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Abstract. In this paper, we show that the abelianization of each subgroup of the
lower central series of the basis-conjugating automorphism group of a free group, ex-
cept for the first term, contains a free abelian group with infinite rank. As a corollary,
we also show that each subgroup of the Johnson filtration of the basis-conjugating
automorphism group of a free group has the same property.

1. Introduction

For n ≥ 2, let Fn be a free group of rank n with basis x1, x2, . . . , xn, and Fn = Γn(1),
Γn(2), . . . its lower central series. We denote by AutFn the group of automorphisms of
Fn. For each k ≥ 0, let An(k) be the group of automorphisms of Fn which induce the
identity on the nilpotent quotient group Fn/Γn(k + 1). The group An(1) is called the
IA-automorphism group and also denoted by IAn. Then we have a descending filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·
of AutFn, called the Johnson filtration of AutFn.

The Johnson filtration of AutFn was originally introduced in 1963 through the
remarkable pioneer work by Andreadakis [1] who showed that An(1), An(2), . . . is
a descending central series of An(1), and that for each k ≥ 1 the graded quotient
grk(An) := An(k)/An(k+ 1) is a free abelian group of finite rank. Andreadakis [1] also
computed the rank of gr1(An). Recently, by independent works of Cohen-Pakianathan
[2, 3]，Farb [5] and Kawazumi [6], it is known that gr1(An) is isomorphic to the abelian-
ization of IAn. For k = 2 and 3, the GL(n,Z)-module structure of grk(An) ⊗Z Q is
determined by Pettet [14] and Satoh [15] respectively. For k ≥ 4, however, there are
few results for the structure of grk(An).

When we study the Johnson filtration, we often face a problem of how to find a
generating set of An(k). Although each of the graded quotients grk(An) is a finitely
generated free abelian group, it is still not determined whether each of An(k) is finitely
generated or not for k ≥ 2. Furthermore, it is also not known whether the abelianization
An(k)ab of An(k) is finitely generated or not for k ≥ 2.

In the study of the Johnson filtration of AutFn, it is also interesting to determine
whether An(1), An(2), . . . coincides with the lower central series A′n(1), A′n(2), . . .
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of An(1) or not. Andreadakis [1] showed that A2(k) = A′2(k) and A3(3) = A′3(3).
From the results due to Cohen-Pakianathan [2, 3], Farb [5] and Kawazumi [6], we have
An(2) = A′n(2) for n ≥ 3. Furthermore, Pettet [14] obtained that A′n(3) has finite index
in An(3). Now it is conjectured by Andreadakis that An(k) = A′n(k) for any n ≥ 3 and
k ≥ 3.

In this paper, we consider a few problems as mentioned above for a certain subgroup
of AutFn. An automorphism σ of Fn such that xσi is conjugate to xi for each 1 ≤ i ≤ n
is called a basis-conjugating automorphism of Fn. Let PΣn be the subgroup of AutFn
consisting of the basis-conjugating automorphisms. The group PΣn is called the basis-
conjugating automorphism group of Fn or the McCool group. It is easily checked that
PΣn ⊂ IAn. In general, by a work due to McCool [9], it is known that PΣn has a finite
presentation. (See Subsection 2.4.)

In our previous paper [16], we study the image of the Johnson filtration of IAn by the
Burau representation τB. In particular, we are interested in some problems for τB(IAn)
which correspond to the open problems for IAn as mentioned above. For example, we
consider whether τB(IAn) is finitely presentable or not, whether τB(An(k)) are finitely
generated or not, and so on. In general, however, these problems are still difficult
to handle. On the other hand, one of notable points is that the image of IAn by τB
coincides with that of PΣn. Hence it is meaningful to study the structure of the Johnson
filtration of PΣn from the view point of the research of the Burau representation.

Now, set Pn(k) := PΣn ∩ An(k) for each k ≥ 1. Then we have a descending central
filtration

PΣn = Pn(1) ⊃ Pn(1) ⊃ Pn(2) ⊃ · · ·
of PΣn. We call it the Johnson filtration of PΣn. On the other hand, let P ′n(1) ⊃
P ′n(2) ⊃ · · · be the lower central series of PΣn. Then P ′n(1) = Pn(1) by definition.
Since the Johnson filtration is central, we see P ′n(k) ⊂ Pn(k) for each k ≥ 1.

In this paper, we concentrate ourselves on the subgroups P ′n(k) and Pn(k) for k ≥ 1.
By a recent remarkable work by Cohen, Pakianathan, Vershinin and Wu [4], some
properties of the associated graded Lie algebra and the (co)homological structure of
PΣn are studied. In particular, from one of their results, we see that the abelianization
of PΣn is a free abelian group of rank n(n − 1), and that Magnus generators type of
Ki,j form a basis of PΣab

n . As a corollary, we obtain P ′n(2) = Pn(2). (See Corollary
2.2.) Then by determining the image of the second Johnson homomorphism restricted
to PΣn, we obtain:

Lemma 1. (= Corollary 2.4.) For n ≥ 3, P ′n(3) = Pn(3).

From this, it immediately follows that τB(A′n(3)) = τB(An(3)) which has already
obtained in [16].

Next, using the Reidemeister-Schreier method, we obtain an infinite presentation for
P ′n(2) = Pn(2). Then we construct a certain surjective homomorphism

Ψ : P ′n(2)→ A

which target is a free abelian group with infinite rank. (See Subsection 3.2.) Observing
Ψ and its restriction to the subgroups P ′n(k) for k ≥ 3, we obtain our main result of
the paper:
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Theorem 1. (= Theorems 3.1 and 3.5.) For n ≥ 3 and k ≥ 2, P ′n(k)ab contains
infinitely many linearly independent elements.

As a corollary, we have:

Corollary 1. (= Corollaries 3.2 and 3.7.) For n ≥ 3 and k ≥ 2, Pn(k)ab contains
infinitely many linearly independent elements.

We also remark that these results shows that P ′n(k) and Pn(k) are not finitely gen-
erated for k ≥ 2.

This paper consists of four sections. In Section 2, we recall the IA-automorphism
group, the Johnson filtration of AutFn, and of the basis-conjugating automorphism
group of a free group. In Section 3, we give an infinite presentation for P ′n(2), and
detect infinitely many linearly independent elements in Pn(k)ab for k ≥ 2.
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2. Preliminaries

In this section, after fixing notation and conventions, we briefly recall the definition
and some properties of the IA-automorphism group, the Johnson filtration of AutFn,
and of the basis-conjugating automorphism group of a free group.

2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G.

• The abelianization of G is denoted by Gab.
• The group AutG of G acts on G from the right. For any σ ∈ AutG and x ∈ G,

the action of σ on x is denoted by xσ.
• For an element g ∈ G, we also denote the coset class of g by g ∈ G/N if there

is no confusion.
• For elements x and y of G, the commutator bracket [x, y] of x and y is defined

to be [x, y] := xyx−1y−1.

3



• For elements g1, . . . , gk ∈ G, a commutator of weight k of the type

[[· · · [[g1, g2], g3], · · · ], gk]
with all of its brackets to the left of all the elements occurring is called a simple
k-fold commutator, and is denoted by [gi1 , gi2 , · · · , gik ].

2.2. IA-automorphism group.

In this paper, we fix a basis x1, . . . , xn of a free group Fn of rank n. Let H := F ab
n be

the abelianization of Fn and ρ : AutFn → AutH the natural homomorphism induced
from the abelianization of Fn. In the following, we identify AutH with the general
linear group GL(n,Z) by fixing the basis of H induced from the basis x1, . . . , xn of Fn.
The kernel IAn of ρ is called the IA-automorphism group of Fn. It is clear that the
inner automorphism group InnFn of Fn is contained in IAn. In general, however, IAn

for n ≥ 3 is much larger than InnFn. In fact, Magnus [8] showed that for any n ≥ 3,
IAn is finitely generated by automorphisms

Ki,j : xt 7→
{
xj
−1xixj, t = i,

xt, t 6= i

for distinct i, j ∈ {1, 2, . . . , n} and

Ki,j,l : xt 7→
{
xi[xj, xl], t = i,

xt, t 6= i

for distinct i, j, l ∈ {1, 2, . . . , n} such that j < l.

Recently, Cohen-Pakianathan [2, 3]，Farb [5] and Kawazumi [6] independently showed

(1) IAab
n
∼= H∗ ⊗Z Λ2H

as a GL(n,Z)-module where H∗ := HomZ(H,Z) is the Z-linear dual group of H. In
particular, from their result, we see that IAab

n is a free abelian group with basis the
coset classes of the Magnus generators Ki,j and Ki,j,l.

2.3. Johnson filtration.

In this subsection, we recall the Johnson filtration of AutFn. Let Γn(1) ⊃ Γn(2) ⊃ · · ·
be the lower central series of a free group Fn defined by the rule

Γn(1) := Fn, Γn(k) := [Γn(k − 1), Fn], k ≥ 2.

We denote by Ln(k) := Γn(k)/Γn(k + 1) the graded quotient of the lower central series
of Fn for each k ≥ 1. It is classically well known due to Witt [19] that each Ln(k) is a
GL(n,Z)-equivariant free abelian group of rank

(2)
1

k

∑

d|k
µ(d)n

k
d

where µ is the Möbius function. For example, Ln(1) = H and Ln(2) ∼= Λ2H, the
exterior product of H of degree 2.
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For each k ≥ 0, the action of AutFn on the nilpotent quotient group Fn/Γn(k + 1)
of Fn induces a homomorphism

AutFn → Aut(Fn/Γn(k + 1)).

We denote its kernel by An(k). Then the groups An(k) define a descending central
filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·
of AutFn, with An(1) = IAn. (See [1] for details.) It is called the Johnson fil-
tration of AutFn. Set grk(An) := An(k)/An(k + 1) for each k ≥ 1. Then the
graded sum gr(An) :=

⊕
k≥1 grk(An) has a graded Lie algebra structure induced from

the commutator bracket on IAn. The subgroups An(k) and the graded quotients
grk(An) := An(k)/An(k + 1) play an important role on the various study of the IA-
automorphism group IAn. It is known that each of grk(An) is a free abelian group of
finite rank due to Andreadakis [1]. Its rank is, however, not determined yet in general.

In order to study the graded quotients grk(An), the Johnson homomorphisms are
often used. For each k ≥ 1, define a homomorphism τ̃k : An(k)→ HomZ(H,Ln(k+ 1))
by

σ 7→ (x 7→ x−1xσ), x ∈ H.
Then the kernel of this homomorphism is exactly An(k + 1). Hence it induces an
injective homomorphism

τk : grk(An) ↪→ HomZ(H,Ln(k + 1)).

The homomorphism τk is called the k-th Johnson homomorphism of AutFn. Hence to
study the graded quotients grk(An) is equivalent to study the images of the Johnson
homomorphisms. For the Magnus generators of IAn, their images by τ1 are given by

(3) τ1(Ki,j) = x∗i ⊗ [xi, xj], τ1(Ki,j,l) = x∗i ⊗ [xj, xl]

where x∗1, . . . , x
∗
n ∈ H∗ is the dual basis of x1, . . . , xn ∈ H. We remark that τ1 is an

isomorphism and nothing but the abelianization of IAn. (See [2, 3, 5, 6].)

Let Der (Ln) be the graded Lie algebra of derivations of Ln. The degree k part of
Der (Ln) is considered as H∗⊗ZLn(k + 1), and we identify them in this paper. Then
the sum of the Johnson homomorphisms

τ :=
⊕

k≥1

τk : gr(An)→ Der (Ln)

is a graded Lie algebra homomorphism. In fact, if we denote by ∂ξ the element of
Der (Ln) corresponding to an element ξ ∈ H∗⊗ZLn, and write the action of ∂ξ on
X ∈ Ln as X∂ξ then we have

τk+l([σ, σ
′]) = τk(σ)∂τl(σ

′) − τl(σ′)∂τk(σ).

for any σ ∈ An(k) and σ′ ∈ An(l). This formula is very useful to calculate the image
of the Johnson homomorphism inductively.

Now, for 1 ≤ k ≤ 3, the GL(n,Z)-module structure of grk(An) ⊗Z Q is completely
determined by Andreadakis [1], Pettet [14] and Satoh [15] for k = 1, 2 and 3 respectively.
It seems, however, to study grk(An) for k ≥ 4 is quite difficult problem in general since
even its generating set has not been obtained yet.
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Let A′n(k) be the lower central series of IAn with A′n(1) = IAn. Since the Johnson
filtration is central, A′n(k) ⊂ An(k) for each k ≥ 1. It is conjectured that A′n(k) =
An(k) for each k ≥ 1 by Andreadakis who showed A′2(k) = A2(k) for each k ≥ 1 and
A′3(3) = A3(3) in [1]. Now, it is known that A′n(2) = An(2) due to Cohen-Pakianathan
[2, 3], Farb [5] and Kawazumi [6], and that A′n(3) has at most finite index in An(3)
due to Pettet [14]. Since IAn is finitely generated, so does each of the graded quotient
grk(A′n) := A′n(k)/A′n(k+ 1). Hence grk(A′n) is easier to handle rather than grk(An) in
general.

A restriction of τ̃k to A′n(k) induces a GL(n,Z)-equivariant homomorphism

τ ′k : grk(A′n)→ H∗ ⊗Z Ln(k + 1).

We also call it the Johnson homomorphism by an abuse of language. In our previous
papers [15], [17] and [18], we have studied the cokernel of the rational Johnson ho-
momorphism τ ′k,Q = τ ′k ⊗ idQ. Although the GL(n,Z)-module structure of grk(A′n) is
considerably clarified today through these works, the group structure of each of A′n(k)
is still not well-understood. For example, it is not determined whether each of A′n(k)
is finitely generated or not.

2.4. Basis-conjugating automorphism group.

In this subsection, we recall the basis-conjugating automorphisms of Fn. In general,
an automorphism σ of Fn such that xσi is conjugate to xi for each 1 ≤ i ≤ n is called a
basis-conjugating automorphism of Fn. Let PΣn be the subgroup of AutFn consisting
of the basis-conjugating automorphisms. The group PΣn is called the basis-conjugating
automorphism group of Fn or the McCool group. It is easily checked that PΣn ⊂ IAn

and an IA-automorphism Ki,j for i 6= j belongs to PΣn. McCool obtained a finite
presentation for PΣn as follows:

Theorem 2.1 (McCool [9]). The group PΣn has a finite presentation with generators
Ki,j for 1 ≤ i 6= j ≤ n subject to relations:

(R1): [Ki,j, Kk,j] = 1 for i < k,
(R2): [Ki,j, Kk,l] = 1 for i < k,
(R3): [Ki,k, Ki,jKk,j] = 1

where the subscripts i, j, k, l are distinct.

In this paper we consider the restriction of the Johnson filtration to PΣn. Namely,
set Pn(k) := PΣn ∩An(k) for each k ≥ 1. Then we have a descending central filtration

PΣn = Pn(1) ⊃ Pn(1) ⊃ Pn(2) ⊃ · · ·
of PΣn. We call it the Johnson filtration of PΣn. Then each of the graded quotients
grk(Pn) := Pn(k)/Pn(k + 1) is a Z-submodule of grk(An) for k ≥ 1. We denote by τP,k
the k-th Johnson homomorphism τk restricted to grk(Pn) for k ≥ 1.

Let P ′n(1) ⊃ P ′n(2) ⊃ · · · be the lower central series of PΣn. Then P ′n(1) = Pn(1)
by definition. Since the Johnson filtration is central, we see P ′n(k) ⊂ Pn(k) for each
k ≥ 1. Set grk(P ′n) := P ′n(k)/P ′n(k + 1) for k ≥ 1. There is a natural homomorphism
ιk : grk(P ′n) → grk(Pn) for each k ≥ 1 induced from the inclusion P ′n(k) ↪→ Pn(k).
Then we define a homomorphism τ ′P,k to be the composition of ιk and the Johnson
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homomorphism τP,k:

τ ′P,k = τP,k ◦ ιk : grk(P ′n)→ HomZ(H,Ln(k + 1)).

According to the Andreadakis’s conjecture as mentioned before, it would be seemed
P ′n(k) = Pn(k) for each k ≥ 1. It is, however, still an open problem in general. Here
we observe P ′n(2) = Pn(2), and show P ′n(3) = Pn(3) by using the second Johnson
homomorphism. First, we consider the abelianization of PΣn = Pn(1). By a work of
Cohen, Pakianathan, Vershinin and Wu [4], we have

(4) Pn(1)ab ∼= Z⊕n(n−1)

for n ≥ 3. This isomorphism is given by the first Johnson homomorphism τP,1. In
particular, we see that the Magnus generators Ki,j for 1 ≤ i 6= j ≤ n form a basis of
Pn(1)ab. Hence, as a corollary, we have

Corollary 2.2. For n ≥ 3, P ′n(2) = Pn(2).

Proof. Since τP,1 is the abelianization of Pn(1), the natural homomorphism ι1 :
gr1(P ′n)→ gr1(Pn) must be injective. Hence P ′n(2) = Pn(2). This completes the proof
of Corollary 2.2. �

Next, we consider P ′n(3). First, we determine the image of the Johsnon homomor-
phism τP,2.

Lemma 2.3. For n ≥ 3, Im(τP,2) ∼= Z⊕n(n−1)2/2.

Proof. From Corollary 2.2, we see that Im(τP,2) = Im(τ ′P,2). We show that gr2(A′n)

is generated by n(n− 1)2/2 elements:

S ′ := {[Ki,j,Ki,q] | 1 ≤ i ≤ n, 1 ≤ j < q ≤ n, j, q 6= i}
∪ {[Ki,j, Kj,i] | 1 ≤ i < j ≤ n}.

In general, gr2(P ′n) is generated by commutators [Ki,j, Kp,q]. Set N := ]{i, j, p, q} as
above. If N=4, or N = 3 and q = j, we have [Ki,j, Kp,q] = 1 ∈ Pn(2) by the relation
(R1) and (R2). It is also clear that if N = 3 and q = i, [Ki,j, Kp,i] = [Kp,i, Ki,j]

−1 ∈
Pn(2), and that if N = 3, p = i and j > q, [Ki,j, Ki,q] = [Ki,q, Ki,j]

−1. On the other
hand, using the relation (R3), we have

[Ki,j, Ki,qKj,q] = [Ki,j, Ki,q] + [Ki,j, Kj,q] = 0 ∈ gr2(A′n).

Hence we can reduce the generators type of [Ki,j, Kj,q]. Then we see that S ′ generates
gr2(A′n).

This shows that Im(τP,2) is generated by

S := {τP,2([Ki,j,Ki,q]) | 1 ≤ i ≤ n, 1 ≤ j < q ≤ n, j, q 6= i}
∪ {τP,2([Ki,j, Kj,i]) | 1 ≤ i < j ≤ n}.

Here we have

τP,2([Ki,j, Ki,q]) = x∗i ⊗ [xi, xq, xj]− x∗i ⊗ [xi, xj, xq]

and

τP,2([Ki,j, Kj,i]) = x∗i ⊗ [xi, xj, xi]− x∗j ⊗ [xj, xi, xj].

7



In order to show S is linearly independent in H∗ ⊗Z Ln(3), set

∑′
ai,j,qτP,2([Ki,j, Ki,q]) +

∑′′
bi,jτP,2([Ki,j, Kj,i]) = 0

where the first sum runs over 1 ≤ i ≤ n, and 1 ≤ j < q ≤ n such that j, q 6= i, and the
second one 1 ≤ i < j ≤ n. Then for any 1 ≤ i0 ≤ n, we have

j,q 6=i0∑
j<q

ai0,j,qτP,2([Ki0,j, Ki0,q]) +
∑
i0<j

bi0,jx
∗
i0
⊗ [xi0 , xj, xi0 ]

−
∑
j<i0

bj,i0x
∗
i0
⊗ [xi0 , xj, xi0 ] = 0.

(5)

Then consider the composition of homomorphisms

Φ : H∗ ⊗Z Ln(3)→ H∗ ⊗Z H
⊗3 → H⊗2

where the first homomorphism is induced from the natural embedding Ln(3) ↪→ H⊗3

defined by [X, Y ] 7→ X ⊗ Y − Y ⊗X, and the second one is the contraction map

x∗i ⊗ xi1 ⊗ xi2 ⊗ xi3 7→ x∗i (xi1) · xi2 ⊗ xi3 .
Observing the image of (5) by Φ, we obtain

j,q 6=i0∑
j<q

ai0,j,q(xq ⊗ xj − xj ⊗ xq) +
∑
i0<j

bi0,j(xj ⊗ xi0 − xi0 ⊗ xj)

−
∑
j<i0

bj,i0(xj ⊗ xi0 − xi0 ⊗ xj) = 0 ∈ H⊗2.

This shows that ai0,j,q = bi0,j = bj,i0 = 0 for 1 ≤ j < q ≤ n and j, q 6= i0. Hence S
is linearly independent in H∗ ⊗Z Ln(3). Therefore we obtain the required result. This
completes the proof of Lemma 2.3. �

Corollary 2.4. For n ≥ 3, P ′n(3) = Pn(3).

Proof. Since the image of the generating set S ′ of gr2(A′n) by τ ′P,2 is a basis of

Im(τ ′P,2) = Im(τP,2), it turns out that gr2(A′n) is a free abelian group with basis S ′, and
that

τ ′P,2 : gr2(A′n)
ι2−→ gr2(An)

τP,2−−→ Im(τP,2)

is an isomorphism. Hence ι2 is also an isomorphism. This shows P ′n(3) = Pn(3). This
completes the proof of Corollary 2.4. �

Observing the proofs of Lemma 2.3 and of Corollary 2.4, we see that for each k ≥ 3
if we determine the rank rn(k) := rankZ(grk(An)) of grk(An), and show that grk(A′n)
is generated by rn(k) elements, then we can show P ′n(k) = Pn(k) inductively. It seems,
however, quite complicated since we have to consider too many types of commutators
among Ki,j in grk(A′n) for large k.
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3. On the abelianization of P ′n(k) and Pn(k) for k ≥ 2

In this section, we show that the abelianization of P ′n(k) contains a free abelian group
of infinite rank for n ≥ 2 and k ≥ 2. Then we prove that Pn(k) also has the same prop-
erty. In order to show this, we obtain a presentation for the commutator subgroup
P ′n(2) of PΣn by the Reidemeister-Schreier method. Then we construct a homomor-
phism from P ′n(2) to some free abelian group which detects an infinitely generated free
abelian subgroup in P ′n(k) for k ≥ 2.

3.1. A presentation for P ′n(2).

In this subsection, we obtain a presentation for P ′n(2) by applying the Reidemeister-
Schreier method. (For the details for the Reidemeister-Schreier method, see Proposition
4.1 in Chapter II in [7] for example.)

Let F be a free group with basis {Ki,j | 1 ≤ i 6= j ≤ n}, and ϕ : F → PΣn the
canonical map. Set N = ϕ−1(P ′n(2)). Then a subset

T := {Ke1,2
1,2 K

e1,3
1,3 · · ·Ken,n−1

n,n−1 | ei,j ∈ Z} ⊂ F

is a Schreier transversal for N of F since PΣab
n is a free abelian group with basis

{Ki,j | 1 ≤ i 6= j ≤ n}. Here the order of the product amongK
ei,j
i,j inK

e1,2
1,2 K

e1,3
1,3 · · ·Ken,n−1

n,n−1

is the usual lexicographic order with respect to the index set

I := {(i, j) | 1 ≤ i 6= j ≤ n}.
Namely, for any (i, j) and (p, q) ∈ I, (i, j) < (p, q) if and only if i < p, or i = p and
j < q.

Set

γi,j(e1,2, . . . , en,n−1) := (K
e1,2
1,2 · · ·Ken,n−1

n,n−1 )Ki,j(K
e1,2
1,2 · · ·Kei,j+1

i,j · · ·Ken,n−1

n,n−1 )−1 ∈ F.
Then by applying the Reidemeister-Schreier method to the McCool’s presentation for
PΣn and the Schreier transversal T for N of F , we see that P ′n(2) is generated by

E := {γi,j(e1,2, . . . , en,n−1) | (1, 2) ≤ (i, j) ≤ (n, n− 2), ep,q 6= 0 for some

(i, j + 1) ≤ (p, q) ≤ (n, n− 1)},
subject to relators

τ(trt−1) for t ∈ T and r = (R1), (R2), (R3)

where τ denotes the “rewriting function”. Namely, for any word w ∈ N among Ki,js,
τ(w) (= w in F ) is a word among γi,j(e1,2, . . . , en,n−1)s. In the following, for any
t = K

e1,2
1,2 · · ·Ken,n−1

n,n−1 ∈ T , we write down τ(trt−1) explicitly.

Case (I). r = [Ki,j, Kk,j] for distinct 1 ≤ i, j, k ≤ n and i < k.

In this case, we have

trt−1 =(K
e1,2
1,2 · · ·Ken,n−1

n,n−1 )Ki,j(K
e1,2
1,2 · · ·Kei,j+1

i,j · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Ken,n−1

n,n−1 )Kk,j(K
e1,2
1,2 · · ·Kei,j+1

i,j · · ·Kek,j+1

k,j · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kek,j+1

k,j · · ·Ken,n−1

n,n−1 )K−1
i,j (K

e1,2
1,2 · · ·Kek,j+1

k,j · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kek,j+1

k,j · · ·Ken,n−1

n,n−1 )K−1
k,j (K

e1,2
1,2 · · ·Ken,n−1

n,n−1 )−1.

9



(1) If ep,q 6= 0 for some (k, j + 1) ≤ (p, q) ≤ (n, n− 1),

τ(trt−1) = γi,j(e1,2, . . . , en,n−1)γk,j(e1,2, . . . , ei,j + 1, . . . , en,n−1)

· γi,j(e1,2, . . . , ek,j + 1, . . . , en,n−1)−1γk,j(e1,2, . . . , en,n−1)−1

(2) If {(p, q) ∈ I | (k, j + 1) ≤ (p, q) ≤ (n, n− 1), ep,q 6= 0} = φ,

trt−1 = (K
e1,2
1,2 · · ·Kek,j

k,j )Ki,j(K
e1,2
1,2 · · ·Kei,j+1

i,j · · ·Kek,j
k,j )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kek,j+1

k,j )K−1
i,j (K

e1,2
1,2 · · ·Kek,j+1

k,j )−1.

Hence, we see:

(i) If ep,q 6= 0 for some (i, j + 1) ≤ (p, q) ≤ (k, j − 1), or ek,j 6= 0,−1,

τ(trt−1) = γi,j(e1,2, . . . , ek,j, 0, . . . , 0)γi,j(e1,2, . . . , ek,j + 1, 0, . . . , 0)−1.

(ii) If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (k, j − 1), ep,q 6= 0} = φ and ek,j = 0,

τ(trt−1) = γi,j(e1,2, . . . , ei,j, 0, . . . , 1, . . . , 0)−1

where 1 appears in (k, j) entry.

(iii) If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (k, j − 1), ep,q 6= 0} = φ and ek,j = −1,

τ(trt−1) = γi,j(e1,2, . . . , ei,j, 0, . . . ,−1, . . . , 0)

where −1 appears in (k, j) entry.

Similarly, we have the cases (II) and (III) as follows.

Case (II). r = [Ki,j, Kk,l] for distinct 1 ≤ i, j, k, l ≤ n and i < k.

In this case, we have

trt−1 =(K
e1,2
1,2 · · ·Ken,n−1

n,n−1 )Ki,j(K
e1,2
1,2 · · ·Kei,j+1

i,j · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Ken,n−1

n,n−1 )Kk,l(K
e1,2
1,2 · · ·Kei,j+1

i,j · · ·Kek,l+1

k,l · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kek,l+1

k,l · · ·Ken,n−1

n,n−1 )K−1
i,j (K

e1,2
1,2 · · ·Kek,l+1

k,l · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kek,l+1

k,l · · ·Ken,n−1

n,n−1 )K−1
k,l (K

e1,2
1,2 · · ·Ken,n−1

n,n−1 )−1.

(1) If ep,q 6= 0 for some (k, l + 1) ≤ (p, q) ≤ (n, n− 1),

τ(trt−1) = γi,j(e1,2, . . . , en,n−1)γk,l(e1,2, . . . , ei,j + 1, . . . , en,n−1)

· γi,j(e1,2, . . . , ek,l + 1, . . . , en,n−1)−1γk,l(e1,2, . . . , en,n−1)−1.

(2) If {(p, q) ∈ I | (k, l + 1) ≤ (p, q) ≤ (n, n− 1), ep,q 6= 0} = φ, we have:

(i) If ep,q 6= 0 for some (i, j + 1) ≤ (p, q) ≤ (k, l − 1), or ek,l 6= 0,−1,

τ(trt−1) = γi,j(e1,2, . . . , ek,l, 0, . . . , 0)γi,j(e1,2, . . . , ek,l + 1, 0, . . . , 0)−1.

(ii) If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (k, l − 1), ep,q 6= 0} = φ and ek,l = 0,

τ(trt−1) = γi,j(e1,2, . . . , ei,j, 0, . . . , 1, . . . , 0)−1

where 1 appears in (k, l) entry.
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(iii) If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (k, l − 1), ep,q 6= 0} = φ and ek,l = −1,

τ(trt−1) = γi,j(e1,2, . . . , ei,j, 0, . . . ,−1, . . . , 0)

where −1 appears in (k, l) entry.

Case (III). r = [Ki,k, Ki,jKk,j] for distinct 1 ≤ i, j, k ≤ n.

(1) i < k and j < k. Then (i, j) < (i, k) < (k, j).

In this case, we have

trt−1 =(Ke1,2
1,2 · · ·Ken,n−1

n,n−1 )Ki,k(K
e1,2
1,2 · · ·K

ei,k+1
i,k · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·K

ei,k+1
i,k · · ·Ken,n−1

n,n−1 )Ki,j(K
e1,2
1,2 · · ·Kei,j+1

i,j · · ·Kei,k+1
i,k · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kei,k+1
i,k · · ·Ken,n−1

n,n−1 )Kk,j

(Ke1,2
1,2 · · ·Kei,j

i,j · · ·K
ei,k+1
i,k · · ·Kek,j+1

k,j · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kei,k+1
i,k · · ·Kek,j+1

k,j · · ·Ken,n−1

n,n−1 )K−1
i,k

(Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kek,j+1
k,j · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kek,j+1
k,j · · ·Ken,n−1

n,n−1 )K−1
k,j (K

e1,2
1,2 · · ·Kei,j+1

i,j · · ·Ken,n−1

n,n−1 )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Ken,n−1

n,n−1 )K−1
ij (Ke1,2

1,2 · · ·Ken,n−1

n,n−1 )−1.

(i) If ep,q 6= 0 for some (k, j + 1) ≤ (p, q) ≤ (n, n− 1),

τ(trt−1) = γi,k(e1,2, . . . , en,n−1)γi,j(e1,2, . . . , ei,k + 1, . . . , en,n−1)

· γk,j(e1,2, . . . , ei,j + 1, . . . , ei,k + 1, . . . , en,n−1)

· γi,k(e1,2, . . . , ei,j + 1, . . . , ek,j + 1, . . . en,n−1)−1

· γk,j(e1,2, . . . , ei,j + 1, . . . , en,n−1)−1γi,j(e1,2, . . . en,n−1)−1.

(ii) If {(p, q) ∈ I | (k, j + 1) ≤ (p, q) ≤ (n, n− 1), ep,q 6= 0} = φ, we have:

1© If ep,q 6= 0 for some (i, k + 1) ≤ (p, q) ≤ (k, j − 1), or ek,j 6= 0,−1,

τ(trt−1) = γi,k(e1,2, . . . , ek,j, 0 . . . , 0)γi,j(e1,2, . . . , ei,k + 1, . . . , ek,j, 0 . . . , 0)

· γi,k(e1,2, . . . , ei,j + 1, . . . , ek,j + 1, 0 . . . 0)−1

· γi,j(e1,2, . . . ek,j, 0, . . . , 0)−1.

2© If {(p, q) ∈ I | (i, k + 1) ≤ (p, q) ≤ (k, j − 1), ep,q 6= 0} = φ and ek,j = −1,

τ(trt−1) = γi,k(e1,2, . . . , ei,k, 0 . . . ,−1, . . . , 0)γi,j(e1,2, . . . , ei,k + 1, 0, . . . ,−1, . . . , 0)

· γi,j(e1,2, . . . ei,k, 0 . . . ,−1, . . . , 0)−1

where −1 appears in (k, j) entries in γi,k and γi,js.
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3© If {(p, q) ∈ I | (i, k + 1) ≤ (p, q) ≤ (k, j − 1), ep,q 6= 0} = φ and ek,j = 0,

trt−1 = (K
e1,2
1,2 · · ·Kei,k+1

i,k )Ki,j(K
e1,2
1,2 · · ·Kei,j+1

i,j · · ·Kei,k+1

i,k )−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kei,k+1

i,k Kk,j)K
−1
i,k (K

e1,2
1,2 · · ·Kei,j+1

i,j · · ·Kei,k
i,k Kk,j)

−1

· (Ke1,2
1,2 · · ·Kei,j+1

i,j · · ·Kei,k
i,k )K−1

i,j (K
e1,2
1,2 · · ·Kei,k

i,k )−1.

Hence, we have:

(a) If ep,q 6= 0 for some (i, j + 1) ≤ (p, q) ≤ (i, k − 1), or ei,k 6= 0,−1,

τ(trt−1) = γi,j(e1,2, . . . , ei,k + 1, 0, . . . , 0)

· γi,k(e1,2, . . . , ei,j + 1, . . . , ei,k, 0 . . . , 1, . . . , 0)−1

· γi,j(e1,2, . . . ei,k, 0 . . . , . . . , 0)−1

where 1 appears in (k, j) entry in γi,k.

(b) If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (i, k − 1), ep,q 6= 0} = φ and ei,k = 0,

τ(trt−1) = γi,j(e1,2, . . . , ei,j, 0, . . . , 1, . . . , 0)

· γi,k(e1,2, . . . , ei,j + 1, 0, . . . , 1, . . . , 0)−1

where 1 appears in (i, k) and (k, j) entries in γi,j and γi,k respectively.

(c) If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (i, k − 1), ep,q 6= 0} = φ and ei,k = −1,

τ(trt−1) = γi,k(e1,2, . . . , ei,j + 1, 0, . . . ,−1, . . . , 1, . . . , 0)−1

· γi,j(e1,2, . . . , ei,j, 0, . . . ,−1, . . . , 0)−1

where −1 appears in (i, k) entries in γi,k and γi,j, and 1 appears (k, j) entry in γi,k.

Similarly, we can obtain the other three cases.

(2) i < k and k < j. Then (i, k) < (i, j) < (k, j).

(i) If ep,q 6= 0 for some (k, j + 1) ≤ (p, q) ≤ (n, n− 1),

τ(trt−1) = γi,k(e1,2, . . . , en,n−1)γi,j(e1,2, . . . , ei,k + 1, . . . , en,n−1)

· γk,j(e1,2, . . . , ei,k + 1, . . . , ei,j + 1, . . . , en,n−1)

· γi,k(e1,2, . . . , ei,j + 1, . . . , ek,j + 1, . . . en,n−1)−1

· γk,j(e1,2, . . . , ei,j + 1, . . . , en,n−1)−1γi,j(e1,2, . . . en,n−1)−1.

(ii) If {(p, q) ∈ I | (k, j + 1) ≤ (p, q) ≤ (n, n− 1), ep,q 6= 0} = φ, we have:

1© If ep,q 6= 0 for some (i, j + 1) ≤ (p, q) ≤ (k, j − 1), or ek,j 6= 0,−1,

τ(trt−1) = γi,k(e1,2, . . . , ek,j, 0 . . . , 0)γi,j(e1,2, . . . , ei,k + 1, . . . , ek,j, 0 . . . , 0)

· γi,k(e1,2, . . . , ei,j + 1, . . . , ek,j + 1, 0 . . . 0)−1

· γi,j(e1,2, . . . ek,j, 0, . . . , 0)−1.

2© If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (k, j − 1), ep,q 6= 0} = φ and ek,j = −1, we see:
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(a) If ep,q 6= 0 for some (i, k + 1) ≤ (p, q) ≤ (i, j − 1), or ei,j 6= −1,

τ(trt−1) = γi,k(e1,2, . . . , ei,j, 0 . . . ,−1, . . . , 0)

· γi,j(e1,2, . . . , ei,k + 1, . . . , ei,j, 0, . . . ,−1, . . . , 0)

· γi,k(e1,2, . . . ei,j + 1, 0, . . . , 0)−1γi,j(e1,2, . . . , ei,j, 0, . . . ,−1, . . . , 0)−1

where −1 appears in (k, j) entries in γi,k and γi,js.

(b) If {(p, q) ∈ I | (i, k + 1) ≤ (p, q) ≤ (i, j − 1), ep,q 6= 0} = φ and ei,j = −1,

τ(trt−1) = γi,k(e1,2, . . . , ei,k, 0, . . . ,−1, . . . ,−1, . . . , 0)

· γi,j(e1,2, . . . , ei,k + 1, 0, . . . ,−1, . . . ,−1, . . . , 0)

· γi,j(e1,2, . . . , . . . , ei,k, 0, . . . ,−1, . . . ,−1, . . . , 0)−1

where −1 appears in (i, j) and (k, j) entries in γi,k and γi,js.

3© If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (k, j − 1), ep,q 6= 0} = φ and ek,j = 0, we see

(a) If ep,q 6= 0 for some (i, k + 1) ≤ (p, q) ≤ (i, j − 1), or ei,j 6= 0,−1,

τ(trt−1) = γi,k(e1,2, . . . , ei,j, 0, . . . , 0)

· γi,k(e1,2, . . . , ei,j + 1, 0 . . . , 1, . . . , 0)−1

where 1 appears in (k, j) entry in γi,k.

(b) If {(p, q) ∈ I | (i, k + 1) ≤ (p, q) ≤ (i, j − 1), ep,q 6= 0} = φ and ei,j = 0,

τ(trt−1) = γi,k(e1,2, . . . , ei,k, 0, . . . , 1, . . . , 1, . . . , 0)−1

where 1 appears in (i, j) and (k, j) entries.

(c) If {(p, q) ∈ I | (i, k + 1) ≤ (p, q) ≤ (i, j − 1), ep,q 6= 0} = φ and ei,j = −1,

τ(trt−1) = γi,k(e1,2, . . . , ei,k, 0, . . . ,−1, . . . , 0)

· γi,k(e1,2, . . . , ei,k, 0, . . . , 1, . . . , 0)−1

where −1 appears in (i, j) entry in γi,k, and 1 appears in (k, j) entry in γi,k.

(3) k < i and j < k. Then (k, j) < (i, j) < (i, k).

(i) If ep,q 6= 0 for some (i, k + 1) ≤ (p, q) ≤ (n, n− 1),

τ(trt−1) = γi,k(e1,2, . . . , en,n−1)γi,j(e1,2, . . . , ei,k + 1, . . . , en,n−1)

· γk,j(e1,2, . . . , ei,j + 1, . . . , ei,k + 1, . . . , en,n−1)

· γi,k(e1,2, . . . , ek,j + 1, . . . , ei,j + 1, . . . en,n−1)−1

· γk,j(e1,2, . . . , ei,j + 1, . . . , en,n−1)−1γi,j(e1,2, . . . en,n−1)−1.

(ii) If {(p, q) ∈ I | (i, k + 1) ≤ (p, q) ≤ (n, n− 1), ep,q 6= 0} = φ, we have:

1© If ep,q 6= 0 for some (i, j + 1) ≤ (p, q) ≤ (i, k − 1), or ei,k 6= 0,−1,

τ(trt−1) = γi,j(e1,2, . . . , ei,k + 1, 0 . . . , 0)γk,j(e1,2, . . . , ei,j + 1, . . . , ei,k + 1, 0 . . . , 0)

· γk,j(e1,2, . . . , ei,j + 1, . . . , ei,k, 0 . . . 0)−1γi,j(e1,2, . . . ei,k, 0, . . . , 0)−1.

2© If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (i, k − 1), ep,q 6= 0} = φ and ei,k = −1,
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(a) If ep,q 6= 0 for some (k, j + 1) ≤ (p, q) ≤ (i, j − 1), or ei,j 6= −1,

τ(trt−1) = γk,j(e1,2, . . . ei,j + 1, 0, . . . , 0)γk,j(e1,2, . . . , ei,j + 1, 0, . . . ,−1, . . . , 0)−1

· γi,j(e1,2, . . . , ei,j, 0, . . . ,−1, . . . , 0)−1

where −1 appears (i, k) entries in γk,j and γi,j.

(b) If {(p, q) ∈ I | (k, j + 1) ≤ (p, q) ≤ (i, j − 1), ep,q 6= 0} = φ and ei,j = −1,

τ(trt−1) = γk,j(e1,2, . . . , ek,j, 0, . . . ,−1, . . . , 0)−1

· γi,j(e1,2, . . . , ek,j, 0, . . . ,−1, . . . ,−1, . . . , 0)−1

where −1 appears in (i, j) and (i, k) entries in γi,j, and in (i, k) entry in γk,j.

3© If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (i, k − 1), ep,q 6= 0} = φ and ei,k = 0,

(a) If ep,q 6= 0 for some (k, j + 1) ≤ (p, q) ≤ (i, j − 1), or ei,j 6= −1,

τ(trt−1) = γi,j(e1,2, . . . , ei,j, 0, . . . , 1, . . . , 0)γk,j(e1,2, . . . , ei,j + 1, 0, . . . , 1, . . . , 0)

· γk,j(e1,2, . . . ei,j + 1, 0, . . . , 0)−1

where 1 appears (i, k) entries in γi,j and γk,j.

(b) If {(p, q) ∈ I | (k, j + 1) ≤ (p, q) ≤ (i, j − 1), ep,q 6= 0} = φ and ei,j = −1,

τ(trt−1) = γi,j(e1,2, . . . , ek,j, 0, . . . ,−1, . . . , 1, . . . , 0)

· γk,j(e1,2, . . . , ek,j, 0, . . . , 1, . . . , 0)

where 1 appears in (i, k) entries in γi,j and γk,j, −1 appears in (i, j) entry in γi,j.

(4) k < i and k < j. Then (k, j) < (i, k) < (i, j).

(i) If ep,q 6= 0 for some (i, j + 1) ≤ (p, q) ≤ (n, n− 1),

τ(trt−1) = γi,k(e1,2, . . . , en,n−1)γi,j(e1,2, . . . , ei,k + 1, . . . , en,n−1)

· γk,j(e1,2, . . . , ei,k + 1, . . . , ei,j + 1, . . . , en,n−1)

· γi,k(e1,2, . . . , ek,j + 1, . . . , ei,j + 1, . . . en,n−1)−1

· γk,j(e1,2, . . . , ei,j + 1, . . . , en,n−1)−1γi,j(e1,2, . . . en,n−1)−1.

(ii) If {(p, q) ∈ I | (i, j + 1) ≤ (p, q) ≤ (n, n− 1), ep,q 6= 0} = φ, we have:

1© If ep,q 6= 0 for some (i, k + 1) ≤ (p, q) ≤ (i, j − 1), or ei,j 6= 0,−1,

τ(trt−1) = γi,k(e1,2, . . . , ei,j, 0 . . . , 0)γk,j(e1,2, . . . , ei,k + 1, . . . , ei,j + 1, 0 . . . , 0)

· γi,k(e1,2, . . . , ek,j + 1, . . . , ei,j + 1, 0 . . . 0)−1

· γk,j(e1,2, . . . ei,j + 1, 0, . . . , 0)−1.

2© If {(p, q) ∈ I | (i, k + 1) ≤ (p, q) ≤ (i, j − 1), ep,q 6= 0} = φ and ei,j = −1,

(a) If ep,q 6= 0 for some (k, j + 1) ≤ (p, q) ≤ (i, k − 1), or ei,k 6= 0,−1,

τ(trt−1) = γi,k(e1,2, . . . ei,k, 0, . . . ,−1, . . . , 0)γk,j(e1,2, . . . , ei,k + 1, 0, . . . , 0)

· γk,j(e1,2, . . . , ei,k, 0, . . . , 0)−1

where −1 appears in (i, j) entry in γi,k.
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(b) If {(p, q) ∈ I | (k, j + 1) ≤ (p, q) ≤ (i, k − 1), ep,q 6= 0} = φ and ei,k = −1,

τ(trt−1) = γi,k(e1,2, . . . , ek,j, 0, . . . ,−1, . . . ,−1, . . . , 0)

· γk,j(e1,2, . . . , ek,j, 0, . . . ,−1, . . . , 0)−1

where −1 appears in (i, k) and (i, j) entries in γi,k, and in (i, k) entry in γk,j.

(c) If {(p, q) ∈ I | (k, j + 1) ≤ (p, q) ≤ (i, k − 1), ep,q 6= 0} = φ and ei,k = 0,

τ(trt−1) = γi,k(e1,2, . . . , ek,j, 0, . . . ,−1, . . . , 0)γk,j(e1,2, . . . , ek,j, 0, . . . , 1, . . . , 0)

where −1 appears in (i, j) entry in γi,k, and 1 appears in (i, k) entry in γk,j.

3© If {(p, q) ∈ I | (i, k + 1) ≤ (p, q) ≤ (i, j − 1), ep,q 6= 0} = φ and ei,j = 0,

(a) If ep,q 6= 0 for some (k, j + 1) ≤ (p, q) ≤ (i, k − 1), or ei,k 6= −1,

τ(trt−1) = γk,j(e1,2, . . . , ei,k + 1, 0, . . . , 1, . . . , 0)

· γi,k(e1,2, . . . , ek,j + 1, . . . .ei,k, 0, . . . , 1, . . . , 0)−1

· γk,j(e1,2, . . . ei,k, 0, . . . , 1, . . . , 0)−1

where 1 appears in (i, j) entries in γi,k and γk,js.

(b) If {(p, q) ∈ I | (k, j + 1) ≤ (p, q) ≤ (i, k − 1), ep,q 6= 0} = φ and ei,k = −1,

τ(trt−1) = γk,j(e1,2, . . . , ek,j, 0, . . . , 1, . . . , 0)

· γi,k(e1,2, . . . , ek,j + 1, 0, . . . ,−1, . . . , 1, . . . , 0)−1

· γk,j(e1,2, . . . , ek,j, 0, . . . ,−1, . . . , 1, . . . , 0)−1

where −1 appears in (i, k) entries in γi,k and γk,j, and 1 appears in (i, j) entries in γi,k
and γk,js.

3.2. Infinitely many linearly independent elements in P ′n(2)ab.

In this subsection, we detect infinitely many linearly independent elements in P ′n(2)ab

using the presentation for P ′n(2) which we have obtained in the previous subsection.
Then we show that P ′n(k)ab for k ≥ 3 also contains infinitely many linearly independent
elements. Finally we confirm ourselves that for k ≥ 2, the abelianization of each
subgroups Pn(k) of the Johnson filtration of PΣn has the same property.

To begin with, set

A := SpanZ{bi,j(e, e′) | 1 ≤ i < j ≤ n, e ∈ Z, e′ ∈ Z \ {0}}.
Clearly, A is a free abelian group of infinite rank. Since N = ϕ−1(P ′n(2)) is a free group
with basis E, we can define a surjective homomorphism Ψ′ : N → A by

Ψ′(γij(e1,2, . . . , en,n−1)) =

{
bi,j(ei,j, ej,i) if i < j and ej,i 6= 0,

0, if otherwise.

Then it is easily checked that Ψ′(τ(trt−1)) = 0 for any t ∈ T and r = (R1), (R2), (R3)
from the results obtained in the previous subsection. This shows that Ψ′ induces a
surjective homomorphism

Ψ : Pn(2)→ A.
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Since the target of Ψ is abelian, Ψ factors through the abelianization Pn(2)ab of Pn(2).
Hence we obtain

Theorem 3.1. For any n ≥ 3, P ′n(2)ab contains infinitely many linearly independent
elements.

As a corollary, we see

Corollary 3.2. For any n ≥ 3, P ′n(2) is not finitely generated.

Next, let us consider P ′n(k) for k ≥ 3. For 1 ≤ i < j ≤ n, e ∈ Z and e′ ∈ Z≥1, set

αi,j(e, e
′) := Ke

i,j[Kj,i, [Kj,i, . . . , [Kj,i, Ki,j]] · · · ]K−ei,j ,
βi,j(e, e

′) := γi,j(0, . . . , e, . . . , e
′, . . . , 0) = Ke

i,jK
e′
j,iKi,jK

−e′
j,i K

−(e+1)
i,j

where Kj,i appears e′ times in the definition of αi,j(e, e
′).

Here we prepare one lemma. In general, for any group G and x, y ∈ G, set

θe′(x, y) := [x, [x, . . . , [x, y]] · · · ] ∈ G
for e′ ≥ 1 where x appears e′ times in the commutator above. Then we have

Lemma 3.3. With the notation above, [xe
′
, y] ∈ G is written as

θe′(x, y)θe′1(x, y) · · · θe′p(x, y)

in G for some 1 ≤ e′1, . . . , e
′
p ≤ e′ − 1.

Proof of Lemma 3.3. We show this lemma by the induction on e′. If e′ = 1, it is
obvious that [x, y] = θ1(x, y). Assume e′ ≥ 2. Using a commutator formula

[ab, c] = [a, [b, c]][b, c][a, c],

we see
[xe
′
, y] = [xe

′−1, [x, y]] [x, y] [xe
′−1, y].

Hence, by the inductive hypothesis, we have

[xe
′
, y] = θe′−1(x, [x, y])θe′1(x, [x, y]) · · · θe′p(x, [x, y])θ1(x, y)

· θe′−1(x, y)θe′′1 (x, y) · · · θe′′q (x, y)

for some 1 ≤ e′j, e
′′
j ≤ e′ − 2. On the other hand, since θe−1(x, [x, y]) = θe(x, y) for any

e ≥ 2, we obtain the required result. This completes the proof of Lemma 3.3. �
Now, we consider a relation between αi,j(e, e

′) and βi,j(e, e
′).

Lemma 3.4. For any 1 ≤ i < j ≤ n, e ∈ Z and e′ ∈ Z≥1, there exist some 1 ≤
e′1, . . . , e

′
p ≤ e′ − 1 such that

αi,j(e, e
′) = βi,j(e, e

′)βi,j(e, e′1)d1 · · · βi,j(e, e′p)dp for dj = ±1.

Proof. We show this lemma by the induction on e′. If e′ = 1, it is clear that
αi,j(e, 1) = βi,j(e, 1). Assume e′ ≥ 2. By using Lemma 3.3, we have

βi,j(e, e
′) = Ke

i,j [Ke′
j,i, Ki,j]K

−e
i,j ,

= Ke
i,j θe′(Kj,i, Ki,j)θe′1(Kj,i, Ki,j) · · · θe′p(Kj,i, Ki,j)K

−e
i,j ,

= αi,j(e, e
′)αi,j(e, e′1) · · ·αi,j(e, e′p)
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for some 1 ≤ e′j ≤ e′− 1. Hence, using the inductive hypothesis, we obtain the required
result. This completes the proof of Lemma 3.4. �

Here we prove our main theorem.

Theorem 3.5. For n ≥ 3 and k ≥ 3, P ′n(k)ab contains infinitely many linearly inde-
pendent elements.

Proof. For any d ≥ k, consider d− k + 2 elements

αi,j(e, k − 1), αi,j(e, k), . . . , αi,j(e, d)

in P ′n(k) for any e ∈ Z. We denote by

ci,j(e, k − 1), ci,j(e, k), . . . , ci,j(e, d)

the images of αi,j(e, k−1), αi,j(e, k), . . . , αi,j(e, d) by the composition map Ψ′k : P ′n(k) ↪→
P ′n(2)

Ψ−→ A respectively.

Here we show that ci,j(e, k − 1), . . ., ci,j(e, d) are linearly independent in A. Assume
that

ak−1ci,j(e, k − 1) + · · ·+ adci,j(e, d) = 0

for ak−1, . . ., ad ∈ Z. Then using Lemma 3.4, we see that the coefficient of bi,j(e, d) is
exactly ad, and hence ad = 0. This shows that

ak−1ci,j(e, k − 1) + · · ·+ ad−1ci,j(e, d− 1) = 0.

By the same argument as the above, we can show that ad−1 = ad−2 = · · · = ak−1 = 0
recursively. Therefore ci,j(e, k − 1), . . ., ci,j(e, d) are linearly independent in A.

Since Ψ′k factors through the abelianization P ′n(k)ab of P ′n(k), we see that P ′n(k)ab

contains a free abelian group with rank d−k+ 2. On the other hand, since we can take
d ≥ k arbitrarily, we conclude that P ′n(k)ab contains a free abelian group with infinite
rank. This completes the proof of Theorem 3.5. �

As a corollary, we have

Corollary 3.6. For n ≥ 3 and k ≥ 3, P ′n(k) is not finitely generated.

Finally, we consider the Johnson filtration of PΣn.

Corollary 3.7. For n ≥ 3 and k ≥ 3, Pn(k)ab contains infinitely many linearly inde-
pendent elements.

Proof. Consider a homomorphism Ψ : Pn(k) ↪→ P ′n(2)
Ψ−→ A which factors through

the abelianization Pn(k)ab of Pn(k). Observing the proof of Theorem 3.5, we see that
for any d ≥ k the images of αi,j(e, k − 1), . . ., αi,j(e, d) ∈ P ′n(k) ⊂ Pn(k) by Ψk are
linearly independent in A. Hence we obtain the required result. This completes the
proof of Corollary 3.7. �

And hence, we obtain

Corollary 3.8. For n ≥ 3 and k ≥ 3, Pn(k) is not finitely generated.
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