INSTANTON APPROXIMATION, PERIODIC ASD CONNECTIONS,
AND MEAN DIMENSION

SHINICHIROH MATSUO AND MASAKI TSUKAMOTO

ABSTRACT. We study a moduli space of framed ASD connections over S2 x R. We
consider not only finite energy ASD connections but also infinite energy ones. So the
moduli space is infinite dimensional. We study the (local) mean dimension of this infi-
nite dimensional moduli space. We show the upper bound on the mean dimension by
using a “Runge-approximation” for ASD connections, and we prove its lower bound by

constructing an infinite dimensional deformation theory of periodic ASD connections.

1. INTRODUCTION

Since Donaldson [4] discovered his revolutionary theory, many mathematicians have
intensively studied the Yang-Mills gauge theory. There are several astonishing results on
the structures of the ASD moduli spaces and their applications. But most of them study
only finite energy ASD connections and their finite dimensional moduli spaces. Almost
nothing is known about infinite energy ASD connections and their infinite dimensional
moduli spaces. (One of the authors struggled to open the way to this direction in [18, 19].)
This paper studies an infinite dimensional moduli space coming from the Yang-Mills
theory over S x R. Our main purposes are to prove estimates on its “mean dimension”
(Gromov [12]) and to show that there certainly exists a non-trivial structure in this infinite
dimensional moduli space. (Mean dimension is a “dimension of an infinite dimensional
space averaged by a group action”.)

The reason why we consider S® x R is that it is one of the simplest non-compact anti-
self-dual 4-manifolds of (uniformly) positive scalar curvature. (Indeed it is conformally
flat.) These metrical conditions are used via the Weitzenbock formula (see Section 4.1).
Recall that one of the important results of the pioneering work of Atiyah-Hitchin-Singer
[1, Theorem 6.1] is the calculation of the dimension of the moduli space of (irreducible)
self-dual connections over a compact self-dual 4-manifold of positive scalar curvature. So
our work is an attempt to develop an infinite dimensional analogue of [1, Theorem 6.1].
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Of course, the study of the mean dimension is just a one-step toward the full under-
standing of the structures of the infinite dimensional moduli space. (But the authors
believe that “dimension” is one of the most fundamental invariants of spaces and that
the study of mean dimension is a crucial step toward the full understanding.) So we need
much more studies, and the authors hope that this paper becomes a stimulus to a further
study of infinite dimensional moduli spaces in the Yang-Mills gauge theory.

Set X := 93 x R. Throughout the paper, the variable ¢t means the variable of the R-
factor of X = S x R. (That is, t : X — R is the natural projection.) S® x R is endowed
with the product metric of a positive constant curvature metric on S* and the standard
metric on R. (Therefore X is S3(r) x R for some 7 > 0 as a Riemannian manifold, where
S3(r) = {z e RY|z| =r}.) Let E := X x SU(2) be the product principal SU(2)-bundle
over X. The additive group Z acts on X by X x Z > ((0,t),s) — (0,t +s) € X. This
action trivially lifts to the action on E by E X Z > ((0,t,u),s) — (6,t + s,u) € E.

Fix a point 0y € S3. Let d > 0. We define the “periodically framed moduli space” M,
as the set of all gauge equivalence classes [A, p] satisfying the following conditions. A is

an ASD connection on E satisfying
(1) [E(A)] - < d,

and p is a map from Z to E satisfying p(n) € E(g, ) for each n € Z. Here Eg, ) is the
fiber of E over (6y,n) € X. We have [A, p| = [B, q] if there exists a gauge transformation
g : E — E satisfying g(A) = B and g(p(n)) = q(n) for all n € Z.

My is equipped with the topology of C*-convergence on compact subsets: a sequence
[An, pn] (n > 1) converges to [A, p] in M, if there exists a sequence of gauge transforma-
tions g, of E such that g,(A,) converges to A as n — oo in the C*-topology over every
compact subset in X and that g,(p,(k)) — p(k) as n — oo for every k € Z. M, becomes
a compact metrizable space by the Uhlenbeck compactness ([21, 22]). The additive group
7 continuously acts on M, by

Mg xZ— Mq, ([A,pl,7)— VA~ D

where v* is the pull-back by v : E — E. Then we can consider the mean dimension
dim(My : Z). Intuitively,

di
dim(Mgy : Z) = %j‘wd.

(This is 0co/o00. The precise definition will be given in Section 2.) Our first main result is

the following estimate on the mean dimension.

Theorem 1.1.
3 <dim(M,:Z) < oc.
Moreover, dim(My : Z) — +00 as d — +o0.
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For an ASD connection A on E we define p(A) by setting

1
(2) p(A):= lim sup/ |F'(A)|*dvol.
S3x[t,t+7T]

T—+o00 72T teR

This limit always exists because we have the following subadditivity.

sup / [F(A)[2dvol
teR J S3x [t,t+T1 +T2}

< sup/ |F(A)[*dvol + sup/ |F(A)|*dvol.
S3x [t,t+Th] S3x[t,t+T5)

teR teR

p(A) is translation invariant; For s € R, we have p(s*A) = p(A), where s*A is the pull-
back of A by themap s: E = S*xRxSU(2) — E, (0,t,u) — (0,t+s,u). We define p(d)
as the supremum of p(A) over all ASD connections A on E satisfying |F(A)|; - < d.
Let A be an ASD connection on E. We call A a periodic ASD connection if there exist
T > 0, a principal SU(2)-bundle E over S x (R/TZ), and an ASD connection A on E
such that (E, A) is gauge equivalent to (7*(E), 7*(A)) where 7 : S x R — 3% x (R/TZ)
is the natural projection. (Here S® x (R/TZ) is equipped with the metric induced by the

covering map 7.) Then we have

o 1 2 _CZ(E)
3) o) = 7 | o A vl = 22

We define ppe,i(d) as the supremum of p(A) over all periodic ASD connections A on E

satisfying |F'(A)|;~ < d. (Note that we impose the strict inequality condition here.)
If d = 0, then such an A does not exist. Hence we set p,ei(0) := 0. (If d > 0, then
the product connection A is a periodic ASD connection satisfying |F(A)];. =0 < d.)
Obviously we have p,ei(d) < p(d). Our second main result is the following estimates on

the “local mean dimensions”.

Theorem 1.2. For any [A, p] € My,
dimpa p)(Ma : Z) < 8p(A) + 3.
Moreover, if A is a periodic ASD connection satisfying |F(A)|;~ < d, then
dimya p) (Mg : Z) = 8p(A) + 3.
Therefore,
8pperi(d) + 3 < dimy,.(My : Z) < 8p(d) + 3.

Here dima p (Mg : Z) is the “local mean dimension” of My at [A, p|, and dimy,.(My :
Z) = Sup(a plem, dimpa p) (Mg : Z) is the “local mean dimension” of M. These notions
will be defined in Section 2.2.

Note that

lim pperi(d) = +o00.

d—oo
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This obviously follows from the fact that for any integer n > 0 there exists an ASD
connection on S* x (R/Z) whose second Chern number is equal to n. This is a special
case of the famous theorem of Taubes [16]. (Note that the intersection form of S% x S!
is zero.) We have dim(M, : Z) > dim,.(My : Z) (see (5) in Section 2.2). Hence the
statements that dim(M, : Z) > 3 and dim(M, : Z) — oo (d — o0) in Theorem 1.1
follow from the inequality dimye.(Mg : Z) > 8pperi(d) + 3 in Theorem 1.2.

Remark 1.3. All principal SU(2)-bundle over S* x R is gauge equivalent to the product
bundle E. Hence the moduli space M, is equal to the space of gauge equivalence classes
[E, A, p] satisfying the following conditions. F is a principal SU(2)-bundle over X, and
A is an ASD connection on F satisfying |F(A)| < d. p : Z — FE is a map satisfying
p(n) € Egyny. We have [Ey, Ay, pi] = [Es, As,p] if and only if there exists a bundle
map g : By — Es satisfying g(A;) = As and g(p1(n)) = po(n) for all n € Z. In this
description, the topology of M, is described as follows. A sequence [E,,, Ay, p,] (n > 1)
in M, converges to [E, A, p] if and only if there exist gauge transformations g, : E, — E
(n > 1) such that g,(A,) converges to A as n — oo in C* over every compact subset in
X and that g,(p.(k)) — p(k) as n — oo for every k € Z.

Remark 1.4. An ASD connection satisfying the condition (1) is a Yang-Mills analogue
of a “Brody curve” (cf. Brody [3]) in the entire holomorphic curve theory (Nevanlinna
theory). It is widely known that there exist several similarities between the Yang-Mills
gauge theory and the theory of (pseudo-)holomorphic curves (e.g. Donaldson invariant
vs. Gromov-Witten invariant). On the holomorphic curve side, several researchers in
the Nevanlinna theory have systematically studied the value distributions of holomorphic
curves (of infinite energy) from the complex plane C. They have found several deep
structures of such infinite energy holomorphic curves. Therefore the authors hope that

infinite energy ASD connections also have deep structures.

The rough ideas of the proofs of the main theorems are as follows. (For more about the
outline of the proofs, see Section 3.) The upper bounds on the (local) mean dimension
are proved by using the Runge-type approximation of ASD connections (originally due to
Donaldson [5]). This “instanton approximation” technique gives a method to approximate
infinite energy ASD connections by finite energy ones (instantons). Then we can construct
“finite dimensional approximations” of My by moduli spaces of (framed) instantons. This
gives a upper bound on dim(M, : Z). The lower bound on the local mean dimension
is proved by constructing an infinite dimensional deformation theory of periodic ASD
connections. This method is a Yang-Mills analogue of the deformation theory of “elliptic
Brody curves” developed in Tsukamoto [20].

A big technical difficulty in the study of M, comes from the point that ASD equation
is not elliptic. When we study the Yang-Mills theory over compact manifolds, this point

can be easily overcome by using the Coulomb gauge. But in our situation (perhaps) there
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is no such good way to recover the ellipticity. So we will consider some “partial gauge
fixings” in this paper. In the proof of the upper bound, we will consider the Coulomb
gauge over S% instead of S x R (see Proposition 6.1). In the proof of the lower bound, we
will consider the Coulomb gauge over S® x R, but it is less powerful and more technical
than the usual Coulomb gauges over compact manifolds (see Proposition 8.6).
Organization of the paper: In Section 2 we review the definition of mean dimension
and define local mean dimension. In Section 3 we explain the outline of the proofs of
Theorem 1.1 and 1.2. Sections 4, 5 and 6 are preparations for the proof of the upper
bounds on the (local) mean dimension. In Section 7 we prove the upper bounds. Section
8 is a preparation for the proof of the lower bound. In Section 9 we develop the defor-
mation theory of periodic ASD connections and prove the lower bound on the local mean
dimension. In Appendix A we prepare some basic results on the Green kernel of A + 1.
Acknowledgement. The authors wish to thank Professors Kenji Nakanishi and Yoshio
Tsutsumi. When the authors studied the lower bound on the local mean dimension, they
gave the authors several helpful advices. Their advices were very useful especially for

preparing the arguments in Section 8.

2. MEAN DIMENSION AND LOCAL MEAN DIMENSION

2.1. Review of mean dimension. We review the definitions and basic properties of
mean dimension in this subsection. For the detail, see Gromov [12] and Lindenstrauss-
Weiss [14]. We need only the mean dimension for Z-actions. So we consider only Z-action
cases, but we try to formulate the notions so that it can be easily generalized to the case
of actions of general amenable groups.

Let (X,d) be a compact metric space, Y be a topological space, and f: X — Y be a
continuous map. For € > 0, f is called an e-embedding if we have Diamf~!(y) < ¢ for
all y € Y. We define Widim, (X, d) as the minimum integer n > 0 such that there exist a
polyhedron P of dimension n and an e-embedding f : X — P. We have

lim Widim. (X, d) = dim X,
where dim X denotes the topological covering dimension of X. For example, consider
[0,1] x [0, e] with the Euclidean distance. Then the natural projection 7 : [0, 1] x [0,¢] —
[0,1] is an e-embedding. Hence Widim.([0, 1] x [0, ], Euclidean) < 1. The following is
given in Gromov [12, p. 333]. (For the detailed proof, see also Gournay [10, Lemma 2.5]
and Tsukamoto [20, Appendix].)

Lemma 2.1. Let (V,|-|) be a finite dimensional normed linear space over R. Let B.(V)
be the closed ball of radius r > 0 in V. Then

Widim, (B.(V), |-]) = dimV (e < r).

Widim, (X, d) satisfies the following subadditivity. (The proof is obvious.)
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Lemma 2.2. For compact metric spaces (X,dx), (Y,dy), we set (X,dx) x (Y,dy) =
(X XY, dxxy) with dxxy (1, 91), (¥2,92)) := max(dx (v, 22), dy (y1,2)). Then we have

Widim, ((X,dx) x (Y, dy)) < Widim. (X, dx) + Widim. (Y, dy).
The following will be used in Section 7.1

Lemma 2.3. Let (X,d) be a compact metric space and suppose X = X1 U Xy with closed
sets X1 and Xo. Then

Widim, (X, d) < Widim, (X7, d) + Widim. (X5, d) + 1.
In general, if X = X, UXoU---UX, (X;: closed), then

Widim. (X, d) <> Widim, (X;,d) +n — 1.
=1

Proof. There exist a finite polyhedron P; (i = 1,2) with dim P, = Widim. (X}, d) and an e-
embedding f; : (X;,d) — P,. Let PixPy, = {tz®(1—t)y|z € X1,y € X5,0 <t < 1} be the
join of Py and Py. (Pyx Py = [0,1]x Py x Py/ ~, where (0, z,y) ~ (0,2',y) for any z, 2" € X
and (1,z,y) ~ (1,z,y') for any y,y € Y. to @ (1 —1t)y is the equivalence class of (¢, z,v).)
Py P, is a finite polyhedron of dimension Widim, (X1, d)+Widim. (X, d)+1. Since a finite
polyhedron is ANR, there exists a open set U; D X; over which the map f; continuously
extends. Let p be a cut-off function such that 0 < p < 1, suppp C U; and p(x) = 1 if
and only if z € X;. Then supp(l — p) = X\ X; C Xy C U,. We define a continuous
map F : X — P x Py by setting F(x) := p(x) fi(z) & (1 — p(x)) f2(x). F becomes an &-
embedding; Suppose F(z) = F(y). If p(x) = p(y) = 1, then z,y € X; and fi(z) = fi(y).
Then d(x,y) <e. If p(z) = p(y) < 1, then z,y € Xy and fo(x) = fo(y). Then d(x,y) < e.
Thus Widim. (X, d) < dim P; * P, = Widim, (X1, d) + Widim. (X5, d) + 1. O

Suppose that the additive group Z continuously acts on X. For a subset 2 C Z, we
define a distance dq(+,-) on X by
do(z,y) :==supd(n.z,n.y) (z,y € X).
neq

A sequence €2 C €y C €3 C --- of finite subsets in Z is called an amenable sequence if
for each r > 0

10201 /2] — 0 (n — 00),
where 0,(),, is the r-boundary of §2,, given by
0., ={x €Z|FyeQ,:|lzv—y|<rand3z€Z\Q,: |r—z| <r}

For example, €2, := {0,1,2,--- ,n—1} (n > 1) is an amenable sequence. ,, := {—n, —n+
1,---,-1,0,1,--- ;n—1,n} (n > 1) is also an amenable sequence. We need the following
“Ornstein-Weiss lemma” ([12, pp. 336-338] and [14, Appendix]).
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Lemma 2.4. Let h : {finite subsets in Z} — Rso be a map satisfying the following.
(i) If Q1 C Qs, then h(21) < ().
(1) h(2; U Qo) < h(Qq) + h(s).
(iii) For any v € Z and a finite subset Q@ C Z, h(y+ Q) = h(Q), where y+Q :={y+x €
Z|x € Q}.

Then for any amenable sequence {§2,}n>1, the limit lim, o h(€2,)/|2| always ezists
and is independent of the choice of {Q,}.

Lemma 2.5. The map Q — Widim. (X, dq) satisfies the conditions in Lemma 2.4.

Proof. 1f Q1 C g, then the identity map (X, dg,) — (X, dg,) is distance non-decreasing.
Hence Widim, (X, dg,) < Widim. (X, dg,). The map (X, do,u0,) — (X, da,) x (X,dq,),
xr — (x,z), is distance preserving. Hence, by using Lemma 2.2, Widim. (X, dg,u0,) <
Widim. (X, dg, )+Widim. (X, dg,). The map (X, d,1q0) — (X, dq), z — vz, is an isometry.
Hence Widim, (X, d,+q) = Widim. (X, dg). O

Suppose that an amenable sequence {€,},,>1 is given. For ¢ > 0, we set
1
Widim, (X : Z) := lim mWidimE(X, dg,,)-

This limit exists and is independent of the choice of an amenable sequence {2, },,>1. The
value of Widim.(X : Z) depends on the distance d. Hence, strictly speaking, we should
use the notation Widim,((X,d) : Z). But we use the above notation for simplicity. We
define dim(X : Z) (the mean dimension of (X,Z)) by

dim(X : Z) := lir% Widim, (X : Z).

This becomes a topological invariant, i.e., the value of dim(X : Z) does not depend on
the choice of a distance compatible with the given topology of X.

Example 2.6. Let B C RY be the closed ball. Z acts on BZ by the shift. Then
dim(B”%: Z) = N.

For the proof of this equation, see Lindenstrauss-Weiss [14, Proposition 3.1, 3.3] or
Tsukamoto [19, Example B.2].

Let Y C X be a closed subset. Then the map Q — sup,c, Widim. (Y, dy+q) satisfies
the conditions in Lemma 2.4. Hence we can set

1
Widim (Y € X : Z) := lim ( sup Widim, (Y, dk+9n)) ,

n—oo \ || rez

where {Q,},>1 is an amenable sequence. We define

dim(Y C X : Z) := lin%Widima(Y CX:Z).



8 S. MATSUO AND M. TSUKAMOTO

This does not depend on the choice of a distance compatible with the given topology of
X. Note that we have Widim.(Y, dr+q) = Widim.(k.Y, dq) < Widim.(X, dg) because
(Y, dptq) — (k.Y,dq), x — kx, is an isometry. Therefore

dim(Y € X :Z) <dim(X : Z) =dim(X C X : Z).
If Y7 C Y5, then
dim(Y; € X : Z) <dim(Y> C X : Z).
If Y C X is a Z-invariant closed subset, then
dim(Y € X : Z) = dim(Y : Z),

where the right-hand-side is the ordinary mean dimension of (Y,Z). Let X; and X, be
compact metric spaces with continuous Z-actions. Let Y7 C X; and Y5 C X5 be closed
subsets. If there exists a Z-equivariant topological embedding f : X; — X, satisfying
f(Y1) C Y3, then

(4) dim(Y; € X;:Z) < dim(Y; C X5 : Z).

2.2. Local mean dimension. Let (X, d) be a compact metric space. The usual topo-
logical dimension dim X is a “local notion” as follows: For each point p € X, we define
the “local dimension” dim, X at p by dim, X := lim, o dim B,(z). (Here B,(p) is the
closed r-ball centered at p.) Then we have dim X = sup,cx dim, X. The authors don’t
know whether a similar description of the mean dimension is possible or not. Instead, in
this subsection we will introduce a new notion “local mean dimension”.

Suppose that the additive group Z continuously acts on X. For each point p € X and
r > 0, we denote B,.(p)z as the closed r-ball centered at p with respect to the distance
dz(-,-):

B,(p)z :={z € X|dz(x,p) <r}.

Note that dz(z,y) < r < d(n.x,n.y) < r for all n € Z. B,(p)z is a closed set in X. We
define the local mean dimension of X at p by

dim,(X : Z) := limdim(B,(p)z C X : Z).

r—0
This is independent of the choice of a distance compatible with the topology of X. We
define the local mean dimension of X by

dimy,e(X : Z) := sup dim, (X : Z).

peX

Obviously we have
(5) dimyee(X : Z) < dim(X : Z).

Let X,Y be compact metric spaces with continuous Z-actions. If there exists a Z-

equivariant topological embedding f : X — Y, then, from (4), for all p € X
dim, (X : Z) < dimy,,) (Y : Z).
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Example 2.7. Let B C RY be the closed ball centered at the origin. Then we have
dimg(B? : Z) = dimye.(B% : Z) = dim(B” : Z) = N,
where 0 = (---,0,0,0,---) € BZ.

Proof. Fix a distance on BZ. Then it is easy to see that for any r > 0 there exists s > 0
such that BZ C B,(0)z, where B, is the s-ball in RY. Then

N = dim(B? : Z) < dim(B,(0)z C B*:Z) < dim(B*: Z) = N.
Hence dimg(B% : Z) = N. O
We will use the following formula in Section 7.2. Since k.B,.(p)z = B,.(kp)z, we have
Widim, (B, (p)z, dk+a) = Widim. (k.B,(p)z, da) = Widim. (B, (kp)z, do),

and hence

(6) Widim. (B, (p)s C X : Z) = lim ( !

n—oo

sup Widim, (B, (kp)z, da, )) .
’Qn‘ keZ

The following will be used in Section 9.2.

Example 2.8. Let G be a compact Lie group, and G% be the infinite product of G indexed
by integers. G acts on GZ by g(un)nez := (gUn)nez. Let GZ/G be the quotient by this
action. Then for any point [p] € GZ/G,

dimy,(G*/G : Z) = dim(G*/G : Z) = dim G.
Proof. We define a distance d(-,-) on G%/G by setting
d([(zn)nez], [(Yn)nez]) = guelgz 2_|n‘c_l(gxm Yn),

neZ
where d(-, ) is a two-sided-invariant distance on G. Set Qy := {0,1,2,--- ,N—1} (N > 1).
For any € > 0, let L = L(e) be a positive integer satisfying
Y 27" < £/Diam(G).
[n|>L

Then it is easy to see that the map
GZ/G - GNHLH/G, [(ﬂfn)nez] = [(ﬂf—L,ﬂf—LH, T JUN+L)]-

is an e-embedding with respect to the distance dg, . G¥ 271 /(G is a manifold of dimension
(N + 2L)dim G. Hence Widim,(G%/G,dq, ) < (N + 2L) dim G, and
1

lim —— Widim.(G%/G, dg,,) < dim G.

N—oo |QN|
Then for any point [p] € G*/G, dim,(G*/G : Z) < dim(G*/G : Z) < dim G.

Let p = (pn)nez be a point in GZ, and r > 0. Let Lie(G) be the Lie algebra of G with

a norm | - |. We take ry > 0 so that the map {z € Lie(G)||z| < ro} 2z +— e* € G
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becomes a topological embedding. We choose ' = r/(r) < ry so that every z € Lie(G)
with |z| < r’ satisfies d(e®,1) < r/3 (& d(e"pn,pn) < r/3). Fix an integer m > 0, and
define A,, C (Lie(G))% by

Ay = {(xn)nez| |2n] < 7' for all n, and x, = 0 for n € mZ.}.

Define f : An — G/G by f((z)nca) i= [(€"Pane]. Then f(An) C Br(fpl)z. For
g € G and (2)nez, (Yn)nez in Ay, since g = yp = 0 and d(g, 1) = d(ge™, ™),

—_

m—1
> 27md(ge™ vy > Y 27 (d(ge™ ) + d(g, 1)),
n=0

3

3 3
_

Vv

—-n Tn Yn > —-m Tn Yn
12 d(e™,e’") > 2 ogI%an}f—ld(e ,evm).

3
I

Hence dg, . ([(€"pn)nez], [(€"Dn)nez]) > 27™ maxo<p<mny—1 d(e™", e¥). We choose ¢ =
g(r,m) > 0 so that if z,y € Lie(G) with |z|, |y| < r’ satisfy d(e”, e?) < 2™e then |z —y| <
r’'/2. Then, if (,)nez and (Yn)nez in Ay, satisty da,  ([(€""Pn)nez], [(€¥"Dn)ez]) < €, we
have maxo<p<mn—1|Tn — Yn| < 7'/2. Then, by using Lemma 2.1,

Widim, (B, ([p])z, da,,y) > Widim, jo( By (Lie(G))™ YN ||, ) = (m — 1)N dim G.
From this estimate, we get
dimg,(G*/G : Z) > (1 - 1/m) dim G.

Let m — oo. Then we get the conclusion: dimp,(G*/G : Z) > dimG. O

3. OUTLINE OF THE PROOFS OF THE MAIN THEOREMS

The ideas of the proofs of Theorem 1.1 and 1.2 are simple. But the completion of
the proofs needs lengthy technical arguments. So we want to describe the outline of the
proofs in this section. Here we don’t pursue the accuracy of the arguments for simplicity
of the explanation. Some of the arguments will be replaced with different ones in the later
sections.

First we explain how to get the upper bound on the mean dimension of M . We define
a distance on M, by setting

dist([A, p], [B, q])

A) - > (|t|I<n —
= inf {22—“ 19(4) = Bl qusn) +> 2 '”'Ig(p(n))—q(n)!},

gE—E o1 1 + ||g(A) - B”Loo(|t|§n) nez

where ¢ runs over gauge transformations of E, and |t| < n means the region {(0,t) €
S3 x R||t] < n}. For R = 1,2,3,---, we define an amenable sequence Qp C Z by
Qr:={ne€Zl - R<n<R}



INSTANTON APPROXIMATION, PERIODIC ASD CONNECTIONS, AND MEAN DIMENSION 11

Let € > 0 be a positive number and define a positive integer L = L(g) so that

(7) > 27" < 2(1 + 2Diam(SU(2)))’

n>L

Let D = D(e) be a large positive integer which depends on e but is independent of R,
and set T := R+ L+ D. (D is chosen so that the condition (8) below is satisfied. Here
we don’t explain how to define D precisely.) For ¢ > 0 we define Mr(c) as the space of
the gauge equivalence classes [A, p| where A is an ASD connection on E satisfying

1
—/ |Fa|?dvol < ¢,
812 Jx

and p is a map from {n € Z| =T < n < T} to E with p(n) € Eg,n) (=T <n <T). The
index theorem gives the estimate:

dim My (c) < 8¢+ 6T

We want to construct an e-embedding from (Mg, distg,,) to Mr(c) for an appropriate
c>0.

Let (A, p) be a framed connection on E with [A, p] € M,;. We “cut-oft” (A, p) over
the region 7' < [t| < T+ 1 and produce a new framed connection (A’ p’) satisfying the
following conditions. A’ is a (not necessarily ASD) connection on E satisfying A'|y<r =
Aly<r, F(A") =0over [t| > T + 1, and

2T d*vol(S?)
872

L[y <

+ const,
87T2 X - 87T

/ |F(A)|*dvol 4 const <
lt|<T

where const is a positive constant independent of € and R. p’is a map from {n € Z|-T <
n < T} to E with p'(n) = p(n) € Eg, . Next we “perturb” A’ and produce an ASD

connection A” on FE satisfying

(®) A-A'|=|A—A"|<e/s (|<T-D=R+1L)

2Td2 1(S3
/ |F(A”)|*dvol = —/ tr(F(A")? 8VO (5°) + const.

Then we can define the map

2T d*vol(S?)

872

Mg — My ( —i—const) . [A pl—[A" D]
The conditions (7), (8) and p'(n) = p(n) (|n| < T) imply that this map is an e-embedding
with respect to the distance distq,. Hence

+ & - const + 67"

2T d*vol(S? 2T d?*vol(S3
Widim, (Mg, distq,,) < dim My (ﬂ + Const) < 2Tdvol(57)

872 2
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(Caution! This estimate will not be proved in this paper. The above argument contains
a gap.) Recall T = R+ L + D. Since L, D and const are independent of R, we get

Widim, (Mg, distq,,) < d*vol(S?)

li )
R 1l - R
Hence we get
d*vol(S?
9) dim(My : Z) < w +3 < +o0.

™

This is the outline of the proof of the upper bound on the mean dimension. (The upper
bound on the local mean dimension can be proved by investigating the above procedure
more precisely.) Strictly speaking, the above argument contains a gap. Actually we have
not so far succeeded to prove the estimate dim(M, : Z) < d?vol(S?)/n%+ 3. In this paper
we prove only dim(My : Z) < +00. A problem occurs in the cut-off construction. Indeed
(we think that) there exists no canonical way to cut-off connections compatible with the
gauge symmetry. Therefore we cannot define a suitable cut-off construction all over M.
Instead we will decompose My as Mg = U,<; joy Mar(i,7) (IV is independent of £ and
R) and define a cut-off construction for each piece My 7 (i, j) independently. Then we will
get an upper bound worse than (9) (cf. Lemma 2.3). We study the cut-off construction
(the procedure [A, p] — [A’,p']) in Section 6. This construction uses the framing p as an
essential data. In Section 4 and 5 we study the perturbation procedure (A’ — A”). The
perturbation does not use the framing. The upper bounds on the (local) mean dimension
are proved in Section 7.

Next we explain how to prove the lower bound on the local mean dimension. Let T > 0,
E be a principal SU(2)-bundle over S* x (R/TZ), and A be a non-flat ASD connection
on E satisfying |F'(A)| < d. For simplicity of the explanation, we assume 7" = 1. When
T # 1 (in particular, when T is an irrational number), we need some modifications of the
arguments below.

Let 7 : S3 x R — S% x (R/Z) be the natural projection, and set £ := 7*(E) and
A :=7*(A). We define the infinite dimensional Banach space H} by

1} = {a € Q'(adE)| (d} + d})a = 0, Ja] . < o0},

There exists a natural Z-action on H). Let r > 0 be a sufficiently small number. For
each a € H} with Ja|;. <7 we can construct a € Q'(adFE) (a small perturbation of a)
satisfying F*(A+4+a) =0 and |[F(A+a)| <d. If a =0, then a = 0.

For n > 1, let m, : S® x (R/nZ) — S® x (R/Z) be the natural projection, and set
E, = 7;(E) and A, := m;(A). We define H} as the space of a € Q(adFE,) satisfying
(d%, +d} )a = 0. We can identify H) with the subspace of H}; consisting of nZ-invariant
elements. The index theorem gives

dim H) = 8ncy(E).
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Let (*(Z,su(2)) be the Banach space of (u,)nez in su(2)? satistying [(un)nezle =
SUD,ez [Un] < 00. €°(Z, su(2)) also admits a natural Z-action. Set V := H} x(>(Z, su(2))
with [(a, (un)nez)ly = max(|a] o, | (un)nezle). We define V,, € V (n > 1) as the
subspace of V' consisting of nZ-invariant elements. V, = H) x (*(Z/nZ,su(2)) and
hence
dimV,, = 8nes(E) + 3n.

Take p € E, o)) and let p, € Eg, n) (n € Z) be its lifts. We define the map from B,.(V)

(the r-ball of V centered at the origin) to M, by

BT(V) - Md7 (&7 (un)nEZ) = [E> A + da (pneu”)nez]-

(cf. the description of M, in Remark 1.3.) This map becomes a Z-equivariant topological
embedding for r < 1. (Here B,(V') is endowed with the following topology. A sequence
{(an, (u](gn))keZ)}nzl in B,(V') converges to (a, (ug)rez) in B, (V) if and only if a,, uniformly
converges to a over every compact subset and u,(:) converges to uy, for every k € Z.) Then
we have

dim[E,A,(pn)nez]<Md 1 Z) > dimg(B,. (V) : Z).
The right-hand-side is the local mean dimension of B, (V') at the origin. We can prove

that dimg(B,(V) : Z) can be estimated from below by “the growth of periodic points”:
dimg(B,(V) : Z) > lim dimV,,/n = 8cy(E) + 3 = 8p(A) + 3.

n—oo

(This is not difficult to prove. This is just an application of Lemma 2.1.) Therefore
dim[EvAv(pn)nEZ}(Md : Z) 2 8p(A) + 3

This is the outline of the proof of the lower bound. Here we consider only the “1-periodic”
ASD connection A and “the periodic framing” (p,)nez. Hence the real proof needs some
modifications.

4. PERTURBATION

In this section we construct the method of constructing ASD connections from “ap-
proximately ASD” connections over X = S x R. We basically follow the argument of
Donaldson [5]. As we promised in the introduction, the variable ¢t means the variable of
the R-factor of S% x R.

4.1. Construction of the perturbation. Let T be a positive integer, and d,d" be two
non-negative real numbers. Set g = 1/(1000). (The value 1/(1000) itself has no meaning.
The point is that it is an explicit number which satisfies (13) below.) Let E be a principal
SU(2)-bundle over X, and A be a connection on E satisfies

(i) Fa =0over [t| > T +1,

(ii) Ff is supported in {(0,t) € S* x R|T < |t| < T +1}, and ||F{ ||, < 0. Here || is
the “Taubes norm” defined below ((16) and (17)).
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(iii) |Fa| < d on |t| < T and HFX”LOO(X) < d'. (The condition (iii) is not used in Section
4.1, 4.2, 4.3. Tt will be used in Section 4.4.)

Let Qt(adE) be the set of smooth self-dual 2-forms valued in adE (not necessarily
compact supported). The first main purpose of this section is to solve the equation
FT(A+dy¢) =0 for ¢ € QT (adE). We have FT(A+dY¢) = F{ +didyo+ (Ao ndyd)T.
The Weitzenbock formula gives ([8, Chapter 6])

(10) did,¢ = §VAVA¢ + <g - W+) ¢+ Fy- 0,

where S is the scalar curvature of X and W is the self-dual part of the Weyl curvature.
Since X is conformally flat, we have W* = 0. The scalar curvature S is a positive
constant. Then the equation F'*(A + d’¢) = 0 becomes

(11) (ViVa+S/3)p+2Ff - o+ 2(d5¢ ANdyp)t = —2F 1.

Set cg = 10. Then

(12) [FY -l < col 4| -16], [(dadn A diyde)™| < colVada| - [Vadal.

(These are not best possible.!) The positive constant £y = 1/1000 in the above satisfies
(13) 50coso < 1.

Let A = V*V be the Laplacian on functions over X, and g(z,y) be the Green kernel of
A + S/3. We prepare basic facts on g(x,y) in Appendix A. Here we state some of them
without the proofs. For the proofs, see Appendix A. g(x,y) satisfies

(A, +5/3)g(x,y) = 0,(y).

This equation means that, for any compact supported smooth function ¢,

p(r) = /X 9(z,y)(Ay + S/3)p(y)dvol(y),

where dvol(y) denotes the volume form of X. g(z,y) is smooth outside the diagonal and
it has a singularity of order 1/d(x,y)?* along the diagonal:

(14) consty /d(x,y)* < g(z,y) < consty/d(z,y)?, (d(z,y) < consts),

where d(z,y) is the distance on X, and consty, consty, consts are positive constants.
g(x,y) >0 for x # y (Lemma A.1), and it has an exponential decay (Lemma A.2):

(15) 0 < g(z,y) < consty - e~ 5/3d(w,y) (d(z,y) >1).

Since S? x R = SU(2) xR is a Lie group and its Riemannian metric is two-sided invariant,
we have g(zx, zy) = g(xz,yz) = g(z,y). In particular, for z = (01,¢1) and y = (0o, 1), we

1Strictly speaking, the choice of ¢y depends on the convention of the metric (inner product) on su(2).
Our convention is: (A, B) = —tr(AB) for A, B € su(2).
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have g((61,t1 —to), (02,2 —to)) = g((01,t1), (02,t2)) (to € R). That is, g(x,y) is invariant
under the translation ¢ — ¢ — tg.
For ¢ € Q7 (adFE), we define the pointwise Taubes norm |¢|r(z) by setting

(16) 6lr(z) == /X oz, 9)|é)|dvolly) (z € X),

(Note that g(x,y) > 0 for z # y.) This may be infinity. We define the Taubes norm ||,
by

(17) |67 = sup @]z (x).
zeX

Set
K = / x,y)dvol(y) (this is independent of x € X).

(This is finite by (14) and (15).) We have

|6l < K [0 o -

We define Q1 (adE) as the set of ¢ € QT (adE) which vanish at infinity: lim, . |¢(z)| =
0. (Here z = (0,t) — oo means [t| — 400.) If ¢ € QF(adE),, then |¢|; < co and
lim, o [@|7(x) = 0. (See the proof of Proposition A.7.) For n € QF(adE)o, there
uniquely exists ¢ € Q1 (adE), satisfying (V4 V4 +5/3)¢ = n. (See Proposition A.7.) We
set (V4 V4 + 5/3)7'n = ¢. This satisfies

(18) |6(2)] < |nlr(z), and hence ] o < 1l
Lemma 4.1. lim, ., |[Va¢(z)| = 0.

Proof. From the condition (i) in the beginning of this section, A is flat over [¢t| > T"+ 1.
Therefore there exists a bundle map g : Eljsr41 — Xjysr+1 X SU(2) such that g(A) is
the product connection. Here Xysri1 = {(0,t) € S® x R|[t| > T+ 1} and E|ysr41 is
the restriction of E to Xy >741. We sometimes use similar notations in this paper. Set
¢ = g(¢) and 1 := g(n). They satisfy (V*V + S/3)¢' = /. (Here V is defined by the
product connection on X |y>r41 X SU(2) and the Levi-Civita connection.)

For [t| > T + 2, we set By := S x (t — 1,t + 1). From the elliptic estimates, for any
0 S3,

IV (0,0 < CUS oo,y + 11 oo ()
where C' is a constant independent of ¢. This means
Vad(0,1)] < CU] oo (s, + 1115 (5,)):

The right-hand-side goes to 0 as |t| goes to infinity. O

The following Lemma shows a power of the Taubes norm.
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Lemma 4.2.

IVa0l| . (2) == /Xg(ﬂf,y)IVAcb(y)Ideol(y) < [nlz [nlr(z).

In particular, [|V 4|’y = sup,ex [|VadPly (x) < Inly and |(dao A dad)*ly < collnlz-
Proof. V|¢|? = 2(V 4¢, ) vanishes at infinity (Lemma 4.1).
(A +28/3)[0]* = 2(ViVad + (S/3)¢,9) — 2|Vadl* = 2(, ) — 2|V ag|*.

In particular, (A + S/3)|¢|* vanishes at infinity (Lemma 4.1). Hence |¢|?, V|¢|?, (A +
S/3)|4|* vanish at infinity (in particular, they are contained in L>). Then we can apply
Lemma A.3 in Appendix A to |¢|? and get

/X o2, 9) (A, + S/3)[6(y) Pdvol(y) = |6(x)[2.

We have
Va0l = (1.6) — (A + S/3)Iof ~ 2o,
< (1.6) ~ 5(A + S/3)Io
Therefore
2 1 2
/X 9(z,y)|Vad(y)|“dvol(y) < /X g(z,y)(n(y), ¢(y))dvol(y) — 5\¢(y)! ,
< /X 9(z, y) (1(y), B(y))dvol(y),
<ol | sl lnidvol () < laly Ik (o)
In the last line we have used (18). O

For 11,19 € QT (adE)g, set ¢; := (V4Va+ S/3)7n; € QT (adE)y and

(19) B, m2) = (dydr A diyda)™ + (diyda A dygr) ™.

B is symmetric and |B(m1,m2)| < 2¢0|Vad1| - [Vage|. In particular, 3(ng,n2) € QT (adE)o
(Lemma 4.1).

Lemma 4.3. |5(n1,m2) |7 < 4deo[mly |2l 7

Proof. From Lemma 4.2, |3(n,n)|; < 2co|nl> Suppose |ml; = |n2ly = 1. Since
4B, m2) = B(m + na,m +n2) — Bl — m2,m — 12),

2 2
4181, m)lr < 2¢o |m + na2l7 + 2¢0 | — m2]7 < 16¢.

Hence |B(n1,m2)|7 < 4co. The general case follows from this. O
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For n € QT (adE)y, we set ¢ := (V3 V4 + 5/3)7'n € QT (adE) and define
®(n) == —2F4 - ¢ — B(n,n) — 2F; € QF (adE),.
If n satisfies n = ®(n), then ¢ satisfies the ASD equation (11).
Lemma 4.4. For ny,ne € QT (adE),,
[©(m) = @(m)ly < 2e0(||FX [l +20m +nalg) b = el

Proof.
() — (1) = —2F; - (¢1 — ¢p2) + Blm + m2,m2 — ).
From Lemma 4.3 and |¢1 — @200 < |11 — m2| 1 (see (18)),

[D(m1) — P(m2)lp < 2¢0 [Falp |61 — 2l oo + 4co |Im + 2l Im — n2lp
< 2¢(| FX | 7 4 2 Im + mellp) Im — n2ll7- -

Proposition 4.5. The sequence {n,}n>o0 in QT (adFE) defined by
=0, N1 =P(0),
becomes a Cauchy sequence with respect to the Taubes norm ||| and satisfies
[7n]l 7 < 3eo,
foralln > 1.
Proof. Set B := {n € Q" (adE)ol |n|; < 3s0}. For n € B (recall: HFXHT < &),

[2(0)ll < 2¢0 [|FX [ 1] e + 20 Inlz + 2| FA ]
< 2¢o20 |l + 2¢o Inllz + 220,
S (246080 + 2)80 S 350

Here we have used (13). Hence ®(n) € B. Lemma 4.4 implies (for ny,n, € B)

[2(m) = (n2)l < 2¢0([|F || + 2 Im + m2l7) Inn = 1l < 26¢020 [ — ol

17

26c0ep < 1 by (13). Hence ® : B — B becomes a contraction map with respect to the

norm |-|,. Thus 7,11 = ®(1,,) (7o = 0) becomes a Cauchy sequence.

O

The sequence ¢, € QF(adFE)y (n > 0) defined by ¢, := (V*Va + S/3)"'n, satisfies
lon — Gl < |7n — Wmlp. Hence it becomes a Cauchy sequence in L*(A*(adE)).

Therefore ¢,, converges to some ¢4 in L¥(AT(adFE)). ¢4 is continuous since every ¢, is

continuous. Indeed we will see later that ¢4 is smooth and satisfies the ASD equation

F*(A+ dyé,) = 0.
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We have 1,41 = ®(n,) = =2FF - ¢, — 2(d%dn N\ dydp)T — 2F.

2F7 - dulr(z) < 26, / o 1) F ()] 6a(v) [dvol(y),

< 260 FX |r(2) | nl o < 2¢0| Fi5 |7 (2) |10 -

12(dpn A dydn) () < 2¢0 |nlp |l (2)  (Lemma 4.2).
Hence
[1ngalr(2) < 2¢0 |l | FX () + 2¢0 [0l 10| (2) + 2| FX |2 ().
Since |, ] < 3eo,
st | () < 6cogo|nnlr (@) + (6coeo + 2)|FX |r(z).

By (13),

(6cogo + 2)| F'¥ ()
<

Recall that F'} is supported in {T' < [t| < T + 1}. Set

< 3|Ff|r(z).

é(z) == /T<t|<T+19(x,y)dvol(y) (x € X).

Then |Ff|r(z) < 6(x) |Fi|, - Note that §(z) vanishes at infinity because g(z,y) <
const - e~ V34 for d(x,y) > 1. (See (15).) We get the following decay estimate.

Proposition 4.6. |¢, ()| < |n.|7(z) < 38(x) |Ff||,~. Hence |pa(x)| < 30(x)||F7], -
In particular, ¢ o vanishes at infinity.

4.2. Regularity and the behavior at the end. From the definition of ¢,,, we have
(2()) (VZVA + 5/3)¢n+1 = Tn+1 = _QFX O — 2(df4¢n N d*Agbn)—’— - QFX'
Lemma 4.7. sup,>; |[Va¢n| - < +00.

Proof. We use the rescaling argument of Donaldson [5, Section 2.4]. Recall that ¢, are
uniformly bounded and uniformly go to zero at infinity (Proposition 4.6). Moreover
|V abn| o < o0 for each n > 1 by Lemma 4.1. Suppose sup,,>; |Vadn| « = +00. Then
there exists a sequence n; < ny < ng < --- such that Ry := |[Va¢n,|;~ g0 to infinity
and Ry, > maxi<p<p, |[Vadn| . Since |V 4¢,| vanishes at infinity (see Lemma 4.1), we
can take x, € X satisfying Ry = [Vad,, (xx)|. From the equation (20), |V4Vad,,| <

b}

const 4 - R7. Here “const,” means a positive constant depending on A (but independent
of k > 1). Let rg > 0 be a positive number less than the injectivity radius of X. We
consider the geodesic coordinate centered at xp for each £ > 1, and we take a bundle

trivialization of E over each geodesic ball B(xy, o) by the exponential gauge centered at
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x. Then we can consider ¢,, as a vector-valued function in the ball B(xy, 7). Under
this setting, ¢, satisfies
>_ 92056,
i,J

(21) < consty - R} on B(xy,7o),

where (g%) = (gw);;) " and g(; is the Riemannian metric tensor in the geodesic coor-
dinate centered at z;. (Indeed S® x R = SU(2) x R is a Lie group. Hence we can take
the geodesic coordinates so that g);; are independent of k.) Set Or(x) = b, (z/Ry).
o) is a vector-valued function defined over the roRj-ball in R*. ¢, (k > 1) satisfy
|Vé1(0)] = 1, and they are uniformly bounded. From (21), they satisfy

< const4,

Gt 0.0

ij
where §zf€)(x) = géi) (xz/Ry). {gg’i)},@ converges to 0% (the Kronecker delta) as k —
+00 in the C®-topology over compact subsets in R*. Hence there exists a subsequence
{ngl}lzl which converges to some ¢ in the C*-topology over compact subsets in R*. Since
IVér(0)] = 1, we have |Vp(0)| = 1.

If {24, }i>1 is a bounded sequence, then {¢,} has a subsequence which converges to
a constant function uniformly over every compact subset because ¢, converges to ¢,
(a continuous section) in the C%-topology (= L*-topology) and Ry — oo. But this
contradicts the above |V$(0)| = 1. Hence {xzy,} is an unbounded sequence. Since ¢,
uniformly go to zero at infinity, {(ﬁkl} has a subsequence which converges to 0 uniformly
over every compact subset. Then this also contradicts ]VQE(O)\ =1. O

From Lemma 4.7 and the equation (20), the elliptic estimates show that ¢, converges
to ¢4 in the C*°-topology over every compact subset in X. In particular, ¢4 is smooth.
(Indeed ¢4 € QT (adE)q from Proposition 4.6.) From the equation (20),

(22) (ViVA+ 8/3)pa = —2FF - da — 2dda A d'yda)* — 2F 7.
This implies that A + d% ¢4 is an ASD connection.

Lemma 4.1 shows lim, . |Va¢,(z)| = 0 for each n. Indeed we can prove a stronger
result:

Lemma 4.8. For each € > 0, there exists a compact set K C X such that for all n
[Vadn(z)] <e (z€ X\ K).
Therefore, lim, .o |Vaga(x)| = 0.

Proof. Suppose the statement is false. Then there are 6 > 0, a sequence n; < ny < ng <

-+, and a sequence of points x1, xs, x3,--- in X which goes to infinity such that

IV a¢n, (7)) > 6 (k=1,2,3,---).
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Let xp, = (Oy, 1) € S® x R = X. |t}] goes to infinity. We can suppose |t;| > T + 2.

Since A is flat in |t| > T + 1, there exists a bundle trivialization g : E|ysry1 —
Xyysr+1 % SU(2) such that g(A) is equal to the product connection. (Here Xysri1 =
{(0,t) € S® x R||t| > T + 1}.) Set ¢!, := g(¢,). We have

(V'Y +5/3)¢, = =2(d"¢py Ad™d,4)" (It > T + 1),

where V is defined by using the product connection on Xy ~riq x SU(2). From this

equation and Lemma 4.7,
(V*V + 5/3)¢) | <const ([t| >T+1),

where const is independent of n. We define ¢, € T'(S® x (—1,1), AT ®@su(2)) by ¢x(6,t) :=
Lo (0.t 4+ 1). We have [(V*V + 5/3)¢i| < const. Since |¢),(z)| < 30(z)||F{ |, and
[te] — +oo, the sequence ¢ converges to 0 in L>®(S® x (—1,1)). Using the elliptic
estimate, we get ¢, — 0 in C'(S® x [—1/2,1/2]). On the other hand, |V (6s,0)| =

|V 40, (Ok, tx)| > 0 > 0. This is a contradiction. O
Set
(23) N = (ViVA+ S/3)ba = —2FF - da — 2d5sda A d5yda)* — 2FT.

This is contained in Q" (adE)y (Lemma 4.8). The sequence 7, defined in Proposition 4.5
satisfies

Myt = —2F5 - dp — 2(dhdn A dybn) ™ — 2F7 .

Corollary 4.9. The sequence 1, converges to na in L. In particular, |1, — naly — 0
as n — oo. Hence |naly < 3eo. (Proposition 4.5.)

Proof.

M1 — N4 = =2F1 - (o — da) + 2{d%4(da — dn) A d4a + i A dy(da — dn)} T

Hence

M1 — nal < 2¢o | Fi|| oo l0n — dal o + 2c0(|V adn| + [Vada])|[Vada — Vadl.

¢n — ¢4 in L®°(X) and in C* over every compact subset. Moreover |V 4¢,| are uniformly
bounded and uniformly go to zero at infinity (Lemma 4.7 and Lemma 4.8). Then the above
inequality implies that |7,11 — 74~ goes to 0. O

Lemma 4.10. |dadi¢a] - < 0.

Proof. 1t is enough to prove |dad’¢a(0,t)| < const for [t| > T+ 2. Take a trivialization g
of E over |t| > T + 1 such that g(A) is the product connection, and set ¢’ := g(¢4). This
satisfies

(V'Y + 8/3)¢ = —2(d*¢' Ad*¢)*  (|t| > T +1).
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Since |¢'| and |V¢'| go to zero at infinity (Proposition 4.6 and Lemma 4.8), this shows
(by using the elliptic estimates) that |dd*¢’| is bounded. O

Lemma 4.11.

1 * 2 1 2
Recall that A is flat over |t| > T + 1. Hence the right hand side is finite. (Indeed it is a
non-negative integer by the Chern-Weil theory.)

Proof. Set a := dy¢4 and csa(a) == g=tr(2a A Fa+aNdaa+ 3a®). We have g tr(F(A+
a)?) — g=tr(F(A)?) = desa(a). Since A+ais ASD, we have |[F(A+a)|? = tr(F(A+a)?)
and

1 / 1

— t'r’FA—i-a2——/ trFAZZ/ csAa—/ csala).

572 Jyen (F(A+a)) - o en (FAY) = | esala)= | esala)
From Lemma 4.8, |a| = |d%¢a| goes to zero at infinity. From Lemma 4.10, |daa| =

|dad’ @ 4| is bounded. F4 vanishes over |t| > T+ 1. Hence |cs4(a)| goes to zero at infinity.
Thus the right-hand-side of the above equation goes to zero as R — oo. 0J

4.3. Conclusion of the construction. The following is the conclusion of Section 4.1
and 4.2. This will be used in Section 5 and 7. (Notice that we have not so far used the
condition (iii) in the beginning of Section 4.1.)

Proposition 4.12. Let E be a principal SU(2)-bundle over X, and A be a connection on
E satisfying Fa = 0 (|t| > T+1), suppFy C {T < [t| < T+1} and |F{|, <o = 1/1000.
Then we can construct g4 € QT (adE)o satisfying the following conditions.
(a) A+ d%¢a is an ASD connection: FT(A+ d4¢a) =0.
(b)

o /X (A + dyo)Pvol = /X tr(F3).

(¢) 164(@)] < 30(@) [ Ff |, where @) = fy_y oo 9o, )dvol(y):
(d) na = (V3iVa+5/3)pa is contained in Q+(adE)y and |naly < 3eo.

Moreover this construction (E,A) — ¢4 is gauge equivariant, i.e., if F' is another
principal SU(2)-bundle over X admitting a bundle map g : E — F, then ¢gay = g(da).

Proof. The conditions (a), (b), (c), (d) have been already proved. The gauge equivariance
is obvious by the construction of ¢4 in Section 4.1. 0J

4.4. Interior estimate. In the proof of the upper bound on the mean dimension, we
need to use an “interior estimate” of ¢4 (Lemma 4.14 below), which we investigate in this
subsection. We use the argument of Donaldson [5, pp. 189-190]. Recall that |F4| < d on
[t| < T and HF:{HLOO(X) < d' by the condition (iii) in the beginning of Section 4.1. We fix
ro > 0 so that rg is less than the injectivity radius of S® x R (cf. the proof of Lemma 4.7).
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Lemma 4.13. For any ¢ > 0, there ezists a constant g = do(d,e) > 0 depending only on
d and € such that the following statement holds. For any ¢ € Q" (adE) and any closed
ro-ball B contained in S® x [T + 1,T — 1], if ¢ satisfies

(24) (ViVa+ S5/3)p = =2(d%¢ A d'y¢)" over B and |61 ooy < Do,

then we have

sup |Vao(x)|d(z,0B) < e.

zeB
Here d(x,0B) is the distance between x and 0B.

Proof. Suppose ¢ satisfies
sup |Vad(x)|d(z,0B) > &,

z€B
and the supremum is attained at zo € B (z( is an inner point of B). Set R := |V a¢(xo)|
and r{, := d(z,0B)/2. Let B’ be the closed rj-ball centered at xo. We have |V4¢| < 2R
on B’. We consider the geodesic coordinate over B’ centered at z(, and we trivialize the
bundle E over B’ by the exponential gauge centered at zq. Since A is ASD and |F,| < d
over —T < t < T, the C'-norm of the connection matrix of A in the exponential gauge
over B’ is bounded by a constant depending only on d. From the equation (24) and

IVag| < 2R on B,
> a0

where (¢”) = (g;;)~" and g;; is the Riemannian metric tensor in the geodesic coordinate

< consty. - R* over B,

over B'. Here we consider ¢ as a vector valued function over B'. Set ¢(z) := ¢(z/R).
Since 2ryR > ¢, ¢ is defined over the £/2-ball B(£/2) centered at the origin in R*, and it

satisfies
> 500

Here ¢ (z) := ¢"(x/R). The eigenvalues of the matrix (§) are bounded from below

< consty. over B(g/2).

by a positive constant depending only on the geometry of X, and the C'-norm of §¥ is
bounded from above by a constant depending only on e and the geometry of X. (Note
that R > ¢/(2ry) > ¢/(2rp).) Then by using the elliptic estimate [9, Theorem 9.11] and
the Sobolev embedding L§(B(g/4)) — CYY/2(B(g/4)) (the Holder space), we get

|6llc11/2(p(e ay) < comst - ||Q~S”L§(B(a/4)) <C=C(de).
Hence |Vo(z) — V(0)| < C|z|'/? on B(e/4). Set u := V¢(0). From the definition, we
have |u| = 1.

o(tu) — ¢(0) = t/ol Vo(tsu) - uds =t + t/;(V&(tsu) —u) - uds.

Hence

1
G(tu) — $(0)] >t 1t / Oltsul 2ds = t — 202 /3.
0
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We can suppose C' > 2/y/e. Then u/C? € B(g/4) and
16(u/C?) — 3(0)] = 1/(3C2).
If |¢| < & < 1/(6C?), then this inequality becomes a contradiction. O
The following will be used in Section 7.
Lemma 4.14. For any ¢ > 0 there exists a positive integer D = D(d,d',e) such that
|3 ¢a ”L°°(S3><[7T+D,T7D]) <e.

(If D > T, then S® x [-T + D, T — D] is the empty set.) Here the important point is that
D s independent of T.

Proof. Note that |d%¢a| < \/3/2|Va¢a|. We have |¢4(x)| < 3d'é(x) by Proposition 4.12
(¢) (or Proposition 4.6) and

5(x) = / o Sl

Set D' := D —ry. (We choose D so that D' > 1.) Since g(z,y) < const - e~V /3@ for
d(x,y) > 1, we have
o(x) <C- e V5D for 1€ §8 x [-T+ D', T —D'].
We choose D = D(d,d',e) > o + 1 so that
3d'CeVIBP" < 60(d, roe/2/3).

Here do(d, r0e4/2/3) is the positive constant introduced in Lemma 4.13. Note that this
condition is independent of T'. Then ¢4 satisfies, for x € S® x [T + D', T — D'],

|[Pa(2)] < do(d, rog\/2/3).

¢4 satisfies (V4Va + S/3)pa = —2(d%da A dipa)™ over [t| < T. Then Lemma 4.13

implies
|Vada(z)| <ev/2/3 forxe S*x[-T+ D, T — D].

(Note that, for z € S* x [T + D, T — D], we have B(x,ry) C S® x [-T + D', T — D']
and hence |¢a| < 8o(d, moe+/2/3) over B(x,rg).) Then, for z € S* x [T + D, T — D],

|dipa(@)] < V/3/2|Vada(z)| < e.
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5. CONTINUITY OF THE PERTURBATION

The purpose of this section is to show the continuity of the perturbation construction in
Section 4. The conclusion of Section 5 is Proposition 5.6. As in Section 4, X = S3xR, T >
0 is a positive integer, and £ — X is a principal SU(2)-bundle. Let p be a flat connection
on Elysri1. (Elpg>r+1 is the restriction of E to Xpysrp = {(6,t) € S® xR| |t| > T+1}.)
We define A’ as the set of connections A on E satisfying the following.

(i) Aljg>7r+1 = p, i.e., A coincides with p over [t| > T + 1.
(ii) Ff is supported in {(6,t) € S x R|T < |[¢t| < T + 1}.
(iii) |F, < €0 = 1/1000.

By Proposition 4.12, for each A € A’, we have ¢4 € QF(adFE)y and na := (V4Va +

S/3)pa € QF(adE), satisfying

(25) na=—2F1 - o = 2(d4da A dyda)" =21, [naly < 3e0.
The first equation in the above is equivalent to the ASD equation FT(A + d%¢a) = 0.
Since ¢4 = (V4 Va + 5/3)"'n4, we have ((18) and Lemma 4.2)

[9all 1 < Ialy < 320, [IVagal?]l, < Inally < 9e5.

Then (by the Cauchy-Schwartz inequality)

9461 3= sup / 92 9)|V ada(y)|dvol(y) < 3e0VE,
x€ X

where K = [ g(z,y)dvol(y).

Let A, B € A'. We want to estimate |¢p4 — ¢p| . Set a := B — A. Since both A and
B coincide with p (the fixed flat connection) over |t| > T + 1, a is compact-supported.
We set

lalls = lal = + 1V Al

We suppose
lales < 1.

Lemma 5.1. |¢p4 — ¢5| ;e < |74 — 18|, + const Ha”c%, where const is an universal con-
stant independent of A, B.

Proof. We have ng = (V4Va+ 5/3)¢p4 and
np = (VVp+8/3)¢pp = (ViVa+5/3)dp + (Via) x ¢ + a* Vpdp +ax*ax ¢p,
where * are algebraic multiplications. Then
|64 = b8l < [(VaVa+5/3)(0a — d5)lr,
< [na — n5ly + const (|V aal = |05l + lal 1 [V 50517 + lal;~ [¢5lr) .

< 4 = nsly + const [afcy -

0



INSTANTON APPROXIMATION, PERIODIC ASD CONNECTIONS, AND MEAN DIMENSION 25

Lemma 5.2.

* * * * 1
(00 36" = i A o)y < ( 1+ constlaley ) s = sl -+ const -

Proof.
(dhpandyda)” — (dpop N dpop)t =
(364 Ndioa)" — (diop Adiop) + (dads A dyos)" — (dyos Adyos)” .

() (1)

We first estimate the term (I7). Since B = A + a,
(dpop N dpon)" — (dads N didp)" =
(dadn A (ax )" + ((axdp) Adiydp)" + ((ax ¢p) A(ax ¢p))".
()l < const [Vadsly lal  [65], + const a2 |9l .

< const - [Va¢p|y |af o + const - af o .

We have

IVa¢sly = Vo5 +axdply < |Veds|r + const |a] - [¢5] - < const.

Hence | (/1)|, < const |a] ;.
Next we estimate the term (I). For n1,m2 € Qt(adE)o, set ¢; := (V4 Va4 + 5/3)7'n; €
QF(adE), and define (see (19))

Ba(n,n2) == (dipr A diyda) ™ + (diydo2 A dyon) ™

Set 0 := (VaVa+5/3)¢p = np + (Via) x dp + a* Veop +axax ¢p. Then (dydp A

dhép)* = Ba(np,np)/2 and (1) = (Ba(na;na) — Ba(np: M) /2 = Ba(na+np,na—np)/2.
From Lemma 4.3,

(D7 < 2¢o Ina + nplz 14 — 07 -

[na +nlr < lna +nsle+lns — nsly < Geotconst fafey, and [na — gl < [na — nslr+
const “a“ch- From (13), we have 12c¢oeg < 1/4. Then

1)1y < ( + constlaly ) I sl -+ const
0J
We have Fif = Ff +d}a+ (a Aa)™. Recall that we have supposed lale: < 1. Hence
7§ — Fi] < constlalgs
Proposition 5.3. There ezists § > 0 such that if ||ch}1 < 6 then

[na = nsly < const [ale: -
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Proof. From (25),
na—np =2(Ff — Fi) - ¢p +2F] - (65 — ¢a)
+2((dpds Ndpdp)" — (dada Ndyoa)") +2(Fg — Fy)

|F{ | < eo and Lemma 5.2,

Using | ¢5l,~ < 3e0, | Ffl, <

1
Ia — nslly < const Jaley + 2coc0 |4 — P8l + (5 + const ||a||c;4) Ia = sl

Using Lemma 5.1,

1
|74 = nsly < const ale + (5 + const |afe + 20050) Ina —nsly-

From (13), we can choose § > 0 so that if ”“”ck < ¢ then

1
(5 + const ||a||c}4 + 20050) < 3/4.

Then we get
[n4 = nsly < constales +(3/4) Ina — sl
Then |na — ng|; < const ||a||c}q. O

From Lemma 5.1, we get (under the condition Haucg < 0)
|64 = 05l < Ina = n8l7 + const |afey < const afes -
Therefore we get the following.
Corollary 5.4. The map
(A, C'-topology) — (U (adE), || ;), A ¢a,
18 Continuous.

Let A, (n > 1) be a sequence in A’ which converges to A € A’ in the C'-topology:
|An = Aler — 0 (n — o0). By Corollary 5.4, we get |¢a, — dalp — 0. Set an := A, —A.

Lemma 5.5. sup,,>; [Va,04,] -~ < 0. (Equivalently, sup,>, [Va¢a, |~ < 00.)

Proof. Note that |V 4,¢a,| vanishes at infinity (see Lemma 4.8). Hence we can take a
point z, € S X R satisfying |V a, ¢4, (2n)| = [Va, 04, ;- ¢a, uniformly converge to ¢4
and uniformly go to zero at infinity (see Proposition 4.12 (c¢) or Proposition 4.6). Then
the rescaling argument as in the proof of Lemma 4.7 shows the above statement. 0

Since (V%,Va, +5/3)¢a, = —2F;, - ¢, — 2(d4, ¢a, Ny, da,)" —2F]

sup HVZnVAngbAn Lo < OO
n>1
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We have V) Vu, ¢4, = ViVada, + (Via,) x oa, + anx Va,da, +an *an * a,. Hence
sup [ViVada, |- < 0.
n>1

By the elliptic estimate, we conclude that ¢4, converges to ¢4 in C* over every compact

subset. Then we get the following conclusion. This will be used in Section 7.

Proposition 5.6. Let {A,},>1 be a sequence in A" which converges to A € A’ in the
Cl-topology. Then ¢4, converges to ¢4 in the Ct-topology over every compact subset in
X. Therefore d}y ¢a, converges to diy¢a in the CO-topology over every compact subset in
X. Moreover, for anyn > 1,

/ F(A, + &y da,)Pdvol = / |F(A + dyé.)[2dvol.
X X

(This means that no energy is lost at the end.)

Proof. The last statement follows from Proposition 4.12 (b) (or Lemma 4.11) and the fact
that for any A and B in A’ we have

/Xtr(Fj):/Xtr(Fg).

This is because trFg — trF5 = dtr(2a A Fa + a Adaa + 2a®) (a = B — A), and both A
and B coincide with the fixed flat connection p over |t| > T + 1. U
6. CUT-OFF CONSTRUCTIONS

As we explained in Section 3, we need to define a ‘cut-off” for [A, p] € M. Section 6.1
is a preparation to define a cut-off construction, and we define it in Section 6.2.
Let 91 > 0. We define 0] = 01(d1) by

s s ([ gt
zE€S3XR S3><(—51,(51)

Since we have g(z,y) < const/d(z,y)? (see (14) and (15)),
(51)1/4
/ g(x,y)dvol(y) < const/ rdr = const/6;
d(z,y)<(81)/* 0

1
g(z, y)dvol(y) < const - §;—— = const\/d.

/{d(x,y>z(51>l/4}m53x(—al,m VoL
Hence §; < const\/d; (this calculation is due to [5, pp. 190-191]). In particular, we have
d, — 0as d; — 0. For d > 0, we choose §; = ;(d) so that 0 < 0; < 1 and ] = §1(01(d))
satisfies

(26) (5+7d + d*)0} < eo/4 = 1/(4000).

The reason of this choice will be revealed in Proposition 6.4.
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6.1. Gauge fixing on S and gluing instantons. Fix a point 6, € S as in Section
1. Let F := 83 x SU(2) be the product principal SU(2)-bundle over S3. Let Ags be the
space of framed connections (A, p) where A is a connection on F and p € Fy,. (Fy, is the
fiber of F over §, € S3.) Let G be the gauge transformation group of F. Ags and G are
equipped with the C*-topology. Set Bgs := Ags/G (with the quotient topology), and let
7 Ags — Bgs be the natural projection. Note that G freely acts on Ags.

Proposition 6.1. Let d > 0. For any (A,p) € Ags there exist a closed neighborhood
Ucap) of [A,p] in Bss and a continuous map @4y : 7 " (Uap)) — G such that, for any
(B,q) € 7 (Uiayp)), 9 := Pap) (B, q) satisfies the following.

(1) g(B) = A+a with |a| ;. < 01 = 61(d). (61 is the positive constant chosen in the above
(26).)

(i) For any gauge transformation h of F, we have ®(4,)(h(B,q)) = gh™".

Proof. Let H := {u € Q%adF)|dau = 0}. The restriction map H{ — (adF),, is an
injection. ((adF)g, is the fiber of adF over the point ; € S3.) Hence we can consider
HY as a subspace of (adF)g,. Let (H%)* C (adF)g, be a complement of HY in (adF)g,.
((adF)g, = HY @ (HY)*.) Let v > 0 be a small number, and we define V C Fy, by
V = {e"p|lu € (H)*, |u| < v}. We take v > 0 so small that the map {u € (H%)*||u| <
v} D ur e'p € V becomes an embedding. V' is a slice for the action of T'4 (the isotropy
group of A) on Fp, at p.

Let € > 0 be sufficiently small, and we take a closed neighborhood U4, of [A,p] in
Bgs such that

Uiap) C {[B,q]| 3g: gauge transformation of F' s.t. |g(B) — A||L411 +l9qg —p| < e}

The usual Coulomb gauge construction shows that, for each (B,q) € 7= (Uay)), there
uniquely exists a gauge transformation g such that g(B) = A + a with da =0, gg € V,
and ||aHL411 + |gq¢ — p| < const - e. Since LT — L, we have |a],. < const-e < §; for
sufficiently small e. We define ®(4,y(B,q) := g. Then the condition (i) is obviously
satisfied, and the condition (ii) follows from the uniqueness of g. U

Recall the settings in Section 1. Let d > 0. The moduli space M, is the space of all
the gauge equivalence classes [A, p| where A is an ASD connection on E := X x SU(2)
satisfying |F'(A)| < d and p is a map from Z to E with p(n) € E, ) for every n € Z.

We define K; C Bgs by

K ;= {[A|53X{0},p(0)] € BSS| [A,p] € Md},

where we identify F|gs oy with F'. From the Uhlenbeck compactness [21, 22|, M, is com-
pact, and hence K is also compact. Hence there exist (A1,p1), (A2, p2), -+, (An,pN) €
Ags (N = N(d)) such that Ky C Int(Ua, pyy) U -+ UInt(Uiay pyy) and [A;,pi] € Ky
(1 <4 < N). Here Int(Ua, p,)) is the interior of the closed set Uy, p,) introduced in
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Proposition 6.1. Note that we can naturally identify K with the space {[A[gsx 0}, P(0)] €
Bgss|[A, p] € My} for each integer n because M, admits the natural Z-action.

For the statement of the next proposition, we introduce a new notation. We denote
F x R as the pull-back of I by the natural projection X = 83 x R — S3. So F' x R is a
principal SU(2)-bundle over X. Of course, we can naturally identify F' x R with E, but

here we use this notation for the later convenience.

Proposition 6.2. For each i =1,2,--- , N there exists a connection A; on F x R satis-
fying the following. (Recall 0 < &; < 1.)

(i) A; = A; over S® x [—01,01]. Here A; (a connection on F' x R) means the pull-back of
A; (a connection on F) by the natural projection X — S3.

(ii) F(A;) is supported in S x (—1,1).

(iii) |F (A< |, < co/4 = 1/(4000), where F* (A9l <pger = FH(A:) x Ly
and 15, <yj<1 is the characteristic function of the set {(6,t) € S* x R|§; < [¢| < 1}.

Proof. By using a cut-off function, we can construct a connection A; on F' x R such that
AL = A; over S3 x [—6dy,0,] and suppF(A}) C S x (—1,1). We can reduce the self-dual
part of F'(A%) by “gluing instantons” to A} over d; < [t| < 1. This technique is essentially
well-known for the specialists in the gauge theory. For the detail, see Donaldson [5, pp.
190-199].

By the argument of [5, pp. 196-198|, we get the following situation. For any ¢ > 0,
there exists a connection A; satisfying the following. A; = Al = A, over |t| < 6, and
suppF(A;) € 83 x (—1,1). Moreover F*(A;) = Fi" + F5 over & < |t| < 1 such that
|Ff| < e and

|F57| < const, vol(supp(F;)) < ¢,
where const is a positive constant depending only on A} and independent of . If we take
¢ sufficiently small, then

|7 (A s

. < €0/4.
O

6.2. Cut-off construction. Let 7" be a positive integer. We define a closed subset
Mar(i,j) C Mg (1 <4, < N = N(d)) as the set of [A, p] € M satisfying [A|gsry, p(T)] €
Uca, py and [Alsswi—r}, P(=T)] € U, p,)- Here we naturally identify Er := E|gs, 7y and
E_r := E|gsy(_ry with F, and (4;,p;) (1 <7 < N) are the framed connections on F
introduced in the previous subsection. We have
(27) M= |J Mazli,j).

1<i,j<N
Of course, this decomposition depends on the parameter T > 0. But N is independent

of T. This is an important point. We will define a cut-off construction for each piece

Md,T<i7j)'
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Let (A,p) be a framed connection on E satisfying [A,p] € Myr(i,7). Let uy :
E|;>p — Ep x [T, +00) be the temporal gauge of A with u; = id on E|gsy(ry = Ep.
(See Donaldson [6, Chapter 2].) Here El;>r is the restriction of E to S x [T, +00),
and Er X [T, +00) is the pull-back of Er by the projection S® x [T,00) — S* x {T}.
We will repeatedly use these kinds of notations. In the same way, let u_ : E|;<_r —
E_p x (=00, =T] be the temporal gauge of A with u_ = id on E|gs. (1) = E_p. We
define A(t) (|t| > T') by setting A(t) := uy(A) for t > T and A(t) == u_(A) for t < —-T.
A(t) becomes dt-part free. Since A is ASD, we have

(28) 20 — s P (A,
where *3 is the Hodge star on S3x {t} and F'(A(t))s is the curvature of A(t) as a connection
on the 3-manifold S® x {t}.

Since [A(T),p(T)] € Ua,p,) and [A(=T),p(=T)] € U4, p,), We have the gauge trans-
formations gy := ®(4, ) (A(T),p(T)) and g_ := P4, ,,)(A(=T),p(=T)) by Proposition
6.1. We consider g, (resp. ¢g_) as the gauge transformation of Ep (resp. E_r). They
satisfy

(29) lg+(A(T)) = Ail e <01, g-(A(=T)) — Ajl 1o < 01
We define a principal SU(2)-bundle E" over X by
El = E’\t|<T+51/4 L ET X (T, —|—OO) L E,T X (—OO7 —T)/ ~,

where the identification ~ is given as follows. E|<r4s,/4 is identified with Ep x (T, +00)
over the region T" < t < T 4 6;/4 by the map g, o uy : Elrcierisn — Er x (T,T +
d1/4). Here we consider g, as a gauge transformation of Ep x (T,T + 6;/4) by g, :
Er x (T, T + 6,/4) — Ep x (T, T + 6:/4), (p,t) — (g9+(p),t). Similarly, we identify
E|jj<r45,/4 With E_p x (—oo0,—=T') over the region =7 — /4 < t < —T by the map
g-ou_: E|_p_5 ycicr — E_p x (=T —=6./4,-T).

Let p(t) be a smooth function on R such that 0 < p <1, p =0 (|t| < 61/4), p =1
(|t] > 3d1/4) and

'] < 4/61.

We define a (not necessarily ASD) connection A’ on E’ as follows. Over the region
|t| < T + d1/4 where E’ is equal to E, we set

(30) A, =A on E||t\<T+61/4-
Over the region t > T', we set
(81) A= (1= plt —T))gs(A() +plt = T)Aiz on Er x (T, +00),

where /All-;p is the pull-back of the connection A; in Proposition 6.2 by the map ¢t +— ¢t —1T.
So, in particular, /L»VT =A;overT — 6 <t <T+ 6 and F(/LT) =0overt>T+1.
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(31) is compatible with (30) over T' < t < T+ 9,/4 where p(t —T) = 0. In the same way,
over the region t < —T', we set

~

A =1 —=pt+T))g-(At)) +pt+T)Aj_7 on E_gp x (—o0,=T).
We have F(A') =0 (|t| > T +1).
Finally, we define p’ : {n € Z||n| < T} — E’ by setting p'(n) := p(n) € Eg,n) =
E{y, - Then we have constructed (E', A’,p') from (A,p) with [A,p] € Mar(i,j). It
is routine to check that the gauge equivalence class of (E’, A’,p’) depends only on the

gauge equivalence class of (A, p). (We need Proposition 6.1 (ii) for the proof of this fact.)
Hence the map My r(i,j) > [A, p] — [E’, A’, p'] is well-defined.

Lemma 6.3.
|FY(AN <5+T7d+d> onT < |t|<T+ 6.

Proof. We consider the case T' < t < T + ¢; where Ai,T = A;. We have A" = (1 —
p)g+(A(t)) + pAi, p=p(t —=T). Set a := A; — g+(A(t)). Then A’ = g, (A(t)) + pa. We
have
FrA) = (pdt Na)™ + g(F(AZ-) +x3F(A) Adt) + (p* — p)aAa)t.

We have |F(A;)] < d and |p'| < 4/6;. From (29), |A; — g+ (A(T))| < ;. From the ASD
equation (28) and |F(A)| < d, |A(t) — A(T)| < d|t —T| < dé;. Hence
(32)  laf <[Ai — g (A(T))] + 194 (A(T)) — g+ (A1) < (1 +d)oy (T <t <T+6).
Therefore, for T'< t < T + 07,

IFT(A)] <4(1+d)+d+ (1 +d)*> =5+ 7d+ d*.

U

Proposition 6.4. F(A') = 0 over |[t| > T + 1, and F*(A’) is supported in {T < |t| <
T+ 1}. We have |[F(A")| < d over |t| < T, and
(33) |FH(A)||,. <d, |F(A)|, < e =1/(1000),
where d' = d'(d) is a positive constant depending only on d. Moreover

1 1 2T d?vol(S?
[ tr(FA?) < / |F(A)|dvol + C)(d) < dv—zm
o< 8w

8'/T2 X - @

Here Cy(d) depends only on d.

+Ci(d).

Proof. The statements about the supports of F(A’) and F*(A’) are obvious by the con-
struction. Since A’ = A over |t| < T, |F(A’)| < d over |t| < T. We have A’ = A, 1 for
t>T+6 and A’ = /Alj7_T for t < —T — §;. Hence (from Lemma 6.3)

HFJF(A/)HLOO < d' = max <5+7d+d2, T

)

F|

’F+(AN)HL00> '

"
LOO
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By using Lemma 6.3, (26) and Proposition 6.2 (iii) (note that g(z,y) is invariant under
the translations t — ¢t — T and t — t + T,

|F (AN, <2(5+7d + d*)b) + 0/2 < <.
We have A’ = A over |t| < T and
F(A") = (1= p)gs ous (F(A)) + pF(Ai) + pldt Na+ (p* — p)a®,

over T' <t < T+ 6;. Hence |F(A’)| < consty over T' < |t| < T + 0; by using (32). Then
the last statement can be easily proved. O

6.3. Continuity of the cut-off. Fix 1 <i,j < N. Let [A,,p,] (n > 1) be a sequence in
Mr(i, 7) converging to [A, p] € Myr(i,7) in the C*-topology over every compact subset
in X. Let [E/, Al pl] (respectively [E’, A’ p']) be the framed connections constructed
by cutting off [A,,, p,| (respectively [A, p]) as in Section 6.2.

Lemma 6.5. There are bundle maps h, : E/, — E' (n > 1) such that h,(A]) = A’
for [t| > T+ 1 and h,(A]) converges to A" in the C®-topology over X (indeed, we will

n

need only C'-convergence in the later argument), and that h,(pl,(k)) converges to p'(k)
for |k| <T.

Proof. We can suppose that A, converges to A in the C*°-topology over |t| < T + 2 and
that p,(k) — p(k) for |k| < T. Let uy,, : Elisr — Ep X [T,+00) (resp. u,) be the
temporal gauge of A,, (resp. A), and set A, (t) = uy ,(A,) and A(t) := us(A) fort > T.
We set g4 = Ba,py(An(T), pa(T)) and gy == D4,y (A(T), p(T)).

Uy, converges to uy in the C*-topology over T' < ¢t < T+ 1, and g4, converges to g,
in the C*°-topology. Hence there are x,, € T'(S® x [T, T + 1],adEr x [T, T +1]) (n > 1)
satisfying g4 ouy = €X"g4 ,, 0 Uy . Xn — 0 in the C*°-topology over T <t < T + 1. Let
¢ be a smooth function on X such that 0 < ¢ <1, p =1 overt <T +§; and ¢ = 0 over
t > T+ 1. We define h,, : E/, — E’ (n > 1) as follows.
(i) In the case of |t| < T + d,/4, we set h,, :=id: E — E.
(ii) In the case of t > T, we set h,, := e?X» : Ep x (T,400) — Ep x (T,4+00). This is
compatible with the case (i).
(iii) In the case of t < —T', we define h, : E_1 X (=00, —=T) — E_1 X (=00, —T) in the
same way as in the above (ii).

Then we can easily check that these h,, satisfy the required properties. 0J

7. PROOFS OF THE UPPER BOUNDS

7.1. Proof of dim(M, : Z) < co. As in Section 1, E = X x SU(2) and My (d > 0)

is the space of the gauge equivalence classes [A, p] where A is an ASD connection on E
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satisfying |F'(A)|,~ < d and p : Z — E is a map satisfying p(n) € E, ) for every
n € Z. We define a distance on M, as follows. For [A, p], [B, q] € M, we set

dist([A, p|, [B, ql)

A) = B e (yy<n _
= inf {22—” 19(4) = Bl <n +3 2 '”'Ig(p(n))—q(n)l},

g:E—E 1+ "g(A) - B||L°°(|t|§n) nez

where g runs over gauge transformations of E, and |t| < n means the region {(0,t) €
S3 x R||t| < n}. This distance is compatible with the topology of M, introduced in
Section 1. For R = 1,2,3,---, we define an amenable sequence Qg C Z by Qg = {n €
Z| — R <n < R}. We define distq,([A, p, [B, q|) as in Section 2.1, i.e.,

dista, ([A, p, [B,q]) == gég}é dist(k*[A, p|, k*[B, q|),

where k*[A, p| = [k*A, k*p] is the pull-back by k: E — E.
Let £ > 0. We take a positive integer L = L(g) so that

(34) 22" < 2(1 + 2Diam(SU(2)))’

n>L

We define D = D(d,d’,e/4) as the positive integer introduced in Lemma 4.14, where
d' = d'(d) is the positive constant introduced in Proposition 6.4. We set T'=T'(R, d,¢) =
R+ L+ D. T is a positive integer.

We have the decomposition Mg = U, joy Mar(i,j) (N = N(d)) as in Section
6.2. Mgr(i,j) is the space of [A,p|] € My satistying [Alsswqry, P(T)] € Ua,p,) and
[Alssxi—1}, P(=T)] € Ua,p,. Fix 1 < i,5 < N. Let (A,p) be a framed connection
on FE satisfying [A,p] € Myr(i,7). By the cut-off construction in Section 6.2, we have
constructed (E’, A’, p') satisfying the following conditions (see Proposition 6.4). E’ is a
principal SU(2)-bundle over X, and A’ is a connection on E’ such that F(A’) = 0 for
[t| > T+ 1, FT(A’) is supported in {T < |t| < T + 1}, and that

[Fr A <0 [FHAY] e < TF(A)] ey < d

p isamap from {n € Z| — T <n < T} to E' satisfying p'(n) € EEHOM. We can identify
E’ with E over |t| < T + 0,/4 by the definition, and

(35) A'l<rs6,/4 = Al<rss,/a, P(n) = p(n) (In] < T).

(E', A’) satisfies the conditions (i), (ii), (iii) in the beginning of Section 4.1. Therefore,
by using the perturbation argument in Section 4 (see Proposition 4.12), we can construct
the ASD connection A” := A’ + d%,¢a on E’. By Lemma 4.14

(36) A—A"|=|A —A"|<e/4 (|<T-D=R+L).
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From Proposition 6.4 and Proposition 4.12 (b),

8—;2 /X |F(A")[2dvol = 8—;2 /X tr(F(A"))
7 1

2 3
F(A)2dvol + Cy (d) < 2LVl

82

S 32 e + C1(d),
where C(d) is a positive constant depending only on d. Since the cut-off and perturbation
constructions are gauge equivariant (see Proposition 4.12), the gauge equivalence class
[E’, A", p'| depends only on the gauge equivalence class [A,p]. We set F;;([A,p]) =
[E', A", p].

For ¢ > 0 we define Mp(c) as the space of the gauge equivalence classes [E, A, p]
satisfying the following. E is a principal SU(2)-bundle over X, A is an ASD connection
on F satisfying

1
—/ |Fa|?dvol < ¢,
812 Jx

and p is a map from {n € Z||n| < T} to E satisfying p(n) € Egyn) (In| < T). The
topology of M7(c) is defined as follows. A sequence [E,, A, p,] € Mr(c) (n > 1) converges
to [E, A, p| € My(c) if the following two conditions are satisfied:
(i) [ [F(Ap)[Pdvol = [ |F(A)[*dvol for n > 1.
(ii) There are gauge transformations g, : £, — E (n > 1) such that for any compact set
K C X and any integer k with [k| < T we have |g,(An) — Alcor) — 0 and gn(pa(k)) —
p(k) as n — oo.

Using the index theorem, we have

(38) dim My (c) < 8¢ — 3+ 3(2T + 1) = 8¢ + 6T

Here dim M7 (c) denotes the topological covering dimension of Mz(c). By (37), we get
the map

2T d*vol(S?)

Fi,j . Md’T(i,j) — MT < 871'2

+aw)[AmHWAuﬁ

Lemma 7.1. For [Ay,pi1] and [As, ps] in Mar(i,7), if Fij([A1,p1]) = Fij([A2, o)),
then

disto, ([A1, pi1], [A2,p2]) < e.

Proof. From (35) and (36), there exists a gauge transformation g of E defined over |t| <
T + 61 /4 such that [g(A;) — Az < e/2 over |t]| < R+ L and g(p1(n)) = pa(n) forn € Z
with |n| < T. There exists a gauge transformation g of E defined all over X satisfying
g=gon|t| <T. Then we have |§(A;) — As| <e/2on |[t| < R+ L and §(p1(n)) = p2(n)
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for [n| < T. For k € Qg, by using (34),
dlSt(k’*[Al,pl] k’*[AQ,pz])

27"|g(p1(n + k) — pa(n + k)|

ne”L

22 n ”g Al A2”L°°(|t—k:|§n)
N 1+ ]g(Ar) — A2HL<>°(|t7k\§n)

< Z 27"(/2)+ Y 27"+ Y 27" Diam(SU(2))

n>L [n|>L

< (/2) + (1+ 2Diam(SU(2))) > 27" < (¢/2) + (¢/2) = &.

n>L

Lemma 7.2. The map F;; : Mar(i,j) — Mr (w + Ci(d )) s continuous.

872

Proof. Let [A,,p,] € Mur(i,j) be a sequence converging to [A, p] € Myr(i,7). From
Lemma 6.5, there are bundle maps h,, : E/, — E’ (n > 1) such that h,(A]) = A’ over
lt| > T + 1, h,(A) converges to A’ in the C*-topology over X and that h,(p,(k)) —
p'(k) for |k| < T. Since the perturbation construction in Section 4 is gauge equivariant
(Proposition 4.12), we have

(E/> hn(Agz) + dzn A’ )(Zshn(A{,L)? hTL(p;z)) = hn(E;u A;/wp;z>

From Proposition 5.6, dj (AL ®n,(ar) converges to dy,¢ar in the CY-topology over every
compact subset in X and

/ (F(ha(AL) + di, a6t Pdvol = / (F(A + dyé.0)dvol for n > 1.

This shows [E;,, Ay, p,] = [E', hy (A7) + dj, (4 Oh,(ar)s ha(P))] converges to [E', A", p/]
in My <2Td2v01 (5% c, (d)) ]

From Lemma 7.1 and 7.2, F;; becomes an e-embedding with respect to the distance
distg,. Hence

2T d*vol(S?)

Widim, (Mg (7, ), distq,) < dim Mrp ( 52
7r

+ Cl(d)> .

Since Mg = U<, jon Mar(i, j) (each Mgr(i,j) is a closed set), by using Lemma 2.3,
we get
2T d*vol(S?)

82

Widim, (Mg, distg,,) < N2 dim My ( + Cl(d)) +N? 1.

From (38) and T'= R+ L+ D,
2T d?vol(S?)

72

2(R+ L + D)d*vol(S?)

2

+8C1(d) + 6(R+ L + D).

™

dim My ( + (d)) <
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Since N = N(d), L = L(¢) and D = D(d,d'(d),e/4) are independent of R, we get
idim. (Mg, dista,) _ N2d?vol(S®
Widim, (M, : Z) = lim ~1dim (Ma, distar,) _ vo (S%)

R—o0 |QR| ™

This holds for any € > 0. Thus

+ 3N2.

N2d?vol(S?)

5 +3N? < 0.

dim(M, : Z) = lir% Widim, (Mg : Z) <

(e

7.2. Upper bound on the local mean dimension.

Lemma 7.3. There exists r1 = ri(d) > 0 satisfying the following. For any [A,p] € My
and n € 7Z, there exists an integer i (1 < i < N) such that if [B,q] € My satisfies
distz([A, pl, [B, q]) <1 then

[B|53><{n},Q(n)] S U(Azypi)'
Here we identifies E|gsy oy with F, and Ua, p, is the closed set introduced in Section 6.1.
Recall distz([A, pl, [B, q]) = supyey dist(k*[A, p|, k*[B, q]).

Proof. There exists r; > 0 (the Lebesgue number) satisfying the following. For any
[A, p| € My, there exists i = i([A, p]) such that if [B, q] € M, satisfies dist([A, p|, [B, q]) <
r1 then [Blgsxqoy,q(0)] € U, p,- If distz([A,p], [B,q]) < rq, then for each n € Z we
have dist([n* A, n*p], [n*B,n*q|) < r; and hence
[Blssxny, ()] = [(n"B)lssxqo}, (0"@)(0)] € Uta
for i = i([n* A, n*p)). O
Lemma 7.4. For any ' > 0, there exists ro = ro(e') > 0 such that if [A,p] and [B,q| in
M satisfy distz([A, p|, [B, q|) < o then
A ~ F(B) ) <
Proof. The map My 3 [A,p] — |F(A)|? € C°(S? x [0,1]) is continuous. Hence there
exists 1o > 0 such that if dist([A, p|, [B, q|) < ry then
AR = IFB)E] e oo < €
Then for each k € Z, if dist(k*[A, p|, k*[B, q]) < r,

[IEA)P - |F <<

2
(B)| HL°°(S3><[k,k+1])
Therefore if distz([A, p], [B, g]) < 2, then [|F(A)[> — |F(B)*| poo(x) < € O

Let [A,p] € My, and €, > 0 be arbitrary two positive numbers. There exists Ty =
To([A, p],€') > 0 such that for any T; > T

1 / 2 /
———— sup F(A)|*dvol < p(A) +¢'/2.
Sy S ng[tﬂml (A)] p(A) +€'/
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The important point for the later argument is the following: We can arrange 7j so that

To(k*[A,pl,e") = To([A, pl, &) for all k € Z. We set

r = r(d,¢') = min (rl(d),rg (Viﬂ—i;))) ,

where r1(+) and ro(+) are the positive constants in Lemma 7.3 and 7.4. By Lemma 7.4, if
B, q] € B.([A,p])z (the closed ball of radius r in M, with respect to the distance disty),
then for any 77 > Ty

(39)

s [ R(B)Pavol < p(A) + 2 422 5 plA) 2
81T} ter S3 X [t,t4+T1]

We define positive integers L = L(¢) and D = D(d,d(d),e/4) as in the previous
subsection. (L = L(e) is a positive integer satisfying (34), and D = D(d,d'(d),&/4) is the
positive integer introduced in Lemma 4.14.) Let R be an integer with R > Tp, and set T' :=
R+ L+ D. By Lemma 7.3, there exist 7,j (1 < ¢,7 < N) depending on [A, p] and T such
that all [B,q| € B,([A,q])z satisty [B|ssxqry,q(T)] € U, pyy and [Blssxq—1},q(=T)] €
Uca,p;)- (That is, B.([A,p])z C Mar(i,j).) As in the previous subsection, by using the
cut-off construction and perturbation, for each [B, q| € B,([A, p])z we can construct the
framed ASD connection [E’, B”,q']. By (37), (39) and T > Ty,

1
872

/ \F(B")dvol < 8—12 [F(B)dvol + Cy(d) < 2T(p(A) + &) + Cy(d).

™ Jp<T

where C(d) depends only on d. Therefore we get the map
B, ([A,p))z — Mr(2T(p(A) +&') + Ci(d)), [B.q]— [E',B",q].

This is an e-embedding with respect to the distance distg, by Lemma 7.1 and 7.2. There-
fore we get (by (38))

Widim, (B, ([A, p])z, dista,,) < 16T(p(A) +¢') + 8C,(d) + 6T,

for R > To([A, p],e’) and r = r(d,€’). As we pointed out before, we have Ty (k*[A, p],&’) =
To([A,pl,€") for k € Z. Hence for all k € Z and R > Ty = To([A, pl,€’]), we have the
same upper bound on Widim,. (B, (k*[A, p])z, distq,). Then for R > Ty,

1 16T (p(A ! d T
Q| kez 2R+ 1

T=R+L+D. L=0L(e)and D= D(d,d'(d),e/4) are independent of R. Hence
Widim, (B, ([A,p])z C My : Z)

R—o0 kez

<8(p(A)+¢')+ 3.

1
= lim (m supWidimE(Br(k’*[A,p])Z,distQR)>
R
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Here we have used (6). This holds for any ¢ > 0. (Note that r = r(d,<’) is independent
of €.) Hence

dim(B,([A,p])z C My :Z) = l_iir(l)Widimg(Br([A,p])Z CMy:7)
<8(p(A)+¢')+ 3.
Since dimg p)(Mg : Z) < dim(B,([A,p])z C Mg : Z),
dimpa p) (Mg : Z) < 8(p(A) +€') + 3.

This holds for any € > 0. Thus

dimia (Mo 7) < 8p(A) +3.
Therefore we get the conclusion:
Theorem 7.5. For any [A, p] € My,

dim[Ayp}(Md :Z) < 8p(A) + 3.

8. ANALYTIC PRELIMINARIES FOR THE LOWER BOUND

8.1. “Non-flat” implies “irreducible”. Note that the following trivial fact: if a smooth
function u on R is bounded and convex (v” > 0) then w is a constant function.

Lemma 8.1. If a smooth function f on S® xR is bounded, non-negative and sub-harmonic
(Af <0) then f is a constant function.

Proof. We have A = —0?/0t* + Ags where t is the coordinate of the R-factor of S x R
and Ags is the Laplacian of S®. We have

0 5 . (0f\
@f _2(5) +2fAgsf — 2fAF.

Then we have

1 92 / of
= f2dvol = / ‘—
2 0t? S3x{t} S3x{t} ot

Here we have used f > 0 and Af < 0. This shows that u(t) = fsgx{t} f? is a bounded
convex function. Hence it is a constant function. In particular «” = 0. Then the above

2
+ Vg f|* + f(—Af)) dvol > 0.

formula implies 0f /0t = Vg f = 0. This means that f is a constant function. 0J

Lemma 8.2. If A is a U(1)-ASD connection on S® x R satisfying | Fa| -~ < 0o, then A
is flat.

20ur convention of the sign of the Laplacian is geometric; we have A = —92 /93 — 9% /023 — 8% /dx3 —
02023 on R*
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Proof. We have Fs € /—1Q7. The Weitzenbock formula (cf. (10)) gives (V*V +
S/3)Fa = 2d~d*F4 = 0. We have

A|FA> = =2|VFAP* 4+ 2(Fa, V*VEy) = —2|VF4> — (25/3)|Fal* < 0.

This shows that |F4|? is a non-negative, bounded, subharmonic function. Hence it is a
constant function. In particular A|F4|? = 0. Then the above formula implies Fiy = 0. O

Corollary 8.3. If A is a non-flat SU(2)-ASD connection on S* x R satisfying | Fa] ;- <

00, then A is irreducible.

8.2. Periodic ASD connections. Let 7' > 0 be a real number, E be a principal SU(2)-
bundle over S? x (R/TZ), and A be an ASD connection on E. Suppose A is not flat. Let
m: 5 xR — S x (R/TZ) be the natural projection, and £ := 7*E and A := 7*A be
the pull-backs. Obviously A is a non-flat ASD connection satisfying |Fa| ;. < co. Hence
it is irreducible (Corollary 8.3). Some constants introduced below (e.g. Cs, Cs, €1) will
depend on (E, A). But we consider that (E, A) is fixed, and hence the dependence on it
will not be explicitly written.

Lemma 8.4. There exists Cy > 0 such that for any u € Q°(adFE)

/ \u|2 < 02/ \dAuP.
53%[0,T] $3%[0,T]

Then, from the natural T-periodicity of A, for everyn € 7Z

/ |W§@/ dauf?.
S3x[nT,(n+1)T) S3x [nT,(n+1)T]

Proof. Since A is ASD and irreducible, the restriction of A to S3 x (0, T) is also irreducible
(by the unique continuation [7, Section 4.3.4]). Suppose the above is false, then there exist

u, (n > 1) such that
1 :/ |y |* > n/ |d g, |.
$3%[0,T] 53%[0,T]

We can suppose that the restrictions of u, to S* x (0,T) converge to some u weakly in
L3(S? x (0,T)) and strongly in L*(S® x (0,T)). We have |u|,;. = 1 (in particular u # 0)
and dqu = 0. This means that A is reducible over S® x (0, 7). This is a contradiction. [

Let N > 0 be a large positive integer which will be fixed later, and set R := NT'. Let
¢ be a smooth function on R such that 0 < ¢ <1, o =1 on [0,R], ¢ = 0 over t > 2R
and t < —R, and |¢'|,|¢"| < 2/R. Then for any u € Q°(adE) (not necessarily compact

supported),
[ k< [ jaaenl = [ (Batew. .
S3x[0,R] S3xR S3xR
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Here Ay := V¥V = —xdy *xdy on Q°(adE). We have A(pu) = @A u + Ap - u +
*(xdp A dgu — dip A *dgu). Then Ay(pu) = Aqu over S3 x [0, R] and

[Aalpu)| < (2/R)|ul + (4/ R)|daul + |Aaul.

Hence

| il <em) [ uP+4/R) [ alidaad [ (gl
S3%[0,R] te[—R,0]U[R,2R] te[—R,0]U[R,2R] S3x[~R,2R]

From Lemma 8.4,

/ P < daul?,
te[—R,0]U[R,2R| te[—R,0]U[R,2R]

/ ulld < \/ / \uP\/ / daal < v/ o’
te[~R,0JU[R,2R] te[- RO0JU[R,2R) te[~ R,0JU[R.2R] te[~R,0JU[R,2R]

Hence

2 2C’2 + 4\/02
|daul” <
S3x[0,R]

’dAU‘Z +/ \AAuHu\
te[~R,0JU[R,2R] S3% [~ R,2R]

For a function (or a section of some Riemannian vector bundle) f on S* xR and p € [1, o0,

we set
| £l g 1o == sup 1/ o (s2xnm,msnymy) -
Then the above implies

402 +8\/ CQ
/S3 or |daul® < — % ||dAu||§(,0L2 + 3| Aau| - |l 1 -
X

In the same way, for any n € 7Z,

4C5 + 8v/C
/ gl < S Yl + 3 1Al [ull e
S3x[nR,(n+1)R]
Then we have
4C5 + 8y/Cy

2 2
ldaufpe > < |[daulie 2 + 3 1A au] - ull 1 -

R
We fix N > 0 so that (4C5 +8v/C5)/R < 1/2 (recall: R = NT). If |dau| o2 < 00, then

we get
2
ldaulpoe 2 < 6[[Aau] - full oo

From Holder’s inequality and Lemma 8.4,
HAau] - ullpoe 1 < [Aau]poope [l oo <V Co |Antfgoe p2 [davpoe s -
Hence |daufpors < 6V 02 |Aau]poor2, and [ulpere < VO |daulmerz < 6Cs [Anufpe .

Then we get the following conclusion.
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Lemma 8.5. There exists a constant C3 > 0 such that, for any v € Q°(adE) with

|dau] oo 2 < 00, we have
[l 2 + [ datiloe 12 < C3 [Antu] g 2 -

Recall that we fixed a point 6, € S3. The following result gives the “partial Coulomb
gauge slice” in our situation.

Proposition 8.6. There exists €1 > 0 satisfying the following. For any a and b in
Q' (adE) satisfying dya = diyb = 0 and |a| . , D] o < €1, if there is a gauge transforma-

tion g of E satisfying
g(A+a)=A+b, |g(0y,n)—1] <& (Vn€Z),
then g =1 and a = b.

Proof. Since g(A+ a) = A+ b, we have d4g = ga — bg. Then we have |dag| < 2¢;. From
the condition |g(6p,n) — 1| < &1 (n € Z), we get |g — 1| < const-e; < 1. Therefore
there exists u € Q%(adF) satisfying g = e and |u] ;. < const - £;. We have

dae” = dau+ (dau - u+udau) /2! + (dau - u* + udgu - u + u?dgu) /3 + - -+ .
Since |u| < const - &7 < 1,
daet| > |dau|(2 — ) > |daul/2.
Hence |dau| < 2|dag| < 4e;. In the same way we get |dag| < 2|daul, and hence
ldagliserz < 2[daulyeere < 205 |Agugppe -
Here we have used Lemma 8.5. Since d%a = d’b = 0, we have
Apg=—xdaxdag=—*(dag N\ *xa+ xb Adag).
Therefore
(40) [Aaglpe 2 < (lall oo + 100 oo ) Idagli 2 < 4C31 [Aat]poe -
A direct calculation shows |A u”| < n(n — 1)|ul"2|daul? + n|u|""1|A u|. Hence
|AA(e —u)| < eldaul® + (e — 1)|A u| < const - ey (|dau| + |Aqul).
Here we have used |u|, |dau| < const - g < 1. Therefore
|[Aag — Asufyee 2 < const - ex([daul ez + [Aav] ).
Using Lemma 8.5, we get
[Aag — Aaufyee > < const -1 [Apufy o -
Then the inequality (40) gives

(1 —const - e1) [Aatf o2 < 4C5e1 |Antt]jooy2 -
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If we choose €1 so small that 1 — const - £; > 4Cj3¢q, then this estimate gives A, u = 0.
Then we get (from Lemma 8.5) u = 0. This shows g =1 and a = b. O

The following “L*>°-estimate” will be used in the next section. For its proof, see Propo-
sition A.5 in Appendix A.

Proposition 8.7. Let & be a C*-section of AT (adE), and set n := (V4Va + S5/3)¢. If
[€0 s [0l o < 00, then
[€) e < (24/5) |0l o -

9. PROOF OF THE LOWER BOUND

9.1. Deformation of periodic ASD connections. The argument in this subsection is
a Yang-Mills analogue of the deformation theory developed in Tsukamoto [20]. Let d be a
positive number. As in Section 8.2, let T' > 0 be a positive real number, E be a principal
SU(2)-bundle over S* x (R/TZ), and A be an ASD connection on E. Suppose that A is
not flat and

(41) [E(A)] L~ < d.

Set F :=*E and A := 7*A where 7 : S® x R — S x (R/TZ) is the natural projection.
Some constants introduced below depend on (E,A). But we don’t explicitly write the
dependence on it because we consider that (E, A) is fixed.

We define the Banach space H) by setting
H) = {a € Q'(adE)| (d} + d})a =0, |a];~ < co}.

(H}, || ;) becomes an infinite dimensional Banach space. The additive group TZ =
{nT € R|n € Z} acts on H} as follows. From the definition of £ and A, we have
(T*E, T*A) = (E,A) where T : S x R — S x R, (6,¢) — (0,t + T). Hence for any
a € H}, we have T*a € H} and |T*a| ;e = |a] -

Fix 0 < a < 1. We want to define the Holder space C**(AT(adF)) for k > 0. Let
{UN_, {U A, {U{}5_, be finite open coverings of S3 x (R/TZ) satisfying the following
conditions.

(i) Uy C U{ and U C UY. Uy, U} and U are connected, and their boundaries are smooth.
Each UY is a coordinate chart, i.e., a diffeomorphism between U} and an open set in R*
is given for each .

(ii) The covering map 7 : S® x R — S3 x (R/TZ) can be trivialized over each UY, i.e., we
have a disjoint union 7~ (UY) = ||, Up, such that 7 : U/, — U} is diffeomorphic. We
set Upy = U\, N~} (Uy) and U}, := U, N7 (US). We have n=1(U,) = | |,,cz Unr and
T VL) = Ly Ui

(iii) A trivialization of the principal SU(2)-bundle E over each U} is given.

From the conditions (ii) and (iii), we have a coordinate system and a trivialization of
E over each U),. Let u be a section of A'(adE) (0 <4 < 4) over S* x R. Then uly»,
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can be seen as a vector-valued function over U),. Hence we can consider the Holder norm
|ulleras,,) of w as a vector-valued function over Upnx (cf. Gilbarg-Trudinger [9, Chapter
4]). We define the Hélder norm |u|... by setting

u = su u 7 .
e = _sup  Pelcveo,

For a € H}, we have |a|gr. < consty [a, - < oo for every k= 0,1,2,--- by the elliptic
regularity. We define the Banach space C**(A*(adE)) as the space of sections u of
At (adE) satisfying |ufor. < 0.

Consider the following map:

®: HY x C**(AT(adE)) — C**(AT(adE)), (a,¢)— FT(A+a+di¢).
This is a smooth map between the Banach spaces. Since F(A +a) = (a Aa)T,
(42) Fr(A+a+dy¢) = (aNa)" +didyo + [a ANdyo)T + (Do Adio)™T.
The derivative of ® with respect to the second variable ¢ at the origin (0,0) is given by

1
(43) 02Dy = didy = §(VZVA +5/3) : C**(A*(adE)) — C**(At(adE)).
Here we have used the Weitzenbock formula (see (10)).
Proposition 9.1. The map (V4V a4+ 5/3) : C**(AT(adE)) — C**(A*(adE)) is isomor-
phic.

Proof. The injectivity follows from the L*-estimate of Proposition 8.7. So the problem
is the surjectivity. First we prove the following lemma.

Lemma 9.2. Suppose that n € C**(A*(adFE)) is compact-supported. Then there exists
¢ € C*(AT(adE)) satisfying (ViVa+ S/3)p =n and || ¢]p2. < const - [n]co.-

Proof. Let L3 := {¢ € L*(A"(adE))|Va€ € L*}. For &,& € L3, set (&1,8)s/3 =
(S/3)(&1,&2) 2+ (V a&1, Va&a) 2. Since S is a positive constant, this inner product defines a
norm equivalent to the standard L?-norm. 7 defines a bounded linear functional (-, 1)z :
L? - R, £ — (§,n)r2. From the Riesz representation theorem, there uniquely exists
¢ € L3 satisfying (¢, ¢)s/s = (£, )2 for any £ € L. This implies that (V4V4+5/3)¢ =17
in the sense of distributions. Moreover we have [¢] ;> < const [n]... From the elliptic
regularity (see Gilbarg-Trudinger [9, Chapter 9]) and the Sobolev embedding L% < L4,

|60 s, < constallelpaws,y + 1l aqwr,):
< COHSU(||¢||L§(U;M) + ||77||L4(U;M))’

< consta(|n] 2 + |7l 4)-
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Here const), are constants depending on A =1,2,--- , A. The important point is that they
are independent of n € Z. This is because we have the TZ-symmetry of the equation.
From the Sobolev embedding L3 — L>, we have

9]0 < const - sup @]y, ) < comstlnl . + [nlps) < oo
n,

Using the Schauder interior estimate (see Gilbarg-Trudinger [9, Chapter 6]), we get

[8lc205,,) < consta(lol e + Inleoar )

It is easy to see that

(44) Sup [1len o, < const o

(Recall [n]co.a = sup,, |77||c07a((7m)') Hence [¢]e2a < const(|o] o + [7]coa) < oo o

Let n € C®*(A*(adF)) (not necessarily compact-supported). Let 5 (K =1,2,---) be
cut-off functions such that 0 < ¢, < 1, ¢, = 1 over |t| < k and ¢, = 0 over [t| > k + 1.
Set i, := 1. From the above Lemma 9.2, there exists ¢, € C*“(AT(adE)) satisfying
(V4V 4+ S/3)or = ni. From the L*™-estimate (Lemma 8.7), we get

[6k] o < (24/5) [0l oo < (24/55) 0] o -

From the Schauder interior estimate, we get

||¢k”c2,a(UM) < const, - (”¢kHL°°(U7’M) + ||77k”c07a(U;M)) < const([n] ;- + ||77kHc0,a(U;M))-

We have 7y = n over each Uy, for k > 1. Hence |¢i|c20(g,,) (K = 1) is bounded
for each (n, ). Therefore, if we take a subsequence, ¢, converges to a C?-section ¢ of
AT (adE) in the C%-topology over every compact subset. ¢ satisfies (V4 V4 + S/3)¢ =7
and | @]« < (24/S5) 1] ;. The Schauder interior estimate gives

18lenq, ) < consta (6] + Il or )
By (44), we get ¢z < const [nlen. < co. 0

Since the map (43) is isomorphic, the implicit function theorem implies that there exist
do > 0 and 63 > 0 such that for any a € Hj with |a]; < & there uniquely exists
Pa € C(AT(adE)) with [¢,] 2. < 05 satisfying F7 (A + a + d4d,) = 0, ie.,

(45) did5da + [a A d5da]T + (d50a AN diyda)™ = —(aNa)™.

Here the “uniqueness” means that if ¢ € C**(AT(adE)) with |¢]pz.. < 3 satisfies F™(A+
a+ d%¢) = 0 then ¢ = ¢,. From the elliptic regularity, ¢, is smooth. We have ¢y = 0
and

(46) |falcza < comstlal e, |¢a — dblcaa < const|a—bf

for any a,b € H} with a],«,[b],« < d2. The map a — ¢, is T-equivariant, i.e.,
Orea =T ¢, where T : S® x R — S® x R, (0,t) — (0,t +T).
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We have F(A+a+di¢,) = F(A+a) +dadydo + [a A diypo] + Ao A dyy. From (41),
if we choose 0o > 0 sufficiently small,

(47) |F(A+a+ diyga)| e < [F(A)] L + const - 52 < d.
Moreover we can choose d5 > 0 so that, for any a € H} with |a] ;. < 02,
(48) la + dPa] o < comnst - dy < ey,

where ¢ is the positive constant introduced in Proposition 8.6.

Lemma 9.3. We can take the above constant 8y > 0 sufficiently small so that, if a,b € H}
with |a] ;e , [0] o < 02 satisfy a + dp, = b+ dy¢y, then a =b.

Proof. We have

VAV A+ 8/3)(60 — ) = didi (60 — )
) =A@ =a)" + (O~ a) A + A (dady — o] +[(b—a) Adida]*

+ (Ao A (dydy — da¢a)) " + ((dady — dida) A dada)”
Its C%*-norm is bounded by

const([alcoa + [bleo. + dadalcon) la = blcoa
+ const([[bleo.. + [|dadalcoe + [daplcoe) [dada — dads]co -
From (46), this is bounded by const - d3 |a — b] ;. Then Proposition 9.1 implies
|60 — Pblcoa < const - dzfla—bf pu -
Hence, if a 4+ d% ¢, = b + d’y¢p then
la = bl = [dia¢a — dads] e < comst - dafla —b] o -

If 95 is sufficiently small, then this implies a = b. O

For r > 0, we set B.(H}) := {a € H}| |a|;~ <71}

Lemma 9.4. Let {a,}n>1 C Bs,(H)) and suppose that this sequence converges to a €
Bs,(HY) in the topology of compact-uniform convergence, i.e., for any compact set K C
S3 xR, |an, — Al oo sy = 0 as n — co. Then dy@a, converges to d’yd, in the C*-topology

over every compact subset in S® x R.

Proof. 1t is enough to prove that there exists a subsequence (also denoted by {a,}) such
that d%¢,, converges to d’¢, in the topology of C*°-convergence over compact subsets
in S% x R. From the elliptic regularity, a,, converges to a in the C*-topology over every
compact subset. Hence, for each k > 0 and each compact subset K in X, the C*-norms
of ¢,, over K (n > 1) are bounded by the equation (45) and |¢q,[p2e < d3. Then a

subsequence of ¢, converges to some ¢ in the C*-topology over every compact subset.
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We have ||z < 03 and FH(A + a + d¢) = 0. Then the uniqueness of ¢, implies
Qb - ¢a- O

Lemma 9.5. For any K > 0 and € > 0 there exist L > 0 and 6 > 0 such that, for any
a,b € Bs,(HY), if there is a gauge transformation g of E satisfying
|9(A+a+ diyda) = (A+ b+ dydn)| poeu<ry < 6,
lg(Og,n) — 1| <&y (YneZn[-L,L)),
then we have
19 = Upeequery & la—blpoqyen) < €

Recall that the positive constant €1 was introduced in Proposition 8.6.

Proof. We prove the statement |g — 1] y<x) < €. The statement |a — b] o<y < €
can be proved in the same way. (In the proof of |a — b];w(y<x) < €, we need Lemma
9.3.) If the statement is false, then there exist K > 0, € > 0, a,,b, € Bs,(HY) (n > 1),
gauge transformations g, (n > 1) such that

Hgn<A +an + dZQban) B (A + bn + d:k4¢bn)”L°°(|t‘§n) < 1/na

|90 (00, k) = 1] < &1 (VkeZN[=n,n]), [gn = Upequ<r) > €
If we take subsequences, a,, and b,, converge to some a and b in Bs,(H}) respectively in the
C*>-topology over compact subsets. Then d%¢,, and d%¢s, converge to d’¢, and d¥ ¢, in
the C*>°-topology over compact subsets (Lemma 9.4). Set ¢, := gn(A+ ay, + d%¢a,) — (A+
bn+dady,) = =(dagn)gy " +9gn(an+dia,)g;" = (ba+didy,). We have [dagn| < 1/n+25
over |t| < n (recall (48)). Then, if we take a subsequence, g, converges to some ¢ in the

topology of uniform convergence over compact subsets. Moreover for any 1 < p < oo and

any pre-compact open set U C S® X R, g, | weakly converges to g|y in L§(U). We have
l9(6, k) = 1] <e1 (VK €Z), [9—1pooqyer) = ¢

We have dagn, = —¢ngn + gn(an + d%@a,,) — (b + dy b5, ) gn- Since ¢, converges to 0 in the

topology of uniform convergence over compact subsets, we have

dag = g(a+ dy¢.) — (b+ dyon)g.

This means g(A+a+ d%¢,) = A+ b+ d%¢p. Moreover we have |g(6y, k) — 1| < &1 (k € Z).
Then Proposition 8.6 implies g = 1. (Note that we have d% (a + d%¢,) = d*%(b+d5dp) =0
and a + d¢al o , [0+ dib] o < €1 by (48).) This contradicts |g — 1] e (<) = € U

Corollary 9.6. We can take 65 > 0 so small that the following statement holds. For any
K >0 ande > 0 there exist L = L(K,e) > 0 and 6 = §(K,¢e) > 0 satisfying the following.
For any a,b € Bs,(H}), if there exist ty € R and a gauge transformation g of E such that
|9(A+a+ dyda) — (A+ b+ dydn)| oo r—to)<r) < 6
lg(6o,n) — 1| <e1/2 (n€ZN[to— L,ty+ L]),
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then we have

(50) 19 = U oo qi—soj<ry S & la = bl pooiro<ry < €

Proof. We have |dag| < 0 + const - 69 over |t — to| < L. Since |g(0p,n) — 1| < €,/2 for
n € 7ZN [ty — L,ty + L], we have

|9 = U g (—toj<) < €1/2 + const - (0 4 62) < €1,

if we take 6 and d sufficiently small. Recall that we have the natural TZ-actions on all
data. Let ny be an integer satisfying |ty — noT| < T', and set ¢} := ty — noT. Let o’ :=
(noT)*a, v/ := (noT)*b and ¢’ := (noT)*g be the pull-backs. (We have ¢ = (n¢T)*¢,.)
These satisfy

|g'(A+d + djdwr) — (A+V + dj4¢b')||L°°(|t—t6|§L) <4 |9 - 1||Loo(\t—t6\§L) < e

Note that {|t| < L —T} C {|t —t,| < L} and {|t —t{| < K} C {|t| < K+ T}. Hence if
we take o > 0 sufficiently small and L > 0 sufficiently large, then Lemma 9.5 implies

19" = Uiy <ry S & 0" =Vl pooqemyy <) < €

This is equivalent to the above (50). O

9.2. Proof of the lower bound. We continue the argument of the previous subsection.
For each n € Z, we take a point p! € Egyny. For r > 0, we denote BT(E(QOJL)) as the
closed r-ball centered at p® in E(y, ). Consider the following map:

(51) B52 (Hil) X H B52(E(90,n)) - Mdv (aa (pn)nEZ) = [E? A+a+ dtﬂbaa (pn)nEZ]‘

neL

Note that we have |F(A + a + d%¢.)| < d (see (47)), and hence this map is well-defined.
Bs,(HY) is equipped with the topology of uniform convergence over compact subsets, and
we consider the product topology on Bys,(H}) % ], Bs,(E(g,n))- Then the map (51) is
continuous (see Lemma 9.4).

Lemma 9.7. The map (51) is injective for sufficiently small 53 > 0.

Proof. Let (a, (pn)nez), (b, (qn)nez) € Bs,(H}) X [ 1,.cz Bs:(E(gon)), and suppose that there
exists a gauge transformation g satisfying

J(A+a+dyg.) = A+b+dyde, 9(pn) = qn (Vn € Z).

From ¢(p,) = ¢, we have |g(fg,n) — 1| < &1 (d2 < 1). We have d*(a + d%¢,) =
d4(b+ dydp) =0 and |a + d4dal 1, [0+ didp] o < €1 (see (48)). Then Proposition 8.6
implies ¢ = 1 and a + d’% ¢, = b+ d%¢p. Then we have p, = ¢, and a = b (see Lemma,
9.3). 0
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We define a distance on M, as follows. For [Ey, A1, (pn)nezl, [E2, A2y (qn)nez] € My
(see Remark 1.3), we set

dist([E1,A1, (Pn)nez), [Ba, As, (¢n)nez))

l9(A1) = As| o (4<n)
=  inf 9 =2+ 27 Mg(pn) — gl ¢ -
g:E1—E3 {Z 1+ |g(Ar) — A2HL°°(|t\ Z o |

n>1 <n)  nez

For N =0,1,2,---, we set Qy :={0,1,2,--- /N —1}.

Lemma 9.8. We can take 65 > 0 so small that the following statement holds. For any
e > 0, there exists € > 0 such that, for any N > 1 and (a, (pp)nez), (b, (qn)nez) €

Bs,(H}) X [1,ez Bs,(Eom)), if
(52) dlStQN([E7 A +a—+ d:k4¢a7 (pn)nEZ]> [Ea A + b + d*A(bba (Qn)nEZD S 5,7
then we have

"a - b||L°°(S3><[O,N]) < g, |pn - Qn| <e (n = 07 17 2’ e 7N - 1)'
(For the definition of distq, (-, "), see Section 2.)

Proof. Let L = L(1,¢/2) and 6 = §(1,£/2) be the constants introduced in Corollary 9.6
for K = 1 and ¢/2. If we take & sufficiently small, then (52) implies that, for each
n=0,1,2,--- N — 1, there exists a gauge transformation g, of E satisfying

lgn(A+a+dyda) — (A+ b+ dudw)| poe(t-nj<r) < O
|9 (00, K)pr — | < min(e1/3,¢/2) (k€ ZN[n—L,n+ L]).

In particular,
|90 (60, k) — 1 < [9n(00, k)P — ai| + g — pr| < €1/3 4+ 202 < 1/2,

for k € ZN[n— Lyn+ L] (62 < €1/12). Then we can use Corollary 9.6, and get (n =
0,1,---,N —1)

lgn — 1||Loo(|t—n\§1) <e/2, fa- b||Loo(|t—n\§1) <e/2.
The latter inequality implies |a — b Loo(s3x[o,N]) < € /2 < e. The former inequality implies
Pn = @ul < [Pn = 9u(00, 1P| + |gu (00, 7)pn — qu| < /2 +€/2 =€
forn=0,1,2,--- ,N — 1. O

Set (°°(Z,su(2)) = {(un)nez € su(2)?| |(un)nezlpe = sup, [u,] < oo} and V :=
HY x (>2(Z, su(2)). For (a, (uy)nez) € V we define

[(a, (un)nez)ly = max(fa] o , [(un)nezl = )-
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For r > 0, we denote B,(V) as the closed r-ball centered at the origin in V. There
exists 0y = 05(d2) > 0 such that, for any (a, (un)nez) € Bs,(V), we have (a, (pe"" )nez) €
Bs,(H}) % [1,,cz Bs:(E(go.n))- Then, for r < 6}, we can define

Pr : Br(v) - Md7 (a'> (un)nGZ) = [Ea A +a—+ dquaa (p?beun)nGZ]-

We consider that B,(V) is equipped with the topology of uniform convergence over com-
pact subsets, i.e., a sequence {(a,, (u,(gn))kez)}nzl in B,(V) converges to (a, (ug)rez) in
B, (V) if and only if a, uniformly converges to a over every compact subset and u,(gn)

converges to uy for every k. Then the above map P, is continuous.

Lemma 9.9. For any s > 0 there exists r > 0 such that
P(B(V)) C Bo([E, A, (p))nez])z.
Here By([E, A, (p°)nez])z is the closed s-ball of My centered at [E, A, (p)nez] with respect
to the distance disty, (see Section 2.2).
Proof. Let (a, (un)nez) € Br(V). We have |a + d%¢q|;« < const |a|; . < const-r. Hence,
for any k € Z,
dlSt(k*[Ea A7 (pg)nEZ]a k*[Ev A +a+ dﬁ;%, (pgeun)nel])

a+ A% bal poo(t—ki<n
< 22,n ” AQi "L ([t—K|<n)
>1 e dA¢a||L°°(|t—kISN)

Therefore distz([E, A, (p°)nez], [E, A + a + d¢q, (pP2e"")nez]) < const -1 < s. O

~|nl},,0 0
+ E 271l p0 et — 0 | < const - 7
nez

For each n > 1, let 7, : S® x (R/nTZ) — S* x (R/TZ) be the natural n-hold covering,
and set B, := 7} (E) and A, := 7} (A). We denote H}; as the space of a € Q' (adE,) over
53 x (R/nTZ) satisfying (df +d% )a = 0. We can identify H) with the subspace of H}
consisting of nT-invariant elements. (Here we consider the natural action of TZ on H}.)
The index formula gives dim H} = 8ncy(E). (We have Hy = H3; =0.) We define the
finite dimensional subspace V,, C V = H} x {>*(Z, su(2)) by

Vi i={(a, (up)rez) € V|a € Hy ,u, =0 (k <0, k> [nT))}.
Here [nT] means the maximum integer not greater than n7". We have
(53) dim V,, = 8nce(E) + 3[nT].

Let s > 0. We choose 0 < r < §5(< 1) such that P.(B,.(V)) C Bs([E, A, (p2)rez])z. Let
N be a positive integer and set n := [N/T]. By using Lemma 9.8, there exists ¢ = £(r) > 0
(independent of N,n) such that, for (a, (ux)rez), (b, (Vi)rez) € By (V), if

distay (Pr(a, (ur)rez), Pr (b, (Uk)rez)) < €.

then
Ja — b"Loc(SBx[o,N}) <r/2, |up—wvl<r/2(k=0,1,2,--- N 1)
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In particular, if (a, (ux)rez), (b, (Vi)kez) € Br(V,,) satisfies

distoy (Pr(a, (uk)rez), Pr(b, (Vi )rez)) < €,
then
[(a; (ur)rez) — (b, (vi)kez) |y < 7/2.
This implies
Wldlms(Bs<[Ea A7 (pg)kEZ])ZJ diStQN) 2 WldlmT/Q(BT(Vn)7 ”||V)7
= dimV,, = 8ncy(E) + 3[nT].
Here we have used Lemma 2.1 and (53). Therefore
dim(B,([E, A, (pp)rez])z C Ma: Z) = 8ca(E)/T + 3 = 8p(A) + 3.
Here we have used (3). This holds for any s > 0. Thus
dim[E7A7(p2)k€Z] (Md : Z) 2 8p(A) + 3.
So we get the following conclusion.
Theorem 9.10. Suppose d > 0. If A is a periodic ASD connection satisfying |F(A)] ;- <
d, then for any framing p : Z — E (p(n) € E@, )
dimpg p] (My:7)=8p(A) + 3.
Proof. The upper-bound dimpg z (Mg : Z) < 8p(A) + 3 was already proved in Section
7.2. If A is not flat, then the above argument shows that we also have the lower-bound
dima p)(Ma : Z) > 8p(A) + 3. Hence dimgp (Mg : Z) = 8p(A) + 3. So we suppose
that A is flat. Since every flat connection on E = X x SU(2) is gauge equivalent to the

product connection, we can suppose that A is the product connection. Then the following

map becomes a Z-equivariant topological embedding.

SU(2)Z/SU(2) - Md> [(pn)nez] = [Aa (pn)nel]a

where SU(2)%2/SU(2) is the quotient space defined as in Example 2.8. From the result of
Example 2.8, we get

dim[A,(pn)nez}(Md ) > dim[(pn)nez](SU(Q)Z/SU(Q) :7Z) =3=28p(A) + 3.

When d = 0, we can determine the value of the (local) mean dimension.

Proposition 9.11.
dimj,.(Mg : Z) = dim(M, : Z) = 3.

Proof. My is Z-homeomorphic to SU(2)%?/SU(2). Hence Example 2.8 gives the above
result. O

We have completed all the proofs of Theorem 1.1 and 1.2.
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APPENDIX A. GREEN KERNEL

In this appendix, we prepare some basic facts on a Green kernel over S® x R. Let
a > 0 be a positive constant. Some constants in this appendix depend on a, but we don’t
explicitly write their dependence on a for simplicity of the explanation. In the main body
of the paper we have a = S/3 (S is the scalar curvature of S x R), and its value is fixed
throughout the argument. Hence we don’t need to care about the dependence on a = S/3.

A.1. (A +a) on functions. Let A := V*V be the Laplacian on functions over S* x R.
(Notice that the sign convention of our Laplacian A = V*V is “geometric”. For example,

we have A = — 371 | 9?/0x? on the Euclidean space R%.) Let g(,y) be the Green kernel
of A+ a;

(Ay +a)g(x,y) = 0.(y).

This equation means that

o) = [ | alea)(8, + @pol)ivolly)

for compact-supported smooth functions ¢. The existence of g(z, y) is essentially standard
([2, Chapter 4]). We briefly explain how to construct it. We fix z € S x R and construct
a function g, (y) satisfying (A+a)g, = d,. Asin [2, Chapter 4, Section 2], by using a local
coordinate around z, we can construct (by hand) a compact-supported function g . (y)
satisfying

(A + a).QO,a: = 590 — J1,2,

where g; , is a compact supported continuous function. Moreover go, is smooth outside
{z} and it satisfies

consty /d(z,y)? < go.(y) < consty/d(z,y)?,

for some positive constants const; and const, in some small neighborhood of x. Here
d(z,y) is the distance between x and y. Since (A + a) : L3 — L? is isomorphic, there
exists go, € L3 satisfying (A + a)gar = g12. (go is of class C'.) Then g, := go. + g2
satisfies (A +a)g, = 0, and g(z,y) := ¢g.(y) becomes the Green kernel. g(x,y) is smooth
outside the diagonal. Since S® x R = SU(2) x R is a Lie group and its Riemannian metric
is two-sided invariant, we have g(z,y) = g(zz, 2y) = g(xz,yz) for z,y,z € S xR. g(x,y)
satisfies

(54> Cl/d(x7 y)2 < g(l’, y) < Cg/d(l', y)2 (d(l’, y) < 6)7
for some positive constants cq, ¢, 9.

Lemma A.1. g(x,y) >0 for x #y.
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Proof. Fix x € S% x R. We have (A + a)g, = 0 outside {z}, and hence (by elliptic
regularity)

19:2(0, )] < const |ga] pa(ssxpp—,p41yy ([t > 1)-

Since the right-hand-side goes to zero as |t| — oo, g, vanishes at infinity. Let R > 0 be
a large positive number and set Q := 5% x [-R, R] \ Bs(z). (§ is a positive constant in
(54).) Since g,(y) > c1/d(z,y)? > 0 on dBs(x), we have g, > —sup,_,r |g.(0,1)| on OQ.
Since (A + a)g, = 0 on 2, we can apply the weak maximum (minimum) principle to g,
(Gilbarg-Trudinger [9, Chapter 3, Section 1]) and get

9=(y) > — sup |g.(0,1)] (v € Q).
t=+R

The right-hand-side goes to zero as R — oo. Hence we have g,(y) > 0 for y # x. Since
gz 18 not constant, the strong maximum principle ([9, Chapter 3, Section 2]) implies that
g cannot achieve zero. Therefore g,(y) > 0 for y # x. O

Lemma A.2. There exists cz > 0 such that
0 < g(z,y) < cse™V@  (d(z,y) > 1).
In particular,
/ g(x,y)dvol(y) < co.
S3xR
The value of this integral is independent of v € S® x R because of the symmetry of g(z,y).

Proof. We fix zy = (6p,0) € S x R. Since S* x R is homogeneous, it is enough to show
that g.,(y) = g(zo,y) satisfies

o (y) < comst - e VA (y = (,1) € S x R and |t| > 1).

Let C := supy_; gz, (6,1) > 0, and set u := CeVet=lh — g (y) (|t| > 1). We have u > 0
at t = +£1 and (A+a)u =0 (|t| > 1). u goes to zero at infinity. (See the proof of Lemma
A.1.) Hence we can apply the weak minimum principle (see the proof of Lemma A.1) to
u and get v > 0 for [t| > 1. Thus g,,(y) < CeVeO=I1 (|t| > 1). O

The following technical lemma will be used in the next subsection.

Lemma A.3. Let f be a smooth function over S® x R. Suppose that there exist non-
negative functions fi, fa € L?, f3 € L' and fy, f5,f¢ € L™ such that |f| < fi + f4,
IVl < fot+ fs and |Af +af| < fs+ fo. Then we have

fa) = [ alea)(d, + @) fw)ivlly)
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Proof. We fix z € S®xR. Let p, (n > 1) be cut-off functions satisfying 0 < p, <1, p, =1
over |t| <n and p, = 0 over |t| > n + 1. Moreover |Vp,|, |Ap,| < const (independent of
n > 1). Set f, := pnf. We have

ful) = / 9, y) (B, + a) fu(y)dvol(y).

(A+a)fn=2pn  f—=2(Vpu, V) + pu(A +a)f.
Note that g.(y) = g(z,y) is smooth outside {x} and exponentially decreases as y goes to
infinity. Hence for n > 1,

/gx|Apn - fldvol < C / 2 dvol + C'/ gz f1dvol(y).
supp(dpn) supp(dpn)

Since supp(dp,) C {t € [-n —1,—n] U [n,n + 1]} and f; € L? and f; € L*, the right-
hand-side goes to zero as n — oco. In the same way, we get

/gx|<Vpn,Vf>|dvol—>O (n — 00).

We have g, |pn(A +a)f| < g.|Af +af|, and

gz(y)]Af+af|dvol+( sup gz(y)>/ £, dvol
d(z,y)>1

d(z,y)>1

[ oatwlas+aflavol <

d(z,y)<1
+/ g fe dvol < oo.
d(z,y)>1

Hence Lebesgue’s theorem implies

lim [ g.pn(A+a)f dvol = /gI(A + a) f dvol.

n—oo

Therefore we get

f(x) = /gx(A + a) f dvol.
O

A.2. (V*V +a) on sections. Let E be a real vector bundle over S® x R with a fiberwise

metric and a connection V compatible with the metric.

Lemma A.4. Let ¢ be a smooth section of E such that |¢| 2, [Vé| 2 and |[V*Vé + ad|;
are finite. Then ¢ satisfies

@)l < [ ale.n)IVVoly)+ ad(y)ldvolly)

Proof. The following argument is essentially due to Donaldson [5, p. 184]. Let R be the
product line bundle over S® x R with the product metric and the product connection.
Set ¢, := (¢, 1/n) (a section of E @ R). Then |¢,| > 1/n and hence ¢,, # 0 at all points.
We want to apply Lemma A.3 to |¢,|. |¢n] < |¢| + 1/n where |¢| € L? and 1/n € L*™.
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Vo, = (Vp,0) and V*Ve, = (V*Vep,0). We have the Kato inequality |V |o,|| < |V,
Hence V|¢,| € L?. From A|¢,|?/2 = (V*Vé,, dn) — [Vonl?,

_ Vol = [Vignl?

(55) (A+a)|gn| = (V'Vn + adn, ¢n/|onl) N

Hence (by using |¢| = 1/n and |V]é,|| < [V,])
(A + a)|dull < [V*Vén + agal +n|Ven|? < [V*V6 +ag| +a/n + | Vo]

|V*V¢ + a¢| + a/n € L and n|V¢|*> € L'. Therefore we can apply Lemma A.3 to |¢,|
and get

|¢n ()] = /g(if,y)(Ay + a)|¢n(y)|dvol(y).
From (55) and the Kato inequality |V|o,|| < [V,
(Ay + a)lén(y)] < V'V, + agu| < V'V + ad| + a/n.

Thus
6,0 < [ 9la, ) VToly) + adllavol(w) + % [ gl y)dvol(y)

Let n — oo. Then we get the desired bound. 0

Proposition A.5. Let ¢ be a section of E of class C?, and suppose that ¢ and n =
(V*V + a)¢ are contained in L>. Then

|61 < (8/a) [l o -

Proof. There exists a point (61,t1) € S? x R where |¢(61,t1)] > |¢] . /2. We have
Alg|* =2(V'V¢,¢) — 2|Vl = 2(n, ¢) — 2al6]* — 2|Ve[".
Set M := |¢] < [11] - Then
(A +2a)|g]* < 2(1,¢) < 2M.

Define a function f on S x R by f(6,t) := (2M/a) cosh\/a(t — t,) = (M/a)(eV*t—4) 4
eVa=t+1))  Then (A +a)f = 0, and hence (A + 2a)f = af > 2M. Therefore

(A +20)(f — |6P) > 0.

Since |¢| is bounded and f goes to +oo at infinity, we have f —|¢|*> > 0 for |¢| > 1. Then
the weak minimum principle ([9, Chapter 3, Section 1]) implies f(61,t1) —|¢(61,t1)|? > 0.
This means that [¢]7. /4 < [¢(61,01)]* < (2M/a) = (2/a) [¢] |1 . Thus [ <
(8/a) [l - O

Lemma A.6. Let n be a compact-supported smooth section of E. Then there exists a
smooth section ¢ of E satisfying (V*V +a)p =n and

@l < [ gtaalat)dvol(s).



INSTANTON APPROXIMATION, PERIODIC ASD CONNECTIONS, AND MEAN DIMENSION 55

Proof. Set L3(E) := {£ € L*(F)|VE € L*} and (£1,8)q := (VE,VE) 2 + a(&y, &) 2 for
&,& € LA(E). (Since a > 0, this inner product defines a norm equivalent to the standard
L2-norm.) 7 defines the bounded functional

('777)L2 : L%(E) - Ra SH (57”)L2'

From the Riesz representation theorem, there uniquely exists ¢ € L3 (F) satisfying (£, @)
(&,m)2 for any € € L?(E). Then we have (V*V + a)¢ = n in the sense of distribution.
From the elliptic regularity, ¢ is smooth. ¢ and V¢ are in L?, and (V*V +a)$ = 7 is in
L. Hence we can apply Lemma A.4 to ¢ and get

lp(x)] < /g(ﬂf7y)\V*V¢(y) + ag(y)|dvol(y) = /g(x,y)ln(y)!dvol(y)-

O

Proposition A.7. Let n be a smooth section of E satisfying |n|,~ < oco. Then there
exists a smooth section ¢ of E satisfying (V*V + a)¢ =n and

(56) @< [ ot pnwldvly)

(Hence ¢ is in L*.) In particular, if n vanishes at infinity, then ¢ also vanishes at
infinity. Moreover, if a smooth section ¢’ € L>®(E) satisfies (V*V +a)¢’ =n (n does not
necessarily vanishes at infinity), then ¢' = ¢.

Proof. Let p,, (n > 1) be the cut-off functions introduced in Lemma A.3, and set 1,, :== p,7.
From Lemma A.6, there exists a smooth section ¢, satisfying (V*V + a)¢,, = 71, and

(57) 6 (2)] < / 92, 9) |1 (y) dvol(y) < / gz, ) In(y)]dvol(y).

Hence {¢,},>1 is uniformly bounded. Then by using the Schauder interior estimate ([9,
Chapter 6]), for any compact set K C S? x R, the C>“-norms of ¢, over K are bounded
(0 < a < 1). Hence there exists a subsequence {¢,, }x>1 and a section ¢ of E such
that ¢,, — ¢ in the C*-topology over every compact subset in S* x R. Then ¢ satisfies
(V*V 4+ a)¢ = n. ¢ is smooth by the elliptic regularity, and it satisfies (56) from (57).
Suppose 7 vanishes at infinity. Set K := [ g(z,y)dvol(y) < oo (independent of z).
For any € > 0, there exists a compact set ; C S* x R such that |n| < ¢/(2K) on the
complement of {2;. There exists a compact set (25 D €2y such that for any x &

Il / g(z,y)dvol(y) < /2.

Then from (56), for = & Q,,

@)l < [ awlnldvl) + | sl gmmldvolt) < e/2+/2 =

This shows that ¢ vanishes at infinity.
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Suppose that smooth ¢ € L>(F) satisfies (V*V +a)¢’ = 7. We have (V*V +a)(¢ —
¢') =0, and ¢ — ¢ is contained in L. Then the L*>°-estimate in Proposition A.5 implies

¢—d =0. 0

1]

=

<
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