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Abstract

We investigate the m-relative entropy, which stems from the Bregman diver-
gence, on weighted Riemannian and Finsler manifolds. We prove that the displace-
ment convexity of the m-relative entropy is equivalent to the combination of a lower
Ricci curvature bound and the convexity of the weight function. We use this to
show appropriate variants of the Talagrand, HWI and the logarithmic Sobolev in-
equalities, as well as the concentration of measures. We also prove that the gradient
flow of the m-relative entropy produces a solution to the porous medium equation.

1 Introduction

The displacement convexity was introduced in McCann’s influential paper [Mc1] as the cov-
exity along geodesics in the Wasserstein space. Recent astonishing development of optimal
transport theory reveals that the displacement convexity of an entropy-type functional
plays important roles in the theory of partial differential equations, probability theory and
Riemannian geometry (see [Vi1], [Vi2] and the references therein). For instance, on a com-
pact Riemannian manifold (M, g) equipped with the Riemannian volume measure volg,
the gradient flow of the relative entropy Entvolg (see (3.2)) in the L2-Wasserstein space
(P(M),W2) produces a weak solution to the heat equation ([Oh1], [GO], [Vi2, Chap-
ter 23]). Then the K-convexity of Entvolg for some K ∈ R (denoted by Hess Entvolg ≥ K
for short) implies the K-contraction property

W2

(
p(t, x, ·) volg, p(t, y, ·) volg

)
≤ e−tKd(x, y)

of the heat kernel p : (0,∞) × M × M −→ (0,∞) (and vice versa, [vRS]). The condition
Hess Entvolg ≥ K is called the curvature-dimension condition CD(K,∞) and known to be
equivalent to the lower Ricci curvature bound Ric ≥ K ([vRS]). There is a rich theory
on general metric measure spaces satisfying CD(K,∞) ([St1], [LV2], [Vi2, Part III]).
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Especially, CD(K,∞) with K > 0 is an important condition which yields, among others,
the logarithmic Sobolev inequality and the normal concentration of measures (a kind of
large deviation principle).

The curvature-dimension condition is extended to CD(K,N) for general K ∈ R and
N ∈ (1,∞], and then CD(K,N) is equivalent to the lower bound of the weighted Ricci
curvature RicN ≥ K of a weighted Riemannian manifold (M,ω), where ω is a conformal
deformation of volg ([St2], [LV1]). However, CD(K,N) with N < ∞ is written as a
simple convexity condition only when K = 0 (and it causes some difficulties when K 6= 0,
see [BS]). Precisely, CD(0, N) is defined as the convexity of the Rényi entropy SN (=
(m − 1)Em − 1 with m = 1 − 1/N , see (3.1)), while CD(K,N) with K 6= 0 is a more
subtle inequality involving the integrand of SN . It will be observed in Remark 4.3(2) that
Hess SN ≥ K is actually meaningless when K 6= 0.

In this article, we introduce and consider a different kind of entropy Hm(·|ν) for
m ∈ [(n − 1)/n, 1) ∪ (1,∞) —we call this the m-relative entropy— which is related to,
but different from SN . Here ν = expm(−Ψ)ω is a fixed conformal deformation of ω, and
expm is the m-exponential function (see Subsection 2.2). Our definition of Hm(·|ν) stems
from the Bregman divergence in information theory/geometry which is closely related to
the Tsallis/Rényi entropy (see Subsection 3.1). Roughly speaking, Hm(µ|ν) represents
the difference between µ and ν. Taking the limit as m tends 1 recovers the usual relative
entropy Entν (or the Kullback-Leibler divergence H(·|ν)). Our results will guarantee that
Hm(·|ν) is a natural and important object.

Our first main theorem asserts that Hess Hm(·|ν) ≥ K in (P2(M),W2) is equivalent to
the combination of RicN ≥ 0 with N = 1/(1−m) and Hess Ψ ≥ K, where RicN is of (M,ω)
(Theorem 4.1, we remark that N can be negative, such RicN would be of independent
interest). It is interesting to obtain such split curvature bound/convexity conditions from
a single convexity condition of the entropy. Then, according to the technique similar
to the curvature-dimension condition, we show that RicN ≥ 0 and Hess Ψ ≥ K imply
appropriate variants of the Talagrand, HWI, logarithmic Sobolev and the global Poincaré
inequalities (Propositions 5.1, 5.4, Theorem 5.2), and also the concentration of measures
(Theorem 6.1). Furthermore, the gradient flow of Hm(·|ν) produces a weak solution to
the porous medium equation of the form

∂ρ

∂t
=

1

m
∆ω(ρm) + divω(ρ∇Ψ),

where ∆ω and divω are the Laplacian and the divergence associated with the measure ω
(Theorem 7.6). Most results hold true also for Finsler manifolds thanks to the theory
developed in [Oh2] and [OS] (see Section 8).

Former work on this kind of entropy has been concerned with only the unweighted
Euclidean spaces (Rn, dx) where ω = dx is the Lebesgue measure (as far as the authors
know). Among them, Otto [Ot] demonstrated that the gradient flow of the Tsallis entropy
Em solves the porous medium equation, and it is shown in [AGK], [CGH] and [Ta2] that
Hess Ψ ≥ K > 0 (with ν = expm(−Ψ)dx) implies various functional inequalities. Even in
this unweighted Euclidean situation, however, the equivalence between Hess Ψ ≥ K and
Hess Hm(·|ν) ≥ K and the concentration of measures are previously unknown.

The organization of the article is as follows. After preliminaries, we introduce the
m-relative entropy Hm(·|ν) in Section 3, and show that Hess Hm(·|ν) ≥ K is equivalent to
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Hess Ψ ≥ K with RicN ≥ 0 in Section 4. Using this equivalence, we obtain several funci-
tonal inequalities in Section 5, and the concentration of measures in Section 6. Section 7
is devoted to the study of the gradient flow of Hm(·|ν). Finally, we treat the Finsler case
in Section 8.

2 Preliminaries

Throughout the article except Section 8, (M, g) will be an n-dimensional Riemannian
manifold with n ≥ 2. We denote by B(x, r) the open ball of center x ∈ M and radius
r > 0.

2.1 Weighted Ricci curvature

We fix a conformal change ω = e−ψ volg, with ψ ∈ C∞(M), of the Riemannian volume
measure volg as our base measure. Given a unit vector v ∈ TxM and N ∈ (−∞, 0)∪(n,∞),
we define the weighted Ricci curvature by

RicN(v) := Ric(v) + Hess ψ(v, v) − 〈∇ψ, v〉2

N − n
. (2.1)

We also set

Ricn(v) :=

{
Ric(v) + Hess ψ(v, v) if 〈∇ψ, v〉 = 0,

−∞ otherwise.

Observe that, if ψ is constant, then RicN(v) coincides with Ric(v) for all N .

Remark 2.1 We usually consider RicN only for N ∈ [n,∞] (where Ric∞(v) = Ric(v) +
Hess ψ(v, v) is the Bakry-Émery tensor, see [BE], [Qi], [Lo]), and then it enjoys the mono-
tonicity: RicN(v) ≤ RicN ′(v) for N < N ′. Admitting N < 0 violates this monotonicity,
but we abuse this notation for brevity. The reason why we consider this range of N will
be seen in (2.2).

As we mentioned in the introduction, RicN ≥ K for some K ∈ R and N ≥ n is equiv-
alent to Sturm’s curvature-dimension condition CD(K,N). Spaces satisfying CD(K,N)
behave like a space with dimension ≤ N and Ricci curvature ≥ K (see [St2], [LV1], [Vi2,
Part III]).

2.2 Generalized exponential functions and Gaussian measures

We briefly recall the m-calculus, see [Ts2] for further discussion. We introduce a parameter
m such that

m ∈ [(n − 1)/n, 1) ∪ (1,∞).

We sometimes eliminate the special case m = 1/n = 1/2 or restrict ourselves to m ≤ 2.
We set

N = N(m) := 1/(1 − m) ∈ (−∞, 0) ∪ [n,∞). (2.2)
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Define the m-logarithmic function by

lnm(t) :=
tm−1 − 1

m − 1
for

{
t > 0 if m < 1,
t ≥ 0 if m > 1.

Note that lnm is monotone increasing and that the image of lnm is (−∞, 1/(1 − m)) if
m < 1; [−1/(m − 1),∞) if m > 1. We define the m-exponential function expm as the
inverse of lnm, namely

expm(t) := {1 + (m − 1)t}1/(m−1) for

{
t ∈ (−∞, 1/(1 − m)) if m < 1,
t ∈ [−1/(m − 1),∞) if m > 1.

For the sake of simplicity, we set expm(t) := 0 for m > 1, t < −1/(m − 1). For t > 0, we
define

em(t) := t lnm(t) =
tm − t

m − 1
.

We also set em(0) := 0. Observe that

lim
m→1

lnm(t) = ln(t), lim
m→1

expm(t) := et, lim
m→1

em(t) = t ln(t).

Remark 2.2 (1) Taking m < 1 and m > 1 give rise to qualitatively different phenomena
(see Lemma 2.4, Example 2.5 for instances). Nonetheless, most of our results cover both
cases.

(2) In some notations, it is common to use the parameter q = 2−m instead of m (e.g.,
expq and q-Gaussian measures). In the present paper, however, we shall use only m for
simplicity.

Using expm and ω = e−ψ volg, we will fix

ν = σω := expm(−Ψ)ω

as our reference measure, where Ψ ∈ C(M) such that Ψ > −1/(1 − m) if m < 1. For
later convenience, we set

M0 :=

{
M for m < 1,

Ψ−1
(
(−∞, 1/(m − 1))

)
for m > 1,

and assume that M0 is nonempty. Note that supp ν = M0 holds in both cases. We shall
study how the convexity of Ψ is related to the geometric/analytic structure of (M, ν).
Given K ∈ R, we say that Ψ is K-convex in the weak sense, denoted by Hess Ψ ≥ K, if
any two points x, y ∈ M admits a minimal geodesic γ : [0, 1] −→ M between them along
which

Ψ
(
γ(t)

)
≤ (1 − t)Ψ(x) + tΨ(y) − K

2
(1 − t)td(x, y)2 (2.3)

holds for all t ∈ [0, 1]. Note that this is equivalent to saying that (2.3) holds along any
minimal geodesic γ between x and y, for γ|[ε,1−ε] is a unique minimal geodesic for all ε > 0
and Ψ is continuous.
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Remark 2.3 Consider a different presentation ν = (cσ)(c−1ω) =: σ̃ω̃ of ν for some
constant c > 0. Then the weighted Ricci curvature RicN is unchanged, while

σ̃ = c expm(−Ψ) = {cm−1 − (m − 1)cm−1Ψ}1/(m−1)

=

{
1 − (m − 1)

(
cm−1Ψ − cm−1 − 1

m − 1

)}1/(m−1)

=: expm(−Ψ̃)

and hence Hess Ψ̃ = cm−1 Hess Ψ.

Sections 5, 6 will be concerned with the case where Hess Ψ ≥ K > 0 as well as
RicN ≥ 0. In such a situation, it turns out that ν has finite total mass. Here we give
explicit estimates for later use (in Section 6).

Lemma 2.4 Assume that Hess Ψ ≥ K holds for some K > 0, and take a unique mini-
mizer x0 ∈ M of Ψ.

(i) If m < 1 and RicN ≥ 0, then σ ∈ Lc(M,ω) for all c ∈ (1/2, 1]. Moreover, we have∫
M

σc dω ≤ C1(ω)1−cν(M)c + C2(m, c, ω)Kc/(m−1).

(ii) If m < 1 and RicN ≥ 0, then
∫

M
d(x0, x)p dν < ∞ for all p ∈ [1, 1/(1 − m)).

(iii) If m > 1, then M0 and supp ν are convex in the sense that any minimal geodesic
connecting two points in M0 or supp ν is contained in M0 or supp ν, respectively. In
addition, we have

supp ν ⊂ B

(
x0,

{
2

K

(
1

m − 1
− Ψ(x0)

)}1/2)
.

Proof. By our assumption Hess Ψ ≥ K > 0, we find a unique point x0 ∈ M0 such that
Ψ(x0) = infM Ψ. Then we deduce from (2.3) that

Ψ
(
γ(1)

)
≥ Ψ(x0) +

K

2
d
(
x0, γ(1)

)2

holds for all minimal geodesics γ with γ(0) = x0. Thus we have

σ(x) = expm

(
− Ψ(x)

)
≤ expm

(
− Ψ(x0) −

K

2
d(x0, x)2

)
(2.4)

for all x ∈ M0.
(i) Denote by areaω(S(x0, r)) the area of the sphere S(x0, r) := {x ∈ M | d(x0, x) = r}

with respect to ω. Then (2.4) implies∫
M

σc dω ≤
∫

B(x0,1)

σc dω +

∫ ∞

1

expm

(
− Ψ(x0) −

K

2
r2

)c

areaω

(
S(x0, r)

)
dr.
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On the one hand, if follows from RicN ≥ 0 that, for r ≥ 1,

areaω

(
S(x0, r)

)
≤ rN−1 areaω

(
S(x0, 1)

)
= rm/(1−m) areaω

(
S(x0, 1)

)
.

Therefore we obtain, putting a := expm(−Ψ(x0))
m−1 > 0,∫ ∞

1

expm

(
− Ψ(x0) −

K

2
r2

)c

areaω

(
S(x0, r)

)
dr

≤ areaω

(
S(x0, 1)

) ∫ ∞

1

{
a + (1 − m)

K

2
r2

}c/(m−1)

rm/(1−m) dr

= areaω

(
S(x0, 1)

) ∫ ∞

1

{
ar−2 + (1 − m)

K

2

}c/(m−1)

r(m−2c)/(1−m) dr

≤ areaω

(
S(x0, 1)

){
(1 − m)

K

2

}c/(m−1) ∫ ∞

1

r(m−2c)/(1−m) dr

= areaω

(
S(x0, 1)

)(1 − m)c/(m−1)+1

2c − 1

(
K

2

)c/(m−1)

=: C2(m, c, ω)Kc/(m−1) < ∞.

On the other hand, as ν(M) < ∞ is already observed, the Hölder inequality yields∫
B(x0,1)

σc dω ≤
( ∫

B(x0,1)

σ dω

)c

ω
(
B(x0, 1)

)1−c ≤ ν(M)cω
(
B(x0, 1)

)1−c

=: C1(ω)1−cν(M)c.

(ii) We similarly deduce that∫
M\B(x0,1)

d(x0, x)p dν(x)

≤
∫ ∞

1

rp expm

(
− Ψ(x0) −

K

2
r2

)
areaω

(
S(x0, r)

)
dr

≤ areaω

(
S(x0, 1)

){
(1 − m)

K

2

}1/(m−1) ∫ ∞

1

rp+(m−2)/(1−m) dr

= areaω

(
S(x0, 1)

)(1 − m)m/(m−1)

1 − (1 − m)p

(
K

2

)1/(m−1)

< ∞.

(iii) Recall that supp ν = Ψ−1((−∞, 1/(m − 1))). Therefore M0 and supp ν are convex
and (2.4) shows the desired estimate. 2

Example 2.5 (m-Gaussian measures) One fundamental and important example is
the m-Gaussian measure on Rn defined by

Nm(v, V ) = σdx := C0(detV )−1/2 expm

[
− C1

2
〈x − v, V −1(x − v)〉

]
dx, (2.5)
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where dx is the Lebesgue measure, v ∈ Rn is the mean, V ∈ Sym+(n, R) is the covariance
matrix, and C0, C1 are positive constants depending only on n and m (see [Ta2]). Then
clearly Hess Ψ = Cm−1

0 (detV )(1−m)/2 · C1V
−1 and hence

Hess Ψ ≥ Cm−1
0 C1(detV )(1−m)/2Λ−1

holds by taking Remark 2.3 into account, where Λ denotes the largest eigenvalue of
V . Note that Nm(v, V ) has unbounded and bounded support for m < 1 and m >
1, respectively. The family of m-Gaussian measures will play interesting roles also in
Sections 3, 5, 7.

2.3 Wasserstein geometry

We very briefly recall optimal transport theory and Wasserstein geometry. We refer to
[Vi1], [Vi2] for basics as well as recent diverse development of them.

Let (X, d) be a metric space. A rectifiable curve γ : [0, 1] −→ X is called a geodesic if
it is locally minimizing and has a constant speed, we say that γ is minimal if it is globally
minimizing (i.e., d(γ(s), γ(t)) = |s − t|d(γ(0), γ(1)) for all s, t ∈ [0, 1]). If any two points
in X is connected by a minimal geodesic, then (X, d) is called a geodesic space.

We denote by P(X) the set of all Borel probability measures on X, and by Pp(X) ⊂
P(X) with p ≥ 1 the subset consisting of measures µ of finite p-th moment, that is,∫

X
d(x, y)p dµ(y) < ∞ for some (and hence all) x ∈ X. Given µ, ν ∈ P(X), a probability

measure π ∈ P(X × X) is called a coupling of µ and ν if its projections are µ, ν, namely
π(A × X) = µ(A) and π(X × A) = ν(A) hold for any measurable set A ⊂ X. We define
the Lp-Wasserstein distance between µ, ν ∈ Pp(X) by

Wp(µ, ν) := inf
π

( ∫
X×X

d(x, y)p dπ(x, y)

)1/p

,

where π runs over all couplings of µ and ν. We call π an optimal coupling if it attains the
infimum above. We remark that Wp(µ, ν) is finite since µ, ν ∈ Pp(X), and it is indeed a
distance of X if X is complete and separable. Then the metric space (Pp(X),Wp) is called
the Lp-Wasserstein space over X. If X is compact, then (Pp(X), Wp) is also compact and
the topology induced from Wp coincides with the weak topology.

We will consider only the case of p = 2 that is suitable and important for applications
in Riemannian geometry. A minimal geodesic between µ, ν ∈ P2(X) amounts to an
optimal way of transporting µ to ν. Then it is natural to expect that such an optimal
transport is performed along minimal geodesics in X, that is indeed the case as seen in the
following proposition. We denote by Γ(X) the set of all minimal geodesics γ : [0, 1] −→ X
endowed with the topology induced from the distance dΓ(X)(γ, η) := supt∈[0,1] d(γ(t), η(t)).
For t ∈ [0, 1], define the evaluation map et : Γ(X) −→ X as et(γ) := γ(t) and observe
that it is 1-Lipschitz.

Proposition 2.6 ([Vi2, Corollary 7.22]) Let (X, d) be a locally compact geodesic space.
Then, for any µ, ν ∈ P2(X) and any minimal geodesic α : [0, 1] −→ P2(X) between them,
there exists Π ∈ P(Γ(X)) such that (e0 × e1)]Π is an optimal coupling of µ and ν and
that (et)]Π = α(t) holds for all t ∈ [0, 1].
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We denoted by (et)]Π the push-forward measure of Π by et. In Riemannian manifolds,
a more precise description of an optimal transport using a gradient vector field of some
kind of convex function is known. We first recall McCann’s original work on compact
Riemannian manifolds. Denote by Pac(M, volg) ⊂ P(M) the set of absolutely continuous
measures with respect to the volume measure volg.

Theorem 2.7 ([Mc2, Theorems 8, 9]) Let (M, g) be a compact Riemannian manifold.
Then, for any µ ∈ Pac(M, volg) and ν ∈ P(M), there exists a (d2/2)-convex function
ϕ : M −→ R such that the map Tt(x) := expx(t∇ϕ(x)), t ∈ [0, 1], provides a unique
minimal geodesic from µ to ν. To be precise, (T0 × T1)]µ is an optimal coupling of µ and
ν, and µt = (Tt)]µ is a minimal geodesic from µ0 = µ to µ1 = ν.

See [Vi2, Chapter 5] for the definition of the (d2/2)-convex function, here we just
remark that it is locally semi-convex in compact spaces. Such convexity is important as
it implies the almost everywhere twice differentiability, and is generalized to noncompact
spaces in [FG].

Theorem 2.8 ([FG, Theorem 1]) Let (M, g) be a complete Riemannian manifold. Then,
for any µ ∈ P2

ac(M, volg) and ν ∈ P2(M), there exists a locally semi-convex function
ϕ : M −→ R such that the map Tt(x) := expx(t∇ϕ(x)), t ∈ [0, 1], provides a unique
minimal geodesic from µ to ν.

3 Generalized entropies

Before discussing the m-relative entropy, we briefly review the Boltzmann and the Tsallis
entropies (see [Ts1], [Ts2]), and explain the motivation related to information geometry
(see [Am], [AN]). The readers familiar with (or not interested in) these can skip to
Subsection 3.2.

3.1 Background: Tsallis entropy and information geometry

Entropy is a functional playing prominent roles in thermodynamics, information theory
(sometimes with the opposite sign) and many other fields. It describes how particles dif-
fuse in thermodynamics, and measures the uncertainty of an event in information theory.
The most fundamental entropy is the Boltzmann(-Gibbs-Shannon) entropy given by

E(µ) = −
∫

Rn

ρ ln ρ dx

for µ = ρdx ∈ Pac(Rn, dx), where dx is the Lebesgue measure.
Boltzmann entropy is thermodynamically extensive (and probabilistically additive) and

suitable for the treatment of independent systems. Recently, there is a growing interest
in strongly correlated systems and nonextensive entropies. Among them, we consider the
Tsallis entropy defined by

Em(µ) := −
∫

Rn

em(ρ) dx = −
∫

Rn

ρ lnm ρ dx = −
∫

Rn

ρm − ρ

m − 1
dx (3.1)
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for µ = ρdx ∈ Pac(Rn, dx), where m ∈ [(n − 1)/n, 1) ∪ (1, 2]. Note that letting m tend
to 1 recovers the Boltzmann entropy E(µ). One can connect E and Em via Gaussian
measures as follows. On the one hand, given v ∈ Rn and V ∈ Sym+(n, R), the (usual)
Gaussian measure

N(v, V ) =
1

(2π)n/2
(detV )−1/2 exp

[
− 1

2
〈x − v, V −1(x − v)〉

]
dx

maximizes E among µ ∈ Pac(Rn, dx) with mean v and covariance matrix V . On the other
hand, the m-Gaussian measure Nm(v, V ) defined in (2.5) similarly maximizes E2−m under
the same constraint (for m 6= 1/2, 2).

In the following sections, we shall verify that a number of further geometric/analytic
properties and applications of E have counterparts for Em. Precisely, since Em itself is
not really interesting in our view (see Remark 4.3(2)), we modify Em in the manner of
information geometry.

We start from the family of Gaussian measures

N (n) := {N(v, V ) | v ∈ Rn, V ∈ Sym+(n, R)}

as an ((n2 + 3n)/2)-dimensional manifold. In information geometry, we equip N (n) with
the Fisher information metric mF which is different from the Wasserstein metric W2. In
fact, (N (1),mF ) has the negative constant sectional curvature ([Am]) and (N (1),W2) is
flat (cf. [Ta1, Theorem 2.2] and the references therein). The Fisher metric admits a pair
of dually flat connections (exponential and mixture connections) and the Kullback-Leibler
divergence

H(µ|ν) =

∫
Rn

ρ

σ
ln

(
ρ

σ

)
dν

for ν = σdx ∈ Pac(Rn, dx) and µ = ρdx ∈ Pac(Rn, ν). Note that H(µ|ν) is nonnegative by
Jensen’s inequality. The square root of the divergence H(µ|ν) can be regarded as a kind
of distance between µ and ν. It certainly satisfies a generalized Pythagorean theorem,
though it does not satisfy symmetry nor the triangle inequality. The Kullback-Leibler
divergence H(µ|ν) coincides with the relative entropy Entν(µ) of µ with respect to ν.
More precisely, Entν(µ) is defined for µ ∈ P(Rn) and Borel measure ν on Rn by

Entν(µ) :=

{ ∫
Rn ς ln ς dν for µ = ςν ∈ Pac(Rn, ν),

∞ otherwise,
(3.2)

and then Entν(µ) ≥ − ln ν(M).
The family of m-Gaussian measures

N (n,m) := {Nm(v, V ) | v ∈ Rn, V ∈ Sym+(n, R)}

similarly admits dually flat connections and the corresponding Bregman divergence (β-
divergence) is

Hm(µ|ν) =
1

m(m − 1)

∫
Rn

{ρm − mρσm−1 + (m − 1)σm} dx (3.3)
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for ν = σdx ∈ Pac(Rn, dx) and µ = ρdx ∈ Pac(Rn, ν). We rewrite this by using em as

Hm(µ|ν) =
1

m

∫
Rn

{em(ρ) − em(σ) − e′m(σ)(ρ − σ)} dx

and recover the Kullback-Leibler divergence as the limit:

lim
m→1

Hm(µ|ν) =

∫
Rn

{ρ ln ρ − σ ln σ − (ln σ + 1)(ρ − σ)} dx = H(µ|ν).

It will turn out that the entropy induced from (3.3) is appropriate for our purpose (see
Theorem 4.1). We remark that the division by m in (3.3) is unessential, we prefer this
form merely for aesthetic reasons of the presentation of Theorem 4.1 as well as functional
inequalities in Section 5.

3.2 m-relative entropy

Recall our weighted Riemannian manifold (M,ω) and reference measure ν = σω. The
Bregman divergence (3.3) leads us to the following generalization of the relative entropy.

Definition 3.1 (m-relative entropy) Assume σ ∈ Lm(M,ω). Given µ ∈ P(M), let
µ = ρω + µs be its Lebesgue decomposition into absolutely continuous and singular parts
with respect to ω. Then we define the m-relative entropy by

Hm(µ|ν)

:=
1

m

∫
M

{em(ρ) − em(σ) − e′m(σ)(ρ − σ)} dω − 1

m − 1

∫
M

σm−1 dµs + Hm(∞)µs(M)

=
1

m(m − 1)

∫
M

{ρm + (m − 1)σm} dω − 1

m − 1

∫
M

σm−1 dµ + Hm(∞)µs(M) (3.4)

if ρ ∈ Lm(M,ω), where Hm(∞) := 0 for m < 1, Hm(∞) := ∞ for m > 1, and ∞ · 0 = 0
as convention. We set Hm(µ|ν) := ∞ for µ ∈ P(M) with ρ 6∈ Lm(M,ω).

For µ = ρω ∈ Pac(M,ω) with ρ ∈ Lm(M,ω), Hm(µ|ν) has the simplified form

Hm(µ|ν) =
1

m(m − 1)

∫
M

{ρm − mρσm−1 + (m − 1)σm} dω

as in (3.3). Note that this is indeed well-defined.

Remark 3.2 (1-a) For m < 1, moreover, the Hölder inequality implies∫
M

ρm dω =

∫
M

(ρσm−1)mσm(1−m) dω ≤
( ∫

M

ρσm−1 dω

)m( ∫
M

σm dω

)1−m

.

Thus we have, for µ = ρω ∈ Pac(M,ω),

Hm(µ|ν) − 1

m

∫
M

σm dω

≥ 1

m(m − 1)

∫
M

ρm dω +
1

1 − m

( ∫
M

ρm dω

)1/m( ∫
M

σm dω

)(m−1)/m

=
1

m(1 − m)

∫
M

ρm dω ·
{

m

( ∫
M

ρm dω

)(1−m)/m( ∫
M

σm dω

)(m−1)/m

− 1

}
,
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and it is natural to define Hm(µ|ν) = ∞ for ρ 6∈ Lm(M,ω).
(1-b) For m > 1, the Hölder inequality∫

M

ρσm−1 dω ≤
( ∫

M

ρm dω

)1/m( ∫
M

σm dω

)(m−1)/m

similarly yields

Hm(µ|ν) − 1

m

∫
M

σm dω

≥ 1

m(m − 1)

( ∫
M

ρm dω

)1/m{(∫
M

ρm dω

)(m−1)/m

− m

( ∫
M

σm dω

)(m−1)/m}
.

Hence it is again natural to set Hm(µ|ν) = ∞ for ρ 6∈ Lm(M,ω).
(2) The validity of the definition of Hm(∞) would be understood by the following

observation (putting ρ = χB(x,ε)/ω(B(x, ε)) so that χB(x,ε) is the characteristic function
of B(x, ε)): ∫

B(x,ε)

1

ω(B(x, ε))m
dω = ω

(
B(x, ε)

)1−m →
{

0 if m < 1,
∞ if m > 1

as ε tends to zero.

We remark that the seemingly unessential term m−1
∫

M
σm dω was inserted in Hm(µ|ν)

for the sake of nonnegativity.

Lemma 3.3 We have Hm(µ|ν) ≥ 0 for all µ ∈ P(M), and the equality holds if and only
if µ = ν.

Proof. Note that, if µs(M) > 0, then the singular part

− 1

m − 1

∫
M

σm−1 dµs + Hm(∞)µs(M)

in (3.4) is positive for m < 1 (since σ > 0 on M) and infinity for m > 1, respectively.
Hence it is sufficient to consider the absolutely continuous part. As the function em(t) =
(tm − t)/(m − 1) is strictly convex on (0,∞), we have

em(ρ) − em(σ) − e′m(σ)(ρ − σ) ≥ 0

in (3.4) and equality holds if and only if ρ = σ. Therefore Hm(µ|ν) ≥ 0 and equality
holds if and only if µs(M) = 0 and ρ = σ a.e. 2

The following lemma will be used in Section 7 (Claim 7.7) where M is assumed to be
compact. This also guarantees the validity of Hm(∞).

Lemma 3.4 Let (M, g) be compact. Then the entropy Hm(·|ν) is lower semi-continuous
with respect to the weak topology, that is to say, if a sequence {µi}i∈N ⊂ P(M) weakly
converges to µ ∈ P(M), then we have

Hm(µ|ν) ≤ lim inf
i→∞

Hm(µi|ν).
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Proof. We divide Hm(µ|ν) − m−1
∫

M
σm dω into two parts:

h1(µ) :=
1

m(m − 1)

∫
M

ρm dω + Hm(∞)µs(M), h2(µ) := − 1

m − 1

∫
M

σm−1 dµ.

Then h2(µ) is clearly continuous in µ. In addition, the lower semi-continuity of h1(µ)
follows from [LV2, Theorem B.33] since the function Um(t) := tm/m(m−1) is continuous,
convex and satisfies Um(0) = 0 as well as limt→∞ Um(t)/t = Hm(∞). 2

4 Displacement convexity

In this section, we prove our first main theorem on a characterization of the displacement
convexity of Hm(·|ν) along the lines of [CMS], [vRS] and [St2]. This should be compared
with the equivalence between RicN ≥ K and CD(K,N) for (M,ω) ([St2, Theorem 1.7],
[LV1, Theorem 4.22]). Such a characterization has motivated the general theory of metric
measure spaces satisfying CD(K,N), as what is called a synthetic lower Ricci curvature
bound ([St1], [St2], [LV1], [LV2], [Vi2, Part III]). Recall that M0 = M for m < 1,
M0 = Ψ−1((−∞, 1/(m − 1))) for m > 1, and that M0 = supp ν in both cases.

Theorem 4.1 Let (M,ω, ν) and m ∈ [(n−1)/n, 1)∪ (1,∞) with σ ∈ Lm(M,ω) be given.
Then, for K ∈ R, the following three conditions are mutually equivalent:

(A) We have RicN ≥ 0 on M0 with N = 1/(1 − m) as well as Hess Ψ ≥ K on M0 in the
weak sense.

(B) For any µ0, µ1 ∈ P2
ac(M,ω) such that supp µ0, supp µ1 ⊂ M0 and that any two points

x0 ∈ supp µ0, x1 ∈ supp µ1 are joined by some geodesic contained in M0, there is a
minimal geodesic (µt)t∈[0,1] ⊂ P2

ac(M0, ω) along which we have

Hm(µt|ν) ≤ (1 − t)Hm(µ0|ν) + tHm(µ1|ν) − K

2
(1 − t)tW2(µ0, µ1)

2 (4.1)

for all t ∈ [0, 1].

(C) For any µ0, µ1 ∈ P2(M) such that supp µ0, supp µ1 ⊂ M0 and that any two points
x0 ∈ supp µ0, x1 ∈ supp µ1 are joined by some geodesic contained in M0, there is a
minimal geodesic (µt)t∈[0,1] ⊂ P2(M0) along which we have (4.1) for all t ∈ [0, 1].

Proof. Note that (C) ⇒ (B) is clear. Thus we will show (A) ⇒ (B), (A) ⇒ (C) and
finally (B) ⇒ (A). The part (A) ⇒ (C) is somewhat technical and may be skipped at the
first reading.

(A) ⇒ (B): Since the assertion (4.1) is clear if Hm(µ0|ν) = ∞ or Hm(µ1|ν) = ∞,
we assume that both Hm(µ0|ν) and Hm(µ1|ν) are finite. Theorem 2.8 ensures that there
is an almost everywhere twice differentiable function ϕ : M −→ R such that the map
Tt(x) := expx(t∇ϕ(x)) gives the unique minimal geodesic µt := (Tt)]µ0 from µ0 to µ1.
Due to [CMS, Proposition 4.1], T1(x) is not a cut point of x for µ0-a.e. x, and hence the
minimal geodesic (Tt(x))t∈[0,1] is unique and contained in M0. Note also that, putting
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µt = ρtω and Jω
t (x) := eψ(x)−ψ(Tt(x))det(DTt(x)), the Jacobian (Monge-Amperè) equation

(ρt ◦ Tt)J
ω
t = ρ0 holds µ0-a.e. ([CMS, Theorem 4.2]) Recall that

Hm(µt|ν) =
1

m(m − 1)

∫
M

(ρm−1
t − mσm−1)ρt dω +

1

m

∫
M

σm dω.

By the change of variables formula, we deduce that∫
M

(ρm−1
t − mσm−1)ρt dω =

∫
M

{ρt(Tt)
m−1 − mσ(Tt)

m−1}ρt(Tt)J
ω
t dω

=

∫
M

{(
Jω

t

ρ0

)1−m

− mσ(Tt)
m−1

}
dµ0.

Claim 4.2 For µ0-a.e. x ∈ M , the function Jω
t (x)1−m/(m − 1) = −NJω

t (x)1/N is convex
in t.

Proof. For m < 1 (and hence N ≥ n), this is proved in [St2, Theorem 1.7] (see also [Oh2,
Section 8.2]). We can apply the same calculation to m > 1 (and N < 0). Indeed, with
the notations in [Oh2, Section 8.2], we observe that RicN ≥ 0 implies (N − 1)h′′

3h
−1
3 ≤ 0.

Thus h3 is convex and eβ is concave, therefore

{e−ψ(x)Jω
t (x)}1/N = h(t) = (eβ(t))1/Nh3(t)

(N−1)/N

is convex in t (just calculate h′′ or use the Hölder inequality). ♦

In order to estimate the term σ(Tt)
m−1/(1 − m), we observe

σ(Tt)
m−1

1 − m
=

1

1 − m
+ Ψ(Tt)

≤ 1

1 − m
+ (1 − t)Ψ(T0) + tΨ(T1) −

K

2
(1 − t)td(T0, T1)

2

= (1 − t)
σ(T0)

m−1

1 − m
+ t

σ(T1)
m−1

1 − m
− K

2
(1 − t)td(T0, T1)

2.

Combining this with Claim 4.2 and integrating with µ0 yield the desired inequality (4.1).
(A) ⇒ (C): Suppose that µ0 or µ1 has nontrivial singular part. There is nothing to

prove for m > 1. For m < 1, we decompose as µ0 = ρ0ω + µs
0 and µ1 = ρ1ω + µs

1,
and take an optimal coupling π of µ0 and µ1. Now, π is decomposed into four parts
π = πaa + πas + πsa + πss such that (p1)](πaa), (p1)](πas), (p2)](πaa) and (p2)](πsa) are
absolutely continuous, and that (p1)](πsa), (p1)](πss), (p2)](πas) and (p2)](πss) are singular
(or null) measures. Here p1, p2 : M ×M −→ M denote projections to the first and second
elements.

We divide optimal transport between µ0 and µ1 into two parts, corresponding to
π−πss and πss. As for µ̂0 := (p1)](π−πss) and µ̂1 := (p2)](π−πss), Theorem 2.8 is again
applicable and gives a minimal geodesic µ̂t = ρ̂tω ∈ (1 − πss(M × M)) · P2

ac(M0, ω) (i.e.,
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µ̂t(M) = 1 − πss(M × M)) satisfying∫
M

ρ̂m
t dω ≥ (1 − t)

∫
M

ρm
0 dω + t

∫
M

ρm
1 dω,∫

M

σm−1 dµ̂t ≤ (1 − t)

∫
M

σm−1 dµ̂0 + t

∫
M

σm−1 dµ̂1

− (1 − m)K

2
(1 − t)t

∫
M×M

d(x, y)2 d(π − πss)(x, y).

We then choose an arbitrary minimal geodesic µ̃t = ρ̃tω+ µ̃s
t ∈ πss(M ×M) ·P2(M0) from

µ̃0 := (p1)](πss) to µ̃1 := (p2)](πss). Thanks to Proposition 2.6, µ̃t is also realized through
a family of geodesics in M0, and hence Hess Ψ ≥ K implies∫

M

σm−1 dµ̃t ≤ (1 − t)

∫
M

σm−1 dµ̃0 + t

∫
M

σm−1 dµ̃1

− (1 − m)K

2
(1 − t)t

∫
M×M

d(x, y)2 dπss(x, y).

We put µt := µ̂t + µ̃t and conclude that

Hm(µt|ν) =
1

m(m − 1)

∫
M

{(ρ̂t + ρ̃t)
m + (m − 1)σm} dω +

1

1 − m

∫
M

σm−1 dµt

≤ 1

m(m − 1)

∫
M

{ρ̂m
t + (m − 1)σm} dω +

1

1 − m

∫
M

σm−1 d(µ̂t + µ̃t)

≤ (1 − t)Hm(µ0|ν) + tHm(µ1|ν) − K

2
(1 − t)tW2(µ0, µ1)

2.

(B) ⇒ (A): We first consider the case of m < 1. Fix a unit vector v ∈ TxM with
x ∈ M0 and put γ(t) := expx(tv), B± := B(γ(±δ), (1 ∓ aδ)ε) with a constant a ∈ R
chosen later. Set

µ0 = ρ0ω :=
χB−

ω(B−)
ω, µ1 = ρ1ω :=

χB+

ω(B+)
ω (4.2)

for 0 < ε ¿ δ ¿ 1, where χA stands for the characteristic function of a set A. Let
(µt)t∈[0,1] be the unique optimal transport from µ0 to µ1. Recall that

Hm(µt|ν) − 1

m

∫
M

σm dω =
1

m(m − 1)

∫
M

{ρm−1
0 (Jω

t )1−m − mσ(Tt)
m−1} dµ0. (4.3)

Note that
ρm−1

0 = {cne−ψ(γ(−δ))(1 + aδ)nεn + O(εn+1)}1−mχB− ,

where cn denotes the volume of the unit ball in Rn. Hence, since 1 − m > 0, the leading
term of (4.3) (as ε → 0) is

1

1 − m

∫
M

σ(Tt)
m−1 dµ0.

Thus we obtain from (4.1) that, by letting ε go to zero,

σ
(
γ(0)

)m−1 ≤ σ(γ(−δ))m−1 + σ(γ(δ))m−1

2
− (1 − m)

K

2
δ2.
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This means that

Hess Ψ =
1

1 − m
Hess(σm−1) ≥ K

in the weak sense.
In order to show RicN(v) ≥ 0, we choose a point y with d(x, y) À δ and modify µ0

and µ1 into

µ̃i := (1 − εn+1)
χB(y,δ)

ω(B(y, δ))
ω + εn+1µi (4.4)

for i = 0, 1. Then W2(µ̃0, µ̃1) = ε(n+1)/2 · W2(µ0, µ1) and

µ̃t := (1 − εn+1)
χB(y,δ)

ω(B(y, δ))
ω + εn+1µt

is the unique optimal transport from µ̃0 to µ̃1, so that (4.3) is modified into

Hm(µ̃t|ν) − 1

m

∫
M

σm dω

=
εn+1

m(m − 1)

∫
M

{(εn+1ρ0)
m−1(Jω

t )1−m − mσ(Tt)
m−1} dµ0

+
1

m(m − 1)

1 − εn+1

ω(B(y, δ))

∫
B(y,δ)

{(
1 − εn+1

ω(B(y, δ))

)m−1

− mσm−1

}
dω.

We rewrite this as

Hm(µ̃t|ν) − 1

m

∫
M

σm dω

− 1 − εn+1

m(m − 1)

{(
1 − εn+1

ω(B(y, δ))

)m−1

− m

ω(B(y, δ))

∫
B(y,δ)

σm−1 dω

}
=

εn+1

m(m − 1)

∫
M

{(εn+1ρ0)
m−1(Jω

t )1−m − mσ(Tt)
m−1} dµ0. (4.5)

Since (εn+1ρ0)
m−1 = {cne

−ψ(γ(−δ))(1 + aδ)nε−1 + O(1)}1−m, the leading term of (4.5) is

εm(n+1)

m(m − 1)

∫
M

ρm−1
0 (Jω

t )1−m dµ0.

Therefore (4.1) and the Jacobian equation yield that

Jω
1/2

(
γ(−δ)

)1−m ≥ 1

2

{
Jω

0

(
γ(−δ)

)1−m
+ Jω

1

(
γ(−δ)

)1−m}
=

1

2

{
1 +

(
1 − aδ

1 + aδ

)n/N

e{ψ(γ(−δ))−ψ(γ(δ))}/N
}

.

As

Jω
1/2

(
γ(−δ)

)
=

(
1

1 + aδ

)n

eψ(γ(−δ))−ψ(x)

{
1 +

1

2
Ric(v)δ2 + O(δ3)

}
,
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this together with the Taylor expansion shows

1 +
1

2N
Ric(v)δ2

≥ 1

2

{
(1 + aδ)n/Ne{ψ(x)−ψ(γ(−δ))}/N + (1 − aδ)n/Ne{ψ(x)−ψ(γ(δ))}/N

}
+ O(δ3)

= 1 +
δ2

2

[
n

N

(
n

N
− 1

)
a2 −

{
(ψ ◦ γ)′′(0)

N
− (ψ ◦ γ)′(0)2

N2

}
+

2na

N

(ψ ◦ γ)′(0)

N

]
+ O(δ3)

= 1 +
δ2

2N

{
− (ψ ◦ γ)′′(0) +

n(n − N)

N
a2 +

2n(ψ ◦ γ)′(0)

N
a +

(ψ ◦ γ)′(0)2

N

}
+ O(δ3).

Therefore we obtain

Ric(v) + (ψ ◦ γ)′′(0) − n(n − N)

N
a2 − 2n(ψ ◦ γ)′(0)

N
a − (ψ ◦ γ)′(0)2

N
≥ 0. (4.6)

If N > n, then choosing the minimizer a = (ψ ◦γ)′(0)/(N −n) gives the desired curvature
bound RicN(v) ≥ 0. If N = n, then we consider a going to ∞ or −∞ and find (ψ◦γ)′(0) =
0 and Ricn(v) ≥ 0.

In the case of m > 1, we use the same transport (4.2) and then the leading term of
(4.3) changes into

1

m(m − 1)

∫
M

ρm−1
0 (Jω

t )1−m dµ0.

Thus calculations as above yield (4.6) with N < 0. We choose the minimizer a = (ψ ◦
γ)′(0)/(N − n) and find RicN(v) ≥ 0. Similarly, for the transport (4.4), the leading term
of (4.5) changes into

εn+1

1 − m

∫
M

σ(Tt)
m−1 dµ0,

and then (4.1) yields Hess Ψ = Hess(σm−1/(1 − m)) ≥ K. 2

Remark 4.3 (1) If we admit m ∈ (0, (n−1)/n) and generalize RicN in (2.1) to N ∈ (1, n),
then Claim 4.2 is false. Moreover, as the coefficient of a2 in (4.6) is negative, (4.1) is never
satisfied (let a → ∞).

(2) Note that the special case ν = ω (i.e., Ψ ≡ 0) in Theorem 4.1 makes sense only for
K = 0. Then the assertion of Theorem 4.1 corresponds to the equivalence between RicN ≥
0 and the convexity of the Rényi entropy SN , i.e., the curvature-dimension condition
CD(0, N) of (M,ω).

(3) In the case of m = 1, two weights ψ and Ψ are synchronized as ν = e−ψ−Ψ volg,
and Hess Entν ≥ K (i.e., CD(K,∞) for (M, ν)) is equivalent to the single condition
Ric + Hess(ψ + Ψ) ≥ K. For m 6= 1, however, ψ and Ψ keep separate and they measure
different phases of (M,ω, ν), as indicated in Theorem 4.1.

5 Functional inequalities

Since Otto and Villani’s celebrated work [OV], the displacement convexity of entropy-type
functionals has played a significant role in the study of functional inequalities (and the
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concentration of measures). In this section, we follow the argument in [LV2, Section 6]
(with m = 1) that the direct application of the displacement convexity of the entropy
implies various functional inequalities. Our proofs use only fundamental properties of
convex functions. In more analytic context, related results for m 6= 1 in the Euclidean
spaces (M,ω) = (Rn, dx) can be found in [AGK], [CGH] and [Ta2]. See especially [AGK,
Section 4] and [CGH, Section 3] for various generalizations of the Talagrand (transport)
inequality, logarithmic Sobolev (entropy-information) inequality, HWI inequality and the
Poincaré inequality. The relation among these inequalities are also discussed there.

Throughout the section, we suppose that m > 1/2, RicN ≥ 0 and that Hess Ψ ≥ K
holds in the weak sense for some K > 0. Recall from Lemma 2.4(i), (iii) that ν(M) < ∞
automatically follows from these hypotheses, so that the normalization gives

ν̄ = σ̄ω = expm(−Ψ)ω := ν(M)−1ν ∈ Pac(M,ω)

with Hess Ψ ≥ ν(M)1−mK according to Remark 2.3. Moreover, Lemma 2.4(i), (ii) ensure
that σ̄ ∈ Lm(M,ω) as well as ν̄ ∈ P2

ac(M,ω), for m > 1/2. Keeping this in mind, we will
take ν with ν(M) = 1 for simplicity.

Proposition 5.1 (Talagrand inequality) Assume that m > 1/2, ν(M) = 1, RicN ≥ 0
and that Hess Ψ ≥ K holds for some K > 0. Then, for any µ ∈ P2(M0), we have

W2(µ, ν) ≤
√

2

K
Hm(µ|ν).

Proof. Recall from Lemma 2.4(iii) that M0 is convex. Let (µt)t∈[0,1] ⊂ P2(M0) be an
optimal transport from µ0 = µ to µ1 = ν. It follows from (4.1) and Hm(ν|ν) = 0 that

Hm(µt|ν) ≤ (1 − t)Hm(µ|ν) − K

2
(1 − t)tW2(µ, ν)2. (5.1)

Since Hm(µt|ν) ≥ 0 (Lemma 3.3), we obtain Hm(µ|ν) ≥ (K/2)W2(µ, ν)2 by dividing (5.1)
with 1 − t and letting t go to 1. 2

For µ = ρω ∈ P2
ac(M,ω) such that ρ is Lipschitz, we define the m-relative Fisher

information by

Im(µ|ν) :=
1

m2

∫
M

∣∣∇[e′m(ρ) − e′m(σ)]
∣∣2ρ dω =

1

(m − 1)2

∫
M

∣∣∇(ρm−1 − σm−1)
∣∣2 dµ. (5.2)

It will be demonstrated in Proposition 7.9 that
√

Im(µ|ν) is the absolute gradient of
Hm(·|ν) at µ. Then it is natural to expect that the convexity of Hm(·|ν) yields the
following inequality.

Theorem 5.2 (HWI and Logarithmic Sobolev inequalities) We assume that m >
1/2, ν(M) = 1, RicN ≥ 0 and that Hess Ψ ≥ K holds for some K > 0. Then, for any
µ = ρω ∈ P2

ac(M0, ω) such that ρ is Lipschitz, we have

Hm(µ|ν) ≤
√

Im(µ|ν) · W2(µ, ν) − K

2
W2(µ, ν)2, (5.3)

Hm(µ|ν) ≤ 1

2K
Im(µ|ν). (5.4)
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Proof. Let µt = ρtω ∈ P2
ac(M0, ω), t ∈ [0, 1], be the optimal transport from µ0 = µ to

µ1 = ν given by µt = ρtω = (Tt)]µ with Tt(x) = expx(t∇ϕ(x)), and put H(t) := Hm(µt|ν).
Then it follows from (5.1) that

H(0) ≤ H(0) − H(t)

t
− K

2
(1 − t)W2(µ, ν)2. (5.5)

We shall estimate the term

H(0) − H(t) =
1

m(m − 1)

∫
M

{(ρm − ρm
t ) − m(ρ − ρt)σ

m−1} dω.

Since the function f(s) := sm/(m − 1) is convex, we have

ρm − ρm
t

m − 1
≤ f ′(ρ)(ρ − ρt) =

m

m − 1
ρm−1(ρ − ρt),

and hence

H(0) − H(t) ≤ 1

m − 1

∫
M

(ρm−1 − σm−1)(ρ − ρt) dω.

By the change of variables formula along with the Jacobian equation ρt(Tt)det(DTt) = ρ,
we observe∫

M

(ρm−1 − σm−1)ρt dω =

∫
M

{ρ(Tt)
m−1 − σ(Tt)

m−1}ρt(Tt)det(DTt) dω

=

∫
M

{ρ(Tt)
m−1 − σ(Tt)

m−1} dµ.

This yields

H(0) − H(t) ≤ 1

m − 1

∫
M

{
(ρm−1 − σm−1) −

(
ρ(Tt)

m−1 − σ(Tt)
m−1

)}
dµ.

Thus we obtain

lim sup
t→0

H(0) − H(t)

t
≤ 1

|m − 1|

∫
M

|∇(ρm−1 − σm−1)| · d(T0, T1) dµ

≤ 1

|m − 1|

( ∫
M

|∇(ρm−1 − σm−1)|2 dµ

)1/2( ∫
M

d(T0, T1)
2 dµ

)1/2

=
√

Im(µ|ν) · W2(µ, ν).

Combining this with (5.5), we conclude that

Hm(µ|ν) ≤
√

Im(µ|ν) · W2(µ, ν) − K

2
W2(µ, ν)2 ≤ 1

2K
Im(µ|ν).

2

Remark 5.3 It is established in [Ta2] that, in the Euclidean space (M,ω) = (Rn, dx),
equality of both (5.3) and (5.4) is characterized by using m-Gaussian measures.

18



We finally show a kind of Poincaré inequality. Observe that putting m = 1 recovers
the usual global Poincaré inequality

∫
M

f 2 dν ≤ K−1
∫

M
|∇f |2 dν.

Proposition 5.4 (Global Poincaré inequality) Assume that m > 1/2, ν(M) = 1,
RicN ≥ 0 and that Hess Ψ ≥ K holds for some K > 0. Then, for any Lipschitz function
f : M0 −→ R such that

∫
M0

f dν = 0, we have∫
M

f 2σm−1 dν ≤ 1

K

∫
M

|∇(fσm−1)|2 dν.

Proof. We apply (5.4) to µ = ρω := (1 + εf)σω for small ε ≥ 0 and obtain

1

m(m − 1)

∫
M

{ρm − mρσm−1 + (m − 1)σm} dω ≤ 1

2K

1

(m − 1)2

∫
M

|∇(ρm−1 − σm−1)|2 dµ.

On the one hand,

ρm − mρσm−1 + (m − 1)σm = (1 + εf)mσm − m(1 + εf)σm + (m − 1)σm

= σm{(1 + εf)m − 1 − m(εf)}

= m(m − 1)σm f 2

2
ε2 + O(ε3).

On the other hand,

|∇(ρm−1 − σm−1)|2 =
∣∣∇[(

(1 + εf)m−1 − 1
)
σm−1

]∣∣2
= |∇[(m − 1)fεσm−1] + O(ε2)|2

= (m − 1)2ε2|∇(fσm−1)|2 + O(ε3).

Thus we have, letting ε go to zero,∫
M

f 2σm dω ≤ 1

K

∫
M

|∇(fσm−1)|2 dν.

2

6 Concentration of measures

This section is devoted to an application of Proposition 5.1 to the concentration of mea-
sures. Let us assume ν(M) = 1 and define the concentration function by

α(M,ν)(r) := sup
{
1 − ν

(
B(A, r)

)
|A ⊂ M, ν(A) ≥ 1/2

}
for r > 0, where A is any measurable set and

B(A, r) := {y ∈ M | inf
x∈A

d(x, y) < r}.

The function α(M,ν) describes how the probability measure ν concentrates on the neigh-
borhood of an arbitrary set of half the total measure in a quantitative way (in other
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words, a kind of large deviation principle). An especially interesting situation is that
a sequence {(Mi, νi)}i∈N satisfies limi→∞ α(Mi,νi)(r) = 0 for all r > 0, that means that
(Mi, νi) is getting more and more concentrated. We refer to [Le] for the basic theory and
applications of the concentration of measure phenomenon.

In the classical case of m = 1, it is well-known that the concentration of measures
has rich connections with functional inequalities appearing in Section 5. For instance, the
L1-transport inequality W1(µ, ν) ≤

√
(2/K) Entν(µ) implies the normal concentration

α(r) ≤ Ce−cr2
with constants c, C > 0 depending only on K ([Le, Section 6.1]). In

the same spirit, we show that an application of Proposition 5.1 gives new examples of
concentrating spaces.

We set Gc = Gc(ν) :=
∫

M
σc dω for c > 1/2. Recall from Lemma 2.4(i) that, if

Hess Ψ ≥ K > 0,

Gc(ν) ≤ C1(ω)1−cν(M)c + C2(m, c, ω)Kc/(m−1) < ∞ (6.1)

holds for m < 1 and c ∈ (1/2, 1].

Theorem 6.1 (m < 1 case) Let (M,ω) satisfy RicN ≥ 0 and m ∈ [(n − 1)/n, 1) ∩
(1/2, 1).

(i) Assume that ν(M) = 1 and Hess Ψ ≥ K holds for some K > 0. Then we have

α(M,ν)(r)
θ−m lnm

(
2α(M,ν)(r)

)
≤ −Gθ−1

(m−θ)/(1−θ)

{(√
mK

2
r −

√
Gm

)2

− Gm

}
(6.2)

for all r > 0 and θ ∈ [0, 2m − 1).

(ii) Take a sequence νi = expm(−Ψi)ω ∈ Pac(M,ω), i ∈ N, such that Hess Ψi ≥ Ki and
limi→∞ Ki = ∞. Then we have limi→∞ α(M,νi)(r) = 0 for any r > 0.

Proof. (i) Note that ν ∈ P2
ac(M,ω) by Lemma 2.4(ii). We also remark that (6.2) clearly

holds for r ≤ 2
√

2Gm/mK. Indeed, then the right-hand side is nonnegative, while
α(M,ν)(r) ≤ 1/2 implies lnm(2α(M,ν)(r)) ≤ 0.

Suppose r > 2
√

2Gm/mK, take a measurable set A ⊂ M with ν(A) ≥ 1/2 and put
B := M \ B(A, r), a := ν(A), b := ν(B),

µA :=
χA

a
ν, µB :=

χB

b
ν.

We assumed b > 0 since there is nothing to prove if b = 0 for all such A. The triangle
inequality of W1 and Proposition 5.1 together imply (since W1 ≤ W2 by the Schwarz
inequality)

r ≤ W1(µA, µB) ≤ W1(µA, ν) + W1(ν, µB) ≤
√

2

K
Hm(µA|ν) +

√
2

K
Hm(µB|ν).

Note that

Hm(µA|ν) =
1

m(1 − m)

∫
A

mam−1 − 1

am
σm dω +

1

m
Gm
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and mam−1 − 1 < 0 since a ≥ 1/2 > m1/(1−m). Thus we obtain√
mK

2
r ≤

√
Gm +

√
Gm + b−m

mbm−1 − 1

1 − m

∫
B

σm dω.

We observe from r > 2
√

2Gm/mK that
√

mK/2r > 2
√

Gm which yields 0 < mbm−1−1 <
(2b)m−1 − 1. Hence we have(√

mK

2
r −

√
Gm

)2

− Gm ≤ −b−m lnm(2b)

∫
B

σm dω. (6.3)

It follows from the Hölder inequality that∫
B

σm dω =

∫
B

σθ+(m−θ) dω ≤
( ∫

B

σ dω

)θ( ∫
B

σ(m−θ)/(1−θ) dω

)1−θ

≤ bθG1−θ
(m−θ)/(1−θ),

where the assumption θ < 2m−1 ensures (m−θ)/(1−θ) > 1/2. Therefore we obtain the
desired inequality (6.2) by choosing Ai ⊂ M such that limi→∞ ν(M \B(Ai, r)) = α(M,ν)(r).

(ii) Thanks to (6.1), we know that

lim sup
i→∞

Gc(νi) ≤ C1(ω)1−c < ∞

for all c ∈ (1/2, 1]. Therefore we deduce from (i) that, setting αi := α(M,νi)(r),

lim
i→∞

αθ−m
i lnm(2αi) = − lim

i→∞

αθ−1
i

21−m

1 − (2αi)
1−m

1 − m
= −∞

which shows limi→∞ α(M,νi)(r) = 0. 2

Remark 6.2 (1) Taking the proof of Lemma 2.4(i) into account, we can generalize The-
orem 6.1(ii) as follows. Suppose that a sequence {(Mi, ωi, νi)}i∈N satisfies

(a) RicN ≥ 0 for all (Mi, ωi),

(b) νi = expm(−Ψi)ωi ∈ Pac(Mi, ωi) so that Hess Ψi ≥ Ki and limi→∞ Ki = ∞,

(c) supi∈N supx∈Mi
ωi(B(x,R)) < ∞ and supi∈N supx∈Mi

areaωi
(S(x,R)) < ∞ for some

R > 0.

Then we have limi→∞ α(Mi,νi)(r) = 0 for all r > 0.
(2) Taking the limit of (6.2) as m → 1 and then θ → 1, we obtain

ln
(
2α(r)

)
≤ −

(√
K

2
r − 1

)2

+ 1.

Here limc→1 Gc = G1 = 1 follows from the dominated convergence theorem since σc ≤
max{σ, σc0} ∈ L1(M,ω) for 1/2 < c0 ≤ c < 1. Therefore we recover the normal concen-
tration

α(r) ≤ 1

2
exp

[
−

(√
K

2
r − 1

)2

+ 1

]
≤ 1

2
e−Kr2/4+2

which is well-known to hold for (M,ω) with Ric∞ ≥ K > 0.
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Theorem 6.1(ii) is applicable to the fundamental example of m-Gaussian measures
(see Example 2.5).

Example 6.3 Let {N(vi, Vi)}i∈N ⊂ P2
ac(Rn, dx) be a sequence of m-Gaussian measures

with m ∈ [(n − 1)/n, 1) ∩ (1/2, 1) as well as

lim
i→∞

(detVi)
(1−m)/2Λ−1

i = ∞,

where Λi is the largest eigenvalue of Vi. Then we have limi→∞ α(Rn,N(vi,Vi))(r) = 0 for all
r > 0.

Under the additional assumption that ω(M) < ∞, we further obtain the m-normal
concentration. We first prove a computational lemma for later use.

Lemma 6.4 (i) For any m ∈ (1/2, 1) and a, r > 0, we have

expm

(
− (ar − 1)2 + 1

)
≤ (2m − 1)1/(m−1) expm

(
− a2

2
r2

)
.

(ii) For any m ∈ (1, 2) and a, r > 0, we have

expm

(
(ar − 1)2 − 1

)
≥

(
2

m
− 1

)1/(m−1)

expm

(
a2

2
r2

)
.

Proof. (i) We just calculate

expm

(
− (ar − 1)2 + 1

)
≤ expm

(
− a2

2
r2 + 2

)
=

{
1 + (m − 1)

(
− a2

2
r2 + 2

)}1/(m−1)

= (2m − 1)1/(m−1)

{
1 + (m − 1)

(
− a2

2(2m − 1)
r2

)}1/(m−1)

≤ (2m − 1)1/(m−1) expm

(
− a2

2
r2

)
.

(ii) We similarly find

expm

(
(ar − 1)2 − 1

)
≥ expm

[(
1 − m

2

)
a2r2 − 2

m

]
=

{(
2

m
− 1

)
+ (m − 1)

(
1 − m

2

)
a2r2

}1/(m−1)

=

(
2

m
− 1

)1/(m−1){
1 +

m

2
(m − 1)a2r2

}1/(m−1)

≥
(

2

m
− 1

)1/(m−1)

expm

(
a2

2
r2

)
.
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Note that the hypothesis m ∈ (1, 2) ensures that(
1 − m

2

)
a2r2 − 2

m
> − 2

m
> − 1

m − 1
.

2

Corollary 6.5 (m-normal concentration) Assume that m ∈ [(n − 1)/n, 1) ∩ (1/2, 1),
ν(M) = 1, ω(M) < ∞, RicN ≥ 0 and Hess Ψ ≥ K holds for some K > 0. Then we have

α(M,ν)(r) ≤
(2m − 1)1/(m−1)

2
expm

(
− mK

4ω(M)1−m
r2

)
for all r > 0.

Proof. We deduce from the Hölder inequality that∫
B

σm dω ≤
( ∫

B

σ dω

)m

ω(B)1−m = bmω(B)1−m ≤ bmω(M)1−m

and, similarly, Gm ≤ ω(M)1−m. In particular, r2 > 8ω(M)1−m/mK (otherwise the
assertion is clear) implies r2 > 8Gm/mK. Therefore we deduce from (6.3) that(√

mK

2
r − ω(M)(1−m)/2

)2

− ω(M)1−m ≤ −ω(M)1−m lnm(2b),

and hence

α(M,ν)(r) ≤
1

2
expm

[
−

(
ω(M)(m−1)/2

√
mK

2
r − 1

)2

+ 1

]
.

Then Lemma 6.4(i) completes the proof. 2

Remark 6.6 Note that expm(−cr2) is a polynomial of r, so that the m-normal concen-
tration is weaker than the exponential concentration (i.e., α(r) ≤ Ce−cr). This is natural
and the most we can expect, because the m-Gaussian measures have only the polynomial
decay for instance (Example 2.5).

For m > 1, Lemma 2.4(iii) ensures that supp ν is bounded and Gc(ν) < ∞ for all
c > 0. Then the proof of Theorem 6.1(i) is applicable to m ∈ (1, 2] and gives (6.2) for all
r > 0 and θ ∈ [0, 1). Furthermore, under another condition that σ is bounded, we again
obtain the m-normal concentration.

Proposition 6.7 (m > 1 case) Let (M,ω) satisfy RicN ≥ 0 and m ∈ (1, 2].

(i) Assume that ν(M) = 1 and Hess Ψ ≥ K holds for some K > 0. Then we have (6.2)
for all r > 0 and θ ∈ [0, 1).

(ii) If in addition m < 2 and ‖σ‖∞ < ∞, then we have

α(M,ν)(r)
−1 ≥

(
2

m
− 1

)1/(m−1)

expm

(
mK‖σ‖1−m

∞
4

r2

)
for all r > 0.
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Proof. (i) This is completely the same as Theorem 6.1(i), since 1/2 ≥ m1/(1−m) holds for
m ∈ (1, 2].

(ii) In (6.3) (with m > 1), we observe
∫

B
σm dω ≤ b‖σ‖m−1

∞ and Gm ≤ ‖σ‖m−1
∞ . Note

also that r2 > 8‖σ‖m−1
∞ /mK (otherwise the assertion is obvious) ensures r2 > 8Gm/mK.

These yield(√
mK

2
r − ‖σ‖(m−1)/2

∞

)2

− ‖σ‖m−1
∞ ≤ −b1−m‖σ‖m−1

∞ lnm(2b) ≤ ‖σ‖m−1
∞ lnm(b−1).

Hence we have

α(M,ν)(r)
−1 ≥ expm

[(
‖σ‖(1−m)/2

∞

√
mK

2
r − 1

)2

− 1

]
,

and Lemma 6.4(ii) completes the proof. 2

Note that we obtained the estimate of the form α(r) ≤ C expm(−cr2) for m < 1, while
α(r) ≤ C{expm(cr2)}−1 for m > 1. This is in a sense natural because the domain of expm

is (−∞, 1/(1 − m)) for m < 1 and [−1/(m − 1),∞) for m > 1.

7 Gradient flow of Hm

In this section, we show that the gradient flow of the m-relative entropy produces a
weak solution to the porous medium equation. This kind of interpretation of evolution
equations has turned out extremely useful after the pioneering work due to Jordan et
al. [JKO]. There are several ways of explaining this coincidence (see, e.g., [JKO], [AGK]
and [Vi2, Chapter 23]), among them, here we follow the rather ‘metric’ approach in [Oh1].
To do this, we start with a review of the geometric structure of the Wasserstein space and
the general theory of gradient flows in it in accordance with the strategy in [Oh1] (see also
[GO]). Throughout the section, (M, g) is assumed to be compact, so that P2(M) = P(M)
and σ ∈ Lm(M,ω).

7.1 Geometric structure of (P(M),W2)

We briefly review the geometric structure of (P(M),W2). It is known that (P(M),W2) is
an Alexandrov space of nonnegative curvature if and only if (M, g) has the nonnegative
sectional curvature ([St1, Proposition 2.10], [LV2, Theorem A.8]). In the case where (M, g)
is not nonnegatively curved, although (P(M),W2) does not admit any lower curvature
bound ([St1, Proposition 2.10]), we can show the following (see also [Oh1, Theorem 3.6]).

Theorem 7.1 ([Gi, Theorem 3.4, Remark 3.5]) Given µ ∈ P(M) and unit speed geodesics
α, β : [0, δ) −→ P(M) with α(0) = β(0) = µ, the joint limit

lim
s,t→0

s2 + t2 − W2(α(s), β(t))2

2st

exists.
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Theorem 7.1 means that (P(M),W2) looks like a Riemannian space (rather than a
Finsler space), and we can investigate its infinitesimal structure in the manner of the the-
ory of Alexandrov spaces. For µ ∈ P(M), denote by Σ′

µ[P(M)] the set of all (nontrivial)
unit speed minimal geodesics emanating from µ. Given α, β ∈ Σ′

µ[P(M)], Theorem 7.1
verifies that the angle

∠µ(α, β) := arccos

(
lim

s,t→0

s2 + t2 − W2(α(s), β(t))2

2st

)
∈ [0, π]

is well-defined. We define the space of directions (Σµ[P(M)], ∠µ) as the completion of
(Σ′

µ[P(M)]/∼,∠µ), where α ∼ β holds if ∠µ(α, β) = 0. The tangent cone (Cµ[P(M)], σµ)
is defined as the Euclidean cone over (Σµ[P(M)], ∠µ), i.e.,

Cµ[P(M)] :=
(
Σµ[P(M)] × [0,∞)

)/(
Σµ[P(M)] × {0}

)
,

σµ

(
(α, s), (β, t)

)
:=

√
s2 + t2 − 2st cos ∠µ(α, β).

Using this infinitesimal structure, we introduce a class of ‘differentiable curves’.

Definition 7.2 (Right differentiability) We say that a curve ξ : [0, l) −→ P(M) is
right differentiable at t ∈ [0, l) if there is v ∈ Cξ(t)[P(M)] such that, for any sequences
{εi}i∈N of positive numbers tending to zero and {αi}i∈N of unit speed minimal geodesics
from ξ(t) to ξ(t+εi), the sequence {(αi,W2(ξ(t), ξ(t+εi))/εi)}i∈N ⊂ Cξ(t)[P(M)] converges

to v. Such v is clearly unique if it exists, and then we write ξ̇(t) = v.

7.2 Gradient flows in (P(M),W2)

Consider a lower semi-continuous function f : P(M) −→ (−∞, +∞] which is K-convex
in the weak sense for some K ∈ R. We in addition suppose that f is not identically +∞,
and define P∗(M) := {µ ∈ P(M) | f(µ) < ∞}.

Given µ ∈ P∗(M) and α ∈ Σµ[P(M)], we set

Dµf(α) := lim inf
Σ′

µ[P(M)]3β→α
lim
t→0

f(β(t)) − f(µ)

t
.

Define the absolute gradient (called the local slope in [AGS]) of f at µ ∈ P∗(M) by

|∇−f |(µ) := max

{
0, lim sup

µ̃→µ

f(µ) − f(µ̃)

W2(µ, µ̃)

}
.

Note that −Dµf(α) ≤ |∇−f |(µ) for any α ∈ Σµ[P(M)].

Lemma 7.3 ([Oh1, Lemma 4.2]) For each µ ∈ P∗(M) with 0 < |∇−f |(µ) < ∞, there
exists unique α ∈ Σµ[P∗(M)] satisfying Dµf(α) = −|∇−f |(µ).

Using α in the above lemma, we define the negative gradient vector of f at µ as

∇−f(µ) :=
(
α, |∇−f |(µ)

)
∈ Cµ[P(M)].

In the case of |∇−f |(µ) = 0, we simply define ∇−f(µ) as the origin of Cµ[P(M)].
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Definition 7.4 (Gradient curves) A continuous curve ξ : [0, l) −→ P∗(M) which is
locally Lipschitz on (0, l) is called a gradient curve of f if |∇−f |(ξ(t)) < ∞ holds for all
t ∈ (0,∞) and if it is right differentiable with ξ̇(t) = ∇−f(ξ(t)) at all t ∈ (0, l). We say
that a gradient curve ξ is complete if it is defined on entire [0,∞).

Theorem 7.5 ([Oh1, Theorem 5.11, Corollary 6.3], [GO, Theorem 4.2])

(i) From any µ ∈ P∗(M), there starts a unique complete gradient curve ξ : [0,∞) −→
P∗(M) of f with ξ(0) = µ.

(ii) Given any two gradient curves ξ, ζ : [0,∞) −→ P∗(M) of f , we have

W2

(
ξ(t), ζ(t)

)
≤ e−tKW2

(
ξ(0), ζ(0)

)
(7.1)

for all t ∈ [0,∞).

Therefore the gradient flow G : [0,∞)×P∗(M) −→ P∗(M) of f , given as G(t, µ) = ξ(t)
in Theorem 7.5(i), is uniquely determined and extended to the closure G : [0,∞) ×
P∗(M) −→ P∗(M) continuously.

7.3 m-relative entropy and the porous medium equation

We recall basic notions of calculus on weighted Riemannian manifolds (M,ω) with ω =
e−ψ volg. For a C1-vector filed V on M , we define the weighted divergence as

divω V := div V − 〈V,∇ψ〉,

where div V denotes the usual divergence of V for (M, volg). Note that, for any f ∈
C1(M), ∫

M

〈∇f, V 〉 dω =

∫
M

〈∇f, e−ψV 〉 dvolg = −
∫

M

f div(e−ψV ) dvolg

= −
∫

M

f divω V dω.

For f ∈ C2(M), the weighted Laplacian is defined by

∆ωf := divω(∇f) = ∆f − 〈∇f,∇ψ〉.

Then it is an established fact that the gradient flow of the relative entropy (or the free
energy)

Entω(ρω) =

∫
M

ρ ln ρ dω =

∫
M

(ρe−ψ) ln(ρe−ψ) dvolg +

∫
M

ψ dµ

produces a solution to the associated heat equation (or the Fokker-Planck equation)

∂ρ

∂t
= ∆ωρ = eψ

{
∆(ρe−ψ) + div

(
(ρe−ψ)∇ψ

)}
.
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See [JKO, Theorem 5.1], [Vi1, Subsection 8.4.2] for the Euclidean case, [Oh1, Theo-
rem 6.6], [GO, Theorem 4.6], [Vi2, Corollary 23.23] for the Riemannian case, and [OS,
Section 7] for the Finsler case.

Here we see that the same technique gives a weak solution to the porous medium
equation

∂ρ

∂t
=

1

m
∆ω(ρm) + divω(ρ∇Ψ) (7.2)

as gradient flow of the m-relative entropy Hm(·|ν), as was demonstrated by Otto [Ot] for
the Tsallis entropy as well as Hm(·|Nm(0, cIn)) with respect to the m-Gaussian measures
Nm(0, cIn) on (Rn, dx). Recall that ν = expm(−Ψ)ω.

Theorem 7.6 (Gradient flow of Hm) Let (M, g) be compact, m ∈ ((n−1)/n, 1)∪(1, 2]
and Ψ be Lipschitz. If a curve (µt)t∈[0,∞) ⊂ Pac(M0, ω) is a gradient curve of Hm(·|ν),
then its density function ρt is a weak solution to the porous medium equation (7.2). To
be precise,∫

M

φt1 dµt1 −
∫

M

φt0 dµt0 =

∫ t1

t0

∫
M

{
∂φt

∂t
+

1

m
ρm−1

t ∆ωφt − 〈∇φt,∇Ψ〉
}

dµt dt (7.3)

holds for all 0 ≤ t0 < t1 < ∞ and φ ∈ C∞(R × M), where µt = ρtω, φt = φ(t, ·).

Proof. Fix t ∈ (0,∞) and, given small δ > 0, choose µδ ∈ P(M) as a minimizer of the
function

µ 7−→ Hm(µ|ν) +
W2(µ, µt)

2

2δ
.

We postpone the proof of the following technical claim until the end of the section. We
remark that the hypothesis m ≤ 2 comes into play only in the proof of Claim 7.7(iii) (see
Lemma 7.11).

Claim 7.7 (i) Such µδ indeed exists and is absolutely continuous.

(ii) We have

lim
δ→0

W2(µ
δ, µt)

2

2δ
= 0, lim

δ→0
Hm(µδ|ν) = Hm(µt|ν).

In particular, µδ converges to µt weakly.

(iii) Moreover, by putting µδ = ρδω, (ρδ)m converges to ρm
t in L1(M,ω).

Take a Lipschitz function ϕ : M −→ R such that T (x) := expx(∇ϕ(x)) gives the
optimal transport from µδ to µt. We consider the transport µδ

ε := (Fε)]µ
δ in another

direction for small ε > 0, where Fε(x) := expx(ε∇φt(x)). It immediately follows from the
choice of µδ that

Hm(µδ
ε|ν) +

W2(µ
δ
ε, µt)

2

2δ
≥ Hm(µδ|ν) +

W2(µ
δ, µt)

2

2δ
. (7.4)
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We first estimate the difference of distances. Observe that, as (Fε × T )]µ
δ is a (not

necessarily optimal) coupling of µδ
ε and µt,

lim sup
ε→0

W2(µ
δ
ε, µt)

2 − W2(µ
δ, µt)

2

ε

≤ lim sup
ε→0

1

ε

∫
M

{
d
(
Fε(x), T (x)

)2 − d
(
x, T (x)

)2}
dµδ(x)

= −
∫

M

2〈∇φt,∇ϕ〉 dµδ.

We used the first variation formula for the distance d in the last line. Thanks to the
compactness of M , there is a constant C > 0 such that

φt

(
T (x)

)
≤ φt(x) + 〈∇φt(x),∇ϕ(x)〉 + Cd

(
x, T (x)

)2
.

Thus we obtain, by virtue of Claim 7.7(ii),

lim inf
δ→0

1

2δ
lim sup

ε→0

W2(µ
δ
ε, µt)

2 − W2(µ
δ, µt)

2

ε
≤ − lim sup

δ→0

1

δ

∫
M

〈∇φt,∇ϕ〉 dµδ

≤ lim inf
δ→0

1

δ

[ ∫
M

{φt − φt(T )} dµδ + CW2(µ
δ, µt)

2

]
= lim inf

δ→0

1

δ

{ ∫
M

φt dµδ −
∫

M

φt dµt

}
.

Next we calculate the difference of entropies in (7.4). We put µδ = ρδω, µδ
ε = ρδ

εω and
Jω

ε := eψ−ψ(Fε)det(DFε). Then we obtain from the Jacobian equation ρδ
ε(Fε)J

ω
ε = ρδ that

Hm(µδ
ε|ν) − 1

m

∫
M

σm dω =
1

m(m − 1)

∫
M

{(ρδ
ε)

m − mρδ
εσ

m−1} dω

=
1

m(m − 1)

∫
M

{ρδ
ε(Fε)

m−1 − mσ(Fε)
m−1}ρδ

ε(Fε)J
ω
ε dω

=
1

m(m − 1)

∫
M

{(
ρδ

Jω
ε

)m−1

− mσ(Fε)
m−1

}
dµδ.

Thus we have

Hm(µδ|ν) − Hm(µδ
ε|ν)

=
1

m(m − 1)

∫
M

[
(ρδ)m−1{1 − (Jω

ε )1−m} − m{σm−1 − σ(Fε)
m−1}

]
dµδ.

Note that

lim
ε→0

Jω
ε − 1

ε
= lim

ε→0

eψ−ψ(Fε)det(DFε) − 1

ε
= ∆φt − 〈∇φt,∇ψ〉 = ∆ωφt.
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Hence we obtain, together with Claim 7.7(iii),

lim
ε→0

Hm(µδ|ν) − Hm(µδ
ε|ν)

ε

=

∫
M

{
1

m
(ρδ)m−1∆ωφt +

1

m − 1
〈∇φt,∇(σm−1)〉

}
dµδ (7.5)

→
∫

M

{
1

m
ρm−1

t ∆ωφt +
1

m − 1
〈∇φt,∇(σm−1)〉

}
dµt

as δ tends to zero.
These together imply, as σm−1 = 1 − (m − 1)Ψ,

lim inf
δ→0

1

δ

{ ∫
M

φt dµδ −
∫

M

φt dµt

}
≥

∫
M

{
1

m
ρm−1

t ∆ωφt − 〈∇φt,∇Ψ〉
}

dµt.

Moreover, equality holds since we can change φ into −φ. Recall from [GO, (4)] (see also
[Oh1, Lemma 6.4]) that

lim
δ→0

1

δ

{ ∫
M

h dµt+δ −
∫

M

h dµδ

}
= 0

holds for all h ∈ C∞(M). Therefore we conclude

lim
δ→0

1

δ

{ ∫
M

φt+δ dµt+δ −
∫

M

φt dµt

}
= lim

δ→0

1

δ

{ ∫
M

(φt+δ − φt) dµt+δ +

∫
M

φt dµt+δ −
∫

M

φt dµt

}
=

∫
M

{
∂φt

∂t
+

1

m
ρm−1

t ∆ωφt − 〈∇φt,∇Ψ〉
}

dµt

as desired. 2

Recall from Theorem 4.1 that the entropy Hm(·|ν) is K-convex if (and only if) RicN ≥
0 and Hess Ψ ≥ K. Combining this with Theorems 7.5, 7.6, we obtain the following.

Corollary 7.8 The weak solution to the porous medium equation constructed in The-
orem 7.6 enjoys the contraction property (7.1) under the assumptions RicN ≥ 0 and
Hess Ψ ≥ K.

The argument in the proof of Theorem 7.6 also shows that the absolute gradient of
Hm(·|ν) at µ coincides with the square root of the m-relative Fisher information introduced
in (5.2), now for general m. Compare this with Theorem 5.2.

Proposition 7.9 Take m ∈ [(n−1)/n, 1)∪(1,∞) and µ = ρω ∈ Pac(M,ω) such that ρ is
Lipschitz. For any (d2/2)-convex function ϕ : M −→ R and the corresponding transport
µt := (Tt)]µ with Tt(x) := expx(t∇ϕ(x)), t ≥ 0, it holds that

lim
t→0

Hm(µt|ν) − Hm(µ|ν)

t
=

1

m − 1

∫
M

〈∇(ρm−1 − σm−1),∇ϕ〉 dµ.
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In particular, we have |∇−[Hm(·|ν)]|(µ) =
√

Im(µ|ν) and, if |∇−[Hm(·|ν)]|(µ) < ∞, then
the negative gradient vector ∇−[Hm(·|ν)](µ) is achieved by

∇ϕ = −∇
(

ρm−1 − σm−1

m − 1

)
.

Proof. Recall that ϕ is twice differentiable a.e., and that µt is absolutely continuous for
t < 1 ([Vi2, Theorem 8.7]). Using the calculation deriving (7.5), we obtain

lim
t→0

Hm(µ|ν) − Hm(µt|ν)

t

=

∫
M

{
1

m
ρm−1∆ωϕ +

1

m − 1
〈∇ϕ,∇(σm−1)〉

}
dµ

= −
∫

M

{
1

m
〈∇(ρm),∇ϕ〉 − ρ

m − 1
〈∇ϕ,∇(σm−1)〉

}
dω

= − 1

m − 1

∫
M

〈∇(ρm−1 − σm−1),∇ϕ〉 dµ.

As any geodesic with respect to W2 is realized in this way (Theorem 2.7), we have
|∇−[Hm(·|ν)]|(µ) =

√
Im(µ|ν) and

∇−[Hm(·|ν)](µ) = −∇
(

ρm−1 − σm−1

m − 1

)
.

2

Remark 7.10 The family of m-Gaussian measures (Example 2.5) again has a role to play
here. On the unweighted Euclidean space (Rn, dx), it is known by [OW, Proposition 5]
that a solution to the porous medium equation starting from an m-Gaussian measure will
keep being m-Gaussian. An explicit expression of such solutions is given in [Ta2].

7.4 Proof of Claim 7.7

(i) The existence follows from, as usual, the compactness of P(M) and the lower semi-
continuity of Hm(·|ν) (Lemma 3.4). The absolute continuity is obvious for m > 1.

For m < 1, decompose µδ into absolutely continuous and singular parts µδ = ρω + µs

and suppose µs(M) > 0. We modify µδ into µ̂r ∈ Pac(M,ω) as

dµ̂r(x) = ρ̂r(x) dω(x) :=

{
ρ(x) +

∫
M

χB(y,r)(x)

ω(B(y, r))
dµs(y)

}
dω(x)

for small r > 0. Then we find∫
M

σm−1 dµ̂r ≤
∫

M

σm−1 dµδ +

∫
M

∣∣∣∣σ(y)m−1 − 1

ω(B(y, r))

∫
B(y,r)

σm−1 dω

∣∣∣∣dµs(y)

≤
∫

M

σm−1 dµδ +
{

sup
M

|∇(σm−1)| · µs(M)
}

r.
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Given an optimal coupling π = π1 +π2 of µδ and µt such that (p1)]π1 = ρω and (p1)]π2 =
µs,

dπ̂r(x, z) := dπ1(x, z) +

∫
y∈M

χB(y,r)(x)

ω(B(y, r))
dω(x)dπ2(y, z)

is a coupling of µ̂r and µt. Hence we observe

W2(µ̂r, µt)
2 ≤

∫
M×M

d(x, z)2dπ1(x, z) +

∫
M×M

{d(y, z) + r}2 dπ2(y, z)

≤
∫

M×M

d(x, z)2dπ(x, z) + {2 diam M + r}rπ2(M × M)

≤ W2(µ
δ, µt)

2 + {3 diam M · µs(M)}r.

Finally, it follows from the Hölder inequality that∫
M

ρ̂m
r dω =

∫
M

[ ∫
M

{
ρ(x)

µs(M)
+

χB(y,r)(x)

ω(B(y, r))

}
dµs(y)

]m

dω(x)

≥ µs(M)m−1

∫
M

[ ∫
M

{
ρ(x)

µs(M)
+

χB(y,r)(x)

ω(B(y, r))

}m

dµs(y)

]
dω(x)

≥ µs(M)m−1

∫
M

{ ∫
M\B(y,r)

ρm

µs(M)m
dω +

∫
B(y,r)

1

ω(B(y, r))m
dω

}
dµs(y)

=

∫
M

ρm dω − µs(M)−1

∫
M

( ∫
B(y,r)

ρm dω

)
dµs(y)

+ µs(M)m−1

∫
M

ω
(
B(y, r)

)1−m
dµs(y).

As M is compact, we find

µs(M)m−1

∫
M

ω
(
B(y, r)

)1−m
dµs(y) ≥ µs(M)mC1(ω,m)rn(1−m),

and ∫
B(y,r)

ρm dω =

∫
B(y,r)

(ρσm−1)mσm(1−m) dω

≤
( ∫

B(y,r)

ρσm−1 dω

)m( ∫
B(y,r)

σm dω

)1−m

≤
( ∫

B(y,r)

ρσm−1 dω

)m

C2(ω, σ,m)rn(1−m).

Since limr→0 supy∈M

∫
B(y,r)

ρσm−1 dω = 0, these imply∫
M

ρ̂m
r dω ≥

∫
M

ρm dω + C1(ω,m)µs(M)mrn(1−m).
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Combining these, we conclude that

Hm(µ̂r|ν) +
W2(µ̂r, µt)

2

2δ
− Hm(µδ|ν) − W2(µ

δ, µt)
2

2δ
≤ −C3(ω,m)µs(M)mrn(1−m) + C4(M,σ,m, δ)µs(M)r,

where C3, C4 > 0. Then n(1 − m) < 1 and µs(M) > 0 yield that

Hm(µ̂r|ν) +
W2(µ̂r, µt)

2

2δ
< Hm(µδ|ν) +

W2(µ
δ, µt)

2

2δ

holds for small r > 0. This contradicts the construction of µδ, therefore we obtain
µs(M) = 0.

(ii) By the choice of µδ, we have

Hm(µδ|ν) +
W2(µ

δ, µt)
2

2δ
≤ Hm(µt|ν)

which immediately implies limδ→0 W2(µ
δ, µt)

2 ≤ limδ→0 2δHm(µt|ν) = 0. Thus µδ con-
verges to µt weakly, and hence

lim sup
δ→0

W2(µ
δ, µt)

2

2δ
≤ Hm(µt|ν) − lim inf

δ→0
Hm(µδ|ν) ≤ 0

by the lower semi-continuity. This further yields

Hm(µt|ν) ≤ lim inf
δ→0

Hm(µδ|ν) ≤ lim sup
δ→0

Hm(µδ|ν) ≤ Hm(µt|ν).

(iii) This is a consequence of the following general lemma. ♦

Lemma 7.11 Assume m ∈ [(n−1)/n, 1)∪(1, 2] and that a sequence {µi}i∈N ⊂ Pac(M,ω)
converges to µ ∈ Pac(M,ω) weakly as well as limi→∞ Hm(µi|ν) = Hm(µ|ν) < ∞. Then,
by setting µi = ρiω and µ = ρω, ρm

i converges to ρm in L1(M,ω).

Proof. Note that the convergence of Hm(µi|ν) ensures limi→∞
∫

M
ρm

i dω =
∫

M
ρm dω. We

shall show the following:

(∗) For any constant C > 0, limi→∞ ‖min{ρi, C} − min{ρ, C}‖L2(M,ω) = 0 holds.

Then we have, for m < 1,∫
M

|ρm
i − ρm| dω ≤

∫
M

|ρi − ρ|m dω ≤ ω(M)1−m

( ∫
M

|ρi − ρ| dω

)m

,

and ∫
M

|ρi − ρ| dω

≤
∫

M

[
|min{ρi, C} − min{ρ, C}| + max{ρi − C, 0} + max{ρ − C, 0}

]
dω

→ 0
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as i → ∞ and then C → ∞. For m ∈ (1, 2], we similarly find∫
M

|ρm
i − ρm| dω ≤ m

∫
M

|ρi − ρ|(ρi + ρ)m−1 dω

≤ m

( ∫
M

|ρi − ρ|m dω

)1/m( ∫
M

(ρi + ρ)m dω

)(m−1)/m

,

and∫
M

|ρi − ρ|m dω

≤ 2m−1

∫
M

[
|min{ρi, C} − min{ρ, C}|m + max{ρi − C, 0}m + max{ρ − C, 0}m

]
dω

→ 0

as i → ∞ and then C → ∞.
To show (∗), we suppose that it is false. Then there are some constants C, ε > 0 and

sequences {kj}j∈N, {lj}j∈N ⊂ N going to infinity such that

‖min{ρkj
, C} − min{ρlj , C}‖L2(M,ω) ≥ ε

for all j ∈ N. This implies, together with d2[tm/m(m−1)]/dt2 = tm−2 and τm−2(τ −ε)2 ≥
(1 − ε)2 for τ ≥ 1 ≥ ε,

1

m(m − 1)

∫
M

(
ρkj

+ ρlj

2

)m

dω

≤
∫

M

[
ρm

kj
+ ρm

lj

2m(m − 1)
−

max{ρkj
, ρlj}m−2

8
|ρkj

− ρlj |2
]

dω

≤
∫

M

ρm
kj

+ ρm
lj

2m(m − 1)
dω − Cm−2

8

∫
M

|min{ρkj
, C} − min{ρlj , C}|2 dω

≤
∫

M

ρm
kj

+ ρm
lj

2m(m − 1)
dω − Cm−2

8
ε2.

This means that µ̄j := {(ρkj
+ ρlj)/2}ω satisfies

lim sup
j→∞

Hm(µ̄j|ν) ≤ lim
i→∞

Hm(µi|ν) − Cm−2

8
ε2 = Hm(µ|ν) − Cm−2

8
ε2,

this contradicts the lower semi-continuity of Hm(·|ν). 2

8 Finsler case

We finally stress that most results in this article are extended to Finsler manifolds, ac-
cording to the theory developed in [Oh2], [OS] (see also a survey [Oh3]). Briefly speaking,
a Finsler manifold is a differentiable manifold equipped with a (Minkowski) norm on each
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tangent space. Restricting these norms to those coming from inner products, we have
the family of Riemannian manifolds as a subclass. We refer to [BCS], [Sh] for the basics
of Finsler geometry, and to [Oh2], [OS], [Oh3] for the details omitted in the following
discussion.

A Finsler manifold (M,F ) will be a pair of an n-dimensional C∞-manifold M and
a C∞-Finsler structure F : TM −→ [0,∞) satisfying the following regularity, positive
homogeneity, and strong convexity conditions:

(1) F is C∞ on TM \ 0, where 0 stands for the zero section;

(2) F (λv) = λF (v) holds for all v ∈ TM and λ ≥ 0;

(3) In any local coordinate system (xi)n
i=1 of U ⊂ M and the corresponding coordinate

v =
∑

i v
i(∂/∂xi)x of TxM with x ∈ U , the n × n-matrix(

∂2(F 2)

∂vi∂vj
(v)

)n

i,j=1

is positive definite for all v ∈ TxM \ 0 and x ∈ U .

Then the distance d, geodesics and the exponential map are defined in the same manner
as Riemannian geometry, whereas d is typically nonsymmetric (and not a distance in
a precise sense) since F is merely positively homogeneous. Nonetheless, d satisfies the
positivity and the triangle inequality.

On a Finsler manifold (M,F ), there is no constructive measure as good as the Rieman-
nian volume measure in the Riemannian case, but we can consider an arbitrary positive
C∞-measure ω on M and associate it with the weighted Ricci curvature RicN ([Oh2]).
This curvature turns out surprisingly useful, and the argument in [Oh2] is applicable to
generalizing the whole results in Sections 4–6 to the Finsler setting. (We need a little
trick only in Proposition 5.4, put µ = (1 − εf)σω when m > 1.)

Theorem 8.1 Let (M,F ) be a forward complete Finsler manifold and ω be a positive
C∞-measure on M . Then the following results in this article hold true also for (M,F, ω)
(with appropriate interpretations for the nonsymmetric distance, cf. [Oh2]):

• Theorem 4.1;

• Proposition 5.1, Theorem 5.2, Proposition 5.4;

• Theorem 6.1, Corollary 6.5, Proposition 6.7.

As for Section 7, due to the lack of the analogue of Theorem 7.1, we can not directly
follow the Riemannian argument. Nonetheless, we can follow the discussion in [OS] using
a (formal) Finsler structure of the Wasserstein space, and obtain results corresponding to
Theorem 7.6 and Proposition 7.9. The point is the usage of the structure of the underlying
space M , while we did not explicitly use it in Subsections 7.1, 7.2. See [OS, Sections 6,
7] for further details.
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Let (M,F ) be compact from now on. Due to Otto’s idea [Ot, Section 4], we introduce
a Finsler structure of (P(M),W2) as follows. Given µ ∈ P(M), we define the tangent
space at µ by

TµP :=
(
{∇ϕ |ϕ ∈ C∞(M)}, FW (µ, ·)

)
,

FW (µ,∇ϕ) :=

( ∫
M

F (∇ϕ)2 dµ

)1/2

,

where the gradient vector ∇ϕ(x) ∈ TxM is the Legendre transform of the derivative
Dϕ(x) ∈ T ∗

xM , and the closure was taken with respect to FW (µ, ·). We remark that the
gradient ∇ is a nonlinear operator (i.e., ∇(ϕ1 + ϕ2)(x) 6= ∇ϕ1(x) + ∇ϕ2(x)), since the
Legendre transform is nonlinear (unless F |TxM is Riemannian).

Now, we take a locally Lipschitz curve (µt)t∈I ⊂ P(M) on an open interval I ⊂ R.
We can associate it with the tangent vector field µ̇t = Φ(t, ·) ∈ TµtP , that is, Φ is a Borel
vector field on I × M with Φ(t, x) ∈ TxM and F (Φ) ∈ L∞

loc(I × M,dµtdt) satisfying the
continuity equation ∂µt/∂t + div(Φtµt) = 0 in the weak sense that∫

I

∫
M

{
∂φt

∂t
+ Dφt(Φt)

}
dµtdt = 0 (8.1)

holds for all φ ∈ C∞
c (I × M) ([AGS, Theorem 8.3.1], [OS, Theorem 7.3]). Using these

‘differentiable’ structures, we can consider gradient curves in a way different from the
‘metric’ approach in Section 7.

Definition 8.2 Given a function f : P(M) −→ (−∞,∞] and µ ∈ P(M) with f(µ) < ∞,
we say that f is differentiable at µ if there is Φ ∈ TµP such that

lim
t↓0

f((Tt)]µ) − f(µ)

t
=

∫
M

L(Φ)(∇ϕ) dµ

holds for all ϕ ∈ C∞(M), where Tt(x) := expx(t∇ϕ) and L : TxM −→ T ∗
xM stands for

the Legendre transform. Then we write ∇W f(µ) = Φ.

Then a gradient curve should be a solution to µ̇t = ∇W [−Hm(·|ν)](µt). We first show
that ∇W [−Hm(·|ν)](µt) is described by the Fisher information like Proposition 7.9.

Proposition 8.3 Take µ = ρω ∈ Pac(M,ω) with ρm ∈ H1(M,ω). If (ρm−1 −σm−1)/(1−
m) 6∈ H1(M,µ), then −Hm(·|ν) is not differentiable at µ. If (ρm−1 − σm−1)/(1 − m) ∈
H1(M,µ), then −Hm(·|ν) is differentiable at µ and we have

∇W [−Hm(·|ν)](µ) = ∇
(

ρm−1 − σm−1

1 − m

)
∈ TµP .

Proof. Fix arbitrary ϕ ∈ C∞(M) and put Tt(x) := expx(t∇ϕ(x)), µt = ρtω := (Tt)]µ
for sufficiently small t > 0. Then the Jacobian equation ρ = ρt(Tt)J

ω
t holds µ-a.e., where

Jω
t (x) stands for the Jacobian of DTt(x) : TxM −→ TTt(x)M with respect to ω. Thus we

obtain, as in the proof of Theorem 7.6,

Hm(µt|ν) = Hm(µ|ν) +
1

m(m − 1)

∫
M

[
ρm−1{(Jω

t )1−m − 1} + m{σm−1 − σ(Tt)
m−1}

]
dµ.
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As the change of variables formula implies

lim
t→0

∫
M

(Jω
t )1−m − 1

t
ρm dω = (1 − m) lim

t→0

∫
M

Jω
t − 1

t
ρm dω

= (1 − m) lim
t→0

∫
M

ρm − ρ(Tt)
m

t
Jω

t dω = (m − 1)

∫
M

D(ρm)(∇ϕ) dω

= m

∫
M

D(ρm−1)(∇ϕ) dµ,

we obtain

lim
t→0

Hm(µ|ν) − Hm(µt|ν)

t
=

∫
M

D

(
ρm−1 − σm−1

1 − m

)
(∇ϕ) dµ.

This yields

∇W [−Hm(·|ν)](µ) = ∇
(

ρm−1 − σm−1

1 − m

)
provided that (ρm−1−σm−1)/(1−m) ∈ H1(M,µ). If (ρm−1−σm−1)/(1−m) 6∈ H1(M,µ),
then we find

lim sup
µ̃→µ

Hm(µ|ν) − Hm(µ̃|ν)

W2(µ, µ̃)
= ∞

by approximating ρm−1 − σm−1 with φ ∈ C∞(M) and choosing ϕ = φ/(1 − m). Hence
Hm(·|ν) is not differentiable at µ. 2

Theorem 8.4 Let (µt)t≥0 ⊂ Pac(M,ω) be a continuous curve that is locally Lipschitz on
(0,∞), and assume that µt = ρtω satisfies ρm

t ∈ H1(M,ω) as well as (ρm−1
t − σm−1)/(1−

m) ∈ H1(M,µt) for a.e. t ∈ (0,∞). Then

µ̇t = ∇W [−Hm(·|ν)](µt)

holds at a.e. t ∈ (0,∞) if and only if (ρt)t≥0 is a weak solution to the reverse porous
medium equation of the form

∂ρ

∂t
= − divω

[
ρ∇

(
ρm−1 − σm−1

1 − m

)]
. (8.2)

Proof. If µ̇t = ∇W [−Hm(·|ν)](µt) holds, then Proposition 8.3 yields

µ̇t = ∇
(

ρm−1
t − σm−1

1 − m

)
.

Then it follows from the continuity equation (8.1) that∫ ∞

0

∫
M

∂φt

∂t
dµtdt = −

∫ ∞

0

∫
M

Dφt

[
∇

(
ρm−1

t − σm−1

1 − m

)]
dµtdt

for all φ ∈ C∞
c ([0,∞) × M). Therefore ρt weakly solves (8.2).
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Conversely, if ρt is a weak solution to (8.2), then the same calculation implies that

Φt = ∇
(

ρm−1
t − σm−1

1 − m

)
satisfies the continuity equation (8.1). Therefore Proposition 8.3 shows µ̇t = Φt =
∇W [−Hm(·|ν)](µt). 2

We meant by the ‘reverse’ porous medium equation the porous medium equation with

respect to the reverse Finsler structure
←−
F (v) := F (−v). As the gradient vector for

←−
F is

written by
←−
∇u = −∇(−u), (8.2) is indeed rewritten as

∂ρ

∂t
= divω

[
ρ
←−
∇

(
ρm−1 − σm−1

m − 1

)]
= divω

[
ρ
←−
∇

(
ρm−1

m − 1
+ Ψ

)]
.
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[BE] D. Bakry and M. Émery, Diffusions hypercontractives (French), Séminaire de
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