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Abstract. In this paper, we study the Johnson homomorphisms τ ′k of the automor-
phism group of a free group of rank n, which are defined on the graded quotients of
the lower central series of the IA-automorphism group. In particular, we determine
the cokernel of τ ′k for any k ≥ 2 and n ≥ k + 2.

1. Introduction

Let Fn be a free group of rank n ≥ 2, and AutFn the automorphism group of Fn. Let
denote ρ : AutFn → AutH the natural homomorphism induced from the abelianization
Fn → H. The kernel of ρ is called the IA-automorphism group of Fn, denoted by IAn.
The subgroup IAn reflects many richness and complexity of the structure of AutFn,
and plays important roles on various studies of AutFn.

Although the study of the IA-automorphism group has a long history since its finitely
many generators were obtained by Magnus [14] in 1935, the combinatorial group struc-
ture of IAn is still quite complicated. For instance, any presentation for IAn is not
known in general. Nielsen [19] showed that IA2 coincides with the inner automorphism
group, hence, is a free group of rank 2. For n ≥ 3, however, IAn is much larger than
the inner automorphism group InnFn. Krstić and McCool [13] showed that IA3 is not
finitely presentable. For n ≥ 4, it is not known whether IAn is finitely presentable or
not.

Because of the complexity of the group structure of IAn as mentioned above, it would
be sometimes not suitable to handle whole IAn directly. In order to study IAn with a
phased approach, we consider the Johnson filtration of AutFn. The Johnson filtration
is one of descending central series

IAn = An(1) ⊃ An(2) ⊃ · · ·
consisting of normal subgroups of AutFn, which first term is IAn. (For detail, see
Subsection 2.4.) Each graded quotient grk(An) := An(k)/An(k + 1) naturally has a
GL(n,Z)-module structure, and from it we can extract some valuable information for
IAn. For example, gr1(An) is just the abelianization of IAn due to Andreadakis [1], and
gr2(An) is applied to determine the image of the cup product ∪Q : Λ2H1(IAn,Q) →
H2(IAn,Q) by Pettet [20].
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To understand the graded quotients grk(An) more closely, we use the Johnson homo-
morphisms

τk : grk(An)→ H∗ ⊗Z Ln(k + 1).

(For detail, see Subsection 2.4.) One of the most fundamental properties of the Johnson
homomorphism is that τk is a GL(n,Z)-equivariant injective homomorphism for each
k ≥ 1. Hence, we can consider grk(An) as a submodule of H∗⊗ZLn(k+1) which module
structure is easy to handle. Historically, the study of the Johnson homomorphisms was
originally begun in 1980 by D. Johnson [10] who determined the abelianization of the
Torelli subgroup of the mapping class group of a surface in [11]. Now, there is a broad
range of remarkable results for the Johnson homomorphisms of the mapping class group.
(For example, see [9] and [16], [17], [18].) These works also inspired the study of the
Johnson homomorphism of AutFn. Recently, it achieved good progress through the
works of many authors, for example, [4], [5], [6], [12], [16], [17], [18] and [20].

In general, from a viewpoint of computation, it seems that to determine the struc-
ture of the cokernel of the Johnson homomorphism is inclined to be more simpler and
easier to handle than that of the image of the Johnson homomorphism. For 1 ≤ k ≤ 3,
the GL(n,Z)-module structure of the cokernel Coker(τk,Q) of the rational Johnson ho-
momorphism τk,Q := τk ⊗ idQ has been determined so far. (See [1], [20] and [22] for
k = 1, 2 and 3 respectively.) Furthermore, by a recent remarkable work of Morita, it
is known that there appears the symmetric tensor product SkHQ of HQ := H ⊗Z Q in
Coker(τk,Q). (See [18].) In general, however, it is quite difficult problem to determine
GL(n,Z)-module structure of Coker(τk,Q) for arbitrary k ≥ 4. One reason for it is that
we cannot obtain an explicit generating system of grk(An) easily.

To avoid this difficulty, we consider the lower central series A′n(1) = IAn, A′n(2),
. . . of IAn. Since the Johnson filtration is central, we have A′n(k) ⊂ An(k) for any
k ≥ 1. It is conjectured that A′n(k) = An(k) for each k ≥ 1 by Andreadakis who
showed A′2(k) = A2(k) for each k ≥ 1 and A′3(3) = A3(3) in [1]. Now, it is known that
A′n(2) = An(2) due to Cohen-Pakianathan [4, 5], Farb [6] and Kawazumi [12], and that
A′n(3) has at most finite index in An(3) due to Pettet [20].

For each k ≥ 1, set grk(A′n) := A′n(k)/A′n(k + 1). Since IAn is finitely generated as
mentioned above, each grk(A′n) is also finitely generated as an abelian group. Then we
can define a GL(n,Z)-equivariant homomorphism

τ ′k : grk(A′n)→ H∗ ⊗Z Ln(k + 1)

by the same way as τk. We also call τ ′k the Johnson homomorphism of AutFn. In
our research, we are interested in the study of the cokernel of τ ′k for the following three
reasons. First, we can directly obtain information about the cokernel of τ ′k using finitely
many generators of grk(A′n). Second, using the representation theory, we can consider
Coker(τk,Q) as a GL(n,Z)-submodule of Coker(τ ′k,Q). Hence, we can give an upper
bound on Coker(τk,Q). Finally, by the conjecture that A′n(k) = An(k) for each k ≥ 1,
these research would be applied to the study of the difference between the Johnson
filtration and the lower central series of IAn.

For 1 ≤ k ≤ 3, we have Coker(τ ′k,Q) = Coker(τk,Q), and hence they have been com-
pletely determined. In our previous paper [23], we give the irreducible decomposition
of Coker(τ ′4,Q) for n ≥ 6. Furthermore, in [22], we showed that Coker(τ ′k,Q) is large
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in its own way. More precisely, let T (H) be the tensor algebra of H, and T (H)ab its
abelianization as a Lie algebra. Then T (H)ab naturally has a graded GL(n,Z)-module
structure. We denote by Cn(k) the degree k part of T (H)ab for each k ≥ 1. In [22],
we have essentially shown that CQ

n (k) appears in Coker(τ ′k,Q) as a GL(n,Z)-equivariant

submodule. In particular, we have seen that Coker(τ ′k,Q) = CQ
n (k) for 1 ≤ k ≤ 4 and

n ≥ k + 2 from our results.

In this paper, we determine the cokernel of the rational Johnson homomorphism
τ ′k,Q := τ ′k ⊗ idQ for k ≥ 2 and n ≥ k + 2. Our main theorem is

Theorem 1. (= Theorem 3.1.) For any k ≥ 2 and n ≥ k + 2,

Coker(τ ′k,Q) = CQ
n (k).

This paper consists of four sections. In Section 2, we recall the IA-automorphism
group, the free Lie algebra and the Johnson homomorphisms of the automorphism
group of a free group. In Section 3, we discuss the cokernel of the rational Johnson
homomorphisms τ ′k,Q.
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2. Preliminaries

In this section, we recall the IA-automorphism group, the free Lie algebra and the
Johnson filtration of AutFn.

2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G.

• The abelianization of G is denoted by Gab.
• The group AutG of G acts on G from the right. For any σ ∈ AutG and x ∈ G,

the action of σ on x is denoted by xσ.
• For an element g ∈ G, we also denote the coset class of g by g ∈ G/N if there

is no confusion.
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• For any Z-module M , we denote M⊗ZQ by the symbol obtained by attaching a
subscript Q to M , like MQ or MQ. Similarly, for any Z-linear map f : A→ B,
the induced Q-linear map AQ → BQ is denoted by fQ or fQ.
• For elements x and y of G, the commutator bracket [x, y] of x and y is defined

to be [x, y] := xyx−1y−1.

2.2. IA-automorphism group.

In this paper, we fix a basis x1, . . . , xn of Fn. Let H := F ab
n be the abelianization of Fn

and ρ : AutFn → AutH the natural homomorphism induced from the abelianization
of Fn. In the following, we identify AutH with the general linear group GL(n,Z) by
fixing the basis of H induced from the basis x1, . . . , xn of Fn. The kernel IAn of ρ is
called the IA-automorphism group of Fn. It is clear that the inner automorphism group
InnFn of Fn is contained in IAn. In general, however, IAn for n ≥ 3 is much larger
than InnFn. In fact, Magnus [14] showed that for any n ≥ 3, IAn is finitely generated
by automorphisms

Kij : xt 7→
{
xj
−1xixj, t = i,

xt, t 6= i

for distinct i, j ∈ {1, 2, . . . , n} and

Kijl : xt 7→
{
xi[xj, xl], t = i,

xt, t 6= i

for distinct i, j, l ∈ {1, 2, . . . , n} such that j < l. Recently, Cohen-Pakianathan [4, 5]，
Farb [6] and Kawazumi [12] independently showed

(1) IAab
n
∼= H∗ ⊗Z Λ2H

as a GL(n,Z)-module where H∗ := HomZ(H,Z) is the Z-linear dual group of H.

2.3. Free Lie algebra.

In this subsection we recall the free Lie algebra. Let Γn(1) ⊃ Γn(2) ⊃ · · · be the
lower central series of a free group Fn defined by the rule

Γn(1) := Fn, Γn(k) := [Γn(k − 1), Fn], k ≥ 2.

We denote by Ln(k) := Γn(k)/Γn(k + 1) the graded quotient of the lower central series
of Fn, and by Ln :=

⊕
k≥1Ln(k) the associated graded sum. Since the group AutFn

naturally acts on Ln(k) for each k ≥ 1, and since IAn acts on it trivially, the action
of GL(n,Z) on each Ln(k) is well-defined. Furthermore, the graded sum Ln naturally
has a graded Lie algebra structure induced from the commutator bracket on Fn, and
called the free Lie algebra generated by H. (See [21] for basic material concerning the
free Lie algebra.) It is classically well known due to Witt [25] that each Ln(k) is a
GL(n,Z)-equivariant free abelian group of rank

(2) rn(k) :=
1

k

∑

d|k
µ(d)n

k
d
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where µ is the Möbius function. For example, the GL(n,Z)-module structure of Ln(k)
for 1 ≤ k ≤ 3 is given by

Ln(1) = H, Ln(2) = Λ2H,

Ln(3) = (H ⊗Z Λ2H)
/〈x⊗ y ∧ z + y ⊗ z ∧ x+ z ⊗ x ∧ y | x, y, z ∈ H〉.

Next, we consider an embeddings of the free Lie algebra into the tensor algebra. Let
T (H) be the tensor algebra of H over Z. Then T (H) is the universal enveloping algebra
of the free Lie algebra Ln, and the natural map ι : Ln → T (H) defined by

[X, Y ] 7→ X ⊗ Y − Y ⊗X
for X, Y ∈ Ln is an injective graded Lie algebra homomorphism. We denote by ιk
be the homomorphism of degree k part of ι, and consider Ln(k) as a submodule H⊗k

through ιk.

2.4. Johnson homomorphisms.

In this subsection, we recall the Johnson homomorphisms of AutFn. To begin with,
we consider a descending filtration of AutFn called the Johnson filtration. For each
k ≥ 0, the action of AutFn on the nilpotent quotient group Fn/Γn(k+ 1) of Fn induces
a homomorphism

AutFn → Aut(Fn/Γn(k + 1)).

We denote its kernel by An(k). Then the groups An(k) define a descending central
filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·
of AutFn, with An(1) = IAn. (See [1] for details.) It is called the Johnson filtra-
tion of AutFn. For each k ≥ 1, the group AutFn acts on An(k) by conjugation,
and it naturally induces an action of GL(n,Z) = AutFn/IAn on the graded quotients
grk(An) := An(k)/An(k + 1). The graded sum gr(An) :=

⊕
k≥1 grk(An) has a graded

Lie algebra structure induced from the commutator bracket on IAn.

In order to study the GL(n,Z)-module structure of grk(An), we consider the Johnson
homomorphisms of AutFn as follows. For each k ≥ 1, define a homomorphism τ̃k :
An(k)→ HomZ(H,Ln(k + 1)) by

σ 7→ (x 7→ x−1xσ), x ∈ H.
Then the kernel of τ̃k is just An(k + 1). Hence it induces an injective homomorphism

τk : grk(An) ↪→ HomZ(H,Ln(k + 1)) = H∗ ⊗Z Ln(k + 1).

The homomorphisms τ̃k and τk are called the k-th Johnson homomorphisms of AutFn.
It is known that each τk is GL(n,Z)-equivariant injective homomorphism. Therefore,
to determine the image (or equivalently, the cokernel) of τk is an important problem on
the study of the structure of grk(An).

For the Magnus generators of IAn, their images by τ1 are given by

(3) τ1(Kij) = x∗i ⊗ [xi, xj], τ1(Kijl) = x∗i ⊗ [xj, xl].

Furthermore, we remark that τ1 is an isomorphism and nothing but the abelianization
of IAn. (See [4, 5, 6, 12].)
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Let Der (Ln) be the graded Lie algebra of derivations of Ln. The degree k part of
Der (Ln) is considered as H∗⊗ZLn(k + 1), and we identify them in this paper. Then
the sum of the Johnson homomorphisms

τ :=
⊕

k≥1

τk : gr(An)→ Der (Ln)

is a graded Lie algebra homomorphism. In fact, if we denote by ∂ξ the element of
Der (Ln) corresponding to an element ξ ∈ H∗⊗ZLn, and write the action of ∂ξ on
X ∈ Ln as X∂ξ then we have

τk+l([σ, σ
′]) = τk(σ)∂τl(σ

′) − τl(σ′)∂τk(σ).

for any σ ∈ An(k) and σ′ ∈ An(l). This formula is very useful to study the image of the
Johnson homomorphism inductively. In general, however, to determine the structure
of the image and the cokernel of τk is quite difficult.

Let A′n(k) be the lower central series of IAn with A′n(1) = IAn. Since the Johnson
filtration is central, A′n(k) ⊂ An(k) for each k ≥ 1. Set grk(A′n) := A′n(k)/A′n(k+1) and
gr(A′n) :=

⊕
k≥1 grk(A′n). Then gr(A′n) is also a graded Lie algebra induced from the

commutator bracket on IAn, and GL(n,Z) naturally acts on each of grk(A′n). Moreover,
since IAn is finitely generated by the Magnus generators Kij and Kijl, each grk(A′n) is
also finitely generated by commutators of weight k among the components Kijs and
Kijls.

A restriction of τ̃k to A′n(k) induces a GL(n,Z)-equivariant homomorphism

τ ′k : grk(A′n)→ H∗ ⊗Z Ln(k + 1),

and the sum

τ ′ :=
⊕

k≥1

τ ′k : gr(A′n)→ Der (Ln)

is also a graded Lie algebra homomorphism. Furthermore, we have

τ ′k+l([σ, σ
′]) = τ ′k(σ)∂τl(σ

′) − τ ′l (σ′)∂τk(σ).

for any σ ∈ A′n(k) and σ′ ∈ A′n(l). Using this formula recursively, we can easily compute
τ ′k(σ) for any σ ∈ A′n(k) from (3). We should remark that in general, it is not known
whether τ ′k is injective or not. In this paper, we study the cokernel of the rational
Johnson homomorphism τ ′k,Q = τ ′k⊗ idQ. We remark that for 1 ≤ k ≤ 4, the irreducible
decomposition of Coker(τ ′k,Q) have already determined as follows:

k Coker(τ ′k,Q)

1 0 Andreadakis [1]

2 S2HQ Pettet [20]

3 S3HQ ⊕ Λ3HQ Satoh [22]

4 S4HQ ⊕H [2,12]
Q ⊕H [2,2]

Q Satoh [23]

Here, for any k ≥ 1, Hλ denotes the Schur-Weyl module of H corresponding to the
partition λ of k. In particular, the modules H [k] and H [1k] are the symmetric product
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SkH and the exterior product ΛkH respectively. (See [8] for basic material concerning
the Schur-Weyl module for example.)

3. The cokernel of τ ′k,Q

In this section, we determine the cokernel of the rational Johnson homomorphism
τ ′k,Q for n ≥ k + 2. In Subsection 3.1, we consider a lower bound on Coker(τ ′k,Q) using
trace maps. In Subsections 3.2 and 3.3, we give an upper bound on Coker(τ ′k,Q)

3.1. Contractions and trace maps.

Let

T (H) =
⊕

k≥0

H⊗k

be the tensor algebra generated by H over Z. The algebra T (H) is isomorphic to the
non-commutative polynomial ring Z〈x1, . . . , xn〉, and on which GL(n,Z) naturally acts.
The abelianization T (H)ab of T (H) as a Lie algebra is also graded GL(n,Z)-module.
We write Cn(k) for the degree k part of T (H)ab. Namely, Cn(k) is a quotient module of
H⊗k by a submodule of H⊗k generated by elements type of

xi1 ⊗ xi2 ⊗ · · · ⊗ xik − xi2 ⊗ · · · ⊗ xik ⊗ xi1 ∈ H⊗k, 1 ≤ il ≤ n.

Each of Cn(k) is also GL(n,Z)-module. For 1 ≤ k ≤ 3, the irreducible decomposition
of CQ

n (k) is given by

CQ
n (1) = HQ, CQ

n (2) = S2HQ, CQ
n (3) = S3HQ ⊕ Λ3HQ.

In this subsection, we define trace maps which are used to detect CQ
n (k) in the cokernel

of τ ′k,Q. To begin with, we consider contraction maps.

For k ≥ 1 and 1 ≤ l ≤ k + 1, let ϕk : H∗⊗ZH
⊗(k+1) → H⊗k be the contraction map

defined by

x∗i ⊗ xj1 ⊗ · · · ⊗ xjk+1
7→ x∗i (xj1) · xj2 ⊗ · · · ⊗ · · · ⊗ xjk+1

.

For the natural embedding ιk+1
n : Ln(k+1)→ H⊗(k+1), we obtain a GL(n,Z)-equivariant

homomorphism

Φk = ϕk ◦ (idH∗ ⊗ ιk+1
n ) : H∗⊗ZLn(k + 1)→ H⊗k.

We also call Φk a contraction map.

Lemma 3.1. For any 1 ≤ i, i1, . . . , ik ≤ n such that i1 6= i, we have

Φk(x∗i⊗[xi, xi1 , . . . , xik ])

= xi1 ⊗ · · · ⊗ xik −
k∑

l=2

δi,il [xi, xi1 , . . . , xil−1
]⊗ xil+1

⊗ · · · ⊗ xik .

Proof. We prove the lemma by the induction on k. For k = 1, since

x∗i ⊗ [xi, xi1 ] = x∗i ⊗ (xi ⊗ xi1 − xi1 ⊗ xi),
we have Φ1(x∗i ⊗ [xi, xi1 ]) = xi1 . For any k > 1, we have

x∗i ⊗ [xi, xi1 , . . . , xik ] = x∗i ⊗ ([xi, xi1 , . . . , xik−1]⊗ xik − xik ⊗ [xi, xi1 , . . . , xik−1
]).
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Hence, using the inductive hypothesis, we obtain

Φk(x∗i⊗[xi, xi1 , . . . , xik ])

= Φk−1(x∗i ⊗ [xi, xi1 , . . . , xik−1
])⊗ xik − Φ1(x∗i ⊗ xik)⊗ [xi, xi1 , . . . , xik−1

],

= xi1 ⊗ · · · ⊗ xik−1
⊗ xik

−
k−1∑

l=2

δi,il [xi, xi1 , . . . , xil−1
]⊗ xil+1

⊗ · · · ⊗ xik−1
⊗ xik

− δi,ik [xi, xi1 , . . . , xik−1
].

This completes the proof of Lemma 3.1. �
Lemma 3.2. For n ≥ k + 1, the contraction map Φk is surjective.

Proof. For any 1 ≤ i1, . . . , ik ≤ n, there exists a some 1 ≤ i ≤ n such that i 6= il for
1 ≤ l ≤ k since n ≥ k + 1. Then, from Lemma 3.1, we have

Φk(x∗i ⊗ [xi, xi1 , . . . , xik ]) = xi1 ⊗ · · · ⊗ xik .
Since H⊗k is generated by elements type of xi1 ⊗ · · · ⊗ xik , the homomorphism Φk is
surjective. This completes the proof of Lemma 3.2. �

Now, let Tr(k) be the composition of the contraction map Φk and the natural projec-
tion H⊗k → Cn(k). We call it the trace map for Cn(k). From Lemma 3.2, for n ≥ k+ 1,
the trace map Tr(k) is surjective. On the other hand, in our previous paper [22], we
showed that

(4) Tr(k) ◦ τ ′k ≡ 0

for any n ≥ k ≥ 2. Hence we see

Proposition 3.1. For n ≥ k + 1 and k ≥ 2,

Coker(τ ′k,Q) ⊃ CQ
n (k).

Here we remark that the inclusion in Proposition 3.1 means that Coker(τ ′k,Q) contains

a GL(n,Z)-submodule which is isomorphic to CQ
n (k).

3.2. The image of Φk ◦ τ ′k.
Let Un(k) be the kernel of the natural projection H⊗k → Cn(k). From (4), we see

that Im(Φk ◦ τ ′k) ⊂ Un(k). In this subsection, we show that Im(Φk ◦ τ ′k) coincides with
Un(k) for any n ≥ k + 2 and k ≥ 1.

Lemma 3.3. For n ≥ 3 and k ≥ 1, if i1, . . . , ik+1 6= i,

x∗i ⊗ [xi1 , xi2 , . . . , xik+1
] ∈ Im(τ ′k).

Proof. We show the lemma by induction on k. For k = 1, we have τ ′1(Kii1i2) =
x∗i ⊗ [xi1 , xi2 ]. Assume k ≥ 2. By the inductive hypothesis, there exists a certain
σ ∈ A′n(k − 1) such that

τ ′k−1(σ) = x∗i ⊗ [xi1 , xi2 , . . . , xik ].

On the other hand, we have τ1(Kiik+1
) = x∗i ⊗ [xi, xik+1

]. Then

τ ′k([Kiik+1
, σ]) = x∗i ⊗ [xi1 , xi2 , . . . , xik+1

].
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This completes the proof of Lemma 3.3. �
Lemma 3.4. For n ≥ 3 and k ≥ 1, if i, j 6= i2, . . . , ik+1 and i 6= j, we have

x∗i ⊗ [xi, xi2 , . . . , xik+1
]− x∗j ⊗ [xj, xik+1

, xi2 , . . . , xik ] ∈ Im(τ ′k).

Proof. If k = 1, it is clear from the fact that τ ′1 is surjective. Suppose k ≥ 2. From
Lemma 3.3, there exists a certain σ′ ∈ A′n(k − 1) such that

τ ′k−1(σ′) = x∗j ⊗ [xi, xi2 , . . . , xik ].

Then, we obtain

τ ′k([Kijik+1
, σ′]) = x∗i ⊗ [xi, xi2 , . . . , xik+1

]− x∗j ⊗ [xj, xik+1
, xi2 , . . . , xik ].

This completes the proof of Lemma 3.4. �
Proposition 3.2. For n ≥ k + 2 and k ≥ 1, the map Φk ◦ τ ′k : grk(A′n) → Un(k) is
surjective.

Proof. If k = 1, it is clear since Un(1) = 0. suppose k ≥ 2. For any 1 ≤ i1, . . . , ik ≤ n,
there exists distinct i and j such that i, j 6= il for 1 ≤ l ≤ k since n ≥ k + 2. Then
from Lemma 3.4,

x∗i ⊗ [xi, xi1 , . . . , xik ]− x∗j ⊗ [xj, xik , xi1 , . . . , xik−1
] ∈ Im(τ ′k).

Using Lemma 3.1, we have

xi1 ⊗ · · · ⊗ xik − xik ⊗ xi1 ⊗ · · · ⊗ xik−1
∈ Im(Φk ◦ τ ′k).

Since Un(k) is generated by all elements type of the above, we see that Im(Φk
1 ◦ τ ′k) =

Un(k). This completes the proof of Proposition 3.2. �

3.3. The Kernel of Φk.

In this subsection we show that Ker(Φk) ⊂ Im(τ ′k) for n ≥ k + 2 and k ≥ 2. (It
is clear for the case where k = 1 since τ ′1 = τ1 is surjective.) Here we use ≡ for the
equality in Ker(Φk) modulo Ker(Φk) ∩ Im(τ ′k).

Take any X ∈ Ker(Φk). We show X ≡ 0. Since X ∈ H∗ ⊗Z Ln(k + 1), X is written
as a linear combination of elements type of

x∗i ⊗ [xi1 , xi2 , . . . , xik+1
] ∈ H∗ ⊗Z Ln(k + 1)

for 1 ≤ i, il ≤ n. We fix one of such expressions. In the following, we reduce such linear
combination observing some elements in Ker(Φk).

First, considering Lemma 3.3, we may assume that in each of x∗i ⊗ [xi1 , xi2 , . . . , xik+1
]

in the linear combination above, il = i for at least one 1 ≤ l ≤ k + 1. Next, take any
x∗i ⊗ [xi1 , xi2 , . . . , xik+1

] such that il1 = il2 = i for some l1 6= l2. Since n ≥ k + 1, there
exists a certain 1 ≤ j ≤ n such that j 6= i, il for 1 ≤ l ≤ k + 1. If we set

σ1 :=

{
Kijik+1

, i 6= ik+1,

K−1
ij , i = ik+1,

we have
τ ′1(σ1) = x∗i ⊗ [xj, xik+1

].
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From Lemma 3.3, there exists a certain σ2 ∈ A′n(k − 1) such that

τ ′k−1(σ2) = x∗j ⊗ [xi1 , xi2 , . . . , xik ].

Then,

τ ′k([σ1, σ2]) = x∗i ⊗ [xi1 , xi2 , . . . , xik+1
]

−
k∑

l=1

δi,ilx
∗
j ⊗ [xi1 , . . . , xil−1

, [xj, xik+1
], xil+1

, . . . , xik ],

= x∗i ⊗ [xi1 , xi2 , . . . , xik+1
]

+
k∑

l=1

δi,ilx
∗
j ⊗ [xj, xik+1

, [xi1 , . . . , xil−1
], xil+1

, . . . , xik ],

(5)

If n ≥ k + 2, we can take a certain 1 ≤ m ≤ n such that m 6= j, il for 1 ≤ l ≤ k + 1.
By Lemma 3.3, there exist some σ3 ∈ A′n(k − 1) such that

τ ′k−1(σ3) = −x∗j ⊗ [xi1 , . . . , xil−1
, xm, xil+1

, . . . , xik ]

= x∗j ⊗ [xm, [xi1 , . . . , xil−1
], xil+1

, . . . , xik ].

Then we have

τ ′k([Kmjik+1
, σ3]) = x∗m ⊗ [xm, [xi1 , . . . , xil−1

], xil+1
, . . . , xik , xik+1

]

− x∗j ⊗ [xj, xik+1
, [xi1 , . . . , xil−1

], xil+1
, . . . , xik ].

Using this and (5), we see that an element

Y := x∗i ⊗ [xi1 , xi2 , . . . , xik+1
]

+
k∑

l=1

δi,ilx
∗
m ⊗ [xm, [xi1 , . . . , xil−1

], xil+1
, . . . , xik , xik+1

],

= x∗i ⊗ [xi1 , xi2 , . . . , xik+1
]

−
k∑

l=1

δi,ilx
∗
m ⊗ [xi1 , . . . , xil−1

, xm, xil+1
, . . . , xik , xik+1

]

(6)

belongs to Im(τ ′k). Furthermore, from Lemma 3.1, we also see that Y ∈ Ker(Φk).
Considering (6), we may assume that X is a linear combination of elements

(7) x∗i ⊗ [xi1 , . . . , xil−1
, xi, xil+1

, . . . , xik+1
], 1 ≤ l ≤ k + 1

such that i1, . . . , il−1, il+1, . . . , ik+1 6= i.

Now, for any l > 1, we denote by Sl the symmetric group of degree l. Then we have

Lemma 3.5. For any l,m ≥ 1, an element

[xi1 , . . . , xil , [xj1 , . . . , xjm ]] ∈ Ln(l +m)

is written as a linear combination of elements

[xi1 , . . . , xil , xjγ(1)
, . . . , xjγ(m)

]

for some γ ∈ Sl+m.
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Proof. We prove this Lemma by the induction on m. For m = 1, it is clear. Suppose
m ≥ 2. By using the Jacobi identity, we have

[xi1 , . . . , xil , [xj1 , . . . , xjm ]]

= −[[xj1 , . . . , xjm−1 ], [xjm , [xi1 , . . . , xil ]]− [xjm , [[xi1 , . . . , xil ], [xj1 , . . . , xjm−1 ]]

= −[xi1 , . . . , xil , xjm , [xj1 , . . . , xjm−1 ]] + [xi1 , . . . , xil , [xj1 , . . . , xjm−1 ], xjm ]

in Ln(l + m). Hence by the inductive hypothesis, we obtain the required result. This
completes the proof of Lemma 3.5. �

Using Lemma 3.5, we see that the element

(7) = −x∗i ⊗ [xi, [xi1 , . . . , xil−1
], xil+1

, . . . , xik+1
],

and hence X, is written as a linear combination of elements type of

x∗i ⊗ [xi, xi2 , . . . , xik+1
]

for i2, . . . , ik+1 6= i.

Lemma 3.6. For n ≥ k + 2 and k ≥ 2, if i 6= i2, . . . , ik+1, then

x∗i ⊗ [xi, xi2 , . . . , xik+1
]− x∗i ⊗ [xi, xi3 , . . . , xik+1

, xi2 ] ∈ Im(τ ′k).

Proof. Since n ≥ k+2, there exists some 1 ≤ j ≤ n such that j 6= i, il for 2 ≤ l ≤ k+1.
From Lemma 3.4, there exists some σ ∈ A′n(k − 1) such that

τ ′k−1(σ) = x∗i ⊗ [xi, xi3 , . . . , xik+1
]− x∗j ⊗ [xj, xik+1

, xi3 , . . . , xik ].

Then we have

τ ′k([σ,Kii2 ]) = x∗i ⊗ [xi, xi2 , . . . , xik+1
]− x∗i ⊗ [xi, xi3 , . . . , xik+1

, xi2 ].

This completes the proof of Lemma 3.6. �
Lemma 3.7. For n ≥ k + 2 and k ≥ 2, if i, j 6= i2, . . . , ik+1 and i 6= j, we have

x∗i ⊗ [xi, xi2 , . . . , xik+1
]− x∗j ⊗ [xj, xi2 , . . . , xik+1

] ∈ Im(τ ′k) ∩Ker(Φk).

Proof. From Lemma 3.6, we have

x∗i ⊗ [xi, xi2 , . . . , xik+1
]− x∗i ⊗ [xi, xi3 , . . . , xik+1

, xi2 ] ∈ Im(τ ′k).

On the other hand, from 3.4, we see

x∗i ⊗ [xi, xi3 , . . . , xik+1
, xi2 ]− x∗j ⊗ [xj, xi2 , . . . , xik+1

] ∈ Im(τ ′k),

and hence,

x∗i ⊗ [xi, xi2 , . . . , xik+1
]− x∗j ⊗ [xj, xi2 , . . . , xik+1

] ∈ Im(τ ′k)

It is clear that this element belongs to Ker(Φk) from Lemma 3.1. This completes the
proof of Lemma 3.7. �

From Lemma 3.7, we see that x∗i ⊗ [xi, xi2 , . . . , xik+1
] modulo Ker(Φk) ∩ Im(τ ′k) does

not depend on the choice of i such that i 6= il for 2 ≤ l ≤ k + 1. Since n ≥ k + 2, for
any i2, . . . , ik+1, we can take some i such that i 6= il for 2 ≤ l ≤ k + 1. We fix such
i = i(i2, . . . , ik+1), and set

s(i2, . . . , ik+1) := x∗i ⊗ [xi, xi2 , . . . , xik+1
].
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Then, using Lemma 3.7, we obtain

X ≡
n∑

i2,...,ik+1=1

ai2,...,ik+1
s(i2, . . . , ik+1) =: X ′

for some ai2,...,ik+1
∈ Z. By the assumption, X ′ ∈ Ker(Φk). Therefore, by Lemma 3.1,

we have

Φk(X ′) =
n∑

i2,...,ik+1=1

ai2,...,ik+1
xi2 ⊗ · · · ⊗ xik+1

= 0 ∈ H⊗k,

and hence
ai2,...,ik+1

= 0

for any 1 ≤ il ≤ n. This shows that X ≡ 0. Thus we conclude

Proposition 3.3. For k ≥ 2 and n ≥ k + 2,

Ker(Φk) ⊂ Im(τ ′k).

Finally, we determine the cokernel of τ ′k,Q for n ≥ k + 2. Observing a sequence

H∗Q ⊗Z LQ
n (k + 1)

ΦkQ−−→ H⊗kQ → CQ
n (k)

of GL(n,Z)-equivariant surjective homomorphisms, we see

H∗Q ⊗Z LQ
n (k + 1) ∼= Ker(Φk

Q)⊕ UQ
n (k)⊕ CQ

n (k)

as a GL(n,Z)-module. Therefore, from Propositions 3.1, 3.2 and 3.3, we conclude that

Theorem 3.1. For k ≥ 2 and n ≥ k + 2,

Coker(τ ′k,Q) = CQ
n (k).
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