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Abstract. Let Fn be a free group of rank n, and Γn(k) the k-th term of the lower
central series of Fn. For l ≥ 1, let K ′l be the (l+2)-nd term of the lower central series of
Γn(2). We denote by FNln the quotient group of Fn by the subgroup [Γn(3),Γn(3)]K ′l .
In this paper, we show that each of the graded quotients of the lower central series of
the group FNln for any l ≥ 1 is a free abelian group, and give a basis of it by using a
generalized Chen’s integration in free groups.

1. Introduction

Let G be a group, and ΓG(k) the k-th term of the lower central series of G defined
by

ΓG(1) := G, ΓG(k) := [ΓG(k − 1), G], k ≥ 2.

For each k ≥ 1, we denote by LG(k) := ΓG(k)/ΓG(k + 1) the graded quotient of the
lower central series of G, and by

LG :=
⊕

k≥1

LG(k)

its graded sum. Then LG has a graded Lie algebra structure induced from the commu-
tator bracket on G. The Lie algebra LG is called the associated graded Lie algebra of
a group G.

In general, LG reflects and supplies much useful information about a group G. It is
often appeared in a study in topology as well as group theory. Now there is a broad
range of results for the lower central series and the associated graded Lie algebra of a
group. Especially, in our research, they are powerful tools to investigate a deep structure
of the Johnson filtration of the mapping class group of a surface and the automorphism
group of a free group. (For example, see [9] and [5] for the mapping class group, and
[1], [3] and [12] for the automorphism group of a free group respectively.)

To clarify the Lie algebra structure of LG, it is important to determine the structure
of each of LG(k) as an abelian group. If a group G is finitely generated, it is easily seen
that LG(k) is finitely generated abelian group. It is, however, quite difficult problem
in general to determine the structure of LG(k) for k ≥ 1 even in the case where G is
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finitely generated. Hence, to establish a method to clarify the structure of LG(k) for a
given group G is an important problem.

Classically, in combinatorial group theory, the case where G is a free group of finite
rank is the most important. Let Fn be a free group with basis x1, . . . , xn. For simplicity,
we write Γn(k) and Ln(k) for ΓFn(k) and LFn(k) respectively. By a pioneer work due to
Magnus, it is well known that each of Ln(k) is a finitely generated free abelian group.
(See [8], for example.) It is also well known due to Witt [13] that the rank of Ln(k) is
completely determined. (See (1) in Subsection 2.3.) Furthermore, P. Hall [6] introduced
basic commutators of Fn, and showed that the coset classes of those of weight k form
a basis of Ln(k). Namely, for G = Fn the group structure of LG(k) is completely
determined.

In addition to the above, the structures of LG(k) has been studied in the case where
G is a quotient group of Fn by a certain commutator subgroup. Let FM

n be a quotient
group of Fn by the second derived subgroup [Γn(2),Γn(2)]. The group FM

n is called a
free metabelian group. For simplicity, we write LMn (k) for LFMn (k). By a remarkable

work of Chen [2], it is known that each of LMn (k) is a free abelian group of finite rank.
He [2] also gave the rank of LMn (k). (See (2) in Subsection 2.4.) In particular, he [2]
introduced the integration in free groups which is used to detect linearly independent
elements in LMn (k).

On the other hand, the result for the free metabelian group were generalized to that
for a free abelian by nilpotent group by Gaglione and Spellman [4]. Let FANc

n be a
quotient group of Fn by a subgroup [Γn(c),Γn(c)] for c ≥ 2. Clearly FAN2

n = FM
n . In

[4], they showed that for each k ≥ 1, the graded quotient LANcn (k) is a free abelian
group, and gave the rank of it.

In this paper, we consider some “intermediate” groups between FAN3
n and FM

n . For
any l ≥ 1, let

K ′l := [[· · · [Γn(2),Γn(2)], . . . ,Γn(2)],Γn(2)]

be the (l+2)-nd term of the lower central series of Γn(2), and set Kl := [Γn(3),Γn(3)]K ′l .
Then we define FNl

n to be the quotient group of Fn by Kl. For simplicity, we write LNln (k)
for L

F
Nl
n

(k). In our previous paper [11], in order to study the cokernel of the Johnson

homomorphism of the automorphism group of a free group, we determine the structure
of LN1

n (k). In particular, we showed that LN1
n (k) is a free abelian group of finite rank,

and obtained a basis of it for k ≥ 1 by using a generalized Chen’s integration in free
groups which we introduced in [11].

Main goal of the paper is to show that we can also apply the generalized Chen’s
integration to determine the structure of LNln (k) for each l ≥ 2 and k ≥ 1. Let Cln(k)
be the set of commutators

[xi1 , xi2 , . . . , xik−2l
, [xj1 , xj2 ], . . . , [xj2l−1

, xj2l ]]

such that i1 > i2 ≤ · · · ≤ ik−2l, j2s−1 > j2s and (j1, j2) ≤ · · · ≤ (j2l−1, j2l). Here
(p, q) < (r, s) is a usual lexicographic order. Namely, (p, q) < (r, s) if and only if p < r,
or p = r and q < s. Then our main theorem is
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Theorem 1. (= Theorem 4.1.) For any l ≥ 1 and k ≥ 2l + 4, LNln (k) is a free abelian
group with basis

C0
n(k) ∪ C1

n(k) ∪ · · · ∪ Cln(k).

We prove this theorem by induction on l ≥ 1. More precisely, we determine the

structure of the kernel Kln(k) of a natural surjective homomorphism LNln (k)→ LNl−1
n (k)

induced from FNl
n → F

Nl−1
n step by step. In particular, we prove that Cln(k) is a basis

of Kln(k). In order to show that Cln(k) is linearly independent in Kln(k), we use the
generalized Chen’s integration in free groups.

This paper consists of five sections. In Section 2, we recall the associated graded Lie
algebra of a group. In Section 3, we recall the generalized Chen’s integration in free
groups. In Section 4, we give a proof of our main theorem.
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2. Preliminaries

In this section, we recall the definition and some properties of the associated graded
Lie algebra of a group G.

2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G.

• The abelianization of G is denoted by Gab.
• For an element g ∈ G, we also denote the coset class of g in G/N by g if there

is no confusion.
• For elements x and y of G, the commutator bracket [x, y] of x and y is defined

to be [x, y] := xyx−1y−1.

2.2. Associated graded Lie algebra of a group.

In this subsection we recall the associated graded Lie algebra of a group G. Let G
be a group, and ΓG(k) the k-th term of the lower central series of G defined by

ΓG(1) := G, ΓG(k) := [ΓG(k − 1), G], k ≥ 2.
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For each k ≥ 1, set LG(k) := ΓG(k)/ΓG(k + 1) and

LG :=
⊕

k≥1

LG(k).

Then LG has a graded Lie algebra structure induced from the commutator bracket on
G. We call LG the associated Lie algebra of a group G. Clearly, the correspondence
from G to LG is a covariant functor from the category of groups to that of graded
Lie algebras. In particular, if f : G1 → G2 be a surjective group homomorphism, the
induced homomorphism f∗ : LG1 → LG2 is also surjective.

For any g1, . . . , gk ∈ G, a commutator of weight k among the components g1, . . . , gk
of the type

[[· · · [[g1, g2], g3], · · · ], gk]
with all of its brackets to the left of all the elements occurring is called a simple k-
fold commutator, denoted by [g1, g2, · · · , gk]. In general, if G is generated by g1, . . . , gn
then for each k ≥ 1, LG(k) is generated by (the coset classes of) the simple k-fold
commutators

[gi1 , gi2 , . . . , gik ], ij ∈ {1, . . . , n}.
(For details, see [8] for example.)

2.3. Free groups.

Here we consider the case where G is a free group Fn with basis x1, . . . , xn. For sim-
plicity, if G = Fn, we write Γn(k), Ln(k) and Ln for ΓG(k), LG(k) and LG respectively.
Let H be the abelianization of Fn. In general, the associated graded Lie algebra Ln is
isomorphic to the free Lie algebra generated by H. (See [10] for basic materials con-
cerning the free Lie algebra, for example.) It is classically well known due to Magnus
that for each k ≥ 1, the graded quotient Ln(k) is a GL(n,Z)-equivariant free abelian
group of finite rank. Furthermore, Witt [13] determined the rank of Ln(k) by

(1) rn(k) :=
1

k

∑

d|k
µ(d)n

k
d

where µ is the Möbius function.

Next, we briefly recall some properties of the Hall basis of Ln(k) for each k ≥ 1. In
[6], P. Hall introduced basic commutators of Fn, and showed that the coset classes of
those of weight k form a basis of Ln(k). These are called the Hall basis of Ln(k). (For
details for the basic commutators, see [7] and [10] for example.) In this paper , we
consider a fixed sequence of basic commutators of Fn beginning with

x1 < x2 < · · · < xn < [x2, x1] < [x3, x1] < [x3, x2] < · · · < [xn, xn−1] < · · ·
where the ordering among [xi, xj] is defined by the usual lexicographic order. Namely,
[xi, xj] < [xk, xl] if i < k, or i = k and j < l.

For each k ≥ 1, let ck,1 < . . . < ck,mk be all the basic commutators of weight k. Then
P. Hall showed that for any k ≥ 1, any element w ∈ Fn is uniquely written as a form

w ≡ c
e1,1
1,1 · · · ce1,n1,n · · · cek,1k,1 · · · c

ek,mk
k,mk

(mod Γn(k + 1))
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for some ei,mi ∈ Z. We call it the mod-Γn(k + 1) normal form of w. By the Hall’s
correcting process, if any w ∈ Fn is given, we can rewrite w as its mod-Γn(k+1) normal
form with finitely many steps for any k ≥ 1. (For details of the Hall’s correcting process,
see [7].)

2.4. Some quotient groups of a free group.

In this subsection, we consider some quotient groups of Fn, and its associated graded
Lie algebras.

Free metabelian group. First, we recall a free metabelian group. Let FM
n be

the quotient group of Fn by a subgroup [Γn(2),Γn(2)]. The group FM
n is called a free

metabelian group of rank n. For simplicity, we write LMn (k) and LMn for LFMn (k) and

LFMn respectively. The associated graded Lie algebra LMn is called the free metabelian
Lie algebra generated by H, or the Chen Lie algebra. By a remarkable pioneer work
by Chen [2], it is known that for each k ≥ 1 the graded quotient LMn (k) is a GL(n,Z)-
equivariant free abelian group of rank

(2) rMn (k) := (k − 1)

(
n+ k − 2

k

)

with basis

{[xi1 , xi2 , . . . , xik ] ∈ LMn (k) | i1 > i2 ≤ i3 ≤ · · · ≤ ik, 1 ≤ ij ≤ n}.
In particular, we see that for any k ≥ 2, the basic commutators which do not belong to
[Γn(2),Γn(2)] are [xi1 , xi2 , . . . , xik ] ∈ Fn for i1 > i2 ≤ i3 ≤ · · · ≤ ik.

Free abelian by nilpotent group. For any c ≥ 2, let FANc
n be the quotient group

of Fn by a subgroup [Γn(c),Γn(c)]. The group FANc
n is called a free abelian by nilpotent

group of class c − 1. For c = 2, FAN2
n is exactly the free metabelian group FM

n . We
write LANcn (k) for LFANcn

(k) for simplicity. Gaglione and Spellman [4] showed that each

of LANcn (k) is a free abelian group and determined the rank of it.

In this paper we consider the case where c = 3. Set

X(k) := {[xi1 , xi2 , . . . , xip , [xj1 , xj2 ], . . . , [xj2q−1 , xj2q ]] ∈ LAN3
n (k)

| p+ 2q = k, 3 ≤ p ≤ k, i1 > i2 ≤ · · · ≤ ip, j2s−1 > j2s,

(j1, j2) ≤ · · · ≤ (j2q−1, j2q)}
for any k, and

Y (k) := {[[xj1 ,xj2 ], . . . , [xj2q−1 , xj2q ]] ∈ LAN3
n (k)

| j2s−1 > j2s, (j1, j2) > (j3, j4) ≤ (j5, j6) ≤ · · · ≤ (j2q−1, j2q)}
if k = 2q. Then, by the work due to Gaglione and Spellman [4], we see that LAN3

n (k) is
a free abelian group with basis

Z(k) :=

{
X(k) ∪ Y (k), if k ≥ 6 and k is even,

X(k), if k ≥ 7 and k is odd.
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We remark that for 1 ≤ k ≤ 5, LAN3
n (k) ∼= Ln(k) as a GL(n,Z)-module. In fact, since

Γn(k)[Γn(3),Γn(3)] = Γn(k) for 1 ≤ k ≤ 6,

LAN3
n (k) ∼= Γn(k)[Γn(3),Γn(3)]

/
Γn(k + 1)[Γn(3),Γn(3)] ∼= Ln(k)

for 1 ≤ k ≤ 5.

Free abelian by polynilpotent group. Next, for any l ≥ 1, let

K ′l := [[· · · [Γn(2),Γn(2)], . . . ,Γn(2)],Γn(2)]

be the (l+2)-nd term of the lower central series of Γn(2), and set Kl := [Γn(3),Γn(3)]K ′l .
Then we define FNl

n to be the quotient group of Fn by Kl. In general, the groups FNl
n

are free abelian by polynilpotent groups since FNl
n has an abelian normal subgroup

Γ
F
Nl
n

(3) such that the quotient group of FNl
n by Γ

F
Nl
n

(3) is a polynilpotent group. For

simplicity, we write ΓNln (k) and LNln (k) for Γ
F
Nl
n

(k) and L
F
Nl
n

(k) respectively. Then we

have sequences of natural surjective homomorphisms

FAN3
n → · · · → FNl

n → FNl−1
n → · · · → FN1

n → FM
n ,

and

LAN3
n (k)→ · · · → LNln (k)→ LNl−1

n (k)→ · · · → LNln (k)→ LMn (k)

for each k ≥ 1.

In our previous paper [11], we showed that LN1
n (k) is a free abelian group, and

obtained a basis of it for k ≥ 1. In this paper, we determine the group structure of
LNln (k) for each l ≥ 2 and k ≥ 1. More precisely, we show that each of LNln (k) is a free
abelian group, and give its rank in Section 4.

3. A generalization of the Chen’s integration in free groups

In order to determine the structure of LNln (k), we use a generalization of the Chen’s
integration in free groups, which was established in our previous paper [11]. In this sec-
tion, we recall the definition and some properties of the generalized Chen’s integration.
(For details, see Section 3 in [11].)

Let Fn be the free group generated by x1, . . . , xn as above. Denote by E the vector
space over the real field R with basis x1, . . . , xn and [xi, xj] for 1 ≤ j < i ≤ n. A
Euclidean metric is introduced into E by taking x1, . . . , xn and [xi, xj] as an orthonormal
basis. Then E is a Euclidean n(n + 1)/2-space. The orthonormal basis induces a
Cartesian coordinate system in E. We call the coordinates corresponding to xi and
[xi, xj] the ti-coordinates and the ti,j-coordinates.

Let Ωn be the set of words among the letters x1, . . . , xn. For any word w = xe1i1 x
e2
i2
· · ·xemim

with ek = ±1, and any integers a1, . . . , an ∈ Z, we define points Ps ∈ E for 0 ≤ s ≤ m
by

P0 := 0,

Ps := Ps−1 + estis +
∑
is<j

{(
aj +

∑

1≤l≤s−1
il=j

el

)
estj,is

}
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for 1 ≤ s ≤ m. Let PsPs+1 be the path from Ps to Ps+1 defined by a segment, and
lw(a1, . . . , an) the polygonal path which successive vertices are P0, P1, . . . , Pm. Since the
vertex Pm depends only on the integers a1, . . . , an and the equivalence class of w in Fn,
we denote Pm above by Pw(a1, . . . , an) for w ∈ Fn. Then we have

Lemma 3.1. As the notation above,

(1) P1(a1, . . . , an) = 0,
(2) If w = xw1

1 xw2
2 · · · xwnn in H1(Fn,Z) then ti-coordinate of Pw(a1, . . . , an) is wi for

1 ≤ i ≤ n,
(3) If w = xe1i1 · · · xemim ∈ Γn(2) and

w = [x2, x1]w2,1 · · · [xn, xn−1]wn,n−1 ∈ Ln(2),

the ti,j-coordinate of Pw(a1, . . . , an) is wi,j.

Now, for any w ∈ Ωn, a1, . . . , an ∈ Z and continuous real-valued function f : E→ R,
we define integrations by

Ij(f, w; a1, . . . , an) :=

∫

lw(a1,...,an)

f(t)dtj

for each 1 ≤ j ≤ n. Since the integration Ij(f, w; a1, . . . , an) depends only on f ,
a1, . . . , an and the equivalence class of w in Fn, we consider Ij(f, w; a1, . . . , an) for
w ∈ Fn. We remark that if f : E→ R does not depend on the coordinates ti,j for any
1 ≤ j < i ≤ n, the integration Ij(f, w; a1, . . . , an) coincides with the Chen’s original
integration Ij(f̄ , w) for each 1 ≤ j ≤ n, where f̄ is the restriction of f to the subspace
E′ of E generated by the basis x1, . . . , xn. In the following, if there is no confusion, we
always write f for f̄ for simplicity.

For any P ∈ E, the translation function on E defined by

t 7→ t+ P

is denoted by TP . Here we recall some properties of Ij(f, w; a1, . . . , an). (For details,
see [11].)

Lemma 3.2. For any a1, . . . , an ∈ Z, u, v ∈ Fn such that u = xu1
1 x

u2
2 · · · xunn , v =

xv1
1 x

v2
2 · · · xvnn ∈ H1(Fn,Z), and real-valued functions f , g on E, we have

(1) Ij(αf + βg, w; a1, . . . , an) = αIj(f, w; a1, . . . , an) + βIj(g, w; a1, . . . , an) for any
α, β ∈ R.

(2) Ij(f, 1; a1, . . . , an) = 0.

(3) Ij(f, uv; a1, . . . , an)
= Ij(f, u; a1, . . . , an) + Ij(f ◦ TPu(a1,...,an), v; a1 + u1, . . . , an + un).

(4) Ij(f, u
−1; a1, . . . , an) = −Ij(f ◦ TPu−1 (a1,...,an), u; a1 − u1, . . . , an − un).

(5) Ij(f, [u, v]; a1, . . . , an)
= Ij(f, u; a1, . . . , an) + Ij(f ◦ TPu(a1,...,an), v; a1 + u1, . . . , an + un)
−Ij(f ◦ TPuvu−1 (a1,...,an), u; a1 + v1, . . . , an + vn)
−Ij(f ◦ TP[u,v](a1,...,an), v; a1, . . . , an).
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Let R[t] be the commutative polynomial ring over R among indeterminates ti for
1 ≤ i ≤ n and ti,j for 1 ≤ j < i ≤ n. Each element of R[t] is regarded as a real-valued
function on E in a usual way. We consider the polynomial ring R[t1, . . . , tn] as a subring
of R[t]. For any f ∈ R[t], we denote by deg(f), deg1(f) and deg2(f) the degree of f ,
that of f with respect to the indeterminates t1, . . . , tn and that of f with respect to the
indeterminates t2,1, . . . , tn,n−1 respectively. For example, for f = t21t3t2,1t3,1 + t42,1,

deg(f) = 5, deg1(f) = 3, deg2(f) = 4.

Here we give a few examples of calculations of the integrations. Clearly, for any
w ∈ Fn, Ij(1, w; a1, . . . , an) = Ij(1, w) is the sum of the exponents of those xj which
occur in w.

Lemma 3.3. For any 1 ≤ i, j ≤ n, we have

(1) For any p > q,

Ij(ti, [xp, xq]; a1, . . . , an) =





δjq, i = p,

−δjp, i = q,

0 , i 6= p, q.

(2) For any w ∈ Γn(3), Ij(ti, w; a1, . . . , an) = 0.

See [11] for the proof of Lemma 3.3. The following theorem is essentially due to Chen
[2].

Theorem 3.4 (Chen [2]). Let k ≥ 2 and f ∈ R[t1, . . . , tn].

(1) If w ∈ [Γn(2),Γn(2)], Ij(f, w; a1, . . . , an) = 0.
(2) If w = [xi1 , xi2 , . . . , xik ] and deg(f) ≤ k − 1,

Ij(f, w; a1, . . . , an) =





(−1)k−1α1, j = i1,

(−1)kα2, j = i2,

0, j 6= i1, i2

where

α1 =
∂k−1f

∂ti2∂ti3 · · · ∂tik
, α2 =

∂k−1f

∂ti1∂ti3 · · · ∂tik
.

(3) If w ∈ Γn(k) and deg(f) ≤ k − 2, then Ij(f, w; a1, . . . , an) = 0.

We generalize the theorem above to

Proposition 3.5. For l ≥ 1, k ≥ 2l + 4, take

w = [xi1 , xi2 , . . . , xik−2l
, [xj1 , xj2 ], . . . , [xj2l−1

, xj2l ]],

j2s−1 > j2s, (j1, j2) ≤ · · · ≤ (j2l−1, j2l). Then for any f ∈ R[t] such that deg(f) ≤
k − l − 1 and deg2(f) ≤ l, we have

Ij(f, w; a1, . . . , an) =





(−1)k−l+1β1, j = i1,

(−1)k−lβ2, j = i2,

0, j 6= i1, i2
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where

β1 =
∂k−l−1f

∂ti2∂ti3 · · · ∂tik−2l
∂tj1,j2 · · · ∂tj2l−1,j2l

,

β2 =
∂k−l−1f

∂ti1∂ti3 · · · ∂tik−2l
∂tj1,j2 · · · ∂tj2l−1,j2l

.

Proof. Set

w′ := [xi1 , xi2 , . . . , xik−2l
, [xj1 , xj2 ], . . . , [xj2l−3

, xj2l−2
]].

Then for any f ∈ R[t] such that deg(f) ≤ k− l− 1 and deg2(f) ≤ l, using Lemma 3.2,
we have

Ij(f, w; a1, . . . , an)

= Ij(f, w
′; a1, . . . , an) + Ij(f, [xj2l−1

, xj2l ]; a1, . . . , an)

− Ij(f ◦ TP[xj2l−1
,xj2l

](a1,...,an), w
′; a1, . . . , an)

− Ij(f, [xj2l−1
, xj2l ]; a1, . . . , an),

= Ij(f − f ◦ TP[xj2l−1
,xj2l

](a1,...,an), w
′; a1, . . . , an),

= −Ij
( ∂f

∂tj2l−1,j2l

, w′; a1, . . . , an

)
.

By repeating this process, we have

Ij(f, w; a1, . . . , an) = (−1)lIj

( ∂lf

∂tj1,j2 · · · ∂tj2l−1,j2l

, w′; a1, . . . , an

)
.

Then by the hypothesis, we see

∂lf

∂tj1,j2 · · · ∂tj2l−1,j2l

∈ R[t1, . . . , tn],

and hence, from Theorem 3.4, we obtain the required results. This completes the proof
of Proposition 3.5. �

As a corollary, we obtain

Corollary 3.6. Using the notation in Proposition 3.5, we have

(1) If deg(f) ≤ k − l − 2 and deg2(f) ≤ l, Ij(f, w; a1, . . . , an) = 0.
(2) Ij(tp1tp2 · · · tpk−2l−1

tq1,q2 · · · tq2l−1,q2l , w; a1, . . . , an) 6= 0 if and only if
(i) tq1,q2 · · · tq2l−1,q2l = tj1,j2 · · · tj2l−1,j2l,
(ii) tp1 · · · tpk−2l−1

tj = ti1 · · · tik−2l
,

(iii) j = i1 or j = i2.

4. The structure of the graded quotients LNln (k)

In this section, we determine the group structure of the graded quotient LNln (k) of
the lower central series of FNl

n for l ≥ 2 and k ≥ 1. In particular, we show that each
of LNln (k) is a free abelian group, and give a basis of it by using a generalized Chen’s
integration in free groups. Since Kl = Γn(k) for 1 ≤ k ≤ 6, we have LNln (k) ∼= Ln(k) for
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1 ≤ k ≤ 5. On the other hand, since Γn(k)Kl = Γn(k)[Γn(3),Γn(3)] for 6 ≤ k ≤ 2l + 3,
we see that

LNln (k) ∼= Γn(k)Kl

/
Γn(k + 1)Kl,

∼= Γn(k)[Γn(3),Γn(3)]
/

Γn(k + 1)[Γn(3),Γn(3)] ∼= LAN3
n (k).

Hence there is nothing to do anymore in these cases. In the following, we consider the
case where l ≥ 2 and k ≥ 2l + 4.

Let Cln(k) be the set of basic commutators

[xi1 , xi2 , . . . , xik−2l
, [xj1 , xj2 ], . . . , [xj2l−1

, xj2l ]]

of Fn of weight k such that i1 > i2 ≤ · · · ≤ ik−2l, j2s−1 > j2s and (j1, j2) ≤ · · · ≤
(j2l−1, j2l). Our main theorem is

Theorem 4.1. For any l ≥ 1 and k ≥ 2l + 4, LNln (k) is a free abelian group with basis

C0
n(k) ∪ C1

n(k) ∪ · · · ∪ Cln(k).

Before giving a proof of Theorem 4.1, we observe several facts and prepare some
lemmas. First, for l = 1, we have already shown the theorem in our previous paper
[11]. For l ≥ 2 and k ≥ 1, let

ιlk : LNln (k)→ LNl−1
n (k)

be a natural surjective homomorphism induced from the natural map FNl
n → F

Nl−1
n .

Since LNl−1
n (k) is a free abelian group, if we denote by Kln(k) the kernel of ιlk, we have

LNln (k) ∼= Kln(k)⊕ LNl−1
n (k)

as a Z-module.

Now, we have a natural isomorphism

LNmn (k) ∼= Γn(k)Km

/
Γn(k + 1)Km

for any m ≥ 1. In general, for a group F and its normal subgroups G, H and K such
that H is a subgroup of G, we have a natural isomorphism

(3) GK/HK ∼= G
/
H(G ∩K).

Using (3), we see

LNmn (k) ∼= Γn(k)
/

Γn(k + 1)(Γn(k) ∩Km)

for m ≥ 1. Hence, we verify that

Kln(k) ∼= Γn(k + 1)(Γn(k) ∩Kl−1)
/

Γn(k + 1)(Γn(k) ∩Kl),

∼= Γn(k) ∩Kl−1

/
(Γn(k) ∩Kl)(Γn(k + 1) ∩Kl−1),

∼= (Γn(k) ∩Kl−1)Kl

/
(Γn(k + 1) ∩Kl−1)Kl

by using (3).
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To determine the structure of Kln(k), we prepare a descending series of subgroups of
Fn. For k ≥ l + 2, denote by Θl

n(k) the subset of Fn which consists of elements w such
that

Ij(f, w; a1, . . . , an) = 0, 1 ≤ j ≤ n

for any a1, . . . , an ∈ Z and any f ∈ R[t] such that deg(f) ≤ k− (l+ 2) and deg2(f) ≤ l.
Then we have

Θl
n(l + 2) ⊃ Θl

n(l + 3) ⊃ Θl
n(l + 4) ⊃ · · · .

Since Ij(1, w; a1, . . . , an) = Ij(1, w) is the sum of the exponents of those xj which occur
in w, we see Θl

n(l + 2) = Γn(2). By (3) and (4) of Lemma 3.2, Θl
n(k) is a subgroup

of Fn for each k ≥ l + 2. Furthermore, by (5) of Lemma 3.2, each of Θl
n(k) contains

[Γn(3),Γn(3)]. Here we show each of Θl
n(k) is a normal subgroup of Fn. First, we

consider

Lemma 4.2. Θl
n(l + 3) ⊂ Γn(3).

Proof. For any w ∈ Θl
n(l + 3), since w ∈ Γn(2), we have

w = [x2, x1]w2,1 · · · [xn, xn−1]wn,n−1γ

for some wi,j ∈ Z and γ ∈ Γn(3). For any 1 ≤ j < i ≤ n, using (3) of Lemma 3.2 and
Lemma 3.3 , we see

Ij(ti, w; a1, . . . , an) = Ij(ti, [x2, x1]w2,1 · · · [xn, xn−1]wn,n−1 ; a1, . . . , an),

=
∑
r>s

wr,sIj(ti, [xr, xs]; a1, . . . , an),

= wi,j = 0.

This shows w = γ ∈ Γn(3). This completes the proof of Lemma 4.2. �
Now, for k ≥ l + 3, w ∈ Θl

n(k), u ∈ Fn and f ∈ R[t] such that deg(f) ≤ k − (l + 2)
and deg2(f) ≤ l, we have

Ij(f,uwu
−1; a1, . . . , an)

= Ij(f, u; a1, . . . , an) + Ij(f ◦ TPu(a1,...,an), w; a1 + u1, . . . , an + un)

− Ij(f ◦ TPuwu−1(a1,...,an), u; a1, . . . , an),

= 0

since uwu−1 ∈ Γn(3). Therefore Θl
n(k) is a normal subgroup of Fn.

Next, we show

Lemma 4.3. For k ≥ l + 2, K ′l = [[· · · [Γn(2),Γn(2)], . . .],Γn(2)] ⊂ Θl
n(k).

Proof. Since K ′l is generated by

{[y1, y2, . . . , yl+2] | yi ∈ Γn(2)},
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it suffices to show [y1, y2, . . . , yl+2] ∈ Θl
n(k) for yi ∈ Γn(2). For any f ∈ R[t] such that

deg(f) ≤ k − (l + 2) and deg2(f) ≤ l, using Lemma 3.2, we have

Ij(f, [y1, y2, . . . , yl+2]; a1, . . . , an)

= Ij(f, y
′; a1, . . . , an) + Ij(f ◦ TPy′ (a1,...,an), yl+2; a1, . . . , an)

− Ij(f ◦ TPy′yl+2y
′−1 (a1,...,an), y

′; a1, . . . , an)

− Ij(f ◦ TP[y′,yl+2](a1,...,an), yl+2; a1, . . . , an)

= Ij(f − f ◦ TPy′yl+2y
′−1 (a1,...,an), y

′; a1, . . . , an)

where y′ = [y1, y2, . . . , yl+1]. Hence, if

yl+2 = [x2, x1]z2,1 · · · [xn, xn−1]zn,n−1 ∈ Ln(3)

for zi,j ∈ Z, we see

Py′yl+2y′−1(a1, . . . , an) = z2,1t2,1 + · · ·+ zn,n−1tn,n−1,

and if we set g := f−f◦TPy′yl+2y
′−1(a1,...,an) then deg(g) ≤ k−(l+2)−1 and deg2(g) ≤ l−1.

Repeating this process, we see that

Ij(f, [y1, y2, . . . , yl+2]; a1, . . . , an) = Ij(h, [y1, y2]; a1, . . . , an)

for some h ∈ R[t1, . . . , tn]. Then from (1) of Theorem 3.4, we have

Ij(f, [y1, y2, . . . , yl+2]; a1, . . . , an) = 0.

This completes the proof of Lemma 4.3. �
By Lemma 4.3, we see that Kl ⊂ Θl

n(k) for k ≥ l + 2. For any l ≥ 1 and k ≥ 2l + 4,
set

Dl
n(k) := [[· · · [Γn(k − 2l),Γn(2)], · · · ],Γn(2)] ⊂ Γn(k)

where Γn(2) appears l times in the commutator above. Then we have

Lemma 4.4. For l ≥ 1, k ≥ 2l + 4, Dl
n(k) ⊂ Θl

n(k).

Proof. Since Dl
n(k) is generated by

{[y1, y2, . . . , yl+1] | y1 ∈ Γn(k − 2l), y2, . . . , yl+1 ∈ Γn(2)},
it suffices to show [y1, y2, . . . , yl+1] ∈ Θl

n(k) for y1 ∈ Γn(k− 2l) and y2, . . . , yl+1 ∈ Γn(2).
For any f ∈ R[t] such that deg(f) ≤ k− (l+ 2) and deg2(f) ≤ l, using Lemma 3.2, we
have

Ij(f, [y1,y2, . . . , yl+1]; a1, . . . , an)

= Ij(f − f ◦ TPy′yl+1y
′−1 (a1,...,an), y

′; a1, . . . , an)

where y′ = [y1, y2, . . . , yl]. Hence, if we set g := f − f ◦TPy′yl+1y
′−1 (a1,...,an) then deg(g) ≤

k − (l + 2)− 1 and deg2(g) ≤ l − 1. Repeating this process, we see that

Ij(f, [y1, y2, . . . , yl+1]; a1, . . . , an) = Ij(h, y1; a1, . . . , an)

for some h ∈ R[t1, . . . , tn] such that deg(h) = k − 2l − 2. Since y1 ∈ Γn(k − 2l), from
(3) of Theorem 3.4, we obtain

Ij(f, [y1, y2, . . . , yl+1]; a1, . . . , an) = 0.

This completes the proof of Lemma 4.4. �
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For l ≥ 1, k ≥ 2l + 4 and 1 ≤ m ≤ l, set

Dl,m
n (k) := [[· · · [Γn(k − 2l),Γn(2)], · · · ],Γn(2)] ⊂ Γn(k − 2l + 2m)

where Γn(2) appears m times in the commutator above. Clearly, Dl,l
n (k) = Dl

n(k). Then
we have

Lemma 4.5. For any w ∈ K ′l−1, w is written as

w ≡ ce11 · · · cess (mod Dl,m
n (k))

where ci are the basic commutators in Γn(2).

Proof. We prove this lemma by the induction on m ≥ 1. First, consider the case
where m = 1. In general, for any a, b ∈ Γn(2), there exist some a′, b′ ∈ Γn(k − 2l), and
di,j, d

′
i,j ∈ Z for 2 ≤ i ≤ k − 1 and 1 ≤ j ≤ mi such that

a = c
d2,1

2,1 · · · c
dk−1,mk−1

k−1,mk−1
a′, b = c

d′2,1
2,1 · · · c

d′k−1,mk−1

k−1,mk−1
b′.

Hence,

[a, b] ≡ [c
d2,1

2,1 · · · c
dk−1,mk−1

k−1,mk−1
, c
d′2,1
2,1 · · · c

d′k−1,mk−1

k−1,mk−1
] (mod [Γn(k − 2l),Γn(2)]).

Since [Γn(2),Γn(2)] is generated by [a, b] for a, b ∈ Γn(2), we see that any w ∈ K ′l−1 ⊂
[Γn(2),Γn(2)] is written as

w ≡ ce11 · · · cess (mod Dl,1
n (k) = [Γn(k − 2l),Γn(2)])

where ci are the basic commutators in Γn(2).

Next, assume m ≥ 2. Since K ′l−1 is generated by {[y, z] | y ∈ K ′l−2, z ∈ Γn(2)}, it
suffices to show above for such [y, z]. By the inductive hypothesis, we can write

y = ce11 · · · cerr y′

for some basic commutators ci in Γn(2) and some y′ ∈ Dl,m−1
n (k). On the other hand,

considering the mod-Γn(k − 2l) normal form of z, we see

z = df1

1 · · · dfss z′

for some basic commutators dj in Γn(2) and some z′ ∈ Γn(k−2l). If we set ȳ := ce11 · · · cerr
and z̄ := df1

1 · · · dfss , then

[y, z] = [ȳy′, z] = [ȳ, [y′, z]][y′, z][ȳ, z],

≡ [ȳ, z] (mod Dl,m
n (k)).

Since y ∈ K ′l−2 and y′ ∈ K ′m−2, we see ȳ ∈ K ′m−2. Hence [ȳ, z′] ∈ [Γn(k − 2l), K ′m−2] ⊂
Dl,m
n (k) by the following Lemma 4.6. Therefore we obtain

[ȳ, z] = [ȳ, z̄z′] = [ȳ, z̄][ȳ, z′][[z′, ȳ], z̄],

≡ [ȳ, z̄] (mod Dl,m
n (k)).

This completes the proof of Lemma 4.5. �
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Lemma 4.6. Let G be a group, A and B normal subgroups of G. For any m ≥ 1,
define normal subgroups Nm(A,B) and Mm(A,B) by

Nm(A,B) := [A, [B,B, . . . , B]], Mm(A,B) := [A,B,B, . . . , B]

where B appears m times in each of commutators. Then

Nm(A,B) ⊂Mm(A,B).

Proof. We prove this lemma by the induction on m ≥ 1. If m = 1, it is clear. Consider
the case where m = 2. In general, for any subgroups X, Y and Z of G, a commutator
subgroup [X, [Y, Z]] is contained in the product of [Y, [Z,X]] and [Z, [X, Y ]]. (See
Theorem 5.2 in [8], for example.) Using this fact, we see that

[A, [B,B]] ⊂ [B, [B,A]] · [B, [A,B]] = [A,B,B].

Next, assume m ≥ 3. Similarly, we have

Nm(A,B) = [A, [B,B, . . . , B]] ⊂ [[B, . . . , B], [B,A]] · [B, [A, [B, . . . , B]]],

= Nm−1([A,B], B) · [Nm−1(A,B), B].

By the inductive hypothesis, we see Nm(A,B) ⊂ Mm(A,B). This completes the proof
of Lemma 4.6. �

Here we consider a mod-Dl
n(k)[Γn(3),Γn(3)] normal form of an element of K ′l−1.

Lemma 4.7. Let l ≥ 1 and k ≥ 2l+ 4. For any w ∈ K ′l−1, there exists some r ≥ 1 and
e1, . . . , er ∈ Z such that

w ≡ ce11 · · · cerr (mod Dl
n(k)[Γn(3),Γn(3)])

where c1 < · · · < cr are the basic commutators of Fn which belong to [Γn(2),Γn(2)] but
Dl
n(k)[Γn(3),Γn(3)].

Proof. Using Lemma 4.5 for m = l, we see that for any w ∈ K ′l−1, there exist some
the basic commutators c̄i in Γn(2) such that

w ≡ c̄
e′1
1 · · · c̄e

′
s
s (mod Dl

n(k)).

By applying the Hall’s correcting process to the element w′ := c̄
e′1
1 · · · c̄e

′
s
s to obtain the

mod-Γn(k) normal form, we have

w′ = ce11 · · · cerr γ
where c1 < · · · < cr, all ci belong to [Γn(2),Γn(2)], and γ ∈ Γn(k + 1) is a product of
commutators u among the components c±1

i . In fact, if there exists some ci such that
ci ∈ Γn(2) \ [Γn(2),Γn(2)] and ei 6= 0, set

k′ := min{wt(ci) | 1 ≤ i ≤ r, ci /∈ [Γn(2),Γn(2)], ei 6= 0} ≤ k,

and let wt(cj) = k′. Then cj = [xj1 , xj2 , . . . , xjk′ ] for some j1 > j2 ≤ j3 ≤ · · · ≤ jk′ .
Hence by observing the image of w′ by a natural homomorphism Ln(k′)→ LMn (k′), we
see that ej = 0. This is a contradiction.

Now we show that the commutators u above belong to Dl
n(k)[Γn(3),Γn(3)]. In

fact, set u := [u1, u2]. If min{wt(u1),wt(u2)} ≥ 3, u ∈ [Γn(3),Γn(3)]. Assume
min{wt(u1),wt(u2)} = 2, without the loss of generality, it suffices to consider the case
where wt(u2) = 2. Then, u1 is of form [u11, u12] where u11 and u12 are commutators
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among the components c±1
i . If min{wt(u11),wt(u12)} ≥ 3, u1 ∈ [Γn(3),Γn(3)]. If not,

we may assume wt(u12) = 2. By repeating this process, finally we see u ∈ [Γn(3),Γn(3)]
or u ∈ Dl

n(k). This completes the proof of Lemma 4.7. �
Proof of Theorem 4.1. Now we give a proof of Theorem 4.1. We prove the theorem

by the induction on l ≥ 1. If l = 1, it is given in our previous paper [11]. Assume l ≥ 2,
and for 1 ≤ m ≤ l − 1, LNmn (k) is a free abelian group with basis

C0
n(k) ∪ C1

n(k) ∪ · · · ∪ Cmn (k)

for each k ≥ 1. In order to find a basis of Kln(k), we use the following lemma.

Lemma 4.8. For l ≥ 2 and k ≥ 2l + 4, Γn(k) ∩Kl−1 ⊂ Dl
n(k)[Γn(3),Γn(3)].

Proof. For any w ∈ Γn(k) ∩ Kl−1 ⊂ Kl−1 = K ′l−1[Γn(3),Γn(3)], there exist some
w′ ∈ K ′l−1 and w′′ ∈ [Γn(3),Γn(3)] such that w = w′w′′. On the other hand, we have

w′ ≡ ce11 · · · cerr (mod Dl
n(k)[Γn(3),Γn(3)])

for basic commutators ci of Fn such that c1 < · · · < cr and each of ci belongs to
[Γn(2),Γn(2)] but Dl

n(k)[Γn(3),Γn(3)] from Lemma 4.7. Here, we claim that wt(ci) ≥ k
for any 1 ≤ i ≤ r. In fact, if there exists some ci such that wt(ci) < k and ei 6= 0, set

k′ := min{wt(ci) | 1 ≤ i ≤ r, ei 6= 0},
and let wt(cj) = k′. Then cj ∈ Z(k′), and hence by observing the image of w by a
natural homomorphism Ln(k′)→ LAN3

n (k′), we see that ej = 0. This is a contradiction.
Therefore wt(ci) ≥ k for any 1 ≤ i ≤ r.

On the other hand, by observing the image of w by the natural homomorphism
LNln (k) → LNmn (k) for each 0 ≤ m ≤ l − 1, we see that the index ei of the basic
commutator ci such that ci ∈ C0

n(k) ∪ C1
n(k) ∪ · · · ∪ Cl−1

n (k) is zero. Since a basic
commutator c /∈ C0

n(k) ∪ · · · ∪ Cl−1
n (k) satisfies c ∈ Dl

n(k)[Γn(3),Γn(3)], we obtain
w ≡ w′ ≡ 0 (mod Dl

n(k)[Γn(3),Γn(3)]). This completes the proof of Lemma 4.8. �
From Lemmas 4.4 and 4.8, we see that for each k ≥ 2l + 4,

Γn(k) ∩Kl−1 ⊂ Θl
n(k).

Using this, we can show that El
n is a basis of Kln(k) for k ≥ 2l + 4. First, we show El

n

generates Kln(k). For any x ∈ Γn(k) ∩Kl−1, as mentioned above, we can write

x = ce11 · · · cerr x′
for some x′ ∈ Γn(k + 1) and basic commutators c1 < · · · < cr of weight k such that
ci ∈ Dl

n(k)[Γn(3),Γn(3)] ⊂ Kl−1 for 1 ≤ i ≤ r. Since x ∈ Kl−1, this shows x′ ∈ Kl−1,
and hence x′ = 0 ∈ Kln(k). Now each of ci belongs to Kl or El

n since k ≥ 2l + 4. This
shows that El

n generates Kln(k).

Next we show El
n is linearly independent. Set

v :=
∏

[xi1 , xi2 , . . . , xik−2l
, [xj1 , xj2 ], . . . , [xj2l−1

, xj2l ]]
bi1,...,j2l ∈ Γn(k) ∩Kl−1

for bi1,...,j2l ∈ Z where the product runs over i1 > i2 ≤ · · · ≤ ik−2l, j2s−1 > j2s and
(j1, j2) ≤ · · · ≤ (j2l−1, j2l). Suppose v = 1 ∈ Kln(k). For any i′1 > i′2 ≤ · · · ≤ i′k−2l,
j′2s−1 > j′2s and (j′1, j

′
2) ≤ · · · ≤ (j′2l−1, j

′
2l), consider

g := ti′2 · · · ti′k−2l
tj′1,j′2 · · · tj′2l−1,j

′
2l
∈ R[t].
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Since deg(g) = k − l − 1, deg2(g) = l and v ∈ Θl
n(k + 1), for any a1, . . . , an, we have

0 = Ii′1(g, v; a1, . . . , an),

= (−1)k−lbi′1,...,j′2l
∂k−l−1f

∂ti′2∂ti′3 · · · ∂ti′k−2l
∂tj′1,j′2 · · · ∂tj′2l−1,j

′
2l

.

from Proposition 3.5. Since

∂k−l−1f

∂ti′2∂ti′3 · · · ∂ti′k−2l
∂tj′1,j′2 · · · ∂tj′2l−1,j

′
2l

6= 0,

we obtain bi′1,...,j′2l = 0. This shows that El
n is linearly independent. This completes the

proof of Theorem 4.1. �
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