
where G 7(X; A) is the set of all A-Green functions of .7 -type on X.

Lemma 4.5. Let A and B be R-divisors on X with A < B. Let g be a B-Green function
of C>®-type (resp. C°-type). There is an A-Green function g4 of C>®-type (resp. C°-type)
such that

ga < gp (a.e.) and GpsHy(X;A)<g, = Gpsup (X;A)<gp-

Proof. Weset A = a1D1 + -+ apDy and B = by Dy + --- + b, D, where D;’s are
reduced and irreducible divisors on X and aq,...,an,b1,...,b, € R. Forz € X, let U,
be a small open neighborhood of x and let fi,..., f, be local equations of D1,..., D,
on U, respectively. Note that if x € D;, then we take f; as the constant function 1. Let
g = hy — >, bilog |fi|> (a.e.) be the local expression of gg on U, with respect to
fi,.-., fn. Shrinking U, if necessarily, we may assume that there is a constant M, such
that |h,| < M, on U,.

Claim 4.5.1. There are an open neighborhood V,, of x and a positive constant Cy, such
that V, C U,,

hy +Cy — Zai log|fil* < gp (ae.)

on V,, and that
u<h,+C,— Zai log |f¢]2 (a.e.)

()

on Vy for all u € Gpgny (X A)<gp.

Proof. For u € Gpsn, (X;A)<gp let u = py(u) — Y, ailog|fi]? (a.e.) be the local
expression of u on U, with respectto f1,. .., fn. Then u < gp (a.e.) is nothing more than

pa(u) < hy — Z(b’ —a;)log|fi> (ae.).
i
If either a; = b; or ¢ D; for all 4, then ), (b; — a;) log |f;|*> = 0 on U,. Thus our
assertion is obvious by taking C, = 0, so that we may assume that a; < b; and z € D, for

some 7. By Lemma 4.1, there are an open neighborhood U/, of x and a positive constant
M, such that U], C U, and p,(u) < M, on U, for all u € Gpsp, (X; A)<g,. Note that

M, = =My + (M}, + M) < hy + (M, + M,)
on U,. Thus if we set C,, = M, + M,, then p,(u) < hy + C, on U, for all u €

Gpsng (X5 A)<gy. Aslimy_, > (b; —a;) log | fi]?(y) = —oc, we can find an open neigh-
borhood V, of z such that V,, C U, and C;, < — ", (b; — a;)log | f;|* on V.. Therefore,

pa(w) < he + Cy < hy — 3 (bi — a;) log ] fif?

7

on V, for all u € Gpsn, (X; A)<gy, as required. O

By using Claim 4.5.1, we can find an open covering {V)} ea of X and a family of
constants {C) } xep With the following properties:

(1) {V\}rea is alocally finite covering.
(2) There are local equations fy 1,..., fn, of D1,..., D, on V) respectively.
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(3) Let gg = hy — >, bilog|fri]* (a.e.) be the local expression of g on V) with
respect tofy 1,..., fan. Then

ha+Cx =Y ailog|fril* <gp (ae.)
on V), and that

u<hy+Cy— Zai log |fril® (ae.)

)

on V) forall u € Gpghy (X; A)<gp-
Let {pa}rca be a partition of unity subordinate to the covering {V) } xen. We set

ga = ZPA (h)\ +Cx — Zai log |fA,z'\2> :
y

7

By Lemma 2.4.1, g4 is an A-Green function of C*-type (resp. C-type). Moreover,
ga < gB (a.e.) and u < ga (a.e.) for all u € Gpgn, (X; A)<gy. Therefore the lemma
follows. U

The following theorem is the main result of this section.

Theorem 4.6. Let A be an R-divisor on X. If X is projective and there is an A-Green
function h of C*°-type such that dd°([h]) + 0 4 is represented by either a positive C*°-form
or the zero form, then we have the following:

(1) Let B be an R-divisor on X with A < B. Let g be a B-Green function of C°-type.
Then there is g € Goonpsu(X; A) such that g < gp (a.e.) and

u<g(ae) (Yue Gpsug(X;A)<gy)-

(2) If u € Geonps(X; A), then there are sequences {uy, }o2 | and {v,}22 , of con-
tinuous functions on X with the following properties:
2.1) up, > 0and v, > 0foralln > 1.
(2.2) limy— o0 ||tn|lsup = limy— oo ||vn|lsup = O.
(2.3) u— up,u+ vy, € Goonpsa(X; A) alln > 1.

Proof. (1) Let us begin with the following claim:

Claim 4.6.1. There is g € Gpsuy, (X; A) such that g < gp (a.e.) and
u<g (ae) (Vué€ Gpsy(X;A)<gy)-

We say g is the greatest element of Gpsny (X; A)<g, modulo null functions.

Proof. Note that PSH is a subjacent type of C° by Lemma 2.3.1, and that h — ¢ €
Gpshg (X; A)<g,, for some constant ¢. Thus the assertion follows from Proposition 4.4.
O

Claim 4.6.2. If gp is of C*°-type, then the assertion of (1) holds.
Proof. By Lemma 4.5, we may assume that A = B. Let o be a C°°-form such that
[a] = dd*([ga]) + da.
We set
PSH(X;a)<p = {¢ € PSH(X; ) | ¢ < 0}.

By our assumption, we can find a C°°-function vy such that g4 + 1y = h (a.e.). Note that
[a + dd°(1po)] = dd®([h]) + 4. Thus o + dd(1)p) is either positive or zero.
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First we assume that « 4+ dd®(¢)g) is positive. Let g be the greatest element of

Grshg (X5 A)<ga

modulo null functions (cf. Claim 4.6.1). We choose ¢ € PSH(X; «) and v, € PSH(X; )
for each u € Gpgn, (X; A)<g, such that g = g4 + ¢ (a.e.) and u = g4 + 1, (a.e.) (cf.
Proposition 4.3). Then

{rlzZ)U ‘ u e GPSH]R(X§A)§gA} — PSH(Xva)SO

Moreover, by our construction of g (cf. Proposition 4.4 and Claim 4.6.1), ¢ is the upper
semicontinuous regularization of the function ¢’ given by

¢'(x) = sup{tpu(z) | u € Gpsny (X5 A)<g, }(= sup{)(z) | ¢ € PSH(X;a)<0})

for x € X. On the other hand, by [3, Theorem 1.4], ¢’ is continuous. Thus ¢ = ¢’ and ¢
is continuous. Therefore the claim follows by Proposition 4.3.

Next we assume that « + dd(1)g) = 0, that is, & = dd®(—1¢). Then
PSH(X;a) ={¢o+c|ce RU{—o0}}.

Let g be the greatest element of Gpgpy (X; A)<g4, modulo null functions. Then, by Propo-
sition 4.3, there is ¢ € R such that g = g4 + (¢0 + ¢) (a.e.). Thus the claim follows in this
case. 4

Finally, let us consider a general case. First of all, we may assume A = B as before.
We can take a continuous function f on X such that g4 = h + f (a.e.). By using the
Stone-Weierstrass theorem, there is a sequence {u,}>>; of continuous functions on X
such that lim,, o || tp||sup = 0 and f + w,, is C*° for every n. Then, as ga + u, =
h+ (f +un) (a.e.), ga + uy, is of C*-type for all all n. Let g (resp. g,,) be the greatest
element of Gpshy (X; A)<g, (resp. Gpshg (X; A)<gatu,) modulo null functions. Note
that the greatest element of Gpspyg (X; A)<g, +|uy s, MOdulo null functions is given by
g £ ||un||sup- By the previous claim, g, € Gcoqpsy(X; A). Moreover, since

gaA — Huanup < gA + up < ga + Hun”sup (a.e.),
we have
9 — llunllsup < gn < g+ [[un[sup (a-e.)

foralln. Letg = v + Zﬁzl(—ai) log | fi|? (a.e.) and g,, = v, + Zﬁzl(—ai)]filz (a.e.)
be local expression of g and g,,. Note that v,, is continuous for every n. By Lemma 2.3.1,
U — |[tn]lsup < vn < v+ ||tn|sup holds for all n. Thus v, converges to v uniformly, which
implies that v is continuous.

(2) Let o/ be a C°°-form such that [o/] = dd°([h]) 4+ d 4. By our assumption, o/ is either
positive or zero. By Proposition 4.3, there is ) € PSH(X; /) such that 1) is continuous
and ¢ + h = u (a.e.). Thus, by Lemma 4.2, there are sequences {u,, }5° ; and {v, }5° ; of
continuous functions on X with the following properties:

(a) up, > 0and v, > 0foralln > 1.

(b) limy, oo ”uanup = lim;,, o ||Uanup =0.

(©) ¥ — up, ¥ + v, € PSH(X; /) N C*(X) for every n > 1.
Note that u — u,, = (¢ — uy) + h (a.e.) and u + v, = (¢ + vy,) + h (a.e.). Therefore, by
Proposition 4.3, u — Uy, u + v, € Goeonpsa(X; A). O
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5. ARITHMETIC R-DIVISORS

Throughout this section, let X be a d-dimensional generically smooth and normal arith-
metic variety, that is, X is a flat and quasi-projective integral scheme over Z such that X is
normal, X is smooth over Q and the Krull dimension of X is d.

5.1. Definition of arithmetic R-divisor. Let Div(X) be the group of Cartier divisors on
X. An element of

Div(X)g := Div(X) ®z R (resp. Div(X)g := Div(X) @7 Q)

is called an R-divisor (resp. Q-divisor) on X. Let D be an R-divisor on X and let D =
a1Dy + --- + a;D; be the unique decomposition of D such that D;’s are prime divisors
on X and ay,...,a; € R. Note that D;’s are not necessarily Cartier divisors on X. The
support Supp(D) of D is defined by U, ¢ ;4,203 Di- If a; = 0 for all 4, then D is said to be
effective and it is denoted by D > 0. More generally, for D, E € Div(X)g,if D— E > 0,
then it is denoted by D > E or E < D. We define H(X, D) to be

H(X, D) = {¢ € Rat(X)* | (¢) + D > 0} U {0},

where Rat(X) is the field of rational functions on X. Let Fi, : X(C) — X(C) be the
complex conjugation map on X (C). Let g be a locally integrable function on X (C). We
say g i8 Foo-invariant if F (g) = ¢ (a.e.) on X(C). Note that we do not require that
F* (g) is identically equal to g on X (C). A pair D = (D, g) is called an arithmetic R-
divisor on X if g is Fxo-invariant. If D € Div(X) (resp. D € Div(X)g), then D is called
an arithmetic divisor on X (resp. arithmetic Q-divisor on X). For arithmetic R-divisors
D1 = (D1,91) and Dy = (D2, g2), D1 = Dy and D1 < Dy (or Dy > D) are defined as
follows:

D, =D, PN Dy = Dy and g1 = g9 (a.e.),
D1 <Dy <& Di<Dyandgi < gs (ae.).

If D > (0,0), then D s said to be arithmetically effective (or effective for simplicity). For
arithmetic R-divisors D and F on X, we set (—oo, D], [D, 0c0) and [D, E] as follows:

(—o00, D] := {M | M is an arithmetic R-divisor on X and M < D},
[D,c0) := {M | M is an arithmetic R-divisor on X and D < M},
[D,E] := {M | M is an arithmetic R-divisoron X and D < M < E}.
Let .7 be a type for Green functions on X, that is, .7 is a type for Green functions
on X (C) together with the following extra Fi,,-compatibility condition: if u € 7 (U) for

an open set U of X (C), then F* (u) € 7 (FH(U)). On arithmetic varieties, we always
assume the above F,,-compatibility condition for a type for Green functions. We denote

{ue 7(X(C) |u= F(u)}

by Z(X). Note that 7 (X) is different from 7 (X(C)). Clearly C° and C* have
F.-compatibility. Moreover, by the following lemma, PSH and PSHy have also Fi-
compatibility. If two types .7 and .7’ for Green functions have F..-compatibility, then
T + 7" and T — 7' have also Fi,.-compatibility.

Lemma 5.1.1. Let f1,..., f € R[Xy,..., Xn] and
V = Spec(C[X1, ..., XN]/(f1,---, fr))-
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We assume that V' is e-equidimensional and smooth over C. Let Foo : V. — V be the
complex conjugation map. If u is a plurisubharmonic function on an open set U of V, then
F? (u) is also a plurisubharmonic function on F ' (U).

Proof. Fix x € U and choose i1 < --- < 14, such that the projection p : V — C°¢
given by (z1,...,zN) +— (24,,...,x;, ) is étale at . Note that the following diagram is
commutative:

vy fe, oy

]

Ce Foo (Ce

Let U, be an open neighborhood of x such that p\Uz : Uy — W, = p(Uy) is an isomor-
phism as complex manifolds. Then p| .1, ) : Fio'(Us) — F' (W) is also an isomor-
phism as complex manifolds. This observation indicates that we may assume V' = C€ in
order to see our assertion.

Lety € F'(U) C C¢and & € C® such that y + Eexp(v/—16) € FZY(U) for all
0 <0 < 27. Then

2
F (u)(y) = u(g) < o /0 (i + E exp(v/=10))d6

= L [ u(g + Eexp(—v=T0))d8

2 Jo

= % /O%U (y + SeXp(MH)) do

1 2w

== % (u) (y + Eexp(v—16)) df,

27T0

which shows that F% (u) is plurisubharmonic on F._*(U). O

Let D be an R-divisor on X and let g be a D-Green function on X (C). By the following
lemma, 3 (g + % (g)) is an Fi-invariant D-Green function of .7 -type on X (C).

Lemma 5.1.2. [f g is a D-Green function of 7 -type, then F’ (g) is also a D-Green func-
tion of T -type.

Proof. Let D = a1 D1 + --- + a;D; be a decomposition of D such that a1,...,a; € R
and D;’s are Cartier divisors on X. Let U be a Zariski open set of X over which D; can
be written by a local equation ¢; for each i. Let g = u + Zﬁzl(—ai) log |¢;|? (a.e.) be
the local expression of g with respect to ¢1, ..., @ over U(C). Note that F% (¢;) = ¢;
as a function over U(C). Thus FX (9) = FX(u) + Zézl(—ai) log |¢;|? (a.e.) is a local
expression of F% (g), as required. O
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We define Div 7 (X), ]5?/’(7()()@ and Div 7 (X)g as follows:

Divy(X) = {(D,g) ‘ € Div(X) and g is an Foo-invarian }7

D-Green function of .7 -type on X (C).

D-Green function of 7 -type on X (C).

— D € Div(X)g and ¢ is an F 5 -invariant
Divr (X)g = {(D,g> (X)g and gis an Foc }

D-Green function of .7 -type on X (C).

— D € Div(X d g is an F-invariant

Div 7 (X)z = {(D,g) iv(X)gr and g is an F-invarian }

An element of Div (X)r (resp. Bi\v,_('](X)Q, Divy (X)) is called an arithmetic R-divisor
of 7 -type on X (resp. arithmetic Q-divisor of 7 -type on X, arithmetic divisor of 7 -type
on X).Let D = (D, g) be an arithmetic R-divisor of .7 -type. Then, as F (g) = ¢ (a.e.),
we can see that % (gean) = gean holds X (C) \ Supp(D)(C).

Here we recall Picoo (X)), Picco (X)g and Picgo (X )r (for details, see [14]). First of all,
let Picco (X)) be the group of isomorphism classes of Fy-invariant continuous hermitian
invertible sheaves on X and let Picco(X)g := Picgo(X) ® Q. For an F-invariant
continuous function f on X (C), O(f) is given by (Ox, exp(—f)|-|can). Then Picco (X )r
is defined to be

lgi\cco (X) QR
S | fi,o fr € CUX) and ’
{Zio(fl) D e Rwith Y aif; = 0
where C(X) = {f € C°(X(C)) | F%(f) = f} as before. Note that there is a natural
surjective homomorphism O : Divo(X) — Piceo(X) given by

Picco(X)g =

O(D>g) = (OX(D)a | : |g)a
where |1|; = exp(—g/2).

5.2. Volume function for arithmetic R-divisors. We assume that X is projective. Let

D = (D, g) be an arithmetic R-divisor on X. We set
H°(X,D) ={¢ € H(X, D) | |¢lly < 1}

and

WO(X,D) = {10g #H(X,D) if H°(X,D) is finite,

where ||¢||, is the essential supremum of |¢|, = |¢| exp(—g/2). Note that

o0 otherwise,

A%X,D) = {¢ € Rat(X)* | () + D > 0} U {0}.
The volume ;al(ﬁ) of D is defined to be

—~ hO(X,nD)
(D) =1 —_—
vol(D) lgl—»Solip ]

For arithmetic R-divisors D and D’ on X, if D < D', then H 0(X,D) C H(X, E’) and
vol(D) < vol(D') hold.
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Proposition 5.2.1. Let .7 be a type for Green functions on X and let D = (D, g) be an
arithmetic R-divisor of T -type on X. If g is either of upper bounded type or of lower
bounded type, then H°(X, D) is finite. Moreover, if g is of upper bounded type, then

vol(D) < oo.

Proof. First we assume that g is of lower bounded type. Then, by Lemma 2.5.1, || - [|4
yields a norm of H°(X, D), and hence the assertion follows.

Next we assume that g is of upper bounded type. Then, by Proposition 2.3.6, there is
an Fo-invariant D-Green function ¢’ of C*°-type such that ¢ < ¢’ (a.e.). By Propo-

S

sition 2.4.2, we can choose ai,...,a; € R and D1,...,D; € Divees(X) such that
(D,¢') = a1D1 + -+ + a;D;. For each i, by using Lemma 5.2.3 and Lemma 5.2.4,
we can find effective arithmetic divisors A; and B; of C°°-type such that D; = A; — B;.
As
(D,g/) = alzl + -+ alZl + (—al)El + 4 (—al)El,
ifweset D" = a1 ] A1+ -+ [a] A+ [(—a1)|B1++ -+ [(—a)| By, then (D, g') < D"
and D" € Diveee (X). Note that
H(X,nD) C H'(X,n(D,q¢)) C H(X,nD") = H*(X,0(D")®")
for all n > 1. Thus our assertion follows from [13, Lemma 3.3]. O
Here we consider the fundamental properties of vol on ISRICO (X)r.

Theorem 5.2.2. There is a natural surjective homomorphism
Ok : Diveo(X)r — Picco(X)r
such that the following diagram is commutative:

]SR/CO(X) ®7 R —@g ﬁi\CCO(X) ®7 R

Diveo(X)g  —2%5  Picoo(X)g.
Moreover, we have the following:
(1) Forall D € Diveo(X)g,
—~ . k(D)
vol(D) = tliglo td/d!
where t € R<q and \781(611@ (D)) is the volume defined in [14, Section 4].
(2) vol(aD) = a%vol(D) for all a € R>g and D € Diveo(X)g.
(3) (Continuity of vol) Let Dy, ...,D,, Ay,..., Ay € DiEo Q()R. Then there is a

positive constant C depending only on X and D, ..., D,, Ay, ..., A such that

\7(;1 ZT: aiﬁi + i (5ij + (0, gb) - \7(;1 (zr: CLZDZ>
=1 J=1 =1
d—1

<’ Z|%‘|+Z|5j| ||¢”sup+2|5j|
i=1 j=1 j=1

forallay,... a.,01,...,60 € Rand ¢ € CO(X).

= vol(Ox (D)),
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(4) Let Dy and Dy be arithmetic R-divisors of CO-type. If D1 and Do are pseudo-
effective (for the definition of pseudo-effectivity, see SubSection 6.1), then

vol(Dy + Da)% > vol(Dy )4 + vol(Ds) /4.

(5) (Fujita’s approximation theorem for arithmetic R-divisors) If D is an arithmetic
R-divisor of C°-type and x;)\l(ﬁ) > 0, then, for any positive number ¢, there are
a birational morphism 1 :' Y — X of generically smooth and normal projective
arithmetic varieties and an ample arithmetic Q-divisor A of C™®-type on'Y (cf.
Section 6) such that A < p*(D) and ;81(2) > ;(;I(E) —€

Let us begin with the following lemmas.

Lemma 5.2.3. Let Y be a normal projective arithmetic variety. Then we have the follow-
ing:
(1) Let Z be a Weil divisor on' Y. Then there is an effective Cartier divisor A on' Y
such that Z < A.
(2) Let D be a Cartier divisor on Y. Then there are effective Cartier divisors A and
BonY suchthat D = A — B.
(3) Let x1,...,x; be points of Y and let D be a Cartier divisor on Y. Then there are
effective Cartier divisors A and B, and a non-zero rational function ¢ on'Y such
that D + (¢) = A— Band 1, ... ,x; ¢ Supp(A) U Supp(B).

Proof. (1)Let Z = a11"1+- - -+a;1"; be the decomposition such that I';’s are prime divisors
onY and ay,...,a; € Z. Let L be an ample invertible sheaf on Y. Then we can choose a
positive integer n and a non-zero section s € HY(Y, L®™) such that multr, (s) > a; for all
i. Thus, if we set A = div(s), then A is a Cartier divisor and Z < A.

(2) First of all, we can find effective Weil divisors A’ and B’ onY suchthat D = A'—B’.
By the previous (1), there is an effective Cartier divisor A such that A" < A. We set
B =B+ (A — A’). Then B is effective and D = A — B. Moreover, since B = A — D,
B is a Cartier divisor.

(3) Let L be an ample invertible sheaf on Y as before. Then there are a positive integer
ny and a non-zero s; € HO(Y, L®™) such that s1(x;) # 0 for all i. We set A’ = div(sy).
Similarly we can find a positive integer no and a non-zero sy € H°(Y, Oy (nsA’ — D))
such that so(x;) # 0 for all i. Therefore, if we set A = ng A’ and B = div(s2), then there
is a non-zero rational function ¢ on Y such that A — D = B + (¢), as required. O

Lemma 5.2.4. Let 7 be either C° or C®. Let A’ and A" be effective R-divisors on X
and A = A" — A", Let g4 be an Fy-invariant A-Green function of 7 -type on X (C).
Then there are effective arithmetic R-divisors (A, gas) and (A", gan) of T -type such that
(A7gA) = (Alng’) - (A//7gA”>'

Proof. Let g4 be an F-invariant A”-Green function of .7 -type such that g4~ > 0 (a.e.).
We put ga# = ga + ga». Then g is an F-invariant A’-Green function of .7 -type.
Replacing g4~ with g4~ + (positive constant) if necessarily, we have g4 > 0 (a.e.). O

Lemma 5.2.5. Let 7 be a type for Green functions such that — C . and C*° C 7.
Then the kernel of the natural homomorphism Div#(X) ® R — Divg(X)r coincides

with
!
{Z(Oa ¢i) ® a;

i=1

al,...,aIER,¢1,...,¢l€y(X)
and a1p1 + -+ a;¢p; =0 ’
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Proof. It is sufficient to show that, for Zf;:l(Di, gi) ®a; € 5;/7()() ®z R, if

I !
Z a;D; =0 and Z a;gi = 0 (a.e.),
i=1

=1

then there are ¢1,...,¢; € 7 (X) such that Zizl(Di,gi) ® a; = 2221(0, ®i) ® a; and
arp1 + -+ + ai¢pp = 0. Let Eq, ..., E, be a free basis of the Z-submodule of Div(X)
generated by Dy, ..., D;. We set D; = 22:1 b;;E;. Since

l T l
0= ZaiDi = Z <Z aibij) EJ
=1 =1 \=1

we have 25:1 a;b;j = Oforall j = 1,...,r. Let h;j be an Fiy,-invariant £;-Green function
of C*°-type. Note that Z;Zl bijh; is an F-invariant D;-Green function of .7 -type. Thus
we can find ¢1, ..., ¢; € 7 (X) such that

gi = Z bijh; + ¢; (a.e.)
=

for each 7. Then

1 r ! : :
ST (Z aibw) hi+ D aii=) aidi.
i=1 j=1 \i=1 =1 =1

Note that ) . a;¢; € 7 (X), so that ), a;¢; = 0 over X (C). On the other hand,

l

Z( Zagz ®a; = ZZ ®alblj+z ¢z ® a;

=1 i=1 j=1
l l

l
—ZE],h (Z ) Z_; L0 @ai =Y (0,6:) ® a;,

=1

as required. 0
The proof of Theorem 5.2.2. By Proposition 2.4.2, the natural homomorphism

Diveo(X) ® R — Diveo(X)r
is surjective. Thus the first assertion follows from Lemma 5.2.5.

(1)We§,tﬁ =aD1+---+a;D;,whereaq,...,aq; € Rand Dy,...,D; € ER/CO(X).
For each D;, by using Lemma 5.2.3 and Lemma 5.2.4, we can find effective arithmetic
divisors D and D] of C-type such that D; = D; — D} . Then

D=aD\+ - +aD;+ (—a)D + -+ (-a))D;.

Thus, in order to see our assertion, we may assume that D is effective for every i. We set
I={i]a;>0}and J = {i | a; < 0}. Moreover, we set

{An =D ier [na;] D; + deJL(n + 1)a;]

D,
Bn =Y ier[nai]lDi+ 355 [(n = 1)a;1D;
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for n € Z>y. Then, as lim, o A,/n = lim,_o Bn/n = D, by virtue of [14, Theo-
rem 5.1],

i i = i, = Ok
Note that
[[t]a] <ta < [[t]a] ifa>0,
{L(Ltj + Da| <ta < [([t] —1a] ifa<0

fora € R and t € R>1, which yields ZUJ <tD < EW for ¢t € R>1. Therefore,

([t)? h°(X,Bpy)

([t)? hO(X Ay) _ WO(X,iD)
td([t])d/dr

T (hYydr = /!

<

and hence (1) follows.
(2) follows from (1).

(3) We choose E1,...,E,, B1,...,By € BR/'CO (X) such that D; = >, aip By,
and A; = Zl@/l B;1B; for some ay, B € R. Then
r m r r/ m/ r/
ZaiDi = Z (Z aiaik> Ek and ZéjAj = Z Zéjﬂjl Bl-
i=1 k=1 \i=1 j=1

=1 \j=1

Moreover, if we set C’ = max ({c} U {5;1}), then

T
E a; Ok
i=1

N RO
i=1 Jj=1 Jj=1

Thus we may assume that Dq,...,D,, Ay,..., A € 51?700 (X). Therefore, (3) follow
from [14, Lemma 3.1, Theorem 4.4 and Proposition 4.6].

(@) If vol(D;) > 0 and vol(Ds) > 0, then (4) follows from (3) and [17, Theorem B]
(or [15, Theorem 6.2]). Let us fix an ample arithmetic divisor A (for the definition of

ampleness, see SubSection 6.1). Then ;al(ﬁl +€A) > 0 and \7(;1(52 + €A) > 0 for all
€ > 0 by Proposition 6.3.2. Thus, by using (3) and the previous observation, we obtain

.

(5) By using the continuity of vol and the Stone-Weierstrass theorem, we can find an
arithmetic Q-divisor D’ of C™®-type such that D’ < D and

vol(D') > max{vol(D) — /2, 0}.

Then, by virtue of [6], [17] or [15], there are a birational morphism ¢ : ¥ — X of
generically smooth and normal projective arithmetic varieties and an ample arithmetic Q-
divisor A of C*°-type on Y such that A < u*(ﬁl) and @(Z) > ;(;I(E/) — ¢/2. Thus (5)
follows. g
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5.3. Intersection number of arithmetic R-divisors with a 1-dimensional subscheme.
We assume that X is projective. Let C' be a 1-dimensional closed integral subscheme of
X. Let L = (L, h) be an F-invariant continuous hermitian invertible sheaf on X. Then

it is well-known that d/e\g(Z‘ c) is defined and it has the following property: if s is not zero
element of H°(X, £) with s|, # 0, then

Toa(Zl) =toe# (5% )~ 5 2 lou(h(s.9)a))

z€C(C)

In addition, the map
Piceo(X) = R (£ — deg(Z| )
is a homomorphism of abelian groups, so that it extends to a homomorphism
deg(—|¢) : Picco(X) @R — R
given by
deg((Li®ar+-- + L, ® ar)| ) = a1d/e\g(zl\c) +- 4 a,.d/e\g(zr\c).
If fi,...,fr € C%X),a1,...,a, €Rand ay f1 + - + a,fr = 0, then

deg((O(f) @ a1 + -+ O(f,) @ ar)| )
= ardeg(O(f1)| ) + -+ + a,deg(O(£)] )

= Tai Z fz =0.

i=1 zeC(C)

Therefore, d/e\g( —lo) Picco(X ) ® R — R descents to a homomorphism Picco (X)r —
R. By abuse of notation, we use the same symbol deg( —|) to denote the homomorphism
Picco(X)r — R. Using this homomorphism, we define

deg(—|¢) : Diveo(X)r — R

to be d/e\g(ﬁ‘ o) = deg(Or(D) o) for D € Diveo(X)g. If there are effective Cartier
divisors D1,...,D; and aq,...,a; € Rsuch that D = a1D1 + -+ @Dy and C €
Supp(D;) for all 7, then we can see that

l
deg(D|) =Y ailog #(Oc(D:)/Oc) + Z Jean (@

=1 xEC (©)

Let 7 be a type for Green functions on X such that C° C 7, 7 is real valued and
-7 C 7. Let D = (D, g) be an arithmetic R-divisor of 7 -type on X. There is h €
T (X ) such that g h is an F-invariant D-Green function of C-type. We would like to

define deg (D ‘ ) by the following quantity:
deg ((D,g —h)|c) + Z h(z
:EGC (©)

Indeed, it does not depend on the choice of h. Let A’ be another element of .7 (X) such
that g — b/ is an F-invariant D-Green function of C%-type. We can find u € C°(X) such
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thatg — h = g — b/ 4+ u (a.e.), so that ' = h + u over X (C). Therefore,

— 1
deg ((D.g=H)|g) +5 D (@)
zeC(C)

— 1
=deg((D,(g —h) —u)|o) + 5 Z (h 4+ u)(
eC(C

Zd/%(( D, (g —h)) |c

l\D\H
M
l\D\H

QM
D‘
+

Note that if there are effective Cartier divisors D1, ..., D; and ay,...,a; € R such that
D=a1D1+ -+ aD;and C € Supp(D;) for all 4, then

deg (Dl,) Zallog# (Oc(D i)/O@)—F% Z Jean ().

= zeC(C)
Moreover, d/eTg( —|e) s Div, (X)r — R is a homomorphism.

Let Z;1(X) be the group of 1-cycles on X and Z1(X)r = Z;(X) ® R. Let Z be an
element of Z;(X)r. There is a unique expression Z = a;C; + --- + ¢;C; such that
ai,...,a € R and C4,.. Cl are 1-dimensional closed integral schemes on X. For

De D1Vg(X)R, we define deg (D| Z) tobe

deg D|Z Zaldeg(D}C)

Note that d/e\g (E | C’) = deg (D‘ C) for a 1-dimensional closed integral scheme C' on X.

6. POSITIVITY OF ARITHMETIC R-DIVISORS

In this section, we will introduce a lot of kinds of positivity for arithmetic R-divisors
and investigate their properties. Throughout this section, let X be a generically smooth
projective and normal arithmetic variety.

6.1. Definitions. Let D = (D, g) be an arithmetic R-divisor on X, that is, D € Div(X)g
and g is an Fio-invariant locally integrable function on X (C). The ampleness, adequate-
ness, nefness, bigness and pseudo-effectivity of D are defined as follows:

e ample : We say D is ample if there are ay,...,a, € Ry and ample arithmetic Q-
divisors Ay, ..., A, of C*®°-type (i.e., O(n;A;) is an ample C'°°-hermitian invertible sheaf
for some n; € Z~q in the sense of [12]) such that
b:alzl—l—'--—i-arZT.

Note that an ample arithmetic R-divisor is of C'*°-type. The set of all ample arithmetic
R-divisors on X is denoted by Amp(X)g. By applying [15, Lemma 1.1.3] to the case
where P = Divee(X)g, m = 1,01 = 0, A =1(0,...,0) and 1 = Ay,...,2, = 4,,
we can see that

Amp(X)g N Dives (X)g = {D

O(nD) is an ample C'*°-hermitian
invertible sheaf on X for some n € Z~
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e adequate : D is said to be adequate if there are an ample arithmetic R-divisor A and
a non-negative F, -invariant continuous function f on X (C) such that D = A + (0, f).
Note that an adequate arithmetic R-divisor is of C-type.

e nef : We say D is nef if the following properties holds:
(a) D is of PSHg-type.
(b) deg(ﬁ‘ C) > 0 for all 1-dimensional closed integral subschemes C' of X.

The cone of all nef arithmetic R-divisors on X is denoted by Ne\f(X )r- Moreover, the
cone of all nef arithmetic R-divisors of C*°-type (resp. C°-type) on X is denoted by

@CW (X)R (resp. Ne\fco (X)R)

e big : Let us fix a type .7 for Green functions. We say D is a big arithmetic R-divisor
of T-type if D € Divyi(X)g (i.e. D € Divg(X)r and g is of bounded type) and
vol(D) > 0.

o pseudo-effective : D is said to be pseudo effective if D is of C°-type and there are
arithmetic R-divisors D1, ..., D, of C%-type and sequences {an1 122, ... {an}22, in

R such that lim,, .o a,; = Oforalli=1,...,r and VOI(D +am D1+ +apD;) >0
forall n > 1.

6.2. Properties of ample arithmetic R-divisors. In this subsection, we consider several
properties of ample arithmetic R-divisors. Let us begin with the following proposition.

Proposition 6.2.1. (1) If A and B are ample (resp. adequate) arithmetic R-divisors
and a € R, then A + B and a A are also ample (resp. adequate).

(2) If A is an ample arithmetic R-divisor, then there are an ample arithmetic Q-divisor
A’ and an ample arithmetic R-divisor A" suchthat A=A + A",

(3) Let A be an ample (resp. adequate) arithmetic R-divisor and let Ly, ..., L, be
arithmetic R-divisors of C>°-type (resp. of CO-type). Then there is § € ]R>0 such
that A + 51L1 + .-+ 8,L, is ample (resp. adequate) for 61,...,6, € R with
‘51| + -4+ |5 | < (5 .

(4) If A is an adequate arithmetic R-divisor, then vol(A) > 0

Proof. (1) and (2) are obvious.

(3) First we assume that A is ample and that L, . .., L,, are of C*-type. We set L; =
>y biM; such that My, ..., M, are arithmetic Q-divisors of C*-type and b;; € R.

Then, as
n l n
A+ 6Li=A+) (Z &%) M;,
i=1 j=1 \i=1
we may assume that L1, ..., L, are arithmetic Q-divisors of C*°-type. Moreover, by (1)

and (2), we may further assume thatg is an ample arithmetic Q-divisor.
Let us choose § € Q¢ such that A + 6 L; is ample for every i = 1,..., n. Note that

Z|z| A+ sign(6;)6L;) <Z|5|>A+Z(5Ll’

where sign(a) for a € R is given by

. 1 ifa >0,
sien(e) =0 r, 20
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Hence, if Y, |6;] < 6, then A+ >"" | §,L; is ample.

Next we assume that A is adequate and that L1, . .., L, are of C*-type. Then there are
an ample arithmetic R-divisor A’ and u € CY(X) such that u > 0 and A = A+ (0,u).
As A — (0,€) is ample for 0 < € < 1 by the previous observation, we may assume
that u > ¢ for some positive number e¢. By virtue of the Stone-Weierstrass theorem, we
can find vy,...,v, € CYX) such that v; > 0 (Vi), € > v; + --- + v, and fg =
L; + (0,v;) is of C°*°-type for all i. By the previous case, we can find 0 < § < 1 such that
A+ 515/1 +- 4 5nf;l is ample for d1, ..., 0, € Rwith [61] + - - + |0,| < J. Note that

A+ 6 L1+ +6,Ly=A + 6L+ +6,L, + (0,u— 5101 — -+ — S0n)
and
U—01v1 — - = 0pUp ZU— vy — - —vp 20,
as required.

(4) Clearly we may assume that A is ample, so that the assertion follows from (2) and
(4) in Theorem 5.2.2. 0

Next we consider the following proposition.

Proposition 6.2.2. (1) If A is an ample arithmetic R-divisor and B is a nef arithmetic
R-divisor of C>®°-type, then A + B is ample.
(2) If A is an adequate arithmetic R-divisor and B is a nef arithmetic R-divisor of
CO-type, then A + B is adequate.

Proof. (1) We set B = b1 By + --- + b, B,, such that by, ...,b, € Rand By,..., B, are
arithmetic Q-divisors of C*°-type. We choose an ample arithmetic Q-divisor A; and an
ample arithmetic R-divisor Aj such that A = A; + As. Then, by (3) in Proposition 6.2.1,
there are 91, ..., 0, € Ryq such that

n n
A+ Z 0;B; and A, — Z 5;B;
i=1 i=1
are ample and b; + §; € Q for all 7. Moreover, we can take an ample arithmetic Q-divisor
Az and an ample arithmetic R-divisor A4 such that

n
ZQ — Z@E@ = Zg +Z4.
i=1
Then, since
n n
A+ Z 6;Bi + B=A; + Z(bz + 6i)Bi
i=1 i=1

is a nef arithmetic Q-divisor of C*°-type, A3+ A1+ > ; §;B;+ B is an ample arithmetic
Q-divisor by [13, Lemma 5.6]. Therefore,

|

n
+B=A4+ A3+ A4 +Z(5i§i +B
i=1
is an ample arithmetic R-divisor.

(2) Clearly we may assume that A is ample. By (3) in Proposition 6.2.1, there is a
positive real number ¢ such that 4 — (0, §) is ample. Note that A + B is ample, that
is, 1 A 4+ B is a linear combination of ample divisors with positive coefficients, which can
be checked in the same way as above. Thus, by (2) in Theorem 4.6, there is u € C°(X)
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(i-e., u is an F-invariant continuous function in X (C)) such that 0 < u < é on X (C) and
%A + B + (0, u) is a nef R-divisor of C*°-type. Then, by (1),

%Z— (0,8) + %Z+§+ (0,u)
is ample. Thus
A+B= %Z— (0,8) + %Z+§+ (0,u) + (0,0 — w)
is adequate. (|

Finally let us observe the following lemma.

Lemma 6.2.3. Let D1 = (D1, g1) and Dy = (D3, g2) be arithmetic R-divisors of PSHp-
type on X. If D1 = Ds, g1 < g2 (a.e.) and Dy is nef, then Dy is also nef.

Proof. Since D1 = Ds, there is a ¢ € (PSHgr —PSHg)(X(C)) such that go = g1 +
¢ (a.e.) and ¢ > 0 (a.e.). Note that ¢ > 0 by Lemma 2.3.1. Let C be a 1-dimensional
closed integral subscheme of X. Then

dea(Dal,) = des(Dil )+ 5 3 0ly) > dea(D) > 0.
yeC(C)

O

6.3. Criterions of bigness and pseudo-effectivity. The purpose of this subsection is to
prove the following propositions.

Proposition 6.3.1. For D = (D, g) € ]SF/CO (X)R, the following are equivalent:
(1) D is big, that is, vol(D) > 0.
(2) For any A € Diveo(X)g, there are a positive integer n and a non-zero rational
function ¢ such that A < nD + (¢).

Proof. “(2) = (1)” is obvious.

Let us consider “(1) = (2)”. By using Lemma 5.2.3 and Lemma 5.2.4, we can find
effective arithmetic R-divisors A’ and A" of CP-type such that A = A — A", Note that
A< A'. Thus we may assume A is effective in order to see our assertion. By virtue of the
continuity of vol (cf. Theorem 5.2.2), there is a positive integer m such that

vol(D — (1/m)A) > 0,

that is, vol(mD — A) > 0, so that there is a positive integer n and a non-zero rational
function ¢ such that

- o~

n(mD — A) + (¢) > 0.
Thus mnD + @ >nA > A. O

Proposition 6.3.2. For D = (D, g) € ]ji;co (X )R, the following are equivalent:
(1) D is pseudo-effective.
(2) For any ample arithmetic R-divisor A, \7(;1(5 +(1/n)A) > O0foralln > 1.
(3) There is an ample arithmetic R-divisor A such that \751(5 + (1/n)A) > 0 for all
n>1
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Proof. It is sufficient to see that (1) implies (2). As D is pseudo-effective, there are arith-
metic R-divisors D1, ..., D, of C%-type and sequences {a;,1}5°_1, ..., {am,}_; in R
such that lim,,, oo ay; = O0foralli =1,...,r and \781(3 +am D+ + amrﬁr) >0
for all m > 1. For n > 1, by (3) in Proposition 6.2.1, there is a sufficiently large positive
integer m such that (1/n)A — (a1 D1 + - - - + ame- D) is ample. Thus

vol(D + (1/n)A) > vol(D + ami D1 + - - + @y Dy) > 0.
0

Proposition 6.3.3. If D = (D, g) is a pseudo-effective arithmetic R-divisor of C U-type
such that D is big on the generic fiber Xq (i.e., vol(Dg) > 0 on Xg), then D + (0,¢€) is
big for all e € R+y.

Proof. Let A be an ample arithmetic divisor on X. Since D is big on Xg, by using the
continuity of the volume function over Xq (cf. [10, I, Corollary 2.2.45]), we can see that
there are a positive integer m and a non-zero rational function ¢ such that

mD — A+ (¢) > 0.

If we set (L,h) = mD — A + (¢), then h is an L-Green function of C°-type and L is
effective. Thus there is a positive number A such that

mD — A+ () > (0,-\),

thatis, mD + (0, \) > A — (¢). We choose a sufficiently large positive integer n such that

A
<e
n+m
Then
1~ 1
Dt L@~ @) <D+ mD+0n)
— A
= (1+2) <D+<0, )>
n n+m
m S
<(1+2) (D+0.0)
Note that A — @/J) is ample, so that D + (1/n)(A — (?5)) is big by Proposition 6.3.2, and
hence D + (0, €) is also big. O

Remark 6.3.4. It is very natural to ask whether H°(X, n(D + (0,¢))) # {0} for some
n € Zq in the case where D is not necessarily big on X¢q. This does not hold in general.

For example, let PL = Proj(Z[Tp, T1]) be the projective line over Z and D = a(]ﬁ)
fora € R\ Q. Itis easy to see that D is pseudo-effective and H°(P}, nD) = {0} for all
n € Zsg. Thus HO(PL, n(D + (0,¢))) = {0} for e € Rug and n € Zg.

6.4. Intersection number of arithmetic R-divisors of C-type. Let Diveee (X)x- X%
Divgee (X) — R be a symmetric multi-linear map over Z given by
(Di,...,Dg) v deg(D; - -- D) := deg(&1(O(D1)) - - - & (O(Da))),
which extends to the symmetric multi-linear map
(Diveee (X) @ R) x -+ x (Divees (X) ® R) — R

over R.
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Proposition-Definition 6.4.1. The above multi-linear map
(Divee (X) ®@R) x -+ x (Dives (X) @ R) - R
descents to the symmetric multi-linear map
Diveee (X)g X -+ - X Divese (X)g — R
oveLIE\& whose value at (D1, . .., Dy) € EECOO (X)r X+ X ]Scmoo (X)r is also denoted
by deg(D7 - - - Dg) by abuse of notation.

Proof. Letay,...,a; € Rand ¢1,...,¢; € C°(X) suchthat a;¢y + - - - + a;¢y = 0. By
Lemma 5.2.5, it is sufficient to show that

deg (((0,¢1) ® ay + -+ (0,¢) @ a;) - Da---Dy) =0

for all Da, ..., Dy € Diveee(X). First of all, note that there are 1-dimensional closed
integral subschemes C1,...,Cy, c1,...,¢, € Zand a current T of (d — 2, d — 2)-type such
that

Dy---Dg ~ (cCi 4+ +¢C.T).

Then
deg (((0,¢1) ®a +(0,¢1) ® ;) - Da -+~ Dg)
zl:a 0,¢:) - (c1Ch + -+ + ¢,Cy, T))
- l r
:;ai gc] yg: bily) + (1/2) /X((C) dd®(¢;) N T
l
B ]Zl ? ye;@ 2 won)072) /Xm “ <; am) S

as required. O

Let DivC(e) (X)Rr be the vector subspace of Divo (X )r generated by Nef o (X )r. The
purpose of this subsection is to show the following proposition, which gives a generaliza-
tion of [20, Lemma 6.5] for R-divisors.

——Nef

Proposition 6.4.2. (1) Divees (X)g + Diveonpsi(X)r € Diveo (X)g.
(2) The above symmetric multi-linear map
ﬁi?lcoo(X)R X oo X ﬁi?lcoo(X)R — R

given in Proposition-Definition 6.4.1 extends to a unique symmetric multi-linear
map

——Nef ——Nef

DIVCO (X)]R X oo X DIVCO (X)R —R
such that (D, ..., D) \781(5) for D € Ne\fco (X)wr. By abuse of notation, for

_ — ——Nef ——Nef
(D1,...,Dyg) € Diveo (X)g % -+ x Diveo (X)g,

the image of (D1, . .., Dg) by the above extension is also denoted by

deg(Dy - -+ Dy).
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_— — Nef

Proof. (1) By Proposition 6.2.1, it is easy to see that Divgee (X)g C Divcﬁ (X)r. In
p —— Nef

order to see Divoqpga(X)r C Divci (X )R, it is sufficient to show the following claim:

Claim 6.4.2.1. For D ¢ BECOQPSH(X )r, there is an ample arithmetic divisor B such

that D + B € N&'Co (X)r and D + B is ample.

Proof. By virtue of the Stone-Weierstrass theorem, there is an F-invariant non-negative
continuous function v on X (C) such that D — (0,u) € Divgee (X)g. Thus, by Proposi-
tion 6.2.1, we can find an ample arithmetic divisor B such that

D—(0,u)+ B
is ample. In particular, D + B € Ne\fco (X)r and D + B is ample. O

(2) Let us begin with the following claim.

Claim 6.4.2.2.  (a) For D € Nefcoo (X)g, deg(D?) = vol(D).

d
b) dXy-Xg= Y (-1 #0D <ZX> inZ[X1,..., X4

IC{1,...d} icl
(c) For ﬁl, ce ,bd € Nefooo (X)]R,

d/e\g(ﬁl . Dy) = % Z (_1)(17#(1)@ (ZDZ) '

T IC{1,..d} iel

Proof. (a) First we assume that D is ample. We set D = a1 A; + --- + a;A; such that
ai,...,a; € Ryg and A;’s are ample arithmetic divisors. Let us choose sufficient small
positive numbers d1, . . ., §; such that a; + §; € Q for all . Then, by [13, Corollary 5.5],

deg(((a1 + 01) A1 + -+ (ar + &) A)%) = vol((ar + 61) A1 + -+ + (ar + &) Ay).

Thus, using the continuity of \751, the assertion follows.
Next we consider a general case. Let A be an ample arithmetic divisor of C'*°-type.
Then, by Proposition 6.2.2, D + €A is ample for all ¢ > 0. Thus the assertion follows from

the previous observation and the continuity of vol.

(b) In general, let us see that

l
0 ifl <d
_1)#W) X; | = ’
> (-1) > (—1)ddIX, - X, ifl=d

IC{1,...,d} il

holds for integers d and [ with 1 < [ < d. This assertion for d and [ is denoted by A(d, [).
A(1,1) is obvious. Moreover, it is easy to see A(d, 1). Note that

X, -1
/0 > (—pF? (Z XZ) dX4

IC{1,....d} il
l -1
1
— 7 Z (—1)#(1) (Z X1> + Xy Z (—1)#(‘]) ZXj ,
IC{1,....d} icl JC{1,....d—1} jed

which shows that A(d—1,1—1) and A(d,l—1) imply A(d, ). Thus (b) follows by double
induction on d and /.
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(c) follows from (a) and (b). Il

The uniqueness of the symmetric multi-linear map follows from (b) in the previous
claim. For (D1, ..., D4) € Nefco(X)r X - - - x Nefo(X)g, we define a(Dy, ..., Dy) to
be

(6.4.2.3) a(Dy,...,Dy) := % S (-1 #Dvol (ZDZ> .
IC{1,...,d} i€l
Claim 6.4.2.4. (1) «is symmetric and
a(aDy + 4D}, Dy, ..., Dyg) = aa(Dy, Do, ..., Dg) + ba(D}, Do, ..., Dy)
holds for a,b € R>q and El,ﬁ/bﬁg, ...,Dg € @Co (X)r with
D1, D}, Ds,...,Dy

ample.
(i) IfAi1, Ar—1,.. ., Adr, Ad—1, B, Bi—1,. .., Ba1, Ba—1 € Nefgo(X)g,

Al,lv Al,fla s ?Ad,ly Ad,—lv Bl,la Bl,*la v 7Bd,15 Bd,—l
are ample and Zi,l — Zi,_l = Ei,l — Ei,—l foralli=1,...,d, then
Z 61"'6da(A1,€17'-'7Ad,€d) = Z 61"'Eda(Bl,ela'“de,Ed)'
61,...,6d6{i1} 61,...,6d6{i1}

Proof. (i) Clearly « is symmetric. By Theorem 4.6, for any € > 0, there are non-negative
F-invariant continuous functions w1, v}, u, . . ., ug such that

[utflsup < € [uh]lsup < € [Juzllsup < €., [uallsup < €
and that D1 (€) := D1 + (0,w), D) (€) := Dy + (0,u}), Da(€) := D + (0,u2), ...,
Dg(e) := Dg+ (0, uq) are elements of Nef e (X )r. Then, by virtue of Claim 6.4.2.2,
a(aDy(€) 4+ bD (), Da(e), . .., Dg(e))
= aa(D1(€), Da(e), - .., Dal€)) + ba(D)(€), Da(e), . .., Dale)).
Thus, using the continuity of \781, we have the assertion of (i).
(i) We would like to show the following assertion by induction on [: if Zl,l, 217_1, ey
A1, Ay -1, By, Bi—t, -+ Biy, Bio1, Diga, - -, Da € Nefgo(X)g,
Ay, Ar e A Ay, By, Bryoay - B, Br o1, Dig, ., Dy

are ample and Zi,l — Zl-’_l =DB;1— Ei,_l foralli=1,...,1, then

E 61...ela(A17€17...7Al7€l’Dl+17.'.’Dd):
617~"76l€{i1}

Z 61'"ela(Bl,€17'"7Bl75l7Dl+1""7Dd)'
617“'76[6{:‘:1}

First we consider the case where [ = 1. As A1 + By, 1 = A1 1 + B1.1, by (i), we have

Oé(ZLl,Eg, - ,Ed) + Oé(EL_l,EQ, - ,bd)
= a(ZL_l,ﬁ% - ,Ed) + a(ELl,EQ, - ,Ed),
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as required. In general, by using the case [ = 1,
06(11,617 cee 7Zl,617Zl+171>El+27 ..., Dq)
—a(Arers.. . A, A1, Disas ..., Da)
= a(@1e,..., Ao Briry, Disar. .., Da)
—a(Aie,- - Alg, Biyi,-1, Diva, - .-, Da).
Thus, by the hypothesis of induction, if we set

{A = Zel’._.75l+le{i1} €1 €l+1a(A1,617 C) Al+1,el+1aDl+27 C) Dd)a

B = Zel,,..,el+1€{il} €1 El"rla(Bl,q’ DI Bl+1,€l+1aDl+27 sy Dd)a

A= ZEI Y’ ((X(ZLel, s 7Zl+1,17ﬁl+27 s aﬁd) - a(zlaﬁu s 7Zl+1,—17ﬁl+25 s aﬁd))
= ZEI cr € (a(zl,ely' e 7§l+1,17ﬁl+27 R 75(1) - a(zl,€17 s 7§l+1,717ﬁl+27 HERR Dd))

= Zel BN/ (Oé(?lyq,, . ,§l+171,ﬁl+2, ey Dd) — a(ELEl,. .. 7§l+1,—175l+2, . ,ﬁd))

O

——Nef - —
Note that any element of DiVC§ (X )R can be written by a form A — B such that A, B €

Ne\fco (X)r and A, B are ample. Thus the existence of the symmetric multi-linear map
follows from the above claim. g

Remark 6.4.3. By our construction, \70\1(5) = d/%(ﬁd) for D € @Co (X)r. In par-

ticular, D is big if and only if &E(Ed) > 0. This is however a non-trivial fact for
D € Nefeoo (X )R (cf. [13, Corollary 5.5] and Claim 6.4.2.2).

6.5. Asymptotic multiplicity. First we recall the multiplicity of Cartier divisors. Let
(R, m) be a d-dimensional noetherian local domain with d > 1. For a non-zero element a
of R, we denote the multiplicity of a local ring (R/aR, m(R/aR)) by multy(a), that is,
m length((R/aR)/m" Y (R/aR)) ifad R,
multy(a) := { n—oo nd=1/(d —1)!
0 ifa e R*.

Note that multy(a) € Z>o. Moreover, if R is regular, then

multy(a) = max{i € Z>q | a € m'}.

Let @ and b be non-zero elements of R. By applying [11, Theorem 14.6] to the following
exact sequence:

0 — R/aR =% R/abR — R/bR — 0,
we can see that
multy(ab) = multy(a) + multy(b).

Let K be the quotient field of R. Fora € K*, weset @ = a/b (a,b € R\ {0}). Then
multy(a) — multy,(b) does not depend on the expression a = a/b. Indeed, if « = a/b =
a’ /b, then, by the previous formula,

multm(a) + multy,(b') = multy(ab’) = multy(a’b) = multy(a’) + multy,(b).
Thus we define multm,(a) to be

multy (@) := multy(a) — multy(b).
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Note that the map
multy : KX — Z
is a homomorphism, that is, mult,(«3) = multy,(«) + multy,(8) for a, § € K*.

For x € X, we define a homomorphism
mult,, : Div(X) — Z
to be mult, (D) := multy, (f), where m,, is the maximal ideal of O , and f is a local
equation of D at x. Note that this definition does not depend on the choice of the local
equation f,. By abuse of notation, the natural extension
mult, ®idg : Div(X)g — R

is also denoted by mult,. B
Let D be an arithmetic R-divisor of C-type. For z € X, we define v, (D) to be

vo(D) = {inf{multxw +(9)) | ¢ € HY(X,D)\{0}} if H'(X, D) # {0},
T o if H°(X, D) = {0}

We call v, (D) the multiplicity at x of the complete arithmetic linear series of D. First let
us see the following lemma.

Lemma 6.5.1. Let D and E be arithmetic R-divisors of C°-type. Then we have the fol-
lowing:

(1) If D is effective, then v, (D) < mult, (D).

2) v2(D + E) < vy(D) + v2(E).

(3) If D < E, then v, (E) < vz (D) + multy (E — D).

(4) For ¢ € Rat(X)*, vx(D + (¢)) = v,(D).
Proof. (1) is obvious.

(2) If either HO(X, D) = {0} or H°(X, E) = {0}, then the assertion is obvious, so that

we may assume that H°(X, D) # {0} and H(X,E) # {0}. Let ¢ € H°(X, D) \ {0}
and 1) € H(X,E) \ {0}. Then, as

@+E+E: (¢) + D+ (v) + E >0,
we have ¢i) € HO(X, D 4+ E) \ {0}. Thus
ve(D + E) < mult,((¢¢) + D + E) = mult,((¢) + D) + mult, ((¢) + E),

which implies (2).
(3) If we set ' = E — D, then, by (1) and (2),

D,

Ve(E) = v3(D + F) < v3(D) + vp(F) < vp(D) + mult, (F).
(¢
)+

4 Leta: HY(X,D )+ (o )) — H%(X, D) be the natural isomorphism given by (1)) =
(¢). Note that (D + ( ) ( ) = D + (a(y))). Thus we have (4). O

We set
N(D) = {n € Zoo | H(X,nD) # {0} }.

Note that N (D) is a sub-semigroup of Z-, that is, if n,m € N (D), thenn+m € N(D).
We assume that N (D) # ). For x € X, we define p,(D) to be

41o(D) := inf {multw(D +(1/n)(¢)) | n e N(D), ¢ € H(X,nD)\ {0}}
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which is called the asymptotic multiplicity at x of the complete arithmetic Q-linear series
of D.
We can see that o
Ve(nD
1Dy =i {270

neN (D)} .
Indeed, an inequality 11, (D) < v »(nD)/n for n € N(D) is obvious, so that (D) <

inf {v;(nD)/n | n € N(D)}. Moreover, forn € N(D) and ¢ € HO(X,nD)\ {0},
inf { Lﬁ(nD)

n

neND)} <) <0+ (1/0)(0)

holds, and hence we have the converse inequality.
By the above lemma,

ve((n +m)D) < vg(nD) + vy(mD)
for all n,m € N(D). Thus, if h°(D) # {0} (i.e., N(D) = Zs), then

lim W:inf{m n>o}.

n
Proposition 6.5.2. Let D and E be arithmetic R-divisors of C°-type such that N (D) # ()
and N (E) # (. Then we have the following:

(1) pe(D + E) < pe(D) + piz(E).
(2) If D < E, then piz(E) < pp(D) + mult, (E — D).
(3) pa(D + (¢)) = pa(D) for € Rat(X)*.
“4) Mw(aD) = aﬂx(D) fora € Q>O-
Proof. Firstlet us see (4). We assume that a € Z~g. Letn € N(D) and ¢ € H'(nD)\{0}.
Then ¢* € H(n(aD)) \ {0}. Thus
pz(aD) < mult,(aD + (1/n)(¢%)) = amult,(D + (1/n)(¢)),

which yields y,(aD) < aj, (D). Conversely let n € N(aD) and ¢ € H(n(aD)) \ {0}.
Then

n—00 n

pz(D) < multy (D + (1/na)(¢)) = (1/a) multy(aD + (1/n)(4))),

and hence pi;(D) < (1/a)pz(aD). Thus (4) follows in the case where a € Z~.

In general, we choose a positive integer m such that ma € Z~ . Then, by the previous
observation,

mg(aD) = pz(maD) = map, (D),

as required.

By (4), we may assume that ho( ) # 0 and ho( ) # 0 in order to see (1), (2) and (3),
so that (1), (2) and (3) follow from (2), (3) and (4) in Lemma 6.5.1 respectively. O

Finally we consider the vanishing result of the asymptotic multiplicity for a nef and big
arithmetic R-divisor.

Proposition 6.5.3. If D is a nef and big arithmetic R-divisor of C°-type, then (D) = 0
forall x € X.

Proof. Step 1 (the case where D is an ample arithmetic R-divisor) : Note that if D is
an ample arithmetic Q-divisor, then the assertion is obvious. By using Lemma 5.2.3 and
Lemma 5.2.4, there are a1, ..., a; € R and effective arithmetic Q-divisors

Ay,...,A,By,..., B
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of C*°-type such that

ﬁ:alﬁﬁ—---—i—alﬁl —a1§1—---—al§l.
Let us choose sufficiently small arbitrary positive numbers 01, ..., d;,d], ..., d; such that
a; — 0;,a; + 0, € Q for all i. We set
E/ = (a1 — (51)Z1 + -+ (al — 51)Zl — (a1 -+ 51)?1 — = (al + (SZ)EZ

Then, D’ < D and D' is an ample arithmetic Q-divisor by Proposition 6.2.1. By (2) in
Proposition 6.5.2,

0 < p1z(D) < p1p(D') + multy (D — D') = > (6; multy(A;) + &) mult,(B;))
because /i, (E/) = 0. Therefore,
0 < pta(D) <Y (8 multy, (A;) + 6} multy (By)),

and hence p;(D) =0.

Step 2 (the case where D is an adequate arithmetic R-divisor) : In this case, there is an
ample arithmetic R-divisor A and a non-negative Fi-invariant continuous function ¢ on
X(C) such that D = A + (0, ¢). By (2) in Proposition 6.5.2,

0 < p1z(D) < pz(A) = 0,
as required. o o

Step 3 (general case) : Let A be an ample arithmetic Q-divisor. Since D is big, by

Proposition 6.3.1, there are a positive integer m and ¢ € Rat(X)* such that A < mD +

o~ —

(¢). We set E = mD + (¢). Then E is nef. Moreover, for § € (0, 1], by Proposition 6.2.2,
JA+ (1 —9)F is adequate and 0A + (1 — ) E < E. Hence

pz(E) < pp(6A+ (1 —0)E) + dmult,(E — A) < §mult,(E — A),

which implies that pi,,(E) = 0. Therefore, using (3) and (4) in Proposition 6.5.2,
— 1 — 1 =
pa (D) = %Mﬂ:(mD) = %Mx(E) = 0.
O

6.6. Generalized Hodge index theorem for an arithmetic R-divisor. In this subsection,
let us consider the following theorem, which is an R-divisor version of [13, Corollary 6.4]:

Theorem 6.6.1. Let D be an arithmetic R-divisor of (C° N PSH)-type on X. If D is nef
on every fiber of X — Spec(Z) (i.e., deg(D|~) > 0 for all 1-dimensional closed vertical

integral subschemes C on X), then \70\1(3) > d/e\g(ﬁd).
Proof. Let us begin with the following claim:

Claim 6.6.1.1. We set D = (D, g). If D is of C*®-type, D is ample (that is, there are
ai,-..,a; € Rsgand ample Cartier divisors A1, . .., A;suchthat D = a1 A1+ - -+ a;Ap)
and dd®([g]) + dp is positive, then the assertion of the theorem holds.

Proof. By virtue of Proposition 2.4.2, we can find Fi-invariant locally integrable functions
hi,...,h; such that h; is an A;-Green function h; of C'*°-type for each i and g = a1h; +
-+ arh; (a.e.). Let d1,. .., d; be sufficiently small positive real numbers such that a; +
01,...,a; + 0; € Q. We set

(D', g") = (a1 + 01)(Ar, ha) + - - + (ag + 61) (A, ).
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Then D’ is an ample Q-divisor and

l
dd*([g']) + 6pr = dd°([g]) + 6p + Y _ 8i(dd*([h]) + 6.,)-
1=1

is positive because 61, . .., d; are sufficiently small. Therefore, by [13, Corollary 6.4], we

yd =
have Vol( D) > deg( ), which implies the claim by using the continuity of vol (cf.
Theorem 5.2.2). O

First we assume that D is of C*°-type. Let A = (4, h) be an arithmetic divisor of C*°-
type such that A is ample and dd([h]) + d 4 is positive. Then, by using the same idea as in
the proofs of Proposition 6.2.1 and Proposition 6.2.2, we can see that D + €A is ample for

all € > 0, Thus, by the above claim, ;gl(ﬁ +e(A h)) > d/e\g((ﬁ + ¢(A, h))?), and hence
the assertion follows by taking € — 0.

Finally we consider a general case. By Claim 6.4.2.1, there is an ample arithmetic
divisor B such that A := D + B € N&'Co (X)r and A is ample. Let € be an arbitrary
positive number. Then, by virtue of Theorem 4.6, we can find an F -invariant continuous
function u on X (C) such that 0 < u(z ) <eforallz € X(C)and A := A+ (0,u) €
ISR/COOQPSH(X)R, which means that A’ € Nefcoo( )r. Note that

deg(D zd: ( >deg(T B,
=0

2

d
deg Z ( ) (A B’ )
=0
where D' := D + (0,u). By (6.4.2.3), cTe\g(Zi ~§d_i) and d/(%(zﬂ ~§d_i) are given by
an alternative sum of volumes, so that, by the continuity of vol, there is a constant C' such
that C' does not depend on € and that

]d/eTg(Z”' BT —deg(@ - BYY| < ce

foralli =0,...,d, and hence
— _d —
‘deg(Dl ) — deg(Dd)‘ < 24Ce.

On the other hand, by the continuity of vol again, there is a constant C’ such that C’ does
not depend on € and that

(vAol(ﬁ)—vm( )‘ < C'e.
Therefore, by using the previous case,
vol(D) — deg(D") > (651(5’)—0 ) (deg ZdC’e)
= (Vol(D') - dea(D'")) - (C" +2C)e > (€' +2°C)e.

Thus the theorem follows because ¢ is an arbitrary positive number. O
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7. LIMIT OF NEF ARITHMETIC R-DIVISORS ON ARITHMETIC SURFACES

Let X be a regular projective arithmetic surface and let .7 be a type for Green functions
on X such that PSH is a subjacent type of .7. The purpose of this section is to prove the
following theorem.

Theorem 7.1. Let {M,, = (M, h,)}2, be a sequence of nef arithmetic R-divisors on
X with the following properties:
(@) There is an arithmetic divisor . D = (D,g) of T-type such that g is of upper
bounded type and that M ,, < D foralln > 1.
(b) There is a proper closed subset E of X such that Supp(D) C E and Supp(M,,) C
FE foralln > 1.
(¢) limy,—,oo multe(M,) exists for all 1-dimensional closed integral subschemes C' on
X.
(d) limsup,, .o (hn)can(x) exists in R for all z € X(C) \ E(C).
Then there is a nef arithmetic R-divisor M = (M, h) on X such that M < D,

M = Z (7111_)120 multC(Mn)) C
C

and that heay| X(C\E(C) IS the upper semicontinuous regularization of the function given
by x + limsup,,_, . (hn)can () over X (C) \ E(C). Moreover,

lim supd/% (Mnlc) < d/eToT (M‘C)
n—oo
holds for all 1-dimensional closed integral subschemes C on X.

Proof. Let C'q,...,C; be 1-dimensional irreducible components of £. Then there are
Qly...,0Q0,Anl, - - -, 0y € R such that

D=a:Ci+--+qC;, and M, =a,1C1+ -+ ayC].
We set p; = lim, o ap; fori =1,...,land M = p1C1 + - - - + p;C}.
Let U be a Zariski open set of X over which we can find local equations ¢, ..., ¢; of
C1,...,Cj respectively. Let

! !
by, = up + Z(—am) log |#5) (a.e.) and g=1v+ Z(—ai) log |¢i|* (a-e.)
i=1 i=1
be the local expressions of h,, and g with respect to ¢1, ..., ¢;, where u,, € PSHg and v
is locally bounded above.

Claim 7.1.1. {u,}2 is locally uniformly bounded above, that is, for each point x €
U(C), there are an open neighborhood V,, of x and a constant M,, such that u,(y) < M,
forally € Vyandn > 0.

Proof. Since h,, < g (a.e.), we have
Up <V — zn:(ai — api) log |¢i|? (a.e.)
=1
overU(C). If z ¢ C1(C)U --- U C;((C), then ¢;(x) # 0 for all 4. Thus, as
v = zn:(ai — ay;) log|4if®
is locally bounded above, the assertiz):nlfollows from Lemma 2.3.1.
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Next we assume that z € C1(C) U --- U Cj(C). Clearly we may assume = € C1(C).
Note that C;(C) N C;(C) = 0 for i # j. Thus ¢1(x) = 0 and ¢;(z) # 0 for all i > 2.
Therefore, we can find an open neighborhood V;, of z and a constant M, such that |¢1| < 1
on V. and

Uy < M. — (a3 — an1)log|o1]?  (ae.)
over V. for all n > 1. Moreover, we can also find a positive constant M” such that
a1 — ap; < M" for all n > 1, so that

u, < M, — M"log|p1)? (a.e.)
holds over V.. Thus the claim follows from Lemma 4.1. Il

We set u(z) := limsup,,_,, un(x) for z € U(C). Note that u(z) € {—oco} UR. Let @
be the upper semicontinuous regularization of u. Then, as u,, is subharmonic for alln > 1,
by the above claim, % is also subharmonic on U(C) (cf. Subsection 2.1).

Claim 7.1.2. u(x) # —oo forall x € U(C).
Proof. If x ¢ C1(C)U --- U C)(C) = E(C), then ¢;(x) # 0 for all i. Note that
lim sup,, oo (hn)can () exists in R and that

!

(hn)can(z) = un(z) + Z(*am’) log |¢z($)|2
=1

Thus lim sup,,_, ., up () exists in R and

!
lim sup uy, (z) = lim sup(hp)can(x) + Zpi log | (x)]?.
Hence the assertion follows in this case.

Next we assume that x € C1(C) U --- U Cy(C). We may assume z € C1(C). As
before, ¢1(z) = 0 and ¢;(x) # 0 for i > 2. By using Lemma 5.2.3, let us choose a
rational function ¢ and effective divisors A and B such that C; + (¢)) = A — B and
Cy € Supp(A) U Supp(B). We set

M = My, + a1 (), hl, = hy —apylog [¢> and M, = (M., h.).

n)»''n

Then M, = M, + a1 (¢) and
)

0 < deg(Ma]e,) = deg(MT,| |
= an1l (log #(001 (A)/OC1) - 10g #(001 (B)/OC1))

l
+ Z Ang 10g #(001 (CZ)/Ocl) + % Z (h%)can(y)‘
=2

yeC1(C)
Thus we can find a constant T" such that
S (Wen(y) = T
yeC1(C)
for all n > 1, which yields

Z lim sup(h),)can(y) > limsup Z (h)ean(y) | > T.
yeci(©) " T \veai(o)
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In particular, lim sup,,_, . (h,)can(z) # —0c. On the other hand,

!
hl, = up — an1 log |p19)? — Zam log |¢s]*  (a.e.).

=2
Note that (¢17)(x) € C*. Thus

!
lim sup (un () = lim sup(,)ean () + p1 log [(610) (@)]2 + > py log |3 () 2.

n—oo n—oo

Therefore we have the assertion of the claim in this case. O

Claim 7.1.3. @ + Zli:l(—pi) log |¢;|? does not depend on the choice of ¢1, . .., ¢y

Proof. Let ¢, ..., ¢ be another local equations of C1, ..., C;. Then there are eq, ..., €
O[(U) such that ¢; = e;¢; for all i. Let g, = u], — St anilog |4 (a.c.) be the
local expression of g, with respect to ¢/, ..., ¢). Then u;, = u, + 2221 ani log |e;|? by

Lemma 2.3.1. Thus
l

i =i+ pilogleil,
i=1
which implies that

l l
ijkmmza §jpu%mP

O
By the above claim, there is an M-Green function h of PSHg-type on X (C) such that

z
hlyy =t + Z (—pi) log [il*.

By our construction, hcap| X(C)\E(C) is the upper semicontinuous regularization of the
function given by h*(x) = lim sup,,_, o (hn)can () over X(C) \ E(C)

Claim 7.1.4. h is Fo-invariant and h < g (a.e.).

Proof. As PSH is a subjacent type of .7, we have (hy)can < gean over X (C) \ E(C), so
that h# < gean over X(C) \ E(C). Note that h* = h (a.e.) (cf. Subsection 2.1). Thus the
claim follows because h! is Fi-invariant. O

Finally let us check that
d/e\g (M!C) > limsupd/egf (M”‘C) >0
n—oo

holds for all 1-dimensional closed integral subschemes C' on X.
By Lemma 5.2.3 again, we can choose non-zero rational functions 1, ..., %; on X and
effective divisors

Ai,...,A,By,...,B
such that C; + (¢;) = A; — B; for all i and C' Z Supp(A;) U Supp(B;) for all i. We set

My = M, + Zizl ani(Pi), Ty = hn + Zz 1(—ani)log il M = (M, hy,)
M" =M+ pi(y), W =h+ X (—p)log |2, M= (M", ")
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First we assume that C is not flat over Z. Then

—~

deg(M,| ) = deg(M,| )= ain (log #(Oc (A1) /Oc) — log #(Oc(B;)/Oc))

=1

and

—_

deg(M] ;) = deg(M"| ) sz log #(Oc(4)/O¢) —log #(Oc(Bi)/Oc)) -

Thus
deg(M‘C) = nlgrolo deg<Mn‘C) >0
Next we assume that C' is flat over Z. Then

—_—

ge\g(ﬂn‘c) = deg(M

)

C

n

l
=Zam(10g#(00(14z‘)/00) log #(Oc(Bi)/Oc)) + ; Y (h)ean(y)

yeC(C)

and

deg(M|,) = deg(M"| )

—

= 3l #(Oc 49)/00) ~ g #(Oc(B)/0c) + 5 3 (H)ean(y).

i=1 yeC(C)
Let us consider a Zariski open set U of X with C N U # (). Let
I =1tn+ Y (—ani)log|gil® (ae.) and h=i+» (—pi)log|gil* (a.e.)
be the local expressions of h,, and h as before. Then
=+ Y (—ani)log|¢ail® (ae) and B =0+ (—p;)log|givil® (ae.).
Moreover, (¢;1;)(y) € C* for all y € C(C) and ¢. Thus

lim sup(h))can(y) < (B")can(y).

n—oo
Therefore,
lim sup Z (h)can (y) Z lim sup(hy,)can(y) < Z (h")can(y),
" yeo(o) oo T yeC(C)
which yields

0 < limsup d/eTg(Hn‘C) < d/eTg(H|C)

n—~oo
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8. 0-DECOMPOSITIONS ON ARITHMETIC SURFACES
Let X be a regular projective arithmetic surface. We fix an F-invariant continuous
volume form ® on X (C) with [ x(y® = 1. Let D = (D, g) be an effective arithmetic

R-divisor of C°-type on X. For a 1-dimensional closed integral subscheme C on X, we
set

vo(D) = min {multc(D +(8) | ¢ € HYX, D)\ {0}}
as in Subsection 6.5. Moreover, we set
F(D)=Fx(D)=> ve(D)C and M(D)=Mv(D)=D —Fx(D).
C

Let V(D) be the complex vector space generated by H%(X, D) in H°(X, D) ®z C, that
is, V(D) := (H°(X, D))c.

Lemma 8.1. dist(V(D); g) is Foo-invariant.

Proof. First of all, note that, for ¢ € Rat(X), F% (¢) = ¢ as a function on X (C). Let us
see (¢, ), € R forall ¢, € (HY(X, D))r. Indeed,

(6,100 = /X o, GPep0) = - /X o, Felope(=g0

—— [ PP F(exp(~) P (@)
X(C)

- )(51/} exp(—9)® = (¥, )y = (0, ¢)g-

X(C
Thus (¢, ), yields an inner product of (H°(X, D)), so that let ¢1, ..., ¢y be an or-
thonormal basis of (H°(X,D))r over R. These give rise to an orthonormal basis of
(H°(X, D))c. Therefore,

dist(V(D); ) = |é1f; +- - + o]}
Note that F% (|¢i|) = |bilg = |#i]g> and hence the lemma follows. O

Here we define g, p5). 9)/(p5). M (D) and F(D) as follows:

9pp) = — logdist (V(D);g), Im®D) =9~ 9pD) = 9 1 logdist (V(D);g),
M(D) = (M(D)79M(ﬁ)) ’ F(D) = (F(D),gF(5)> :
Let us check the following proposition:

Proposition 8.2. (1) H°(X,D) C H(X,M(D)).

(2) 9r(p) is an M (D)-Green function of (C*° N PSH)-type on X (C).

(3) gpp) is an F(D)-Green function of (C° — C* N PSH)-type over X (C).

(4) M (D) is nef.
Proof. (1) If ¢ € H(X, D) \ {0}, then (¢) + D > F(D), and hence (¢) + M (D) > 0.
Note that |¢[5 = dist(V(D); g)l¢l;,, . for ¢ € HO(X, M(D)). Thus, as ||¢]|, < 1, by
Proposition 3.2.1,

|¢’3M(B) = |¢’§/ diSt(V(b);g) < ||¢||Z <1.

Therefore, ¢ € HO(X,M(D)).
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(2), (3) Let us fix z € X (C). We set

v, := min{mult, (D + (¢)) | ¢ € V(D) \ {0}}.
Note that mult, (D + (¢)) = mult, (D) + ord,(¢). First let us see the following claim:
Claim 8.2.1. @) Ifp1,...,¢n € V(D) \ {0} and V(D) is generated by ¢1, . .., ¢n,

then v; = min{mult; (D + (¢1)), ..., multy(D + (¢n))}-
(b) vy = mult,(F(D)).

Proof. (a) is obvious. Let us consider the natural homomorphism
(H°(X, D))z ®z Ox — Ox(|D]),
which is surjective on X \ Supp(D) because 0 < | D| < D. In particular,

V(D) ®c Ox(c)y = Ox(c)(LD)),
is surjective on X (C) \ Supp(D)(C), so that if x € X(C) \ Supp(D)(C), then v, =

0. On the other hand, if x € X(C) \ Supp(D)(C), then mult,(F(D)) = 0 because

0 < F(D) < D. Therefore, we may assume that € Supp(D)(C), so that there is a
1-dimensionaAl closed integral subscheme C of X with z € C(C). Let ¢y, ...,9, be all
elements of H°(X, D) \ {0}. Let 1 be the generic point of C. Then
multe(F (D)) = min{multc (D) + ord, (¢1), . .., multc(D) + ord, (¢n)}.
Thus, by using (a),
mult, (F(D)) = multe(F(D))
= min{multc(D) + ord, (¢1), ..., multc(D) 4 ord, (vn,) }
= min{mult, (D + (¢1)), ..., multz(D + (¢n))} = vs.
[
Let 1, . .., ¢ be an orthonormal basis of V(D) with respect to (, ),. Let g = u, +

(—a)log || (a.e.) be a local expression of g around z, where z is a local chart around
x with z(x) = 0. For every i, we set ¢; = z%wv; around x with v; € (’))X(((C) .- Then

)

||2 = | 2|*(@*9) exp(—ug)|vs|%. By the above claim,

vy = min{a; +a,...,ay + a} = mult,(F(D)).

Thus
N
dist(V(D): g) = 2 exp(=uz) Y o247 w2
i=1
Therefore,

9p(D) = Us — log (Zfil IZIQ(“"+“‘”””)|W|2> — vz log |2[?,
Im(p) = log (vazl !Z!Q(“i“‘”m)!vz‘\z) — (a —v;)log|z|*.

Note that log (sz\il \z|2(“i+a_“x)\vi|2> is a subharmonic C'*°-function. Thus we get (2)
and (3). R B

(4) For ¢ € HY(X, D) \ {0} and a 1-dimensional closed integral subscheme C on X,
as

multc(M (D) + (¢)) = multc(D + (¢)) — ve(D),
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there is a ¢p € H°(X, D) \ {0} such that multo (M (D) + (1)) = 0. This means that

C ¢ Supp(M (D) + ().
Then, by Proposition 3.2.1,0 < |¢blg,, ; () < 1forall z € C(C) as before. Hence

deg (M(D)|,,) = log #0c((¥) + M(D))/Oc = Y log[¥lg,,  (x) > 0.

zeC(C)
Il
Forn > 1, we set
— 1 — 1
My (D) == gM(nD), IMm, (D) = ﬁgM(nE)v
_ 1 — 1

In addition,
M (D) = (M"@)’ gMn@)) and - Fn(D) := (Fn(ﬁ)’ an@)) :
Then we have the following proposition, which guarantees a decomposition
D = Mo(D) + Foo(D)

as described in the proposition. This decomposition D = Mu (D) + Foo(D) is called
the o-decomposition of D. Moreover, Moo (D) (resp. Foo(D)) is called the asymptotic
movable part (resp. the asymptotic fixed part) of D.

Proposition 8.3. There is a nef arithmetic R-divisor M (E) = (Moo (E), Inr.. (5)> on
X with the following properties:
(1) multc(Mso(D)) = limy,_.oo multe (M, (D)) for all 1-dimensional closed inte-
gral subschemes C on X.
2) (g Moo (5))Can is the upper semicontinuous regularization of the function given by

x — limsup (gMn@)) ()

n—oo can

over X (C) \ Supp(D)(C). In particular,
(QMOO (5)>Can (z) = liﬁsolip ((gMn(ﬁ))can (x)> (a.e.).

Moreover; if D is of C*°-type, then lim,, < gMn@)) (a:)) exists.
(

3) d/eTg (Moo(ﬁﬂc) > limsup,, o d/eTg (M, b)!c) holds for all 1-dimensional
closed integral subschemes C on X.
(4) If we set Fso (D), 9. (D) and F (D) as follows:

Foo(D) := D — Moo (D),

9Fe(D) = 9 7 IM (D)
= (Fu(D), 91 ;) (= D= Mu(D)),

—~

Feo(D)
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then jic(D) = multo(Fu (D)) for all 1-dimensional closed integral subschemes
C on X and F (D) is an effective arithmetic R-divisor of (C° — PSHg)-type. In
addition, if D is of C'*°-type, then there is a constant e such that

ngp._ D) < Irmp) T 3log(n+1) +e (a.e.)

Joralln > 1.
(5) If D is of C*°-type, then there is a constant €' such that

hO(X,nMso (D)) < h°(X,nD) < h°(X,nMoo(D)) + €'nlog(n + 1)
foralln > 1.
Proof. It is easy to see that
multc(F((n +m)D)) < multe(F(nD)) + multe(F(mD))
for all n,m > 1 and 1-dimensional closed integral subschemes C'. Thus
nhl& multc(F, (D))
exists and
lim multe(F, (D)) = %I;f‘i{multc(Fn(D))}.

n—oo

Therefore lim,, .o, multc (M, (D)) exists because M, (D) = D — F,(D). Note that
pe (D) = lim, oo multe(F, (D)) as multe(Fy, (D)) = ve(D)/n (cf. Subsection 6.5).

Claim 8.3.1. Let h be a D-Green function of C*°-type. Then there is a positive constant
A such that, for x € X(C) \ Supp(D)(C),

lim log (dist(V(nE); nh)(m))

n— o0 n

exists in R<o and

lim log (dist(V (nD); nh)(z)) — log(A(n + 1)?)

n—o00 n

= sup

n>1 n

{log (dist(V (nD); nh)(x)) — log(A(n + 1)3) } |

Proof. First of all, note that ., V(nD) is a graded subring of >°, H°(X,nD). By
Theorem 3.2.3, there is a positive constant A such that

dist(V(nD);nh) < A(n +1)3

and
dist(V (nD); nh) ‘ dist(V (mD); mh) < dist(V((n +m)D); (n + m)h)
An+1)3 A(m +1)3 - Aln+m+1)3
for all n, m > 1. Moreover, dist(V (nD);nh)(x) # 0 forz € X(C)\ Supp(D)(C). Thus
the claim follows. U

By using the Stone-Weierstrass theorem, for a positive number €, we can find continuous
functions u and v with the following properties:

u >0, [|ullsup <€ h:= g+ uisof C™-type,
v >0, |[v]lsup <€ B =g —visof C®-type.
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By Lemma 3.2.2,
exp(—ne) dist(V(nD);nh’) < dist(V(nD);ng) < exp(ne) dist(V (nD); nh).
Thus, by the above claim, for z € X (C) \ Supp(D)(C),
lim sup log (dist(V (nD); ng)(z))

n—00 n

exists in {a € R | a < €}. Since ¢ is arbitrary positive number, we actually have

(8.3.2) Jim sup log (dist(V' (nD); ng)(z))

n—o00 n

<0.

This observation shows that lim sup,,_, . (gMn (5)> (z) exists in R for z € X(C) \
can
Supp(D)(C). Therefore, by Theorem 7.1, there is a nef arithmetic R-divisor

M..(D) (MOO(E),!]MOO(E)>

satisfying (1), (2) and (3). Further the last assertion of (2) is a consequence of the above
claim. o o
Let us see (4). Obviously uc (D) = multe(Fio (D)) because

po(D) = lim multc(F,(D)).

Note that

(9r),,,, (2) = —Timsup og (diSt(V(ZD% ng)(x))

(a.e.).

on X(C) \ Supp(D)(C). Thus (8.3.2) yields (ng (5)) (z) > 0 (a.c.). Hence Foo (D)
can

is effective. Moreover, it is obvious that g, (D) is of (C° — PSHR)-type because g is of

CP-type and ¢ Moo (D) is of PSHR-type.

We assume that D is of C™-type. By the above claim, there is a positive constant A’
such that

log (dist (V' (nD); ng)(z))

— lim
I (dist(V (nD); ng)(z)) + log(A’(n + 1)3)
= inf { — log (dist(V (nD); ng)(«)) + log(A'(n + 1)%) }
n>1 n

on X (C) \ Supp(D)(C). Thus, forn > 1,
—log (dist(V (nD); ng)(x)) + log(A’(n + 1)?)

n

(a.e.).

IFo(D) =

which implies the last assertion of (4). -
Finally let us check (5). By (4), we have M (D) < D, so that

WO (X, nMs (D)) < h°(X,nD)
holds for n > 1. Moreover, by (4) again,
nM (D) + (0,3log(n + 1) 4 log(A’)) > M(nD)
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for all n > 1. Thus, by using (1) in Proposition 8.2,
h’ (X,nD) < h° (X, M(nD))
< WY (X, nMoo(D) + (0,3log(n + 1) + log(A"))) .
Note that there is a positive constant e’ such that
hO (X, nM (D) + (0,3log(n + 1) +log(A"))) < h°(X,nMw (D)) + e'nlog(n + 1)
forallm > 1 (cf. [13, (3) in Proposition 2,1] and [15, Lemma 1.2.2]). Thus (5) follows. [

9. ZARISKI DECOMPOSITIONS AND THEIR PROPERTIES ON ARITHMETIC SURFACES

Throughout this section, let X be a regular projective arithmetic surface and let .7 be a
type for Green functions on X. We always assume that PSH is a subjacent type of 7.

9.1. Preliminaries. In this subsection, we prepare several lemmas for the proof of Theo-
rem 9.2.1.

Lemma 9.1.1. We assume that .7 is either C° or PSHg. Let M be a 1-equidimensional
complex manifold and let D1, ..., D, be R-divisors on M. Let g1, ..., gy be locally in-
tegrable functions on M such that g; is a D;-Green functions of 7 -type for each i. We
set
g9(x) = max{gi(z),...,gn(x)} (z€ M)
and
D= Z max{mult, (D), ..., mult,(D,)}z.
xeM
Then g is a D-Green function of 7 -type.

Proof. For x € M, let z be a local chart of an open neighborhood U, of x with z(z) = 0,
and let

g1 = u1 — aq log \z\z (a.e.), ..., gn = Uy — aylog \z|2 (a.e.)
be local expressions of g1, ..., g, respectively over U,, where a; = mult,(D;) and u; €

T (U,) fori =1,...,n. Clearly we may assume that a; = max{ay,...,a,}. First of all,
we have

g = max{u; + (a1 —a;)log|z|* |i=1,...,n} —ailog|z|* (a.e.)
over U,. In addition, the value of
u = max{u; + (a1 —a;)log|z)? | i =1,...,n}

aty € U, is finite

First we consider the case where .7 = PSHg. Then u, ..., u, are subharmonic over
U,, so that u; + (a1 — a;) log |z|? is also subharmonic over U, for every i. Therefore, u is
subharmonic over U,..

Next let us see the case where 7 = C°. We set I = {i | a; = a;}. Then, shrinking U,
if necessarily, we may assume that u; > u; + (a1 — a;)log |z|?> on U, for all j ¢ I. Thus
u = max{u; | © € I}, and hence u is continuous. O

Lemma 9.1.2. We assume that 7 is either CY or PSHg. Let

E1 = (Dlagl)a"wﬁn = (Dnygn)
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be arithmetic R-divisors of 7 -type on X. We set

max{D1,...,Dy} =) ~max{multc(D1),...,multc(D,)}C,
max{D1,..., Dy} = (max{D1,..., D, },max{g1,...,9n}).

Then we have the following:
(1) max{Dy,... ,En}ﬁ an arithmetic R-divisor of 7 -type for D.
(2) If 7 = PSHg and D, . .., D,, are nef, then max{ D, ..., Dy} is nef.

Proof. (1) It is obvious that max{gi,...,gn} is Fuo-invariant, so that (1) follows from
Lemma 9.1.1.

(2) For simplicity, we set D = max{D1,..., Dy}, g = max{gy,...,gn} and D =
max{D1, ..., Dy}. Let C be a 1-dimensional closed integral subscheme of X. Let y be
the generic point of C'. Since the codimension of

Supp(D — D1) N --- N Supp(D — Dy,)

is greater than or equal to 2, there is ¢ such that v ¢ Supp(D — D;). By Proposition 2.3.4,
g — gi is a (D — D;)-Green function of (PSHr — PSHg)-type and g — g; > 0 (a.e.).
Moreover, as ¢ Supp(D — D;) for x € C(C), by Proposition 2.3.4,

(g - gi)can(x> > 0.
Therefore, d/e\g (ﬁ - D; ‘ C) > 0, and hence

d/ch (b‘o) z (Te\g (ﬁi‘c) > 0.
O

Lemma 9.1.3. Let (D, g) be an effective arithmetic R-divisor of C°-type on X and let E¥
be an R-divisor on X with 0 < E < D. Then there is an F-invariant E-Green function
h of (C° N PSH)-type such that

0<(E,h)<(D,g).

Proof. Let hy be an Fio-invariant E-Green function of (C°° N PSH)-type. There is a
constant C such that by + C; < g (a.e.). We set h = max{h; + C1,0}. Then, by
Lemma 9.1.1, h is an F-invariant F-Green function of (CO N PSH)-type and 0 < h <
g (a.e.). O

9.2. The existence of Zariski decompositions. Let D = (D, g) be an arithmetic R-
divisor of .7 -type on X such that g is of upper bounded type. Let us consider

(=00, D] N Ne\f(X)R ={M | M isnefand M < D}.
The following theorem is one of the main theorems of this paper, which guarantees the
greatest element P of (—oo, D]NNef (X )g under the assumption (—oo, D]NNef(X)g # (.

If we set N = D :F, then we have a decomposition D = P+ N. Itis called the Zariski
decomposition of D, and P (resp. N) is called the positive part (resp. negative part) of D.

Theorem 9.2.1 (Zariski decomposition on an arithmetic surface). If

(—00, D] N Nef(X)g # 0,

then there is P = (P,p) € (—oo, D] N Nef(X)g such that P is greatest in (—oo, D] N
Nef(X)g, thatis, M < P forall M € (—oo, D]|N\Nef(X)g. Moreover, if D is of C°-type,
then P is also of CO-type.
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Proof. For a 1-dimensional closed integral subscheme C' of X, we put
a(C) = sup{multc(M) | (M, gnr) € (—o0, D] N Nef(X)r}.

We choose My = (My,go) € (—o0,D] N I\/Ie\f(X)R. Then multo(My) < a(C) <
multc (D) by Lemma 9.1.2. Let {C1, ..., C;} be the set of all 1-dimensional closed inte-
gral subschemes in Supp(D)USupp(M)). Note thatif C' ¢ {C1,...,C;}, thena(C) = 0.
Thus we set P =)~ a(C)C.

Claim 9.2.1.1. There is a sequence { M, = (M,, gn)}>>, in (—oc, D] N Ne\f(X)R such
that M,, < Mn_H foralln > 0 and that

lim multe, (M,) = a(C})

n—od
foralli=1,...,n.

Din N&’(X)R such that

Proof. For each i, let {M; ,}°° | be a sequence in (—oo,
lim multe, (M; ) = a(Cy).
n—od

We set Mn = max {{Mo} U {Mi,j}lgigl,lgjgn} forn > 1. By Lemma 9.1.2, Mn S
(—o0, D] N Nef(X)g. Moreover, M,, < M, and

lim multe, (M,) = a(C;)

for all 7. O
Since PSH is a subjacent type of .7, by using Lemma 2.3.1,

(gU)can <...< (gn)can < (gn+1)can <+ < gean

holds on X (C)\ (Supp(D)USupp(Mp))(C), which means that lim,, oo (g, ) can () exists
forz € X(C) \ (Supp(D) U Supp(My))(C). Therefore, by Theorem 7.1, there is an F-
invariant P-Green function h of PSHg-type on X (C) such that (P,h) < D and (P, h) is
nef. Here we consider

[(P,h), D] N Nef(X)g = {(M, gar) | (M, gar) is nef and (P, h) < (M, gar) < D}.
Note that M = P for all (M, gpr) € [(P,h), D] N N&'(X)R.

Claim 9.2.1.2. If P = (P, p) is the greatest element of [(P, h), D] N @(X)R, then P is
also the greatest element of (—oo, D] N Nef(X)g.

Proof. For (N, gy) € (—oo, D|NNef(X)r, we set (M, gas) = (max{P, N}, max{h, gn}).
Then -

(M, gu) € [(P,h), D) N Nef(X)r and (N, gn) < (M, gar).
Thus the claim follows. U

By Proposition 4.4, there is a P-Green function p of PSHg-type such that p < g (a.e.)
and pecay is the upper semicontinuous regularization of the function p’ given by

P(x) = sup{(grr)ean (@) | M € [(P,h), D] N Nef(X )z}

over X (C) \ Supp(P)(C). Since (gas)can is Foo-invariant on X (C) \ Supp(P)(C), p’
is also Fo-invariant, and hence p is Fso-invariant because p = p’ (a.e.) on X(C) \
Supp(P)(C) (cf. Subsection 2.1). We set P = (P, p). Then (P, h) < D and hence

<P<
P is nef by Lemma 6.2.3. In addition, P is the greatest element of [( P, h), D] N Nef(X)g.
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Finally we assume that D is of C%-type. Let e be the degree of P on the generic fiber
of X — Spec(Z). As P is nef, we have ¢ > 0. Let X(C) = X; U--- U X, be the
decomposition into connected components of X (C). We set P = > [ | > ; @ijPij on
X(C), where P;; € X; forall i and j. Note that e = 3. a;; for all i. Let us fix a C°-
volume form w; on X; with f X, Wi = 1. Let p;; be a P;;-Green function of C'°°-type on
X; such that dd°([pij]) + dp,; = [wi]. Wesetp’ = >71_; >~ a;jpij. Then p’ is a P-Green
function of C°°-type and

T T

dd* () +6p = 3 (D aiy) ] = e Y _fwi]
i=1 =1

Thus, if e > 0, then dd°([p]) + dp is represented by a positive C*°-form e )\, w;.

Moreover, if e = 0, then dd°([p']) + dp = 0. Let us consider

@ is a P-Green function of PSHR-type
1 on X (C) with ¢ < g (a.e.) '

By Theorem 4.6, the above set has the greatest element p modulo null functions such that
P is a P-Green function of (C° N PSH)-type. Since g is Fx-invariant, we have F* (p) <
F* (g9) = g (a.e.). Moreover, by Lemma 5.1.1 and Lemma 5.1.2, F% (p) is a P-Green
function of PSHg-type. Thus F(p) < p (a.e.), and hence

p=FL(FL(p) < FL() (ae).

Therefore, p is Fuo-invariant. Note that (P, p) is nef because p < p (a.e.). Hence p =
p (a.e.). O

9.3. Properties of Zariski decompositions. Let D = (D, g) be an arithmetic R-divisor
of Z-type on X such that g is of upper bounded type. First of all, let us observe the
following three properties of the Zariski decompositions:

Proposition 9.3.1. We assume (—oo, D] N Nef(X)g # 0. Let D = P + N be the Zariski
decomposition of D. Then we have the following:

o~ —~

(1) For a non zero rational function ¢ on X, D + (¢) = (P + (¢)) + N is the Zariski

decomposition of D + (¢). -
(2) Fora € Rsg, aD = aP + aN is the Zariski decomposition of aD.

—

Proof. Note that +(¢) is nef and that

o~ —~

D1 <Dy <= Di+(¢)<Ds+(¢)

and
El < EQ < aﬁl < abg

for arithmetic R-divisors D1, Ds, a non-zero rational function ¢ and a € R~q. Thus the
assertions of this proposition are obvious. 0

Proposition 9.3.2. (1) Ifh%(X,aD) # 0 for some a € R, then
(—00, D] N Nef(X)g # 0.

(2) If D is of C°-type and (—oo, D] N Ne\f(X)R # (), then D is pseudo-effective.
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Proof. (1) We choose ¢ € H°(X,aD) \ {0}. Then aD + (¢) > 0, which implies D >
(—1/a)(¢). Note that (—1/a)(¢) is nef, so that (—1/a)(¢) € (—oc0, D] N @(X)R, as
required.

(2) Let D = P+ N be the Zariski decomposition of D and let A be an ample arithmetic

R-divisor. For n € Z-q, by Proposition 6.2.2, P + (1/n)A is adequate. In particular,
vol(P + (1/n)A) > 0, and hence

vol(D + (1/n)A) > vol(P + (1/n)A) > 0,
which shows that D is pseudo-effective. 0

Proposition 9.3.3. We assume that D is of " C™°-type and D is effective. Let P be the
positive part of the Zariski decomposition of D. Then there is a constant €' such that

RO (X, nP) < h°(X,nD) < h°(X,nP) + e'nlog(n + 1)
forallm > 1. In particular, \751(?) = \751(5)
Proof. The assertion is a consequence of Proposition 8.3 because M . (D) < P. O
The following theorem is also one of the main theorems of this paper.

Theorem 9.3.4. We assume that D is of C°-type and (—oo, D] N ﬁe\f(X)R # 0. Let P
(resp. N) be the positive part (resp. negative part) of the Zariski decomposition of D. Then
we have the following:

(1) vol(P) = vol(D) = deg(P").

2) d/eTg(F’ C) = 0 for all 1-dimensional closed integral subschemes C' with C' C
Supp(N). -

(3) If M is an arithmetic R-divisor of PSHg-type on X such that 0 < M < N and
deg(ﬂ‘c) > 0 for all 1-dimensional closed integral subschemes C' with C C
Supp(N), then M = 0.

(4) We assume N # 0. Let N = c1Cy + -+ - 4+ C; be the decomposition such that
C1,...,¢ € Rugand Cq,...,Cjare 1-dimensional closed integral subschemes on
X. Then the following hold:

(4.1) There are effective arithmetic divisors (C1,h1), ..., (Cj, k) of (C° N PSH)-
type such that ¢y (Cy, h1) + - - + ¢;(Cy, b)) < N.

4.2) If (C1,k1),...,(Cy, k) are effective arithmetic divisors of PSHg-type such
that a1 (C1, k1) + - -+ + ay(Cy, ky) < N for some o, . .., q; € Rsq, then

(—1)" det (d/é\g ((Cz', kz’)|cj)> > 0.

Proof. (1) It follows from Proposition 6.4.2 that \751(?) = ae\g(ﬁz). We need to show
\7(;1(?) = \7(;1(?). If ;c;l(ﬁ) = 0, then the assertion is obvious, so that we may assume
that vol(D) > 0.

First we consider the case where D is of C'*°-type. We choose a positive integer n
and a non-zero rational function ¢ such that n.D + @\) is effective. By Proposition 9.3.1,
the positive part of the Zariski decomposition nD + @ is nP + @5\) Thus, by using
Proposition 9.3.3,

o~ —~

n2vol(P) = vol(nP) = vol(nP + (¢)) = vol(nD + (¢)) = vol(nD) = n?vol(D),

as required.



70 ATSUSHI MORIWAKI

Let us consider a general case. By the Stone-Weierstrass theorem, there is a sequence
{u, }92, of non-negative Fi-invariant continuous functions such that lim,, o ||ty ||sup =
0 and D, := D — (0,u,) is of C*®-type for every n > 1. By the continuity of vol (cf.
Theorem 5.2.2),

lim vol(D,) = vol(D).

n—oo
In particular, ?n is big forn > 1. Let P,, be the positive part of the Zariski decomposition
of D,,. Since P,, < D,, < D and P, is nef, we have P,, < P, and hence
vol(Dy) = vol(P,) < vol(P) < vol(D).
Thus the assertion follows by taking n — oco.

(4.1) Before starting the proofs of (2), (3) and (4.2), let us see (4.1) first. By Propo-
sition 2.4.2, there are effective arithmetic divisors (C1,h}), ..., (C}, h}) of C%-type such
that ¢1(C1, h}) + - - + ¢(C, h]) = N. For each i, by using Lemma 9.1.3, we can find an
effective arithmetic divisor (Cj, h;) of (C° N PSH)-type such that (C;, h;) < (C;, hl), as
required.

(2) We may assume N # 0. We assume deg(?}ci) > ( for some i. By (4.1),
0<c¢i(Cs,h;) <N.
Note that if C” is a 1-dimensional closed integral subscheme with C’ # Cj, then
deg((Ci, hi)lcr) = 0.
Thus, since deg(f‘ Ci) > 0, we can find a sufficiently small positive number ¢ such that
P+ €(Cy, h;) isnef and P + €(C;, h;) < D. This is a contradiction.

(3) Since 0 < M < N, if C' is a 1-dimensional closed integral subscheme with C’ &
Supp(N), then deg(M | ~,) > 0. Thus M is nef, and hence P+ M is nefand P+ M < D.
Therefore, M = 0.

(4.2) By Lemma 1.2.3, it is sufficient to see the following: if 31,..., 3 € R>o and

deg ((Bi(C1, k1) + -+ Bu(Ci k)] .) > 0

for all ¢, then 31 = --- = §; = 0. Replacing 51, ..., 5 with t31,...,t0; (t > 0), we may
assume that 0 < 3; < ; for all 7. Thus the assertion follows from (3). Il

C’)

Theorem 9.3.5 (Asymptotic orthogonality of o-decomposition). If D is of C°-type, effec-
tive and big, then
lim deg (M,(D) | Fn(D)) = 0.

n—oo

(For the definition of M,,(D) and F, (D), see Section 8.)
Proof. Let us begin with the following claim:
Claim 9.3.5.1. P = M,(D) and N = F,(D).

Proof. First of all, note that M, (D) < P and Fo (D) > N. Since D is effective,
(0,0) € (—oo, D] N Nef(X)g, so that P is effective. Then, by (2) of Proposition 6.5.2,

pe (D) < pe(P) + multe(N).
Moreover, by Proposition 6.5.3, y1c(P) = 0 because P is nef and big. Thus we have

multe(Foo (D)) = pe(D) < multe(N),

which implies Foo (D) < N. Therefore, N = F,(D), and hence P = M, (D). O
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Claim 9.3.5.2. d/(% (Moo (D) | C’) = 0 for any 1-dimensional closed integral subscheme C
with C C Supp(N).

Proof. Since M o (D) < Pand P = M(D), thereis ¢ € (C°—PSHg)(X (C)) such that
¢ >0and P = Mo (D) + (0, ¢). Thus, for a 1-dimensional closed integral subscheme C
with C' C Supp(N), by (3) in Theorem 9.3.4,

0< d/e\g (MOO(E)’C) = d/e\g (ﬂc) =0,

as required. 0

Let Cl;' .., C; be irreducible components of Supp(D). We set F, (D) = 22:1 aniCi
and Fio (D) = Zézl a;C;. Then lim,,_,~ an; = a;. Moreover, if we set I = {i | a; > 0},
then J;; Ci = Supp(IV). Therefore, by the above claim and (3) in Proposition 8.3,

0 < liminf deg (M, (D) | F,(D)) < limsupdeg (M, (D) | F,.(D))

1
< Z lim sup a,;deg (Hn (D)

c.)

l
= a; lim su d/e\<M D
Cl-> ; i n_)oop g n( )

i=1 "
= Zai limsupd/eg (Mn<b) C’-) < Zazd/e\g (Moo(b) C’-) =
iel e iel
Hence the theorem follows. O

Finally let us consider Fujita’s approximation theorem on an arithmetic surface.

Proposition 9.3.6. We assume that D is C°-type and ;(;l(ﬁ) > 0. Then, for any ¢ > 0,
there is A € Divoeo (X )R such that

Aisnef, A<D and ;(;I(Z) > @1@) —€.
Proof. By using the continuity of \781, we can find a sufficiently small positive number §
such that
vol(D — (0,6)) > max{vol(D) — ¢, 0}.
Let D — (0,0) = Ps + Ng be the Zariski decomposition of D — (0, 6). Since Pj is a
big arithmetic R-divisor of C°-type, by Theorem 4.6, there is an F,-invariant continuous

function u on X (C) such that 0 < u < 6 on X(C) and P5 + (0, u) is nef and of C*-type.
If we set A= Ps+ (0,u), then A < D and

vol(D) — e < vol(D — (0,6)) < vol(A).
Il

Remark 9.3.7. It is expected that the converse of (2) in Proposition 9.3.2 holds, that is, if
D is of CY-type and D is pseudo-effective, then (—oo, D] N Nef(X)g # (.

Remark 9.3.8. We assume that D is of C°-type, big and not nef. Let D = P + N be the
Zariski decomposition of D and let N = ¢;C; + -+ - + ¢;C; be the decomposition such
that ¢1,...,¢; € Rygand Cy, . .., C) are 1-dimensional closed integral subschemes on X.
Then C1, . . ., C; are not necessarily linearly independent in Pic(X)®Q (cf. Remark 9.4.2).
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9.4. Examples of Zariski decompositions on P}. Let P, = Proj(Z[z,y]), Co = {z =
0}, Coo = {y =0} and z = x/y. Let o and 3 be positive real numbers. We set

D =Cy, ¢g=—log|z|*+logmax{a?z|?,°} and D = (D,g).

The purpose of this subsection is to show the following fact:

Proposition 9.4.1. The Zariski decomposition of D exists if and only if either o > 1 or
B > 1. Moreover, we have the following:

(1) Ifa > 1and 3 > 1, then D is nef. B
(2) If a > 1 and B < 1, then the positive part of D is given by

(0Co, ~010g |2 + log max{a?|=[**, 1))

where 0 = log o/ (log a — log 3). o
(3) If a < 1 and B > 1, then the positive part of D is given by

(Co — (1= 6')Coo, —log |2|* + log max{|2[*"", 5°}),
where ' =log 3/(log 8 — log v).
Proof. Let us begin with the following claim:

Claim 9.4.1.1. For a,b, A\ € Ry, we set
L=XC, h=—-\log|z|?+logmax{a?|z|**,*} and L = (L,h).

Then we have the following:

(a) L is an arithmetic R-divisor of (C° N PSH)-type. In additions, L is effective if and
onlyifa > 1.

(b) H°(Py, L) = Diczo<i<x Zz"

(c) Fori € Zwith0 <i <\ ||z7"||n =

(d) Fors =3 c\ciz ' € H(Py, L),

1
al—i/Api/X

Isln 2 | 3 (cmrirs)

0<i<A

(e) HO(PL, L) = {0} ifa < 1and b < 1.
) Eisnefifandonly ifa>1landb > 1.
(g) L is adequate if a®> > 2* and b* > 2.

Proof. (a) and (b) are obvious. (c) is a straightforward calculation. (e) follows from (d).
Let us see (d) , (f) and (g).
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(d) Indeed,

s> swp (@b =1 sup 4| S e

|C\=(b/a)% |c\:(b/a)% 0<i<A
2
! 1 —1
> = A X -
= /0 Z Ci <(b/a)A exp(27rﬁt)> dt
0<i<A
1 _
= - Z / cicj(ba) > L exp(2mv/—1(j — i)t)dt
a 0<4,j <A
2
- Z (al z/Abz/A) '

0<:i<

(f) It is easy to see that deg(f!co) = log(b) and d/(%(f}c ) = log(a). For v € Q, let
C be the 1-dimensional closed integral subscheme of }P’% given by the Zariski closure of

{(y:1)}. Then
deg(Z] )= Y. (~Aoglo(y)| + logmax{alo(y)*,b}).
oeC,(C)

Thus (f) follows.

(g) We choose § € Rq such that a > (2(1 + §))* and b> > (2(1 + 6))*. Then, as

Mog((1+0)|2|* + (1 +0)) < Alogmax{2(1 + §)|z|%,2(1 + )}

< log max{a?|z|**, b%},
we have
MCo, —log |2|* +log((1 + 8)|2]* + (1 +0))) < L

Note that (Cp, — log |z|2 + log((1 + 6)|2|? + (1 + 9))) is ample. Thus (g) follows. O

Next we claim the following:
Claim 9.4.1.2. If o < 1 and 3 < 1, then the Zariski decomposition of D does not exists.

Proof. Fort > 0, we set
D; = (Cy, —log|z|? 4 log max{t*a?|z|?, t25%}).

It is easy to see that

CLDtl + th2 = (CL + b)D(t‘ftg)%H’
for t1,t2 € Ry and a,b € R-y. Moreover, by (g) in Claim 9.4.1.1, Eto is adequate if
to > 1. We assume that the Zariski decomposition of D exists. Let P be the positive part

of D. We choose € > 0 such that t”ea < 1and t”eﬁ < 1. P + €Dy, is adequate by
Proposition 6.2.2. Thus, by Proposmon 6.2.1,

vol ( (1+€)D —~ —
=~ (5 Vo <( +e) (tg)lif> vol(D + €Dy,) S vol(P + €Dy,) >0
vO € = =
taFe (1+4¢€)? (1+e)2 — (1+¢)? ’
which yields a contradiction by virtue of (e) in Claim 9.4.1.1. U
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By the above claim, it is sufficient to see (1), (2) and (3). (1) follows from (f) in
Claim 9.4.1.1.

(2) In this case, D is effective. Thus the Zariski decomposition of D exists. First we
assume that o > 1, so that 0 < § < 1 and o' ~93% = 1. Let us see the following claim:

Claim 9.4.1.3. (H°(P},nD))z = D;cz0<icng L2 "

Proof. By (c) in Claim 9.4.1.1, |||,y = 5%. Thus z~* € HO(PL,nD) for 0 < i <
nb. For s = > 1 ja;z~" € HY(P},nD), by (d) in Claim 9.4.1.1,

n

nf—i\ 2
Isllng = | (jail8T)

=0

Thus, if ||s[ng < 1, then a; = 0 for i > nf, which means that s € ;<9 22" O
Claim 9.4.1.4. D is big and

. [1-6 fc=0
MC(D)—{O iFC % Co

for a 1-dimensional closed integral subscheme C' of ]P’%.

Proof. Note that (27") +nD = (n—i)Cp + iCs. Thus the second assertion follows from
Claim 9.4.1.3. Let us see that D is big. We set

Su=1{ 3 az||al< B0
0<i<nf/3
It is easy to see that .S, C HO (}P’%, nD) for n > 1. Note that, for M € R>,
#{a€Z|la| <M}=2|M|+1>|M|+1>M.
Therefore
—4 — no nb 1
TCOEI | S s
0<i<nd/3
which implies
o —log B [nd/3](Inb/3] + 1)
- 1-46 2

for n > 1, and hence \7(;1(5) > 0. O

hO(X,nD) > log #(S,)

We set
P'=0C), p =—0log|z|* +logmax{a?z|*’,1} and P = (P p).
By Claim 9.4.1.4 and Claim 9.3.5.1 in the proof of Theorem 9.3.5, if P = (P, p) is the
positive part of the Zariski decomposition, then P = 6Cj. Let us see that P = P. First

of all, 2 < D and P is nef by (f) in Claim 9.4.1.1. Thus iz < P, and hence there is a
continuous function u such that w > 0 and P = P + (0, u). Note that

0<u<—(1-0)logl|z|® +logmax{a?|z|?, %} — logmax{a?|z|?, 1}.
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In particular, if |z| > ﬂﬁ, thenlu(z) =0.Asp=—0log|z|> +uon{z||z| < ﬂﬁ}, u
is subharmonic on {z | |z| < 37-¢ }. Thus, by the maximal principle,
w2 < s {u(0)} =0,
¢|=6T-°
which implies that u(z) = 0on {z | |z| < 51%0} Therefore P = P.

Finally let us consider the case where o = 1. Let P be the positive part of D. For
te(1,1/58), we set

D = (Co, ~ log|=P” + log max {12, 26°})

as in the proof of Claim 9.4.1.2. Then D < D, and, by the previous observation, the
positive part P; of Dy is given by

P; = (6:Co, —0; log | 2| + log max{t?|z|*%,1}),

where 0; = logt/(— log 3). Therefore, (0,0) < P < Py, and hence P = (0,0) as t — 1.

B)Ifweset D' = D — (/z\), then D" = (Cuo, —log |w|? 4 log max{3%|w[2, a2}),
where w = y/x. Thus, in the same way as (2), we can see that the positive part of D"is

(0'Coo, —0 log |w|* + log max{62|w\29/, 1}),
where 6 = log 3/(log 8 — log ), so that the positive part of D = D" + (/z\) is
(Co — (1 = 0')Cx, —log|2|? + log max{|2|*", 3%})

by Proposition 9.3.1. O

Remark 9.4.2. Let us choose o, o/, 3,3 € Rugsuchthata > 1,0’ > 1, a3 < 1 and
/3 < 1. We set

M =Co+Co, ¢ =—logl|z? +logmax{a?®|z|%, §2} + logmax{a’®, 3"*|2|*}
and M = (M, h), that is,
—log |2z? +log(a/B)? if |z| < B/a,
¢ = { log(aa/)? if B/a < |z| </,
log |2* +log(af')?  if[z] > a'/5"

It is easy to see that M is an effective arithmetic divisor of (C° N PSH)-type and that
deg(ﬁ‘(}o) =log(a’/B) and deg(ﬂ‘coo) =log(af).

If we set
_ loga +logo/ 9 — log o + log o
logar — log 3’ log o/ — log 3/
and
Y = —91log|z|? + log max{a?|z|?, 0/72} + log max{a’2, a 2|22},
that is,

—log |2 if|2| < B/a,
=4 loglad)?  if Bja < |2l < o'/@,
Plog|e2 if|z] > o'/8,

then the positive part of M is
(0Ch + 9/ Cao, ).



76 ATSUSHI MORIWAKI

This can be checked in the similar way as Proposition 9.4.1. For details, we leave it to the
readers. In the case where & = o = 1, the negative part of M is M itself, which means

that the support of the negative part contains Cy and C,, despite Cyp — Co = (/z\) This
example also show that if the positive parts of D and D' are P and P respectively, then
the positive part of D + D' is not necessarily P + 7.
Remark 9.4.3. Let A be a positive real number. We set
o = —log|2|> +log(|z* + ) and My = (Co,¢»).

We denote M by L, that is, L = (Cp, — log |z|? +1og(|z|? + 1)). Itis easy to see that M y
is an arithmetic divisor of (C°° N PSH)-type, deg(ﬂi) = (log()\) + 1)/2 and that M is
nef for A > 1. In particular, My is big for A > 1.

From now on, we fix A with 0 < A < 1. By using an inequality:

log(1+ Az) > Alog(l+xz) (2 € Rxo),
we can see that A\L < My, which means that M y is big. On the other hand,
deg(My |, ) = log(X) <0,

so that M y is not nef. We set

A
@) = dd°(log(|z]* + X)) = dz A\ dz,
which gives rise to an F.-invariant volume form on P*(C) with an ©) ®, = 1. Moreover,
we set

- (1) A is an R-divisor on ]P’%.

Dive, (PL)r = { (A,94) | (2) ga is an F-invariant A-Green function of C*-type
on P1(C) such that dd°([ga]) + 64 = (deg(A))®,.

which is the Arakelov Chow group consisting of admissible metrics with respect to ®) due

to Faltings [7]. Let us see that the set

{(A,ga) € Dive, (PL)g | (A,g4) isnef and (0,0) < (A, ga) < My}

have only one element (0, 0).

Indeed, let A = (A, ga) be an element of the above set. Then there are constants a, b
suchthat0 < a < 1and A = aM + (0,b). Since g4 < ¢, we have b < (1 —a)¢y. Thus
b < 0 because ¢ (o0) = 0. In addition,

deg( 4], ) = alog(\) +b > 0.

In particular, b > 0, so that b = 0, and hence a log(\) > 0. Thus a = 0.

This example shows that the Arakelov Chow group consisting of admissible metrics is
insufficient to get the Zariski decomposition.

Finally note that AL is not necessarily the positive part of M, because vol(My) >
(log(\) 4 1)/2 (cf. Theorem 6.6.1), vol(AL) = A2/2 and (log(\) + 1)/2 > A2/2 for
0<1l-Ax1.

Remark 9.4.4. Let n be a positive integer and f € R[T] such that deg(f) = 2n and
f(t) > 0forallt € R>q. It seems to be not easy to find the positive part of

(nCo, —nlog|z[* +log f(|2]))

1
on IP;.
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