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Abstract. We study a moduli space of framed ASD connections over S3 × R. We
consider not only finite energy ASD connections but also infinite energy ones. So the
moduli space is infinite dimensional. We study the (local) mean dimension of this infi-
nite dimensional moduli space. We show the upper bound on the mean dimension by
using a “Runge-approximation” for ASD connections, and we prove its lower bound by
constructing an infinite dimensional deformation theory of periodic ASD connections.

1. introduction

Since Donaldson [4] discovered his revolutionary theory, many mathematicians have

intensively studied the Yang-Mills gauge theory. There are several astonishing results on

the structures of the ASD moduli spaces and their applications. But most of them study

only finite energy ASD connections and their finite dimensional moduli spaces. Almost

nothing is known about infinite energy ASD connections and their infinite dimensional

moduli spaces. (One of the authors struggled to open the way to this direction in [18, 19].)

This paper studies an infinite dimensional moduli space coming from the Yang-Mills

theory over S3 × R. Our main purposes are to prove estimates on its “mean dimension”

(Gromov [12]) and to show that there certainly exists a non-trivial structure in this infinite

dimensional moduli space. (Mean dimension is a “dimension of an infinite dimensional

space averaged by a group action”.)

The reason why we consider S3 × R is that it is one of the simplest non-compact anti-

self-dual 4-manifolds of (uniformly) positive scalar curvature. (Indeed it is conformally

flat.) These metrical conditions are used via the Weitzenböck formula (see Section 4.1).

Recall that one of the important results of the pioneering work of Atiyah-Hitchin-Singer

[1, Theorem 6.1] is the calculation of the dimension of the moduli space of (irreducible)

self-dual connections over a compact self-dual 4-manifold of positive scalar curvature. So

our work is an attempt to develop an infinite dimensional analogue of [1, Theorem 6.1].
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Of course, the study of the mean dimension is just a one-step toward the full under-

standing of the structures of the infinite dimensional moduli space. (But the authors

believe that “dimension” is one of the most fundamental invariants of spaces and that

the study of mean dimension is a crucial step toward the full understanding.) So we need

much more studies, and the authors hope that this paper becomes a stimulus to a further

study of infinite dimensional moduli spaces in the Yang-Mills gauge theory.

Set X := S3 × R. Throughout the paper, the variable t means the variable of the R-

factor of X = S3 × R. (That is, t : X → R is the natural projection.) S3 × R is endowed

with the product metric of a positive constant curvature metric on S3 and the standard

metric on R. (Therefore X is S3(r)×R for some r > 0 as a Riemannian manifold, where

S3(r) = {x ∈ R4| |x| = r}.) Let E := X × SU(2) be the product principal SU(2)-bundle

over X. The additive group Z acts on X by X × Z ∋ ((θ, t), s) 7→ (θ, t + s) ∈ X. This

action trivially lifts to the action on E by E × Z ∋ ((θ, t, u), s) 7→ (θ, t + s, u) ∈ E.

Fix a point θ0 ∈ S3. Let d ≥ 0. We define the “periodically framed moduli space” Md

as the set of all gauge equivalence classes [A, p] satisfying the following conditions. A is

an ASD connection on E satisfying

(1) ||F (A)||L∞ ≤ d,

and p is a map from Z to E satisfying p(n) ∈ E(θ0,n) for each n ∈ Z. Here E(θ0,n) is the

fiber of E over (θ0, n) ∈ X. We have [A, p] = [B, q] if there exists a gauge transformation

g : E → E satisfying g(A) = B and g(p(n)) = q(n) for all n ∈ Z.

Md is equipped with the topology of C∞-convergence on compact subsets: a sequence

[An, pn] (n ≥ 1) converges to [A, p] in Md if there exists a sequence of gauge transforma-

tions gn of E such that gn(An) converges to A as n → ∞ in the C∞-topology over every

compact subset in X and that gn(pn(k)) → p(k) as n → ∞ for every k ∈ Z. Md becomes

a compact metrizable space by the Uhlenbeck compactness ([21, 22]). The additive group

Z continuously acts on Md by

Md × Z → Md, ([A,p], γ) 7→ [γ∗A, γ∗p],

where γ∗ is the pull-back by γ : E → E. Then we can consider the mean dimension

dim(Md : Z). Intuitively,

dim(Md : Z) =
dimMd

|Z|
.

(This is ∞/∞. The precise definition will be given in Section 2.) Our first main result is

the following estimate on the mean dimension.

Theorem 1.1.

3 ≤ dim(Md : Z) < ∞.

Moreover, dim(Md : Z) → +∞ as d → +∞.
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For an ASD connection A on E we define ρ(A) by setting

(2) ρ(A) := lim
T→+∞

1

8π2T
sup
t∈R

∫
S3×[t,t+T ]

|F (A)|2dvol.

This limit always exists because we have the following subadditivity.

sup
t∈R

∫
S3×[t,t+T1+T2]

|F (A)|2dvol

≤ sup
t∈R

∫
S3×[t,t+T1]

|F (A)|2dvol + sup
t∈R

∫
S3×[t,t+T2]

|F (A)|2dvol.

ρ(A) is translation invariant; For s ∈ R, we have ρ(s∗A) = ρ(A), where s∗A is the pull-

back of A by the map s : E = S3×R×SU(2) → E, (θ, t, u) 7→ (θ, t+s, u). We define ρ(d)

as the supremum of ρ(A) over all ASD connections A on E satisfying ||F (A)||L∞ ≤ d.

Let A be an ASD connection on E. We call A a periodic ASD connection if there exist

T > 0, a principal SU(2)-bundle E over S3 × (R/TZ), and an ASD connection A on E

such that (E, A) is gauge equivalent to (π∗(E), π∗(A)) where π : S3 × R → S3 × (R/TZ)

is the natural projection. (Here S3 × (R/TZ) is equipped with the metric induced by the

covering map π.) Then we have

(3) ρ(A) =
1

8π2T

∫
S3×[0,T ]

|F (A)|2dvol =
c2(E)

T
.

We define ρperi(d) as the supremum of ρ(A) over all periodic ASD connections A on E

satisfying ||F (A)||L∞ < d. (Note that we impose the strict inequality condition here.)

If d = 0, then such an A does not exist. Hence we set ρperi(0) := 0. (If d > 0, then

the product connection A is a periodic ASD connection satisfying ||F (A)||L∞ = 0 < d.)

Obviously we have ρperi(d) ≤ ρ(d). Our second main result is the following estimates on

the “local mean dimensions”.

Theorem 1.2. For any [A, p] ∈ Md,

dim[A,p](Md : Z) ≤ 8ρ(A) + 3.

Moreover, if A is a periodic ASD connection satisfying ||F (A)||L∞ < d, then

dim[A,p](Md : Z) = 8ρ(A) + 3.

Therefore,

8ρperi(d) + 3 ≤ dimloc(Md : Z) ≤ 8ρ(d) + 3.

Here dim[A,p](Md : Z) is the “local mean dimension” of Md at [A, p], and dimloc(Md :

Z) := sup[A,p]∈Md
dim[A,p](Md : Z) is the “local mean dimension” of Md. These notions

will be defined in Section 2.2.

Note that

lim
d→∞

ρperi(d) = +∞.
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This obviously follows from the fact that for any integer n ≥ 0 there exists an ASD

connection on S3 × (R/Z) whose second Chern number is equal to n. This is a special

case of the famous theorem of Taubes [16]. (Note that the intersection form of S3 × S1

is zero.) We have dim(Md : Z) ≥ dimloc(Md : Z) (see (5) in Section 2.2). Hence the

statements that dim(Md : Z) ≥ 3 and dim(Md : Z) → ∞ (d → ∞) in Theorem 1.1

follow from the inequality dimloc(Md : Z) ≥ 8ρperi(d) + 3 in Theorem 1.2.

Remark 1.3. All principal SU(2)-bundle over S3 ×R is gauge equivalent to the product

bundle E. Hence the moduli space Md is equal to the space of gauge equivalence classes

[E, A, p] satisfying the following conditions. E is a principal SU(2)-bundle over X, and

A is an ASD connection on E satisfying |F (A)| ≤ d. p : Z → E is a map satisfying

p(n) ∈ E(θ0,n). We have [E1, A1, p1] = [E2, A2, p2] if and only if there exists a bundle

map g : E1 → E2 satisfying g(A1) = A2 and g(p1(n)) = p2(n) for all n ∈ Z. In this

description, the topology of Md is described as follows. A sequence [En, An, pn] (n ≥ 1)

in Md converges to [E, A, p] if and only if there exist gauge transformations gn : En → E

(n ≫ 1) such that gn(An) converges to A as n → ∞ in C∞ over every compact subset in

X and that gn(pn(k)) → p(k) as n → ∞ for every k ∈ Z.

Remark 1.4. An ASD connection satisfying the condition (1) is a Yang-Mills analogue

of a “Brody curve” (cf. Brody [3]) in the entire holomorphic curve theory (Nevanlinna

theory). It is widely known that there exist several similarities between the Yang-Mills

gauge theory and the theory of (pseudo-)holomorphic curves (e.g. Donaldson invariant

vs. Gromov-Witten invariant). On the holomorphic curve side, several researchers in

the Nevanlinna theory have systematically studied the value distributions of holomorphic

curves (of infinite energy) from the complex plane C. They have found several deep

structures of such infinite energy holomorphic curves. Therefore the authors hope that

infinite energy ASD connections also have deep structures.

The rough ideas of the proofs of the main theorems are as follows. (For more about the

outline of the proofs, see Section 3.) The upper bounds on the (local) mean dimension

are proved by using the Runge-type approximation of ASD connections (originally due to

Donaldson [5]). This “instanton approximation” technique gives a method to approximate

infinite energy ASD connections by finite energy ones (instantons). Then we can construct

“finite dimensional approximations” of Md by moduli spaces of (framed) instantons. This

gives a upper bound on dim(Md : Z). The lower bound on the local mean dimension

is proved by constructing an infinite dimensional deformation theory of periodic ASD

connections. This method is a Yang-Mills analogue of the deformation theory of “elliptic

Brody curves” developed in Tsukamoto [20].

A big technical difficulty in the study of Md comes from the point that ASD equation

is not elliptic. When we study the Yang-Mills theory over compact manifolds, this point

can be easily overcome by using the Coulomb gauge. But in our situation (perhaps) there
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is no such good way to recover the ellipticity. So we will consider some “partial gauge

fixings” in this paper. In the proof of the upper bound, we will consider the Coulomb

gauge over S3 instead of S3×R (see Proposition 6.1). In the proof of the lower bound, we

will consider the Coulomb gauge over S3 × R, but it is less powerful and more technical

than the usual Coulomb gauges over compact manifolds (see Proposition 8.6).

Organization of the paper: In Section 2 we review the definition of mean dimension

and define local mean dimension. In Section 3 we explain the outline of the proofs of

Theorem 1.1 and 1.2. Sections 4, 5 and 6 are preparations for the proof of the upper

bounds on the (local) mean dimension. In Section 7 we prove the upper bounds. Section

8 is a preparation for the proof of the lower bound. In Section 9 we develop the defor-

mation theory of periodic ASD connections and prove the lower bound on the local mean

dimension. In Appendix A we prepare some basic results on the Green kernel of ∆ + 1.

Acknowledgement. The authors wish to thank Professors Kenji Nakanishi and Yoshio

Tsutsumi. When the authors studied the lower bound on the local mean dimension, they

gave the authors several helpful advices. Their advices were very useful especially for

preparing the arguments in Section 8.

2. Mean dimension and local mean dimension

2.1. Review of mean dimension. We review the definitions and basic properties of

mean dimension in this subsection. For the detail, see Gromov [12] and Lindenstrauss-

Weiss [14]. We need only the mean dimension for Z-actions. So we consider only Z-action

cases, but we try to formulate the notions so that it can be easily generalized to the case

of actions of general amenable groups.

Let (X, d) be a compact metric space, Y be a topological space, and f : X → Y be a

continuous map. For ε > 0, f is called an ε-embedding if we have Diamf−1(y) ≤ ε for

all y ∈ Y . We define Widimε(X, d) as the minimum integer n ≥ 0 such that there exist a

polyhedron P of dimension n and an ε-embedding f : X → P . We have

lim
ε→0

Widimε(X, d) = dim X,

where dim X denotes the topological covering dimension of X. For example, consider

[0, 1]× [0, ε] with the Euclidean distance. Then the natural projection π : [0, 1]× [0, ε] →
[0, 1] is an ε-embedding. Hence Widimε([0, 1] × [0, ε], Euclidean) ≤ 1. The following is

given in Gromov [12, p. 333]. (For the detailed proof, see also Gournay [10, Lemma 2.5]

and Tsukamoto [20, Appendix].)

Lemma 2.1. Let (V, ||·||) be a finite dimensional normed linear space over R. Let Br(V )

be the closed ball of radius r > 0 in V . Then

Widimε(Br(V ), ||·||) = dim V (ε < r).

Widimε(X, d) satisfies the following subadditivity. (The proof is obvious.)
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Lemma 2.2. For compact metric spaces (X, dX), (Y, dY ), we set (X, dX) × (Y, dY ) :=

(X × Y, dX×Y ) with dX×Y ((x1, y1), (x2, y2)) := max(dX(x1, x2), dY (y1, y2)). Then we have

Widimε((X, dX) × (Y, dY )) ≤ Widimε(X, dX) + Widimε(Y, dY ).

The following will be used in Section 7.1

Lemma 2.3. Let (X, d) be a compact metric space and suppose X = X1 ∪X2 with closed

sets X1 and X2. Then

Widimε(X, d) ≤ Widimε(X1, d) + Widimε(X2, d) + 1.

In general, if X = X1 ∪ X2 ∪ · · · ∪ Xn (Xi: closed), then

Widimε(X, d) ≤
n∑

i=1

Widimε(Xi, d) + n − 1.

Proof. There exist a finite polyhedron Pi (i = 1, 2) with dim Pi = Widimε(Xi, d) and an ε-

embedding fi : (Xi, d) → Pi. Let P1∗P2 = {tx⊕(1−t)y|x ∈ X1, y ∈ X2, 0 ≤ t ≤ 1} be the

join of P1 and P2. (P1∗P2 = [0, 1]×P1×P2/ ∼, where (0, x, y) ∼ (0, x′, y) for any x, x′ ∈ X

and (1, x, y) ∼ (1, x, y′) for any y, y′ ∈ Y . tx⊕ (1− t)y is the equivalence class of (t, x, y).)

P1∗P2 is a finite polyhedron of dimension Widimε(X1, d)+Widimε(X2, d)+1. Since a finite

polyhedron is ANR, there exists a open set Ui ⊃ Xi over which the map fi continuously

extends. Let ρ be a cut-off function such that 0 ≤ ρ ≤ 1, suppρ ⊂ U1 and ρ(x) = 1 if

and only if x ∈ X1. Then supp(1 − ρ) = X \ X1 ⊂ X2 ⊂ U2. We define a continuous

map F : X → P1 ∗ P2 by setting F (x) := ρ(x)f1(x) ⊕ (1 − ρ(x))f2(x). F becomes an ε-

embedding; Suppose F (x) = F (y). If ρ(x) = ρ(y) = 1, then x, y ∈ X1 and f1(x) = f1(y).

Then d(x, y) ≤ ε. If ρ(x) = ρ(y) < 1, then x, y ∈ X2 and f2(x) = f2(y). Then d(x, y) ≤ ε.

Thus Widimε(X, d) ≤ dim P1 ∗ P2 = Widimε(X1, d) + Widimε(X2, d) + 1. ¤

Suppose that the additive group Z continuously acts on X. For a subset Ω ⊂ Z, we

define a distance dΩ(·, ·) on X by

dΩ(x, y) := sup
n∈Ω

d(n.x, n.y) (x, y ∈ X).

A sequence Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ · · · of finite subsets in Z is called an amenable sequence if

for each r > 0

|∂rΩn|/|Ωn| → 0 (n → ∞),

where ∂rΩn is the r-boundary of Ωn given by

∂rΩn := {x ∈ Z| ∃y ∈ Ωn : |x − y| ≤ r and ∃z ∈ Z \ Ωn : |x − z| ≤ r}.

For example, Ωn := {0, 1, 2, · · · , n−1} (n ≥ 1) is an amenable sequence. Ωn := {−n,−n+

1, · · · ,−1, 0, 1, · · · , n−1, n} (n ≥ 1) is also an amenable sequence. We need the following

“Ornstein-Weiss lemma” ([12, pp. 336-338] and [14, Appendix]).
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Lemma 2.4. Let h : {finite subsets in Z} → R≥0 be a map satisfying the following.

(i) If Ω1 ⊂ Ω2, then h(Ω1) ≤ h(Ω2).

(ii) h(Ω1 ∪ Ω2) ≤ h(Ω1) + h(Ω2).

(iii) For any γ ∈ Z and a finite subset Ω ⊂ Z, h(γ + Ω) = h(Ω), where γ + Ω := {γ + x ∈
Z|x ∈ Ω}.

Then for any amenable sequence {Ωn}n≥1, the limit limn→∞ h(Ωn)/|Ωn| always exists

and is independent of the choice of {Ωn}.

Lemma 2.5. The map Ω 7→ Widimε(X, dΩ) satisfies the conditions in Lemma 2.4.

Proof. If Ω1 ⊂ Ω2, then the identity map (X, dΩ1) → (X, dΩ2) is distance non-decreasing.

Hence Widimε(X, dΩ1) ≤ Widimε(X, dΩ2). The map (X, dΩ1∪Ω2) → (X, dΩ1) × (X, dΩ2),

x → (x, x), is distance preserving. Hence, by using Lemma 2.2, Widimε(X, dΩ1∪Ω2) ≤
Widimε(X, dΩ1)+Widimε(X, dΩ2). The map (X, dγ+Ω) → (X, dΩ), x 7→ γx, is an isometry.

Hence Widimε(X, dγ+Ω) = Widimε(X, dΩ). ¤

Suppose that an amenable sequence {Ωn}n≥1 is given. For ε > 0, we set

Widimε(X : Z) := lim
n→∞

1

|Ωn|
Widimε(X, dΩn).

This limit exists and is independent of the choice of an amenable sequence {Ωn}n≥1. The

value of Widimε(X : Z) depends on the distance d. Hence, strictly speaking, we should

use the notation Widimε((X, d) : Z). But we use the above notation for simplicity. We

define dim(X : Z) (the mean dimension of (X, Z)) by

dim(X : Z) := lim
ε→0

Widimε(X : Z).

This becomes a topological invariant, i.e., the value of dim(X : Z) does not depend on

the choice of a distance compatible with the given topology of X.

Example 2.6. Let B ⊂ RN be the closed ball. Z acts on BZ by the shift. Then

dim(BZ : Z) = N.

For the proof of this equation, see Lindenstrauss-Weiss [14, Proposition 3.1, 3.3] or

Tsukamoto [19, Example B.2].

Let Y ⊂ X be a closed subset. Then the map Ω 7→ supk∈Z Widimε(Y, dk+Ω) satisfies

the conditions in Lemma 2.4. Hence we can set

Widimε(Y ⊂ X : Z) := lim
n→∞

(
1

|Ωn|
sup
k∈Z

Widimε(Y, dk+Ωn)

)
,

where {Ωn}n≥1 is an amenable sequence. We define

dim(Y ⊂ X : Z) := lim
ε→0

Widimε(Y ⊂ X : Z).
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This does not depend on the choice of a distance compatible with the given topology of

X. Note that we have Widimε(Y, dk+Ω) = Widimε(k.Y, dΩ) ≤ Widimε(X, dΩ) because

(Y, dk+Ω) → (k.Y, dΩ), x 7→ kx, is an isometry. Therefore

dim(Y ⊂ X : Z) ≤ dim(X : Z) = dim(X ⊂ X : Z).

If Y1 ⊂ Y2, then

dim(Y1 ⊂ X : Z) ≤ dim(Y2 ⊂ X : Z).

If Y ⊂ X is a Z-invariant closed subset, then

dim(Y ⊂ X : Z) = dim(Y : Z),

where the right-hand-side is the ordinary mean dimension of (Y, Z). Let X1 and X2 be

compact metric spaces with continuous Z-actions. Let Y1 ⊂ X1 and Y2 ⊂ X2 be closed

subsets. If there exists a Z-equivariant topological embedding f : X1 → X2 satisfying

f(Y1) ⊂ Y2, then

(4) dim(Y1 ⊂ X1 : Z) ≤ dim(Y2 ⊂ X2 : Z).

2.2. Local mean dimension. Let (X, d) be a compact metric space. The usual topo-

logical dimension dim X is a “local notion” as follows: For each point p ∈ X, we define

the “local dimension” dimp X at p by dimp X := limr→0 dim Br(x). (Here Br(p) is the

closed r-ball centered at p.) Then we have dim X = supp∈X dimp X. The authors don’t

know whether a similar description of the mean dimension is possible or not. Instead, in

this subsection we will introduce a new notion “local mean dimension”.

Suppose that the additive group Z continuously acts on X. For each point p ∈ X and

r > 0, we denote Br(p)Z as the closed r-ball centered at p with respect to the distance

dZ(·, ·):
Br(p)Z := {x ∈ X| dZ(x, p) ≤ r}.

Note that dZ(x, y) ≤ r ⇔ d(n.x, n.y) ≤ r for all n ∈ Z. Br(p)Z is a closed set in X. We

define the local mean dimension of X at p by

dimp(X : Z) := lim
r→0

dim(Br(p)Z ⊂ X : Z).

This is independent of the choice of a distance compatible with the topology of X. We

define the local mean dimension of X by

dimloc(X : Z) := sup
p∈X

dimp(X : Z).

Obviously we have

(5) dimloc(X : Z) ≤ dim(X : Z).

Let X, Y be compact metric spaces with continuous Z-actions. If there exists a Z-

equivariant topological embedding f : X → Y , then, from (4), for all p ∈ X

dimp(X : Z) ≤ dimf(p)(Y : Z).



INSTANTON APPROXIMATION, PERIODIC ASD CONNECTIONS, AND MEAN DIMENSION 9

Example 2.7. Let B ⊂ RN be the closed ball centered at the origin. Then we have

dim0(B
Z : Z) = dimloc(B

Z : Z) = dim(BZ : Z) = N,

where 0 = (· · · , 0, 0, 0, · · · ) ∈ BZ.

Proof. Fix a distance on BZ. Then it is easy to see that for any r > 0 there exists s > 0

such that BZ
s ⊂ Br(0)Z, where Bs is the s-ball in RN . Then

N = dim(BZ
s : Z) ≤ dim(Br(0)Z ⊂ BZ : Z) ≤ dim(BZ : Z) = N.

Hence dim0(B
Z : Z) = N . ¤

We will use the following formula in Section 7.2. Since k.Br(p)Z = Br(kp)Z, we have

Widimε(Br(p)Z, dk+Ω) = Widimε(k.Br(p)Z, dΩ) = Widimε(Br(kp)Z, dΩ),

and hence

(6) Widimε(Br(p)Z ⊂ X : Z) = lim
n→∞

(
1

|Ωn|
sup
k∈Z

Widimε(Br(kp)Z, dΩn)

)
.

The following will be used in Section 9.2.

Example 2.8. Let G be a compact Lie group, and GZ be the infinite product of G indexed

by integers. G acts on GZ by g(un)n∈Z := (gun)n∈Z. Let GZ/G be the quotient by this

action. Then for any point [p] ∈ GZ/G,

dim[p](G
Z/G : Z) = dim(GZ/G : Z) = dim G.

Proof. We define a distance d(·, ·) on GZ/G by setting

d([(xn)n∈Z], [(yn)n∈Z]) := inf
g∈G

∑
n∈Z

2−|n|d(gxn, yn),

where d(·, ·) is a two-sided-invariant distance on G. Set ΩN := {0, 1, 2, · · · , N−1} (N ≥ 1).

For any ε > 0, let L = L(ε) be a positive integer satisfying∑
|n|>L

2−|n| ≤ ε/Diam(G).

Then it is easy to see that the map

GZ/G → GN+2L+1/G, [(xn)n∈Z] 7→ [(x−L, x−L+1, · · · , xN+L)].

is an ε-embedding with respect to the distance dΩN
. GN+2L+1/G is a manifold of dimension

(N + 2L) dim G. Hence Widimε(G
Z/G, dΩN

) ≤ (N + 2L) dim G, and

lim
N→∞

1

|ΩN |
Widimε(G

Z/G, dΩN
) ≤ dim G.

Then for any point [p] ∈ GZ/G, dim[p](G
Z/G : Z) ≤ dim(GZ/G : Z) ≤ dim G.

Let p = (pn)n∈Z be a point in GZ, and r > 0. Let Lie(G) be the Lie algebra of G with

a norm | · |. We take r0 > 0 so that the map {x ∈ Lie(G)| |x| ≤ r0} ∋ x 7→ ex ∈ G
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becomes a topological embedding. We choose r′ = r′(r) ≤ r0 so that every x ∈ Lie(G)

with |x| ≤ r′ satisfies d(ex, 1) ≤ r/3 (⇔ d(expn, pn) ≤ r/3). Fix an integer m > 0, and

define Am ⊂ (Lie(G))Z by

Am := {(xn)n∈Z| |xn| ≤ r′ for all n, and xn = 0 for n ∈ mZ.}.

Define f : Am → GZ/G by f((xn)n∈Z) := [(exnpn)n∈Z]. Then f(Am) ⊂ Br([p])Z. For

g ∈ G and (xn)n∈Z, (yn)n∈Z in Am, since x0 = y0 = 0 and d(g, 1) = d(gexn , exn),

m−1∑
n=0

2−nd(gexn , eyn) ≥
m−1∑
n=1

2−n(d(gexn , eyn) + d(g, 1)),

≥
m−1∑
n=1

2−nd(exn , eyn) ≥ 2−m max
0≤n≤m−1

d(exn , eyn).

Hence dΩmN
([(exnpn)n∈Z], [(eynpn)n∈Z]) ≥ 2−m max0≤n≤mN−1 d(exn , eyn). We choose ε =

ε(r,m) > 0 so that if x, y ∈ Lie(G) with |x|, |y| ≤ r′ satisfy d(ex, ey) ≤ 2mε then |x− y| ≤
r′/2. Then, if (xn)n∈Z and (yn)n∈Z in Am satisfy dΩmN

([(exnpn)n∈Z], [(eynpn)∈Z]) ≤ ε, we

have max0≤n≤mN−1 |xn − yn| ≤ r′/2. Then, by using Lemma 2.1,

Widimε(Br([p])Z, dΩmN
) ≥ Widimr′/2(Br′(Lie(G))(m−1)N , ||·||ℓ∞) = (m − 1)N dim G.

From this estimate, we get

dim[p](G
Z/G : Z) ≥ (1 − 1/m) dim G.

Let m → ∞. Then we get the conclusion: dim[p](G
Z/G : Z) ≥ dim G. ¤

3. Outline of the proofs of the main theorems

The ideas of the proofs of Theorem 1.1 and 1.2 are simple. But the completion of

the proofs needs lengthy technical arguments. So we want to describe the outline of the

proofs in this section. Here we don’t pursue the accuracy of the arguments for simplicity

of the explanation. Some of the arguments will be replaced with different ones in the later

sections.

First we explain how to get the upper bound on the mean dimension of Md. We define

a distance on Md by setting

dist([A,p], [B, q])

:= inf
g:E→E

{∑
n≥1

2−n
||g(A) − B||L∞(|t|≤n)

1 + ||g(A) − B||L∞(|t|≤n)

+
∑
n∈Z

2−|n||g(p(n)) − q(n)|

}
,

where g runs over gauge transformations of E, and |t| ≤ n means the region {(θ, t) ∈
S3 × R| |t| ≤ n}. For R = 1, 2, 3, · · · , we define an amenable sequence ΩR ⊂ Z by

ΩR := {n ∈ Z| − R ≤ n ≤ R}.
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Let ε > 0 be a positive number and define a positive integer L = L(ε) so that

(7)
∑
n>L

2−n <
ε

2(1 + 2Diam(SU(2)))
.

Let D = D(ε) be a large positive integer which depends on ε but is independent of R,

and set T := R + L + D. (D is chosen so that the condition (8) below is satisfied. Here

we don’t explain how to define D precisely.) For c ≥ 0 we define MT (c) as the space of

the gauge equivalence classes [A, p] where A is an ASD connection on E satisfying

1

8π2

∫
X

|FA|2dvol ≤ c,

and p is a map from {n ∈ Z| − T ≤ n ≤ T} to E with p(n) ∈ E(θ0,n) (−T ≤ n ≤ T ). The

index theorem gives the estimate:

dim MT (c) ≤ 8c + 6T.

We want to construct an ε-embedding from (Md, distΩR
) to MT (c) for an appropriate

c ≥ 0.

Let (A, p) be a framed connection on E with [A,p] ∈ Md. We “cut-off” (A,p) over

the region T < |t| < T + 1 and produce a new framed connection (A′, p′) satisfying the

following conditions. A′ is a (not necessarily ASD) connection on E satisfying A′||t|≤T =

A||t|≤T , F (A′) = 0 over |t| ≥ T + 1, and

1

8π2

∫
X

tr(F (A′)2) ≤ 1

8π2

∫
|t|≤T

|F (A)|2dvol + const ≤ 2Td2vol(S3)

8π2
+ const,

where const is a positive constant independent of ε and R. p′ is a map from {n ∈ Z|−T ≤
n ≤ T} to E with p′(n) = p(n) ∈ E(θ0,n). Next we “perturb” A′ and produce an ASD

connection A′′ on E satisfying

(8) |A − A′′| = |A′ − A′′| ≤ ε/4 (|t| ≤ T − D = R + L),

1

8π2

∫
X

|F (A′′)|2dvol =
1

8π2

∫
X

tr(F (A′)2) ≤ 2Td2vol(S3)

8π2
+ const.

Then we can define the map

Md → MT

(
2Td2vol(S3)

8π2
+ const

)
, [A, p] 7→ [A′′,p′].

The conditions (7), (8) and p′(n) = p(n) (|n| ≤ T ) imply that this map is an ε-embedding

with respect to the distance distΩR
. Hence

Widimε(Md, distΩR
) ≤ dim MT

(
2Td2vol(S3)

8π2
+ const

)
≤ 2Td2vol(S3)

π2
+ 8 · const + 6T.
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(Caution! This estimate will not be proved in this paper. The above argument contains

a gap.) Recall T = R + L + D. Since L, D and const are independent of R, we get

lim
R→∞

Widimε(Md, distΩR
)

|ΩR|
≤ d2vol(S3)

π2
+ 3.

Hence we get

(9) dim(Md : Z) ≤ d2vol(S3)

π2
+ 3 < +∞.

This is the outline of the proof of the upper bound on the mean dimension. (The upper

bound on the local mean dimension can be proved by investigating the above procedure

more precisely.) Strictly speaking, the above argument contains a gap. Actually we have

not so far succeeded to prove the estimate dim(Md : Z) ≤ d2vol(S3)/π2 +3. In this paper

we prove only dim(Md : Z) < +∞. A problem occurs in the cut-off construction. Indeed

(we think that) there exists no canonical way to cut-off connections compatible with the

gauge symmetry. Therefore we cannot define a suitable cut-off construction all over Md.

Instead we will decompose Md as Md =
∪

1≤i,j≤N Md,T (i, j) (N is independent of ε and

R) and define a cut-off construction for each piece Md,T (i, j) independently. Then we will

get an upper bound worse than (9) (cf. Lemma 2.3). We study the cut-off construction

(the procedure [A, p] 7→ [A′,p′]) in Section 6. This construction uses the framing p as an

essential data. In Section 4 and 5 we study the perturbation procedure (A′ 7→ A′′). The

perturbation does not use the framing. The upper bounds on the (local) mean dimension

are proved in Section 7.

Next we explain how to prove the lower bound on the local mean dimension. Let T > 0,

E be a principal SU(2)-bundle over S3 × (R/TZ), and A be a non-flat ASD connection

on E satisfying |F (A)| < d. For simplicity of the explanation, we assume T = 1. When

T ̸= 1 (in particular, when T is an irrational number), we need some modifications of the

arguments below.

Let π : S3 × R → S3 × (R/Z) be the natural projection, and set E := π∗(E) and

A := π∗(A). We define the infinite dimensional Banach space H1
A by

H1
A := {a ∈ Ω1(adE)| (d∗

A + d+
A)a = 0, ||a||L∞ < ∞}.

There exists a natural Z-action on H1
A. Let r > 0 be a sufficiently small number. For

each a ∈ H1
A with ||a||L∞ ≤ r we can construct ã ∈ Ω1(adE) (a small perturbation of a)

satisfying F+(A + ã) = 0 and |F (A + ã)| ≤ d. If a = 0, then ã = 0.

For n ≥ 1, let πn : S3 × (R/nZ) → S3 × (R/Z) be the natural projection, and set

En := π∗
n(E) and An := π∗

n(A). We define H1
An

as the space of a ∈ Ω(adEn) satisfying

(d∗
An

+d+
An

)a = 0. We can identify H1
An

with the subspace of H1
A consisting of nZ-invariant

elements. The index theorem gives

dim H1
An

= 8nc2(E).
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Let ℓ∞(Z, su(2)) be the Banach space of (un)n∈Z in su(2)Z satisfying ||(un)n∈Z||ℓ∞ :=

supn∈Z |un| < ∞. ℓ∞(Z, su(2)) also admits a natural Z-action. Set V := H1
A×ℓ∞(Z, su(2))

with ||(a, (un)n∈Z)||V := max(||a||L∞ , ||(un)n∈Z||ℓ∞). We define Vn ⊂ V (n ≥ 1) as the

subspace of V consisting of nZ-invariant elements. Vn
∼= H1

An
× ℓ∞(Z/nZ, su(2)) and

hence

dim Vn = 8nc2(E) + 3n.

Take p ∈ E(θ0,[0]) and let pn ∈ E(θ0,n) (n ∈ Z) be its lifts. We define the map from Br(V )

(the r-ball of V centered at the origin) to Md by

Br(V ) → Md, (a, (un)n∈Z) 7→ [E, A + ã, (pneun)n∈Z].

(cf. the description of Md in Remark 1.3.) This map becomes a Z-equivariant topological

embedding for r ≪ 1. (Here Br(V ) is endowed with the following topology. A sequence

{(an, (u
(n)
k )k∈Z)}n≥1 in Br(V ) converges to (a, (uk)k∈Z) in Br(V ) if and only if an uniformly

converges to a over every compact subset and u
(n)
k converges to uk for every k ∈ Z.) Then

we have

dim[E,A,(pn)n∈Z](Md : Z) ≥ dim0(Br(V ) : Z).

The right-hand-side is the local mean dimension of Br(V ) at the origin. We can prove

that dim0(Br(V ) : Z) can be estimated from below by “the growth of periodic points”:

dim0(Br(V ) : Z) ≥ lim
n→∞

dim Vn/n = 8c2(E) + 3 = 8ρ(A) + 3.

(This is not difficult to prove. This is just an application of Lemma 2.1.) Therefore

dim[E,A,(pn)n∈Z](Md : Z) ≥ 8ρ(A) + 3.

This is the outline of the proof of the lower bound. Here we consider only the “1-periodic”

ASD connection A and “the periodic framing” (pn)n∈Z. Hence the real proof needs some

modifications.

4. Perturbation

In this section we construct the method of constructing ASD connections from “ap-

proximately ASD” connections over X = S3 × R. We basically follow the argument of

Donaldson [5]. As we promised in the introduction, the variable t means the variable of

the R-factor of S3 × R.

4.1. Construction of the perturbation. Let T be a positive integer, and d, d′ be two

non-negative real numbers. Set ε0 = 1/(1000). (The value 1/(1000) itself has no meaning.

The point is that it is an explicit number which satisfies (13) below.) Let E be a principal

SU(2)-bundle over X, and A be a connection on E satisfies

(i) FA = 0 over |t| > T + 1,

(ii) F+
A is supported in {(θ, t) ∈ S3 × R|T < |t| < T + 1}, and

∣∣∣∣F+
A

∣∣∣∣
T
≤ ε0. Here ||·||T is

the “Taubes norm” defined below ((16) and (17)).
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(iii) |FA| ≤ d on |t| ≤ T and
∣∣∣∣F+

A

∣∣∣∣
L∞(X)

≤ d′. (The condition (iii) is not used in Section

4.1, 4.2, 4.3. It will be used in Section 4.4.)

Let Ω+(adE) be the set of smooth self-dual 2-forms valued in adE (not necessarily

compact supported). The first main purpose of this section is to solve the equation

F+(A+d∗
Aϕ) = 0 for ϕ ∈ Ω+(adE). We have F+(A+d∗

Aϕ) = F+
A +d+

Ad∗
Aϕ+(d∗

Aϕ∧d∗
Aϕ)+.

The Weitzenböck formula gives ([8, Chapter 6])

(10) d+
Ad∗

Aϕ =
1

2
∇∗

A∇Aϕ +

(
S

6
− W+

)
ϕ + F+

A · ϕ,

where S is the scalar curvature of X and W+ is the self-dual part of the Weyl curvature.

Since X is conformally flat, we have W+ = 0. The scalar curvature S is a positive

constant. Then the equation F+(A + d∗
Aϕ) = 0 becomes

(11) (∇∗
A∇A + S/3)ϕ + 2F+

A · ϕ + 2(d∗
Aϕ ∧ d∗

Aϕ)+ = −2F+
A .

Set c0 = 10. Then

(12) |F+
A · ϕ| ≤ c0|F+

A | · |ϕ|, |(d∗
Aϕ1 ∧ d∗

Aϕ2)
+| ≤ c0|∇Aϕ1| · |∇Aϕ2|.

(These are not best possible.1) The positive constant ε0 = 1/1000 in the above satisfies

(13) 50c0ε0 < 1.

Let ∆ = ∇∗∇ be the Laplacian on functions over X, and g(x, y) be the Green kernel of

∆ + S/3. We prepare basic facts on g(x, y) in Appendix A. Here we state some of them

without the proofs. For the proofs, see Appendix A. g(x, y) satisfies

(∆y + S/3)g(x, y) = δx(y).

This equation means that, for any compact supported smooth function φ,

φ(x) =

∫
X

g(x, y)(∆y + S/3)φ(y)dvol(y),

where dvol(y) denotes the volume form of X. g(x, y) is smooth outside the diagonal and

it has a singularity of order 1/d(x, y)2 along the diagonal:

(14) const1/d(x, y)2 ≤ g(x, y) ≤ const2/d(x, y)2, (d(x, y) ≤ const3),

where d(x, y) is the distance on X, and const1, const2, const3 are positive constants.

g(x, y) > 0 for x ̸= y (Lemma A.1), and it has an exponential decay (Lemma A.2):

(15) 0 < g(x, y) < const4 · e−
√

S/3d(x,y) (d(x, y) ≥ 1).

Since S3×R = SU(2)×R is a Lie group and its Riemannian metric is two-sided invariant,

we have g(zx, zy) = g(xz, yz) = g(x, y). In particular, for x = (θ1, t1) and y = (θ2, t2), we

1Strictly speaking, the choice of c0 depends on the convention of the metric (inner product) on su(2).
Our convention is: ⟨A,B⟩ = −tr(AB) for A,B ∈ su(2).
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have g((θ1, t1 − t0), (θ2, t2 − t0)) = g((θ1, t1), (θ2, t2)) (t0 ∈ R). That is, g(x, y) is invariant

under the translation t 7→ t − t0.

For ϕ ∈ Ω+(adE), we define the pointwise Taubes norm |ϕ|T (x) by setting

(16) |ϕ|T (x) :=

∫
X

g(x, y)|ϕ(y)|dvol(y) (x ∈ X),

(Note that g(x, y) > 0 for x ̸= y.) This may be infinity. We define the Taubes norm ||ϕ||T
by

(17) ||ϕ||T := sup
x∈X

|ϕ|T (x).

Set

K :=

∫
X

g(x, y)dvol(y) (this is independent of x ∈ X).

(This is finite by (14) and (15).) We have

||ϕ||T ≤ K ||ϕ||L∞ .

We define Ω+(adE)0 as the set of ϕ ∈ Ω+(adE) which vanish at infinity: limx→∞ |ϕ(x)| =

0. (Here x = (θ, t) → ∞ means |t| → +∞.) If ϕ ∈ Ω+(adE)0, then ||ϕ||T < ∞ and

limx→∞ |ϕ|T (x) = 0. (See the proof of Proposition A.7.) For η ∈ Ω+(adE)0, there

uniquely exists ϕ ∈ Ω+(adE)0 satisfying (∇∗
A∇A +S/3)ϕ = η. (See Proposition A.7.) We

set (∇∗
A∇A + S/3)−1η := ϕ. This satisfies

(18) |ϕ(x)| ≤ |η|T (x), and hence ||ϕ||L∞ ≤ ||η||T .

Lemma 4.1. limx→∞ |∇Aϕ(x)| = 0.

Proof. From the condition (i) in the beginning of this section, A is flat over |t| > T + 1.

Therefore there exists a bundle map g : E||t|>T+1 → X|t|>T+1 × SU(2) such that g(A) is

the product connection. Here X|t|>T+1 = {(θ, t) ∈ S3 × R| |t| > T + 1} and E||t|>T+1 is

the restriction of E to X|t|>T+1. We sometimes use similar notations in this paper. Set

ϕ′ := g(ϕ) and η′ := g(η). They satisfy (∇∗∇ + S/3)ϕ′ = η′. (Here ∇ is defined by the

product connection on X||t|>T+1 × SU(2) and the Levi-Civita connection.)

For |t| > T + 2, we set Bt := S3 × (t − 1, t + 1). From the elliptic estimates, for any

θ ∈ S3,

|∇ϕ′(θ, t)| ≤ C(||ϕ′||L∞(Bt)
+ ||η′||L∞(Bt)

),

where C is a constant independent of t. This means

|∇Aϕ(θ, t)| ≤ C(||ϕ||L∞(Bt)
+ ||η||L∞(Bt)

).

The right-hand-side goes to 0 as |t| goes to infinity. ¤

The following Lemma shows a power of the Taubes norm.
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Lemma 4.2. ∣∣|∇Aϕ|2
∣∣
T

(x) :=

∫
X

g(x, y)|∇Aϕ(y)|2dvol(y) ≤ ||η||T |η|T (x).

In particular, |||∇Aϕ|2||T := supx∈X ||∇Aϕ|2|T (x) ≤ ||η||2T and ||(d∗
Aϕ ∧ d∗

Aϕ)+||T ≤ c0 ||η||2T .

Proof. ∇|ϕ|2 = 2(∇Aϕ, ϕ) vanishes at infinity (Lemma 4.1).

(∆ + 2S/3)|ϕ|2 = 2(∇∗
A∇Aϕ + (S/3)ϕ, ϕ) − 2|∇Aϕ|2 = 2(η, ϕ) − 2|∇Aϕ|2.

In particular, (∆ + S/3)|ϕ|2 vanishes at infinity (Lemma 4.1). Hence |ϕ|2,∇|ϕ|2, (∆ +

S/3)|ϕ|2 vanish at infinity (in particular, they are contained in L∞). Then we can apply

Lemma A.3 in Appendix A to |ϕ|2 and get∫
X

g(x, y)(∆y + S/3)|ϕ(y)|2dvol(y) = |ϕ(x)|2.

We have

|∇Aϕ|2 = (η, ϕ) − 1

2
(∆ + S/3)|ϕ|2 − S

6
|ϕ|2,

≤ (η, ϕ) − 1

2
(∆ + S/3)|ϕ|2.

Therefore∫
X

g(x, y)|∇Aϕ(y)|2dvol(y) ≤
∫

X

g(x, y)(η(y), ϕ(y))dvol(y) − 1

2
|ϕ(y)|2,

≤
∫

X

g(x, y)(η(y), ϕ(y))dvol(y),

≤ ||ϕ||L∞

∫
X

g(x, y)|η(y)|dvol(y) ≤ ||η||T |η|T (x).

In the last line we have used (18). ¤

For η1, η2 ∈ Ω+(adE)0, set ϕi := (∇∗
A∇A + S/3)−1ηi ∈ Ω+(adE)0 and

(19) β(η1, η2) := (d∗
Aϕ1 ∧ d∗

Aϕ2)
+ + (d∗

Aϕ2 ∧ d∗
Aϕ1)

+.

β is symmetric and |β(η1, η2)| ≤ 2c0|∇Aϕ1| · |∇Aϕ2|. In particular, β(η1, η2) ∈ Ω+(adE)0

(Lemma 4.1).

Lemma 4.3. ||β(η1, η2)||T ≤ 4c0 ||η1||T ||η2||T .

Proof. From Lemma 4.2, ||β(η, η)||T ≤ 2c0 ||η||2T . Suppose ||η1||T = ||η2||T = 1. Since

4β(η1, η2) = β(η1 + η2, η1 + η2) − β(η1 − η2, η1 − η2),

4 ||β(η1, η2)||T ≤ 2c0 ||η1 + η2||2T + 2c0 ||η1 − η2||2T ≤ 16c0.

Hence ||β(η1, η2)||T ≤ 4c0. The general case follows from this. ¤
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For η ∈ Ω+(adE)0, we set ϕ := (∇∗
A∇A + S/3)−1η ∈ Ω+(adE)0 and define

Φ(η) := −2F+
A · ϕ − β(η, η) − 2F+

A ∈ Ω+(adE)0.

If η satisfies η = Φ(η), then ϕ satisfies the ASD equation (11).

Lemma 4.4. For η1, η2 ∈ Ω+(adE)0,

||Φ(η1) − Φ(η2)||T ≤ 2c0(
∣∣∣∣F+

A

∣∣∣∣
T

+ 2 ||η1 + η2||T ) ||η1 − η2||T .

Proof.

Φ(η1) − Φ(η2) = −2F+
A · (ϕ1 − ϕ2) + β(η1 + η2, η2 − η1).

From Lemma 4.3 and ||ϕ1 − ϕ2||L∞ ≤ ||η1 − η2||T (see (18)),

||Φ(η1) − Φ(η2)||T ≤ 2c0 ||FA||T ||ϕ1 − ϕ2||L∞ + 4c0 ||η1 + η2||T ||η1 − η2||T ,

≤ 2c0(
∣∣∣∣F+

A

∣∣∣∣
T

+ 2 ||η1 + η2||T ) ||η1 − η2||T .

¤

Proposition 4.5. The sequence {ηn}n≥0 in Ω+(adE)0 defined by

η0 = 0, ηn+1 = Φ(ηn),

becomes a Cauchy sequence with respect to the Taubes norm ||·||T and satisfies

||ηn||T ≤ 3ε0,

for all n ≥ 1.

Proof. Set B := {η ∈ Ω+(adE)0| ||η||T ≤ 3ε0}. For η ∈ B (recall:
∣∣∣∣F+

A

∣∣∣∣
T
≤ ε0),

||Φ(η)||T ≤ 2c0

∣∣∣∣F+
A

∣∣∣∣
T
||ϕ||L∞ + 2c0 ||η||2T + 2

∣∣∣∣F+
A

∣∣∣∣
T

,

≤ 2c0ε0 ||η||T + 2c0 ||η||2T + 2ε0,

≤ (24c0ε0 + 2)ε0 ≤ 3ε0

Here we have used (13). Hence Φ(η) ∈ B. Lemma 4.4 implies (for η1, η2 ∈ B)

||Φ(η1) − Φ(η2)||T ≤ 2c0(
∣∣∣∣F+

A

∣∣∣∣
T

+ 2 ||η1 + η2||T ) ||η1 − η2||T ≤ 26c0ε0 ||η1 − η2||T .

26c0ε0 < 1 by (13). Hence Φ : B → B becomes a contraction map with respect to the

norm ||·||T . Thus ηn+1 = Φ(ηn) (η0 = 0) becomes a Cauchy sequence. ¤

The sequence ϕn ∈ Ω+(adE)0 (n ≥ 0) defined by ϕn := (∇∗
A∇A + S/3)−1ηn satisfies

||ϕn − ϕm||L∞ ≤ ||ηn − ηm||T . Hence it becomes a Cauchy sequence in L∞(Λ+(adE)).

Therefore ϕn converges to some ϕA in L∞(Λ+(adE)). ϕA is continuous since every ϕn is

continuous. Indeed we will see later that ϕA is smooth and satisfies the ASD equation

F+(A + d∗
AϕA) = 0.
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We have ηn+1 = Φ(ηn) = −2F+
A · ϕn − 2(d∗

Aϕn ∧ d∗
Aϕn)+ − 2F+

A .

|2F+
A · ϕn|T (x) ≤ 2c0

∫
g(x, y)|F+

A (y)||ϕn(y)|dvol(y),

≤ 2c0|F+
A |T (x) ||ϕn||L∞ ≤ 2c0|F+

A |T (x) ||ηn||T .

|2(d∗
Aϕn ∧ d∗

Aϕn)+|T (x) ≤ 2c0 ||ηn||T |ηn|T (x) (Lemma 4.2).

Hence

|ηn+1|T (x) ≤ 2c0 ||ηn||T |F+
A |T (x) + 2c0 ||ηn||T |ηn|T (x) + 2|F+

A |T (x).

Since ||ηn||T ≤ 3ε0,

|ηn+1|T (x) ≤ 6c0ε0|ηn|T (x) + (6c0ε0 + 2)|F+
A |T (x).

By (13),

|ηn|T (x) ≤ (6c0ε0 + 2)|F+
A |T (x)

1 − 6c0ε0

≤ 3|F+
A |T (x).

Recall that F+
A is supported in {T < |t| < T + 1}. Set

δ(x) :=

∫
T<|t|<T+1

g(x, y)dvol(y) (x ∈ X).

Then |F+
A |T (x) ≤ δ(x)

∣∣∣∣F+
A

∣∣∣∣
L∞ . Note that δ(x) vanishes at infinity because g(x, y) ≤

const · e−
√

S/3d(x,y) for d(x, y) ≥ 1. (See (15).) We get the following decay estimate.

Proposition 4.6. |ϕn(x)| ≤ |ηn|T (x) ≤ 3δ(x)
∣∣∣∣F+

A

∣∣∣∣
L∞. Hence |ϕA(x)| ≤ 3δ(x)

∣∣∣∣F+
A

∣∣∣∣
L∞.

In particular, ϕA vanishes at infinity.

4.2. Regularity and the behavior at the end. From the definition of ϕn, we have

(20) (∇∗
A∇A + S/3)ϕn+1 = ηn+1 = −2F+

A · ϕn − 2(d∗
Aϕn ∧ d∗

Aϕn)+ − 2F+
A .

Lemma 4.7. supn≥1 ||∇Aϕn||L∞ < +∞.

Proof. We use the rescaling argument of Donaldson [5, Section 2.4]. Recall that ϕn are

uniformly bounded and uniformly go to zero at infinity (Proposition 4.6). Moreover

||∇Aϕn||L∞ < ∞ for each n ≥ 1 by Lemma 4.1. Suppose supn≥1 ||∇Aϕn||L∞ = +∞. Then

there exists a sequence n1 < n2 < n3 < · · · such that Rk := ||∇Aϕnk
||L∞ go to infinity

and Rk ≥ max1≤n≤nk
||∇Aϕn||L∞ . Since |∇Aϕn| vanishes at infinity (see Lemma 4.1), we

can take xk ∈ X satisfying Rk = |∇Aϕnk
(xk)|. From the equation (20), |∇∗

A∇Aϕnk
| ≤

constA · R2
k. Here “constA” means a positive constant depending on A (but independent

of k ≥ 1). Let r0 > 0 be a positive number less than the injectivity radius of X. We

consider the geodesic coordinate centered at xk for each k ≥ 1, and we take a bundle

trivialization of E over each geodesic ball B(xk, r0) by the exponential gauge centered at
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xk. Then we can consider ϕnk
as a vector-valued function in the ball B(xk, r0). Under

this setting, ϕnk
satisfies

(21)

∣∣∣∣∣∑
i,j

gij
(k)∂i∂jϕnk

∣∣∣∣∣ ≤ constA · R2
k on B(xk, r0),

where (gij
(k)) = (g(k),ij)

−1 and g(k),ij is the Riemannian metric tensor in the geodesic coor-

dinate centered at xk. (Indeed S3 × R = SU(2) × R is a Lie group. Hence we can take

the geodesic coordinates so that g(k),ij are independent of k.) Set ϕ̃k(x) := ϕnk
(x/Rk).

ϕ̃k(x) is a vector-valued function defined over the r0Rk-ball in R4. ϕ̃k (k ≥ 1) satisfy

|∇ϕ̃k(0)| = 1, and they are uniformly bounded. From (21), they satisfy∣∣∣∣∣∑
i,j

g̃ij
(k)∂i∂jϕ̃k

∣∣∣∣∣ ≤ constA,

where g̃ij
(k)(x) = gij

(k)(x/Rk). {g̃ij
(k)}k≥1 converges to δij (the Kronecker delta) as k →

+∞ in the C∞-topology over compact subsets in R4. Hence there exists a subsequence

{ϕ̃kl
}l≥1 which converges to some ϕ̃ in the C1-topology over compact subsets in R4. Since

|∇ϕ̃k(0)| = 1, we have |∇ϕ̃(0)| = 1.

If {xkl
}l≥1 is a bounded sequence, then {ϕ̃kl

} has a subsequence which converges to

a constant function uniformly over every compact subset because ϕn converges to ϕA

(a continuous section) in the C0-topology (= L∞-topology) and Rk → ∞. But this

contradicts the above |∇ϕ̃(0)| = 1. Hence {xkl
} is an unbounded sequence. Since ϕn

uniformly go to zero at infinity, {ϕ̃kl
} has a subsequence which converges to 0 uniformly

over every compact subset. Then this also contradicts |∇ϕ̃(0)| = 1. ¤

From Lemma 4.7 and the equation (20), the elliptic estimates show that ϕn converges

to ϕA in the C∞-topology over every compact subset in X. In particular, ϕA is smooth.

(Indeed ϕA ∈ Ω+(adE)0 from Proposition 4.6.) From the equation (20),

(22) (∇∗
A∇A + S/3)ϕA = −2F+

A · ϕA − 2(d∗
AϕA ∧ d∗

AϕA)+ − 2F+
A .

This implies that A + d∗
AϕA is an ASD connection.

Lemma 4.1 shows limx→∞ |∇Aϕn(x)| = 0 for each n. Indeed we can prove a stronger

result:

Lemma 4.8. For each ε > 0, there exists a compact set K ⊂ X such that for all n

|∇Aϕn(x)| ≤ ε (x ∈ X \ K).

Therefore, limx→∞ |∇AϕA(x)| = 0.

Proof. Suppose the statement is false. Then there are δ > 0, a sequence n1 < n2 < n3 <

· · · , and a sequence of points x1, x2, x3, · · · in X which goes to infinity such that

|∇Aϕnk
(xk)| ≥ δ (k = 1, 2, 3, · · · ).
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Let xk = (θk, tk) ∈ S3 × R = X. |tk| goes to infinity. We can suppose |tk| > T + 2.

Since A is flat in |t| > T + 1, there exists a bundle trivialization g : E||t|>T+1 →
X|t|>T+1 × SU(2) such that g(A) is equal to the product connection. (Here X|t|>T+1 =

{(θ, t) ∈ S3 × R| |t| > T + 1}.) Set ϕ′
n := g(ϕn). We have

(∇∗∇ + S/3)ϕ′
n = −2(d∗ϕ′

n−1 ∧ d∗ϕ′
n−1)

+ (|t| > T + 1),

where ∇ is defined by using the product connection on X|t|>T+1 × SU(2). From this

equation and Lemma 4.7,

|(∇∗∇ + S/3)ϕ′
n| ≤ const (|t| > T + 1),

where const is independent of n. We define φk ∈ Γ(S3×(−1, 1), Λ+⊗su(2)) by φk(θ, t) :=

ϕ′
nk

(θ, tk + t). We have |(∇∗∇ + S/3)φk| ≤ const. Since |ϕ′
n(x)| ≤ 3δ(x)

∣∣∣∣F+
A

∣∣∣∣
L∞ and

|tk| → +∞, the sequence φk converges to 0 in L∞(S3 × (−1, 1)). Using the elliptic

estimate, we get φk → 0 in C1(S3 × [−1/2, 1/2]). On the other hand, |∇φk(θk, 0)| =

|∇Aϕnk
(θk, tk)| ≥ δ > 0. This is a contradiction. ¤

Set

(23) ηA := (∇∗
A∇A + S/3)ϕA = −2F+

A · ϕA − 2(d∗
AϕA ∧ d∗

AϕA)+ − 2F+
A .

This is contained in Ω+(adE)0 (Lemma 4.8). The sequence ηn defined in Proposition 4.5

satisfies

ηn+1 = −2F+
A · ϕn − 2(d∗

Aϕn ∧ d∗
Aϕn)+ − 2F+

A .

Corollary 4.9. The sequence ηn converges to ηA in L∞. In particular, ||ηn − ηA||T → 0

as n → ∞. Hence ||ηA||T ≤ 3ε0. (Proposition 4.5.)

Proof.

ηn+1 − ηA = −2F+
A · (ϕn − ϕA) + 2{d∗

A(ϕA − ϕn) ∧ d∗
AϕA + d∗

Aϕn ∧ d∗
A(ϕA − ϕn)}+.

Hence

|ηn+1 − ηA| ≤ 2c0

∣∣∣∣F+
A

∣∣∣∣
L∞ ||ϕn − ϕA||L∞ + 2c0(|∇Aϕn| + |∇AϕA|)|∇AϕA −∇Aϕn|.

ϕn → ϕA in L∞(X) and in C∞ over every compact subset. Moreover |∇Aϕn| are uniformly

bounded and uniformly go to zero at infinity (Lemma 4.7 and Lemma 4.8). Then the above

inequality implies that ||ηn+1 − ηA||L∞ goes to 0. ¤

Lemma 4.10. ||dAd∗
AϕA||L∞ < ∞.

Proof. It is enough to prove |dAd∗
AϕA(θ, t)| ≤ const for |t| > T +2. Take a trivialization g

of E over |t| > T + 1 such that g(A) is the product connection, and set ϕ′ := g(ϕA). This

satisfies

(∇∗∇ + S/3)ϕ′ = −2(d∗ϕ′ ∧ d∗ϕ′)+ (|t| > T + 1).
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Since |ϕ′| and |∇ϕ′| go to zero at infinity (Proposition 4.6 and Lemma 4.8), this shows

(by using the elliptic estimates) that |dd∗ϕ′| is bounded. ¤

Lemma 4.11.
1

8π2

∫
X

|F (A + d∗
AϕA)|2dvol =

1

8π2

∫
X

tr(F 2
A).

Recall that A is flat over |t| > T + 1. Hence the right hand side is finite. (Indeed it is a

non-negative integer by the Chern-Weil theory.)

Proof. Set a := d∗
AϕA and csA(a) := 1

8π2 tr(2a∧FA +a∧dAa+ 2
3
a3). We have 1

8π2 tr(F (A+

a)2)− 1
8π2 tr(F (A)2) = dcsA(a). Since A+ a is ASD, we have |F (A+ a)|2 = tr(F (A+ a)2)

and

1

8π2

∫
|t|≤R

tr(F (A + a)2) − 1

8π2

∫
|t|≤R

tr(F (A)2) =

∫
t=R

csA(a) −
∫

t=−R

csA(a).

From Lemma 4.8, |a| = |d∗
AϕA| goes to zero at infinity. From Lemma 4.10, |dAa| =

|dAd∗
AϕA| is bounded. FA vanishes over |t| > T +1. Hence |csA(a)| goes to zero at infinity.

Thus the right-hand-side of the above equation goes to zero as R → ∞. ¤

4.3. Conclusion of the construction. The following is the conclusion of Section 4.1

and 4.2. This will be used in Section 5 and 7. (Notice that we have not so far used the

condition (iii) in the beginning of Section 4.1.)

Proposition 4.12. Let E be a principal SU(2)-bundle over X, and A be a connection on

E satisfying FA = 0 (|t| > T +1), suppF+
A ⊂ {T < |t| < T +1} and

∣∣∣∣F+
A

∣∣∣∣
T
≤ ε0 = 1/1000.

Then we can construct ϕA ∈ Ω+(adE)0 satisfying the following conditions.

(a) A + d∗
AϕA is an ASD connection: F+(A + d∗

AϕA) = 0.

(b)
1

8π2

∫
X

|F (A + d∗
AϕA)|2dvol =

1

8π2

∫
X

tr(F 2
A).

(c) |ϕA(x)| ≤ 3δ(x)
∣∣∣∣F+

A

∣∣∣∣
L∞, where δ(x) =

∫
T<|t|<T+1

g(x, y)dvol(y).

(d) ηA := (∇∗
A∇A + S/3)ϕA is contained in Ω+(adE)0 and ||ηA||T ≤ 3ε0.

Moreover this construction (E, A) 7→ ϕA is gauge equivariant, i.e., if F is another

principal SU(2)-bundle over X admitting a bundle map g : E → F , then ϕg(A) = g(ϕA).

Proof. The conditions (a), (b), (c), (d) have been already proved. The gauge equivariance

is obvious by the construction of ϕA in Section 4.1. ¤

4.4. Interior estimate. In the proof of the upper bound on the mean dimension, we

need to use an “interior estimate” of ϕA (Lemma 4.14 below), which we investigate in this

subsection. We use the argument of Donaldson [5, pp. 189-190]. Recall that |FA| ≤ d on

|t| ≤ T and
∣∣∣∣F+

A

∣∣∣∣
L∞(X)

≤ d′ by the condition (iii) in the beginning of Section 4.1. We fix

r0 > 0 so that r0 is less than the injectivity radius of S3×R (cf. the proof of Lemma 4.7).
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Lemma 4.13. For any ε > 0, there exists a constant δ0 = δ0(d, ε) > 0 depending only on

d and ε such that the following statement holds. For any ϕ ∈ Ω+(adE) and any closed

r0-ball B contained in S3 × [−T + 1, T − 1], if ϕ satisfies

(24) (∇∗
A∇A + S/3)ϕ = −2(d∗

Aϕ ∧ d∗
Aϕ)+ over B and ||ϕ||L∞(B) ≤ δ0,

then we have

sup
x∈B

|∇Aϕ(x)|d(x, ∂B) ≤ ε.

Here d(x, ∂B) is the distance between x and ∂B.

Proof. Suppose ϕ satisfies

sup
x∈B

|∇Aϕ(x)|d(x, ∂B) > ε,

and the supremum is attained at x0 ∈ B (x0 is an inner point of B). Set R := |∇Aϕ(x0)|
and r′0 := d(x0, ∂B)/2. Let B′ be the closed r′0-ball centered at x0. We have |∇Aϕ| ≤ 2R

on B′. We consider the geodesic coordinate over B′ centered at x0, and we trivialize the

bundle E over B′ by the exponential gauge centered at x0. Since A is ASD and |FA| ≤ d

over −T ≤ t ≤ T , the C1-norm of the connection matrix of A in the exponential gauge

over B′ is bounded by a constant depending only on d. From the equation (24) and

|∇Aϕ| ≤ 2R on B′, ∣∣∣∑ gij∂i∂jϕ
∣∣∣ ≤ constd,ε · R2 over B′,

where (gij) = (gij)
−1 and gij is the Riemannian metric tensor in the geodesic coordinate

over B′. Here we consider ϕ as a vector valued function over B′. Set ϕ̃(x) := ϕ(x/R).

Since 2r′0R > ε, ϕ̃ is defined over the ε/2-ball B(ε/2) centered at the origin in R4, and it

satisfies ∣∣∣∑ g̃ij∂i∂iϕ̃
∣∣∣ ≤ constd,ε over B(ε/2).

Here g̃ij(x) := gij(x/R). The eigenvalues of the matrix (g̃ij) are bounded from below

by a positive constant depending only on the geometry of X, and the C1-norm of g̃ij is

bounded from above by a constant depending only on ε and the geometry of X. (Note

that R > ε/(2r′0) ≥ ε/(2r0).) Then by using the elliptic estimate [9, Theorem 9.11] and

the Sobolev embedding L8
2(B(ε/4)) ↪→ C1,1/2(B(ε/4)) (the Hölder space), we get

||ϕ̃||C1,1/2(B(ε/4)) ≤ constε · ||ϕ̃||L8
2(B(ε/4)) ≤ C = C(d, ε).

Hence |∇ϕ̃(x) − ∇ϕ̃(0)| ≤ C|x|1/2 on B(ε/4). Set u := ∇ϕ̃(0). From the definition, we

have |u| = 1.

ϕ̃(tu) − ϕ̃(0) = t

∫ 1

0

∇ϕ̃(tsu) · uds = t + t

∫ 1

0

(∇ϕ̃(tsu) − u) · uds.

Hence

|ϕ̃(tu) − ϕ̃(0)| ≥ t − t

∫ 1

0

C|tsu|1/2ds = t − 2Ct3/2/3.
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We can suppose C ≥ 2/
√

ε. Then u/C2 ∈ B(ε/4) and

|ϕ̃(u/C2) − ϕ̃(0)| ≥ 1/(3C2).

If |ϕ| ≤ δ0 < 1/(6C2), then this inequality becomes a contradiction. ¤

The following will be used in Section 7.

Lemma 4.14. For any ε > 0 there exists a positive integer D = D(d, d′, ε) such that

||d∗
AϕA||L∞(S3×[−T+D,T−D]) ≤ ε.

(If D > T , then S3 × [−T + D,T −D] is the empty set.) Here the important point is that

D is independent of T .

Proof. Note that |d∗
AϕA| ≤

√
3/2|∇AϕA|. We have |ϕA(x)| ≤ 3d′δ(x) by Proposition 4.12

(c) (or Proposition 4.6) and

δ(x) =

∫
T<|t|<T+1

g(x, y)dvol(y).

Set D′ := D − r0. (We choose D so that D′ ≥ 1.) Since g(x, y) ≤ const · e−
√

S/3d(x,y) for

d(x, y) ≥ 1, we have

δ(x) ≤ C · e−
√

S/3D′
for x ∈ S3 × [−T + D′, T − D′].

We choose D = D(d, d′, ε) ≥ r0 + 1 so that

3d′Ce−
√

S/3D′ ≤ δ0(d, r0ε
√

2/3).

Here δ0(d, r0ε
√

2/3) is the positive constant introduced in Lemma 4.13. Note that this

condition is independent of T . Then ϕA satisfies, for x ∈ S3 × [−T + D′, T − D′],

|ϕA(x)| ≤ δ0(d, r0ε
√

2/3).

ϕA satisfies (∇∗
A∇A + S/3)ϕA = −2(d∗

AϕA ∧ d∗
AϕA)+ over |t| ≤ T . Then Lemma 4.13

implies

|∇AϕA(x)| ≤ ε
√

2/3 for x ∈ S3 × [−T + D,T − D].

(Note that, for x ∈ S3 × [−T + D,T − D], we have B(x, r0) ⊂ S3 × [−T + D′, T − D′]

and hence |ϕA| ≤ δ0(d, r0ε
√

2/3) over B(x, r0).) Then, for x ∈ S3 × [−T + D,T − D],

|d∗
AϕA(x)| ≤

√
3/2|∇AϕA(x)| ≤ ε.

¤
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5. Continuity of the perturbation

The purpose of this section is to show the continuity of the perturbation construction in

Section 4. The conclusion of Section 5 is Proposition 5.6. As in Section 4, X = S3×R, T >

0 is a positive integer, and E → X is a principal SU(2)-bundle. Let ρ be a flat connection

on E||t|>T+1. (E||t|>T+1 is the restriction of E to X|t|>T+1 = {(θ, t) ∈ S3×R| |t| > T +1}.)
We define A′ as the set of connections A on E satisfying the following.

(i) A||t|>T+1 = ρ, i.e., A coincides with ρ over |t| > T + 1.

(ii) F+
A is supported in {(θ, t) ∈ S3 × R|T < |t| < T + 1}.

(iii)
∣∣∣∣F+

A

∣∣∣∣
T
≤ ε0 = 1/1000.

By Proposition 4.12, for each A ∈ A′, we have ϕA ∈ Ω+(adE)0 and ηA := (∇∗
A∇A +

S/3)ϕA ∈ Ω+(adE)0 satisfying

(25) ηA = −2F+
A · ϕA − 2(d∗

AϕA ∧ d∗
AϕA)+ − 2F+

A , ||ηA||T ≤ 3ε0.

The first equation in the above is equivalent to the ASD equation F+(A + d∗
AϕA) = 0.

Since ϕA = (∇∗
A∇A + S/3)−1ηA, we have ((18) and Lemma 4.2)

||ϕA||L∞ ≤ ||ηA||T ≤ 3ε0,
∣∣∣∣|∇AϕA|2

∣∣∣∣
T
≤ ||ηA||2T ≤ 9ε2

0.

Then (by the Cauchy-Schwartz inequality)

||∇AϕA||T := sup
x∈X

∫
X

g(x, y)|∇AϕA(y)|dvol(y) ≤ 3ε0

√
K,

where K =
∫

X
g(x, y)dvol(y).

Let A,B ∈ A′. We want to estimate ||ϕA − ϕB||L∞ . Set a := B − A. Since both A and

B coincide with ρ (the fixed flat connection) over |t| > T + 1, a is compact-supported.

We set

||a||C1
A

:= ||a||L∞ + ||∇Aa||L∞ .

We suppose

||a||C1
A
≤ 1.

Lemma 5.1. ||ϕA − ϕB||L∞ ≤ ||ηA − ηB||T + const ||a||C1
A
, where const is an universal con-

stant independent of A,B.

Proof. We have ηA = (∇∗
A∇A + S/3)ϕA and

ηB = (∇∗
B∇B + S/3)ϕB = (∇∗

A∇A + S/3)ϕB + (∇∗
Aa) ∗ ϕB + a ∗ ∇BϕB + a ∗ a ∗ ϕB,

where ∗ are algebraic multiplications. Then

||ϕA − ϕB||L∞ ≤ ||(∇∗
A∇A + S/3)(ϕA − ϕB)||T ,

≤ ||ηA − ηB||T + const
(
||∇Aa||L∞ ||ϕB||T + ||a||L∞ ||∇BϕB||T + ||a||2L∞ ||ϕB||T

)
,

≤ ||ηA − ηB||T + const ||a||C1
A

.

¤



INSTANTON APPROXIMATION, PERIODIC ASD CONNECTIONS, AND MEAN DIMENSION 25

Lemma 5.2.∣∣∣∣(d∗
AϕA ∧ d∗

AϕA)+ − (d∗
BϕB ∧ d∗

BϕB)+
∣∣∣∣

T
≤

(
1

4
+ const ||a||C1

A

)
||ηA − ηB||T + const ||a||C1

A
.

Proof.

(d∗
AϕA∧d∗

AϕA)+ − (d∗
BϕB ∧ d∗

BϕB)+ =

(d∗
AϕA ∧ d∗

AϕA)+ − (d∗
AϕB ∧ d∗

AϕB)+︸ ︷︷ ︸
(I)

+ (d∗
AϕB ∧ d∗

AϕB)+ − (d∗
BϕB ∧ d∗

BϕB)+︸ ︷︷ ︸
(II)

.

We first estimate the term (II). Since B = A + a,

(d∗
BϕB ∧ d∗

BϕB)+ − (d∗
AϕB ∧ d∗

AϕB)+ =

(d∗
AϕB ∧ (a ∗ ϕB))+ + ((a ∗ ϕB) ∧ d∗

AϕB)+ + ((a ∗ ϕB) ∧ (a ∗ ϕB))+.

||(II)||T ≤ const ||∇AϕB||T ||a||L∞ ||ϕB||L∞ + const ||a||2L∞ ||ϕB||2L∞ ,

≤ const · ||∇AϕB||T ||a||L∞ + const · ||a||L∞ .

We have

||∇AϕB||T = ||∇BϕB + a ∗ ϕB||T ≤ ||∇BϕB||T + const ||a||L∞ ||ϕB||L∞ ≤ const.

Hence ||(II)||T ≤ const ||a||L∞ .

Next we estimate the term (I). For η1, η2 ∈ Ω+(adE)0, set ϕi := (∇∗
A∇A + S/3)−1ηi ∈

Ω+(adE)0, and define (see (19))

βA(η1, η2) := (d∗
Aϕ1 ∧ d∗

Aϕ2)
+ + (d∗

Aϕ2 ∧ d∗
Aϕ1)

+.

Set η′
B := (∇∗

A∇A + S/3)ϕB = ηB + (∇∗
Aa) ∗ ϕB + a ∗ ∇BϕB + a ∗ a ∗ ϕB. Then (d∗

AϕB ∧
d∗

AϕB)+ = βA(η′
B, η′

B)/2 and (I) = (βA(ηA, ηA)−βA(η′
B, η′

B))/2 = βA(ηA + η′
B, ηA − η′

B)/2.

From Lemma 4.3,

||(I)||T ≤ 2c0 ||ηA + η′
B||T ||ηA − η′

B||T .

||ηA + η′
B||T ≤ ||ηA + ηB||T +||η′

B − ηB||T ≤ 6ε0+const ||a||C1
A
, and ||ηA − η′

B||T ≤ ||ηA − ηB||T +

const ||a||C1
A
. From (13), we have 12c0ε0 ≤ 1/4. Then

||(I)||T ≤
(

1

4
+ const ||a||C1

A

)
||ηA − ηB||T + const ||a||C1

A
.

¤

We have F+
B = F+

A + d+
Aa + (a ∧ a)+. Recall that we have supposed ||a||C1

A
≤ 1. Hence

|F+
B − F+

A | ≤ const ||a||C1
A

.

Proposition 5.3. There exists δ > 0 such that if ||a||C1
A
≤ δ then

||ηA − ηB||T ≤ const ||a||C1
A

.
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Proof. From (25),

ηA − ηB = 2(F+
B − F+

A ) · ϕB + 2F+
A · (ϕB − ϕA)

+ 2((d∗
BϕB ∧ d∗

BϕB)+ − (d∗
AϕA ∧ d∗

AϕA)+) + 2(F+
B − F+

A )

Using ||ϕB||L∞ ≤ 3ε0,
∣∣∣∣F+

A

∣∣∣∣
T
≤ ε0 and Lemma 5.2,

||ηA − ηB||T ≤ const ||a||C1
A

+ 2c0ε0 ||ϕA − ϕB||L∞ +

(
1

2
+ const ||a||C1

A

)
||ηA − ηB||T .

Using Lemma 5.1,

||ηA − ηB||T ≤ const ||a||C1
A

+

(
1

2
+ const ||a||C1

A
+ 2c0ε0

)
||ηA − ηB||T .

From (13), we can choose δ > 0 so that if ||a||C1
A
≤ δ then(

1

2
+ const ||a||C1

A
+ 2c0ε0

)
≤ 3/4.

Then we get

||ηA − ηB||T ≤ const ||a||C1
A

+ (3/4) ||ηA − ηB||T .

Then ||ηA − ηB||T ≤ const ||a||C1
A
. ¤

From Lemma 5.1, we get (under the condition ||a||C1
A
≤ δ)

||ϕA − ϕB||L∞ ≤ ||ηA − ηB||T + const ||a||C1
A
≤ const ||a||C1

A
.

Therefore we get the following.

Corollary 5.4. The map

(A′, C1-topology) → (Ω+(adE), ||·||L∞), A 7→ ϕA,

is continuous.

Let An (n ≥ 1) be a sequence in A′ which converges to A ∈ A′ in the C1-topology:

||An − A||C1
A
→ 0 (n → ∞). By Corollary 5.4, we get ||ϕAn − ϕA||L∞ → 0. Set an := An−A.

Lemma 5.5. supn≥1 ||∇AnϕAn||L∞ < ∞. (Equivalently, supn≥1 ||∇AϕAn||L∞ < ∞.)

Proof. Note that |∇AnϕAn| vanishes at infinity (see Lemma 4.8). Hence we can take a

point xn ∈ S3 ×R satisfying |∇AnϕAn(xn)| = ||∇AnϕAn||L∞ . ϕAn uniformly converge to ϕA

and uniformly go to zero at infinity (see Proposition 4.12 (c) or Proposition 4.6). Then

the rescaling argument as in the proof of Lemma 4.7 shows the above statement. ¤

Since (∇∗
An
∇An + S/3)ϕAn = −2F+

An
· ϕAn − 2(d∗

An
ϕAn ∧ d∗

An
ϕAn)+ − 2F+

An
,

sup
n≥1

∣∣∣∣∇∗
An
∇AnϕAn

∣∣∣∣
L∞ < ∞.
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We have ∇∗
An
∇AnϕAn = ∇∗

A∇AϕAn + (∇∗
Aan) ∗ ϕAn + an ∗ ∇AnϕAn + an ∗ an ∗ ϕAn . Hence

sup
n≥1

||∇∗
A∇AϕAn||L∞ < ∞.

By the elliptic estimate, we conclude that ϕAn converges to ϕA in C1 over every compact

subset. Then we get the following conclusion. This will be used in Section 7.

Proposition 5.6. Let {An}n≥1 be a sequence in A′ which converges to A ∈ A′ in the

C1-topology. Then ϕAn converges to ϕA in the C1-topology over every compact subset in

X. Therefore d∗
An

ϕAn converges to d∗
AϕA in the C0-topology over every compact subset in

X. Moreover, for any n ≥ 1,∫
X

|F (An + d∗
An

ϕAn)|2dvol =

∫
X

|F (A + d∗
AϕA)|2dvol.

(This means that no energy is lost at the end.)

Proof. The last statement follows from Proposition 4.12 (b) (or Lemma 4.11) and the fact

that for any A and B in A′ we have∫
X

tr(F 2
A) =

∫
X

tr(F 2
B).

This is because trF 2
B − trF 2

A = dtr(2a ∧ FA + a ∧ dAa + 2
3
a3) (a = B − A), and both A

and B coincide with the fixed flat connection ρ over |t| > T + 1. ¤

6. Cut-off constructions

As we explained in Section 3, we need to define a ‘cut-off’ for [A, p] ∈ Md. Section 6.1

is a preparation to define a cut-off construction, and we define it in Section 6.2.

Let δ1 > 0. We define δ′1 = δ′1(δ1) by

δ′1 := sup
x∈S3×R

(∫
S3×(−δ1,δ1)

g(x, y)dvol(y)

)
.

Since we have g(x, y) ≤ const/d(x, y)2 (see (14) and (15)),∫
d(x,y)≤(δ1)1/4

g(x, y)dvol(y) ≤ const

∫ (δ1)1/4

0

rdr = const
√

δ1,∫
{d(x,y)≥(δ1)1/4}∩S3×(−δ1,δ1)

g(x, y)dvol(y) ≤ const · δ1
1√
δ1

= const
√

δ1.

Hence δ′1 ≤ const
√

δ1 (this calculation is due to [5, pp. 190-191]). In particular, we have

δ′1 → 0 as δ1 → 0. For d ≥ 0, we choose δ1 = δ1(d) so that 0 < δ1 < 1 and δ′1 = δ′1(δ1(d))

satisfies

(26) (5 + 7d + d2)δ′1 ≤ ε0/4 = 1/(4000).

The reason of this choice will be revealed in Proposition 6.4.
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6.1. Gauge fixing on S3 and gluing instantons. Fix a point θ0 ∈ S3 as in Section

1. Let F := S3 × SU(2) be the product principal SU(2)-bundle over S3. Let AS3 be the

space of framed connections (A, p) where A is a connection on F and p ∈ Fθ0 . (Fθ0 is the

fiber of F over θ0 ∈ S3.) Let G be the gauge transformation group of F . AS3 and G are

equipped with the C∞-topology. Set BS3 := AS3/G (with the quotient topology), and let

π : AS3 → BS3 be the natural projection. Note that G freely acts on AS3 .

Proposition 6.1. Let d ≥ 0. For any (A, p) ∈ AS3 there exist a closed neighborhood

U(A,p) of [A, p] in BS3 and a continuous map Φ(A,p) : π−1(U(A,p)) → G such that, for any

(B, q) ∈ π−1(U(A,p)), g := Φ(A,p)(B, q) satisfies the following.

(i) g(B) = A+a with ||a||L∞ ≤ δ1 = δ1(d). (δ1 is the positive constant chosen in the above

(26).)

(ii) For any gauge transformation h of F , we have Φ(A,p)(h(B, q)) = gh−1.

Proof. Let H0
A := {u ∈ Ω0(adF )| dAu = 0}. The restriction map H0

A → (adF )θ0 is an

injection. ((adF )θ0 is the fiber of adF over the point θ0 ∈ S3.) Hence we can consider

H0
A as a subspace of (adF )θ0 . Let (H0

A)⊥ ⊂ (adF )θ0 be a complement of H0
A in (adF )θ0 .

((adF )θ0 = H0
A ⊕ (H0

A)⊥.) Let ν > 0 be a small number, and we define V ⊂ Fθ0 by

V = {eup|u ∈ (H0
A)⊥, |u| ≤ ν}. We take ν > 0 so small that the map {u ∈ (H0

A)⊥| |u| ≤
ν} ∋ u 7→ eup ∈ V becomes an embedding. V is a slice for the action of ΓA (the isotropy

group of A) on Fθ0 at p.

Let ε > 0 be sufficiently small, and we take a closed neighborhood U(A,p) of [A, p] in

BS3 such that

U(A,p) ⊂ {[B, q]| ∃g: gauge transformation of F s.t. ||g(B) − A||L4
1
+ |gq − p| < ε}.

The usual Coulomb gauge construction shows that, for each (B, q) ∈ π−1(U(A,p)), there

uniquely exists a gauge transformation g such that g(B) = A + a with d∗
Aa = 0, gq ∈ V ,

and ||a||L4
1

+ |gq − p| ≤ const · ε. Since L4
1 ↪→ L∞, we have ||a||L∞ ≤ const · ε ≤ δ1 for

sufficiently small ε. We define Φ(A,p)(B, q) := g. Then the condition (i) is obviously

satisfied, and the condition (ii) follows from the uniqueness of g. ¤

Recall the settings in Section 1. Let d ≥ 0. The moduli space Md is the space of all

the gauge equivalence classes [A, p] where A is an ASD connection on E := X × SU(2)

satisfying |F (A)| ≤ d and p is a map from Z to E with p(n) ∈ E(θ0,n) for every n ∈ Z.

We define Kd ⊂ BS3 by

Kd := {[A|S3×{0},p(0)] ∈ BS3 | [A, p] ∈ Md},

where we identify E|S3×{0} with F . From the Uhlenbeck compactness [21, 22], Md is com-

pact, and hence Kd is also compact. Hence there exist (A1, p1), (A2, p2), · · · , (AN , pN) ∈
AS3 (N = N(d)) such that Kd ⊂ Int(U(A1,p1)) ∪ · · · ∪ Int(U(AN ,pN )) and [Ai, pi] ∈ Kd

(1 ≤ i ≤ N). Here Int(U(Ai,pi)) is the interior of the closed set U(Ai,pi) introduced in
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Proposition 6.1. Note that we can naturally identify Kd with the space {[A|S3×{n},p(n)] ∈
BS3 | [A,p] ∈ Md} for each integer n because Md admits the natural Z-action.

For the statement of the next proposition, we introduce a new notation. We denote

F × R as the pull-back of F by the natural projection X = S3 × R → S3. So F × R is a

principal SU(2)-bundle over X. Of course, we can naturally identify F × R with E, but

here we use this notation for the later convenience.

Proposition 6.2. For each i = 1, 2, · · · , N there exists a connection Âi on F × R satis-

fying the following. (Recall 0 < δ1 < 1.)

(i) Âi = Ai over S3 × [−δ1, δ1]. Here Ai (a connection on F × R) means the pull-back of

Ai (a connection on F ) by the natural projection X → S3.

(ii) F (Âi) is supported in S3 × (−1, 1).

(iii)
∣∣∣∣∣∣F+(Âi)|δ1<|t|<1

∣∣∣∣∣∣
T
≤ ε0/4 = 1/(4000), where F+(Âi)|δ1<|t|<1 = F+(Âi) × 1δ1<|t|<1

and 1δ1<|t|<1 is the characteristic function of the set {(θ, t) ∈ S3 × R| δ1 < |t| < 1}.

Proof. By using a cut-off function, we can construct a connection A′
i on F × R such that

A′
i = Ai over S3 × [−δ1, δ1] and suppF (A′

i) ⊂ S3 × (−1, 1). We can reduce the self-dual

part of F (A′
i) by “gluing instantons” to A′

i over δ1 < |t| < 1. This technique is essentially

well-known for the specialists in the gauge theory. For the detail, see Donaldson [5, pp.

190-199].

By the argument of [5, pp. 196-198], we get the following situation. For any ε > 0,

there exists a connection Âi satisfying the following. Âi = A′
i = Ai over |t| ≤ δ1, and

suppF (Âi) ⊂ S3 × (−1, 1). Moreover F+(Âi) = F+
1 + F+

2 over δ1 < |t| < 1 such that

|F+
1 | ≤ ε and

|F+
2 | ≤ const, vol(supp(F+

2 )) ≤ ε,

where const is a positive constant depending only on A′
i and independent of ε. If we take

ε sufficiently small, then ∣∣∣∣∣∣F+(Âi)|δ1<|t|<1

∣∣∣∣∣∣
T
≤ ε0/4.

¤

6.2. Cut-off construction. Let T be a positive integer. We define a closed subset

Md,T (i, j) ⊂ Md (1 ≤ i, j ≤ N = N(d)) as the set of [A,p] ∈ Md satisfying [A|S3×{T},p(T )] ∈
U(Ai,pi) and [A|S3×{−T},p(−T )] ∈ U(Aj ,pj). Here we naturally identify ET := E|S3×{T} and

E−T := E|S3×{−T} with F , and (Ai, pi) (1 ≤ i ≤ N) are the framed connections on F

introduced in the previous subsection. We have

(27) Md =
∪

1≤i,j≤N

Md,T (i, j).

Of course, this decomposition depends on the parameter T > 0. But N is independent

of T . This is an important point. We will define a cut-off construction for each piece

Md,T (i, j).
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Let (A,p) be a framed connection on E satisfying [A,p] ∈ Md,T (i, j). Let u+ :

E|t≥T → ET × [T, +∞) be the temporal gauge of A with u+ = id on E|S3×{T} = ET .

(See Donaldson [6, Chapter 2].) Here E|t≥T is the restriction of E to S3 × [T, +∞),

and ET × [T, +∞) is the pull-back of ET by the projection S3 × [T,∞) → S3 × {T}.
We will repeatedly use these kinds of notations. In the same way, let u− : E|t≤−T →
E−T × (−∞,−T ] be the temporal gauge of A with u− = id on E|S3×{−T} = E−T . We

define A(t) (|t| ≥ T ) by setting A(t) := u+(A) for t ≥ T and A(t) := u−(A) for t ≤ −T .

A(t) becomes dt-part free. Since A is ASD, we have

(28)
∂A(t)

∂t
= ∗3F (A(t))3,

where ∗3 is the Hodge star on S3×{t} and F (A(t))3 is the curvature of A(t) as a connection

on the 3-manifold S3 × {t}.
Since [A(T ),p(T )] ∈ U(Ai,pi) and [A(−T ), p(−T )] ∈ U(Aj ,pj), we have the gauge trans-

formations g+ := Φ(Ai,pi)(A(T ),p(T )) and g− := Φ(Aj ,pj)(A(−T ),p(−T )) by Proposition

6.1. We consider g+ (resp. g−) as the gauge transformation of ET (resp. E−T ). They

satisfy

(29) ||g+(A(T )) − Ai||L∞ ≤ δ1, ||g−(A(−T )) − Aj||L∞ ≤ δ1.

We define a principal SU(2)-bundle E′ over X by

E′ := E||t|<T+δ1/4 ⊔ ET × (T, +∞) ⊔ E−T × (−∞,−T )/ ∼,

where the identification ∼ is given as follows. E||t|<T+δ1/4 is identified with ET × (T, +∞)

over the region T < t < T + δ1/4 by the map g+ ◦ u+ : E|T<t<T+δ1/4 → ET × (T, T +

δ1/4). Here we consider g+ as a gauge transformation of ET × (T, T + δ1/4) by g+ :

ET × (T, T + δ1/4) → ET × (T, T + δ1/4), (p, t) 7→ (g+(p), t). Similarly, we identify

E||t|<T+δ1/4 with E−T × (−∞,−T ) over the region −T − δ/4 < t < −T by the map

g− ◦ u− : E|−T−δ1/4<t<−T → E−T × (−T − δ1/4,−T ).

Let ρ(t) be a smooth function on R such that 0 ≤ ρ ≤ 1, ρ = 0 (|t| ≤ δ1/4), ρ = 1

(|t| ≥ 3δ1/4) and

|ρ′| ≤ 4/δ1.

We define a (not necessarily ASD) connection A′ on E′ as follows. Over the region

|t| < T + δ1/4 where E′ is equal to E, we set

(30) A′ := A on E||t|<T+δ1/4.

Over the region t > T , we set

(31) A′ := (1 − ρ(t − T ))g+(A(t)) + ρ(t − T )Âi,T on ET × (T, +∞),

where Âi,T is the pull-back of the connection Âi in Proposition 6.2 by the map t 7→ t−T .

So, in particular, Âi,T = Ai over T − δ1 < t < T + δ1 and F (Âi,T ) = 0 over t > T + 1.
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(31) is compatible with (30) over T < t < T + δ1/4 where ρ(t− T ) = 0. In the same way,

over the region t < −T , we set

A′ := (1 − ρ(t + T ))g−(A(t)) + ρ(t + T )Âj,−T on E−T × (−∞,−T ).

We have F (A′) = 0 (|t| ≥ T + 1).

Finally, we define p′ : {n ∈ Z| |n| ≤ T} → E′ by setting p′(n) := p(n) ∈ E(θ0,n) =

E′
(θ0,n). Then we have constructed (E′,A′, p′) from (A, p) with [A,p] ∈ Md,T (i, j). It

is routine to check that the gauge equivalence class of (E′, A′,p′) depends only on the

gauge equivalence class of (A, p). (We need Proposition 6.1 (ii) for the proof of this fact.)

Hence the map Md,T (i, j) ∋ [A,p] 7→ [E′,A′, p′] is well-defined.

Lemma 6.3.

|F+(A′)| ≤ 5 + 7d + d2 on T ≤ |t| ≤ T + δ1.

Proof. We consider the case T < t ≤ T + δ1 where Âi,T = Ai. We have A′ = (1 −
ρ)g+(A(t)) + ρAi, ρ = ρ(t − T ). Set a := Ai − g+(A(t)). Then A′ = g+(A(t)) + ρa. We

have

F+(A′) = (ρ′dt ∧ a)+ +
ρ

2
(F (Ai) + ∗3F (Ai) ∧ dt) + (ρ2 − ρ)(a ∧ a)+.

We have |F (Ai)| ≤ d and |ρ′| ≤ 4/δ1. From (29), |Ai − g+(A(T ))| ≤ δ1. From the ASD

equation (28) and |F (A)| ≤ d, |A(t) − A(T )| ≤ d|t − T | ≤ dδ1. Hence

(32) |a| ≤ |Ai − g+(A(T ))| + |g+(A(T )) − g+(A(t))| ≤ (1 + d)δ1 (T < t ≤ T + δ1).

Therefore, for T < t ≤ T + δ1,

|F+(A′)| ≤ 4(1 + d) + d + (1 + d)2 = 5 + 7d + d2.

¤

Proposition 6.4. F (A′) = 0 over |t| ≥ T + 1, and F+(A′) is supported in {T < |t| <

T + 1}. We have |F (A′)| ≤ d over |t| ≤ T , and

(33)
∣∣∣∣F+(A′)

∣∣∣∣
L∞ ≤ d′,

∣∣∣∣F+(A′)
∣∣∣∣

T
≤ ε0 = 1/(1000),

where d′ = d′(d) is a positive constant depending only on d. Moreover

1

8π2

∫
X

tr(F (A′)2) ≤ 1

8π2

∫
|t|≤T

|F (A)|2dvol + C1(d) ≤ 2Td2vol(S3)

8π2
+ C1(d).

Here C1(d) depends only on d.

Proof. The statements about the supports of F (A′) and F+(A′) are obvious by the con-

struction. Since A′ = A over |t| ≤ T , |F (A′)| ≤ d over |t| ≤ T . We have A′ = Âi,T for

t ≥ T + δ1 and A′ = Âj,−T for t ≤ −T − δ1. Hence (from Lemma 6.3)∣∣∣∣F+(A′)
∣∣∣∣

L∞ ≤ d′ := max
(
5 + 7d + d2,

∣∣∣∣∣∣F+(Â1)
∣∣∣∣∣∣

L∞
,
∣∣∣∣∣∣F+(Â2)

∣∣∣∣∣∣
L∞

· · · ,
∣∣∣∣∣∣F+(ÂN)

∣∣∣∣∣∣
L∞

)
.
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By using Lemma 6.3, (26) and Proposition 6.2 (iii) (note that g(x, y) is invariant under

the translations t 7→ t − T and t 7→ t + T ),∣∣∣∣F+(A′)
∣∣∣∣

T
≤ 2(5 + 7d + d2)δ′1 + ε0/2 ≤ ε0.

We have A′ = A over |t| ≤ T and

F (A′) = (1 − ρ)g+ ◦ u+(F (A)) + ρF (Ai) + ρ′dt ∧ a + (ρ2 − ρ)a2,

over T < t < T + δ1. Hence |F (A′)| ≤ constd over T < |t| < T + δ1 by using (32). Then

the last statement can be easily proved. ¤

6.3. Continuity of the cut-off. Fix 1 ≤ i, j ≤ N . Let [An,pn] (n ≥ 1) be a sequence in

Md,T (i, j) converging to [A, p] ∈ Md,T (i, j) in the C∞-topology over every compact subset

in X. Let [E′
n,A′

n, p
′
n] (respectively [E′,A′, p′]) be the framed connections constructed

by cutting off [An, pn] (respectively [A,p]) as in Section 6.2.

Lemma 6.5. There are bundle maps hn : E′
n → E′ (n ≫ 1) such that hn(A′

n) = A′

for |t| ≥ T + 1 and hn(A′
n) converges to A′ in the C∞-topology over X (indeed, we will

need only C1-convergence in the later argument), and that hn(p′
n(k)) converges to p′(k)

for |k| ≤ T .

Proof. We can suppose that An converges to A in the C∞-topology over |t| ≤ T + 2 and

that pn(k) → p(k) for |k| ≤ T . Let u+,n : E|t≥T → ET × [T, +∞) (resp. u+) be the

temporal gauge of An (resp. A), and set An(t) := u+,n(An) and A(t) := u+(A) for t ≥ T .

We set g+,n := Φ(Ai,pi)(An(T ),pn(T )) and g+ := Φ(Ai,pi)(A(T ), p(T )).

u+,n converges to u+ in the C∞-topology over T ≤ t ≤ T + 1, and g+,n converges to g+

in the C∞-topology. Hence there are χn ∈ Γ(S3 × [T, T + 1], adET × [T, T + 1]) (n ≫ 1)

satisfying g+ ◦ u+ = eχng+,n ◦ u+,n. χn → 0 in the C∞-topology over T ≤ t ≤ T + 1. Let

φ be a smooth function on X such that 0 ≤ φ ≤ 1, φ = 1 over t ≤ T + δ1 and φ = 0 over

t ≥ T + 1. We define hn : E′
n → E′ (n ≫ 1) as follows.

(i) In the case of |t| < T + δ1/4, we set hn := id : E → E.

(ii) In the case of t > T , we set hn := eφχn : ET × (T, +∞) → ET × (T, +∞). This is

compatible with the case (i).

(iii) In the case of t < −T , we define hn : E−T × (−∞,−T ) → E−T × (−∞,−T ) in the

same way as in the above (ii).

Then we can easily check that these hn satisfy the required properties. ¤

7. Proofs of the upper bounds

7.1. Proof of dim(Md : Z) < ∞. As in Section 1, E = X × SU(2) and Md (d ≥ 0)

is the space of the gauge equivalence classes [A,p] where A is an ASD connection on E
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satisfying ||F (A)||L∞ ≤ d and p : Z → E is a map satisfying p(n) ∈ E(θ0,n) for every

n ∈ Z. We define a distance on Md as follows. For [A,p], [B, q] ∈ Md, we set

dist([A,p], [B, q])

:= inf
g:E→E

{∑
n≥1

2−n
||g(A) − B||L∞(|t|≤n)

1 + ||g(A) − B||L∞(|t|≤n)

+
∑
n∈Z

2−|n||g(p(n)) − q(n)|

}
,

where g runs over gauge transformations of E, and |t| ≤ n means the region {(θ, t) ∈
S3 × R| |t| ≤ n}. This distance is compatible with the topology of Md introduced in

Section 1. For R = 1, 2, 3, · · · , we define an amenable sequence ΩR ⊂ Z by ΩR = {n ∈
Z| − R ≤ n ≤ R}. We define distΩR

([A,p], [B, q]) as in Section 2.1, i.e.,

distΩR
([A,p], [B, q]) := max

k∈ΩR

dist(k∗[A, p], k∗[B, q]),

where k∗[A,p] = [k∗A, k∗p] is the pull-back by k : E → E.

Let ε > 0. We take a positive integer L = L(ε) so that

(34)
∑
n>L

2−n <
ε

2(1 + 2Diam(SU(2)))
.

We define D = D(d, d′, ε/4) as the positive integer introduced in Lemma 4.14, where

d′ = d′(d) is the positive constant introduced in Proposition 6.4. We set T = T (R, d, ε) =

R + L + D. T is a positive integer.

We have the decomposition Md =
∪

1≤i,j≤N Md,T (i, j) (N = N(d)) as in Section

6.2. Md,T (i, j) is the space of [A,p] ∈ Md satisfying [A|S3×{T},p(T )] ∈ U(Ai,pi) and

[A|S3×{−T},p(−T )] ∈ U(Aj ,pj). Fix 1 ≤ i, j ≤ N . Let (A,p) be a framed connection

on E satisfying [A,p] ∈ Md,T (i, j). By the cut-off construction in Section 6.2, we have

constructed (E′, A′,p′) satisfying the following conditions (see Proposition 6.4). E′ is a

principal SU(2)-bundle over X, and A′ is a connection on E′ such that F (A′) = 0 for

|t| ≥ T + 1, F+(A′) is supported in {T < |t| < T + 1}, and that∣∣∣∣F+(A′)
∣∣∣∣

T
≤ ε0,

∣∣∣∣F+(A′)
∣∣∣∣

L∞ ≤ d′, ||F (A′)||L∞(|t|≤T ) ≤ d.

p′ is a map from {n ∈ Z| − T ≤ n ≤ T} to E′ satisfying p′(n) ∈ E′
(θ0,n). We can identify

E′ with E over |t| < T + δ1/4 by the definition, and

(35) A′||t|<T+δ1/4 = A||t|<T+δ1/4, p′(n) = p(n) (|n| ≤ T ).

(E′, A′) satisfies the conditions (i), (ii), (iii) in the beginning of Section 4.1. Therefore,

by using the perturbation argument in Section 4 (see Proposition 4.12), we can construct

the ASD connection A′′ := A′ + d∗
A′ϕA′ on E′. By Lemma 4.14

(36) |A − A′′| = |A′ − A′′| ≤ ε/4 (|t| ≤ T − D = R + L).
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From Proposition 6.4 and Proposition 4.12 (b),

1

8π2

∫
X

|F (A′′)|2dvol =
1

8π2

∫
X

tr(F (A′)2)

≤ 1

8π2

∫
|t|≤T

|F (A)|2dvol + C1(d) ≤ 2Td2vol(S3)

8π2
+ C1(d),

(37)

where C1(d) is a positive constant depending only on d. Since the cut-off and perturbation

constructions are gauge equivariant (see Proposition 4.12), the gauge equivalence class

[E′, A′′, p′] depends only on the gauge equivalence class [A,p]. We set Fi,j([A, p]) :=

[E′, A′′, p′].

For c ≥ 0 we define MT (c) as the space of the gauge equivalence classes [E, A, p]

satisfying the following. E is a principal SU(2)-bundle over X, A is an ASD connection

on E satisfying

1

8π2

∫
X

|FA|2dvol ≤ c,

and p is a map from {n ∈ Z| |n| ≤ T} to E satisfying p(n) ∈ E(θ0,n) (|n| ≤ T ). The

topology of MT (c) is defined as follows. A sequence [En, An, pn] ∈ MT (c) (n ≥ 1) converges

to [E, A, p] ∈ MT (c) if the following two conditions are satisfied:

(i)
∫

X
|F (An)|2dvol =

∫
X
|F (A)|2dvol for n ≫ 1.

(ii) There are gauge transformations gn : En → E (n ≫ 1) such that for any compact set

K ⊂ X and any integer k with |k| ≤ T we have ||gn(An) − A||C0(K) → 0 and gn(pn(k)) →
p(k) as n → ∞.

Using the index theorem, we have

(38) dim MT (c) ≤ 8c − 3 + 3(2T + 1) = 8c + 6T.

Here dim MT (c) denotes the topological covering dimension of MT (c). By (37), we get

the map

Fi,j : Md,T (i, j) → MT

(
2Td2vol(S3)

8π2
+ C1(d)

)
, [A,p] 7→ [E′,A′′,p′].

Lemma 7.1. For [A1,p1] and [A2, p2] in Md,T (i, j), if Fi,j([A1,p1]) = Fi,j([A2, p2]),

then

distΩR
([A1, p1], [A2,p2]) < ε.

Proof. From (35) and (36), there exists a gauge transformation g of E defined over |t| <

T + δ1/4 such that |g(A1) − A2| ≤ ε/2 over |t| ≤ R + L and g(p1(n)) = p2(n) for n ∈ Z
with |n| ≤ T . There exists a gauge transformation g̃ of E defined all over X satisfying

g̃ = g on |t| ≤ T . Then we have |g̃(A1)−A2| ≤ ε/2 on |t| ≤ R + L and g̃(p1(n)) = p2(n)
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for |n| ≤ T . For k ∈ ΩR, by using (34),

dist(k∗[A1,p1], k
∗[A2, p2])

≤
∑
n≥1

2−n
||g̃(A1) − A2||L∞(|t−k|≤n)

1 + ||g̃(A1) − A2||L∞(|t−k|≤n)

+
∑
n∈Z

2−|n||g̃(p1(n + k)) − p2(n + k)|

≤
L∑

n=1

2−n(ε/2) +
∑
n>L

2−n +
∑
|n|>L

2−|n|Diam(SU(2))

< (ε/2) + (1 + 2Diam(SU(2)))
∑
n>L

2−n < (ε/2) + (ε/2) = ε.

¤

Lemma 7.2. The map Fi,j : Md,T (i, j) → MT

(
2Td2vol(S3)

8π2 + C1(d)
)

is continuous.

Proof. Let [An,pn] ∈ Md,T (i, j) be a sequence converging to [A, p] ∈ Md,T (i, j). From

Lemma 6.5, there are bundle maps hn : E′
n → E′ (n ≫ 1) such that hn(A′

n) = A′ over

|t| ≥ T + 1, hn(A′
n) converges to A′ in the C∞-topology over X and that hn(p′

n(k)) →
p′(k) for |k| ≤ T . Since the perturbation construction in Section 4 is gauge equivariant

(Proposition 4.12), we have

(E′, hn(A′
n) + d∗

hn(A′
n)ϕhn(A′

n), hn(p′
n)) = hn(E′

n, A
′′
n,p′

n).

From Proposition 5.6, d∗
hn(A′

n)ϕhn(A′
n) converges to d∗

A′ϕA′ in the C0-topology over every

compact subset in X and∫
X

|F (hn(A′
n) + d∗

hn(A′
n)ϕhn(A′

n))|2dvol =

∫
X

|F (A′ + d∗
A′ϕA′)|2dvol for n ≫ 1.

This shows [E′
n,A′′

n, p
′
n] = [E′, hn(A′

n) + d∗
hn(A′

n)ϕhn(A′
n), hn(p′

n)] converges to [E′,A′′,p′]

in MT

(
2Td2vol(S3)

8π2 + C1(d)
)
. ¤

From Lemma 7.1 and 7.2, Fi,j becomes an ε-embedding with respect to the distance

distΩR
. Hence

Widimε(Md,T (i, j), distΩR
) ≤ dim MT

(
2Td2vol(S3)

8π2
+ C1(d)

)
.

Since Md =
∪

1≤i,j≤N Md,T (i, j) (each Md,T (i, j) is a closed set), by using Lemma 2.3,

we get

Widimε(Md, distΩR
) ≤ N2 dim MT

(
2Td2vol(S3)

8π2
+ C1(d)

)
+ N2 − 1.

From (38) and T = R + L + D,

dim MT

(
2Td2vol(S3)

8π2
+ C1(d)

)
≤ 2(R + L + D)d2vol(S3)

π2
+ 8C1(d) + 6(R + L + D).
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Since N = N(d), L = L(ε) and D = D(d, d′(d), ε/4) are independent of R, we get

Widimε(Md : Z) = lim
R→∞

Widimε(Md, distΩR
)

|ΩR|
≤ N2d2vol(S3)

π2
+ 3N2.

This holds for any ε > 0. Thus

dim(Md : Z) = lim
ε→0

Widimε(Md : Z) ≤ N2d2vol(S3)

π2
+ 3N2 < ∞.

7.2. Upper bound on the local mean dimension.

Lemma 7.3. There exists r1 = r1(d) > 0 satisfying the following. For any [A, p] ∈ Md

and n ∈ Z, there exists an integer i (1 ≤ i ≤ N) such that if [B, q] ∈ Md satisfies

distZ([A, p], [B, q]) ≤ r1 then

[B|S3×{n}, q(n)] ∈ U(Ai,pi).

Here we identifies E|S3×{n} with F , and U(Ai,pi) is the closed set introduced in Section 6.1.

Recall distZ([A,p], [B, q]) = supk∈Z dist(k∗[A,p], k∗[B, q]).

Proof. There exists r1 > 0 (the Lebesgue number) satisfying the following. For any

[A,p] ∈ Md, there exists i = i([A,p]) such that if [B, q] ∈ Md satisfies dist([A, p], [B, q]) ≤
r1 then [B|S3×{0}, q(0)] ∈ U(Ai,pi). If distZ([A,p], [B, q]) ≤ r1, then for each n ∈ Z we

have dist([n∗A, n∗p], [n∗B, n∗q]) ≤ r1 and hence

[B|S3×{n}, q(n)] = [(n∗B)|S3×{0}, (n
∗q)(0)] ∈ U(Ai,pi),

for i = i([n∗A, n∗p]). ¤

Lemma 7.4. For any ε′ > 0, there exists r2 = r2(ε
′) > 0 such that if [A, p] and [B, q] in

Md satisfy distZ([A, p], [B, q]) ≤ r2 then∣∣∣∣|F (A)|2 − |F (B)|2
∣∣∣∣

L∞(X)
≤ ε′.

Proof. The map Md ∋ [A,p] 7→ |F (A)|2 ∈ C0(S3 × [0, 1]) is continuous. Hence there

exists r2 > 0 such that if dist([A,p], [B, q]) ≤ r2 then∣∣∣∣|F (A)|2 − |F (B)|2
∣∣∣∣

L∞(S3×[0,1])
≤ ε′.

Then for each k ∈ Z, if dist(k∗[A,p], k∗[B, q]) ≤ r2,∣∣∣∣|F (A)|2 − |F (B)|2
∣∣∣∣

L∞(S3×[k,k+1])
≤ ε′.

Therefore if distZ([A,p], [B, q]) ≤ r2, then |||F (A)|2 − |F (B)|2||L∞(X) ≤ ε′. ¤

Let [A, p] ∈ Md, and ε, ε′ > 0 be arbitrary two positive numbers. There exists T0 =

T0([A, p], ε′) > 0 such that for any T1 ≥ T0

1

8π2T1

sup
t∈R

∫
S3×[t,t+T1]

|F (A)|2dvol ≤ ρ(A) + ε′/2.
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The important point for the later argument is the following: We can arrange T0 so that

T0(k
∗[A, p], ε′) = T0([A, p], ε′) for all k ∈ Z. We set

r = r(d, ε′) = min

(
r1(d), r2

(
4π2ε′

vol(S3)

))
,

where r1(·) and r2(·) are the positive constants in Lemma 7.3 and 7.4. By Lemma 7.4, if

[B, q] ∈ Br([A,p])Z (the closed ball of radius r in Md with respect to the distance distZ),

then for any T1 ≥ T0

(39)
1

8π2T1

sup
t∈R

∫
S3×[t,t+T1]

|F (B)|2dvol ≤ ρ(A) + ε′/2 + ε′/2 ≤ ρ(A) + ε′.

We define positive integers L = L(ε) and D = D(d, d′(d), ε/4) as in the previous

subsection. (L = L(ε) is a positive integer satisfying (34), and D = D(d, d′(d), ε/4) is the

positive integer introduced in Lemma 4.14.) Let R be an integer with R ≥ T0, and set T :=

R+L+D. By Lemma 7.3, there exist i, j (1 ≤ i, j ≤ N) depending on [A, p] and T such

that all [B, q] ∈ Br([A, q])Z satisfy [B|S3×{T}, q(T )] ∈ U(Ai,pi) and [B|S3×{−T}, q(−T )] ∈
U(Aj ,pj). (That is, Br([A,p])Z ⊂ Md,T (i, j).) As in the previous subsection, by using the

cut-off construction and perturbation, for each [B, q] ∈ Br([A, p])Z we can construct the

framed ASD connection [E′,B′′, q′]. By (37), (39) and T ≥ T0,

1

8π2

∫
X

|F (B′′)|2dvol ≤ 1

8π2

∫
|t|≤T

|F (B)|2dvol + C1(d) ≤ 2T (ρ(A) + ε′) + C1(d),

where C1(d) depends only on d. Therefore we get the map

Br([A,p])Z → MT (2T (ρ(A) + ε′) + C1(d)), [B, q] 7→ [E′, B′′, q′].

This is an ε-embedding with respect to the distance distΩR
by Lemma 7.1 and 7.2. There-

fore we get (by (38))

Widimε(Br([A,p])Z, distΩR
) ≤ 16T (ρ(A) + ε′) + 8C1(d) + 6T,

for R ≥ T0([A,p], ε′) and r = r(d, ε′). As we pointed out before, we have T0(k
∗[A,p], ε′) =

T0([A, p], ε′) for k ∈ Z. Hence for all k ∈ Z and R ≥ T0 = T0([A, p], ε′]), we have the

same upper bound on Widimε(Br(k
∗[A, p])Z, distΩR

). Then for R ≥ T0,

1

|ΩR|
sup
k∈Z

Widimε(Br(k
∗[A,p])Z, distΩR

) ≤ 16T (ρ(A) + ε′) + 8C1(d) + 6T

2R + 1
.

T = R + L + D. L = L(ε) and D = D(d, d′(d), ε/4) are independent of R. Hence

Widimε(Br([A,p])Z ⊂ Md : Z)

= lim
R→∞

(
1

|ΩR|
sup
k∈Z

Widimε(Br(k
∗[A,p])Z, distΩR

)

)
≤ 8(ρ(A) + ε′) + 3.
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Here we have used (6). This holds for any ε > 0. (Note that r = r(d, ε′) is independent

of ε.) Hence

dim(Br([A,p])Z ⊂ Md : Z) = lim
ε→0

Widimε(Br([A,p])Z ⊂ Md : Z)

≤ 8(ρ(A) + ε′) + 3.

Since dim[A,p](Md : Z) ≤ dim(Br([A,p])Z ⊂ Md : Z),

dim[A,p](Md : Z) ≤ 8(ρ(A) + ε′) + 3.

This holds for any ε′ > 0. Thus

dim[A,p](Md : Z) ≤ 8ρ(A) + 3.

Therefore we get the conclusion:

Theorem 7.5. For any [A, p] ∈ Md,

dim[A,p](Md : Z) ≤ 8ρ(A) + 3.

8. Analytic preliminaries for the lower bound

8.1. “Non-flat” implies “irreducible”. Note that the following trivial fact: if a smooth

function u on R is bounded and convex (u′′ ≥ 0) then u is a constant function.

Lemma 8.1. If a smooth function f on S3×R is bounded, non-negative and sub-harmonic

(∆f ≤ 0)2, then f is a constant function.

Proof. We have ∆ = −∂2/∂t2 + ∆S3 where t is the coordinate of the R-factor of S3 × R
and ∆S3 is the Laplacian of S3. We have

∂2

∂t2
f2 = 2

(
∂f

∂t

)2

+ 2f∆S3f − 2f∆f.

Then we have

1

2

∂2

∂t2

∫
S3×{t}

f 2dvol =

∫
S3×{t}

(∣∣∣∣∂f

∂t

∣∣∣∣2 + |∇S3f |2 + f(−∆f)

)
dvol ≥ 0.

Here we have used f ≥ 0 and ∆f ≤ 0. This shows that u(t) =
∫

S3×{t} f 2 is a bounded

convex function. Hence it is a constant function. In particular u′′ ≡ 0. Then the above

formula implies ∂f/∂t ≡ ∇S3f ≡ 0. This means that f is a constant function. ¤

Lemma 8.2. If A is a U(1)-ASD connection on S3 × R satisfying ||FA||L∞ < ∞, then A

is flat.

2Our convention of the sign of the Laplacian is geometric; we have ∆ = −∂2/∂x2
1−∂2/∂x2

2−∂2/∂x2
3−

∂2/∂x2
4 on R4
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Proof. We have FA ∈
√
−1Ω−. The Weitzenböck formula (cf. (10)) gives (∇∗∇ +

S/3)FA = 2d−d∗FA = 0. We have

∆|FA|2 = −2|∇FA|2 + 2(FA,∇∗∇FA) = −2|∇FA|2 − (2S/3)|FA|2 ≤ 0.

This shows that |FA|2 is a non-negative, bounded, subharmonic function. Hence it is a

constant function. In particular ∆|FA|2 ≡ 0. Then the above formula implies FA ≡ 0. ¤

Corollary 8.3. If A is a non-flat SU(2)-ASD connection on S3 ×R satisfying ||FA||L∞ <

∞, then A is irreducible.

8.2. Periodic ASD connections. Let T > 0 be a real number, E be a principal SU(2)-

bundle over S3 × (R/TZ), and A be an ASD connection on E. Suppose A is not flat. Let

π : S3 × R → S3 × (R/TZ) be the natural projection, and E := π∗E and A := π∗A be

the pull-backs. Obviously A is a non-flat ASD connection satisfying ||FA||L∞ < ∞. Hence

it is irreducible (Corollary 8.3). Some constants introduced below (e.g. C2, C3, ε1) will

depend on (E, A). But we consider that (E, A) is fixed, and hence the dependence on it

will not be explicitly written.

Lemma 8.4. There exists C2 > 0 such that for any u ∈ Ω0(adE)∫
S3×[0,T ]

|u|2 ≤ C2

∫
S3×[0,T ]

|dAu|2.

Then, from the natural T -periodicity of A, for every n ∈ Z∫
S3×[nT,(n+1)T ]

|u|2 ≤ C2

∫
S3×[nT,(n+1)T ]

|dAu|2.

Proof. Since A is ASD and irreducible, the restriction of A to S3×(0, T ) is also irreducible

(by the unique continuation [7, Section 4.3.4]). Suppose the above is false, then there exist

un (n ≥ 1) such that

1 =

∫
S3×[0,T ]

|un|2 > n

∫
S3×[0,T ]

|dAun|2.

We can suppose that the restrictions of un to S3 × (0, T ) converge to some u weakly in

L2
1(S

3 × (0, T )) and strongly in L2(S3 × (0, T )). We have ||u||L2 = 1 (in particular u ̸= 0)

and dAu = 0. This means that A is reducible over S3×(0, T ). This is a contradiction. ¤

Let N > 0 be a large positive integer which will be fixed later, and set R := NT . Let

φ be a smooth function on R such that 0 ≤ φ ≤ 1, φ = 1 on [0, R], φ = 0 over t ≥ 2R

and t ≤ −R, and |φ′|, |φ′′| ≤ 2/R. Then for any u ∈ Ω0(adE) (not necessarily compact

supported), ∫
S3×[0,R]

|dAu|2 ≤
∫

S3×R
|dA(φu)|2 =

∫
S3×R

(∆A(φu), φu).
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Here ∆A := ∇∗
A∇A = − ∗ dA ∗ dA on Ω0(adE). We have ∆A(φu) = φ∆Au + ∆φ · u +

∗(∗dφ ∧ dAu − dφ ∧ ∗dAu). Then ∆A(φu) = ∆Au over S3 × [0, R] and

|∆A(φu)| ≤ (2/R)|u| + (4/R)|dAu| + |∆Au|.

Hence∫
S3×[0,R]

|dAu|2 ≤ (2/R)

∫
t∈[−R,0]∪[R,2R]

|u|2+(4/R)

∫
t∈[−R,0]∪[R,2R]

|u||dAu|+
∫

S3×[−R,2R]

|∆Au||u|.

From Lemma 8.4, ∫
t∈[−R,0]∪[R,2R]

|u|2 ≤ C2

∫
t∈[−R,0]∪[R,2R]

|dAu|2,

∫
t∈[−R,0]∪[R,2R]

|u||dAu| ≤
√∫

t∈[−R,0]∪[R,2R]

|u|2
√∫

t∈[−R,0]∪[R,2R]

|dAu|2 ≤
√

C2

∫
t∈[−R,0]∪[R,2R]

|dAu|2.

Hence ∫
S3×[0,R]

|dAu|2 ≤ 2C2 + 4
√

C2

R

∫
t∈[−R,0]∪[R,2R]

|dAu|2 +

∫
S3×[−R,2R]

|∆Au||u|.

For a function (or a section of some Riemannian vector bundle) f on S3×R and p ∈ [1,∞],

we set

||f ||ℓ∞Lp := sup
n∈Z

||f ||Lp(S3×(nR,(n+1)R)) .

Then the above implies∫
S3×[0,R]

|dAu|2 ≤ 4C2 + 8
√

C2

R
||dAu||2ℓ∞L2 + 3 |||∆Au| · |u|||ℓ∞L1 .

In the same way, for any n ∈ Z,∫
S3×[nR,(n+1)R]

|dAu|2 ≤ 4C2 + 8
√

C2

R
||dAu||2ℓ∞L2 + 3 |||∆Au| · |u|||ℓ∞L1 .

Then we have

||dAu||2ℓ∞L2 ≤
4C2 + 8

√
C2

R
||dAu||2ℓ∞L2 + 3 |||∆Au| · |u|||ℓ∞L1 .

We fix N > 0 so that (4C2 + 8
√

C2)/R ≤ 1/2 (recall: R = NT ). If ||dAu||ℓ∞L2 < ∞, then

we get

||dAu||2ℓ∞L2 ≤ 6 |||∆Au| · |u|||ℓ∞L1 .

From Hölder’s inequality and Lemma 8.4,

|||∆Au| · |u|||ℓ∞L1 ≤ ||∆Au||ℓ∞L2 ||u||ℓ∞L2 ≤
√

C2 ||∆Au||ℓ∞L2 ||dAu||ℓ∞L2 .

Hence ||dAu||ℓ∞L2 ≤ 6
√

C2 ||∆Au||ℓ∞L2 , and ||u||ℓ∞L2 ≤
√

C2 ||dAu||ℓ∞L2 ≤ 6C2 ||∆Au||ℓ∞L2 .

Then we get the following conclusion.
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Lemma 8.5. There exists a constant C3 > 0 such that, for any u ∈ Ω0(adE) with

||dAu||ℓ∞L2 < ∞, we have

||u||ℓ∞L2 + ||dAu||ℓ∞L2 ≤ C3 ||∆Au||ℓ∞L2 .

Recall that we fixed a point θ0 ∈ S3. The following result gives the “partial Coulomb

gauge slice” in our situation.

Proposition 8.6. There exists ε1 > 0 satisfying the following. For any a and b in

Ω1(adE) satisfying d∗
Aa = d∗

Ab = 0 and ||a||L∞ , ||b||L∞ ≤ ε1, if there is a gauge transforma-

tion g of E satisfying

g(A + a) = A + b, |g(θ0, n) − 1| ≤ ε1 (∀n ∈ Z),

then g = 1 and a = b.

Proof. Since g(A + a) = A + b, we have dAg = ga − bg. Then we have |dAg| ≤ 2ε1. From

the condition |g(θ0, n) − 1| ≤ ε1 (n ∈ Z), we get ||g − 1||L∞ ≤ const · ε1 ≪ 1. Therefore

there exists u ∈ Ω0(adE) satisfying g = eu and ||u||L∞ ≤ const · ε1. We have

dAeu = dAu + (dAu · u + udAu)/2! + (dAu · u2 + udAu · u + u2dAu)/3! + · · · .

Since |u| ≤ const · ε1 ≪ 1,

|dAeu| ≥ |dAu|(2 − e|u|) ≥ |dAu|/2.

Hence |dAu| ≤ 2|dAg| ≤ 4ε1. In the same way we get |dAg| ≤ 2|dAu|, and hence

||dAg||ℓ∞L2 ≤ 2 ||dAu||ℓ∞L2 ≤ 2C3 ||∆Au||ℓ∞L2 .

Here we have used Lemma 8.5. Since d∗
Aa = d∗

Ab = 0, we have

∆Ag = − ∗ dA ∗ dAg = − ∗ (dAg ∧ ∗a + ∗b ∧ dAg).

Therefore

(40) ||∆Ag||ℓ∞L2 ≤ (||a||L∞ + ||b||L∞) ||dAg||ℓ∞L2 ≤ 4C3ε1 ||∆Au||ℓ∞L2 .

A direct calculation shows |∆Aun| ≤ n(n − 1)|u|n−2|dAu|2 + n|u|n−1|∆Au|. Hence

|∆A(eu − u)| ≤ e|u||dAu|2 + (e|u| − 1)|∆Au| ≤ const · ε1(|dAu| + |∆Au|).

Here we have used |u|, |dAu| ≤ const · ε1 ≪ 1. Therefore

||∆Ag − ∆Au||ℓ∞L2 ≤ const · ε1(||dAu||ℓ∞L2 + ||∆Au||ℓ∞L2).

Using Lemma 8.5, we get

||∆Ag − ∆Au||ℓ∞L2 ≤ const · ε1 ||∆Au||ℓ∞L2 .

Then the inequality (40) gives

(1 − const · ε1) ||∆Au||ℓ∞L2 ≤ 4C3ε1 ||∆Au||ℓ∞L2 .
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If we choose ε1 so small that 1 − const · ε1 > 4C3ε1, then this estimate gives ∆Au = 0.

Then we get (from Lemma 8.5) u = 0. This shows g = 1 and a = b. ¤

The following “L∞-estimate” will be used in the next section. For its proof, see Propo-

sition A.5 in Appendix A.

Proposition 8.7. Let ξ be a C2-section of Λ+(adE), and set η := (∇∗
A∇A + S/3)ξ. If

||ξ||L∞ , ||η||L∞ < ∞, then

||ξ||L∞ ≤ (24/S) ||η||L∞ .

9. Proof of the lower bound

9.1. Deformation of periodic ASD connections. The argument in this subsection is

a Yang-Mills analogue of the deformation theory developed in Tsukamoto [20]. Let d be a

positive number. As in Section 8.2, let T > 0 be a positive real number, E be a principal

SU(2)-bundle over S3 × (R/TZ), and A be an ASD connection on E. Suppose that A is

not flat and

(41) ||F (A)||L∞ < d.

Set E := π∗E and A := π∗A where π : S3 × R → S3 × (R/TZ) is the natural projection.

Some constants introduced below depend on (E, A). But we don’t explicitly write the

dependence on it because we consider that (E, A) is fixed.

We define the Banach space H1
A by setting

H1
A := {a ∈ Ω1(adE)| (d∗

A + d+
A)a = 0, ||a||L∞ < ∞}.

(H1
A, ||·||L∞) becomes an infinite dimensional Banach space. The additive group TZ =

{nT ∈ R|n ∈ Z} acts on H1
A as follows. From the definition of E and A, we have

(T ∗E, T ∗A) = (E, A) where T : S3 × R → S3 × R, (θ, t) 7→ (θ, t + T ). Hence for any

a ∈ H1
A, we have T ∗a ∈ H1

A and ||T ∗a||L∞ = ||a||L∞ .

Fix 0 < α < 1. We want to define the Hölder space Ck,α(Λ+(adE)) for k ≥ 0. Let

{Uλ}Λ
λ=1, {U ′

λ}Λ
λ=1, {U ′′

λ}Λ
λ=1 be finite open coverings of S3×(R/TZ) satisfying the following

conditions.

(i) Ūλ ⊂ U ′
λ and Ū ′

λ ⊂ U ′′
λ . Uλ, U ′

λ and U ′′
λ are connected, and their boundaries are smooth.

Each U ′′
λ is a coordinate chart, i.e., a diffeomorphism between U ′′

λ and an open set in R4

is given for each λ.

(ii) The covering map π : S3 ×R → S3 × (R/TZ) can be trivialized over each U ′′
λ , i.e., we

have a disjoint union π−1(U ′′
λ ) =

⊔
n∈Z U ′′

nλ such that π : U ′′
nλ → U ′′

λ is diffeomorphic. We

set Unλ := U ′′
nλ ∩ π−1(Uλ) and U ′

nλ := U ′′
nλ ∩ π−1(U ′

λ). We have π−1(Uλ) =
⊔

n∈Z Unλ and

π−1(U ′
λ) =

⊔
n∈Z U ′

nλ.

(iii) A trivialization of the principal SU(2)-bundle E over each U ′′
λ is given.

From the conditions (ii) and (iii), we have a coordinate system and a trivialization of

E over each U ′′
nλ. Let u be a section of Λi(adE) (0 ≤ i ≤ 4) over S3 × R. Then u|U ′′

nλ
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can be seen as a vector-valued function over U ′′
nλ. Hence we can consider the Hölder norm

||u||Ck,α(Ūnλ) of u as a vector-valued function over Ūnλ (cf. Gilbarg-Trudinger [9, Chapter

4]). We define the Hölder norm ||u||Ck,α by setting

||u||Ck,α := sup
n∈Z,1≤λ≤Λ

||u||Ck,α(Ūnλ) .

For a ∈ H1
A, we have ||a||Ck,α ≤ constk ||a||L∞ < ∞ for every k = 0, 1, 2, · · · by the elliptic

regularity. We define the Banach space Ck,α(Λ+(adE)) as the space of sections u of

Λ+(adE) satisfying ||u||Ck,α < ∞.

Consider the following map:

Φ : H1
A × C2,α(Λ+(adE)) → C0,α(Λ+(adE)), (a, ϕ) 7→ F+(A + a + d∗

Aϕ).

This is a smooth map between the Banach spaces. Since F+(A + a) = (a ∧ a)+,

(42) F+(A + a + d∗
Aϕ) = (a ∧ a)+ + d+

Ad∗
Aϕ + [a ∧ d∗

Aϕ]+ + (d∗
Aϕ ∧ d∗

Aϕ)+.

The derivative of Φ with respect to the second variable ϕ at the origin (0, 0) is given by

(43) ∂2Φ(0,0) = d+
Ad∗

A =
1

2
(∇∗

A∇A + S/3) : C2,α(Λ+(adE)) → C0,α(Λ+(adE)).

Here we have used the Weitzenböck formula (see (10)).

Proposition 9.1. The map (∇∗
A∇A +S/3) : C2,α(Λ+(adE)) → C0,α(Λ+(adE)) is isomor-

phic.

Proof. The injectivity follows from the L∞-estimate of Proposition 8.7. So the problem

is the surjectivity. First we prove the following lemma.

Lemma 9.2. Suppose that η ∈ C0,α(Λ+(adE)) is compact-supported. Then there exists

ϕ ∈ C2,α(Λ+(adE)) satisfying (∇∗
A∇A + S/3)ϕ = η and ||ϕ||C2,α ≤ const · ||η||C0,α.

Proof. Let L2
1 := {ξ ∈ L2(Λ+(adE))|∇Aξ ∈ L2}. For ξ1, ξ2 ∈ L2

1, set (ξ1, ξ2)S/3 :=

(S/3)(ξ1, ξ2)L2+(∇Aξ1,∇Aξ2)L2 . Since S is a positive constant, this inner product defines a

norm equivalent to the standard L2
1-norm. η defines a bounded linear functional (·, η)L2 :

L2
1 → R, ξ 7→ (ξ, η)L2 . From the Riesz representation theorem, there uniquely exists

ϕ ∈ L2
1 satisfying (ξ, ϕ)S/3 = (ξ, η)L2 for any ξ ∈ L2

1. This implies that (∇∗
A∇A+S/3)ϕ = η

in the sense of distributions. Moreover we have ||ϕ||L2
1
≤ const ||η||L2 . From the elliptic

regularity (see Gilbarg-Trudinger [9, Chapter 9]) and the Sobolev embedding L2
1 ↪→ L4,

||ϕ||L4
2(Unλ) ≤ constλ(||ϕ||L4(U ′

nλ) + ||η||L4(U ′
nλ)),

≤ constλ(||ϕ||L2
1(U ′

nλ) + ||η||L4(U ′
nλ)),

≤ constλ(||η||L2 + ||η||L4).
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Here constλ are constants depending on λ = 1, 2, · · · , Λ. The important point is that they

are independent of n ∈ Z. This is because we have the TZ-symmetry of the equation.

From the Sobolev embedding L4
2 ↪→ L∞, we have

||ϕ||L∞ ≤ const · sup
n,λ

||ϕ||L4
2(Unλ) ≤ const(||η||L2 + ||η||L4) < ∞.

Using the Schauder interior estimate (see Gilbarg-Trudinger [9, Chapter 6]), we get

||ϕ||C2,α(Ūnλ) ≤ constλ(||ϕ||L∞ + ||η||C0,α(Ū ′
nλ)).

It is easy to see that

(44) sup
n,λ

||η||C0,α(Ū ′
nλ) ≤ const ||η||C0,α .

(Recall ||η||C0,α = supn,λ ||η||C0,α(Ūnλ).) Hence ||ϕ||C2,α ≤ const(||ϕ||L∞ + ||η||C0,α) < ∞. ¤

Let η ∈ C0,α(Λ+(adE)) (not necessarily compact-supported). Let φk (k = 1, 2, · · · ) be

cut-off functions such that 0 ≤ φk ≤ 1, φk = 1 over |t| ≤ k and φk = 0 over |t| ≥ k + 1.

Set ηk := φkη. From the above Lemma 9.2, there exists ϕk ∈ C2,α(Λ+(adE)) satisfying

(∇∗
A∇A + S/3)ϕk = ηk. From the L∞-estimate (Lemma 8.7), we get

||ϕk||L∞ ≤ (24/S) ||ηk||L∞ ≤ (24/S) ||η||L∞ .

From the Schauder interior estimate, we get

||ϕk||C2,α(Ūnλ) ≤ constλ · (||ϕk||L∞(U ′
nλ) + ||ηk||C0,α(Ū ′

nλ)) ≤ const(||η||L∞ + ||ηk||C0,α(Ū ′
nλ)).

We have ηk = η over each U ′
nλ for k ≫ 1. Hence ||ϕk||C2,α(Ūnλ) (k ≥ 1) is bounded

for each (n, λ). Therefore, if we take a subsequence, ϕk converges to a C2-section ϕ of

Λ+(adE) in the C2-topology over every compact subset. ϕ satisfies (∇∗
A∇A + S/3)ϕ = η

and ||ϕ||L∞ ≤ (24/S) ||η||L∞ . The Schauder interior estimate gives

||ϕ||C2,α(Ūnλ) ≤ constλ(||ϕ||L∞ + ||η||C0,α(Ū ′
nλ)).

By (44), we get ||ϕ||C2,α ≤ const ||η||C0,α < ∞. ¤

Since the map (43) is isomorphic, the implicit function theorem implies that there exist

δ2 > 0 and δ3 > 0 such that for any a ∈ H1
A with ||a||L∞ ≤ δ2 there uniquely exists

ϕa ∈ C2,α(Λ+(adE)) with ||ϕa||C2,α ≤ δ3 satisfying F+(A + a + d∗
Aϕa) = 0, i.e.,

(45) d+
Ad∗

Aϕa + [a ∧ d∗
Aϕa]

+ + (d∗
Aϕa ∧ d∗

Aϕa)
+ = −(a ∧ a)+.

Here the “uniqueness” means that if ϕ ∈ C2,α(Λ+(adE)) with ||ϕ||C2,α ≤ δ3 satisfies F+(A+

a + d∗
Aϕ) = 0 then ϕ = ϕa. From the elliptic regularity, ϕa is smooth. We have ϕ0 = 0

and

(46) ||ϕa||C2,α ≤ const ||a||L∞ , ||ϕa − ϕb||C2,α ≤ const ||a − b||L∞ ,

for any a, b ∈ H1
A with ||a||L∞ , ||b||L∞ ≤ δ2. The map a 7→ ϕa is T -equivariant, i.e.,

ϕT ∗a = T ∗ϕa where T : S3 × R → S3 × R, (θ, t) 7→ (θ, t + T ).
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We have F (A+ a+ d∗
Aϕa) = F (A+ a)+ dAd∗

Aϕa + [a∧ d∗
Aϕa] + d∗

Aϕa ∧ d∗
Aϕa. From (41),

if we choose δ2 > 0 sufficiently small,

(47) ||F (A + a + d∗
Aϕa)||L∞ ≤ ||F (A)||L∞ + const · δ2 ≤ d.

Moreover we can choose δ2 > 0 so that, for any a ∈ H1
A with ||a||L∞ ≤ δ2,

(48) ||a + d∗
Aϕa||L∞ ≤ const · δ2 ≤ ε1,

where ε1 is the positive constant introduced in Proposition 8.6.

Lemma 9.3. We can take the above constant δ2 > 0 sufficiently small so that, if a, b ∈ H1
A

with ||a||L∞ , ||b||L∞ ≤ δ2 satisfy a + d∗
Aϕa = b + d∗

Aϕb, then a = b.

Proof. We have

1

2
(∇∗

A∇A + S/3)(ϕa − ϕb) = d+
Ad∗

A(ϕa − ϕb)

= (b ∧ (b − a))+ + ((b − a) ∧ a)+ + [b ∧ (d∗
Aϕb − d∗

Aϕa)]
+ + [(b − a) ∧ d∗

Aϕa]
+

+ (d∗
Aϕb ∧ (d∗

Aϕb − d∗
Aϕa))

+ + ((d∗
Aϕb − d∗

Aϕa) ∧ d∗
Aϕa)

+

(49)

Its C0,α-norm is bounded by

const(||a||C0,α + ||b||C0,α + ||d∗
Aϕa||C0,α) ||a − b||C0,α

+ const(||b||C0,α + ||d∗
Aϕa||C0,α + ||d∗

Aϕb||C0,α) ||d∗
Aϕa − d∗

Aϕb||C0,α .

From (46), this is bounded by const · δ2 ||a − b||L∞ . Then Proposition 9.1 implies

||ϕa − ϕb||C2,α ≤ const · δ2 ||a − b||L∞ .

Hence, if a + d∗
Aϕa = b + d∗

Aϕb then

||a − b||L∞ = ||d∗
Aϕa − d∗

Aϕb||L∞ ≤ const · δ2 ||a − b||L∞ .

If δ2 is sufficiently small, then this implies a = b. ¤

For r > 0, we set Br(H
1
A) := {a ∈ H1

A| ||a||L∞ ≤ r}.

Lemma 9.4. Let {an}n≥1 ⊂ Bδ2(H
1
A) and suppose that this sequence converges to a ∈

Bδ2(H
1
A) in the topology of compact-uniform convergence, i.e., for any compact set K ⊂

S3 ×R, ||an − a||L∞(K) → 0 as n → ∞. Then d∗
Aϕan converges to d∗

Aϕa in the C∞-topology

over every compact subset in S3 × R.

Proof. It is enough to prove that there exists a subsequence (also denoted by {an}) such

that d∗
Aϕan converges to d∗

Aϕa in the topology of C∞-convergence over compact subsets

in S3 × R. From the elliptic regularity, an converges to a in the C∞-topology over every

compact subset. Hence, for each k ≥ 0 and each compact subset K in X, the Ck-norms

of ϕan over K (n ≥ 1) are bounded by the equation (45) and ||ϕan||C2,α ≤ δ3. Then a

subsequence of ϕan converges to some ϕ in the C∞-topology over every compact subset.
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We have ||ϕ||C2,α ≤ δ3 and F+(A + a + d∗
Aϕ) = 0. Then the uniqueness of ϕa implies

ϕ = ϕa. ¤

Lemma 9.5. For any K > 0 and ε > 0 there exist L > 0 and δ > 0 such that, for any

a, b ∈ Bδ2(H
1
A), if there is a gauge transformation g of E satisfying

||g(A + a + d∗
Aϕa) − (A + b + d∗

Aϕb)||L∞(|t|≤L) ≤ δ,

|g(θ0, n) − 1| ≤ ε1 (∀n ∈ Z ∩ [−L,L]),

then we have

||g − 1||L∞(|t|≤K) ≤ ε, ||a − b||L∞(|t|≤K) ≤ ε.

Recall that the positive constant ε1 was introduced in Proposition 8.6.

Proof. We prove the statement ||g − 1||L∞(|t|≤K) ≤ ε. The statement ||a − b||L∞(|t|≤K) ≤ ε

can be proved in the same way. (In the proof of ||a − b||L∞(|t|≤K) ≤ ε, we need Lemma

9.3.) If the statement is false, then there exist K > 0, ε > 0, an, bn ∈ Bδ2(H
1
A) (n ≥ 1),

gauge transformations gn (n ≥ 1) such that

||gn(A + an + d∗
Aϕan) − (A + bn + d∗

Aϕbn)||L∞(|t|≤n) ≤ 1/n,

|gn(θ0, k) − 1| ≤ ε1 (∀k ∈ Z ∩ [−n, n]), ||gn − 1||L∞(|t|≤K) > ε.

If we take subsequences, an and bn converge to some a and b in Bδ2(H
1
A) respectively in the

C∞-topology over compact subsets. Then d∗
Aϕan and d∗

Aϕbn converge to d∗
Aϕa and d∗

Aϕb in

the C∞-topology over compact subsets (Lemma 9.4). Set cn := gn(A+an +d∗
Aϕan)− (A+

bn +d∗
Aϕbn) = −(dAgn)g−1

n +gn(an +d∗
Aϕan)g−1

n −(bn +d∗
Aϕbn). We have |dAgn| ≤ 1/n+2ε1

over |t| ≤ n (recall (48)). Then, if we take a subsequence, gn converges to some g in the

topology of uniform convergence over compact subsets. Moreover for any 1 ≤ p < ∞ and

any pre-compact open set U ⊂ S3 × R, gn|U weakly converges to g|U in Lp
1(U). We have

|g(θ0, k) − 1| ≤ ε1 (∀k ∈ Z), ||g − 1||L∞(|t|≤K) ≥ ε.

We have dAgn = −cngn + gn(an + d∗
Aϕan)− (bn + d∗

Aϕbn)gn. Since cn converges to 0 in the

topology of uniform convergence over compact subsets, we have

dAg = g(a + d∗
Aϕa) − (b + d∗

Aϕb)g.

This means g(A+a+d∗
Aϕa) = A+ b+d∗

Aϕb. Moreover we have |g(θ0, k)−1| ≤ ε1 (k ∈ Z).

Then Proposition 8.6 implies g = 1. (Note that we have d∗
A(a+d∗

Aϕa) = d∗
A(b+d∗

Aϕb) = 0

and ||a + d∗
Aϕa||L∞ , ||b + d∗

Aϕb||L∞ ≤ ε1 by (48).) This contradicts ||g − 1||L∞(|t|≤K) ≥ ε. ¤

Corollary 9.6. We can take δ2 > 0 so small that the following statement holds. For any

K > 0 and ε > 0 there exist L = L(K, ε) > 0 and δ = δ(K, ε) > 0 satisfying the following.

For any a, b ∈ Bδ2(H
1
A), if there exist t0 ∈ R and a gauge transformation g of E such that

||g(A + a + d∗
Aϕa) − (A + b + d∗

Aϕb)||L∞(|t−t0|≤L) ≤ δ,

|g(θ0, n) − 1| ≤ ε1/2 (n ∈ Z ∩ [t0 − L, t0 + L]),
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then we have

(50) ||g − 1||L∞(|t−t0|≤K) ≤ ε, ||a − b||L∞(|t−t0|≤K) ≤ ε.

Proof. We have |dAg| ≤ δ + const · δ2 over |t − t0| ≤ L. Since |g(θ0, n) − 1| ≤ ε1/2 for

n ∈ Z ∩ [t0 − L, t0 + L], we have

||g − 1||L∞(|t−t0|≤L) ≤ ε1/2 + const · (δ + δ2) ≤ ε1,

if we take δ and δ2 sufficiently small. Recall that we have the natural TZ-actions on all

data. Let n0 be an integer satisfying |t0 − n0T | ≤ T , and set t′0 := t0 − n0T . Let a′ :=

(n0T )∗a, b′ := (n0T )∗b and g′ := (n0T )∗g be the pull-backs. (We have ϕa′ = (n0T )∗ϕa.)

These satisfy

||g′(A + a′ + d∗
Aϕa′) − (A + b′ + d∗

Aϕb′)||L∞(|t−t′0|≤L) ≤ δ, ||g′ − 1||L∞(|t−t′0|≤L) ≤ ε1.

Note that {|t| ≤ L − T} ⊂ {|t − t′0| ≤ L} and {|t − t′0| ≤ K} ⊂ {|t| ≤ K + T}. Hence if

we take δ > 0 sufficiently small and L > 0 sufficiently large, then Lemma 9.5 implies

||g′ − 1||L∞(|t−t′0|≤K) ≤ ε, ||a′ − b′||L∞(|t−t′0|≤K) ≤ ε.

This is equivalent to the above (50). ¤

9.2. Proof of the lower bound. We continue the argument of the previous subsection.

For each n ∈ Z, we take a point p0
n ∈ E(θ0,n). For r > 0, we denote Br(E(θ0,n)) as the

closed r-ball centered at p0
n in E(θ0,n). Consider the following map:

(51) Bδ2(H
1
A) ×

∏
n∈Z

Bδ2(E(θ0,n)) → Md, (a, (pn)n∈Z) 7→ [E, A + a + d∗
Aϕa, (pn)n∈Z].

Note that we have |F (A + a + d∗
Aϕa)| ≤ d (see (47)), and hence this map is well-defined.

Bδ2(H
1
A) is equipped with the topology of uniform convergence over compact subsets, and

we consider the product topology on Bδ2(H
1
A) ×

∏
n Bδ2(E(θ0,n)). Then the map (51) is

continuous (see Lemma 9.4).

Lemma 9.7. The map (51) is injective for sufficiently small δ2 > 0.

Proof. Let (a, (pn)n∈Z), (b, (qn)n∈Z) ∈ Bδ2(H
1
A)×

∏
n∈Z Bδ2(E(θ0,n)), and suppose that there

exists a gauge transformation g satisfying

g(A + a + d∗
Aϕa) = A + b + d∗

Aϕb, g(pn) = qn (∀n ∈ Z).

From g(pn) = qn, we have |g(θ0, n) − 1| ≤ ε1 (δ2 ≪ 1). We have d∗
A(a + d∗

Aϕa) =

d∗
A(b + d∗

Aϕb) = 0 and ||a + d∗
Aϕa||L∞ , ||b + d∗

Aϕb||L∞ ≤ ε1 (see (48)). Then Proposition 8.6

implies g = 1 and a + d∗
Aϕa = b + d∗

Aϕb. Then we have pn = qn and a = b (see Lemma

9.3). ¤
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We define a distance on Md as follows. For [E1, A1, (pn)n∈Z], [E2, A2, (qn)n∈Z] ∈ Md

(see Remark 1.3), we set

dist([E1,A1, (pn)n∈Z], [E2, A2, (qn)n∈Z])

:= inf
g:E1→E2

{∑
n≥1

2−n
||g(A1) − A2||L∞(|t|≤n)

1 + ||g(A1) − A2||L∞(|t|≤n)

+
∑
n∈Z

2−|n||g(pn) − qn|

}
.

For N = 0, 1, 2, · · · , we set ΩN := {0, 1, 2, · · · , N − 1}.

Lemma 9.8. We can take δ2 > 0 so small that the following statement holds. For any

ε > 0, there exists ε′ > 0 such that, for any N ≥ 1 and (a, (pn)n∈Z), (b, (qn)n∈Z) ∈
Bδ2(H

1
A) ×

∏
n∈Z Bδ2(E(θ0,n)), if

(52) distΩN
([E, A + a + d∗

Aϕa, (pn)n∈Z], [E, A + b + d∗
Aϕb, (qn)n∈Z]) ≤ ε′,

then we have

||a − b||L∞(S3×[0,N ]) ≤ ε, |pn − qn| ≤ ε (n = 0, 1, 2, · · · , N − 1).

(For the definition of distΩN
(·, ·), see Section 2.)

Proof. Let L = L(1, ε/2) and δ = δ(1, ε/2) be the constants introduced in Corollary 9.6

for K = 1 and ε/2. If we take ε′ sufficiently small, then (52) implies that, for each

n = 0, 1, 2, · · · , N − 1, there exists a gauge transformation gn of E satisfying

||gn(A + a + d∗
Aϕa) − (A + b + d∗

Aϕb)||L∞(|t−n|≤L) ≤ δ,

|gn(θ0, k)pk − qk| ≤ min(ε1/3, ε/2) (k ∈ Z ∩ [n − L, n + L]).

In particular,

|gn(θ0, k) − 1| ≤ |gn(θ0, k)pk − qk| + |qk − pk| ≤ ε1/3 + 2δ2 ≤ ε1/2,

for k ∈ Z ∩ [n − L, n + L] (δ2 ≤ ε1/12). Then we can use Corollary 9.6, and get (n =

0, 1, · · · , N − 1)

||gn − 1||L∞(|t−n|≤1) ≤ ε/2, ||a − b||L∞(|t−n|≤1) ≤ ε/2.

The latter inequality implies ||a − b||L∞(S3×[0,N ]) ≤ ε/2 < ε. The former inequality implies

|pn − qn| ≤ |pn − gn(θ0, n)pn| + |gn(θ0, n)pn − qn| ≤ ε/2 + ε/2 = ε.

for n = 0, 1, 2, · · · , N − 1. ¤

Set ℓ∞(Z, su(2)) := {(un)n∈Z ∈ su(2)Z| ||(un)n∈Z||ℓ∞ := supn |un| < ∞} and V :=

H1
A × ℓ∞(Z, su(2)). For (a, (un)n∈Z) ∈ V we define

||(a, (un)n∈Z)||V := max(||a||L∞ , ||(un)n∈Z||ℓ∞).
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For r > 0, we denote Br(V ) as the closed r-ball centered at the origin in V . There

exists δ′2 = δ′2(δ2) > 0 such that, for any (a, (un)n∈Z) ∈ Bδ′2
(V ), we have (a, (p0

neun)n∈Z) ∈
Bδ2(H

1
A) ×

∏
n∈Z Bδ2(E(θ0,n)). Then, for r ≤ δ′2, we can define

Pr : Br(V ) → Md, (a, (un)n∈Z) 7→ [E, A + a + d∗
Aϕa, (p

0
neun)n∈Z].

We consider that Br(V ) is equipped with the topology of uniform convergence over com-

pact subsets, i.e., a sequence {(an, (u
(n)
k )k∈Z)}n≥1 in Br(V ) converges to (a, (uk)k∈Z) in

Br(V ) if and only if an uniformly converges to a over every compact subset and u
(n)
k

converges to uk for every k. Then the above map Pr is continuous.

Lemma 9.9. For any s > 0 there exists r > 0 such that

Pr(Br(V )) ⊂ Bs([E, A, (p0
n)n∈Z])Z.

Here Bs([E, A, (p0
n)n∈Z])Z is the closed s-ball of Md centered at [E, A, (p0

n)n∈Z] with respect

to the distance distZ (see Section 2.2).

Proof. Let (a, (un)n∈Z) ∈ Br(V ). We have ||a + d∗
Aϕa||L∞ ≤ const ||a||L∞ ≤ const·r. Hence,

for any k ∈ Z,

dist(k∗[E, A, (p0
n)n∈Z], k∗[E, A + a + d∗

Aϕa, (p
0
neun)n∈Z])

≤
∑
n≥1

2−n
||a + d∗

Aϕa||L∞(|t−k|≤n)

1 + ||a + d∗
Aϕa||L∞(|t−k|≤n)

+
∑
n∈Z

2−|n||p0
n+ke

un+k − p0
n+k| ≤ const · r.

Therefore distZ([E, A, (p0
n)n∈Z], [E, A + a + d∗

Aϕa, (p
0
ne

un)n∈Z]) ≤ const · r ≤ s. ¤

For each n ≥ 1, let πn : S3 × (R/nTZ) → S3 × (R/TZ) be the natural n-hold covering,

and set En := π∗
n(E) and An := π∗

n(A). We denote H1
An

as the space of a ∈ Ω1(adEn) over

S3 × (R/nTZ) satisfying (d+
An

+d∗
An

)a = 0. We can identify H1
An

with the subspace of H1
A

consisting of nT -invariant elements. (Here we consider the natural action of TZ on H1
A.)

The index formula gives dim H1
An

= 8nc2(E). (We have H0
An

= H2
An

= 0.) We define the

finite dimensional subspace Vn ⊂ V = H1
A × ℓ∞(Z, su(2)) by

Vn := {(a, (uk)k∈Z) ∈ V | a ∈ H1
An

, uk = 0 (k < 0, k ≥ [nT ])}.

Here [nT ] means the maximum integer not greater than nT . We have

(53) dim Vn = 8nc2(E) + 3[nT ].

Let s > 0. We choose 0 < r ≤ δ′2(≪ 1) such that Pr(Br(V )) ⊂ Bs([E, A, (p0
k)k∈Z])Z. Let

N be a positive integer and set n := [N/T ]. By using Lemma 9.8, there exists ε = ε(r) > 0

(independent of N, n) such that, for (a, (uk)k∈Z), (b, (vk)k∈Z) ∈ Br(V ), if

distΩN
(Pr(a, (uk)k∈Z), Pr(b, (vk)k∈Z)) ≤ ε.

then

||a − b||L∞(S3×[0,N ]) ≤ r/2, |uk − vk| ≤ r/2 (k = 0, 1, 2, · · · , N − 1).
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In particular, if (a, (uk)k∈Z), (b, (vk)k∈Z) ∈ Br(Vn) satisfies

distΩN
(Pr(a, (uk)k∈Z), Pr(b, (vk)k∈Z)) ≤ ε,

then

||(a, (uk)k∈Z) − (b, (vk)k∈Z)||V ≤ r/2.

This implies

Widimε(Bs([E,A, (p0
k)k∈Z])Z, distΩN

) ≥ Widimr/2(Br(Vn), ||·||V ),

= dim Vn = 8nc2(E) + 3[nT ].

Here we have used Lemma 2.1 and (53). Therefore

dim(Bs([E, A, (p0
k)k∈Z])Z ⊂ Md : Z) ≥ 8c2(E)/T + 3 = 8ρ(A) + 3.

Here we have used (3). This holds for any s > 0. Thus

dim[E,A,(p0
k)k∈Z](Md : Z) ≥ 8ρ(A) + 3.

So we get the following conclusion.

Theorem 9.10. Suppose d > 0. If A is a periodic ASD connection satisfying ||F (A)||L∞ <

d, then for any framing p : Z → E (p(n) ∈ E(θ0,n))

dim[A,p](Md : Z) = 8ρ(A) + 3.

Proof. The upper-bound dim[A,p](Md : Z) ≤ 8ρ(A) + 3 was already proved in Section

7.2. If A is not flat, then the above argument shows that we also have the lower-bound

dim[A,p](Md : Z) ≥ 8ρ(A) + 3. Hence dim[A,p](Md : Z) = 8ρ(A) + 3. So we suppose

that A is flat. Since every flat connection on E = X × SU(2) is gauge equivalent to the

product connection, we can suppose that A is the product connection. Then the following

map becomes a Z-equivariant topological embedding.

SU(2)Z/SU(2) → Md, [(pn)n∈Z] 7→ [A, (pn)n∈Z],

where SU(2)Z/SU(2) is the quotient space defined as in Example 2.8. From the result of

Example 2.8, we get

dim[A,(pn)n∈Z](Md : Z) ≥ dim[(pn)n∈Z](SU(2)Z/SU(2) : Z) = 3 = 8ρ(A) + 3.

¤

When d = 0, we can determine the value of the (local) mean dimension.

Proposition 9.11.

dimloc(M0 : Z) = dim(M0 : Z) = 3.

Proof. M0 is Z-homeomorphic to SU(2)Z/SU(2). Hence Example 2.8 gives the above

result. ¤

We have completed all the proofs of Theorem 1.1 and 1.2.
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Appendix A. Green kernel

In this appendix, we prepare some basic facts on a Green kernel over S3 × R. Let

a > 0 be a positive constant. Some constants in this appendix depend on a, but we don’t

explicitly write their dependence on a for simplicity of the explanation. In the main body

of the paper we have a = S/3 (S is the scalar curvature of S3 × R), and its value is fixed

throughout the argument. Hence we don’t need to care about the dependence on a = S/3.

A.1. (∆ + a) on functions. Let ∆ := ∇∗∇ be the Laplacian on functions over S3 × R.

(Notice that the sign convention of our Laplacian ∆ = ∇∗∇ is “geometric”. For example,

we have ∆ = −
∑4

i=1 ∂2/∂x2
i on the Euclidean space R4.) Let g(x, y) be the Green kernel

of ∆ + a;

(∆y + a)g(x, y) = δx(y).

This equation means that

ϕ(x) =

∫
S3×R

g(x, y)(∆y + a)ϕ(y)dvol(y),

for compact-supported smooth functions ϕ. The existence of g(x, y) is essentially standard

([2, Chapter 4]). We briefly explain how to construct it. We fix x ∈ S3 ×R and construct

a function gx(y) satisfying (∆+a)gx = δx. As in [2, Chapter 4, Section 2], by using a local

coordinate around x, we can construct (by hand) a compact-supported function g0,x(y)

satisfying

(∆ + a)g0,x = δx − g1,x,

where g1,x is a compact supported continuous function. Moreover g0,x is smooth outside

{x} and it satisfies

const1/d(x, y)2 ≤ g0,x(y) ≤ const2/d(x, y)2,

for some positive constants const1 and const2 in some small neighborhood of x. Here

d(x, y) is the distance between x and y. Since (∆ + a) : L2
2 → L2 is isomorphic, there

exists g2,x ∈ L2
2 satisfying (∆ + a)g2,x = g1,x. (g2,x is of class C1.) Then gx := g0,x + g2,x

satisfies (∆+ a)gx = δx, and g(x, y) := gx(y) becomes the Green kernel. g(x, y) is smooth

outside the diagonal. Since S3×R = SU(2)×R is a Lie group and its Riemannian metric

is two-sided invariant, we have g(x, y) = g(zx, zy) = g(xz, yz) for x, y, z ∈ S3 ×R. g(x, y)

satisfies

(54) c1/d(x, y)2 ≤ g(x, y) ≤ c2/d(x, y)2 (d(x, y) ≤ δ),

for some positive constants c1, c2, δ.

Lemma A.1. g(x, y) > 0 for x ̸= y.
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Proof. Fix x ∈ S3 × R. We have (∆ + a)gx = 0 outside {x}, and hence (by elliptic

regularity)

|gx(θ, t)| ≤ const ||gx||L2(S3×[t−1,t+1]) (|t| > 1).

Since the right-hand-side goes to zero as |t| → ∞, gx vanishes at infinity. Let R > 0 be

a large positive number and set Ω := S3 × [−R, R] \ Bδ(x). (δ is a positive constant in

(54).) Since gx(y) ≥ c1/d(x, y)2 > 0 on ∂Bδ(x), we have gx ≥ − supt=±R |gx(θ, t)| on ∂Ω.

Since (∆ + a)gx = 0 on Ω, we can apply the weak maximum (minimum) principle to gx

(Gilbarg-Trudinger [9, Chapter 3, Section 1]) and get

gx(y) ≥ − sup
t=±R

|gx(θ, t)| (y ∈ Ω).

The right-hand-side goes to zero as R → ∞. Hence we have gx(y) ≥ 0 for y ̸= x. Since

gx is not constant, the strong maximum principle ([9, Chapter 3, Section 2]) implies that

gx cannot achieve zero. Therefore gx(y) > 0 for y ̸= x. ¤

Lemma A.2. There exists c3 > 0 such that

0 < g(x, y) ≤ c3e
−
√

ad(x,y) (d(x, y) ≥ 1).

In particular, ∫
S3×R

g(x, y)dvol(y) < ∞.

The value of this integral is independent of x ∈ S3×R because of the symmetry of g(x, y).

Proof. We fix x0 = (θ0, 0) ∈ S3 × R. Since S3 × R is homogeneous, it is enough to show

that gx0(y) = g(x0, y) satisfies

gx0(y) ≤ const · e−
√

a|t| (y = (θ, t) ∈ S3 × R and |t| ≥ 1).

Let C := sup|t|=1 gx0(θ, t) > 0, and set u := Ce
√

a(1−|t|) − gx0(y) (|t| ≥ 1). We have u ≥ 0

at t = ±1 and (∆ + a)u = 0 (|t| ≥ 1). u goes to zero at infinity. (See the proof of Lemma

A.1.) Hence we can apply the weak minimum principle (see the proof of Lemma A.1) to

u and get u ≥ 0 for |t| ≥ 1. Thus gx0(y) ≤ Ce
√

a(1−|t|) (|t| ≥ 1). ¤

The following technical lemma will be used in the next subsection.

Lemma A.3. Let f be a smooth function over S3 × R. Suppose that there exist non-

negative functions f1, f2 ∈ L2, f3 ∈ L1 and f4, f5, f6 ∈ L∞ such that |f | ≤ f1 + f4,

|∇f | ≤ f2 + f5 and |∆f + af | ≤ f3 + f6. Then we have

f(x) =

∫
S3×R

g(x, y)(∆y + a)f(y)dvol(y).
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Proof. We fix x ∈ S3×R. Let ρn (n ≥ 1) be cut-off functions satisfying 0 ≤ ρn ≤ 1, ρn = 1

over |t| ≤ n and ρn = 0 over |t| ≥ n + 1. Moreover |∇ρn|, |∆ρn| ≤ const (independent of

n ≥ 1). Set fn := ρnf . We have

fn(x) =

∫
g(x, y)(∆y + a)fn(y)dvol(y).

(∆ + a)fn = ∆ρn · f − 2⟨∇ρn,∇f⟩ + ρn(∆ + a)f.

Note that gx(y) = g(x, y) is smooth outside {x} and exponentially decreases as y goes to

infinity. Hence for n ≫ 1,∫
gx|∆ρn · f |dvol ≤ C

√∫
supp(dρn)

f 2
1 dvol + C

∫
supp(dρn)

gxf4 dvol(y).

Since supp(dρn) ⊂ {t ∈ [−n − 1,−n] ∪ [n, n + 1]} and f1 ∈ L2 and f4 ∈ L∞, the right-

hand-side goes to zero as n → ∞. In the same way, we get∫
gx|⟨∇ρn,∇f⟩|dvol → 0 (n → ∞).

We have gx|ρn(∆ + a)f | ≤ gx|∆f + af |, and∫
gx(y)|∆f + af |dvol ≤

∫
d(x,y)≤1

gx(y)|∆f + af |dvol +

(
sup

d(x,y)>1

gx(y)

) ∫
d(x,y)>1

f3 dvol

+

∫
d(x,y)>1

gxf6 dvol < ∞.

Hence Lebesgue’s theorem implies

lim
n→∞

∫
gxρn(∆ + a)f dvol =

∫
gx(∆ + a)f dvol.

Therefore we get

f(x) =

∫
gx(∆ + a)f dvol.

¤

A.2. (∇∗∇+ a) on sections. Let E be a real vector bundle over S3 ×R with a fiberwise

metric and a connection ∇ compatible with the metric.

Lemma A.4. Let ϕ be a smooth section of E such that ||ϕ||L2, ||∇ϕ||L2 and ||∇∗∇ϕ + aϕ||L∞

are finite. Then ϕ satisfies

|ϕ(x)| ≤
∫

S3×R
g(x, y)|∇∗∇ϕ(y) + aϕ(y)|dvol(y).

Proof. The following argument is essentially due to Donaldson [5, p. 184]. Let R be the

product line bundle over S3 × R with the product metric and the product connection.

Set ϕn := (ϕ, 1/n) (a section of E ⊕ R). Then |ϕn| ≥ 1/n and hence ϕn ̸= 0 at all points.

We want to apply Lemma A.3 to |ϕn|. |ϕn| ≤ |ϕ| + 1/n where |ϕ| ∈ L2 and 1/n ∈ L∞.
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∇ϕn = (∇ϕ, 0) and ∇∗∇ϕn = (∇∗∇ϕ, 0). We have the Kato inequality |∇|ϕn|| ≤ |∇ϕn|.
Hence ∇|ϕn| ∈ L2. From ∆|ϕn|2/2 = (∇∗∇ϕn, ϕn) − |∇ϕn|2,

(55) (∆ + a)|ϕn| = (∇∗∇ϕn + aϕn, ϕn/|ϕn|) −
|∇ϕn|2 − |∇|ϕn||2

|ϕn|
.

Hence (by using |ϕn| ≥ 1/n and |∇|ϕn|| ≤ |∇ϕn|)

|(∆ + a)|ϕn|| ≤ |∇∗∇ϕn + aϕn| + n|∇ϕn|2 ≤ |∇∗∇ϕ + aϕ| + a/n + n|∇ϕ|2.

|∇∗∇ϕ + aϕ| + a/n ∈ L∞ and n|∇ϕ|2 ∈ L1. Therefore we can apply Lemma A.3 to |ϕn|
and get

|ϕn(x)| =

∫
g(x, y)(∆y + a)|ϕn(y)|dvol(y).

From (55) and the Kato inequality |∇|ϕn|| ≤ |∇ϕn|,

(∆y + a)|ϕn(y)| ≤ |∇∗∇ϕn + aϕn| ≤ |∇∗∇ϕ + aϕ| + a/n.

Thus

|ϕn(x)| ≤
∫

g(x, y)|∇∗∇ϕ(y) + aϕ(y)|dvol(y) +
a

n

∫
g(x, y)dvol(y).

Let n → ∞. Then we get the desired bound. ¤

Proposition A.5. Let ϕ be a section of E of class C2, and suppose that ϕ and η :=

(∇∗∇ + a)ϕ are contained in L∞. Then

||ϕ||L∞ ≤ (8/a) ||η||L∞ .

Proof. There exists a point (θ1, t1) ∈ S3 × R where |ϕ(θ1, t1)| ≥ ||ϕ||L∞ /2. We have

∆|ϕ|2 = 2(∇∗∇ϕ, ϕ) − 2|∇ϕ|2 = 2(η, ϕ) − 2a|ϕ|2 − 2|∇ϕ|2.

Set M := ||ϕ||L∞ ||η||L∞ . Then

(∆ + 2a)|ϕ|2 ≤ 2(η, ϕ) ≤ 2M.

Define a function f on S3 × R by f(θ, t) := (2M/a) cosh
√

a(t − t1) = (M/a)(e
√

a(t−t1) +

e
√

a(−t+t1)). Then (∆ + a)f = 0, and hence (∆ + 2a)f = af ≥ 2M . Therefore

(∆ + 2a)(f − |ϕ|2) ≥ 0.

Since |ϕ| is bounded and f goes to +∞ at infinity, we have f −|ϕ|2 > 0 for |t| ≫ 1. Then

the weak minimum principle ([9, Chapter 3, Section 1]) implies f(θ1, t1)−|ϕ(θ1, t1)|2 ≥ 0.

This means that ||ϕ||2L∞ /4 ≤ |ϕ(θ1, t1)|2 ≤ (2M/a) = (2/a) ||ϕ||L∞ ||η||L∞ . Thus ||ϕ||L∞ ≤
(8/a) ||η||L∞ . ¤

Lemma A.6. Let η be a compact-supported smooth section of E. Then there exists a

smooth section ϕ of E satisfying (∇∗∇ + a)ϕ = η and

|ϕ(x)| ≤
∫

S3×R
g(x, y)|η(y)|dvol(y).
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Proof. Set L2
1(E) := {ξ ∈ L2(E)| ∇ξ ∈ L2} and (ξ1, ξ2)a := (∇ξ1,∇ξ2)L2 + a(ξ1, ξ2)L2 for

ξ1, ξ2 ∈ L2
1(E). (Since a > 0, this inner product defines a norm equivalent to the standard

L2
1-norm.) η defines the bounded functional

(·, η)L2 : L2
1(E) → R, ξ 7→ (ξ, η)L2 .

From the Riesz representation theorem, there uniquely exists ϕ ∈ L2
1(E) satisfying (ξ, ϕ)a =

(ξ, η)L2 for any ξ ∈ L2
1(E). Then we have (∇∗∇ + a)ϕ = η in the sense of distribution.

From the elliptic regularity, ϕ is smooth. ϕ and ∇ϕ are in L2, and (∇∗∇ + a)ϕ = η is in

L∞. Hence we can apply Lemma A.4 to ϕ and get

|ϕ(x)| ≤
∫

g(x, y)|∇∗∇ϕ(y) + aϕ(y)|dvol(y) =

∫
g(x, y)|η(y)|dvol(y).

¤

Proposition A.7. Let η be a smooth section of E satisfying ||η||L∞ < ∞. Then there

exists a smooth section ϕ of E satisfying (∇∗∇ + a)ϕ = η and

(56) |ϕ(x)| ≤
∫

S3×R
g(x, y)|η(y)|dvol(y).

(Hence ϕ is in L∞.) In particular, if η vanishes at infinity, then ϕ also vanishes at

infinity. Moreover, if a smooth section ϕ′ ∈ L∞(E) satisfies (∇∗∇+ a)ϕ′ = η (η does not

necessarily vanishes at infinity), then ϕ′ = ϕ.

Proof. Let ρn (n ≥ 1) be the cut-off functions introduced in Lemma A.3, and set ηn := ρnη.

From Lemma A.6, there exists a smooth section ϕn satisfying (∇∗∇ + a)ϕn = ηn and

(57) |ϕn(x)| ≤
∫

g(x, y)|ηn(y)|dvol(y) ≤
∫

g(x, y)|η(y)|dvol(y).

Hence {ϕn}n≥1 is uniformly bounded. Then by using the Schauder interior estimate ([9,

Chapter 6]), for any compact set K ⊂ S3 × R, the C2,α-norms of ϕn over K are bounded

(0 < α < 1). Hence there exists a subsequence {ϕnk
}k≥1 and a section ϕ of E such

that ϕnk
→ ϕ in the C2-topology over every compact subset in S3 × R. Then ϕ satisfies

(∇∗∇ + a)ϕ = η. ϕ is smooth by the elliptic regularity, and it satisfies (56) from (57).

Suppose η vanishes at infinity. Set K :=
∫

g(x, y)dvol(y) < ∞ (independent of x).

For any ε > 0, there exists a compact set Ω1 ⊂ S3 × R such that |η| ≤ ε/(2K) on the

complement of Ω1. There exists a compact set Ω2 ⊃ Ω1 such that for any x ̸∈ Ω2

||η||L∞

∫
Ω1

g(x, y)dvol(y) ≤ ε/2.

Then from (56), for x ̸∈ Ω2,

|ϕ(x)| ≤
∫

Ω1

g(x, y)|η(y)|dvol(y) +

∫
Ωc

1

g(x, y)|η(y)|dvol(y) ≤ ε/2 + ε/2 = ε.

This shows that ϕ vanishes at infinity.
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Suppose that smooth ϕ′ ∈ L∞(E) satisfies (∇∗∇ + a)ϕ′ = η. We have (∇∗∇ + a)(ϕ −
ϕ′) = 0, and ϕ− ϕ′ is contained in L∞. Then the L∞-estimate in Proposition A.5 implies

ϕ − ϕ′ = 0. ¤
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