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Abstract. We discuss the log minimal model theory for log sur-
faces. We show that the log minimal model program, the finite
generation of log canonical rings, and the log abundance theorem
for log surfaces hold true under much weaker assumptions than
everybody expected.
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1. Introduction

We explain the log minimal model theory for log surfaces. This
paper completes Fujita’s results on the semi-ampleness of semi-positive
parts of Zariski decompositions of log canonical divisors and the finite
generation of log canonical rings for smooth projective log surfaces in
[Ft] and the log minimal model program for projective log canonical
surfaces discussed by Kollár and Kovács in [KK]. The main purpose of
this paper is to show that the log minimal model program for surfaces
works and the log abundance theorem and the finite generation of log
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canonical rings for surfaces hold true under much weaker assumptions
than we expected (cf. Theorems 3.3, 4.3, and 6.1).

It is obvious that the log minimal model program works for Q-
factorial log surfaces and log canonical surfaces by our new cone and
contraction theorem for log varieties (cf. [F3, Theorem 1.1]), which is
the culmination of the works of several authors. By our log minimal
model program for log surfaces, Fujita’s results in [Ft] are clarified and
generalized. In [Ft], Fujita treated a pair (X, ∆) where X is a smooth
projective surface and ∆ is a boundary Q-divisor on X without any
assumptions on singularities of the pair (X, ∆). We note that our log
minimal model program explained in this paper works for such pairs
(cf. Theorem 3.3). It is not necessary to assume that (X, ∆) is log
canonical.

Roughly speaking, we will prove the following theorem in this paper.
We think that nobody expected the case (A) in Theorem 1.1.

Theorem 1.1 (cf. Theorems 3.3 and 6.1). Let X be a normal projective

surface defined over C and ∆ an effective Q-divisor on X such that

every coefficient of ∆ is less than or equal to one. Assume that one of

the following conditions holds:

(A) X is Q-factorial, or

(B) (X, ∆) is log canonical.

Then we can run the log minimal model program with respect to KX +∆
and obtain a sequence of extremal contractions

(X, ∆) = (X0, ∆0)
ϕ0

→ (X1, ∆1)
ϕ1

→ · · ·
ϕk−1

→ (Xk, ∆k) = (X∗, ∆∗)

such that

(1) (Minimal model) KX∗ +∆∗ is semi-ample if KX +∆ is pseudo-

effective, and

(2) (Mori fiber space) there is a morphism g : X∗ → C such that

−(KX∗ + ∆∗) is g-ample, dim C < 2, and the relative Picard

number ρ(X∗/C) = 1, if KX + ∆ is not pseudo-effective.

Note that (X, ∆) is not necessarily log canonical in the case (A).

The following result is an obvious corollary of Theorem 1.1.

Corollary 1.2 (cf. Corollary 4.4). Let X be a projective surface with

only rational singularities. Then the canonical ring

R(X) =
⊕

m≥0

H0(X,OX(mKX))

is a finitely generated C-algebra.
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We note that the general classification theory of algebraic surfaces is
due essentially to the Italian school, and has been worked out in detail
by Kodaira, in Shafarevich’s seminar, and so on. The theory of log
surfaces was studied by Iitaka, Kawamata, Miyanishi, Sakai, Fujita,
and many others. See, for example, [M] and [S2]. Our viewpoint seems
to be much more minimal model theoretic than any other works. We do
not use the notion of Zariski decomposition in this paper (see Remark
3.9).

We summarize the contents of this paper. Section 2 collects some
preliminary results. In Section 3, we discuss the log minimal model
program for log surfaces. It is a direct consequence of the cone and
contraction theorem for log varieties (cf. [F3, Theorem 1.1]). In Section
4, we show the finite generation of log canonical rings for log surfaces.
More precisely, we prove a special case of the log abundance theorem
for log surfaces. In Section 5, we prove the non-vanishing theorem for
log surfaces. It is an important step of the log abundance theorem for
log surfaces. In Section 6, we prove the log abundance theorem for log
surfaces. It is a generalization of Fujita’s main result in [Ft]. Section 7
is a supplementary section. We will prove the finite generation of log
canonical rings and the log abundance theorem for log surfaces in the
relative setting. Consequently, Theorem 1.1 also holds in the relative
setting. In Section 8: Appendix, we prove the base point free theo-
rem for log surfaces in full generality (cf. Theorem 8.1). It completely
generalizes Fukuda’s base point free theorem for log canonical surfaces
(cf. [Fk, Main Theorem]). It is not necessary for the log minimal model
theory for log surfaces discussed in this paper. The proof given there is
different from Fukuda’s and depends on the theory of quasi-log varieties

(cf. [A], [F4], and [F7]).
We will work over C, the complex number field, throughout this

paper. But we note that by using the Lefschetz principle, we can extend
everything to the case where the base field is an algebraically closed field
of characteristic zero. Our arguments heavily depend on the Kodaira
type vanishing theorem (cf. [F3]). So, we can not directly apply them
in characteristic p. We also note that [Ft] and [KK] treat algebraic
surfaces defined over an algebraically closed field of any characteristic.
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Foundation and by the Grant-in-Aid for Young Scientists (A) ♯20684001
from JSPS. He thanks Takeshi Abe and Yoshinori Gongyo for com-
ments and discussions. He also thanks Professor Shigefumi Mori for
useful comments and warm encouragement.
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2. Preliminaries

We collect some basic definitions and results. We will freely use the
notation and terminology in [KM] and [F3] throughout this paper.

2.1 (Q-divisors and R-divisors). Let X be a normal variety. For an R-
divisor D =

∑r
j=1 djDj on X such that Dj is a prime divisor for every

j and Di 6= Dj for i 6= j, we define the round-down xDy =
∑r

j=1xdjyDj

(resp. round-up pDq =
∑r

j=1pdjqDj), where for every real number x,

xxy (resp. pxq) is the integer defined by x− 1 < xxy ≤ x (resp. pxq =
−x−xy). The fractional part {D} of D denotes D − xDy. We define

D>a =
∑

dj>a

djDj, D<a =
∑

dj<a

djDj

and

D=a =
∑

dj=a

djDj = a
∑

dj=a

Dj

for any real number a. We call D a boundary R-divisor if 0 ≤ dj ≤ 1
for every j. We note that ∼Q denotes the Q-linear equivalence of Q-
divisors. Of course, ∼ (resp. ≡) denotes the usual linear equivalence

(resp. numerical equivalence) of divisors.
Let f : X → Y be a morphism and B a Cartier divisor on X. We

say that B is linearly f -trivial (denoted by B ∼f 0) if and only if there
is a Cartier divisor B′ on Y such that B ∼ f ∗B′. Two R-Cartier R-
divisors B1 and B2 on X are called numerically f -equivalent (denoted
by B1 ≡f B2) if and only if B1 ·C = B2 ·C for every curve C such that
f(C) is a point.

We say that X is Q-factorial if every prime Weil divisor on X is
Q-Cartier. The following lemma is well known.

Lemma 2.2 (Projectivity). Let X be a complete normal Q-factorial

algebraic surface. Then X is projective.

Proof. Let f : Y → X be a projective birational morphism from a
smooth projective surface Y . Let H be an effective general ample
Cartier divisor on Y . We consider the effective Q-Cartier Weil divisor
A = f∗H on X. Then A · C = H · f ∗C > 0 for every curve C on X.
Therefore, A is ample by Nakai’s criterion. Thus, X is projective. �

2.3 (Singularities of pairs). Let X be a normal variety and ∆ an effec-
tive R-divisor on X such that KX + ∆ is R-Cartier. Let f : Y → X
be a resolution such that Exc(f) ∪ f−1

∗ ∆ has a simple normal crossing
support, where Exc(f) is the exceptional locus of f and f−1

∗ ∆ is the
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strict transform of ∆ on Y . We can write

KY = f ∗(KX + ∆) +
∑

i

aiEi.

We say that (X, ∆) is log canonical (lc, for short) if ai ≥ −1 for every i.
We say that (X, ∆) is Kawamata log terminal (klt, for short) if ai > −1
for every i. We usually write ai = a(Ei, X, ∆) and call it the discrep-

ancy coefficient of Ei with respect to (X, ∆). We note that Nklt(X, ∆)
(resp. Nlc(X, ∆)) denotes the image of

∑

ai≤−1 Ei (resp.
∑

ai<−1 Ei) and
is called the non-klt locus (resp. non-lc locus) of (X, ∆). If there exist a
resolution f : Y → X and a divisor E on Y such that a(E, X, ∆) = −1
and that f(E) 6⊂ Nlc(X, ∆), then f(E) is called a log canonical center

(lc center, for short) with respect to (X, ∆). If there exist a resolution
f : Y → X and a divisor E on Y such that a(E, X, ∆) ≤ −1, then
f(E) is called a non-klt center with respect to (X, ∆).

When X is a surface, the notion of numerically log canonical and nu-

merically dlt is sometimes useful. See [KM, Notation 4.1] and Propo-
sition 3.4 below.

2.4 (Kodaira dimension and numerical Kodaira dimension). We note
that κ (resp. ν) denotes the Iitaka–Kodaira dimension (resp. numerical

Kodaira dimension).
Let X be a normal projective variety, D a Q-Cartier Q-divisor on

X, and n a positive integer such that nD is Cartier. By definition,
κ(X, D) = −∞ if and only if h0(X,OX(mnD)) = 0 for every m > 0,
and κ(X, D) = k > −∞ if and only if

0 < lim sup
m>0

h0(X,OX(mnD))

mk
< ∞.

We see that κ(X, D) ∈ {−∞, 0, 1, · · · , dim X}. If D is nef, then

ν(X, D) = max{e ∈ Z≥0 |D
e is not numerically zero}.

We say that D is abundant if ν(X, D) = κ(X, D).
Let Y be a projective irreducible variety and B a Q-Cartier Q-divisor

on Y . We say that B is big if ν∗B is big, that is, κ(Z, ν∗B) = dim Z,
where ν : Z → Y is the normalization of Y ,

2.5 (Nef dimension). Let L be a nef Q-Cartier Q-divisor on a normal
projective variety X. Then n(X, L) denotes the nef dimension of L. It
is well known that

κ(X, L) ≤ ν(X, L) ≤ n(X, L).

For details, see [8]. We will use the reduction map associated to L in
Section 6.
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Let us quickly recall the reduction map and the nef dimension in
[8]. By [8, Theorem 2.1], for a nef Q-Cartier Q-divisor L on X, we can
construct an almost holomorphic, dominant rational map f : X 99K Y
with connected fibers, called a reduction map associated to L such that

(i) L is numerically trivial on all compact fibers F of f with dim F =
dim X − dim Y , and

(ii) for every general point x ∈ X and every irreducible curve C
passing through x with dim f(C) > 0, we have L · C > 0.

The map f is unique up to birational equivalence of Y . We define the
nef dimension of L as follows (cf. [8, Definition 2.7]):

n(X, L) := dim Y.

2.6 (Non-lc ideal sheaves). The ideal sheaf JNLC(X, ∆) denotes the
non-lc ideal sheaf associated to the pair (X, ∆). More precisely, let
X be a normal variety and ∆ an effective R-divisor on X such that
KX + ∆ is R-Cartier. Let f : Y → X be a resolution such that
KY + ∆Y = f ∗(KX + ∆) and that Supp∆Y is simple normal crossing.
Then we have

JNLC(X, ∆) = f∗OY (−x∆Y y + ∆=1
Y ) ⊂ OX .

For details, see, for example, [F3, Section 7] or [F8]. We note that

J (X, ∆) = f∗OY (−x∆Y y) ⊂ OX

is the multiplier ideal sheaf associated to the pair (X, ∆).

2.7 (Kodaira type vanishing theorem). Let f : X → Y be a birational
morphism from a smooth projective variety X to a normal projective
variety Y . Let ∆ be a boundary Q-divisor on X such that Supp∆ is a
simple normal crossing divisor and L a Cartier divisor on X. Assume
that

L − (KX + ∆) ∼Q f ∗H,

where H is a nef and big Q-Cartier Q-divisor on Y such that H|f(C) is
big for every lc center C of the pair (X, ∆). Then we obtain

H i(Y, Rjf∗OX(L)) = 0

for every i > 0 and j ≥ 0. It is a special case of [F4, Theorem 2.47],
which is the culmination of the works of several authors. We recom-
mend [F6] as an introduction to new vanishing theorems.

2.8. Let Λ be a linear system. Then BsΛ denotes the base locus of Λ.
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3. Minimal model program for log surfaces

Let us introduce the notion of log surfaces.

Definition 3.1 (Log surfaces). Let X be a normal algebraic surface
and ∆ a boundary R-divisor on X such that KX + ∆ is R-Cartier.
Then the pair (X, ∆) is called a log surface. We note that a boundary

R-divisor means an effective R-divisor whose coefficients are less than
or equal to one.

We note that we assume nothing on singularities of (X, ∆).
From now on, we discuss the log minimal model program for log

surfaces. The following cone and contraction theorem is a special case
of [F3, Theorem 1.1], which is the culmination of the works of several
authors. For details, see [F3].

Theorem 3.2 (cf. [F3, Theorem 1.1]). Let (X, ∆) be a log surface and

π : X → S a projective morphism onto an algebraic variety S. Then

we have

NE(X/S) = NE(X/S)KX+∆≥0 +
∑

Rj

with the following properties.

(1) Rj is a (KX + ∆)-negative extremal ray of NE(X/S) for every

j.
(2) Let H be a π-ample R-divisor on X. Then there are only finitely

many Rj’s included in (KX +∆+H)<0. In particular, the Rj’s

are discrete in the half-space (KX + ∆)<0.

(3) Let R be a (KX +∆)-negative extremal ray of NE(X/S). Then

there exists a contraction morphism ϕR : X → Y over S with

the following properties.

(i) Let C be an integral curve on X such that π(C) is a point.

Then ϕR(C) is a point if and only if [C] ∈ R.

(ii) OY ≃ (ϕR)∗OX.

(iii) Let L be a line bundle on X such that L · C = 0 for every

curve C with [C] ∈ R. Then there exists a line bundle LY

on Y such that L ≃ ϕ∗
RLY .

A key point is that the non-lc locus of a log surface (X, ∆) is zero-
dimensional. So, there are no curves contained in the non-lc locus of
(X, ∆). We will prove that Rj in Theorem 3.2 (1) is spanned by a
rational curve Cj with −(KX + ∆) · Cj ≤ 3 in Proposition 3.7 below.

By Theorem 3.2, we can run the log minimal model program for log
surfaces under some mild assumptions.
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Theorem 3.3 (Minimal model program for log surfaces). Let (X, ∆)
be a log surface and π : X → S a projective morphism onto an algebraic

variety S. We assume one of the following conditions:

(A) X is Q-factorial.

(B) (X, ∆) is log canonical.

Then, by Theorem 3.2, we can run the log minimal model program over

S with respect to KX +∆. So, there is a sequence of at most ρ(X/S)−1
contractions

(X, ∆) = (X0, ∆0)
ϕ0

→ (X1, ∆1)
ϕ1

→ · · ·
ϕk−1

→ (Xk, ∆k) = (X∗, ∆∗)

over S such that one of the following holds:

(1) (Minimal model) KX∗ +∆∗ is nef over S. In this case, (X∗, ∆∗)
is called a minimal model of (X, ∆).

(2) (Mori fiber space) There is a morphism g : X∗ → C over S such

that −(KX∗ + ∆∗) is g-ample, dim C < 2, and ρ(X∗/C) = 1.
We sometimes call g : (X∗, ∆∗) → C a Mori fiber space.

We note that Xi is Q-factorial (resp. (Xi, ∆i) is lc) for every i in the

case (A) (resp. (B)).

Proof. It is obvious by Theorem 3.2. In the case (B), we have to check
that (Xi, ∆i) is lc for ∆i = ϕi−1∗∆i−1. Since −(KXi−1

+ ∆i−1) is ϕi−1-
ample, it is easy to see that (Xi, ∆i) is numerically lc (cf. [KM, Notation
4.1]) by the negativity lemma. By Proposition 3.4 below, the pair
(Xi, ∆i) is log canonical. In particular, KXi

+ ∆i is R-Cartier. In the
case (A), we can easily check that Xi is Q-factorial for every i by the
usual method (cf. [KM, Proposition 3.36]). �

Let us contain [KM, Proposition 4.11] for the reader’s convenience.
The statement (2) in the following proposition is missing in the English
edition of [KM]. For definitions, see [KM, Notation 4.1].

Proposition 3.4 (cf. [KM, Proposition 4.11]). We have the following

two statements.

(1) Let (X, ∆) be a numerically dlt pair. Then every Weil divisor on

X is Q-Cartier, that is, X is Q-factorial.

(2) Let (X, ∆) be a numerically lc pair. Then it is lc.

Proof. In both cases, if ∆ 6= 0, then (X, 0) is numerically dlt by [KM,
Corollary 4.2] and we can reduce the problem to the case (1) with
∆ = 0. Therefore, we can assume that ∆ = 0 when we prove this
proposition. Let f : Y → X be a minimal resolution and ∆Y the f -
exceptional Q-divisor on Y such that KY + ∆Y ≡f 0. Then ∆Y ≥ 0
by [KM, Corollary 4.3].
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(1) See the proof of [KM, Proposition 4.11].
(2) We can assume that (X, 0) is not numerically dlt, that is, x∆Y y 6=

0. By [KM, Theorem 4.7], {∆Y } is a simple normal crossing divisor.
Since −x∆Y y ≡f KY + {∆Y }, we have

R1f∗OY (n(KY + ∆Y ) − x∆Y y) = 0

by the Kawamata–Viehweg vanishing theorem for n ∈ Z>0 such that
n∆Y is a Weil divisor. Therefore, we obtain a surjection

f∗OY (n(KY + ∆Y )) ։ f∗Ox∆Y y
(n(KY + ∆Y )).

Therefore, if we check

n(KY + ∆Y )|
x∆Y y

∼ 0,

then we obtain n(KY + ∆Y ) ∼f 0 and nKX = f∗(n(KY + ∆Y )) is a
Cartier divisor. This statement can be checked by [KM, Theorem 4.7]
as follows. By the classification, x∆Y y is a cycle and ∆Y = x∆Y y

(cf. [KM, Definition 4.6]), or x∆Y y is a simple normal crossing divisor
consisting of rational curves and the dual graph is a tree. In the former
case, we have K∆Y

∼ 0. So, n = 1 is sufficient. In the latter case, since
H1(O

x∆Y y
) = 0, n(KY + ∆Y )|

x∆Y y
∼ 0 if we choose n > 0 such that

n(KY + ∆Y ) is a numerically trivial Cartier divisor (cf. [KM, Theorem
4.13]). �

We give an important remark on rational singularities.

Remark 3.5. Let X be an algebraic surface. If X has only rational
singularities, then it is well known that X is Q-factorial. Therefore,
we can apply the log minimal model program in Theorem 3.3 for pairs
of surfaces with only rational singularities and boundary R-divisors on
them. We note that there are many two-dimensional rational singular-
ities which are not lc.

We take a rational non-lc surface singularity P ∈ X. Let π : Z → X
be the index one cover of X. In this case, Z is not log canonical nor
rational.

We note that our log minimal model program works inside the class
of surfaces with only rational singularities by the next proposition. It
is very similar to [KM, Proposition 2.71]. It is mysterious that [KM,
Proposition 2.71] is also missing in the English edition of [KM].

Proposition 3.6. Let (X, ∆) be a log surface and f : X → Y a pro-

jective surjective morphism onto a normal surface Y . Assume that

−(KX + ∆) is f -ample. Then Rif∗OX = 0 for every i > 0. There-

fore, if X has only rational singularities, then Y also has only rational

singularities.
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Proof. We consider the short exact sequence

0 → JNLC(X, ∆) → OX → OX/JNLC(X, ∆) → 0,

where JNLC(X, ∆) is the non-lc ideal sheaf associated to the pair
(X, ∆). By the vanishing theorem (cf. [F3, Theorem 8.1]), we know
Rif∗JNLC(X, ∆) = 0 for every i > 0. Since ∆ is a boundary R-
divisor, we have dimC Supp(OX/JNLC(X, ∆)) = 0. So, we obtain
Rif∗(OX/JNLC(X, ∆)) = 0 for every i > 0. Thus, Rif∗OX = 0 for
all i > 0. �

As a corollary, we can check the following result.

Proposition 3.7 (Extremal rational curves). Let (X, ∆) be a log sur-

face and π : X → S a projective surjective morphism onto a variety

S. Let R be a (KX + ∆)-negative extremal ray. Then R is spanned by

a rational curve C on X such that −(KX + ∆) · C ≤ 3. Moreover, if

X 6≃ P2, then we can choose C with −(KX + ∆) · C ≤ 2.

Proof. We consider the extremal contraction ϕR : X → Y over S
associated to R. Let f : Z → X be the minimal resolution such
that KZ + ∆Z = f ∗(KX + ∆). Note that ∆Z is effective. First, we
assume that Y is a point. Let D be a general curve on Z. Then
D · (KZ + ∆Z) = D · f ∗(KX + ∆) < 0. Therefore, κ(Z, KZ) = −∞.
If X ≃ P2, then the statement is obvious. So, we can assume that
X 6≃ P2. In this case, there exists a morphism g : Z → B onto a
smooth curve B. Let D be a general fiber of g. Then D ≃ P1 and
−(KZ + ∆Z) · D = −f ∗(KX + ∆) · D ≤ 2. Thus, C = f(D) ⊂ X has
the desired properties. Next, we assume that Y is a curve. In this case,
we take a general fiber of ϕR◦f : Z → X → Y . Then, it gives a desired
curve as in the previous case. Finally, we assume that ϕR : X → Y is
birational. Let E be an irreducible component of the exceptional locus
of ϕR. We consider the short exact sequence

0 → IE → OX → OE → 0,

where IE is the defining ideal sheaf of E on X. By Proposition 3.6,
R1ϕR∗OX = 0. Therefore, R1ϕR∗OE = H1(E,OE) = 0. Thus, E ≃ P1.
Let F be the strict transform of E on Z. Then the coefficient of F in ∆Z

is ≤ 1 and F 2 < 0. Therefore, −f ∗(KX +∆) ·F = −(KZ +∆Z) ·F ≤ 2.
This means that −(KX + ∆) · E ≤ 2 and E spans R. �

We note the following easy result.

Proposition 3.8 (Uniqueness). Let (X, ∆) be a log surface and π :
X → S a projective morphism onto a variety S as in Theorem 3.3.
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Let (X∗, ∆∗) and (X†, ∆†) be minimal models of (X, ∆) over S. Then

(X∗, ∆∗) ≃ (X†, ∆†) over S.

Proof. We consider

KX + ∆ = f ∗(KX∗ + ∆∗) + E,

and

KX + ∆ = g∗(KX† + ∆†) + F,

where f : X → X∗ and g : X → X†. We note that SuppE = Exc(f)
and SuppF = Exc(g). By the negativity lemma, we obtain E = F .
Therefore, (X∗, ∆∗) ≃ (X†, ∆†) over S. �

We close this section with a remark on the Zariski decomposition.

Remark 3.9. Let (X, ∆) be a projective log surface such that KX +∆
is Q-Cartier and pseudo-effective. Assume that (X, ∆) is log canoni-
cal or X is Q-factorial. Then there exists the unique minimal model
(X∗, ∆∗) of (X, ∆) by Theorem 3.3 and Proposition 3.8. Let f : X →
X∗ be the natural morphism. Then we can write

KX + ∆ = f ∗(KX∗ + ∆∗) + E,

where E is an effective Q-divisor such that SuppE = Exc(f). It is easy
to see that f ∗(KX∗ +∆∗) (resp. E) is the semi-positive (resp. negative)
part of the Zariski decomposition of KX + ∆. By Theorem 6.1 below,
the semi-positive part f ∗(KX∗ + ∆∗) of the Zariski decomposition of
KX + ∆ is semi-ample.

4. Finite generation of log canonical rings

In this section, we prove that the log canonical ring of a Q-factorial
projective log surface is finitely generated.

First, we prove a special case of the log abundance conjecture for
log surfaces. Our proof heavily depends on the Kodaira type vanishing
theorem.

Theorem 4.1 (Semi-ampleness). Let (X, ∆) be a Q-factorial projective

log surface. Assume that KX + ∆ is nef and big and that ∆ is a Q-

divisor. Then KX + ∆ is semi-ample.

Proof. We divide the proof into several steps.

Step 0. Let x∆y =
∑

i Ci be the irreducible decomposition. We put

A =
∑

Ci·(KX+∆)=0

Ci and B =
∑

Ci·(KX+∆)>0

Ci.
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Then x∆y = A + B. We note that (Ci)
2 < 0 if Ci · (KX + ∆) = 0

by the Hodge index theorem. We can decompose A into the connected
components as follows:

A =
∑

j

Aj .

First, let us recall the following well-known easy result. Strictly
speaking, Step 1 is redundant by more sophisticated arguments in Step
5 and Step 6.

Step 1. Let P be an isolated point of Nklt(X, ∆). Then P 6∈ Bs|n(KX+
∆)|, where n is a divisible positive integer.

Proof of Step 1. Let J (X, ∆) be the multiplier ideal sheaf associated
to (X, ∆). Then we have

H i(X,OX(n(KX + ∆)) ⊗ J (X, ∆)) = 0

for every i > 0 by the Kawamata–Viehweg–Nadel vanishing theorem
(cf. 2.7). Therefore, the restriction map

H0(X,OX(n(KX + ∆))) → H0(X,OX(n(KX + ∆))/J (X, ∆))

is surjective. By assumption, the evaluation map

H0(X,OX(n(KX + ∆))) → OX(n(KX + ∆)) ⊗ C(P )

at P is surjective. This implies that P 6∈ Bs|n(KX + ∆)|. �

Next, we will check that Bs|n(KX + ∆)| contains no non-klt centers
for a divisible positive integer n from Step 2 to Step 7 (cf. [F3, Theorem
12.1] and [F5, Theorem 1.1]).

Step 2. We consider Aj such that Nlc(X, ∆) ∩ Aj 6= ∅. Let Aj =
∑

i Di be the irreducible decomposition. We can easily check that Di

is rational for every i and that there exists a point P ∈ Nlc(X, ∆) such
that P ∈ Di for every i by calculating differents (see, for example, [F3,
Section 14]). We can also see that Dk ∩ Dl = P for k 6= l and that Di

is smooth outside P for every i. If Di ∩ (∆−Di) 6= ∅, then Di spans a
(KX + Di)-negative extremal ray. So, we can contract Di in order to
prove the semi-ampleness of KX +∆. We note that (KX +∆) ·Di = 0.
Therefore, by replacing X with its contraction, we can assume that Aj

is irreducible. We can further assume that Aj is isolated in Supp∆. It
is because we can contract Aj if Aj is not isolated in Supp∆.

If Aj is P1, then it is easy to see that OAj
(n(KX + ∆)) ≃ OAj

since
Aj · (KX + ∆) = 0.
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If Aj is singular, then we obtain H1(Aj ,OAj
) 6= 0. Therefore, by

Serre duality, we obtain H0(Aj , ωAj
) 6= 0, where ωAj

is the dualizing
sheaf of Aj. We note that

0 → T → OX(KX + Aj) ⊗OAj
→ ωAj

→ 0

is exact, where T is the torsion part of OX(KX + Aj) ⊗ OAj
. See

Lemma 4.2 below. Since Aj is a curve, T is a skyscraper sheaf on Aj.
So, H0(Aj , ωAj

) 6= 0 implies

Hom(OAj
,OX(KX + Aj) ⊗OAj

) ≃ H0(Aj ,OX(KX + Aj) ⊗OAj
) 6= 0.

Therefore, we obtain an inclusion map

OAj
→ OX(n(KX + Aj)) ⊗OAj

≃ OAj
(n(KX + ∆))

for a divisible positive integer n. Since Aj · (KX + ∆) = 0, we see that
OAj

(n(KX + ∆)) ≃ OAj
.

Step 3. If Nlc(X, ∆) ∩ Aj = ∅, then OAj
(n(KX + ∆)) ≃ OAj

for
some divisible positive integer n by the abundance theorem for semi
log canonical curves (cf. [F1]).

Anyway, we obtain OA(n(KX + ∆)) ≃ OA for a divisible positive
integer n.

Step 4. We have A ∩ Bs|n(KX + ∆)| = ∅.

Proof of Step 4. Let f : Y → X be a resolution such that KY + ∆Y =
f ∗(KX + ∆). We can assume that

(1) f−1(A) has a simple normal crossing support, and
(2) Suppf−1

∗ ∆ ∪ Exc(f) is a simple normal crossing divisor on Y .

Let W1 be the union of the irreducible components of ∆=1
Y which are

mapped into A by f . We write ∆=1
Y = W1 + W2. Then

−W1 − x∆>1
Y y + p−(∆<1

Y )q − (KY + {∆Y } + W2) ∼Q −f ∗(KX + ∆).

We put

J1 = f∗OY (−W1 − x∆>1
Y y + p−(∆<1

Y )q) ⊂ OX .

Then we can easily check that

0 → J1 → OX(−A) → δ → 0

is exact, where δ is a skyscraper sheaf, and

H i(X,OX(n(KX + ∆)) ⊗ J1) = 0

for every i > 0 by 2.7, where n is a divisible positive integer. By the
above exact sequence, we obtain

H i(X,OX(n(KX + ∆)) ⊗OX(−A)) = 0
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for i > 0. By this vanishing theorem, we see that the restriction map

H0(X,OX(n(KX + ∆))) → H0(A,OA(n(KX + ∆)))

is surjective. Since OA(n(KX+∆)) ≃ OA, we have Bs|n(KX+∆)|∩A =
∅. �

Step 5. Let P be a zero-dimensional lc center of (X, ∆). Then P 6∈
Bs|n(KX + ∆)|, where n is a divisible positive integer.

Proof of Step 5. If P ∈ A, then it is obvious by Step 4. So, we can
assume that P ∩ SuppA = ∅. Let f : Y → X be the resolution as in
the proof of Step 4. We can further assume that

(3) f−1(P ) has a simple normal crossing support.

Let W3 be the union of the irreducible components of ∆=1
Y which are

mapped into A ∪ P by f . We put ∆=1
Y = W3 + W4. Then

−W3 − x∆>1
Y y + p−(∆<1

Y )q − (KY + {∆Y } + W4) ∼Q −f ∗(KX + ∆).

We put

J2 = f∗OY (−W3 − x∆>1
Y y + p−(∆<1

Y )q) ⊂ OX .

Then, we have

H i(X,OX(n(KX + ∆)) ⊗ J2) = 0

for every i > 0 by 2.7, where n is a divisible positive integer. Thus, the
restriction map

H0(X,OX(n(KX + ∆))) → H0(X,OX(n(KX + ∆)) ⊗OX/J2)

is surjective. Therefore, the evaluation map

H0(X,OX(n(KX + ∆))) → OX(n(KX + ∆)) ⊗ C(P )

is surjective since P ∩SuppA = ∅. So, we have P 6∈ Bs|n(KX +∆)|. �

Step 6. Let P ∈ Nlc(X, ∆). Then P 6∈ Bs|n(KX + ∆)|.

Proof of Step 6. If P ∈ A, then it is obvious by Step 4. So, we can
assume that P ∩ SuppA = ∅. By the proof of Step 4, we obtain that
the restriction map

H0(X,OX(n(KX + ∆))) → H0(X,OX(n(KX + ∆)) ⊗OX/J1)

is surjective. Since P ∩ SuppA = ∅, we see that the evaluation map

H0(X,OX(n(KX + ∆))) → OX(n(KX + ∆)) ⊗ C(P )

is surjective. So, we have P 6∈ Bs|n(KX + ∆)|. �

Step 7. We see that Ei 6⊂ Bs|n(KX + ∆)|, where Ei is any irreducible
component of B and n is a divisible positive integer.
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Proof of Step 7. We can assume that Ei ∩A = ∅ by Step 4 and (X, ∆)
is log canonical in a neighborhood of Ei by Step 6. We note that
OEi

(n(KX + ∆)) is ample. So, OEi
(n(KX + ∆)) is generated by global

sections. Let f : Y → X be the resolution as in the proof of Step 4.
We can further assume that

(4) f−1(Ei) has a simple normal crossing support.

Let W5 be the union of the irreducible components of ∆=1
Y which are

mapped into A
∐

Ei by f . We put ∆=1
Y = W5 + W6. Then

−W5 − x∆>1
Y y + p−(∆<1

Y )q − (KY + {∆Y } + W6) ∼Q −f ∗(KX + ∆).

We put

J3 = f∗OY (−W5 − x∆>1
Y y + p−(∆<1

Y )q) ⊂ OX .

Then, we have

H i(X,OX(n(KX + ∆)) ⊗ J3) = 0

for every i > 0, where n is a divisible positive integer. We note that
there exists a short exact sequence

0 → J3 → OX(−A − Ei) → δ′ → 0,

where δ′ is a skyscraper sheaf on X. Thus,

H i(X,OX(n(KX + ∆)) ⊗OX(−A − Ei)) = 0

for every i > 0, Therefore, the restriction map

H0(X,OX(n(KX + ∆))) → H0(Ei,OEi
(n(KX + ∆)))

is surjective since SuppEi ∩ SuppA = ∅.
This implies that Ei 6⊂ Bs|n(KX + ∆)| for every irreducible compo-

nent Ei of B. �

Therefore, we have checked that Bs|n(KX + ∆)| contains no non-klt
centers of (X, ∆).

Finally, we will prove that KX + ∆ is semi-ample.

Step 8. If |n(KX +∆)| is free, then there are nothing to prove. So, we
assume that Bs|n(KX +∆)| 6= ∅. We take general members Ξ1, Ξ2, Ξ3 ∈
|n(KX + ∆)| and put Θ = Ξ1 + Ξ2 + Ξ3. Then Θ contains no non-klt
centers of (X, ∆) and KX + ∆ + Θ is not lc at the generic point of
any irreducible component of Bs|n(KX + ∆)| (see, for example, [F3,
Lemma 13.2]). We put

c = max{t ∈ R |KX + ∆ + tΘ is lc outside Nlc(X, ∆)}.

Then we can easily check that c ∈ Q and 0 < c < 1. In this case,

KX + ∆ + cΘ ∼Q (1 + cn)(KX + ∆)
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and there exists an lc center C of (X, ∆+ cΘ) contained in Bs|(n(KX +
∆)|. We take positive integer l and m such that

l(KX + ∆ + cΘ) ∼ mn(KX + ∆).

Replace n(KX + ∆) with l(KX + ∆ + cΘ) and apply the previous
arguments. Then, we obtain C 6⊂ Bs|kl(KX +∆+cΘ)| for some positive
integer k. Therefore, we have

Bs|kmn(KX + ∆)| ( Bs|n(KX + ∆)|.

It is because there is an lc center C of (X, ∆ + cΘ) such that C ⊂
Bs|n(KX + ∆)|, and l(KX + ∆ + cΘ) ∼ mn(KX + ∆). By noetherian
induction, we obtain that (KX + ∆) is semi-ample.

We finish the proof of Theorem 4.1. �

We used the following lemma in the proof of Theorem 4.1.

Lemma 4.2 (Adjunction). Let X be a normal projective surface and

D a pure one-dimensional reduced irreducible closed subscheme. Then

we have the following short exact sequence:

0 → T → ωX(D) ⊗OD → ωD → 0,

where T is the torsion part of ωX(D) ⊗ OD. In particular, T is a

skyscraper sheaf on D.

Proof. We consider the following short exact sequence

0 → OX(−D) → OX → OD → 0.

By tensoring ωX(D), where ωX(D) = (ωX ⊗OX(D))∗∗, we obtain

ωX(D) ⊗OX(−D) → ωX → ωX(D) ⊗OD → 0.

On the other hand, by taking ExtiOX
( , ωX), we obtain

0 → ωX → ωX(D) → ωD ≃ Ext1OX
(OD, ωX) → 0.

Note that ωX(D) ≃ HomOX
(OX(−D), ωX). The natural homomor-

phism

α : ωX(D) ⊗OX(−D) → ωX ≃ (ωX(D) ⊗OX(−D))∗∗
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induces the following commutative diagram.

0

��

T

��

ωX(D) ⊗OX(−D)

α

��

// ωX(D) // ωX(D) ⊗OD

��

// 0

0 // ωX

��

// ωX(D) // ωD //

��

0

T

��

0

0

It is easy to see that T is the torsion part of ωX(D) ⊗ OD and α is
surjective in codimension one. �

The next theorem is a generalization of Fujita’s result in [Ft].

Theorem 4.3 (Finite generation of log canonical rings). Let (X, ∆) be

a Q-factorial projective log surface such that ∆ is a Q-divisor. Then

the log canonical ring

R(X, ∆) =
⊕

m≥0

H0(X,OX(xm(KX + ∆)y))

is a finitely generated C-algebra.

Proof. Without loss of generality, we can assume that κ(X, KX +∆) ≥
0. By Theorem 3.3, we can further assume that KX + ∆ is nef. If
KX +∆ is big, then KX +∆ is semi-ample by Theorem 4.1. Therefore,
R(X, ∆) is finitely generated. If κ(X, KX + ∆) = 1, then we can
easily check that KX + ∆ is semi-ample (cf. [Ft, (4.1) Theorem]). So,
R(X, ∆) is finitely generated. If κ(X, KX + ∆) = 0, then it is obvious
that R(X, ∆) is finitely generated. �

As a corollary, we obtain the finite generation of canonical rings for
projective surfaces with only rational singularities.
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Corollary 4.4. Let X be a projective surface with only rational singu-

larities. Then the canonical ring

R(X) =
⊕

m≥0

H0(X,OX(mKX))

is a finitely generated C-algebra.

Remark 4.5. In Theorems 4.1 and 4.3, the assumption that ∆ is a
boundary Q-divisor is crucial. By Zariski’s example, we can easily
construct a smooth projective surface X and an effective Q-divisor ∆
on X such that Supp∆ is simple normal crossing, KX + ∆ is nef and
big, and

R(X, ∆) =
⊕

m≥0

H0(X,OX(xm(KX + ∆)y))

is not a finitely generated C-algebra. Of course, KX + ∆ is not semi-
ample. See, for example, [L, 2.3.A Zariski’s Construction].

5. Non-vanishing theorem

In this section, we prove the following non-vanishing theorem.

Theorem 5.1 (Non-vanishing theorem). Let (X, ∆) be a Q-factorial

projective log surface such that ∆ is a Q-divisor. Assume that KX +∆
is pseudo-effective. Then κ(X, KX + ∆) ≥ 0.

Proof. By Theorem 3.3, we can assume that KX + ∆ is nef. Let f :
Y → X be the minimal resolution. We put KY + ∆Y = f ∗(KX + ∆).
We note that ∆Y is effective. If κ(Y, KY ) ≥ 0, then it is obvious that

κ(X, KX + ∆) = κ(Y, KY + ∆Y ) ≥ κ(Y, KY ) ≥ 0.

So, from now on, we assume κ(Y, KY ) = −∞. When Y is rational,
we can easily check κ(Y, KY + ∆Y ) ≥ 0 by the Riemann–Roch formula
(see, for example, the proof of [FM, 11.2.1 Lemma]). Therefore, we can
assume that Y is an irrational ruled surface. Let p : Y → C be the
Albanese fibration. We can write KY +∆Y = KY +∆1 +∆2, where ∆1

is an effective Q-divisor on Y such that ∆1 has no vertical components
with respect to p, 0 ≤ ∆1 ≤ ∆Y , (KY +∆1)·F = 0 for any general fiber
F of p, and ∆2 = ∆Y − ∆1 ≥ 0. When we prove κ(Y, KY + ∆Y ) ≥ 0,
we can replace ∆Y with ∆1 because κ(Y, KY + ∆Y ) ≥ κ(Y, KY + ∆1).
Therefore, we can assume that ∆Y = ∆1. By taking blow-ups, we can
further assume that Supp∆Y is smooth. We note the following easy
but important lemma.

Lemma 5.2. Let B be any smooth irreducible curve on Y such that

p(B) = C. Then B is not f -exceptional.
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Proof of Lemma 5.2. Let {Ei}i∈I be the set of all f -exceptional divi-
sors. We consider the subgroup G of Pic(B) generated by {OB(Ei)}i∈I .
Let L = OC(D) be a sufficiently general member of Pic0(C). We note
that the genus g(C) of C is positive. Then

(p|B)∗L ∈ Pic0(B) ⊗Z Q \ G ⊗Z Q.

Assume that B is f -exceptional. We consider E = p∗D on Y . Since X
is Q-factorial,

E ∼Q f ∗f∗E +
∑

i∈I

aiEi

with ai ∈ Q for every i. By restricting the above relation to C, we
obtain (p|B)∗L ∈ G ⊗Z Q. It is a contradiction. Therefore, B is not
f -exceptional. �

Thus, every irreducible component B of ∆Y is not f -exceptional. So,
its coefficient in ∆Y is not greater than one because ∆ is a boundary
Q-divisor. By applying [Ft, (2.2) Theorem], we obtain that κ(Y, KY +
∆Y ) ≥ 0. We finish the proof. �

6. Abundance theorem for log surfaces

In this section, we prove the log abundance theorem for Q-factorial
projective log surfaces.

Theorem 6.1 (Abundance theorem). Let (X, ∆) be a Q-factorial pro-

jective log surface such that ∆ is a Q-divisor. Assume that KX + ∆ is

nef. Then KX + ∆ is semi-ample.

Proof. By Theorem 5.1, we have κ(X, KX +∆) ≥ 0. If κ(X, KX +∆) =
2, then KX + ∆ is semi-ample by Theorem 4.1. If κ(X, KX + ∆) = 1,
then κ(X, KX + ∆) = ν(X, KX + ∆) = 1 and we can easily check that
KX +∆ is semi-ample (cf. [Ft, (4.1) Theorem]). Therefore, all we have
to do is to prove KX +∆ ∼Q 0 when κ(X, KX +∆) = 0. It is Theorem
6.2 below. �

The proof of the following theorem depends on the argument in [Ft,
§5. The case κ = 0] and Sakai’s classification result in [S1].

Theorem 6.2. Let (X, ∆) be a Q-factorial projective log surface such

that ∆ is a Q-divisor. Assume that KX +∆ is nef and κ(X, KX +∆) =
0. Then KX + ∆ ∼Q 0.

Proof. Let f : V → X be the minimal resolution. We put KV + ∆V =
f ∗(KX + ∆). We note that ∆V is effective. It is sufficient to see that
KV + ∆V ∼Q 0. Let

ϕ : V =: V0
ϕ0

→ V1
ϕ1

→ · · ·
ϕk−1

→ Vk =: S
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be a sequence of blow-downs such that

(1) ϕi is a blow-down of a (−1)-curve Ci on Vi,
(2) ∆Vi+1

= ϕi∗∆Vi
, and

(3) (KVi
+ ∆Vi

) · Ci = 0,

for every i. We can assume that there are no (−1)-curves C on S with
(KS + ∆S) · C = 0. We note that KV + ∆V = ϕ∗(KS + ∆S). It is
sufficient to see that KS +∆S ∼Q 0. By assumption, there is a member
Z of |m(KS + ∆S)| for some divisible positive integer m. Then, for
every positive integer t, tZ is the unique member of |tm(KS + ∆S)|.
We can easily check the following lemma. See, for example, [Ft, (5.4)].

Lemma 6.3 (cf. [Ft, (5.5) Lemma]). Let Z =
∑

i ξiZi be the prime

decomposition of Z. Then KS · Zi = ∆S · Zi = Z · Zi for every i.

We will derive a contradiction assuming Z 6= 0, equivalently, ν(S, KS+
∆S) = 1. We can decompose Z into the connected components as fol-
lows:

Z =

r
∑

i=1

µiYi,

where µiYi is a connected component of Z such that µi is the greatest
common divisor of the coefficients of prime components of Yi in Z for
every i, and µiYi 6= µjYj for i 6= j. Then we obtain ωYi

≃ OYi
for every

i. It is because Yi is indecomposable of canonical type in the sense of
Mumford by Lemma 6.3 (see, for example, [Ft, (5.6)]).

Step 1 (cf. [Ft, (5.7)]). We assume that κ(S, KS) ≥ 0. Since 0 ≤
κ(S, KS) ≤ κ(S, KS + ∆S) = 0, we obtain κ(S, KS) = 0. If S is not
minimal, then we can find a (−1)-curve E on S such that E · (KS +
∆S) = 0. Therefore, S is minimal by the construction of (S, ∆S). We
show κ(S, KS + ∆S) = κ(S, Z) ≥ 1 in order to get a contradiction.
By taking an étale cover, we can assume that S is an Abelian surface
or a K3 surface. In this case, it is easy to see that κ(S, KS + ∆S) =
κ(S, Z) ≥ 1 since Z 6= 0.

From now on, we assume that κ(S, KS) = −∞.

Step 2. We further assume that H1(S,OS) = 0. If n(S, KS +∆S) = 1,
then there is a surjective morphism g : S → T onto a smooth projective
curve T and a nef Q-divisor A 6= 0 on T such that KS + ∆S ≡ g∗A
(cf. [8, Proposition 2.11]). Here, g is the reduction map associated to
KS +∆S. Since H1(S,OS) = 0, we obtain KS +∆S ∼Q g∗A. Therefore,
κ(S, KS + ∆S) = 1. It is a contradiction.
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Step 3. We assume that n(S, KS + ∆S) = 2. By [S1, Proposition 4],
we know r = 1, that is, Z = µ1Y1. In this case, S is a degenerate del
Pezzo surface, that is, nine times blow-ups of P2, and Z ∈ |−nKS| for
some positive integer n (cf. [S1, Proposition 5]). Since κ(S,−KS) = 0
and m(KS + ∆S) ∼ Z ∼ −nKS, we obtain m∆S = (m + n)D, where
D is the unique member of | − KS|. Thus,

∆S =
m + n

m
D and Z = nD.

In particular, we obtain ∆S = ∆>1
S . We will see that OD(aD) ≃ OD for

some positive integer a in Step 4. This implies that the normal bundle
ND = OD(D) is a torsion. It is a contradiction by [S1, Proposition 5].

Step 4. In this step, we will prove that OD(aD) ≃ OD for some
positive integer a. We put Dk = D and construct Di inductively.
It is easy to see that ϕi : Vi → Vi+1 is the blow-up at Pi+1 with
multPi+1

∆Vi+1
≥ 1 for every i by calculating discrepancy coefficients

since ∆Vi
is effective. If multPi+1

Di+1 = 0, then we put Di = ϕ∗
i+1Di+1.

If multPi+1
Di+1 > 0, then we put Di = ϕ∗

i+1Di+1 − Ci, where Ci is the
exceptional curve of ϕi. We note that multP ∆Vi+1

> multP Di+1 for
every P ∈ Vi+1 and multP Di+1 ∈ Z. Thus, we obtain D0 on V0 = V .
We can see that D0 is effective and SuppD0 ⊂ Supp∆>1

V by the above
construction. We note that ϕi∗ODi

≃ ODi+1
for every i. It is because

ϕi∗OVi
(−Di) ≃ OVi+1

(−Di+1) and R1ϕi∗OVi
(−Di) = 0 for every i. See

the following commutative diagram.

0 // OVi+1
(−Di+1)

≃

��

// OVi+1

≃

��

// ODi+1

��

// 0

0 // ϕi∗OVi
(−Di) // ϕi∗OVi

// ϕi∗ODi
// R1ϕi∗OVi

(−Di) = 0

Therefore, we obtain ϕ∗OD0
≃ OD. Since SuppD0 ⊂ Supp∆>1

V , we see
that D0 is f -exceptional. Since KV + ∆V = f ∗(KX + ∆), we obtain
OD0

(b(KV + ∆V )) ≃ OD0
for some positive divisible integer b. Thus,

OD(b(KS + ∆S)) ≃ ϕ∗OD0
(b(KV + ∆V )) ≃ OD.

In particular, OD(aD) ≃ OD for some positive integer a. It is because

b(KS + ∆S) ∼
bn

m
D.

Step 5. Finally, we assume that S is an irrational ruled surface. Let
α : S → B be the Albanese fibration. In this case, every irreducible
component of Supp∆>1

S is vertical with respect to α (cf. Lemma 5.2).
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Therefore, [Ft, (5.9)] works without any changes. Thus, we get a con-
tradiction.

We finish the proof of Theorem 6.2. �

We close this section with the following corollary.

Corollary 6.4 (Abundance theorem for log canonical surfaces). Let

(X, ∆) be a complete log canonical surface such that ∆ is a Q-divisor.

Assume that KX + ∆ is nef. Then KX + ∆ is semi-ample.

Proof. Let f : V → X be the minimal resolution. We put KV + ∆V =
f ∗(KX +∆). Since (X, ∆) is log canonical, ∆V is a boundary Q-divisor.
Since V is smooth, V is automatically projective. Apply Theorem 6.1
to the pair (V, ∆V ). We obtain KV +∆V is semi-ample. It implies that
KX + ∆ is semi-ample. �

7. Relative setting

In this section, we discuss the finite generation of log canonical rings
and the log abundance theorem in the relative setting.

Theorem 7.1 (Relative finite generation). Let (X, ∆) be a log surface

such that ∆ is a Q-divisor. Let π : X → S be a proper surjective

morphism onto a variety S. Assume that X is Q-factorial or that

(X, ∆) is log canonical. Then

R(X/S, ∆) =
⊕

m≥0

π∗OX(xm(KX + ∆)y)

is a finitely generated OS-algebra.

Proof. (cf. Proof of Theorem 1.1 in [F2]). When (X, ∆) is log canonical,
we replace X with its minimal resolution. So, we can always assume
that X is Q-factorial. If κ(Xη, KXη

+ ∆η) = −∞, where η is the
generic point of S, Xη is the generic fiber of π, and ∆η = ∆|Xη

, then
the statement is trivial. So, we assume that κ(Xη, KXη

+ ∆η) ≥ 0.
We further assume that S is affine by shrinking π : X → S. By
compactifying π : X → S, we can assume that S is projective. Since
X is Q-factorial, X is automatically projective (cf. Lemma 2.2). In
particular, π is projective. Let H be a very ample divisor on S and G
a general member of |4H|. We run the log minimal model program for
(X, ∆+π∗G). By Proposition 3.7, this log minimal model program is a
log minimal model program over S. It is because any (KX +∆+π∗G)-
negative extremal ray of NE(X) is a (KX + ∆)-negative extremal ray
of NE(X/S). When we prove this theorem, by Theorem 3.3, we can
assume that KX + ∆ + π∗G is nef over S, equivalently, KX + ∆ + π∗G
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is nef. By Theorem 6.1, KX + ∆ + π∗G is semi-ample. In particular,
KX + ∆ is π-semi-ample. Thus,

R(X/S, ∆) =
⊕

m≥0

π∗OX(xm(KX + ∆)y)

is a finitely generated OS-algebra. �

Theorem 7.2 (Relative abundance theorem). Let (X, ∆) be a log sur-

face such that ∆ is a Q-divisor. Let π : X → S be a proper surjective

morphism onto a variety S. Assume that X is Q-factorial or that

(X, ∆) is log canonical. We further assume that KX + ∆ is π-nef.

Then KX + ∆ is π-semi-ample.

Proof. As in the proof of Theorem 7.1, we can always assume that X
is Q-factorial. By Theorem 6.1, we can assume that dim S ≥ 1. By
Theorem 7.1, we have that

R(X/S, ∆) =
⊕

m≥0

π∗OX(xm(KX + ∆)y)

is a finitely generated OS-algebra. It is easy to see that KXη
+∆η is nef

and abundant. Therefore, KX + ∆ is π-semi-ample (see, for example,
[F2, Lemma 3.12]). �

We recommend the reader to see [F2, 3.1. Appendix] for related
topics.

Anyway, we obtain the relative log minimal model program for log
surfaces (cf. Theorem 3.3) and the relative log abundance theorem for
log surfaces (cf. Theorem 7.2) in full generality. Therefore, we can
freely use the log minimal model theory for log surfaces in the relative
setting.

8. Appendix: Base point free theorem for log surfaces

In this appendix, we prove the base point free theorem for log sur-
faces in full generality. It completely generalizes Fukuda’s base point
free theorem for log canonical surfaces (cf. [Fk, Main Theorem]). Our
proof is different from Fukuda’s and depends on the theory of quasi-

log varieties. We note that this result is not necessary for the minimal
model theory for log surfaces discussed in this paper. We also note that
a much more general result was stated in [A, Theorem 7.2] without any
proofs (cf. [F4, Theorem 4.1]).

Theorem 8.1 (Base point free theorem for log surfaces). Let (X, ∆)
be a log surface and π : X → S a proper surjective morphism onto

a variety S. Let L be a π-nef Cartier divisor on X. Assume that



24 OSAMU FUJINO

aL − (KX + ∆) is π-nef and π-big and that (aL − (KX + ∆))|C is

π-big for every lc center C of the pair (X, ∆), where a is a positive

number. Then there exists a positive integer m0 such that OX(mL) is

π-generated for every m ≥ m0.

Remark 8.2. In Theorem 8.1, the condition that (aL − (KX + ∆))|C
is π-big for every lc center C of the pair (X, ∆) is equivalent to the
following condition: (aL − (KX + ∆)) · C > 0 for every irreducible
component C of x∆y such that π(C) is a point.

Proof. Without loss of generality, we can assume that S is affine since
the problem is local. We divide the proof into several steps.

Step 1 (Quasi-log structures). Since (X, ∆) is a log surface, the pair
[X, ω], where ω = KX + ∆, has a natural quasi-log structure. It in-
duces a quasi-log structure [V, ω′] on V = Nklt(X, ∆) with ω′ = ω|V .
More precisely, let f : Y → X be a resolution such that KY + ∆Y =
f ∗(KX + ∆) and that Supp∆Y is a simple normal crossing divisor on
Y . By the relative Kawamata–Viehweg vanishing theorem, we obtain
the following short exact sequence

0 → f∗OY (−x∆Y y) → f∗OY (p(−∆<1
Y )q − x∆>1

Y y)

→ f∗O∆=1
Y

(p(−∆<1
Y )q − x∆>1

Y y) → 0.

Note that

−x∆Y y = p(−∆<1
Y )q − x∆>1

Y y − ∆=1
Y .

We also note that the scheme structure of V is defined by the multiplier
ideal sheaf J (X, ∆) = f∗OY (−x∆Y y) of the pair (X, ∆) and that X−∞

(resp. V−∞) is defined by the ideal sheaf f∗OY (p(−∆<1
Y )q− x∆>1

Y y) =:
IX−∞

(resp. f∗O∆=1
Y

(p(−∆<1
Y )q − x∆>1

Y y) =: IV−∞
). By construction,

X−∞ ≃ V−∞ and X−∞ = Nlc(X, ∆). We note the following commuta-
tive diagram.

0 // J (X, ∆) // IX−∞
//

��

IV−∞
//

��

0

0 // J (X, ∆) // OX
// OV

// 0

For details, see [A, Section 4], [F4, Section 3.2], and [F7].

Step 2 (Freeness on Nklt(X, ∆)). By assumption, aL|V −ω′ is π-ample
and OV−∞

(mL) is π|V−∞
-generated for every m ≥ 0. We note that V

is one-dimensional and V−∞ is zero-dimensional. Therefore, by [F4,
Theorem 3.66], OV (mL) is π-generated for every m ≫ 0.
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Step 3 (Lifting of sections). We consider the following short exact
sequence

0 → J (X, ∆) → OX → OV → 0,

where J (X, ∆) is the multiplier ideal sheaf of (X, ∆). Then we obtain
that the restriction map

H0(X,OX(mL)) → H0(V,OV (mL))

is surjective for every m ≥ a since

H1(X,J (X, ∆) ⊗OX(mL)) = 0

for m ≥ a by the relative Kawamata–Viehweg–Nadel vanishing the-
orem. Thus, there exists a positive integer m1 such that Bs|mL| ∩
Nklt(X, ∆) = ∅ for every m ≥ m1.

So, all we have to do is to prove that |mL| is free for every m ≫ 0
under the assumption that Bs|nL| ∩Nklt(X, ∆) = ∅ for every n ≥ m1.

Step 4 (Kawamata’s X-method). Let f : Y → X be a resolution with
a simple normal crossing divisor F =

∑

j Fj on Y . We can assume the
following conditions.

(a) KY = f ∗(KX + ∆) +
∑

j ajFj for some aj ∈ R.

(b) f ∗|plL| = |M |+
∑

j rjFj, where |M | is free, p is a prime number

such that pl ≥ m1, and
∑

j rjFj is the fixed part of f ∗|plL| for
some rj ∈ Z with rj ≥ 0.

(c) f ∗(aL− (KX + ∆))−
∑

j δjFj is π-ample for some δj ∈ R with
0 < δj ≪ 1.

We set

c = min

{

aj + 1 − δj

rj

}

where the minimum is taken for all the j such that rj 6= 0. Then, we
obtain c > 0. Here, we used the fact that aj > −1 if rj > 0. It is
because Bs|plL| ∩ Nklt(X, ∆) = ∅. By a suitable choice of the δj , we
can assume that the minimum is attained at exactly one value j = j0.
We put

A =
∑

j

(−crj + aj − δj)Fj .
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We consider

N := pll′f ∗L − KY +
∑

j

(−crj + aj − δj)Fj

= (pll′ − cpl − a)f ∗L (π-nef if pll′ ≥ cpl + a)

+ c(plf ∗L −
∑

j

rjFj) (π-free)

+ f ∗(aL − (KX + ∆)) −
∑

j

δjFj (π-ample)

for some positive integer l′. Then N is π-ample if pll′ ≥ cpl +a. By the
relative Kawamata–Viehweg vanishing theorem, we have

H i(Y,OY (KY + pNq)) = 0

for every i > 0. We can write pAq = B − F − D, where B is
an effective f -exceptional Cartier divisor, F = Fj0, D is an effec-
tive Cartier divisor such that SuppD ⊂ Supp

∑

aj≤−1 Fj , and SuppB,

SuppF , and SuppD have no common irreducible components one an-
other by Bs|plL| ∩ Nklt(X, ∆) = ∅. We note that KY + pNq =
pll′f ∗L + pAq. Then the restriction map

H0(Y,OY (pll′f ∗L + B))

→ H0(F,OF (pll′f ∗L + B)) ⊕ H0(D,OD(pll′f ∗L + B))

is surjective. Here, we used the fact that SuppF ∩ SuppD = ∅. Thus
we obtain that

H0(X,OX(pll′L)) ≃ H0(Y,OY (pll′f ∗L+B)) → H0(F,OF (pll′f ∗L+B))

is surjective. We note that H0(F,OF (pll′f ∗L + B)) 6= 0 by Shokurov’s
non-vanishing theorem. Therefore, Bs|pll′L| ( Bs|plL| since f(F ) ⊂
Bs|plL|. By noetherian induction, we obtain Bs|pkL| = ∅ for some
positive integer k.

Let q be a prime number with q 6= p. Then we can find k′ > 0 such
that Bs|qk′

L| = ∅ by the same argument as in Step 4. So, we can find
a positive integer m0 such that Bs|mL| = ∅ for m ≥ m0. �
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