
AN OPEN FOUR-MANIFOLD HAVING NO INSTANTON

MASAKI TSUKAMOTO

Abstract. Taubes proved that all compact oriented four-manifolds admit non-flat in-
stantons. We show that there exists a non-compact oriented four-manifold having no
non-flat instanton.

1. introduction

Taubes [15] proved that all compact oriented Riemannian 4-manifolds admit non-flat

instantons. To be precise, if X is a compact oriented Riemannian 4-manifold then there

exists a principal SU(2)-bundle E on X which admits a non-flat anti-self-dual (ASD)

connection. (Taubes [15] considered self-dual connections. But recently people usually

study anti-self-dual ones. So we consider anti-self-dual connections in this paper.) The

purpose of this paper is to show that an analogue of this striking existence theorem does

not hold for general non-compact 4-manifolds.

Let (CP 2)♯Z be the connected sum of the infinite copies of the complex projective plane

CP 2 indexed by integers. (The precise definition of this infinite connected sum will be

given in Section 2.1.) (CP 2)♯Z is a non-compact oriented 4-manifold.

Theorem 1.1. There exists a complete Riemannian metric g on (CP 2)♯Z satisfying the

following. If A is a g-ASD connection on a principal SU(2)-bundle over (CP 2)♯Z satisfying

(1)

∫
X

|FA|2gdvolg < +∞,

then A is flat. Here FA is the curvature of A. | · |g and dvolg are the norm and the volume

form with respect to the metric g. A connection A is said to be g-ASD if it satisfies

∗gFA = −FA where ∗g is the Hodge star with respect to g.

For a more general and precise statement, see Theorem 2.1. As far as I know, this is

the first example of oriented Riemannian 4-manifolds which cannot admit any non-flat

instanton.

Remark 1.2. I think that the following question is still open: Is there an oriented

Riemannian 4-manifold which does not have any non-flat ASD connection (not necessarily
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2 M. TSUKAMOTO

satisfying the finite energy condition (1))? We studied infinite energy ASD connections

and their infinite dimensional moduli spaces in [11], [17], [18].

A naive idea toward the proof of Theorem 1.1 is as follows. Let g be a Riemannian metric

on (CP 2)♯Z. For each integer n ≥ 0, let M(n, g) be the moduli space of SU(2) g-ASD

connections on (CP 2)♯Z satisfying
∫
(CP 2)♯Z |FA|2gdvolg = 8π2n. We have b1((CP 2)♯Z) = 0

and, formally, b+((CP 2)♯Z) = +∞. Therefore, if we formally apply the usual virtual

dimension formula [5, Section 4.2.5] to M(n, g), we get

dim M(n, g) = 8n − 3(1 − b1((CP 2)♯Z) + b+((CP 2)♯Z)) = 8n −∞ = −∞.

This suggests the following observation: If we can achieve the transversality of the moduli

spaces M(n, g) by choosing the metric g sufficiently generic, then all M(n, g) (n ≥ 1)

become empty. (M(0, g) is the moduli space of flat SU(2) connections, and it does not

depend on the choice of a Riemannian metric.)

Acknowledgement. I wish to thank Professor Kenji Fukaya most sincerely for his

help and encouragement. I was supported by Grant-in-Aid for Young Scientists (B)

(21740048).

2. Infinite connected sum

2.1. Construction. Let Y be a simply-connected compact oriented 4-manifold. Let

x1, x2 ∈ Y be two distinct points, and set Ŷ := Y \{x1, x2}. Choose a Riemannian metric

h on Ŷ which becomes a tubular metric on the end (i.e. around x1 and x2). This means

that there is a compact set K ⊂ Ŷ such that Ŷ \K = Y−⊔Y+ with Y− = (−∞,−1)×S3 and

Y+ = (1, +∞) × S3. Here “=” means that they are isomorphic as oriented Riemannian

manifolds. (S3 = S3(1) = {x ∈ R4| |x| = 1} is endowed with the Riemannian metric

induced by the standard Euclidean metric on R4.) We can suppose that there is a smooth

function p : Ŷ → R satisfying the following conditions: p(K) = [−1, 1]. p is equal to

the projection to (−∞,−1) on Y− = (−∞,−1) × S3, and p is equal to the projection

to (1, +∞) on Y+ = (1, +∞) × S3. For T > 2, we set YT := p−1(−T + 1, T − 1) =

(−T + 1,−1) × S3 ∪ K ∪ (1, T − 1) × S3. (Later we will choose T large.)

Let Y (n) be the copies of Y indexed by integers n ∈ Z. We denote K(n), Y
(n)
− , Y

(n)
+ , p(n),

Y
(n)
T as the copies of K, Y−, Y+, p, YT . (K(n), Y

(n)
− , Y

(n)
+ , Y

(n)
T ⊂ Y (n) and p(n) : Y (n) → R.)

We define X = Y ♯Z by

X :=
⊔
n∈Z

Y
(n)
T / ∼,

where we identify Y
(n)
T ∩ Y

(n)
+ with Y

(n+1)
T ∩ Y

(n+1)
− by

Y
(n)
T ∩ Y

(n)
+ = (1, T − 1) × S3 ∋ (t, θ)

∼ (t − T, θ) ∈ (−T + 1,−1) × S3 = Y
(n+1)
T ∩ Y

(n+1)
− .

(2)
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We define q : X → R by setting q(x) := nT + p(n)(x) on Y
(n)
T . This is compatible with

the above identification (2). The identification (2) is an orientation preserving isometry.

Hence X has an orientation and a Riemannian metric which coincide with the given ones

over Y
(n)
T . We denote the Riemannian metric on X (given by this procedure) by g0. g0

depends on the Riemannian metric h on Y and the parameter T .

Since Y is simply-connected, X is also simply-connected. The homology groups of X

are given as follows:

H0(X) = Z, H1(X) = 0, H2(X) ∼= H2(Y )⊕Z, H3(X) = Z, H4(X) = 0.

H2(X) is of infinite rank if b2(Y ) ≥ 1. For every n ∈ Z, the inclusion Y
(n)
T ∩ Y

(n)
+ ⊂ X

induces an isomorphism H3(Y
(n)
T ∩ Y

(n)
+ ) ∼= H3(X). The fundamental class of the cross-

section S3 ⊂ Y
(n)
T ∩ Y

(n)
+ = (1, T − 1) × S3 becomes a generator of H3(X).

2.2. Statement of the main theorem. Theorem 1.1 in Section 1 follows from the

following theorem.

Theorem 2.1. Suppose b−(Y ) = 0 and b+(Y ) ≥ 1. If T is sufficiently large, then there

exists a complete Riemannian metric g on X = Y ♯Z satisfying the following conditions

(a) and (b).

(a) g is equal to the periodic metric g0 (defined in Section 2.1) outside a compact set.

(b) If A is a g-ASD connection on a principal SU(2) bundle E on X satisfying

(3)

∫
X

|FA|2gdvolg < ∞,

then A is flat.

The proof of this theorem will be given in Section 9.

Remark 2.2. (i) If a Riemannian metric g on X satisfies the condition (a), then it is

complete.

(ii) From the condition (a), the above (3) is equivalent to∫
X

|FA|2g0
dvolg0 < ∞.

(iii) Since X is non-compact, all principal SU(2)-bundles on it are isomorphic to the

product bundle X × SU(2). Hence we can assume that the principal SU(2)-bundle E in

the condition (b) is equal to the product bundle X × SU(2).

2.3. Ideas of the proof of Theorem 2.1. In this subsection we explain the ideas of

the proof of Theorem 2.1. Here we ignore several technical issues. Hence the real proof is

different from the following argument in many points.

Let g be a Riemannian metric on X which is equal to g0 outside a compact set. Let

E = X × SU(2) be the product principal SU(2)-bundle over X. If a g-ASD connection
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A on E satisfies
∫

X
|FA|2gdvolg < ∞, then we can show that 1

8π2

∫
X
|FA|2gdvolg is a non-

negative integer. For each integer n ≥ 0, we define M(n, g) as the moduli space of g-ASD

connections A on E satisfying 1
8π2

∫
X
|FA|2gdvolg = n. Take [A] ∈ M(n, g). We want to

study a local structure of M(n, g) around [A].

Set DA := −d∗
A + d

+g

A : Ω1(adE) → (Ω0 ⊕ Ω+g)(adE). Here d∗
A is the formal adjoint

of dA : Ω0(adE) → Ω1(adE) with respect to g0, and d
+g

A is the g-self-dual part of dA :

Ω1(adE) → Ω2(adE). (Indeed we need to use appropriate weighted Sobolev spaces, and

the definition of DA should be modified with the weight. But here we ignore these points.)

The equation d∗
Aa = 0 for a ∈ Ω1(adE) is the Coulomb gauge condition, and the equation

d
+g

A a = 0 is the linearization of the ASD equation F+g(A + a) = 0. Therefore we expect

that we can get an information on the local structure of M(n, g) from the study of the

operator DA. The most important point of the proof is to show the following three

properties of DA. (In other words, we need to choose an appropriate functional analysis

setup in order to establish these properties.)

(i) The kernel of DA is finite dimensional.

(ii) The image of DA is closed in (Ω0 ⊕ Ω+g)(adE).

(iii) The cokernel of DA is infinite dimensional.

Then the local model (i.e. the Kuranishi description) of M(n, g) around [A] is given by

the zero set of a map

f : KerDA → CokerDA.

(Rigorously speaking, the map f is defined only in a small neighborhood of the origin.)

From the conditions (i) and (iii), this is a map from the finite dimensional space to

the infinite dimensional one. Therefore (we can hope that) if we perturb the map f

appropriately, then the zero set disappear. The parameter g gives sufficient perturbation,

and we can prove that M(n, g) is empty for n ≥ 1 and generic g.

Organization of the paper: In Section 3.1, we review the basic facts on anti-self-

duality and conformal structure. In the above arguments we considered the moduli spaces

M(n, g) parametrized by Riemannian metrics g. But ASD equation depends only on

conformal structures, and hence technically it is better to parameterize ASD moduli

spaces by conformal structures. Section 3.1 is a preparation for this consideration. In

Section 3.2, we prepare some estimates relating to the Laplacians.

In Section 4 we study the decay behavior of instantons over X, and show that they decay

“sufficiently fast”. This is important in showing that all instantons can be “captured” by

the functional analysis setups constructed in Sections 6 and 8.3.

Section 5 is a preparation for Section 6. In Section 6 we study a (modified version of)

operator DA = −d∗
A + d+d

A and establish the above mentioned properties (i), (ii), (iii).

In Section 7 we show that there is no non-flat reducible instantons on E. Here the

condition b−(Y ) = 0 is essentially used.
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Sections 8.1 and 8.2 are preparations for the perturbation argument in Section 8.3. In

Section 8.3 we establish a transversality by using Freed-Uhlenbeck’s metric perturbation.

Here we use the results established in Sections 6 and 7. Combining the results in Sections

4 and 8.3, we prove Theorem 2.1 in Section 9.

3. Some preliminaries

3.1. Anti-self-duality and conformal structure. In this subsection we review some

well-known facts on the relation between anti-self-duality and conformal structure. Spe-

cialists of the gauge theory don’t need to read the details of the arguments in this subsec-

tion. The references are Donaldson-Sullivan [6, pp. 185-187] and Donaldson-Kronheimer

[5, pp. 7-8].

We start with a linear algebra. Let V be an oriented real 4-dimensional linear space.

We fix an inner product g0 on V . The orientation and inner product give a natural

isomorphism Λ4(V ) ∼= R, and we define a quadratic form Q : Λ2(V ) × Λ2(V ) → R by

Q(ξ, η) := ξ ∧ η ∈ Λ4(V ) ∼= R. The dimensions of maximal positive subspaces and

maximal negative subspaces with respect to Q are both 3

Let g and g′ be two inner products on V . They are said to be conformally equivalent

if there is c > 0 such that g2 = cg1. Let Conf(V ) be the set of all conformal equivalence

classes of inner-products on V . Conf(V ) naturally admits a smooth manifold structure.

We define Conf ′(V ) as the set of all 3-dimensional subspaces U ⊂ Λ2(V ) satisfying

Q(ω, ω) < 0 for all non-zero ω ∈ U . Conf ′(V ) depends on the orientation of V , but

it is independent of the choice of the inner product g0. Conf ′(V ) is an open set of the

Grassmann manifold Gr3(Λ
2(V )), and hence it is also a smooth manifold.

Let Λ+ be the space of ω ∈ Λ2(V ) which is self-dual with respect to g0, and Λ− be the

space of ω ∈ Λ2(V ) which is anti-self-dual with respect to g0. We define Conf ′′(V ) be the

set of linear map µ : Λ− → Λ+ satisfying |µ| < 1 (i.e. |µ(ω)| < |ω| for all non-zero ω ∈ Λ−

where the norm | · | is defined by g0). This is also a smooth manifold as an open set of

Hom(Λ−, Λ+). The map

Conf ′′(V ) → Conf ′(V ), µ 7→ {ω + µ(ω)|ω ∈ Λ−}

is a diffeomorphism. Hence Conf ′(V ) is contractible. (In particular it is connected.)

Lemma 3.1. The map

(4) Conf(V ) → Conf ′(V ), [g] 7→ {ω ∈ Λ2(V )|ω is anti-self-dual with respect to g},

is a diffeomorphism.

Proof. For A ∈ SL(V ) and [g] ∈ Conf(V ) we define [Ag] ∈ Conf(V ) by setting (Ag)(u, v) :=

g(A−1u,A−1v). In this manner SL(V ) transitively acts on Conf(V ), and the isotropy sub-

group at [g0] is equal to SO(V ) = SO(V, g0). Hence Conf(V ) ∼= SL(V )/SO(V ). On the

other hand, the Lie group SO(Λ2(V ), Q) (∼= SO(3, 3)) naturally acts on Conf ′(V ). This
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action is transitive. (For U ∈ Conf ′(V ) set U ′ := {ω ∈ Λ2(V )|Q(ω, η) = 0 (∀η ∈ U)}.
Λ2(V ) = U ⊕ U ′. Q is negative definite on U and positive definite on U ′. By choosing

orthonormal bases on U and U ′ with respect to Q, we can construct A ∈ SO(Λ2(V ), Q)

satisfying A(Λ−) = U .)

Let SO(Λ2(V ), Q)0 be the identity component of SO(Λ2(V ), Q). Since Conf ′(V ) is

connected, SO(Λ2(V ), Q)0 also transitively acts on Conf ′(V ). The isotropy group of

this action at Λ− ∈ Conf ′(V ) is equal to SO(Λ+) × SO(Λ−). (It is easy to see that

if A ∈ SO(Λ2(V ), Q)0 fixes Λ− then it also fixes Λ+. Hence A ∈ O(Λ+) × O(Λ−).

Since Conf ′(V ) is contractible, the isotropy subgroup must be connected. Therefore A ∈
SO(Λ+) × SO(Λ−).) Thus Conf ′(V ) ∼= SO(Λ2(V ), Q)0/SO(Λ+) × SO(Λ−)

SL(V ) naturally acts on Λ2(V ), and it preserves the quadratic form Q. Hence we have a

homomorphism f : SL(V ) → SO(Λ2(V ), Q)0. A direct calculation shows that it induces

an isomorphism between their Lie algebras. Hence the homomorphism f : SL(V ) →
SO(Λ2(V ), Q)0 is a (surjective) covering map. f−1(SO(Λ+)×SO(Λ−)) is equal to SO(V ).

(It is easy to see that SO(V ) ⊂ f−1(SO(Λ+) × SO(Λ−)) and their dimensions are both

6. SL(V ) is connected and SL(V )/f−1(SO(Λ+)×SO(Λ−)) ∼= SO(Λ2(V ), Q)0/SO(Λ+)×
SO(Λ−) ∼= Conf ′(V ) is contractible. Hence f−1(SO(Λ+) × SO(Λ−)) must be connected.

Therefore it is equal to SO(V ).) Thus SL(V )/SO(V ) ∼= SO(Λ2(V ), Q)0/SO(Λ+) ×
SO(Λ−). This gives a diffeomorphism Conf(V ) ∼= Conf ′(V ), and this diffeomorphism

coincides with the above map (4). ¤

Let M be an oriented 4-manifold (not necessarily compact), and g0 be a smooth Rie-

mannian metric on M . Two Riemannian metrics g and g′ on M are said to be conformally

equivalent if there is a positive function φ : M → R satisfying g′ = φg. Let Conf(M) be

the set of all conformal equivalence classes of C∞-Riemannian metrics on M .

Let Λ+ and Λ− be the sub-bundles of Λ2 := Λ2(T ∗M) consisting of self-dual and anti-

self-dual 2-forms with respect to g0. For [g] ∈ Conf(M) we define a sub-bundle Λ−
g ⊂ Λ2 as

the set of anti-self-dual 2-forms with respect to g. There is a C∞-bundle map µg : Λ− → Λ+

such that |(µg)x| < 1 (x ∈ M) and that Λ−
g is equal to the graph {ω + µg(ω)|ω ∈ Λ−}.

Here |(µg)x| < 1 (x ∈ M) means that |µg(ω)| < |ω| for all non-zero ω ∈ Λ−. (| · | is the

norm defined by g0.) From the previous argument, we get the following result.

Corollary 3.2. The map

Conf(M) → {µ : Λ− → Λ+ : C∞-bundle map| |µx| < 1 (x ∈ M)}, [g] 7→ µg,

is bijective.

3.2. Eigenvalues of the Laplacians on differential forms over S3. We will some-

times need estimates relating to lower bounds on the eigenvalues of the Laplacians on S3.

Here the 3-sphere S3 is endowed with the Riemannian metric induced by the inclusion
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S3 = {x ∈ R4| x2
1 +x2

2 +x2
3 +x2

4 = 1} ⊂ R4. (R4 has the standard Euclidean metric.) The

formal adjoint of d : Ωi → Ωi+1 is denoted by d∗ : Ωi+1 → Ωi.

Lemma 3.3. The first non-zero eigenvalue of the Laplacian ∆ = d∗d acting on functions

over S3 is 3.

Proof. See Sakai [13, p. 272, Proposition 3.13]. ¤

Lemma 3.4. Let Ker(d∗) ⊂ Ω1 be the space of 1-forms a over S3 satisfying d∗a = 0.

Then the first eigenvalue of the Laplacian ∆ = d∗d + dd∗ acting on Ker(d∗) is 4.

Proof. See Donaldson-Kronheimer [5, p. 310, Lemma (7.3.4)]. ¤

As a corollary we get the following. (This is given in [5, p. 310, Lemma (7.3.4)].)

Corollary 3.5. (i) Let a be a smooth 1-form over S3 satisfying d∗a = 0. Then∫
S3

|a|2dvol ≤ 1

4

∫
S3

|da|2dvol.

(ii) For any smooth 1-form a on S3, we have∣∣∣∣∫
S3

a ∧ da

∣∣∣∣ ≤ 1

2

∫
S3

|da|2dvol.

Proof. (i)
∫
|da|2 =

∫
⟨a, ∆a⟩ ≥ 4

∫
|a|2.

(ii) There is a smooth function f on S3 such that b := a − df satisfies d∗b = 0. Then∣∣∫ a ∧ da
∣∣ =

∣∣∫ b ∧ db
∣∣ ≤ √∫

|b|2
√∫

|db|2 ≤ 1
2

∫
|db|2 = 1

2

∫
|da|2. ¤

4. Decay estimate of instantons

4.1. Classification of adapted connections. Let us go back to the situation of Section

2.1. Y is a simply connected, compact oriented 4-manifold, and X = Y ♯Z is the connected

sum of the infinite copies of Y indexed by Z. Since X is non-compact, every principal

SU(2)-bundle on it is isomorphic to the product bundle E = X × SU(2). Following

Donaldson [4, Definition 3.5], we make the following definition.

Definition 4.1. An adapted connection A on E is a connection on E which is flat outside

a compact set. (That is, there is a compact set L ⊂ X such that FA = 0 over X \L.) Two

adapted connections A1 and A2 on E are said to be equivalent as adapted connections

if there is a gauge transformation u : E → E such that u(A1) is equal to A2 outside a

compact set.

For m ∈ Z, let um : X → SU(2) be a smooth map such that (ρm)∗ : H3(X) →
H3(SU(2)) satisfies (ρm)∗([S

3]) = m[SU(2)]. (Here [S3] is the fundamental class of the

cross-section S3 ⊂ Y
(n)
T ∩Y

(n)
+ , and it is a generator of H3(X) ∼= Z. See Remark 4.2 below.)

This means that the restriction of um to the cross-section S3 ⊂ Y
(n)
T ∩ Y

(n)
+ becomes a

map of degree m from S3 to SU(2) (for every n ∈ Z).
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Remark 4.2. The cross-section S3 ⊂ Y
(n)
T ∩Y

(n)
+ is endowed with the orientation so that

the identification Y
(n)
T ∩ Y

(n)
+ = (1, T − 1) × S3 is orientation preserving. (The interval

(1, T − 1) has the standard orientation.) The orientation on the Lie group SU(2) is

chosen as follows: Let θ ∈ Ω1 ⊗ su(2) be the left invariant 1-form (on SU(2)) valued in

the Lie algebra su(2) satisfying θ(X) = X for all X ∈ su(2) = T1SU(2). (In the standard

notation, we can write θ = g−1dg for g ∈ SU(2).) We choose the orientation on SU(2) so

that

(5)
1

8π2

∫
SU(2)

tr

(
θ ∧ dθ +

2

3
θ3

)
=

−1

24π2

∫
SU(2)

tr(θ3) = 1.

Since E is the product bundle, um becomes a gauge transformation of E. Let ρ be

the product flat connection on E = X × SU(2), and set ρm := u−1
m (ρ). Let A(m) be a

connection on E which is equal to ρ over q−1(−∞,−1) and equal to ρm over q−1(1, +∞).

A(m) is an adapted connection on E. For t > 1 we have

(6)
1

8π2

∫
X

tr(F (A(m))2) =
1

8π2

∫
q−1(t)

u∗
m

(
tr(θ ∧ dθ +

2

3
θ3)

)
= m.

Here we have used (5) and deg(um|q−1(t) : q−1(t) → SU(2)) = m.

Proposition 4.3. For m1 ̸= m2, A(m1) and A(m2) are not equivalent as adapted con-

nections. If A is an adapted connection on E, then A is equivalent to A(m) as an adapted

connection where

m =
1

8π2

∫
X

trF 2
A.

(An important point for us is that there are only countably many equivalence classes of

adapted connections.)

Proof. The first statement follows from the equation (6).

Let A be an adapted connection on E. There is M > 0 such that A is flat on

q−1(−∞,−M ] and q−1[M,∞). We choose M > 1 so that q−1(M) = S3 ⊂ Y
(n)
T ∩ Y

(n)
+

and q−1(−M) = S3 ⊂ Y
(−n)
T ∩Y

(−n)
− for some n > 0. Since q−1(−∞,−M ] and q−1[M,∞)

are simply connected, there are gauge transformations u on q−1(−∞,−M ] and u′ on

q−1[M,∞) such that u(A) = ρ and u′(A) = ρ. We can extend u all over X. Hence we can

suppose that u = 1 and that A is equal to ρ over q−1(−∞,−M ]. Set m := deg(u′|q−1(M) :

q−1(M) → SU(2)). The degree of the map (u−1
m u′)|q−1(M) : q−1(M) → SU(2) is zero.

Then there is a gauge transformation u′′ of E such that u′′ = u−1
m u′ on q−1[M, +∞) and

u′′ = 1 on q−1(−∞, M − 1). Then u′′(A) is equal to ρ over q−1(−∞,−M ] and equal to

u−1
m (ρ) over q−1[M, +∞). Hence u′′(A) is equal to A(m) outside a compact set. We have

m =
1

8π2

∫
X

trF (A(m))2 =
1

8π2

∫
X

trF 2
A.

¤



AN OPEN FOUR-MANIFOLD HAVING NO INSTANTON 9

4.2. Preliminaries for the decay estimate. We need the following. (This is a special

case of [9, Proposition 3.1, Remark 3.2].)

Proposition 4.4. Let Z be a simply-connected compact Riemannian 4-manifold with (or

without) boundary, and W ⊂ Z be a compact subset with W ∩ ∂Z = ∅. Then there are

positive numbers ε1(W,Z) and C1,k(W,Z) (k ≥ 0) satisfying the following: Let A be an

ASD connection on the product principal SU(2)-bundle over Z satisfying ||FA||L2(Z) ≤
ε1(W,Z). Then A can be represented by a connection matrix Ã over a neighborhood of W

satisfying ∣∣∣∣∣∣Ã∣∣∣∣∣∣
Ck(W )

≤ C1,k ||FA||L2(Z) ,

for all k ≥ 0.

Proof. See Fukaya [9, Proposition 3.1, Remark 3.2]. ¤

Lemma 4.5. Let L > 2. There exist positive numbers ε2 and C2,k (k ≥ 0) independent

of L satisfying the following. If A is an ASD connection on the product principal SU(2)-

bundle G over (0, L)× S3 satisfying ||FA||L2((0,L)×S3) ≤ ε2, then A can be represented by a

connection matrix Ã over a neighborhood of [1, L − 1] × S3 satisfying

(7) |∇kÃ(t, θ)| ≤ C2,k ||FA||L2((t−1,t+1)×S3) ,

for (t, θ) ∈ [1, L − 1] × S3 and k ≥ 0.

Proof. Proposition 4.4 implies the following. There exist positive numbers ε′2 and C ′
2,k

(k ≥ 0) such that if B is an ASD connection on the product principal SU(2)-bundle

over [0, 1]× S3 satisfying ||FB||L2([0,1]×S3) ≤ ε′2 then B can be represented by a connection

matrix B̃ over a neighborhood of [1/4, 3/4] × S3 satisfying

|∇kB̃(x)| ≤ C ′
2,k ||FB||L2([0,1]×S3) (x ∈ [1/4, 3/4] × S3, k ≥ 0).

Let ε2 be a small positive number with ε2 < ε′2. We will fix ε2 later. Suppose that A is

an ASD connection on the product principal SU(2)-bundle G over (0, L) × S3 satisfying

||FA||L2((0,L)×S3) ≤ ε2. For 2 ≤ n ≤ [4L − 4], set In := [n/4, n/4 + 1/2] and Jn :=

[n/4 − 1/4, n/4 + 3/4]. We have In ⊂ Jn. For each n, there is a local trivialization hn of

G over a neighborhood of In × S3 such that the connection matrix An := hn(A) satisfies

|∇kAn(x)| ≤ C ′
2,k ||FA||L2(Jn×S3) (x ∈ In × S3, k ≥ 0).

Set gn := hn+1h
−1
n : (In ∩ In+1) × S3 → SU(2). Then gn(An) = An+1 (i.e. dgn = gnAn −

An+1gn). In particular |dgn| ≤ 4C ′
2,0ε2. Fix a reference point x0 ∈ S3. By multiplying

some constant gauge transformations on hn’s, we can assume that gn(n/4 + 1/4, x0) = 1.

Then |gn−1| ≤ const·ε2 over (In∩In+1)×S3 where const is independent of L, n. Since the

exponential map exp : su(2) → SU(2) is locally diffeomorphic around 0 ∈ su(2), if ε2 is
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sufficiently small (but independent of L, n), we have un := (exp)−1gn : (In ∩ In+1)×S3 →
su(2). (Here we have fixed ε2 > 0.) Then gn = eun over (In ∩ In+1) × S3 with

|∇kun(x)| ≤ C ′′
2,k ||FA||L2((Jn∪Jn+1)×S3) (x ∈ (In ∩ In+1) × S3, k ≥ 0).

Let φ be a smooth function in R such that supp(dφ) ⊂ (1/4, 1/2), φ(t) = 0 for t ≤ 1/4

and φ = 1 for t ≥ 1/2. Set φn(t) := φ(t − n/4). (supp(dφn) ⊂ Interior(In ∩ In+1).) We

define a trivialization h of G over the union of (In ∩ In+1) × S3 (2 ≤ n ≤ [4L − 4]) by

setting h := eφnun ◦hn on (In∩In+1)×S3. Then h is smoothly defined over a neighborhood

of [1, L − 1] × S3, and the connection matrix Ã := h(A) satisfies (7). ¤

Let us go back to the given manifolds Y and YT = p−1(−T + 1, T − 1).

Lemma 4.6. Let T > 4. There exist positive numbers ε3 and C3,k (k ≥ 0) independent

of T satisfying the following. If A is an ASD connection on the product principal SU(2)-

bundle over YT satisfying ||FA||L2(YT ) ≤ ε3, then A can be represented by a connection

matrix Ã over YT−1 such that

|∇kÃ(x)| ≤ C3,k ||FA||L2(p−1(t−6,t+6)∩YT ) (t = p(x)),

for x ∈ YT−1 and k ≥ 0.

Proof. Set Z := p−1[−3, 3] and W := p−1[−5/2, 5/2] ⊂ Z. We apply Proposition 4.4 to

these Z and W : There is ε′3 > 0 (depending only on Z, W and hence independent of T )

such that if ||FA||L2(Z) ≤ ε′3 then A can be represented by a connection matrix A1 over a

neighborhood of W such that

|∇kA1(x)| ≤ constk ||FA||L2(Z) (x ∈ W, k ≥ 0).

On the other hand, by applying Lemma 4.5 to the tubes p−1(−T +1,−1) = (−T +1,−1)×
S3 and p−1(1, T −1) = (1, T −1)×S3, if ||FA||L2(YT ) ≤ ε2 (the positive constant introduced

in Lemma 4.5) then A can be represented by a connection matrix A2 over a neighborhood

of p−1[−T + 2,−2] ⊔ p−1[2, T − 2] = [−T + 2,−2] × S3 ⊔ [2, T − 2] × S3 such that

|∇kA2(t, θ)| ≤ C2,k ||FA||L2((t−1,t+1)×S3) ((t, θ) ∈ [−T +2,−2]×S3⊔[2, T −2]×S3, k ≥ 0).

Then by patching A1 and A2 over p−1(−5/2,−2) and p−1(2, 5/2) as in the proof of Lemma

4.5, we get the desired connection matrix Ã. ¤

4.3. Exponential decay. In this subsection we study a decay estimate of instantons on

the product principal SU(2)-bundle E = X × SU(2). The results in this section will be

used in Section 9. Our method is based on the arguments of Donaldson [4, Section 4.1]

and Donaldson-Kronheimer [5, Section 7.3]. In this subsection we always suppose T > 4.

Let g be a Riemannian metric on X which is equal to g0 (the Riemannian metric given

in Section 2.1) outside a compact set. Let A be a g-ASD connection on E satisfying∫
X

|FA|2gdvolg < ∞.
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For t ∈ R, set

J(t) :=

∫
q−1(t,+∞)

|FA|2gdvolg.

For t ≫ 1 we have J(t) =
∫

q−1(t,+∞)
|FA|2dvol where | · | and dvol are the norm and

volume form with respect to the periodic metric g0. Recall that for each integer n we

have q−1(nT + 1, (n + 1)T − 1) = Y
(n)
T ∩ Y

(n)
+ = (1, T − 1) × S3.

Lemma 4.7. There is n0(A) > 0 such that for n ≥ n0(A)

J ′(t) ≤ −2J(t) (nT + 2 ≤ t ≤ (n + 1)T − 2).

(The value −2 is not optimal.)

Proof. In this proof we always suppose nT + 2 ≤ t ≤ (n + 1)T − 2 and n ≫ 1. We have

J ′(t) = −
∫

q−1(t)

|FA|2dvol = −2 ||F (At)||2L2(S3) (At := A|q−1(t)).

Here we have used the fact |FA|2 = 2|F (At)|2. This is the consequence of the ASD

condition. From Lemma 4.5, we can assume that, for n ≫ 1, a connection matrix of A

over q−1[nT + 2, (n + 1)T − 2] is as small as we want with respect to the C1-norm (or

any other Ck-norm). In particular we have ||F (At)||L2 ≪ 1 for n ≫ 1. Then, by using

[5, Proposition 4.4.11], we can suppose that At is represented by a connection matrix

satisfying

(8) ||At||L2
1(S3) ≤ const ||F (At)||L2(S3) .

Then we can prove

Sublemma 4.8.

J(t) = −
∫

S3

tr(At ∧ dAt +
2

3
A3

t ) (=: −θ(At)).

Proof. For m > n ≫ 1 and mT + 2 ≤ s ≤ (m + 1)T − 2,

(9)

∫
q−1[t,s]

|FA|2dvol ≡ θ(As) − θ(At) mod 8π2Z.

We can suppose that the connection matrix As also satisfies (8). Then both of the left

and right hand sides of the above equation (9) are sufficiently small. Hence∫
q−1[t,s]

|FA|2dvol = θ(As) − θ(At).

We have θ(As) → 0 as m → +∞. Then we get the above result. ¤

From Corollary 3.5 (ii), ∣∣∣∣∫
S3

tr(At ∧ dAt)

∣∣∣∣ ≤ 1

2

∫
S3

|dAt|2.
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Since dAt = F (At) − A2
t , ||dAt||2L2(S3) ≤ ||F (At)||2L2 + 2 ||F (At)||L2 ||A2

t ||L2 + ||A2
t ||

2
L2 . We

have L2
1(S

3) ↪→ L6(S3). Hence ||A2
t ||L2 ≤ const ||At||2L2

1
≤ const ||F (At)||2L2 by (8). Hence

||dAt||2L2 ≤ (1 + const ||F (At)||L2) ||F (At)||2L2 . In a similar way, we have∣∣∣∣∫
S3

tr(A3
t )

∣∣∣∣ ≤ const ||At||3L3 ≤ const ||F (At)||3L2 .

Thus we have

J(t) = −θ(At) ≤
(

1

2
+ const ||F (At)||L2

)
||F (At)||2L2 .

Since J ′(t) = −2 ||F (At)||2L2 and ||F (At)||L2 ≪ 1, we have J(t) ≤ ||F (At)||2L2 = −1
2
J ′(t).

Hence J ′(t) ≤ −2J . ¤

Corollary 4.9. For t ≥ n0(A)T + 2,

J(t) ≤ constA,T · e−2(1−4/T )t.

Here constA,T is a positive constant depending on A and T .

Proof. First note that J(t) is monotone non-increasing. For nT + 2 ≤ t ≤ (n + 1)T − 2

(n ≥ n0(A) =: n0), we have J(t) ≤ e−2(t−nT−2)J(nT + 2) by Lemma 4.7.

Set an := J(nT + 2) (n ≥ n0). an+1 ≤ J((n + 1)T − 2) ≤ e−2(T−4)an. Hence an ≤
e−2(T−4)(n−n0)an0 .

For nT + 2 ≤ t ≤ (n + 1)T − 2, J(t) ≤ e−2(t−nT−2)an ≤ e−2(t−4n)e4+2n0T−8n0an0 . Since

t ≥ nT + 2, we have t − 4n ≥ (1 − 4/T )t + 8/T . Hence J(t) ≤ constA,T e−2(1−4/T )t.

For (n + 1)T − 2 < t < (n + 1)T + 2, J(t) ≤ J((n + 1)T − 2) ≤ const′A,T e−2(1−4/T )t. ¤

In the same way we can prove the following.

Lemma 4.10. For t ≫ 1 we have∫
q−1(−∞,−t)

|FA|2dvol ≤ constA,T · e−2(1−4/T )t.

Corollary 4.11. There exists an adapted connection A0 on E satisfying

|∇k
A0

(A(x) − A0(x))| ≤ constk,A,T · e−(1−4/T )|t| (t = q(x)),

for all integers k ≥ 0.

Proof. For |n| ≫ 1, we have ||FA||L2(Y
(n)
T )

≤ ε3. (ε3 is a positive constant introduced in

Lemma 4.6.) Then by Lemma 4.6, Corollary 4.9 and Lemma 4.10, A can be represented

by a connection matrix An on Y
(n)
T−1 (|n| ≫ 1) such that

|∇kAn(x)| ≤ constk,A,T · e−(1−4/T )|t| (x ∈ Y
(n)
T−1, t = q(x), k ≥ 0).

By patching these connection matrices over Y
(n)
T−1 ∩ Y

(n+1)
T−1 (|n| ≫ 1) as in the proof of

Lemma 4.5, A can be represented by a connection matrix Ã on {|t| ≫ 1} such that

|∇kÃ(x)| ≤ constk,A,T · e−(1−4/T )|t| (|t| ≫ 1, k ≥ 0).
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To be more precise, there are t0 ≫ 1 and a trivialization h : E|{|t|>t0} → {|t| > t0}×SU(2)

such that h(A) satisfies

|∇k
ρ(h(A) − ρ)| ≤ constk,A,T · e−(1−4/T )|t| (|t| > t0, k ≥ 0),

where ρ is the product connection. This means that

|∇k
h−1(ρ)(A − h−1(ρ))| ≤ constk,A,T · e−(1−4/T )|t| (|t| > t0, k ≥ 0).

Take a connection A0 on E which is equal to h−1(ρ) over {|t| ≥ t0 + 1}. Then A0 is an

adapted connection satisfying the desired property. ¤

5. Preliminaries for linear theory

In this section, we study differential operators over X. The results in this section will be

used in Section 6. All arguments in Sections 5.1 and 5.2 are essentially given in Donaldson

[4, Chapters 3 and 4].

5.1. Preliminary estimates over the tube. Let α be a real number with 0 < |α| < 1.

In this subsection we study some differential operators over R × S3. We denote t as the

parameter of the R-factor (i.e. the natural projection t : R × S3 → R). Let d∗ : Ω1
R×S3 →

Ω0
R×S3 be the formal adjoint of the derivative d : Ω0

R×S3 → Ω1
R×S3 over R × S3. We have

d∗ = − ∗ d∗ where ∗ is the Hodge star over R × S3. We define a differential operator

d∗,α : Ω1
R×S3 → Ω0

R×S3 by setting d∗,αb := e−2αtd∗(e2αtb) (b ∈ Ω1
R×S3). Then

d∗,αb = d∗b − 2α ∗ (dt ∧ ∗b).

If f ∈ Ω0
R×S3 and b ∈ Ω1

R×S3 have compact supports, then∫
R×S3

e2αt⟨df, b⟩dvol =

∫
R×S3

e2αt⟨f, d∗,αb⟩dvol.

Consider d+ := 1
2
(1 + ∗)d : Ω1

R×S3 → Ω+
R×S3 , and set Dα := −d∗,α + d+ : Ω1

R×S3 →
Ω0

R×S3 ⊕ Ω+
R×S3 .

Let Λi
S3 (i ≥ 0) be the bundle of i-forms over S3. Consider the pull-back of Λi

S3 by the

projection R × S3 → S3, and we also denote it as Λi
S3 for simplicity. We can identify the

bundle Λ1
R×S3 of 1-forms on R × S3 with the bundle Λ0

S3 ⊕ Λ1
S3 by

Λ0
S3 ⊕ Λ1

S3 ∋ (b0, β) ←→ b0dt + β ∈ Λ1
R×S3 .

We also naturally identify the bundle Λ0
R×S3 with Λ0

S3 . The bundle Λ+
R×S3 of self-dual

forms can be identified with the bundle Λ1
S3 by

Λ1
S3 ∋ β ←→ 1

2
(dt ∧ β + ∗3β) ∈ Λ+

R×S3 (∗3: the Hodge star on S3).

We define L : Γ(Λ0
S3 ⊕ Λ1

S3) → Γ(Λ0
S3 ⊕ Λ1

S3) by setting

L

(
b0

β

)
:=

(
0 −d∗

3

−d3 ∗3d3

)(
b0

β

)
,
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where d3 is the exterior derivative on S3 and d∗
3 = − ∗3 d3∗3. Let b = (b0, β) ∈ Γ(Λ0

S3 ⊕
Λ1

S3) = Ω1
R×S3 (i.e. b = b0dt + β). Then Dαb ∈ Ω0

R×S3 ⊕Ω1
R×S3 = Γ(Λ0

S3 ⊕Λ1
S3) is given by

Dαb =
∂

∂t

(
b0

β

)
+

(
L +

(
2α 0

0 0

))(
b0

β

)
.

For u ∈ Ωi
R×S3 (i ≥ 0), we define the Sobolev norm ||u||L2

k
(k ≥ 0) by

(10) ||u||2L2
k

:=
k∑

j=0

∫
R×S3

|∇ju|2dvol.

We define the weighted Sobolev norm ||u||L2,α
k

by

(11) ||u||L2,α
k

:=
∣∣∣∣eαtu

∣∣∣∣
L2

k

.

The map L2,α
k (R × S3, Λi

R×S3) ∋ u 7→ eαtu ∈ L2
k(R × S3, Λi

R×S3) is an isometry.

Dα becomes a bounded linear map from L2,α
k+1(R × S3, Λ1

R×S3) to L2,α
k (R × S3, Λ0

R×S3 ⊕
Λ+

R×S3). For b = b0dt + β ∈ Ω1
R×S3 as above, we have

(12) eαtDα(e−αtb) =
∂

∂t

(
b0

β

)
+

(
L +

(
α 0

0 −α

)) (
b0

β

)
.

Set

Lα := L +

(
α 0

0 −α

)
.

Recall that we have assumed 0 < |α| < 1.

Lemma 5.1. Consider Lα as an essentially self-adjoint elliptic differential operator acting

on Ω0
S3 ⊕ Ω1

S3 over S3. If λ is an eigenvalue of Lα, then |λ| ≥ |α|. Moreover if λ ̸= α,

then |λ| > 1.

Proof. We have

Ω0
S3 ⊕ Ω1

S3 = (Ω0
S3 ⊕ d3(Ω

0
S3)) ⊕ ker d∗

3,

where d∗
3 = − ∗3 d3∗3 : Ω1

S3 → Ω0
S3 . The subspaces Ω0

S3 ⊕ d3(Ω
0
S3) and ker d∗

3 are both

Lα-invariant.

For β ∈ ker d∗
3, Lα(0, β) = (0, ∗3d3β − αβ). Suppose that Lα(0, β) = λ(0, β) and β is

not zero. Since d∗
3β = 0 and H1(S3) = 0, we have d3β ̸= 0. Then ∗3d3β = (λ + α)β and

λ + α ̸= 0. Since we have (Corollary 3.5 (ii))∣∣∣∣∫
S3

β ∧ d3β

∣∣∣∣ ≤ 1

2

∫
S3

|d3β|2dvol

and (λ + α)β ∧ d3β = |d3β|2dvol, we have

2 ≤ |λ + α|.

Then |λ| ≥ 2 − |α| > 1 > |α|.
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For (f, d3g) ∈ Ω0
S3 ⊕ d3(Ω

0
S3) (f and g are smooth functions on S3),

Lα

(
f

d3g

)
=

(
αf − ∆3g

−d3f − αd3g

)
, (∆3 = d∗

3d3 is the Laplacian on functions over S3).

Suppose that Lα(f, d3g) = λ(f, d3g) and (f, d3g) is not zero. Then

∆3g = (α − λ)f, d3f = −(α + λ)d3g.

Case 1: Suppose α + λ = 0. Then f is a constant, and

0 =

∫
S3

∆3g dvol = 2α

∫
S3

fdvol.

Hence f ≡ 0. This implies ∆3g ≡ 0 and hence d3g ≡ 0. This is a contradiction.

Case 2: Suppose α + λ ̸= 0. Then ∆3f = (λ2 −α2)f . Since the first non-zero eigenvalue

of the Laplacian ∆3 is 3 (Lemma 3.3), λ2−α2 = 0 or λ2−α2 ≥ 3. Since λ ̸= −α, we have

λ = α or |λ| ≥
√

3 + α2 ≥
√

3.

¤

Lemma 5.2. For a ∈ L2,α
1 (R × S3, Λ1

R×S3), we have ||a||L2,α ≤
√

2|α|−1 ||Dαa||L2,α. More-

over ||a||L2,α
1

≤ constα ||Dαa||L2,α.

Proof. We can suppose that a is smooth and compact supported. Set b := eαta = b0dt+β

where (b0, β) ∈ Γ(R × S3, Λ0
S3 ⊕ Λ1

S3). Let {φλ}λ be a complete orthonormal basis of

L2(S3, Λ0
S3 ⊕ Λ1

S3) consisting of eigen-functions of Lα over S3 with Lαφλ = λφλ where λ

runs over all eigenvalues of Lα. From Lemma 5.1, we have |λ| ≥ |α|. Decompose (b0, β)

by {φλ} as

(b0(t, θ), β(t, θ)) =
∑

λ

cλ(t)φλ(θ).

Since a is compact supported, the functions cλ are also compact supported. (∂/∂t +

Lα)(b0, β) =
∑

λ(c
′
λ(t) + λcλ(t))φλ. If (∂/∂t + Lα)(b0, β) = (b1, γ), then eαtDα(e−αtb) =

(b1,
1
2
(dt ∧ γ + ∗3γ)). Hence |eαtDα(e−αtb)| =

√
|b1|2 + |γ|2/2 ≥ |(∂/∂t + Lα)(b0, β)|/

√
2.

Therefore ∫
R×S3

|eαtDα(e−αtb)|2dvol ≥ 1

2

∑
λ

∫ ∞

−∞
|c′λ + λcλ|2dt.

|c′λ + λcλ|2 = |c′λ|2 + λ(c2
λ)

′ + λ2c2
λ. Since |λ| ≥ |α| and the functions cλ are compact

supported, ∑
λ

∫ ∞

−∞
|c′λ + λcλ|2dt ≥ α2

∑
λ

∫ ∞

−∞
|cλ|2dt = α2 ||b||2L2 .

Then

||Dαa||L2,α =
∣∣∣∣eαtDα(e−αtb)

∣∣∣∣
L2 ≥

|α|√
2
||b||L2 =

|α|√
2
||a||L2,α .
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Since eαtDαe−αt = ∂
∂t

+ Lα is a translation invariant elliptic differential operator, for

every n ∈ Z we have

||b||2L2
1((n,n+1)×S3) ≤ constα

(
||b||2L2((n−1,n+2)×S3) +

∣∣∣∣eαtDα(e−αtb)
∣∣∣∣2

L2((n−1,n+2)×S3)

)
.

Here constα is independent of n. By summing up this estimate over n ∈ Z, we get

||b||L2
1(R×S3) ≤ constα

(
||b||L2(R×S3) +

∣∣∣∣eαtDα(e−αtb)
∣∣∣∣

L2(R×S3)

)
.

This shows ||a||L2,α
1

≤ constα(||a||L2,α + ||Dαa||L2,α) ≤ const′α ||Dαa||L2,α . ¤

Lemma 5.3. (i) Suppose α > 0. Let a be a smooth 1-form over the negative half tube

(−∞, 0) × S3 satisfying
∫

(−∞,0)×S3 e2αt|a|2dvol < +∞. Suppose Dαa = 0. Then

|a|, |∇a| ≤ consta,αe(1−α)t (t < −2).

(ii) Suppose α < 0. Let a be a smooth 1-form over the positive half tube (0, +∞) × S3

satisfying
∫
(0,+∞)×S3 e2αt|a|2dvol < +∞, and suppose Dαa = 0. Then

|a|, |∇a| ≤ consta,αe−(1+α)t (t > 2).

Proof. We give the proof of the case (i) (α > 0). The case (ii) can be proved in the

same way. Set b := eαta = b0dt + β where (b0, β) ∈ Γ(R × S3, Λ0
S3 ⊕ Λ1

S3). Then

eαtDα(e−αtb) = 0. Choose {φλ}λ as in the proof of Lemma 5.2. Decompose (b0, β) by {φλ}
as (b0(t, θ), β(t, θ)) =

∑
λ cλ(t)φλ(θ). Since (∂/∂t+Lα)(b0, β) =

∑
(c′λ(t)+λcλ(t))φλ = 0,

we have cλ(t) = dλe
−λt where dλ is a constant. For t < 0,∫

{t}×S3

|b|2dvol3 =
∑

λ

|cλ|2 =
∑

λ

|dλ|2e−2λt ≥ |dλ|2e−2λt.

Since the L2-norm of b over (−∞, 0) × S3 is finite, we have dλ = 0 for λ ≥ 0. Set

B := e2

∫
{−1}×S3

|b|2dvol3 = e2
∑
λ<0

|dλe
λ|2 < ∞.

From Lemma 5.1, negative eigenvalues λ satisfy λ < −1. Hence for t < −1∫
{t}×S3

|b|2dvol3 =
∑
λ<0

|dλe
λ|2e−2λ(t+1) ≤

∑
λ<0

|dλe
λ|2e2(t+1) = Be2t.

Then for t < −2, ∫
(t−1,t+1)×S3

|b|2dvol ≤ B

∫ t+1

t−1

e2sds ≤ Be2(t+1).

Since eαtDα(e−αtb) = 0 (and this is a translation invariant equation), the elliptic regularity

implies

|b|, |∇b| ≤ constα

√
B · et (t < −2).

(Indeed we can choose constα independent of α. But it is unimportant for us.) Since

a = e−αtb, we have

|a|, |∇a| ≤ const′a,αe(1−α)t (t < −2).
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¤

5.2. Preliminary results over Ŷ . Recall that Y is a simply connected closed oriented

4-manifold and that Ŷ = Y \ {x1, x2}. Ŷ has cylinderical ends, and we have p : Ŷ → R.

For a section of u of Λi (i ≥ 0) over Ŷ , we define the Sobolev norm ||u||L2
k

(k ≥ 0) as

in (10). We define the weighted Sobolev norm by ||u||L2,α
k

:= ||eαtu||L2,α where t = p(x)

(x ∈ Ŷ ). Recall 0 < |α| < 1.

For a 1-form a over Ŷ we set Dαa := −d∗,αa + d+a = −e−2αtd∗(e2αta) + d+a.

Lemma 5.4. Let a be a 1-form over Ŷ with ||a||L2,α
1

< ∞. If Dαa = 0, then a = 0.

Proof. We give the proof of the case α > 0. The case α < 0 can be proved in the same

way. We divide the proof into three steps.

Step 1: We will show that the above assumption implies da = 0. First we want to

show a, da ∈ L2. We have∫
t>0

|a|2dvol ≤
∫

t>0

e2αt|a|2dvol < ∞,

∫
t>0

|da|2dvol ≤
∫

t>0

e2αt|da|2dvol < ∞.

Lemma 5.3 implies that the L2-norms of a and da over Y− = (−∞,−1) × S3 are finite.

Hence a, da ∈ L2. For R > 1, let βR be a smooth function over Ŷ such that βR = 1 over

p−1(−R, R), βR = 0 over p−1(−∞,−2R) ∪ p−1(2R,∞) and |dβR| ≤ 2/R.

0 =

∫
d(βRa ∧ da) =

∫
βRda ∧ da +

∫
dβR ∧ a ∧ da.

Since d+a = 0, we have da ∧ da = −|da|2dvol and hence∫
βR|da|2dvol =

∫
dβR ∧ a ∧ da ≤ 2

R
||a||L2 ||da||L2 .

Let R → +∞. Then
∫
|da|2dvol = 0. Hence da = 0.

Step 2: We have

|a| ≤ consta,αe−αt (t > 1), |a| ≤ consta,αe(1−α)t (t < −1).

The latter estimate comes from Lemma 5.3. The former one comes from the elliptic

regularity and the following estimate: For t > 1,∫
p−1(t,+∞)

|a|2dvol ≤ e−2αt

∫
p−1(t,+∞)

e2αp(x)|a(x)|2dvol(x) ≤ ||a||2L2,α e−2αt.

Step 3: From Step 1 and H1
dR(Ŷ ) = 0, there is a smooth function f on Ŷ satisfying

a = df . From Step 2, the limits f(+∞) := limt→+∞ f(t, θ) and f(−∞) := limt→−∞ f(t, θ)

exist and independent of θ ∈ S3. In particular f is bounded. We can assume f(+∞) = 0.

Then for t > 1

f(t, θ) = −
∫ ∞

t

∂f

∂s
(s, θ)ds.
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Since |∂f/∂s| ≤ |a| ≤ consta,αe−αt for t > 1 (Step 2),

(13) |f | ≤ consta,α · e−αt (t > 1).

Let βR be the cut-off function used in Step 1. Since e−2αtd∗(e2αta) = d∗,αa = 0,

0 =

∫
e2αt⟨βRf, d∗,αa⟩dvol =

∫
e2αt⟨d(βRf), a⟩dvol

=

∫
e2αtf⟨dβR, a⟩dvol +

∫
e2αtβR|a|2dvol.

Hence

(14)

∫
e2αtβR|a|2dvol ≤ 2

R

∫
supp(dβR)

e2αt|f ||a|dvol.

We have supp(dβR) ⊂ p−1(−2R,−R) ∪ p−1(R, 2R). Since |f | and |a| are bounded,∫
p−1(−2R,−R)

e2αt|f ||a|dvol → 0 (R → +∞).

On the other hand, by the above (13)

2

R

∫
p−1(R,2R)

e2αt|f ||a|dvol ≤ consta,α

R

∫
p−1(R,2R)

eαt|a|dvol

≤ consta,α

R

√
vol((R, 2R) × S3)

√∫
p−1(R,2R)

e2αt|a|2dvol ≤ consta,α ||a||L2,α /
√

R.

This goes to 0 as R → +∞. From (14),∫
e2αt|a|2 = 0.

Thus a = 0. ¤

Lemma 5.5. For a ∈ L2,α
1 (Ŷ , Λ1),

||a||L2,α
1 (Ŷ ) ≤ constα ||Dαa||L2,α(Ŷ ) .

Proof. Set U := p−1(−2, 2) ⊂ Ŷ . By using Lemma 5.2, for all a ∈ L2,α
1 (Ŷ )

(15) ||a||L2,α
1 (Ŷ ) ≤ constα(||a||L2(U) + ||Dαa||L2,α(Ŷ )).

We want to show ||a||L2(U) ≤ constα ||Dαa||L2,α(Ŷ ). Suppose on the contrary there exist a

sequence an (n ≥ 1) in L2,α
1 (Ŷ , Λ1) such that

1 = ||an||L2(U) > n ||Dαan||L2,α(Ŷ ) .

From the above (15), {an} is bounded in L2,α
1 (Ŷ ). Hence, if we take a subsequence (also

denoted by an), the sequence an weakly converges to some a in L2,α
1 (Ŷ ). We have Dαa = 0.

Hence Lemma 5.4 implies a = 0. By Rellich’s lemma, an strongly converges to 0 in L2(U).

(Note that U is pre-compact.) This contradicts ||an||L2(U) = 1. ¤
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5.3. Preliminary results over X = Y ♯Z. Recall that X = Y ♯Z has the periodic metric

g0 which is compatible with the given metric h over every Y (n) (n ∈ Z), and that g0

depends on the parameter T > 2. We define the Sobolev norm ||·||L2
k

over X as in (10)

by using the metric g0 and its Levi-Civita connection. We define the weighted Sobolev

norm by ||u||L2,α
k

:= ||eαtu||L2,α
k

where t = q(x) (x ∈ X). For a 1-form a over X we set

Dαa := −d∗,αa + d+a = −e−2αtd∗(e2αta) + d+a.

Lemma 5.6. There exists Tα > 2 such that if T ≥ Tα then for any a ∈ L2,α
1 (X, Λ1) we

have

||a||L2,α
1 (X) ≤ constα ||Dαa||L2,α(X) .

The important point is that Tα depends only on α.

Proof. Let β(n) be a smooth function on X such that 0 ≤ β(n) ≤ 1, suppβ(n) ⊂ Y
(n)
T =

q−1((n−1)T +1, (n+1)T−1), β(n) = 1 over q−1((n−1/2)T, (n+1/2)T ) and |dβ(n)| ≤ 3/T .

Since t = q(x) = p(n)(x) + nT over Y
(n)
T , by applying Lemma 5.5 to β(n)a, we get∣∣∣∣β(n)a

∣∣∣∣
L2,α

1 (X)
= eαnT

∣∣∣∣∣∣eαp(n)(x)β(n)a
∣∣∣∣∣∣

L2
1(Y

(n)
T )

≤ constα · eαnT
∣∣∣∣∣∣eαp(n)(x)Dα(β(n)a)

∣∣∣∣∣∣
L2(Y

(n)
T )

= constα

∣∣∣∣Dα(β(n)a)
∣∣∣∣

L2,α(X)

≤ constα

T
||a||

L2,α(Y
(n)
T )

+ constα ||Dαa||
L2,α(Y

(n)
T )

.

Then

||a||2L2,α
1 (X) ≤

∑
n∈Z

∣∣∣∣β(n)a
∣∣∣∣2

L2,α
1 (X)

≤ constα

T 2

∑
n∈Z

||a||2
L2,α(Y

(n)
T )

+ constα

∑
n∈Z

||Dαa||2
L2,α(Y

(n)
T )

≤ constα

T 2
||a||2L2,α(X) + constα ||Dαa||2L2,α(X) .

If T ≫ 1, then

||a||2L2,α
1 (X) ≤ constα ||Dαa||2L2,α(X) .

¤

For a 1-form a on X we set Da := −d∗a + d+a. Its formal adjoint D∗ is given by

D∗(u, ξ) = −du+ d∗ξ = −du−∗dξ for (u, ξ) ∈ Ω0 ⊕Ω+. We consider D as an unbounded

operator from L2(X, Λ1) to L2(X, Λ0 ⊕ Λ+).

The additive Lie group Z naturally acts on X = Y ♯Z. Set Y + := X/Z. We have

b1(Y
+) = 1 and b+(Y +) = b+(Y ). The operator D is preserved by the Z-action, and its
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quotient is equal to the operator −d∗ + d+ : Ω1
Y + → Ω0

Y + ⊕ Ω+
Y + on Y +. Then we can

apply Atiyah’s Γ-index theorem (Atiyah [3], Roe [12, Chapter 13]) to D and get

indZD = ind(−d∗ + d+ : Ω1
Y + → Ω0

Y + ⊕ Ω+
Y +) = −1 + b1(Y

+) − b+(Y +) = −b+(Y ).

Here indZD is the Γ-index of D (Γ = Z).

The above implies that if b+(Y ) ≥ 1 then KerD∗ ⊂ L2(X, Λ0 ⊕ Λ+) is infinite di-

mensional. Suppose ρ = (u, ξ) ∈ L2(X, Λ0 ⊕ Λ+) satisfies D∗ρ = −du + d∗ξ = 0 as a

distribution. By the elliptic regularity, ρ is smooth, and for each n ∈ Z

||ρ||L2
1(q−1(−(n−1/2)T,(n+1/2)T )) ≤ constT ||ρ||

L2(Y
(n)
T )

.

Here constT is independent of n ∈ Z. Hence ||ρ||L2
1(X) ≤ constT ||ρ||L2(X) < +∞, and

ρ ∈ L2
1(X). In particular u, ξ ∈ L2

1(X) and hence ⟨du, d∗ξ⟩L2 = 0. Then

0 = ⟨D∗ρ, du⟩L2 = − ||du||L2 .

So du = 0. This means that u is constant. But u ∈ L2. Hence u = 0. Therefore d∗ξ = 0.

Thus we get the following result.

Lemma 5.7. Suppose b+(Y ) ≥ 1. The space of ξ ∈ L2
1(X, Λ+) satisfying d∗ξ = 0 is

infinite dimensional.

Take and fix a smooth function | · |′ : R → R satisfying |t|′ = |t| for |t| ≥ 1. For

0 < |α| < 1, set W (x) := eα|q(x)|′ for x ∈ X. Hence W is a positive smooth function on X

satisfying W (x) = eα|q(x)| for |q(x)| ≥ 1. For a section η of Λi (i ≥ 0) we set ||η||L2,W
k (X) :=

||Wη||L2
k(X). For a self-dual form η over X, we set d∗,W η := −W−2 ∗ d(W 2η). If a ∈ Ω1

X

and η ∈ Ω+
X have compact supports, then

∫
X

W 2⟨da, η⟩dvol =
∫

X
W 2⟨a, d∗,W η⟩dvol.

Lemma 5.8. Suppose b+(Y ) ≥ 1 and α > 0. Then the space of η ∈ L2,W
1 (X, Λ+)

satisfying d∗,W η = 0 is infinite dimensional. Moreover it is closed in L2,W (X, Λ+).

Proof. Suppose that ξ ∈ L2
1(X, Λ+) satisfies d∗ξ = 0. Set η := W−2ξ. Then d∗,W η = 0 and

||η||L2,W
1 (X) = ||W−1ξ||L2

1(X) < ∞ from α > 0. Thus Lemma 5.7 implies the first statement.

In order to prove the closedness of Ker(d∗,W ) ⊂ L2,W
1 (X, Λ+) in L2,W (X, Λ+), it is

enough to show that if η ∈ L2,W (X, Λ+) satisfies d∗,W η = 0 (as a distribution) then

η ∈ L2,W
1 (X, Λ+). η is smooth by the (local) elliptic regularity. The differential operator

d∗,W on Y
(n)
T (n > 0) are naturally isomorphic to each other. The same statement also

hold for n < 0. Hence, by the elliptic regularity,

||Wη||L2
1(q−1((n−1/2)T,(n+1/2)T )) ≤ constT,α · (||Wη||

L2(Y
(n)
T )

+
∣∣∣∣d∗,W (Wη)

∣∣∣∣
L2(Y

(n)
T )

)

≤ constT,α ||Wη||
L2(Y

(n)
T )

.

Here constT,α are independent of n ∈ Z. Thus ||η||L2,W
1 (X) ≤ constT,α ||η||L2,W (X) < ∞. ¤
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Lemma 5.9. Suppose b+(Y ) ≥ 1 and α > 0. For any ε > 0 and any pre-compact open

set U ⊂ X, there is η ∈ L2,W
1 (X, Λ+) such that η = 0 over U and∣∣∣∣d∗,W η

∣∣∣∣
L2,W (X)

< ε ||η||L2,W (X) .

Proof. First we prove the following statement: For any ε > 0 and any pre-compact open

set U ⊂ X there exists η ∈ L2,W
1 (X, Λ+) satisfying d∗,W η = 0 and ||η||L2,W (U) < ε ||η||L2,W (X).

Suppose that this statement does not hold. Then there are ε > 0 and a pre-compact open

set U ⊂ X such that all η ∈ Ker(d∗,W ) ⊂ L2,W
1 (X, Λ+) satisfies

||η||L2,W (U) ≥ ε ||η||L2,W (X) .

Ker(d∗,W ) is an infinite dimensional closed subspace in L2,W (X, Λ+) (Lemma 5.8). Let

{ηn}n≥1 be a complete orthonormal basis of Ker(d∗,W ) with respect to the inner product

of L2,W (X, Λ+). They satisfies

||ηn||L2,W (U) ≥ ε.

The sequence ηn weakly converges to 0 in L2,W (X), and hence ηn|U weakly converges to

0 in L2,W (U). Then, by the elliptic regularity and Rellich’s lemma, a subsequence of ηn|U
strongly converges to 0 in L2,W (U). But this contradicts ||ηn||L2,W (U) ≥ ε.

Next take a pre-compact open set V ⊂ X satisfying the following: U ⊂ V and there

exists a smooth function β such that 0 ≤ β ≤ 1, β = 0 on U , β = 1 on X \V , supp(dβ) ⊂
V , and |dβ| ≤ ε. By the previous argument there exists η ∈ L2,W

1 (X, Λ+) satisfying

d∗,W η = 0 and ||η||L2,W (V ) < (1/3) ||η||L2,W (X). Then ||βη||L2,W (X) > (2/3) ||η||L2,W (X). Since

d∗,W (βη) = − ∗ (dβ ∧ η) is supported in V ,∣∣∣∣d∗,W (βη)
∣∣∣∣

L2,W (X)
≤ ε ||η||L2,W (V ) < (ε/3) ||η||L2,W (X) < (ε/2) ||βη||L2,W (X) .

Hence βη ∈ L2,W
1 (X, Λ+) satisfies βη = 0 over U and

∣∣∣∣d∗,W (βη)
∣∣∣∣

L2,W (X)
< ε ||βη||L2,W (X).

¤

6. Linear theory

In this section we always assume 0 < α < 1 and

(16) T ≥ max(Tα, T−α).

Here Tα and T−α are the positive constants introduced in Lemma 5.6. (Recall that they

depend only on α.) The purpose of this section is to prove several basic properties of the

linear operators DA and D′
A introduced below. The constants introduced in this section

often depend on several parameters (α, T , A0, A, µ). But we usually don’t explicitly

write their dependence on parameters unless it causes a confusion.
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6.1. The image of DA is closed. Let E = X × SU(2) be the product principal SU(2)-

bundle over X, and A0 be an adapted connection on E (see Definition 4.1). Let W =

eα|q(x)|′ be the weight function on X introduced in Section 5.3. For a section u of Λi(adE)

(i ≥ 0), we define the Sobolev norm ||u||L2
k

by using the periodic metric g0 and the

connection A0. We define the weighted Sobolev norm by ||u||L2,W
k

:= ||Wu||L2
k
.

Let Λ+ and Λ− be the bundles of self-dual and anti-self-dual forms (with respect to the

metric g0) on X, and µ : Λ− → Λ+ be a smooth bundle map. We assume |µx| < 1 for all

x ∈ X (i.e. |µ(ω)| < |ω| for all non-zero ω ∈ Λ− where the norm | · | is defined by the

metric g0). Moreover we assume that µ is compact supported. Hence µ corresponds to

a conformal structure on X which coincides with [g0] outside a compact set (see Section

3.1).

We define A = AA0 as the space of L2,W
3 -connections (with respect to A0) on E:

A := {A0 + a| a ∈ L2,W
3 (X, Λ1(adE))}.

(Recall that the connection A0 is used in the definition of the weighted Sobolev space

L2,W
3 (X, Λ1(adE)).) We will need the following multiplication rule: If k ≥ 3 and k ≥ l,

then L2,W
k × L2,W

l → L2,W
l , i.e. for f1 ∈ L2,W

k and f2 ∈ L2,W
l (k ≥ 3, k ≥ l ≥ 0)

(17) ||f1f2||L2,W
l

≤ const ||f1||L2,W
k

||f2||L2,W
l

.

In particular, for A = A0 + a ∈ A, we have F (A) = F (A0) + dA0a + a ∧ a ∈ L2,W
2 . For

b ∈ Ω1(adE) over X, we set

DAb := −d∗,W
A b + (d+

A − µd−
A)b = −W−2d∗

A(W 2b) + (d+
A − µd−

A)b.

Here d∗
Ab = −∗dA(∗b) and d±

A = 1
2
(1±∗)dA. (∗ is the Hodge star defined by the metric g0.)

DA is an elliptic differential operator since we assume |µx| < 1 for all x ∈ X. Rigorously

speaking, we should use the notation Dµ,W
A instead of DA. But here we use the above

notation for simplicity. We have

(18) DAb = DA0b + ∗[a ∧ ∗b] + [a ∧ b]+ − µ([a ∧ b]−).

From this and the above (17), the map DA : L2,W
k+1(X, Λ1(adE)) → L2,W

k (X, (Λ0⊕Λ+)(adE))

(0 ≤ k ≤ 3) becomes a bounded linear map.

Let r be a positive integer such that q−1(−rT, rT ) contains the supports of F (A0) and

µ. Set U := q−1(−(r + 5/2)T, (r + 5/2)T ).

Lemma 6.1. (i) For any b ∈ L2,w
k+1(X, Λ1(adE)) (k ≥ 0) we have

(19) ||b||L2,W
k+1(X) ≤ const (||b||L2(U) + ||DA0b||L2,W

k (X)).

Here const is a positive constant independent of b. (We will usually omit this kind of

obvious remark below.)
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(ii) For any A = A0 + a ∈ A, there is a pre-compact open set UA ⊂ X (which depends on

µ, α, T,A0, A) such that for any b ∈ L2,W
k+1(X, Λ1(adE)) (0 ≤ k ≤ 3)

(20) ||b||L2,W
k+1(X) ≤ const (||b||L2(UA) + ||DAb||L2,W

k (X)).

Proof. (i) We first consider the case k = 0. From Lemma 5.6 and the condition (16), for

any b1 ∈ L2,α
1 (X, Λ1) and b2 ∈ L2,−α

1 (X, Λ1)

||b1||L2,α
1

≤ const ||Dαb1||L2,α ,(21)

||b2||L2,−α
1

≤ const
∣∣∣∣D−αb2

∣∣∣∣
L2,−α .(22)

Let b ∈ L2,W
1 (X, Λ1(adE)). Let β be a smooth function on X such that β = 0 on

t ≤ (r + 1/2)T and β = 1 on t ≥ (r + 1)T (t = q(x)). Recall that supp(µ) and supp(FA0)

are contained in q−1(−rT, rT ) and that W = eαt for t ≥ 1. By applying the above (21)

to βa, we get

(23) ||βb||L2,W
1 (X) ≤ const ||DA0(βb)||L2,W (X) ≤ const (||b||L2(U) + ||DA0b||L2,W (X)).

Let β′ be a smooth function on X such that β′ = 0 on t ≥ −(r + 1/2)T and β′ = 1 on

t ≤ −(r + 1)T . By applying (22) to β′b, we get

(24) ||β′b||L2,W
1 (X) ≤ const ||DA0(β

′b)||L2,W (X) ≤ const (||b||L2(U) + ||DA0b||L2,W (X)).

From the elliptic regularity,

||b||L2,W
1 (q−1(−(r+3/2)T,(r+3/2)T )) ≤ const (||b||L2(U) + ||DA0b||L2(U)).

This estimate and the above (23) and (24) imply

(25) ||b||L2,W
1 (X) ≤ const (||b||L2(U) + ||DA0b||L2,W (X)).

Next let b ∈ L2,W
k+1(X, Λ1(adE)). From the elliptic regularity, for any n ∈ Z

||b||L2,W
k+1(q−1((n−1/2)T, (n+1/2)T )) = ||Wb||L2

k+1(q−1((n−1/2)T, (n+1/2)T ))

≤ const (||Wb||
L2

k(Y
(n)
T )

+ ||DA0(Wb)||
L2

k(Y
(n)
T )

)

≤ const (||b||
L2,W

k (Y
(n)
T )

+ ||DA0b||L2,W
k (Y

(n)
T )

).

The above two “const” are independent of n ∈ Z. Therefore

(26) ||b||L2,W
k+1(X) ≤ const (||b||L2,W

k (X) + ||DA0b||L2,W
k (X)).

By using this estimate and the above (25), we can inductively prove (19).

(ii) From (i)

(27) ||b||L2,W
k+1(X) ≤ C(||b||L2(U) + ||DA0b||L2,W

k (X)),
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where the positive constant C depends on µ, α, T,A0. Take ε > 0 so that Cε < 1. From

(17), (18) and a ∈ L2,W
3 , there is a positive integer rA > r (UA := q−1(−(rA +5/2)T, (rA +

5/2)T ) ⊃ U) such that

||DAb − DA0b||L2,W
k (X\UA) ≤ ε ||b||L2,W

k (X) (0 ≤ k ≤ 3).

On the other hand

||DAb − DA0b||L2,W
k (UA) ≤ const ||b||L2

k(UA) .

Therefore, from (27),

||b||L2,W
k+1(X) ≤ const (||b||L2

k(UA) + ||DAb||L2,W
k (X)) + Cε ||b||L2,W

k (X) .

Since Cε < 1, we get

||b||L2,W
k+1(X) ≤ const (||b||L2

k(UA) + ||DAb||L2,W
k (X)).

By the induction on k, we get (20). ¤

Proposition 6.2. Let A ∈ A. If b ∈ L2,W (X, Λ1(adE)) satisfies DAb = 0 as a distribu-

tion, then b ∈ L2,W
4 (X). Let 0 ≤ k ≤ 3. The kernel of the map DA : L2,W

k+1(X, Λ1(adE)) →
L2,W

k (X, (Λ0 ⊕Λ+)(adE)) is of finite dimension, and the image DA(L2,W
k+1(X, Λ1(adE))) is

closed in L2,W
k (X, (Λ0 ⊕ Λ+)(adE)).

Proof. The first regularity statement (DAb = 0 ⇒ b ∈ L2,W
4 ) follows from Lemma 6.1 (ii).

Let KerDA be the space of b ∈ L2,W
4 (X, Λ1(adE)) satisfying DAb = 0. For any b ∈ ker DA,

||b||L2,W
4 (X) ≤ const ||b||L2(UA) by Lemma 6.1 (ii). Here UA is a pre-compact open set. Then

the standard argument using Rellich’s lemma shows the finite dimensionality of kerDA.

Sublemma 6.3. If b ∈ L2,W
k+1(X, Λ1(adE)) (0 ≤ k ≤ 3) is L2,W -orthogonal to KerDA (i.e.∫

X
W 2⟨b, β⟩dvol = 0 for all β ∈ KerDA) then

||b||L2,W
k+1(X) ≤ const ||DAb||L2,W

k (X) .

Proof. It is enough to prove ||b||L2(UA) ≤ const ||DAb||L2,W (X). Since UA is pre-compact, this

follows from the standard argument using Lemma 6.1 (ii) and Rellich’s lemma. ¤

Let H ⊂ L2,W
k+1(X, Λ1(adE)) be the L2,W -orthogonal complement of kerDA. Then Sub-

lemma 6.3 shows that image(DA) = DA(H) is a closed subspace in L2,W
k (X, Λ1(adE)). ¤

6.2. The kernel of D′
A is infinite dimensional. For µ : Λ− → Λ+ we define µ∗ : Λ+ →

Λ− by

µ(ξ) ∧ η = ξ ∧ µ∗(η) (ξ ∈ Λ−, η ∈ Λ+).

Let A = A0 + a ∈ A. For ω ∈ Ω2(adE), we set d∗,W
A ω = −W−2 ∗ dA(∗W 2ω). If

b ∈ Ω1(adE) and ω ∈ Ω2(adE) have compact supports, then
∫

X
W 2⟨dAb, ω⟩dvol =∫

X
W 2⟨b, d∗,W

A ω⟩dvol. For ρ = (u, η) ∈ Ω0(adE) ⊕ Ω+(adE), we set

D′
Aρ := −dAu + d∗,W

A (1 + µ∗)η = −dAu − W−2 ∗ dA(W 2(1 − µ∗)η).



AN OPEN FOUR-MANIFOLD HAVING NO INSTANTON 25

D′
A is an elliptic differential operator. If b ∈ Ω1(adE) and ρ ∈ Ω0(adE) ⊕ Ω+(adE) have

compact supports, then
∫

X
W 2⟨DAb, ρ⟩dvol =

∫
X

W 2⟨b,D′
Aρ⟩dvol. We have

(28) D′
A(u, η) = D′

A0
(u, η) − [a, u] − ∗[a ∧ (1 − µ∗)η].

From the multiplication rule (17), D′
A defines a bounded linear map D′

A : L2,W
k+1(X, (Λ0 ⊕

Λ+)(adE)) → L2,W
k (X, Λ1(adE)) for 0 ≤ k ≤ 3.

Lemma 6.4. For any ρ ∈ L2,W
k+1(X, (Λ0 ⊕ Λ+)(adE)) (0 ≤ k ≤ 3),

||ρ||L2,W
k+1(X) ≤ const (||ρ||L2,W (X) + ||D′

Aρ||L2,W
k (X)).

Hence if ρ ∈ L2,W (X) satisfies D′
Aρ = 0 as a distribution, then ρ ∈ L2,W

4 (X).

Proof. In the same way as in the proof of the estimate (26), we get

||ρ||L2,W
k+1(X) ≤ const (||ρ||L2,W (X) +

∣∣∣∣D′
A0

ρ
∣∣∣∣

L2,W
k (X)

).

By using the multiplication rule (17), we get the desired estimate. The regularity state-

ment easily follows from the above estimate. ¤

Let KerDA be the space of b ∈ L2,W
4 (X, Λ1(adE)) satisfying DAb = 0, and KerD′

A be

the space of ρ ∈ L2,W
4 (X, (Λ0 ⊕ Λ+)(adE)) satisfying D′

Aρ = 0.

Lemma 6.5. Let A ∈ A and 0 ≤ k ≤ 3.

(i) We have the following L2,W -orthogonal decomposition:

L2,W
k (X, (Λ0 ⊕ Λ+)(adE)) = DA(L2,W

k+1(X, Λ1(adE))) ⊕ KerD′
A.

(ii) If ρ ∈ L2,W
k+1(X, (Λ0 ⊕ Λ+)(adE)) is L2,W -orthogonal to the space KerD′

A, then

||ρ||L2,W
k+1(X) ≤ const ||D′

Aρ||L2,W
k (X) .

Hence D′
A(L2,W

k+1(X, (Λ0 ⊕ Λ+)(adE))) is a closed subspace in L2,W
k (X, Λ1(adE)).

(iii) We have the following L2,W -orthogonal decomposition:

L2,W
k (X, Λ1(adE)) = D′

A(L2,W
k+1(X, (Λ0 ⊕ Λ+)(adE))) ⊕ KerDA.

Proof. (i) KerD′
A is closed in L2,W . From Proposition 6.2, DA(L2,W

k+1) is closed in L2,W
k ,

and it is L2,W -orthogonal to KerD′
A. If ρ ∈ L2,W ((Λ0 ⊕ Λ+)(adE)) is L2,W -orthogonal to

the space DA(L2,W
1 ), then D′

Aρ = 0 as a distribution. Hence L2,W = DA(L2,W
1 ) ⊕ KerD′

A.

By this decomposition, for ρ ∈ L2,W
k ((Λ0⊕Λ+)(adE)), there are b ∈ L2,W

1 and ρ′ ∈ KerD′
A

satisfying ρ = DAb + ρ′. By Lemma 6.4, ρ′ ∈ L2,W
4 and hence DAb = ρ− ρ′ ∈ L2,W

k . Then

by Lemma 6.1 (ii), b ∈ L2,W
k+1. This shows L2,W

k = DA(L2,W
k+1) ⊕ KerD′

A.

(ii) By (i), there is b ∈ L2,W
k+1(X, Λ1(adE)) satisfying ρ = DAb. We can choose b so that

it is L2,W -orthogonal to KerDA and that ||b||L2,W ≤ const ||DAb||L2,W = const ||ρ||L2,W (by

Sublemma 6.3). Then

||ρ||2L2,W = ⟨ρ,DAb⟩L2,W = ⟨D′
Aρ, b⟩L2,W ≤ ||D′

Aρ||L2,W ||b||L2,W ≤ const ||D′
Aρ||L2,W ||ρ||L2,W .
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Thus ||ρ||L2,W ≤ const ||D′
Aρ||L2,W . Then by using Lemma 6.4, we get the desired estimate.

(iii) D′
A(L2,W

k+1) is L2,W -orthogonal to KerDA. If b ∈ L2,W (X, Λ1(adE)) is L2,W -orthogonal

to the space D′
A(L2,W

1 ), then DAb = 0 as a distribution. Hence L2,W = D′
A(L2,W

1 )⊕KerDA.

From this result, for any b ∈ L2,W
k (X, Λ1(adE)), there are ρ ∈ L2,W

1 (X, (Λ0 ⊕ Λ+)(adE))

and β ∈ KerDA satisfying b = D′
Aρ + β. From Lemma 6.2, β ∈ L2,W

4 . Thus D′
Aρ ∈ L2,W

k ,

and hence (Lemma 6.4) ρ ∈ L2,W
k+1. ¤

Lemma 6.6. Let 0 ≤ k ≤ 3, and A ∈ A be a µ-ASD connection (i.e. F+
A = µ(F−

A )). Let

Kerd∗,W
A ∩L2,W

k be the space of b ∈ L2,W
k (X, Λ1(adE)) satisfying d∗,W

A b = W−2d∗
A(W 2b) = 0

as a distribution. Then the following map is isomorphic:

(29) L2,W
k+1(X, Λ0(adE)) ⊕ (Kerd∗,W

A ∩ L2,W
k ) → L2,W

k (X, Λ1(adE)), (u, b) 7→ −dAu + b.

Proof. The above (29) is a bounded linear map. If (u, b) ∈ L2,W
k+1 ⊕ (Kerd∗,W

A ∩ L2,W
k )

satisfies −dAu + b = 0, then ||b||2L2,W = ⟨b, dAu⟩L2,W = 0 by d∗,W
A b = 0 Hence b = dAu = 0.

dAu = 0 implies that |u| is constant. But u ∈ L2,W . Hence u = 0. Therefore the map

(29) is injective.

Let b ∈ L2,W
k (X, Λ1(adE)). By Lemma 6.5 (iii), there exists (u, η) ∈ L2,W

k+1(X, (Λ0 ⊕
Λ+)(adE)) and β ∈ KerDA satisfying

b = D′
A(u, η) + β = −dAu + d∗,W

A (1 + µ∗)η + β.

Since DAβ = 0, we have d∗,W
A β = 0. Since A is µ-ASD, we have d∗,W

A d∗,W
A (1 + µ∗)η = 0.

Thus d∗,W
A (d∗,W

A (1 + µ∗)η + β) = 0. This argument shows that the map (29) is surjective

and hence isomorphic. ¤

Proposition 6.7. Suppose b+(Y ) ≥ 1. For any A = A0 + a ∈ A, the space KerD′
A ⊂

L2,W
4 (X, (Λ0 ⊕ Λ+)(adE)) is infinite dimensional.

Proof. Suppose that KerD′
A is finite dimensional. Then there is a pre-compact open set

V ⊂ X such that for any non-zero ρ ∈ KerD′
A we have ρ|V ̸≡ 0. Then

||ρ||L2,W (X) ≤ const ||ρ||L2(V ) (ρ ∈ KerD′
A).

We want to prove the following: There exists a positive constant C depending on µ, α, T, A0, A

such that for any ρ ∈ L2,W
1 (X, (Λ0 ⊕ Λ+)(adE))

(30) ||ρ||L2,W (X) ≤ C(||ρ||L2(V ) + ||D′
Aρ||L2,W (X)).

Let ρ ∈ L2,W
1 (X, (Λ0 ⊕ Λ+)(adE)), and ρ = ρ0 + ρ1 be a decomposition such that ρ0 ∈

KerD′
A and that ρ1 ∈ L2,W

1 (X) is L2,W -orthogonal to KerD′
A. Then

||ρ||L2,W (X) ≤ ||ρ0||L2,W (X) + ||ρ1||L2,W (X) ≤ const ||ρ0||L2(V ) + ||ρ1||L2,W (X) ,

≤ const(||ρ||L2(V ) + ||ρ1||L2(V )) + ||ρ1||L2,W (X)

≤ const ||ρ||L2(V ) + (1 + const) ||ρ1||L2,W (X) .

(31)
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From Lemma 6.5 (ii)

||ρ1||L2,W (X) ≤ const ||D′
Aρ1||L2,W (X) = const ||D′

Aρ||L2,W (X) .

From this and the above (31), we get (30).

Take ε > 0 satisfying 2εC < 1 (C is a constant in (30)). For this ε, we can choose a

positive integer R such that V ′ := q−1(−(R + 1/2)T, (R + 1/2)T ) contains V ∪ supp(µ)∪
supp(FA0) and that for any ρ ∈ (Ω0 ⊕ Ω+)(adE) we have (see (28))

|D′
A0

ρ(x) − D′
Aρ(x)| ≤ ε|ρ(x)| (x ∈ X \ V ′).

From Lemma 5.9, there is η ∈ L2,W
1 (X, Λ+(adE)) such that η = 0 over V ′ and

∣∣∣∣D′
A0

η
∣∣∣∣

L2,W (X)
<

ε ||η||L2,W (X). (Here D′
A0

η := D′
A0

(0, η).) Then ||D′
Aη||L2,W (X) < 2ε ||η||L2,W (X). But the

above (30) implies

||η||L2,W (X) ≤ C ||D′
Aη||L2,W (X) < 2Cε ||η||L2,W (X) .

Since we choose 2Cε < 1, this is a contradiction. ¤

Let Ker(d∗,W
A (1+µ∗)) be the space of η ∈ L2,W (X, Λ+(adE)) satisfying d∗,W

A (1+µ∗)η = 0

as a distribution. If η ∈ Ker(d∗,W
A (1 + µ∗)), then D′

A(0, η) = 0. Hence η ∈ L2,W
4 (X) by

Lemma 6.4. The space Ker(d∗,W
A (1 + µ∗)) is closed in L2,W (X, Λ+(adE)), and hence it is

closed in L2,W
k (X, Λ+(adE)) for all 0 ≤ k ≤ 4. The following proposition is the conclusion

of this section.

Proposition 6.8. Suppose that A ∈ A is a µ-ASD connection.

(i) Let (u, η) ∈ L2,W (X, (Λ0 ⊕Λ+)(adE)). We have D′
A(u, η) = 0 if and only if u = 0 and

d∗,W
A (1 + µ∗)η = 0. Hence KerD′

A = Ker(d∗,W
A (1 + µ∗)). Moreover if b+(Y ) ≥ 1 then the

space Ker(d∗,W
A (1 + µ∗)) is infinite dimensional.

(ii) Let 0 ≤ k ≤ 3. Let Kerd∗,W
A ∩ L2,W

k+1 be the space of b ∈ L2,W
k+1(X, Λ1(adE)) satisfying

d∗,W
A b = 0. Then the space (d+

A − µd−
A)(Kerd∗,W

A ∩ L2,W
k+1) is closed in L2,W

k (X, Λ+(adE)),

and we have the following L2,W -orthogonal decomposition:

(32) L2,W
k (X, Λ+(adE)) = Ker(d∗,W

A (1 + µ∗)) ⊕ (d+
A − µd−

A)(Kerd∗,W
A ∩ L2,W

k+1).

Proof. (i) Suppose D′
A(u, η) = −dAu + d∗,W

A (1 + µ∗)η = 0. Then (u, η) ∈ L2,W
4 (X) by

Lemma 6.4. Since A is µ-ASD, dAu and d∗,W
A (1 + µ∗)η are L2,W -orthogonal to each

other. Hence dAu = d∗,W
A (1 + µ∗)η = 0. Then u = 0 and d∗,W

A (1 + µ∗)η = 0. Therefore

KerD′
A = Ker(d∗,W

A (1 + µ∗)). If b+(Y ) ≥ 1, then Ker(d∗,W
A (1 + µ∗)) = KerD′

A is infinite

dimensional by Proposition 6.7.

(ii) By Lemma 6.5 (i), η ∈ L2,W
k (X, Λ+(adE)) is L2,W -orthogonal to Ker(d∗,W

A (1 + µ∗))

if and only if there exists b ∈ L2,W
k+1(X, Λ1(adE)) satisfying (0, η) = DAb (i.e. d∗,W

A b =

0 and (d+
A − µd−

A)b = η). This shows that (d+
A − µd−

A)(Kerd∗,W
A ∩ L2,W

k+1) is closed in

L2,W
k (X, Λ+(adE)) and that we have the decomposition (32) (the factors of the decompo-

sition are L2,W -orthogonal to each other). ¤
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7. Non-existence of reducible instantons

Lemma 7.1. Let I ⊂ R be an open interval. Let ω be a smooth anti-self-dual 2-form on

I×S3 satisfying dω = 0. Then there exists a smooth 1-form a on I×S3 satisfying da = ω

and ||a||L2(I×S3) ≤ (1/
√

8) ||ω||L2(I×S3).

Proof. Since ω is ASD, it can be written as:

ω = dt ∧ ϕ − ∗3ϕ,

where ϕ ∈ Γ(I × S3, Λ1
S3) (cf. Section 5.1). Then dω = 0 is equivalent to

∂ϕ

∂t
= − ∗3 d3ϕ, d∗

3ϕ = 0.

Let Ker(d∗
3) ⊂ Ω1

S3 be the space of co-closed 1-forms in S3, and consider the operator

∗3d3 : Ker(d∗
3) → Ker(d∗

3). This is an isomorphism by H1
dR(S3) = 0, and its inverse is

given by ∗3d3∆
−1
3 : Ker(d∗

3) → Ker(d∗
3). We set a := − ∗3 d3∆

−1
3 ϕ ∈ Γ(I × S3, Λ1

S3). a

satisfies d∗
3a = 0 and ∗3d3a = −ϕ. Then

∗3d3

(
∂a

∂t

)
= −∂ϕ

∂t
= ∗3d3ϕ.

Since ∂a/∂t and ϕ are both contained in Ker(d∗
3), we have ∂a/∂t = ϕ. Then we have

da = ω. Moreover (Corollary 3.5 (i))∫
{t}×S3

|ϕ|2dvol3 =

∫
{t}×S3

|d3a|2dvol3 ≥ 4

∫
{t}×S3

|a|2dvol3.

Since |ω|2 = 2|ϕ|2, we get ||ω||L2(I×S3) ≥
√

8 ||a||L2(I×S3). ¤

Let µ : Λ− → Λ+ be a compact-supported smooth bundle map satisfying |µx| < 1 for

all x ∈ X. A 2-form ω on X is said to be µ-ASD if it satisfies ω+ = µ(ω−) where ω+ and

ω− are the self-dual and anti-self-dual parts of ω with respect to the periodic metric g0.

ω is µ-ASD if and only if ω is ASD with respect to the conformal structure corresponding

to µ. (See Corollary 3.2.)

Proposition 7.2. Suppose b−(Y ) = 0. If ω is a smooth µ-ASD 2-form on X satisfying

dω = 0 and ||ω||L2(X) < ∞, then ω = 0. (Indeed, if ω ∈ L2(X, Λ2) is µ-ASD and satisfies

dω = 0 as a distribution, then ω is smooth by the elliptic regularity. Hence the assumption

of the smoothness of ω can be weakened.)

Proof. Suppose ω ̸= 0. We can assume ||ω||L2(X) = 1. We have
∫

X
ω ∧ ω =

∫
X

(|µ(ω−)|2 −
|ω−|2)dvol < 0. So we can take δ > 0 so that

∫
X

ω ∧ ω < −δ. Let ε > 0 be a positive

number satisfying

(33) (2 + ε)ε ≤ δ/2.
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Let N > 0 be a large integer such that U := q−1(−NT, NT ) satisfies U ⊃ supp(µ) and

(34)
2T − 3

T − 2
||ω||L2(X\U) ≤ ε.

(Recall T > 2.) Set V := q−1(−(N + 1)T + 1,−NT − 1) ⊔ q−1(NT + 1, (N + 1)T − 1).

V is isometric to the disjoint union of the two copies of (1, T − 1) × S3, and we have

V ⊂ X \ U . From Lemma 7.1, there exists a 1-form a on V satisfying da = ω and

||a||L2(V ) ≤ (1/
√

8) ||ω||L2(V ). Let β be a smooth function on X such that 0 ≤ β ≤ 1,

supp(dβ) ⊂ V , β = 0 over |t| ≥ (N+1)T−1, β = 1 over |t| ≤ NT +1 and |dβ| ≤ 2/(T−2).

(Here t = q(x).) We define a compact-supported 2-form ω′ by

ω′ :=


ω on |t| ≤ NT + 1

d(βa) on V

0 on |t| ≥ (N + 1)T − 1.

ω′ is a closed 2-form (dω′ = 0).

||d(βa)||L2(V ) ≤
2

T − 2
||a||L2(V ) + ||ω||L2(V ) ≤

1

T − 2
||ω||L2(V ) + ||ω||L2(V ) ≤

T − 1

T − 2
||ω||L2(V ) .

Then, by (34), ||ω′ − ω||L2(X) ≤
2T−3
T−2

||ω||L2(X\U) ≤ ε and ||ω′||L2(X) ≤ 1 + ε.∣∣∣∣∫
X

ω ∧ ω −
∫

X

ω′ ∧ ω′
∣∣∣∣ ≤ (||ω||L2(X) + ||ω′||L2(X)) ||ω − ω′||L2(X) ≤ (2 + ε)ε ≤ δ/2.

Here we have used (33). Since we have
∫

X
ω ∧ ω < −δ,∫

X

ω′ ∧ ω′ ≤ −δ/2.

On the other hand, since ω′ is closed and compact-supported (supp(ω′) ⊂ q−1(−(N +

1)T + 1, (N + 1)T − 1)), ω′ can be considered as a closed 2-form defined on Y ♯(2N+1) (the

connected sum of the (2N + 1)-copies of Y ). Since b−(Y ) = 0, the intersection form of

Y ♯(2N+1) is positive definite. Hence

0 ≤
∫

Y ♯(2N+1)

ω′ ∧ ω′ =

∫
X

ω′ ∧ ω′ ≤ −δ/2.

Here δ is positive. This is a contradiction. ¤

Recall that E = X × SU(2) is the product principal SU(2)-bundle over X.

Corollary 7.3. Suppose b−(Y ) = 0. If A is a reducible µ-ASD connection on E satisfying∫
X

|FA|2dvol < +∞,

then A is flat.
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8. Moduli theory

8.1. Sard-Smale’s theorem. In this subsection we review a variant of Sard-Smale’s

theorem [14] which will be used later. Let M1, M2, M3 be Banach manifolds. We assume

that they are all second countable. Let f : M1 × M2 → M3 be a C∞-map. Let (x0, y0) ∈
M1 × M2 and set z0 := f(x0, y0) ∈ M3. Suppose that the following two conditions hold.

(i) The derivative df(x0,y0) : Tx0M1 ⊕ Ty0M2 → Tz0M3 is surjective.

(ii) The partial derivative d1f(x0,y0) : Tx0M1 → Tz0M3 with respect to M1-direction is a

Fredholm operator with dim Ker(d1f(x0,y0)) < dim Coker(d1f(x0,y0)).

Under these conditions we want to prove the following proposition. (Recall that a

subset of a topological space is said to be of first category if it is a countable union of

nowhere-dense subsets.)

Proposition 8.1. There exists an open neighborhood U ×U ′ ⊂ M1 ×M2 of (x0, y0) such

that the set {y ∈ U ′| ∃x ∈ U : f(x, y) = z0} is of first category in M2.

I believe that this is a standard result. But for the completeness of the argument we

will give its brief proof below.

Lemma 8.2. There is a bounded linear map Q : Tz0M3 → Tx0M1 ⊕ Ty0M2 which is a

right inverse of df(x0,y0), i.e. df(x0,y0) ◦ Q = 1.

Proof. Set D := d1f(x0,y0) : Tx0M1 → Tz0M3. Since D is Fredholm, we have decomposi-

tions: Tx0M1 = KerD ⊕ V and Tz0M3 = ImD ⊕ W where V and W are closed subspaces

and moreover W is finite dimensional. The restriction D|V : V → ImD is an isomor-

phism. Since df(x0,y0) is surjective and W is finite dimensional, there is a bound linear

map T : W → Tx0M1 ⊕ Ty0M2 satisfying df(x0,y0) ◦ T = 1. Then the map

Q : Tz0M3 = ImD ⊕ W → Tx0M1 ⊕ Ty0M2, (u, v) 7→ (D|V )−1(u) + T (v),

gives a right inverse of df(x0,y0). ¤

By the implicit function theorem, there is an open neighborhood U ×U ′ ⊂ M1 ×M2 of

(x0, y0) such that

M := {(x, y) ∈ U × U ′| f(x, y) = z0}
is a smooth submanifold of M1 × M2, and that for any (x, y) ∈ U × U ′ the derivative

df(x,y) : TxM1 ⊕ TyM2 → Tf(x,y)M3 is surjective. Let π : M → M2 be the natural

projection.

The set of Fredholm operators is open in the space of bounded operators, and the index

is locally constant on it. Hence we can choose U and U ′ so small that for any (x, y) ∈
U ×U ′ the map d1f(x,y) : TxM1 → Tf(x,y)M3 is Fredholm and satisfies dim Ker(d1f(x,y)) <

dim Coker(d1f(x,y)). For (x, y) ∈ M we have

T(x,y)M = {(u, v) ∈ TxM1 ⊕ TyM2| d1f(x,y)u + d2f(x,y)v = 0}.
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Then it is easy to see that π : M → M2 is a Fredholm map with Ker(dπ(x,y)) ∼=
Ker(d1f(x,y)) and Coker(dπ(x,y)) ∼= Coker(d1f(x,y)) for (x, y) ∈ M . (The maps Ker(d1f(x,y)) ∋
u 7→ (u, 0) ∈ Ker(dπ(x,y)) and Coker(dπ(x,y)) ∋ [v] 7→ [d2f(x,y)(v)] ∈ Coker(d1f(x,y)) give

isomorphisms.) In particular Index(dπ(x,y)) < 0 for (x, y) ∈ M . Then a point y ∈ M2 is

regular for π if and only if π−1(y) is empty. We apply Sard-Smale’s theorem to the map

π and conclude that π(M) is of first category in M2. This proves Proposition 8.1.

8.2. Review of Floer’s function space. Here we review a function space introduced

by Floer [7]. Let τ⃗ = (τ0, τ1, τ2, · · · ) be a sequence of positive real numbers indexed by

Z≥0. (We will choose a special τ⃗ below.) Let C∞(Rn) be the set of all C∞-functions in Rn.

(We will need only the case n = 4.) For f ∈ C∞(Rn) we set |∇kf(x)| := max|α|=k |∂αf(x)|
(k ≥ 0) where α = (α1, · · · , αn) ∈ Zn

≥0 and |α| := α1 + · · ·+ αn. We define the norm ||f ||τ⃗
by

||f ||τ⃗ :=
∑
k≥0

τk sup
x∈Rn

|∇kf(x)|.

We define C τ⃗ (Rn) as the set of all f ∈ C∞(Rn) satisfying ||f ||τ⃗ < ∞. (C τ⃗ (Rn), ||·||τ⃗ ) becomes

a Banach space. For an open set U ⊂ Rn we define C τ⃗
0 (U) as the space of all f ∈ C τ⃗

0 (Rn)

satisfying f(x) = 0 for all x ∈ Rn \ U . C τ⃗
0 (U) is a closed subspace in C τ⃗ (Rn).

Lemma 8.3. For any bounded open set U ⊂ Rn, C τ⃗
0 (U) is separable.

Proof. Let C0(Rn) be the Banach space of all continuous functions f in Rn which vanish

at infinity (i.e. for any ε > 0 there is a compact set K ⊂ Rn such that |f(x)| ≤ ε for all

x ∈ Rn \K). Let B be the set of all sequences f⃗ = (fα)α∈Zn
≥0

with fα ∈ C0(Rn) satisfying∣∣∣∣∣∣f⃗ ∣∣∣∣∣∣
B

:=
∑
k≥0

τk max
|α|=k

||fα||C0(Rn) < ∞, (||fα||C0(Rn) := sup
x∈Rn

|fα(x)|).

(B, ||·||B) is a Banach space. Since C0(Rn) is separable, B is also separable. The map

C τ⃗
0 (U) → B, f 7→ (∂αf)α∈Zn

≥0
,

is an isometric embedding. (Note that ∂αf vanishes at infinity because f = 0 outside U

and U is bounded.) Hence C τ⃗
0 (U) is separable. ¤

Let β : R → R be a C∞-function satisfying β(x) = 0 for x ≤ 1/3 and β(x) = 1 for

x ≥ 2/3. We define positive numbers ak (k ≥ 0) by setting

ak := max
x∈R

|β(k)(x)| + ak−1 (a−1 := 0).

Here β(k) is the k-th derivative of β. We set τk := (an
kkk)−1 (k ≥ 1) and τ0 := 1.

For 0 < δ < L, we define a C∞-function βδ,L : R → R by

βδ,L(x) :=

β(x+L
δ

) (x ≤ 0)

β(−x+L
δ

) (x ≥ 0).
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βδ,L approximates the characteristic function of the interval [−L,L] as δ → 0. We have

(35) |β(k)
δ,L(x)| ≤ δ−kak (k ≥ 0).

Note that the right-hand-side is independent of L. For y ∈ Rn and 0 < δ < L we set

fy,δ,L(x) :=
n∏

i=1

βδ,L(xi − yi).

fy,δ,L is supported in the open cube Ky,L := (y1 −L, y1 + L)× · · · × (yn −L, yn + L), and

limδ→0 fy,δ,L = 1Ky,L
(the characteristic function of Ky,L) in Lr(Rn) for 1 ≤ r < ∞.

Lemma 8.4. fy,δ,L is contained in C τ⃗
0 (Ky,L).

Proof. For α = (α1, · · · , αn), ∂αfy,δ,L(x) =
∏n

i=1 β
(αi)
δ,L (xi − yi). By using (35),

|∂αfy,δ,L(x)| ≤
n∏

i=1

(δ−αiaαi
) ≤ δ−|α|an

|α|.

Hence |∇kfy,δ,L(x)| = max|α|=k |∂αfy,δ,L(x)| ≤ δ−kan
k . Therefore∑

k≥0

τk sup
x∈Rn

|∇kfy,δ,L(x)| ≤ 1 +
∑
k≥1

(an
kkk)−1δ−kan

k = 1 +
∑
k≥1

(kδ)−k < ∞.

Thus ||fy,δ,L||τ⃗ < ∞. ¤

Lemma 8.5. For any open set U ⊂ Rn and 1 ≤ r < ∞, the space C τ⃗
0 (U) is dense in

Lr(U).

Proof. It is enough to prove that for any ε > 0 and any measurable set E ⊂ U with

vol(E) < ∞ there exists f ∈ C τ⃗
0 (U) satisfying ||f − 1E||Lr(Rn) < ε.

There is an open set V ⊂ U satisfying E ⊂ V and vol(V \ E) < (ε/4)r. By Vitali’s

covering theorem, there are open cubes Ki = Kyi,Li
⊂ V (i = 1, 2, · · · , N) such that

Ki ∩ Kj = ∅ (i ̸= j) and vol(E \
⊔N

i=1 Ki) < (ε/4)r. Then∣∣∣∣∣
∣∣∣∣∣1E −

N∑
i=1

1Ki

∣∣∣∣∣
∣∣∣∣∣
Lr

≤

(
vol(E \

N⊔
i=1

Ki) + vol(V \ E)

)1/r

≤ ε/2.

From Lemma 8.4, there are fi ∈ C τ⃗
0 (Ki) ⊂ C τ⃗

0 (U) (i = 1, · · · , N) satisfying ||1Ki
− fi||Lr <

ε/2i+1. Then ∣∣∣∣∣
∣∣∣∣∣1E −

N∑
i=1

fi

∣∣∣∣∣
∣∣∣∣∣
Lr

≤

∣∣∣∣∣
∣∣∣∣∣1E −

N∑
i=1

1Ki

∣∣∣∣∣
∣∣∣∣∣
Lr

+
N∑

i=1

||1Ki
− fi||Lr < ε.

¤

Let us go back to our infinite connected sum space X = Y ♯Z. Take two non-empty pre-

compact open sets U and V in X such that U ⊂ V and V is diffeomorphic to R4. We fix a

diffeomorphism between V and R4 (i.e. a coordinate chart on V ). Moreover we fix bundle

trivializations of Λ+ and Λ− over V . Here Λ+ and Λ− are the vector bundles of self-dual
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and anti-self-dual 2-forms with respect to g0. Then a bundle map µ : Λ−|V → Λ+|V over

V can be identified with a matrix-valued function in R4 by using the coordinate chart

on V and the bundle trivializations of Λ+|V and Λ−|V . So we can consider its norm

||µ||τ⃗ . We define a function space C τ⃗
0 (U, Hom(Λ−, Λ+)) as the set of all C∞-bundle maps

µ : Λ−|V → Λ+|V satisfying ||µ||τ⃗ < ∞ and µx = 0 for all x ∈ V \ U . From Lemmas 8.3

and 8.5, we get the following.

Lemma 8.6. The Banach space C τ⃗
0 (U, Hom(Λ−, Λ+)) is separable, and it is dense in

Lr(U, Hom(Λ−, Λ+)) (1 ≤ r < ∞).

Since µ ∈ C τ⃗
0 (U, Hom(Λ−, Λ+)) vanishes outside of U and U ⊂ V , µ can be smoothly ex-

tended all over X by zero. By this extension, we consider that all µ ∈ C τ⃗
0 (U, Hom(Λ−, Λ+))

are defined over X.

8.3. Metric perturbation. Recall that X = Y ♯Z is the infinite connected sum space

with the periodic metric g0 and the weight function W = eα|q(x)|′ , and that E = X×SU(2)

is the product principal SU(2)-bundle on X. In this subsection we suppose that 0 < α < 1

and the condition (16) in Section 6 holds. Therefore we can use the results proved in

Section 6.

Let A0 be an adapted connection on E. We define A = AA0 as the set of connections

A = A0 + a with a ∈ L2,W
3 (X, Λ1(adE)) (Section 6.1). Note that the definition of the

Sobolev space L2,W
3 (X, Λ1(adE)) uses the connection A0. Let C ⊂ C τ⃗

0 (U, Hom(Λ−, Λ+))

be the set of all µ ∈ C τ⃗
0 (U, Hom(Λ−, Λ+)) satisfying |µx| < 1 for all x ∈ X. Here the norm

|µx| is defined by using the metric g0. C is an open set in C τ⃗
0 (U, Hom(Λ−, Λ+)). Each

µ ∈ C defines a conformal structure which coincides with [g0] outside U (see Corollary

3.2). A connection A on E is said to be µ-ASD if it satisfies F+
A = µ(F−

A ) where F+
A and

F−
A are the self-dual and anti-self-dual parts of FA with respect to g0.

Lemma 8.7. (i) For any A ∈ A we have
∫

X
tr(FA ∧ FA) =

∫
X

tr(FA0 ∧ FA0).

(ii) If A0 is not equivalent to a flat connection as an adapted connection, then any A ∈ A
is not flat.

(iii) If A0 is equivalent to a flat connection as an adapted connection and if A ∈ A is

µ-ASD for some µ ∈ C, then A is flat.

(iv) If
∫

X
tr(FA0 ∧ FA0) < 0, then for any µ ∈ C there is no µ-ASD connection in A.

Proof. (i) It is enough to prove that for any compact-supported smooth a ∈ Ω1(adE) we

have
∫

X
tr(F (A0 + a)2) =

∫
X

tr(F (A0)
2). Since we have tr(F (A0 + a)2) − tr(F (A0)

2) =

d tr(2a ∧ F (A0) + a ∧ dA0a + 2
3
a3), it follows from Stokes’ theorem.

(ii) Since A0 is not equivalent to the flat connection as an adapted connection, the integral∫
X

tr(F (A0)
2) is not equal to zero. (See Proposition 4.3.) Hence the result follows from

(i).
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(iii) If A ∈ A is µ-ASD, then tr(F 2
A) = (|F−

A |2 − |µ(F−
A )|2)dvol (dvol is the volume form

with respect to g0). We have |F−
A |2 − |µ(F−

A )|2 ≥ 0, and moreover if FA is not zero at

x ∈ X then |F−
A |2 − |µ(F−

A )|2 > 0 at x ∈ X. If A0 is equivalent to the flat connection,

then
∫

X
tr(F (A0)

2) = 0. Hence if A ∈ A is µ-ASD then∫
X

(|F−
A |2 − |µ(F−

A )|2)dvol = 0.

Therefore FA = 0 all over X. We can prove (iv) by a similar argument. ¤

We define M ⊂ A× C by

M := {(A, µ) ∈ A× C|A is µ-ASD}.

Let π : M → C be the projection. The main purpose of this subsection is to prove

the following proposition by using the metric perturbation technique originally due to

Freed-Uhlenbeck [8].

Proposition 8.8. Suppose that b+(Y ) ≥ 1 and b−(Y ) = 0 and that A0 is not equivalent

to a flat connection as an adapted connection. Then π(M) is of first category in C.

In the rest of this subsection we always assume that b+(Y ) ≥ 1 and b−(Y ) = 0 and

that A0 is not equivalent to a flat connection as an adapted connection.

Fix (A, µ) ∈ M. Let Kerd∗,W
A ∩ L2,W

3 be the space of b ∈ L2,W
3 (X, Λ1(adE)) satisfying

d∗,W
A b = 0. Let KerDA be the space of b ∈ L2,W

4 (X, Λ1(adE)) satisfying DAb = −d∗,W
A b +

(d+
A − µd−

A)b = 0, and Ker(d∗,W
A (1 + µ∗)) be the space of η ∈ L2,W

4 (X, Λ+(adE)) satisfying

d∗,W
A (1+µ∗)η = 0. KerDA is finite dimensional (Proposition 6.2), and Ker(d∗,W

A (1+µ∗)) is

infinite dimensional (Proposition 6.8). Hence we can take a finite dimensional sub-vector

space H ⊂ Ker(d∗,W
A (1+µ∗)) satisfying dim H > dim KerDA. Let H ′ ⊂ Ker(d∗,W

A (1+µ∗))

be the L2,W -orthogonal complement of H in Ker(d∗,W
A (1 + µ∗)). Since Ker(d∗,W

A (1 + µ∗))

is closed in L2,W (X, Λ+(adE)), H ′ is a closed subspace in L2,W (X, Λ+(adE)).

The spaces (d+
A−µd−

A)(Kerd∗,W
A ∩L2,W

3 ), H and H ′ are closed subspaces in L2,W
2 (X, Λ+(adE)),

and they are L2,W -orthogonal to each other (Proposition 6.8 (ii)). Moreover, from Propo-

sition 6.8 (ii),

(36) L2,W
2 (X, Λ+(adE)) = (d+

A − µd−
A)(Kerd∗,W

A ∩ L2,W
3 ) ⊕ H ⊕ H ′.

Let Π : L2,W
2 (X, Λ+(adE)) → (d+

A − µd−
A)(Kerd∗,W

A ∩ L2,W
3 ) ⊕ H be the projection with

respect to this decomposition. We define

f : (Kerd∗,W
A ∩ L2,W

3 ) × C → (d+
A − µd−

A)(Kerd∗,W
A ∩ L2,W

3 ) ⊕ H,

(b, ν) 7→ Π{F+(A + b) − ν(F−(A + b))}.
(37)
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We have f(0, µ) = 0. The derivative of f at (0, µ) is given by

df(0,µ) : (Kerd∗,W
A ∩ L2,W

3 ) ⊕ C τ⃗
0 (U, Hom(Λ−, Λ+)) → (d+

A − µd−
A)(Kerd∗,W

A ∩ L2,W
3 ) ⊕ H,

(b, ν) 7→ (d+
A − µd−

A)b − Π(ν(F−
A )).

(38)

Lemma 8.9. (i) The map (38) is surjective.

(ii) The partial derivative d1f(0,ν) : Kerd∗,W
A ∩ L2,W

3 → (d+
A − µd−

A)(Kerd∗,W
A ∩ L2,W

3 ) ⊕ H,

b 7→ (d+
A − µd−

A)b, with respect to (Kerd∗,W
A ∩ L2,W

3 )-direction is a Fredholm operator with

its index < 0.

Proof. The statement (ii) is obvious because KerDA and H are both finite dimensional

and satisfy dim KerDA < dim H.

Next we will show (i) by using the argument of Donaldson-Kronheimer [5, p. 154]. Let

ΠH : L2,W
2 (X, Λ+(adE)) → H be projection to H with respect to the decomposition (36).

It is enough for the proof of (i) to show that the map ΠH ◦ df(0,µ) : (Kerd∗,W
A ∩ L2,W

3 ) ⊕
C τ⃗

0 (U, Hom(Λ−, Λ+)) → H is surjective. Here we have ΠH ◦ df(0,µ)(b, ν) = −ΠH(ν(F−
A )).

Suppose that it is not surjective. Since H is finite dimensional, this implies that there

exists a non-zero η ∈ H satisfying ⟨η, ν(F−
A )⟩L2,W = 0 for all ν ∈ C τ⃗

0 (U, Hom(Λ−, Λ+)).

(Here ⟨·, ·⟩L2,W is the L2,W -inner product.) This is equivalent to ⟨F−
A · η, ν⟩L2,W = 0 for

ν ∈ C τ⃗
0 (U, Hom(Λ−, Λ+)). Here F−

A · η ∈ Γ(Λ− ⊗ Λ+) is the contraction of F−
A ⊗ η ∈

Γ(Λ−(adE) ⊗ Λ+(adE)) by the inner product of adE, and we identify Λ− ⊗ Λ+ with

Hom(Λ−, Λ+) by the metric g0. Since C τ⃗
0 (U, Hom(Λ−, Λ+)) is dense in L2(U, Hom(Λ−, Λ+))

(Lemma 8.6), the above means that F−
A · η = 0 over U . Then for every point x ∈ U , the

images of the maps

(F−
A )x : (Λ−)∗x → (adE)x, ηx : (Λ+)∗x → (adE)x,

are orthogonal to each other. Since the rank of adE is equal to dim su(2) = 3, this implies

that min(rank(F−
A )x, rank(ηx)) ≤ 1 for every x ∈ U . Then we use the following sublemma.

This is [5, Lemma (4.3.25)].

Sublemma 8.10. Let O ⊂ X be an non-empty open set. Suppose that one of the following

conditions (i), (ii) is satisfied. Then A is reducible over X.

(i) There is ϕ ∈ Γ(O, Λ−(adE)) such that ϕ has rank 1 over O (as a map from (Λ−)∗ to

adE) and dA(1 + µ)ϕ = 0 over O.

(ii) There is ϕ ∈ Γ(O, Λ+(adE)) such that ϕ has rank 1 over O (as a map from (Λ+)∗ to

adE) and dA(1 − µ∗)ϕ = 0 over O.

Proof. We assume the condition (i). The case (ii) can be proved in the same way. By

making O smaller, we can assume that ϕ = s⊗ω where s ∈ Γ(O, adE) and ω ∈ Γ(O, Λ−)

with |s| = 1. Here ω is not zero at any point of O. dA(1 + µ)ϕ = dA(s ⊗ (1 + µ)ω) = 0
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implies

dAs ∧ (1 + µ)ω + s ⊗ d(1 + µ)ω = 0.

Since |s| = 1, we have 0 = d(s, s) = 2(dAs, s). From this and the above equation, we get

dAs ∧ (1 + µ)ω = 0. Since ω ∈ Ω− and µ(ω) ∈ Ω+,

|dAs ∧ ω| =
1√
2
|dAs||ω|, |dAs ∧ µ(ω)| =

1√
2
|dAs||µ(ω)|.

Since |µ(ω)| < |ω|, dAs ∧ (1 + µ)ω = 0 implies dAs = 0. This shows that A is reducible

over O. Since X is simply-connected and A is µ-ASD, the unique continuation principle

([5, Lemma (4.3.21)]) implies that A is reducible over X. ¤

We have dA(1+µ)F−
A = dAFA = 0 and dA((1−µ∗)W 2η) = 0 since η ∈ H ⊂ Ker(d∗,W

A (1+

µ∗)). If F−
A is zero on some non-empty open set, then A is flat on it. Then the unique

continuation principle ([5, pp. 150-152], [1], [2, p. 248, Remark 3]) implies that A is flat

all over X. But this contradicts Lemma 8.7 (ii) because A0 is not equivalent to a flat

connection as an adapted connection. Therefore F−
A cannot vanish on any non-empty

open set. The unique continuation principle also implies that η cannot vanish on any

non-empty open set. (Note that (1 − µ∗)W 2η is self-dual with respect to the conformal

structure corresponding to µ.)

Since we have min(rank(F−
A )x, rank(ηx)) ≤ 1 for every x ∈ U , there is a non-empty

open set O ⊂ U such that one of F−
A , η has rank 1 over O. Then one of the conditions

(i), (ii) in Sublemma 8.10 is satisfied. Thus A is reducible on X. Then, from Corollary

7.3, A is flat over X. But this contradicts Lemma 8.7 (ii). ¤

Kerd∗,W
A ∩ L2,W

3 and C ⊂ C τ⃗ (U, Hom(Λ−, Λ+)) are both separable (see Lemma 8.6) and

hence second countable. Therefore we can apply Proposition 8.1 to the map f in (37) and

conclude that there exists an open neighborhood U ×U ′ of (0, µ) in (Kerd∗,W
A ∩L2,W

3 )×C
such that the set {ν ∈ U ′| ∃b ∈ U : f(b, ν) = 0} is of first category in C.

Lemma 8.11. There exists an open neighborhood V of (A, µ) in M such that π(V) is of

first category in C.

Proof. Consider the following map (Coulomb gauge):

L2,W
4 (X, Λ0(adE)) × (Kerd∗,W

A ∩ L2,W
3 ) → A, (u, b) 7→ eu(A + b).

The derivative of this map at (0, 0) is given by

L2,W
4 (X, Λ0(adE)) ⊕ (Kerd∗,W

A ∩ L2,W
3 ) → L2,W

3 (X, Λ1(adE)), (u, b) 7→ −dAu + b.

This is isomorphic (Lemma 6.6). Therefore, by the inverse mapping theorem, there is an

open neighborhood W of A in A such that for any B ∈ W there are u ∈ L2,W
4 (X, Λ0(adE))

and b ∈ U ⊂ (Kerd∗,W
A ∩ L2,W

3 ) satisfying B = eu(A + b). Set V := (W × U ′) ∩M. Then

π(V) is contained in the set {ν ∈ U ′| ∃b ∈ U : f(b, ν) = 0}, which is of first category in

C. ¤
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Since M ⊂ A× C is second countable, Lemma 8.11 implies Proposition 8.8.

9. Proof of Theorem 2.1

We will prove Theorem 2.1 in this section. So we assume b−(Y ) = 0 and b+(Y ) ≥ 1.

We fix 0 < α < 1. (For example, α = 1/2 will do.) We choose a positive parameter T so

that

T > max

(
Tα, T−α,

4

1 − α

)
.

This implies

T > 4, T ≥ max(Tα, T−α), 1 − 4/T > α.

Recall that we assumed T > 4 in Section 4.3 and T ≥ max(Tα, T−α) in Sections 6 and

8.3. The condition 1 − 4/T > α is related to Corollary 4.11. We will show that there is

a complete Riemannian metric g on X satisfying the conditions (a) and (b) in Theorem

2.1.

Let A(m) (m ∈ Z) be adapted connections on E introduced in Section 4.1. They

satisfy
∫

X
tr(F (A(m))2) = 8π2m. A(0) is equivalent to a flat connection as an adapted

connection. {A(m)|m ∈ Z} becomes a complete system of representatives of equivalence

classes of adapted connections on E. (See Proposition 4.3.) We define Am as the set of

all connections A(m) + a such that a ∈ L2
3,loc(X, Λ1(adE)) satisfies ∇k

A(m)a ∈ L2,W for

0 ≤ k ≤ 3. We set

Mm := {(A, µ) ∈ Am × C|A is µ-ASD}.

Here C is the space of µ ∈ C τ⃗
0 (U, Hom(Λ−, Λ+)) satisfying |µx| < 1 (x ∈ X) as in Section

8.3. If m < 0, then Mm is empty by Lemma 8.7 (iv). (A, µ) ∈ M0 if and only if A is flat

by Lemma 8.7 (iii).

Let πm : Mm → C be the natural projection. Then
∪

m≥1 πm(Mm) is of first category in

C by Proposition 8.8. C is an open set in the Banach space C τ⃗
0 (U, Hom(Λ−, Λ+)). Thus, by

Baire’s category theorem, there exists µ ∈ C \
(∪

m≥1 πm(Mm)
)
. Let g be a Riemannian

metric on X whose conformal equivalence class corresponds to µ. (See Corollary 3.2.)

Since µ is zero outside U (a pre-compact open set in X), we can choose g so that it is

equal to g0 outside a compact set. In particular it is a complete metric.

We want to prove that there is no non-flat instanton with respect to the metric g.

Suppose, on the contrary, that there exists a non-flat g-ASD connection A on E satisfying∫
X
|FA|2dvol < ∞. Then by Corollary 4.11 and the condition 1 − 4/T > α, there is a

gauge transformation u : E → E such that u(A) is contained in some Am. This means

that µ ∈ πm(Mm). Since A is not flat, we have m ≥ 1. This contradicts the choice of µ.

We have completed all the proofs of Theorem 2.1.
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