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Abstract

The purpose of this paper is applying minimality of hyperplane ar-
rangements to local system cohomology groups. It is well known that
twisted cohomology groups with coefficients in a generic rank one local
system vanish except in the top degree, and bounded chambers form
a basis of the remaining cohomology group. We determine precisely
when this phenomenon happens for two dimensional arrangements.

1 Introduction

The purpose of this paper is applying minimality of hyperplane arrangements
to local system cohomology groups. In §1.1 and §1.2, we will recall basic
notions and results on these topics. In §1.3, we will give the plan of the
paper.

1.1 Minimality of hyperplane arrangements

Let A = {H1, . . . , Hn} be a hyperplane arrangement in Cℓ. Namely a finite
set of affine hyperplanes. We assume each hyperplane Hi = {αi = 0} ⊂ Cℓ

is defined by an affine linear equation αi. We denote the complement of
hyperplanes by M(A) = Cℓ \

∪n
i=1 Hi.
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After the discovery of combinatorial description of the cohomology ring
H∗(M(A), Z) [OS] and K(π, 1)-property for simplicial arrangements [D], it
has been revealed that the complement M(A) of a hyperplane arrangement
A has a very special homotopy type among other complex affine varieties. In
particular, the following minimality seems one of the most peculiar properties
to M(A) [DP, R, PS, F].

Theorem 1.1. (Minimality of arrangements.) The complement M(A) is
homotopy equivalent to a finite minimal CW-complex X. Namely, X satisfies
the following minimality: The number of k-dimensional cells ♯{k- dim cells}
is equal to the k-th Betti number bk(X).

The minimality is expected to be useful for computations of local system
cohomology groups. An immediate corollary is the following upper bounds
for dimensions of rank one local system cohomology groups, which were con-
jectured by Aomoto and first proved in [Co] by using another methods.

Corollary 1.2. Let L be a complex rank one local system on M(A). Then the
dimension of L-coefficients cohomology group is bounded by Betti number:

dim Hk(M(A), L) ≤ bk(M(A)),

for k = 0, 1, . . . , ℓ.

For further applications of the minimality to computations of local sys-
tem cohomology groups, the description of the minimal CW-complex X, in
particular the attaching map of each cell, is needed. However Theorem 1.1
does not tell it. It should be noted that the proof of Theorem 1.1 is based
on Morse theoretic arguments. The constructions of cells are relying on a
transcendental methods, namely using gradient flows of a Morse function.

Recently two approaches appeared to the problem of describing attaching
maps of minimal cells. Both are

• assuming A is defined over the real numbers R, and

• describing attaching maps by using combinatorial structure of cham-
bers.

However they used different methods.

• In [Y1], we studied Lefschetz’s hyperplane plane section theorem for
M(A), and described the attaching maps of the top cells.
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• In [SS], Salvetti and Settepanella developed discrete Morse theory on
the Salvetti complex, and then described the minimal cell complex by
using discrete Morse flows.

See [Del, DS] for subsequent developments. Furthermore, in [GS], 2-dimensional
algebraic minimal chain complex is described. The present article can be con-
sidered as a counterpart of [GS].

1.2 Non-resonant local systems

A nonempty intersection of elements of A is called an edge. We denote by
L(A) the set of edges. An edge X ∈ L(A) is called a dense edge if the
localization AX = {H ∈ A | H ⊃ X} is indecomposable. We denote by
D(A) ⊂ L(A) the set of dense edges.

Let λ = (λ1, . . . , λn) ∈ Cn. Then λ determines a rank one representation
of π1(M(A)) by π1(M(A)) ∋ γ 7−→ exp(

∫
γ

∑n
i=1 λid log αi) ∈ C∗ and the

associated local system L = Lλ. In other words, L is determined by the
local monodromy qi = e2π

√
−1λi ∈ C∗ around each hyperplane Hi. For an

edge X ∈ L(A), denote qX =
∏

X⊂Hi
qi. We also denote the half twist by

q
1/2
i = eπ

√
−1λi .

We can embed the affine space Cℓ in CPℓ as Cℓ = CPℓ \ H∞. We call
A∞ := {H | H ∈ A}∪{H∞} the projective closure of A. The monodromy of
Lλ around the hyperplane at infinity H∞ is

∏n
i=1 q−1

i . It is natural to define
q∞ =

∏n
i=1 q−1

i .
The the structure of the cohomology group Hk(M(A),L) with local sys-

tem coefficients has been studied well [A, ESV, K, STV]. In particular, it is
known that if L is generic, then the cohomology vanishes except in k = ℓ.
Among others, let us recall two results in this direction. ([DT, L, CDO])

Theorem 1.3. ([DT]) Suppose that A is defined over R and the local system
Lλ satisfies

qX ̸= 1, for ∀X ∈ D(A∞). (1)

Then

Hk(M(A), Lλ) =


0 for k ̸= ℓ,⊕

C∈bch(A)

C · [C], for k = ℓ,
(2)
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where bch(A) stands for the set of all bounded chambers. A chamber [C] can
be considered as a locally finite cycle, in other words, an element of Borel-
Moore homology [C] ∈ HBM

ℓ (M(A)). In (2) we identify the chamber C with
cohomology via the canonical isomorphism HBM

ℓ (M(A)) ≃ Hℓ(M(A)).

Definition 1.4. D∞(A∞) := {X ∈ D(A∞) | X ⊂ H∞}.
Theorem 1.5. ([CDO]) Suppose that the local system Lλ satisfies

qX ̸= 1, for ∀X ∈ D∞(A∞). (3)

Then

Hk(M(A),Lλ) ≃


0 for k ̸= ℓ,

C|χ(M(A))| for k = ℓ,

where χ(M(A)) is the Euler characteristic of M(A).

1.3 Plan of the paper

The purpose of this paper is to refine vanishing results Theorem 1.3 and
Theorem 1.5 for ℓ = 2 by using minimal complex arising from minimal CW-
decomposition of M(A). We will prove that the assertion (2) of Theorem 1.3 is
true under the weaker assumption (3). Furthermore, if A is indecomposable,
we also prove that the assumption can not be weakened any more. Our main
result asserts that (3) and (2) are equivalent. (For ℓ = 2.)

In §2, we treat combinatorial structures of chambers, which will play a
crucial role in the study of minimal complex.

In §3, we will describe the minimal cochain complex arising from Lef-
schetz’s hyperplane section theorem. Particularly, we treat the case ℓ = 2 in
details.

In §4, we prove the main result, that is, for an indecomposable two di-
mensional arrangement A, conditions (3) and (2) are equivalent.

2 Chambers and flags

2.1 Involution on unbounded chambers

Let A be a hyperplane arrangement in Rℓ. We denote the set of chambers,
bounded chambers, unbounded chambers by ch(A), bch(A), uch(A), respec-
tively. Note that ch(A) = bch(A) ⊔ uch(A).
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Let C ∈ uch(A) be an unbounded chamber. Then the closure cl(C) in
the projective space RPℓ intersects the hyperplane H∞ at infinity.

Definition 2.1. Let C ∈ uch(A). (i) Define X(C) to be the smallest sub-
space of H∞ which contains cl(C)∩H∞. (ii) There exists a unique chamber
which is the opposite with respect to cl(C) ∩ H∞. We denote the opposite
chamber by C∨ (see Figure 1). Obviously we have C∨∨ = C.

See Figure 1 for an example. In this figure, X(C1) = X(C4) = H∞, and
X(C2) = X(C3) = cl(C2) ∩ H∞.

t
�
�
�

@
@
@

    
    

    
    

    
 

H∞

C1 C2 C3 C4

C∨
4 C∨

2 C∨
3 C∨

1

���1cl(C2) ∩ H∞

���) cl(C4) ∩ H∞

C∨
2C∨

3

C∨
4

Figure 1: C and C∨

Definition 2.2. Define the involution ι by

ι : uch(A) −→ uch(A)

C 7−→ C∨

We now characterize dense edges contained in H∞ by using X(C). First
we prove an easy lemma.

Lemma 2.3. Let A be an essential central arrangement in Rℓ. Then the
following are equivalent.

(1) A is indecomposable.
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(2) There exist H ∈ A and C ∈ ch(A) such that cl(C) ∩ H = {0}.

(3) For any H ∈ A, there exists C ∈ ch(A) such that cl(C) ∩ H = {0}.

Proof. Let H ∈ A and consider the deconing dHA with respect to H. Note
that dHA is an affine arrangement of rank (ℓ − 1). Using [OT, §3.3], A is
indecomposable if and only if the β-invariant of dHA is nonzero. By the
famous result of Zaslavsky [Z], it is equivalent to the existence of bounded
chambers of the deconing dHA. Choose a bounded chamber of dHA, and
let C be it’s cone. Then cl(C) ∩ H = {0}. This proves (1) ⇒ (3). Other
implications can also be similarly proved.

Using the above lemma, we obtain the following.

Proposition 2.4. Let A be an affine arrangement in Rℓ. An edge X ∈
L(A∞) satisfies X ∈ D∞(A∞) if and only if X = X(C) for some C ∈ uch(A).

2.2 Generic flags

Let F be a generic flag in Rℓ

F : ∅ = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fℓ = Rℓ,

where each Fq is a generic q-dimensional affine subspace, that is, dim Fq∩X =
q + dim X − ℓ for X ∈ L(A∞). Let {h1, . . . hℓ} be a system of defining
equations of F, that is,

Fq = {hq+1 = · · · = hℓ = 0}, for q = 0, 1, . . . , ℓ − 1,

where each hi is an affine linear form on Rℓ. Using the flag F, we decompose
the set of chambers into several subsets.

Definition 2.5. Define

chq(A) = {C ∈ ch(A) | C ∩ Fq ̸= ∅ and C ∩ Fq−1 = ∅},

for q = 0, 1, . . . , ℓ.

Proposition 2.6. ([Y1]) ♯chq(A) = bq(M(A)).

Remark 2.7. The above proposition gives a refinement of Zaslavsky’s for-
mula

∑ℓ
i=0 bi(M(A)) = ♯ch(A), ([Z]).
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We assume that F satisfies the following : For q = 0, . . . , ℓ, F
q
>0 denotes

{hq+1 = hq+2 = · · · = hℓ = 0, hq > 0}.

1. For an arbitrary chamber C, if belonging to chq(A), then C∩Fq ⊂ F
q
>0.

2. For any two X, X ′ ∈ L(A) with dim X = dim X ′ = ℓ−q (i.e. satisfying
X ∩ Fq = {pt} and X ′ ∩ Fq = {pt}), if X ̸= X ′,

hq(X ∩ Fq) ̸= hq(X
′ ∩ Fq).

In the remainder of the paper we fix a generic flag F satisfying the above con-
ditions. And also fix the orientation of Fq by the oriented basis (∂h1 , . . . , ∂hq)
of the tangent space TxF

q.
Next we further decompose chq(A) into two subsets.

Definition 2.8. Define subsets bchq(A) and uchq(A) of chq(A) by

bchq(A) = {C ∈ chq(A) | C ∩ Fq is bounded},
uchq(A) = {C ∈ chq(A) | C ∩ Fq is unbounded}.

We note that bchℓ(A) = bch(A).

Example 2.9. Let us consider the arrangement of four lines A = {H1, H2, H3, H4}
with a generic flag F as in Figure 2.
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Figure 2: bchq(A) and uchq(A).

Then we have by definition

ch0(A) = {C0}, ch1(A) = {C1, C2, C3, C
∨
0 }, ch2(A) = {C∨

1 , C∨
2 , C∨

3 , C4},
bch0(A) = {C0}, bch1(A) = {C1, C2, C3}, bch2(A) = {C4},
uch0(A) = ∅, uch1(A) = {C∨

0 }, uch2(A) = {C∨
1 , C∨

2 , C∨
3 }.
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Theorem 2.10. The involution ι induces a bijection

ι : bchq−1(A)
∼−→ uchq(A).

Proof. Suppose C ∈ bchq−1(A), that is, C ∩ Fq−1 is bounded. Then C∨ ∩
Fq−1 = ∅. By the assumption on the flag, C ∩ Fq is unbounded. Since Fq

is generic, cl(Fq) intersects cl(C) ∩ H∞ transversally. Hence C∨ ∩ Fq ̸= ∅
and unbounded. We have C∨ ∈ uchq(A). Conversely if C∨ ∈ uchq(A), then
C∨∨ = C intersects Fq−1. Suppose C ∩ Fq−1 is unbounded. In this case, C∨

also intersects Fq−1. This contradicts the fact C∨ ∈ uchq(A) ⊂ chq(A).

Corollary 2.11. ♯bchq−1(A) = ♯uchq(A).

Remark 2.12. (1) Corollary 2.11 together with Proposition 2.6 and ♯chq(A) =
♯bchq(A)+♯uchq(A), gives a “bijective proof” for Zaslavsky’s formula ♯bch(A) =∑ℓ

i=0(−1)ℓ−ibi(M(A)).
(2) The bijective correspondence (Theorem 2.10) plays a crucial role in

§4.

3 Minimal complexes

Let A be an essential real arrangement and F be a generic flag as in the
previous section. Set F = Fℓ−1 ⊗ C the complexification of Fℓ−1. Com-
pare the complexified complement M(A) with the generic hyperplane section
M(A)∩F . Lefschetz’s hyperplane section theorem [HL] tells us that M(A) is
homotopy equivalent to the space obtained from M(A)∩F by attaching some
ℓ-dimensional cells. Namely we have the following homotopy equivalence:

M(A) ≈ (M(A) ∩ F ) ∪φi

∪
i

Dℓ,

where φi : ∂Dℓ −→ M(A)∩F is the attaching map. In [Y1], we described the
homotopy type of the attaching maps. The ℓ-dimensional cells are naturally
encoded by the set chℓ(A) of chambers which do not intersect Fℓ−1. By using
the description of attaching maps, we constructed a cochain complex

(C[chq(A)], dL)
ℓ
q=0 : · · · −→ C[chq(A)]

dL−→ C[chq+1(A)] −→ · · ·

which computes local system cohomology groups for arbitrary rank one local
system L. Namely, we have H∗(C[ch•(A)], dL) ≃ H∗(M(A),L). In §3.1, we
shall describe the cochain complex (C[ch•(A)], dL) based on [Y1], and in §3.2
we investigate the case ℓ = 2 closely.
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3.1 Minimal complex arising from Lefschetz’s Theo-
rem

Definition 3.1. (Separating hyperplanes) Let C1, C2 ∈ ch(A) be chambers.
Define

Sep(C1, C2) = {H ∈ A | H separates C1 and C2}.
And also

q
1/2
Sep(C1,C2) =

∏
Hi∈Sep(C1,C2)

q
1/2
i .

To describe the coboundary map dL : C[chq(A)] → C[chq+1(A)], we need
the notion of degree map

deg : chq(A) × chq+1(A) −→ Z,

which we will define below.
Suppose C ∈ chq(A) and C ′ ∈ chq+1(A) are given. Let D = Dq ⊂ Fq be a

q-dimensional ball with sufficiently large radius so that every 0-dimensional
edge x ∈ L(A ∩ Fq) is in the interior of Dq. There exists a tangent vector
field U(x) ∈ TxF

q for x ∈ D which satisfies the following properties:

• if x ∈ ∂D, then U(x) /∈ Tx(∂D), and U(x) directs inside of D,

• if x ∈ H with H ∈ A, then U(x) /∈ Tx(H∩Fq) ⊂ TxF
q and U(x) directs

the side in which C ′ is contained.

From the properties, we have U(x) ̸= 0 for x ∈ ∂(cl(C) ∩ D), where cl(C) is
the closure of C in Fq. Roughly speaking, the degree deg(C,C ′) is defined
to be the degree of the Gauss map

U

|U |
: ∂(cl(C) ∩ D) −→ Sq−1.

Definition 3.2. Let C ∈ chq(A) and C ′ ∈ chq+1(A). Fix U as above. Then
define deg(C,C ′) as follows.

(0) When q = 0, then deg(C,C ′) = 1.

(1) When q = 1, then cl(C) ∩ D ≃ [−1, 1]. In this case S0 ≃ {±1}. The
degree of the Gauss maps g := U

|U | : {±1} −→ {±1} is defined by

deg(g) =


0 if g({±1}) = {+1} or g({±1}) = {−1},
1 if g(±1) = ±1,
−1 if g(±1) = ∓1.
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(2) When q ≥ 2,

deg(C, C ′) = deg

(
U

|U |
: ∂(cl(C) ∩ D) −→ Sq−1

)
.

(It is easily seen that deg(C, C ′) does not depend on U .)

Now let us define the map

dL : C[chq(A)] −→ C[chq+1(A)]

by

chq(A) ∋ [C] 7−→
∑

C′∈chq+1(A)

deg(C, C ′) ·
(
q
1/2
Sep(C,C′) − q

−1/2
Sep(C,C′)

)
· [C ′]. (4)

Theorem 3.3. ([Y1, 6.4.1]) With notation as above, (C[ch•(A)], dL) is a
cochain complex. Furthermore,

H∗(C[ch•(A)], dL) ≃ H∗(M(A),L).

In the above formula (4), the degree deg(C, C ′) ∈ Z is difficult to de-
termine. The author wonders how to compute deg(C,C ′). Let us pose a
problem which might be interesting from the view point of combinatorics of
polytopes.

Problem 3.4. Let P ⊂ Rd be a bounded d-dimensional convex polytope. Let
{Fe}e∈E be the set of facets (i.e., (d−1)-dimensional faces). Let U(x) ∈ TxRd

be a vector field on Rd. Suppose that U satisfies U(x) ̸= 0 when x ∈ ∂P and,
furthermore, U(x) /∈ TxFe for any point x ∈ Fe in a facet. We can associate
a sign vector X ∈ {+1,−1}E by

X(e) =

{
+1 if U directs outside of P on Fe,
−1 if U directs inside of P on Fe.

Then how to compute the degree deg
(

U
|U | : ∂P → Sd−1

)
of the Gauss map

from the sign vector X ∈ {±1}E?
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3.2 The case ℓ = 2

In this section, we look at the minimal complex (C[ch•(A)], dL) for ℓ = 2
more closely.

First note that ch0(A) = {C0} consists of a chamber. The map dL :
C[ch0(A)] −→ C[ch1(A)] is determined by dL([C0]), which is

d([C0]) =
∑

C∈ch1(A)

(
q
1/2
Sep(C0,C) − q

−1/2
Sep(C0,C)

)
· [C].

As in §2.1, we decompose ch1(A) = bch1(A)⊔uch1(A). Note that by Theorem
2.10, uch1(A) = {C∨

0 } consists of a chamber which is the opposite one of
C0. The second coboundary map dL : C[ch1(A)] −→ C[ch2(A)] is given
by the formula (4). The degree deg(C,C ′) behaves differently according as
C ∈ bch1(A) or C ∈ uch1(A).

(i) Suppose C ∈ bch1(A). Then C ∩ F1 is a closed interval, the boundary
(two points) can be expressed as (H ∩ F1) ∪ (H ′ ∩ F1) for H, H ′ ∈ A.
deg(C, C ′) can be computed as

deg(C,C ′) =


1 if H, H ′ ∈ Sep(C,C ′),
−1 if H, H ′ /∈ Sep(C,C ′),
0 others.

(ii) Suppose C ∈ uch1(A). Then C ∩ F1 is an unbounded interval, the
boundary (a point) can be expressed as H ∩ F1. deg(C, C ′) can be
computed as

deg(C, C ′) =

{
−1 if H /∈ Sep(C, C ′),
0 if H ∈ Sep(C, C ′).

In particular, we have,

Lemma 3.5. Let C ∈ bch1(A). The boundary of C ∩ F1 is expressed as
(H ∩ F1) ∪ (H ′ ∩ F1). Then

deg(C,C∨) =

{
1 if H and H ′ are not parallel,
−1 if H and H ′ are parallel.
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Figure 3: Example 3.6.

Example 3.6. Consider the arrangement of four lines A = {H1, H2, H3, H4}
in R2 and a generic flag F as in Figure 3. Then

bch0(A) = {C0} bch1(A) = {C1, C2, C3} bch2(A) = {D}
uch0(A) = ∅ uch1(A) = {C∨

0 } uch2(A) = {C∨
1 , C∨

2 , C∨
3 }.

The coboundary map dL : C[ch0] → C[ch1] is determined by

dL([C0]) = (q
1
2
1 −q

− 1
2

1 )[C1]+(q
1
2
12−q

− 1
2

12 )[C2]+(q
1
2
123−q

− 1
2

123)[C3]+(q
1
2
1234−q

− 1
2

1234)[C
∨
0 ],

and dL : C[ch1] → C[ch2] is as follows.

dL([C1]) = (q
1
2
1234 − q

− 1
2

1234)[C
∨
1 ] +(q

1
2
124 − q

− 1
2

124)[C
∨
2 ] +(q

1
2
12 − q

− 1
2

12 )[D]

dL([C2]) = −(q
1
2
14 − q

− 1
2

14 )[C∨
2 ] −(q

1
2
1 − q

− 1
2

1 )[D]

dL([C3]) = +(q
1
2
134 − q

− 1
2

134)[C
∨
2 ] + (q

1
2
1234 − q

− 1
2

1234)[C
∨
3 ]

dL([C∨
0 ]) = −(q

1
2
1 − q

− 1
2

1 )[C∨
1 ] −(q

1
2
13 − q

− 1
2

13 )[C∨
2 ] − (q

1
2
123 − q

− 1
2

123)[C
∨
3 ]

The coefficients of the diagonals have another expressions. Observe that
X(C1) = X(C3) = H∞ and X(C2) = H2 ∩ H3 ∩ H∞. Since q∞ = q−1

1234 and
qX(C2) = q2q3q∞ = q−1

14 , we have

(q
1
2
1234 − q

− 1
2

1234) = −(q
1
2

X(C1) − q
− 1

2

X(C1)) = −(q
1
2

X(C3) − q
− 1

2

X(C3)),

−(q
1
2
14 − q

− 1
2

14 ) = q
1
2

X(C2) − q
− 1

2

X(C2).

In general, we have
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Proposition 3.7. Let C ∈ bch1(A). Then the coefficient of [C∨] in dL([C])

is given by ±(q
1/2
X(C) − q

−1/2
X(C)).

Proof. Let H ∈ A. Then H separates C and C∨ if and only if H does go
through X(C) ∈ H∞. Using q1q2, . . . qnq∞ = 1, we have

qSep(C,C∨) = q−1
X(C).

Hence ±(q
1/2
Sep(C,C∨) − q

−1/2
Sep(C,C∨)) = ∓(q

1/2
X(C) − q

−1/2
X(C)).

For use in the next section, we analyze the induced map

C[bch1(A)] ↪→ C[ch1(A)]
dL−→ C[ch2(A)] � C[uch2(A)].

We write the map dL : C[bch1(A)] −→ C[uch2(A)]. As Theorem 2.10, the
bases of the source and the target of dL are naturally identified by the in-
volution ι. Thus the determinant det(dL) ∈ C makes sense. The matrix
dL is expressed by an upper triangular matrix, and the determinant can be
computed.

Theorem 3.8. The determinant det(dL) can be expressed as

det(dL) = ±
∏

X∈D∞(A∞)

(q
1/2
X − q

−1/2
X )nX , (5)

where nX is a positive integer.

Proof. First note that, for C ∈ uch(A), X(C) is either 0-dimensional or
equal to H∞. We call an unbounded chamber C ∈ uch(A) narrow (resp.
wide) if X(C) ⊂ H∞ is 0-dimensional (resp. X(C) = H∞). We decompose
C[bch1(A)] and C[uch2(A)] into direct sum of subspaces. Set

N1 = C[{C ∈ bch1(A) | C : narrow}], W 1 = C[{C ∈ bch1(A) | C : wide}],
N2 = C[{C ∈ uch2(A) | C : narrow}], W 2 = C[{C ∈ uch2(A) | C : wide}].

Then clearly C[bch1(A)] = W 1 ⊕ N1 and C[uch2(A)] = W 2 ⊕ N2. The map
dL preserves N i. Furthermore, the matrix presentation of dL|N1 : N1 → N2

is diagonal. Indeed suppose that C ∈ bch1(A) is a narrow chamber with walls
H ∩ F1 and H ′ ∩ F1. Then H and H ′ are parallel. By definition of degree
map, dL([C]) is a linear combination of chambers which are put between H
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and H ′. The opposite chamber C∨ is the unique such element in uch2(A).
By Proposition 3.7, we obtain the explicit formula

dL([C]) = (q
1/2
X(C) − q

−1/2
X(C))[C

∨]

for a narrow chamber C ∈ bch1(A). Next we consider W 1 and W 2. Since

C[bch1]/N1 ≃ W 1 and C[uch2]/N2 ≃ W 2, we have the induced map d̃L :
W 1 → W 2. This map is again expressed by a diagonal matrix. Indeed, for a
wide chamber C ∈ bch1(A), we have

d̃L([C]) = −(q1/2
∞ − q−1/2

∞ )[C∨]

= −(q
1/2
X(C) − q

−1/2
X(C))[C

∨].

Thus

det
(
dL : C[bch1] → C[uch2]

)
= det(dL|N1) · det(d̃L)

= ±
∏

C∈bch1(A)

(q
1/2
X(C) − q

−1/2
X(C)).

By Proposition 2.4, X(C) in the above formulas runs all dense edges con-
tained H∞. Hence we obtain (5).

Corollary 3.9. The map dL : C[bch1(A)] −→ C[uch2(A)] is nondegenerate
if and only if qX ̸= 1 for any dense edge X ∈ D∞(A∞) in H∞.

The decomposability of A is related to W 2 as follows. We omit the proof
(cf. Figure 2 and Figure 3).

Proposition 3.10. For ℓ = 2, A is decomposable if and only if dim W 2 = 1.

4 An application

As we saw in the previous sections, the basis of our cochain complex is
encoded by the set of chambers. There is also an involution ι among un-
bounded chambers. In this section, we prove that if the monodromies around
dense edges at infinity are nontrivial, then the bases corresponding to un-
bounded chambers C and C∨ = ι(C) are cancelled each other, and finally,
only bounded chambers survive. This leads to a proof of the refined version
of vanishing theorem.

Our main result is the following.
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Theorem 4.1. Let A be an indecomposable line arrangement in R2. Let L

be a rank one local system. Then the following are equivalent.

(i) qX ̸= 1 for any dense edge X ∈ D∞(A∞) contained in H∞.

(ii)

Hk(M(A), L) =


0 for k = 0, 1,⊕

C∈bch(A)

C · [C] for k = 2.

(iii) H2(A,L) is generated by {[C] | C ∈ bch(A)}.

Remark 4.2. (i)⇒(ii)⇒(iii) holds for any arrangement A (without inde-
composability). However (iii)⇒(i) requires the decomposability of A. (See
Remark 4.3.) For comments to the higher dimensional cases (ℓ ≥ 3) see the
next §5.

Proof of Theorem 4.1. (i)⇒(ii): Let C0 ∈ ch0(A). Since

dL([C0]) = −(q1/2
∞ − q−1/2

∞ )[C∨
0 ] + . . . ,

and q∞ ̸= 1, we have rank
(
dL : C[ch0(A)] → C[ch1(A)]

)
= 1 (and in partic-

ular, H0(C[ch•(A)], dL) = Ker(dL : C[ch0] → C[ch1]) = 0).
To show that

• H1(C[ch•(A)], dL) = 0,

• H2(C[ch•(A)], dL) = Coker(dL : C[ch1] → C[ch2]) has {[C]}C∈bch(A) as
a basis,

it suffices to prove that the induced map

dL : C[bch1(A)] −→ C[uch2(A)]

is surjective (hence bijective). However this easily follows from Corollary 3.9.
(ii)⇒(iii) is trivial.
(iii)⇒(i): Let us assume (iii). Since H2 = Coker(dL : C[ch1] → C[ch2]),

the assumption implies that the induced map

C[ch1(A)] −→ C[uch2(A)] is surjective. (6)
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As in the proof of Theorem 3.8, dL maps N1 to N2. Thus the induced map

d̃L : W 1 ⊕ C · [C∨
0 ] −→ W 2

|≀ |≀
C[ch1]/N1 C[uch2]/N2

is surjective. Now if q∞ = 1, then d̃L is the zero map on W 1, and hence W 2

is at most one dimensional. This is a contradiction to the assumption A is
indecomposable (see Proposition 3.10). Thus we have q∞ ̸= 1.

Set bch1(A) = {C1, . . . , Ck}. Then ch1(A) = {C∨
0 , C1, . . . , Ck}. dL([C0])

is expressed as

dL([C0]) = a0[C
∨
0 ] +

k∑
i=1

ai[Ci].

Note that a0 = −(q
1/2
∞ − q

−1/2
∞ ) ̸= 0. Since d2

L = 0, dL([C
∨
0 ]) ∈ C[ch2] can be

expressed as a linear combination of dL([C1]), . . . , dL([Ck]). The assumption
(6) implies that (recall that C[ch1(A)] = C[bch1(A)] ⊕ C · [C∨

0 ])

C[bch1(A)] −→ C[uch2(A)] is surjective. (7)

Again by Theorem 3.8, we conclude that qX ̸= 1 for any dense edge X ∈
D∞(A∞) in H∞.

Remark 4.3. The assumption “A is indecomposable” is necessary to prove
(iii) ⇒ (i) in Theorem 4.1. Indeed, consider the arrangement in Figure
2, which is decomposable. Let L be a rank one local system such that
q1, q2, q3 ∈ C∗ are generic and q4 = q−1

1 q−1
2 q−1

3 . Then q∞ = 1. The map

d̃L : C[ch1] → C[uch2] is computed as:

d̃L([C1]) = −(q
1
2
34 − q

− 1
2

34 )[C∨
1 ]

d̃L([C2]) = (q
1
2
234 − q

− 1
2

234)[C
∨
1 ] −(q

1
2
12 − q

− 1
2

12 )[C∨
3 ]

d̃L([C3]) = −(q
1
2
123 − q

− 1
2

123)[C
∨
3 ]

d̃L([C
∨
0 ]) = −(q

1
2
2 − q

− 1
2

2 )[C∨
1 ] −(q

1
2
12 − q

− 1
2

12 )[C∨
2 ].

Hence the map d̃L : C[ch1] → C[uch2] has rank three. This implies that
H2(C[ch•], dL) is generated by bch2 = {C4}. Thus (iii) is satisfied, however
(i) is false (q∞ = 1).
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5 Remarks and conjectures

We conclude this paper with some remarks on higher dimensional cases ℓ ≥ 3.
As in the case ℓ = 2, it seems natural to focus on the induced map

dL : C[bchq−1] −→ C[uchq]

defined by the composition C[bchq−1] ↪→ C[chq−1]
dL−→ C[chq] � C[uchq].

Since the bases of two spaces C[bchq−1] and C[uchq] are naturally identified
by the involution ι, it makes sense to consider the determinant of dL.

Conjecture 5.1. The determinant det
(
dL : C[bchq−1] → C[uchq]

)
is expressed

in the following form

det(dL) = ±
∏
X

(q
1/2
X − q

−1/2
X )nX ,

where X runs all dense edge X ∈ D∞(A∞) with dim X ≥ ℓ − q and nX > 0.

Once the above conjecture is established, it deduces the following.

Conjecture 5.2. Let A be an essential affine arrangement in Rℓ. If the rank
one local system L satisfies the condition (3), then (2) holds.

“Proof of 5.1 ⇒ 5.2.” Since the composition dL : C[bchq−1] ↪→ C[chq−1]
dL−→

C[chq] � C[uchq] is bijective, rank of the map C[chq−1]
dL−→ C[chq] is at least

♯bchq−1 = ♯uchq. Hence,

dim Im(dL : C[chq−1] → C[chq]) ≥ ♯uchq = ♯bchq−1,

dim Ker(dL : C[chq] → C[chq+1]) ≤ ♯chq − ♯bchq = ♯uchq,

for q ≤ ℓ − 1. This implies Hk(C[ch•], dL) = 0 for k ≤ ℓ − 1. Also this
deduces Hℓ(C[ch•], dL) is generated by bchℓ(A) = bch(A).
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