
REMARK ON DYNAMICAL MORSE INEQUALITY

MASAYUKI ASAOKA, TOMOHIRO FUKAYA AND MASAKI TSUKAMOTO

Abstract. We solve a transversality problem relating to Bertelson-Gromov’s “dynam-
ical Morse inequality”.

1. introduction

Bertelson-Gromov proposed a study of “dynamical Morse inequality” in [2]. It is a new

kind of Morse theory in (asymptotically) infinite dimensional situations. The authors

think that the paper [2] opened a way to a fruitful new research area. The purpose of

this paper is to give some complementary results which clarify the value of the paper [2].

Let X be a compact connected smooth manifold of dimension ≥ 1, and f : X ×X → R
be a smooth function. For n = 1, 2, 3, · · · , we define fn : Xn+1 → R by

(1) fn(x0, x1, · · · , xn) :=
1

n

n−1∑
i=0

f(xi, xi+1).

The study of this kind of functions was proposed by Bertelson-Gromov [2]. (See also

Bertelson [1].) The “physical” meaning of fn is as follows. Consider a “crystal” which

consists of n “atoms” in a line. Suppose that the “internal state” of each atom is described

by the manifold X and that each atom interacts with the next one by the “potential

function” f(x, y). Then the critical points of fn correspond to the “stationary states” of

the crystal.

Let c be a real number, and δ a positive real number. We define Nn(c, δ) as the number

of critical points p of fn with c − δ < fn(p) < c + δ:

Nn(c, δ) := ♯{p ∈ Xn+1| (dfn)p = 0, c − δ < fn(p) < c + δ}.

We set

N(c, δ) := lim inf
n→∞

1

n
log Nn(c, δ).
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We define N(c) by

N(c) := lim
δ→0

N(c, δ).

Bertelson-Gromov [2] (essentially) proved the following “dynamical Morse inequality”.

(See [2, Remark 8.2].)

Theorem 1.1 (Bertelson-Gromov). Suppose the following:

(2) All fn : Xn+1 → R (n ≥ 1) are Morse functions.

Then for any c ∈ R

(3) N(c) ≥ b(c).

Here b(c) is the “Betti-number entropy” introduced in [2]. We review its definition and

basic properties in Section 3

For the convenience of the readers we give a proof of this result in Section 3. Set mn :=

minp∈Xn+1 fn(p) and Mn := maxp∈Xn+1 fn(p). It can be easily seen that the following

limits exist: m∞ := limn→∞ mn = supn≥1 mn and M∞ := limn→∞ Mn = infn≥1 Mn (see

Section 3.2). The function b(c) is concave and b(c) > 0 for m∞ < c < M∞. Therefore,

if m∞ ̸= M∞, the above dynamical Morse inequality (3) gives a non-trivial estimate for

N(c). (We have m∞ ̸= M∞ for generic f ∈ C∞(X × X). See [3, Section 1].)

Theorem 1.1 rises the following natural question: How common is the condition (2) for

smooth functions? The main issue of this note is to give an affirmative answer to this

question. Notice that the answer is not apparent because of the symmetry of the function

fn. For example, the value

nfn(x, · · · , x,y1, · · · , ym, x, · · · , x)

= f(x, y1) + f(ym, x) + (n − m − 1)f(x, x) +
m−1∑
i=1

f(yi, yi+1)

does not depend on the number of x’s before the sequence of y1, · · · , ym appears. So the

standard arguments to show the prevalence of Morse functions (e.g. Guillemin-Pollack [4,

Chapter 1, Section 7], Hirsch [5, Chapter 6, Section 1]) do not work.

Let C∞(X × X) be the space of all (real valued) C∞-functions in X × X. C∞(X × X)

is endowed with the topology of C∞-convergence, and we can give this space a structure

of infinite dimensional Fréchet space. Recall that a subset U ⊂ C∞(X × X) is said to

be of second category if it is the intersection of countably many open dense subsets. If

U ⊂ C∞(X ×X) is of second category, then it is dense in C∞(X ×X) (Baire). The main

result of this paper is the following.

Theorem 1.2. The set of all functions f ∈ C∞(X ×X) satisfying the condition (2) is of

second category in C∞(X × X).
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Let C∞
s (X × X) be the space of all f ∈ C∞(X × X) satisfying the symmetric relation

f(x, y) = f(y, x) for all x, y ∈ X. This is a closed subspace in C∞(X ×X). If we consider

Xn+1 as the “configuration space of a crystal” as we explained before, then it is natural

to suppose that the “potential function” f is symmetric. So we think that the following

result is also interesting.

Theorem 1.3. The set of all functions f ∈ C∞
s (X×X) satisfying (2) is of second category

in C∞
s (X × X).

2. Proof of Theorems 1.2 and 1.3

In this section we assume that the closed manifold X is smoothly embedded into

the Euclidean space RN . For n ≥ 1, we denote Pn as the set of all partitions of

{0, 1, 2, · · · , n}. For σ = {P1, P2, · · · , Pl} ∈ Pn, we set |σ| = l and σ(i) = Pj for

i ∈ Pj, (i = 0, 1, 2, · · · , n). For example, if σ = {{0}, {1, 3}, {2}} ∈ P3, then |σ| = 3

and σ(0) = {0}, σ(1) = σ(3) = {1, 3}, σ(2) = {2}. For σ, τ ∈ Pn, we denote τ ≥ σ if we

have τ(i) ⊃ σ(i) for all i = 0, 1, · · · , n. (This means that σ is a subdivision of τ .) The

maximum partition with respect to this ordering is {{0, 1, 2, · · · , n}}, and the minimum

partition is {{0}, {1}, · · · , {n}}.
For σ ∈ Pn, we set

Xσ := {(x0, x1, · · · , xn) ∈ Xn+1|xi = xj if σ(i) = σ(j)},

RN
σ := {(v0, v1, · · · , vn) ∈ (RN)n+1| vi = vj if σ(i) = σ(j)}.

We have Xσ ⊂ RN
σ . If τ ≥ σ, then Xτ ⊂ Xσ and RN

τ ⊂ RN
σ . We set

Σσ :=
∪
τ´σ

Xτ .

Here τ runs over all partitions in Pn strictly greater than σ. We have Σσ ⊂ Xσ.

Remark 2.1. (i) For x = (x0, x1, · · · , xn) ∈ Xn+1, we have x ∈ Xσ \ Σσ if and only if

the following condition is satisfied: “xi = xj ⇔ σ(i) = σ(j)”.

(ii) Xn+1 =
∪

σ∈Pn
(Xσ \ Σσ).

(iii) The pair (RN
σ , Xσ) is diffeomorphic to the pair ((RN)|σ|, X |σ|).

For f ∈ C∞(X × X), we define Sn(f) ∈ C∞(Xn+1) by

Sn(f) :=
n−1∑
i=0

f(xi, xi+1).

We have fn = Sn(f)/n (see (1)).

For each (fixed) n ≥ 1, the set {f ∈ C∞(X×X)|Sn(f) is a Morse function} is obviously

open in C∞(X × X). (A similar statement for Cs(X × X) is also true.) Hence Theorems

1.2 and 1.3 follow from the following.
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Theorem 2.2. Fix n ≥ 1. Every f ∈ C∞(X × X) can be approximated arbitrarily well

(in the C∞-topology) by g ∈ C∞(X×X) such that Sn(g) is a Morse function. Moreover, if

f is symmetric (i.e. f(x, y) = f(y, x) for any x, y ∈ X), then we can choose a symmetric

approximation g.

For a while we will prepare some preliminary results for proving this theorem. In

the rest of this section we fix n ≥ 1. First recall the following well-known result (see

Guillemin-Pollack [4, p. 43]).

Proposition 2.3. Let M be a closed manifold embedded in Rm and f : M → R a smooth

function. Fix x0 ∈ Rm. Then for almost every α ∈ Rm, the function

M ∋ x 7→ f(x) + ⟨α, x − x0⟩ ∈ R

is a Morse function. Here ⟨·, ·⟩ is the standard inner product of Rm.

We will also need the following (well-known, we believe).

Lemma 2.4. Let M be a closed manifold embedded in Rm and f : M → R be a smooth

function. Let p = (p1, · · · , pm) ∈ M be a critical point of f . Let a1, · · · , am be positive

numbers. Then for all but finitely many c ∈ R, the point p is a non-degenerate critical

point of the following function:

gc : M ∋ x 7→ f(x) + c
m∑

i=1

ai|xi − pi|2 ∈ R.

Proof. First note that the following fact: Let A and B be two matrices of the same degree,

and suppose B is regular. Then A + cB is also regular for c ≫ 1. Hence det(A + cB)

is not identically zero as the polynomial of c. So it has only finitely many zeros. Then

A + cB is regular for all but finitely many c ∈ R.

We can assume p = 0. Let φ = (φ1, · · · , φm) : Rk → M ⊂ Rm (φ(0) = 0) be a local

coordinate around 0 ∈ M . We have gc ◦ φ(y) = f ◦ φ(y) + c
∑m

i=1 ai(φi(y))2. Then

∂2gc ◦ φ

∂yα∂yβ

(0) =
∂2f ◦ φ

∂yα∂yβ

(0) + 2c
m∑

i=1

ai
∂φi

∂yα

(0)
∂φi

∂yβ

(0).

It is easy to see that the symmetric matrix (
∑

i ai · ∂φi(0)/∂yα · ∂φi(0)/∂yβ)α,β is positive

definite and hence regular. Hence the desired result follows from the above remark. ¤

For p = (p0, p1, · · · , pn) ∈ Xn+1, we put

r(p) := min{|pi − pj| | pi ̸= pj}, Up := {x ∈ Xn+1| |x − p| < r(p)/3}.

When p0 = p1 = · · · = pn, we set r(p) = +∞ and Up = Xn+1. Let χ be a C∞-function on

R such that χ = 1 on [0, 1/3] and χ = 0 on [2/3, +∞). For p = (p0, p1, · · · , pn) ∈ Xn+1

and j = 0, 1, · · · , n, we set χp,j(x) := χ(|x − pj|/r(p)) for x ∈ X. If p0 = p1 = · · · = pn,

then we set χp,j ≡ 1.
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Lemma 2.5. Let σ ∈ Pn. For p ∈ Xσ \ Σσ and x = (x0, x1, · · · , xn) ∈ Up,

χp,j(xi) =

1 if σ(i) = σ(j),

0 if σ(i) ̸= σ(j).

Proof. If σ(i) = σ(j), then pi = pj. So |xi − pj| = |xi − pi| ≤ |x − p| < r(p)/3. If

σ(i) ̸= σ(j), then pi ̸= pj. So |xi − pj| ≥ |pi − pj| − |xi − pi| ≥ 2r(p)/3. ¤

For i = 0, 1, 2, · · · , n, we set

µ(i) =

1 i = 0, n,

2 otherwise.

Lemma 2.6. Let σ ∈ Pn, p = (p0, p1, · · · , pn) ∈ Xσ \Σσ and α = (α0, α1, · · · , αn) ∈ RN
σ .

Then there is symmetric fp,¸ ∈ C∞(X × X) such that Sn(fp,¸)(x) = ⟨α,x − p⟩ for all

x ∈ Up ∩ Xσ.

Proof. We define h ∈ C∞(X) by

h(x) :=
n∑

j=0

 ∑
k∈σ(j)

µ(k)

−1

⟨αj, χp,j(x)(x − pj)⟩.

Put fp,¸(x, y) := h(x) + h(y). For x = (x0, x1, · · · , xn) ∈ Up ∩ Xσ,

Sn(fp,¸)(x) =
n−1∑
i=0

(h(xi) + h(xi+1)) =
n∑

i=0

µ(i)h(xi)

=
∑

0≤i,j≤n

µ(i)

 ∑
k∈σ(j)

µ(k)

−1

⟨αj, χp,j(xi)(xi − pj)⟩

=
n∑

j=0

 ∑
k∈σ(j)

µ(k)

−1  ∑
i∈σ(j)

µ(i)⟨αj, xj − pj⟩


(by Lemma 2.5 and xi = xj for i ∈ σ(j))

=
n∑

j=0

⟨αj, xj − pj⟩ = ⟨α,x − p⟩.

¤

Lemma 2.7. For p = (p0, p1, · · · , pn) ∈ Xn+1, there is symmetric gp ∈ C∞(X ×X) such

that Sn(gp)(x) =
∑n

i=0 µ(i)|xi − pi|2 for all x = (x0, · · · , xn) ∈ Up.

Proof. Choose σ ∈ Pn such that p ∈ Xσ \ Σσ. We define h ∈ C∞(X) by

h(x) :=
n∑

j=0

χp,j(x)

♯σ(j)
|x − pj|2.
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Set gp(x, y) := h(x) + h(y). For x = (x0, x1, · · · , xn) ∈ Up,

Sn(gp)(x) =
n−1∑
i=0

(h(xi) + h(xi+1)) =
n∑

i=0

µ(i)h(xi)

=
∑

0≤i,j≤n

µ(i)
χp,j(xi)

♯σ(j)
|xi − pj|2

=
n∑

i=0

µ(i)
∑

j∈σ(i)

1

♯σ(i)
|xi − pj|2 (by Lemma 2.5)

=
n∑

i=0

µ(i)|xi − pi|2 (pj = pi for j ∈ σ(i)).

¤

Let M be a manifold, and f : M → R be a smooth function. We denote C(f) as the

set of all critical points of f , and C∗(f) as the set of all degenerate critical points of f .

Lemma 2.8. Let σ ∈ Pn and K ⊂ Xσ be a compact set. Let f ∈ C∞(X × X). Suppose

C∗(Sn(f)|Xσ)∩K = ∅. Then f can be approximated arbitrarily well by g ∈ C∞(X×X) such

that C∗(Sn(g))∩K = ∅. If f is symmetric, then we can choose a symmetric approximation

g.

Proof. All critical points of Sn(f)|Xσ in K are isolated in Xσ. In particular C(Sn(f)|Xσ)∩
K is a finite set. Since C∗(Sn(f))∩K is contained in C(Sn(f)|Xσ)∩K, C∗(Sn(f))∩K is

also finite. We prove the lemma by the induction on l := ♯(C∗(Sn(f)) ∩ K).

The case l = 0 is trivial. Suppose C∗(Sn(f)) ∩ K = {p1,p2, · · · ,pl}. There are open

subsets V1, · · · , Vl of Xσ such that pi ∈ Vi, C(Sn(f)|Xσ) ∩ V i = {pi} (i = 1, · · · , l)

and V i ∩ V j = ∅ (i ̸= j). Since non-degenerate critical points are persistent, there is a

neighborhood U of f in C∞(X × X) such that for all g ∈ U
(i) C∗(Sn(g)) ∩ K ⊂

∪l
i=1 Vi,

(ii) ♯ (C(Sn(g)|Xσ) ∩ Vi) = 1 for i = 1, · · · , l. (Then, ♯ (C(Sn(g)) ∩ Vi) ≤ 1.)

Take c > 0 such that f + cgp1 ∈ U (gp1 is the function given in Lemma 2.7.) and that

p1 is a non-degenerate critical point of the following function:

Xn+1 → R, x 7→ Sn(f)(x) + c

(
n∑

j=0

µ(j)|xj − p1,j|2
)

,

where p1 = (p1,0, p1,1, · · · , p1,n). (The latter condition is satisfied for all but finitely many

c ∈ R by Lemma 2.4.) Put g1 := f + cgp1 . From Lemma 2.7, for x = (x0, · · · , xn) ∈ Up1 ,

Sn(g1)(x) = Sn(f) + c

(
n∑

j=0

µ(j)|xj − p1,j|2
)

.
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By the choice of g1 ∈ U , p1 is the unique critical point of Sn(g1) in V1 (see the above

condition (ii)), and it is non-degenerate. Therefore we have C∗(Sn(g1)) ∩ K ⊂
∪l

i=2 Vi.

This implies ♯ (C∗(Sn(g1)) ∩ K) ≤ l − 1. By the assumption of induction, g1 can be

approximated by g ∈ C∞(X × X) such that C∗(Sn(g)) ∩ K = ∅. If f is symmetric, then

g1 is also symmetric and we can choose a symmetric approximation g. ¤

Proposition 2.9. Let σ ∈ Pn and f ∈ C∞(X × X). Suppose C∗(Sn(f)) ∩ Σσ = ∅. Then

f can be approximated arbitrarily well by f ′ ∈ C∞(X ×X) such that C∗(Sn(f ′))∩Xσ = ∅.
If f is symmetric, then we can choose a symmetric approximation f ′.

Proof. Since Σσ is compact and C∗(Sn(f)) ∩ Σσ = ∅, there is an open set W0 ⊂ Xσ such

that Σσ ⊂ W0 and W 0 ∩ C∗(Sn(f)) = ∅. Take p1, · · · ,pk ∈ Xσ \ Σσ and open sets

V1, · · · , Vk ⊂ Xσ such that pi ∈ Vi, V i ⊂ Upi
and Xσ = W0 ∪

∪k
i=1 Vi. Put f0 := f and

Wi := W0 ∪
∪i

j=1 Vj for i = 1, · · · , k.

We will inductively show that if fi ∈ C∞(X × X) satisfies C∗(Sn(fi)) ∩ W i = ∅ then

fi can be approximated by fi+1 ∈ C∞(X × X) satisfying C∗(Sn(fi+1)) ∩ W i+1 = ∅. (If

fi is symmetric, then we can choose fi+1 symmetric.) Since C∗(Sn(f0)) ∩ W 0 = ∅ and

Xσ = W0 ∪
∪k

i=1 Vi, this will complete the proof.

Let e1, · · · , em be the standard basis of RN
σ (m = N |σ|). By Proposition 2.3, for a.e.

(c1, · · · , cm) ∈ Rm, the following is a Morse function.

(4) RN
σ ⊃ Xσ ∋ x 7→ Sn(fi)(x) + ⟨

m∑
j=1

cjej, x − pi+1⟩ ∈ R.

Take small (c1, · · · , cm) ∈ Rm such that (4) is a Morse function. Put gi := fi +∑m
j=1 cjfpi+1,ej

. (fpi+1,ej
is the function introduced in Lemma 2.6.) Then Sn(gi)(x) =

Sn(fi)(x)+⟨
∑m

j=1 cjej, x−pi+1⟩ for x ∈ Upi+1
∩Xσ. This implies C∗(Sn(gi)|Xσ)∩V i+1 = ∅.

By Lemma 2.8, gi can be approximated by fi+1 satisfying C∗(Sn(fi+1)) ∩ V i+1 = ∅.
Since C∗(Sn(fi))∩W i = ∅ by the assumption, if we choose (c1, · · · , cm) sufficiently small

and fi+1 sufficiently close to gi then C∗(Sn(fi+1))∩W i = ∅. Thus we have C∗(Sn(fi+1))∩
W i+1 = ∅. ¤

Proof of Theorem 2.2. Set f0 := f . We will inductively construct fi below. Let Pn =

{σ1, σ2, · · · , σm} (m = |Pn|), and we can assume that these are indexed so that σi ≥ σj ⇒
i ≤ j. If fi ∈ C∞(X × X) satisfies C∗(Sn(fi)) ∩

(∪
j≤i Xσj

)
= ∅, then by Proposition

2.9, fi can be approximated by fi+1 ∈ C∞(X × X) satisfying C∗(Sn(fi+1)) ∩ Xσi+1
= ∅.

We can choose fi+1 sufficiently close to fi so that C∗(Sn(fi+1)) ∩
(∪

j≤i Xσj

)
= ∅. Hence

C∗(Sn(fi+1)) ∩
(∪

j≤i+1 Xσj

)
= ∅. By induction f = f0 can be approximated by fm ∈

C∞(X × X) satisfying C∗(Sn(fm)) = ∅. If f is symmetric, then we can choose all fi

symmetric. ¤
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3. Review of Betti-number entropy

This section is independent of Section 2. This section contains no essentially new ideas.

But, perhaps, this section will be useful for some readers.

3.1. Preliminaries. This subsection is a preparation for introducing “Betti-number en-

tropy” in the next subsection. The main task here is to prove Proposition 3.4 ([2, Propo-

sition 8.1 (b)]). Some details of the proof of [2, Proposition 8.1 (b)] were not given. Here,

we give a detailed proof with a slightly different argument.

Let M be a compact connected smooth manifold, and set n := dim M . If M is oriented,

then we use cohomology over R. And if M is unoriented, then we use cohomology over

Z/2Z. Let a ∈ H∗(M) := ⊕k≥0H
k(M), and U ⊂ M be an open subset. We write

supp a ⊂ U if there exists an open subset V ⊂ M such that M = U ∪ V and a|V = 0 in

H∗(V ) ([2, Notation 4.1]). When we use the de Rham cohomology, supp a ⊂ U means

that there exists a smooth differential form α with dα = 0 such that supp α ⊂ U and

a = [α] in H∗(M). An important property of this notion is the following: Let U, V be open

sets in M , and a, b ∈ H∗(M). If supp a ⊂ U and supp b ⊂ V , then supp (a ∪ b) ⊂ U ∩ V .

(For the proof, see [3, Section 2].)

Example 3.1. Let a ∈ Hn(M) (recall: n = dim M). Then for any non-empty open set

U ⊂ M we have supp a ⊂ U .

Lemma 3.2. Let U ⊂ M be an open set, and A ⊂ H∗(M) be a subvector space. Suppose

that all a ∈ A satisfy supp a ⊂ U . Then there exists an open set V ⊂ M such that V ⊂ U

and that all a ∈ A satisfy supp a ⊂ V .

Proof. Let a1, · · · , aN be a basis of A. For each ai there is an open set Vi ⊂ M such

that M = U ∪ Vi and ai|Vi
= 0 in H∗(Vi). There is an open set V ⊂ M satisfying

∪N
i=1(M \Vi) ⊂ V and V ⊂ U . Then every ai satisfies supp ai ⊂ V . Then all a ∈ A satisfy

supp a ⊂ V . ¤

For a ∈ Hq(M), we denote PD(a) := a ∩ [M ] ∈ Hn−q(M) as the Poincaré dual of a.

Lemma 3.3. Let a ∈ Hq(M), and U ⊂ M be an open subset. We have supp a ⊂ U if

and only if PD(a) is contained in the image of the map Hn−q(U) → Hn−q(M). (This

statement is partly used in the proof of [2, Proposition 10.2].)

Proof. Suppose supp a ⊂ U . Then there exists an open set V ⊂ M such that M = U ∪ V

and a|V = 0 in Hq(V ). Set K := M \ U . K is a closed set and K ⊂ V . We have the

following commutative diagram:

(5)

Hq(M)
PD−−−→ Hn−q(M)y y

Hq(V )
PD−−−→ Hn−q(M,M \ K)
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The map Hq(M) → Hn−q(M) is the usual Poincaré dual. The map Hq(V ) → Hn−q(M, M\
K) is defined as follows. Let [M ]K ∈ Hn(M,M \K) be the image of the fundamental class

[M ] ∈ Hn(M) under the map Hn(M) → Hn(M, M \ K). Since we have the excision iso-

morphism i∗ : Hn(V, V \K) ∼= Hn(M, M \K) (i : V ⊂ M), there exists w ∈ Hq(V, V \K)

satisfying i∗(w) = [M ]K . Then we define Hq(V ) → Hn−q(M,M \ K) by a 7→ i∗(a ∩ w).

Here a ∩ w is the cap product Hq(V ) × Hn(V, V \ K) → Hn−q(V, V \ K).

Since a|V = 0 in Hq(V ), we have [PD(a)] = 0 in Hn−q(M, M \ K) = Hn−q(M,U). We

have the exact sequence H∗(U) → H∗(M) → H∗(M, U). Hence PD(a) is contained in the

image of the map Hn−q(U) → Hn−q(M).

Next suppose that PD(a) is contained in the image of the map Hn−q(U) → Hn−q(M).

Set K := M \ U . From the assumption, [PD(a)] = 0 in Hn−q(M, U) = Hn−q(M,M \ K).

By taking the direct limit of the above diagram (5), we have the following commutative

diagram:

Hq(M)
PD−−−→ Hn−q(M)y y

lim−→K⊂V
Hq(V )

PD−−−→ Hn−q(M, M \ K)

Here lim−→K⊂V
Hq(V ) is the direct limit of Hq(V ) over the set of open sets V with V ⊃ K

(V1 ≤ V2 ⇔ V1 ⊃ V2). The first and second horizontal lines are both isomorphisms. Since

[PD(a)] = 0 in Hn−q(M,M \ K), we have [a] = 0 in lim−→K⊂V
Hq(V ). This means that

there exists an open set V ⊂ M with K ⊂ V (i.e. M = U ∪ V ) and a|V = 0 in Hq(V ).

Therefore supp a ⊂ U . ¤

Proposition 3.4. Let φ : M → R be a Morse function, and c < d be two real numbers.

Let A ⊂ H∗(M) be a subvector space satisfying the following conditions: All a ∈ A satisfy

supp a ⊂ φ−1(−∞, d), and moreover for all a ∈ A with a ̸= 0, there exists b ∈ H∗(M)

satisfying supp b ⊂ φ−1(c, +∞) and a ∪ b ̸= 0. Then

♯{p ∈ φ−1(c, d)|(dφ)p = 0} ≥ dim A.

Proof. From Lemma 3.2, we can assume that both c and d are regular values of φ without

loss of generality.

Step 1. First we assume that the open interval (c, d) contains at most one critical

value of φ. This step corresponds to [2, Proposition 8.1 (b)]. Their argument uses certain

piecewise smooth cycles which they did not explain how to construct. Here we give a

slightly different argument.

By considering the handle decomposition by φ, we have

♯{p ∈ φ−1(c, d)|(dφ)p = 0} = dim H∗(φ
−1(−∞, d), φ−1(−∞, c)).

From Lemma 3.3, there exists a subvector space A′ ⊂ H∗(φ
−1(−∞, d)) with dim A′ =

dim A such that for every w ∈ A′ with w ̸= 0 there exists a ∈ A satisfying a ̸= 0 and [w] =
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PD(a) in H∗(M). We want to show that A′ injects into H∗(φ
−1(−∞, d), φ−1(−∞, c)) by

the map H∗(φ
−1(−∞, d)) → H∗(φ

−1(−∞, d), φ−1(−∞, c)). Suppose that there exists

w ∈ A′ satisfying w ̸= 0 and [w] = 0 in H∗(φ
−1(−∞, d), φ−1(−∞, c)). Since we have the

exact sequence H∗(φ
−1(−∞, c)) → H∗(φ

−1(−∞, d)) → H∗(φ
−1(−∞, d), φ−1(−∞, c)),

there is w′ ∈ H∗(φ
−1(−∞, c)) satisfying w = [w′]. By the definition of A′, there is

a ∈ A with a ̸= 0 satisfying PD(a) = [w] = [w′] in H∗(M). From Lemma 3.3, we

have supp a ⊂ φ−1(−∞, c). From the assumption on A, there is b ∈ H∗(M) satisfying

supp b ⊂ φ−1(c, +∞) and a ∪ b ̸= 0. But supp (a ∪ b) ⊂ φ−1(−∞, c) ∩ φ−1(c, +∞) = ∅.
This implies a∪b = 0. This is a contradiction. Hence A′ ↪→ H∗(φ

−1(−∞, d), φ−1(−∞, c)).

Thus ♯{p ∈ φ−1(c, d)|(dφ)p = 0} = dim H∗(φ
−1(−∞, d), φ−1(−∞, c)) ≥ dim A′ = dim A.

Step 2: The general case. Here we use the method of [2, Proposition 8.1 (a)]. Let

c = c0 < c1 < c2 < · · · < cN = d be a division of the interval (c, d) satisfying the following

conditions: All ck are regular values of φ, and each open interval (ck, ck+1) contains at

most one critical value of φ.

We will repeatedly use the following fact below: Since ck is a regular value, the gradient

flow of φ defines an ambient isotopy which maps φ−1(−∞, ck) to φ−1(−∞, ck+ε) (|ε| ≪ 1).

(See Milnor [6, Chapter 3].) Hence supp a ⊂ φ−1(−∞, ck) is equivalent to supp a ⊂
φ−1(−∞, ck + ε). A similar statement for φ−1(ck, +∞) is also true.

We define a decomposition A = A1 ⊕ A2 ⊕ · · · ⊕ AN as follows. First note that all

a ∈ A with a ̸= 0 satisfy a|φ−1(c0,+∞) ̸= 0 in H∗(φ−1(c0, +∞)). We define A1 ⊂ A as

the space of a ∈ A satisfying a|φ−1(c1,+∞) = 0 in H∗(φ−1(c1, +∞)). Let B1 ⊂ A be a

complement of A1 in A: A = A1 ⊕ B1. We define A2 ⊂ B1 as the space of a ∈ B1

satisfying a|φ−1(c2,+∞) = 0 in H∗(φ−1(c2, +∞)). Let B2 ⊂ B1 be a complement of A1 in

B1: B1 = A2 ⊕ B2. Inductively, we define Ak ⊂ Bk−1 as the space of a ∈ Bk−1 satisfying

a|φ−1(ck,+∞) = 0, and let Bk ⊂ Bk−1 be a complement of Ak in Bk−1: Bk−1 = Ak ⊕ Bk.

All a ∈ A satisfy a|φ−1(cN ,+∞) = 0 in H∗(φ−1(cN , +∞)). Hence BN−1 = AN and BN = 0.

Then we get A = A1 ⊕ A2 ⊕ · · · ⊕ AN .

For each k = 1, 2, · · · , N , all a ∈ Ak satisfy supp a ⊂ φ−1(−∞, ck). If a ∈ Ak is not zero,

then a|φ−1(ck−1,+∞) ̸= 0 in H∗(φ−1(ck−1, +∞)). Then there is w ∈ H∗(φ
−1(ck−1, +∞))

satisfying ⟨a|φ−1(ck−1,+∞), w⟩ = ⟨a, [w]⟩ ̸= 0. (Here [w] ∈ H∗(M) is the image of w by

the map H∗(φ
−1(ck−1, +∞)) → H∗(M).) Then a ∪ PD−1([w]) ̸= 0. PD−1([w]) ∈ H∗(M)

satisfies supp PD−1([w]) ⊂ φ−1(ck−1, +∞) by Lemma 3.3. Thus all a ∈ Ak satisfy supp a ⊂
φ−1(−∞, ck), and for all a ∈ Ak with a ̸= 0 there is b ∈ H∗(M) satisfying supp b ⊂
φ−1(ck−1, +∞) and a ∪ b ̸= 0. By applying Step 1 to Ak, we get

♯{p ∈ φ−1(ck−1, ck)| (dφ)p = 0} ≥ dim Ak,

for each k = 1, 2, · · · , N . By summing up this estimate over k = 1, · · · , N , we get the

desired result. ¤
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3.2. Betti-number entropy. All results in this subsection are contained in Bertelson-

Gromov [2]. Let X be a compact connected smooth manifold of dimension ≥ 1. Let f :

X×X → R be a smooth function. We define fn : Xn+1 → R by setting fn(x0, · · · , xn) :=
1
n

∑n−1
i=0 f(xi, xi+1).

Set πn : Xn+1 → Xn, (x0, · · · , xn) 7→ (x0, · · · , xn−1). For an open set U ⊂ Xn+1 we

define a subvector space An(U) ⊂ H∗(Xn+1) as the set of a ∈ π∗
n(H∗(Xn)) satisfying

supp a ⊂ U . For c ∈ R and δ > 0, consider the following linear map:

An(f−1
n (−∞, c + δ)) → Hom(An(f−1

n (c − δ, +∞)), An(f−1
n (c − δ, c + δ)),

a 7→ (b 7→ a ∪ b).

We define bn(c, δ) as the rank of this linear map. If (c − δ, c + δ) ⊂ (c′ − δ′, c′ + δ′), then

bn(c, δ) ≤ bn(c′, δ′).

Lemma 3.5. For c, c′ ∈ R and δ > 0,

bn+m(αc + (1 − α)c′, δ) ≥ bn(c, δ)bm(c′, δ),

(
α =

n

n + m

)
.

Proof. See [2, Lemma 5.1]. ¤

Set mn := min fn and Mn := max fn. nmn is super-additive ((n + k)mn+k ≥ nmn +

kmk), and nMn is sub-additive. Hence we have the limits m∞ := limn→∞ mn = supn mn

and M∞ := limn→∞ Mn = infn Mn. We have m∞ ≤ M∞.

Lemma 3.6. For m∞ ≤ c ≤ M∞ and δ > 0, we have bn(c, δ) ≥ 1 (n ≫ 1). On the

other hand, if c < m∞ or c > M∞, then there is δ0 > 0 such that, for δ ≤ δ0, we have

bn(c, δ) = 0 (n ≫ 1).

Proof. The following argument is suggested by [2, Example 10.7, Remark 10.8]. First we

prove that there is n0(δ) > 0 such that bn(m∞, δ) ≥ 1 and bn(M∞, δ) ≥ 1 for n ≥ n0(δ).

We suppose f(X × X) ⊂ [0, 1] for simplicity. Let δ > 0. We have (1 − 1/n)(mn−1 +

1/n) + 1/n < m∞ + δ for n ≫ 1 Let a ∈ Hn dim X(Xn) be a non-zero cohomology class

of top-degree, and set a′ := π∗
na. Let U ⊂ Xn be a non-empty open subset such that

fn−1 < mn−1 + 1/n on U . Then fn ≤ (1 − 1/n)(mn−1 + 1/n) + 1/n < m∞ + δ on π−1
n (U)

for n ≫ 1. We have supp a ⊂ U (Example 3.1), and hence supp a′ ⊂ π−1
n (U). Hence

a′ ∈ An(f−1
n (−∞,m∞ + δ)). On the other hand, m∞ − δ < mn for n ≫ 1 and hence

f−1
n (m∞ − δ, +∞) = Xn+1. Therefore 1 ∈ An(f−1

n (m∞ − δ, +∞)) for n ≫ 1. We have

a′ ∪ 1 = a′ ̸= 0. Hence bn(m∞, δ) ≥ 1 for n ≫ 1. The statement for M∞ can be proved in

the same way.

Next suppose m∞ < c < M∞. There is N0(δ) > 0 such that if N ≥ N0(δ) then N

has a decomposition N = n + m satisfying n, m ≥ n0(δ/2) and |αm∞ + (1 − α)M∞ −
c| < δ/2, (α = n/N). From Lemma 3.5, we have bN(αm∞ + (1 − α)M∞, δ/2) ≥
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bn(m∞, δ/2)bm(M∞, δ/2) ≥ 1. Since (αm∞+(1−α)M∞−δ/2, αm∞+(1−α)M∞+δ/2) ⊂
(c − δ, c + δ), we have bN(c, δ) ≥ 1 for N ≥ N0(δ).

Finally suppose c < m∞ (The case c > M∞ can be proved in the same way.) Let

0 < δ ≤ (m∞− c)/2 =: δ0. We have c+ δ < mn for n ≫ 1, and hence f−1
n (−∞, c+ δ) = ∅.

Thus bn(c, δ) = 0 for n ≫ 1. ¤

Then we can define the Betti-number entropy b(c) by

b(c) := lim
δ→0

(
lim

n→∞

1

n
log bn(c, δ)

)
.

Proof of Theorem 1.1. From Proposition 3.4, we have Nn(c, δ) ≥ bn(c, δ) for c ∈ R and

δ > 0. Hence N(c) ≥ b(c). ¤

We gather some basic properties of b(c) below.

Lemma 3.7. If m∞ ≤ c ≤ M∞, then b(c) ≥ 0. If c < m∞ or c > M∞, then b(c) = −∞.

Proof. This follows from Lemma 3.6. ¤

Lemma 3.8. b(c) is concave: For c, c′ ∈ R and 0 ≤ α ≤ 1, b(αc + (1 − α)c′) ≥ αb(c) +

(1 − α)b(c′)

Proof. See [2, Proposition 9.2]. ¤

Proposition 3.9. There exists c ∈ R satisfying b(c) > 0.

Proof. See [2, Proposition 10.1]. ¤

From Lemmas 3.7 and 3.8 and Proposition 3.9, we get the following:

Corollary 3.10. If m∞ ̸= M∞, then the Betti-number entropy b(c) is positive over the

open interval c ∈ (m∞, M∞).
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