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ABSTRACT. Let F, be a free group of rank n and F¥ the quotient group of F}, by the
subgroup [I',(3),Tn(3)][[Tn(2),T'1(2)],T,,(2)] where I',, (k) denotes the k-th subgroup
of the lower central series of the free group F,,. In this paper, we determine the group
structure of the graded quotients of the lower central series of the group F¥ by using
a generalized Chen’s integration in free groups. Then we apply it to the study of the
Johnson homomorphisms of the automorphism group of F;,. In particular, after taking
a reduction of the target of the Johnson homomorphism induced from a quotient map
F, — FN. we see that there appear only two irreducible component, the Morita
obstruction S*Hgq and the Schur-Weyl module of type H([g 72’121, in the cokernel of
the rational Johnson homomorphism T,;’Q =7, ®idq for k> 5and n > k + 2.

1. INTRODUCTION

Let F), be a free group of rank n > 2, and Aut F,, the automorphism group of F},. Let
denote p : Aut F,, — Aut H the natural homomorphism induced from the abelianization
H of F,. The kernel of p is called the [A-automorphism group of F),, denoted by IA,,.
The group IA,, reflects many richness and complexity of the structure of Aut F},, and
plays important roles on various studies of Aut F),.

Although the study of the IA-automorphism group has a long history, the combina-
torial group structure of IA,, is still quite complicated. In 1935, Magnus [14] obtained
finitely many generators of IA,,. Nielsen [21] showed that IA, coincides with the inner
automorphism group of Fy, hence, it is isomorphic to F». In general, however, any pre-
sentation for TA,, is not known. Krsti¢ and McCool [13] showed that [A3 is not finitely
presentable. For n > 4, it is also not known whether TA,, is finitely presentable or not.

The purpose of our research is to clarify the group structure of IA,,. In particular, we
are interested in to determine the graded quotients of the Johnson filtration of Aut F,.
The Johnson filtration is a descending central series

1A, =A,(1) D A,(2) D -
consisting of normal subgroups of Aut F,,. Then the homomorphism
Tk Ap(k) — H* @z L, (k+ 1)
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is defined by 74 (0) = (z + x~'27) for each k > 1. The map 7} induces a homomorphism
7 gt (Ay) — H* @z L, (k+ 1)

on the k-th graded quotient of the Johnson filtration. Both 7 and 7, are called the k-th
Johnson homomorphisms of the automorphism group of a free group. In particular, 7 is
a GL(n, Z)-equivariant injective homomorphism. (For detail, see Subsection 2.5.) The
study of the Johnson homomorphisms was originally begun in 1980 by D. Johnson [10)]
who determined the abelianization of the Torelli subgroup of a mapping class group
of a surface in [11]. Recently, the study of the Johnson filtration and the Johnson
homomorphisms of Aut F}, achieved good progress through the work of many authors,
for example, (7], [12], [18], [19], [20], [24] and [26].

Considering the images of the Johnson homomorphisms, we can study IA,, by in-
finitely many pieces of a free abelian group of finite rank. They are regarded as one
by one approximations of IA,, and to clarify the structure of them induces several
applications to the study of IA,. In this paper, we are interested in to determine
the GL(n, Z)-module structure of the cokernel of the rational Johnson homomorphisms
Tk = Tk ®idq. Now, for 1 < k < 3, the cokernel of 74 q is completely determined. (See
[1], [24] and [26] for £ = 1, 2 and 3 respectively.) Recently, Morita [19, 20] showed that
for each k > 2, there appears the symmetric tensor product S*Hgq in the irreducible
decomposition of Coker(7; q) using Trace maps. The modules S*Hgq are the first ob-
structions for the surjectivity of the Johnson homomorphisms, discovered by Morita.
We call them the Morita obstructions. In general, however it is quite hard problem to
determine Coker(7;,q). Even its Q-dimension is not calculated for £ > 4. One reason
for the difficulty is that we can not study the image of the Johnson homomorphisms
directly since there are few information for generators of the graded quotients gr¥(A,).

To avoid this difficulty, we consider the lower central series A’ (1) = TA,,, A/ (2), ... of
IA,,. Since the Johnson filtration is central, A/ (k) C A, (k) for k > 1. It is conjectured
that A/ (k) = A, (k) for each £ > 1 by Andreadakis who showed AL(k) = As(k) for
each k > 1 and Aj(3) = A3(3) in [1]. Now, we have A/ (2) = A,(2) due to Cohen-
Pakianathan [3, 4], Farb [5] and Kawazumi [12]. (See (3) below.) Furthermore A/ (3)
has at most finite index in A,(3) due to Pettet [24]. It is, however, also difficult to
determine whether A/ (k) coincides with A, (k) or not.

For each k > 1, set gr¥(A!) := A/ (k)/A,(k + 1). We can also define the Johnson

homomorphisms
7 gt"(A) — H* @z L,(k+1)

by an argument similar to that in the definition of 7,. In general, we can consider
Coker(7y,q) as a GL(n, Z)-equivariant submodule in Coker(7;, o). Namely, to study the
structure of Coker(7, o) is equivalent to give an upper bound on Coker(7; q). Further-
more the most important thing is that since IA,, is finitely generated by the Magnus
generators, each grf(A’) is also finitely generated by commutators of weight k& among
them. Therefore, it is accessible to study the cokernel of 7] in contrast to that of 7.
Now, it is known that Coker(r;, q) = Coker(r;,q) for 1 < k < 3. In our previous pa-
per [28], we determined the GL(n,Z)-module structure of Coker(7q) for n > 6. In
general, however, it seems to be still difficult to give an irreducible decomposition of
Coker(7;, q)-



One of the main purpose of the paper is to consider a reduction of the target of the
Johnson homomorphism 77. More precisely, Let F¥ be the quotient group of F,, by the
subgroup [[,(3), T(3)][[1(2), T (2)], T (2)]. If we denote I'Y(k) by the lower central
series of FIV and set £ (k) := 'V (k)/TN(k + 1), we have a natural map

H* @z Ly(k+1) — H* @z LY (k +1).
In this paper, we consider the composition
T,;N cgtM(AL) — H* @z LY (k+1)

of 74, and the natural projection above. The map 7, y is a GL(n, Z)-equivariant homo-
morphism. Then we show

Theorem 1. (= Theorem 5.3.) Forn >k + 2,
Coker((1/,y)q) = S¥Hq @ Hy >

%]
where H([g—2712] denotes the Schur-Weyl module of H corresponding to the partition
[k —2,1%] of k.

This shows that H([s ~21% also appears in the irreducible decomposition of Coker(y, o)
for n > k + 2. This work is an analogue and a certain extension of our previous work
[27] in which we concerned the Johnson homomorphisms of the automorphism group
of a free metabelian group, and showed that there appears only the Morita obstruction
in the cokernel of it.

The reason why we consider the quotient group £ is that the structure of the graded
quotients £ (k) of the lower central series of FV is easier to handle than that of the
other quotient group of F,,, for example F),/[[',(3),',(3)] and F,,/[[I'(2),T'.(2)], T'n(2)],
except for a free metabelian group. In general, although to give an irreducible decom-
position of Coker(7;, o) is difficult, considering a such reduction of the target of the
Johnson homomorphism 77, we can easily find a new obstruction for the surjectivity of
Th.Q

Before showing Theorem 1, we have to determine the group structure of each £ (k)
for £ > 6. The other purpose of the paper is to show

Theorem 2. (= Theorem 4.1 and Corollary 4.1.) For n > 6, each of LY (k) is a free
abelian group with

rankz (£ (k) = (k — 1) <’“ * e 2> 4 %n(n 1)k —3) (”Zf;‘l)

In general, it is easy to show that each LY (k) is finitely generated abelian group.
Hence the difficult part is to show £ (k) is free and to determine its rank. To do this,
we introduce a certain integration

Li(f,w;aq,...,a,) ::/l( f(t)dt;

in Section 3. This is a generalization of the Chen’s integration in free groups introduced
by K. T. Chen who determined the group structure of the graded quotients of the lower
central series of a free metabelian group in [2].



This paper consists of five sections. In Section 2, we recall the associated Lie algebra

of a group, the IA-automorphism group and the Johnson homomorphisms. In Section
3, we introduce a generalization of the Chen’s integration in free groups, and study
some properties. In Section 4, we determine the group structure of the graded quotient

LN (k) of the lower central series of FV. Finally, in Section 5, we determine the cokernel

of (Tl/c,N)Q‘
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2. PRELIMINARIES

In this section, we recall the definition and some properties of the associated Lie

2.1. Notation and conventions.

algebra of a group G, the IA-automorphism group of a free group and the Johnson
homomorphisms of Aut F,.

Throughout the paper, we use the following notation and conventions. Let G be a

group and N a normal subgroup of G.

e The abelianization of G is denoted by G&P.

e The group Aut G of G acts on G from the right. For any 0 € Aut G and x € G,

the action of ¢ on x is denoted by z°.

e For an element g € G, we also denote the coset class of g by g € G/N if there

is no confusion.

e For any Z-module M, we denote M ®zQ by the symbol obtained by attaching a
subscript Q to M, like Mg or M Q. Similarly, for any Z-linear map f : A — B,

the induced Q-linear map Aq — Bq is denoted by fq or fQ.

e For each k > 1, and any partition \ of k, we denote by H* the Schur-Weyl
module of H corresponding to the partition A of k. For example, the modules
H™ and HI are the symmetric product S*H and the exterior product A¥H

respectively. (For details, see [6].)



e For elements x and y of GG, the commutator bracket [z,y] of z and y is defined
to be [z,y] := zyx "y~

2.2. Associated Lie algebra of a group.

Let G be a group, and I'¢(k) the k-th term of the lower central series of G' defined
by
Fg(l) = G, Fg(k’) = [Fg(k? - 1), G], k Z 2.
For each k > 1, set Lg(k) :=Ta(k)/Tg(k+ 1) and

Le =P La(k).
k>1
Then L has a graded Lie algebra structure induced from the commutator bracket on
G. We call L the associated Lie algebra of a group G. Clearly, the correspondence
from G to Lg is a covariant functor from the category of groups to that of graded
Lie algebras. In particular, if f : G; — G4 be a surjective group homomorphism, the
induced homomorphism f, : L5, — Lg, is also surjective.

For any ¢1,...,gr € G, a commutator of weight &k among the components g1, ..., gk

of the type
H o [[gla92]7g3]a T ]79]9]
with all of its brackets to the left of all the elements occurring is called a simple k-
fold commutator, denoted by [g1, 92, - , gr]. In general, if G is generated by g1, .., gn
then for each k& > 1, L (k) is generated by (the coset classes of) the simple k-fold
commutators
[gimgiw"'agik]a Z-je{l?"wn}'

For details, see [15] for example.

Next we consider the case where G is a free group F, on xy,...,x,. For simplicity,
we write I',,(k), £, (k) and L, for I'¢(k), Ls(k) and L respectively. The associated Lie
algebra L, is called the free Lie algebra generated by H. (See [25] for basic materials
concerning the free Lie algebra.) It is classically well known due to Witt [29] that for
each k > 1, the graded quotient L, (k) is a GL(n, Z)-equivariant free abelian group of
rank

1) ralk) = 1 3 uldyn’
d|k

where p is the Mobius function.

Now, we denote by FM the quotient group of F,, by a subgroup [[',(2),',(2)]. The
group FM is called a free metabelian group of rank n. For simplicity, we write I'M (k),
LY (k) and LY for Tpa(k), Lpu (k) and Lpar respectively. The associated Lie algebra
LM is called the free metabelian algebra generated by H, or the Chen Lie algebra. By
the remarkable work by Chen [2], it is known that for each k& > 1 the graded quotient
LM(K) is a GL(n, Z)-equivariant free abelian group of rank

) = - n(" )



with basis
{[Tiys Tig, -y i1 > dg <z < oo <}

Let FV be the quotient group of F}, by the subgroup [I',,(3), T, (3)][[T(2), T (2)], T (2)].
For simplicity, we write I’} (k), L (k) and L)) for T (k), Ly (k) and Lpy respectively.
In Section 4, we determine the rank of £Y (k) for each k > 1.

2.3. Hall Basis.

Here, we recall the Hall basis of £,,(k) for each k > 1. In [8], P. Hall introduced basic
commutators of F),, and showed that those of weight k form a basis of £, (k). Now, it
is called the Hall basis of £, (k). (For details for the basic commutators, see [9] and
[25] for example.) In this paper, we consider a fixed sequence of basic commutators of
F,, beginning with

Ty < Ty < -o- <Xy < T2, 1] < [x3,71) < [23,22] <+ < [T, Tpa] < -
where the ordering among [z;, z;] is defined by the lexicographic ordering.

Let ¢;1 < -+ < ¢1m, be the basic commutators of weight [. If w is a product of basic
commutators of weight > [, and if we apply the Hall’s correcting process to w, then for
each k > [, w is rewritten as a form

e 1,1 PR EI’"LZ PR Ck,1 “ . 8k7mk /
W =¢Cq Crm, Cr1 Crymy W
where w' is a product of commutators [uq,us,...,u,] in T';,(k 4+ 1) and each element

u; of the component is in I',,(1). (For details for the correcting process, see [9].) In
particular, from the above we see that for each k > 1, any element w € F,, is uniquely
written as a form

w=cl g g cZkTZ;’“ (mod T'p(k + 1))

for some e;,,, € Z. We call it the mod-I',,(k 4+ 1) normal form of w.

For any k£ > 2, the basic commutators which do not belong to [[',(2),T,(2)] are
[ZL‘il,lEiZ,...,ZEZ‘k} for i1 > 19 < 13 < - <.
2.4. TA-automorphism group.

Let p : Aut F;,, — Aut H be the natural homomorphism induced from the abelianiza-
tion of F),. In this paper we identify Aut H with the general linear group GL(n,Z) by
fixing the basis of H as a free abelian group induced from the basis z1,...,x, of F,.
The kernel IA,, of p is called the TA-automorphism group of F,. Magnus [14] showed
that for any n > 3, IA,, is finitely generated by automorphisms

for distinct 4, j € {1,2,...,n} and

—-1,. -1

Koo Ty = LiX;0x; X,
igl - .
T X, (t #1)

for distinct 4, j, € {1,2,...,n} such that j > [.



Recently, Cohen-Pakianathan [3, 4], Farb [5] and Kawazumi [12] independently showed
that the abelianization of IA,, is a free abelian group, and the Magnus generators above
induce a basis of it. More precisely, they showed
(3) TIAY = H* @7 A’H
as a GL(n,Z)-module where H* := Homgz(H,Z) denotes the dual group of H.

2.5. Johnson homomorphisms.

In this subsection, we recall the Johnson homomorphisms of the automorphism group
of a free group. To begin with, we recall a descending filtration of Aut F), called the
Johnson filtration. For k > 0, the action of Aut F}, on each nilpotent quotient F,, /T, (k+
1) of F,, induces a homomorphism

P Aut F,, — Aut(F, /T, (k +1)).

We denote the kernel of p* by A, (k). Then the groups A, (k) define a descending
central filtration
Aut F, = A,(0) D A, (1) DA, (2) D ---

of Aut F,,, with A, (1) = IA,. (See [1] for details.) It is called the Johnson filtration
of Aut F},. For each k > 1, the group Aut F,, acts on A, (k) by conjugation, and it
naturally induces an action of GL(n,Z) on grf(A,) := A.(k)/A.(k +1). The graded
sum gr(A,) = @,-,gr*(A4,) has a graded Lie algebra structure induced from the
commutator bracket on IA,,.

In order to study the GL(n,Z)-module structure of gr®(A,) for each k > 1, we
consider the Johnson homomorphisms of Aut F), as follows. For each k£ > 1, define a
homomorphism 7 : A, (k) — Homgz(H, L,(k + 1)) by

o (z—a2'2%), z¢cH.
Then the kernel of 7 is just A,,(k + 1). Hence it induces an injective homomorphism
7 1 gr¥(A,) — Homg(H, L, (k +1)) = H* ®z L, (k + 1).

The homomorphisms 7, and 7, are called the k-th Johnson homomorphisms of Aut F;,.
It is easily seen that each 73 is GL(n, Z)-equivariant injective homomorphism. For the
Magnus generators of IA,,, their images by 7 are given by

(4) n(Ky) =27 @ [z, 5], 1K) = 27 @ [, 21].
Furthermore, we remark that 7{ is just the abelianization of IA,,. (See [3, 4, 5, 12].)

Let Der (£,) be the graded Lie algebra of derivations of £,. The degree k part of
Der (L,,) is considered as H*®zL,(k + 1), and we identify them in this paper. Then
the sum of the Johnson homomorphisms

T = @Tk : gr(A,) — Der (L)
k>1

is a graded Lie algebra homomorphism. In fact, if we denote by 0§ the element of
Der (L,,) corresponding to an element ¢ € H*®zL,, and write the action of 9 on
X € L£,, as X% then we have

Tk+l([07 O'/]) _ Tk(o_)(')n(o-’) . T[(O’l)am(g)'



for any 0 € A, (k) and o' € A, (I). This formula is very useful to calculate the image
of the Johnson homomorphism inductively.

For 1 < k < 4, the irreducible decomposition of the cokernel of the rational Johnson
homomorphism 75, and the rank of gr®(A4,,) are obtained as follows:

k | Coker(7kq) rankg (gr*(A,))

110 n?(n—1)/2 Andreadakis [1]
2 | S*Hq n(n +1)(2n% — 2n — 3)/6 | Pettet [24]

3| S®Hq @ A*Hq | n(3n* — Tn? —8)/12 Satoh [26]

In general, however, to determine the structure of the image and the cokernel of 7
is quite difficult.

Let A/ (k) be the lower central series of TA,, with A/ (1) = IA,,. Since the Johnson
filtration is central, A’ (k) C A, (k) for each k > 1. Set gr*(A!) := A/, (k)/ Al (k+1) and
gr(AL) == @, er"(A,). Then gr(A,) is also a graded Lie algebra induced from the
commutator bracket on IA,,, and GL(n, Z) naturally acts on each of gr*(A’). Moreover,
since TA,, is finitely generated by the Magnus generators K;; and Kj;;, each gr*(A!) is

also finitely generated by the simple k-fold commutators among the components K;
and Kijl-

A restriction of 7 to A/, (k) induces a GL(n, Z)-equivariant homomorphism
7 g (A) — H* @z L, (k+ 1),

and the sum

7= @7,; : gr(Al) — Der (L)

k>1

is also a graded Lie algebra homomorphism. Furthermore, we have
L allo, o) = (@) — 7f(o")P7H).

for any o € A/, (k) and o’ € A/ (). Using this formula recursively, we can easily compute
T.(0) for any o € A/ (k) from (4). We should remark that in general, it is not known
whether 7/ is injective or not. In this paper, we study the cokernel of the rational
Johnson homomorphism 7; o = 75, ® idq.

3. A GENERALIZATION OF THE CHEN’S INTEGRATION IN FREE GROUPS

In this section, we introduce a generalization of the Chen’s integration in free groups
which is used to determine the structure of the graded quotients £Y (k) in Section 4.

Given the free group F,, generated by z1,...,z,, denote by E the vector space over
the real field R with basis zy, ..., z, and [z;, z;] for 1 < j <i <n. A euclidean metric
is introduced into E by taking x4, ..., z, and [z;, z;] as an orthonormal basis. Then E

is a euclidean n(n + 1)/2-space. The orthonormal basis induces a Cartesian coordinate
system in E. We call the coordinates corresponding to x; and [z;, z;] the ¢;~coordinates
and the ¢; j-coordinates.



Let €2, be the set of words among the letters x1,...,2,. A quotient set of {2, by a
equivalence relation induced from z§x;“ = 1 for e = £1 forms the free group F,. For

any word w = xj'x; - - ;™ with e, = £1, and any integers ay,...,a, € Z, we define
points P, € E for 0 < s < m by
P() = 0,
Ps = I 1+ €5tis + Z { <(Ij + Z Z€l>estj,is}
i5<j 1<I<s—14;=j
for 1 < s < m. Let PP, be the path from P, to P,,; defined by a segment, and
lw(a, ..., a,) the polygonal path which successive vertices are Py, Py, ..., Pp,.
Lemma 3.1. As the notation above, the vertex P, depends only on the integers aq,. .., ay
and the equivalence class of w in F,.
Proof. For w = axjr; b where a,b € Q, and e = £1, set a = z{' 7 ---2{™. If e = 1,

we have

Pm+1 = Pm —+ ti + Z { (CLj + Z Zel)tﬂ},

i<j 1<I<m ij=j
Pt = Pn —tz“l'Z{(aj"” Z Z€l> : (_1)tj,i} = Py,
i<j 1<i<m i;=j

P,=P, 5, s>m+3.

By an argument similar to the above, we obtain the required result for e = —1. [J
We denote P, above by P,(ay,...,a,) for w € F,. In particular, P (ay,...,a,) = 0.

It is clear that if w = z{"x5? -+ 2% in Hy(F,,Z) then t;-coordinate of P,(as,...,a,)
is w; for 1 <i <n. IfweT,(2), Pyaiy,...,a,) also does not depend on ay, ..., ay,.

More precisely, we have

Lemma 3.2. As the notation above, if w € I',,(2) and

w = [, 11| - [T, T [P € L(2),
the t; j-coordinate of Py(as, ..., ay,) is w; ;.
Proof. Set w = xj'x{? - - xj™, and take points Fy, ..., P, as above. For each 1 <5 <

m, since the ¢; j-coordinate of each of P is given by
0ji (ai DD e’“) ©
1<r<s—1i,=1

where 0 denotes the Kronecker’s delta, the t; j-coordinate of P, is

Z 5j,¢s(a¢€s+ Z Zeres)

1<s<m 1<r<s—1 ir=t
= aq, E 5]-#-365 + E 5]‘71'5 E E €r€s.
1<s<m 1<s<m 1<r<s—1i,=1

The first term is equal to zero since w € I',(2). By considering to rewrite w as the
mod-I",,(3) normal form using the correcting process, we verify that the second term is
nothing but w; ;. This completes the proof of Lemma 3.2. [



Corollary 3.1. If w € I',,(3), P,(as,...,a,) =0.

For any P € E, the translation function on E defined by
t—t+ P

is denoted by Tp. By the definition of [, (ay, ..., a,), we see

Ul u2

Lemma 3.3. Foru,v € Q,, a1,...,a, € Z and u =z x5?---al» in H\(F,,7Z),

luv(CLl, e ,an) = lu((ll, e ,(Zn) . Tpu(al’m’an)(lv<a1 =+ Uty ...y Qp =+ un))

Next, for any w € Q,, ay,...,a, € Z and continuous real-valued function f : E — R,
we define integrations by

Ij(f7w;a17--’7an> = / f(t)dt]
lw(al,.

7an)
Observing the proof of Lemma 3.1, we see that the integration I;(f,w;aq,...,a,) de-
pendsonlyon f, ay,...,a, and the equivalence class of w in F},. Hence, from now on, we
always consider I;(f,w;as,...,a,) for w € F,. We remark that if f : E — R does not
depend on the coordinates t; ; for any 1 < j < i < n, the integration I;(f,w;a1,...,a,)
coincides with the Chen’s original integration I;( f, w) for each 1 < j < n, where fis
the restriction of f to the subspace E' of E generated by the basis x1,...,z,. In the

following, if there is no confusion, we always write f for f for simplicity.

Here we recall a few properties of the Chen’s integration. For any continuous real-
valued function f,¢g: E' — R, and u,v,w € F,,, we have

I;(1,w) =w; where w=2a{" - 2, € Hi(F,,Z),
Ii(af + Bg,w) = al;(f,w) + Bl;(g,w), «o,B€R
Ii(f,uv) = Li(f,u) + Ii(f o T,,v),
L(fu™t) = =Li(fo T, u).
Here T” denotes the translation function on E’ defined b
u Yy
t =t ugty 4+ Fupty, u=ayt---zt € Hi(F,,7Z).

(See [2] for basic materials concerning the Chen’s integration.)

Now, we consider some properties of the integration I;(f, w;ay,...,a,). By the lin-
earity of the integration, we have

Ij(af—i_ﬁgaw;al?"wan) = an(faw;aflu"'7an) +ﬁjj<g7w;a17"'7an>
for any «, 0 € R.

Lemma 3.4. Foru,v € F,,, ay,...,a, € Z, if u = 2} x5? - -2t in H\(F,,Z),

n

Ij(f,U'U;al, s 7an)
=Li(f,uar, ... an) + L;(f o Th,(ay,..an) Vi Q1 + UL, ..., G + Up).

10



Proof. From Lemma 3.3, we see

Li(f,uviaq, ..., a,)

= / f(t)dt;,
luv(@1,...,an)

- / f(t)dt;,
lu(a1,....an)-Tp, an)(lv(a1+u1,...,an+un))

(a1,

~ [ sy | Pty
lu(@iye.yan) Tp, an)(lv(a1+u1,...,an+un))

(ag,.--,

In the second term, if we consider the transformation of variable from ¢ to t— P, (a1, ..., a,),
we have
/ F(t)dt, = / J o Trufon.on ().
Tpy(ay,...,an) lv(@1+ut,....an+un)) ly(a14ut,...,an+un)

[j(fa uviay, .. ., an)
=Ii(f,uar,....an) + Li(f 0 Thy(ay,..an) Vi Q1 + UL, ..., G + Uy).
This completes the proof of Lemma 3.4. [

As a corollary, we obtain

Corollary 3.2. For any ay,...,a, € Z, u € F, such that v = x{'xy*--- 2% €
H\(F,,Z), and a real-valued function f on E, we have

(1) Li(f,L;a,...,a,) =0,
(2) ]j(fu u_l;alu s 7a'n) = _]j(f OTPu_l(al,...7an)7u;a1 — U1, ..,0p — un);
(3) Furthermore, if v € F,, and v = x*xy? -+ - x» € H|(F,,Z),
L(f,lu,v];a1,...,a,)
= I](fvua ay, ... 7an) + ]j<f o TPu(al,.‘.,an)aU; ap + U, ... y An + un)
—Li(foTp _ (aran)s W01+ V1, .., Gy + Up)

- I](f o TP[H’U](al,...,an)v viay, ... 7an)'

Let R[t] be the commutative polynomial ring over R among indeterminates ¢; for
1 <i<mnandt;for1<j<i<n. Each element of R[t] is regarded as a real-valued
function on E in a usual way. We consider the polynomial ring R[ty,. .., t,] as a subring
of R[t]. For any f € R][t], we denote by deg(f) the degree of f.

Here we give some examples of calculations of the integrations. Clearly, for any
w e F,, I;(l,w;ay,...,a,) = I;(1,w) is the sum of the exponents of those z; which
occur in w.

Lemma 3.5. (1) For any p > q,

5jq7 Z:pv
Li(t;, [xp, xgls a1, . . .y an) = § —0jp, i =q,
0 , i F# D q.
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(2) For any v € I',(3), L;(ti,z;a4,...,a,) =0.

Proof. For the part (1), let us consider the case where i = p. From (3) of Corollary
3.2, we have

Li(ts, |z, xgls an, ..oy an) =
=1i(ti,zia1,...,0,) + Li(ti + 1, zg5a1,...,a;+1,...,a,)
—Li(ti,zi;a0,...,a0+ 1, ... a,) — Li(t, xg; a1, - . ., an),
= Li(ts, @) + Lt + 1, 0g) — I (s, ) — Ii(ti, zg),
= 1;(1, z4) = 0jq.
By an argument similar to the above, we obtain the other cases. The calculations are

left to the reader for exercises.

For the part (2), let us consider an element [y, z] € I',(3) for y € I',,(2) and z € F),
such that z = x7' - - - a2 € H(F,,Z). Then, from (3) of Corollary 3.2, we see

I](tla[y7 Z]7 ag,... 7an>
=Lt y;a1,...,a,) — Li(ti + zi,y5010 + 210, .o an + 2)
=Lt y) — Lt + 21,y) = —2z05(1,y)
= 0.
Since I',(3) is generated by those elements [y, z|, we obtain the required result from

Lemma 3.4. This completes the proof of Lemma 3.5. [
The following theorem is essentially due to Chen [2].

Theorem 3.1 (Chen [2]). Let k> 2 and f € Rl[ty,...,t,].

(1) Ifw e [I',(2),I'(2)], L;(f,w;a,...,a,) =0.
(2) If w = [xi), Tigy ..., x5, | and deg(f) <k —1,

(—1)F oy, J =11,

Li(f,w;aq,...,a,) = 4 (=1)Fas, J = io,
0, J # i1, 02
where
o o1 f o1 f

= s o =
OtiyOts, - Ot;,° Oty 0ty - Oty
Next, we consider a certain modification of (2) of the theorem above.

Lemma 3.6. Let k > 5 and w = [z, ..., %i_,, [Ti_,, Ti )], ik—1 > ik, and let f € R]t]
such that

f =g + g?,th,l + - gn,nfltn,nfl
for some g,¢9;; € Rlt1,...,t,]. Then

0
Ij(faw;azl,...;an) = —.G(at'—f',w’;al,...,an)

where w' = [x;,, ..., T _,]-

12



Proof. Using (3) of Corollary 3.2, we obtain

I](g7wa ag,. .. 7an)
= [j<ga w,; a, ... aa'n) + [](g o TPw/(al,...,an) [xzk 17x2k] Ay, ... aa'n)
- [j<g o pr/[xik_l»xik]w/71(ahm’an), U)/; Ay, ... 7an>
- Ij<g ° TPw(ala---7an)7 [Iik717xik]; ag, ... 7an)‘

Since w’ and w € I',(3), we have
Py (a1,...,a,) = Py(ay,...,a,) =0
and
Pw’[xik_l,xik}w’*l (ay,...,a,) = P[wik_l,wik](ab cey Q).

Since g € Rlty, ..., t,], we see

go TPw/(al,.. Lan) — 9 © TP ]w/,l(al,...,an) =go TPw(al,...,an) =4d.
Tig

[xzk 1’

Hence, I;(g,w;aq,...,a,) =0.

By an argument similar to the above, for any p > ¢, we see

Li(Gpglpqswiar, . .., an)
= Li(gpglpgWiar, ... an) + Li(Gpatpg [Tin_ys Tig]; 01, - oy an)
= Li(9p.a(tp.g + 0p.a).(in—r,in))> w'ia, ..., ap,)
— Li(gpatpgs [Ty T an, - an),
~0(p.)(ix—1.00) L5 (Ipgr W a1, - an).

This completes the proof of Lemma 3.6. [

From Theorem 3.1 and Lemma 3.6, we obtain

Proposition 3.1. Let k > 5 and w = [z, ..., Ti_,, [Tip_y» Tip], Th—1 > ig, and let
f € RJt] such that deg(f) <k —2 and

=9+ g1to1 4+ Gnn-itnn1
for some g,¢9;; € Rlt1,...,t,]. Then

(—1)F1py, J =11,

]j(faw;ala'“aan) = (_1)kﬁ2, 7 =19,
O’ j 7é i17i2
where - o
o~ ok~
61 - f ) 52 = f
ot by Zkatwatliﬁ L bir—s ot bins lkatzlatzs Ot tir_s

Corollary 3.3. Using the same notation as that in Proposition 3.1, we have
(1) If deg(f) < k—3 and f = g+ go1to1 + - Gnn—1tnn_ for some g,g;; €
Rit1,...,t.], Li(f,w;a1,...,a,) =0.
(2) Li(tj\t, -+ tjp_stpg- Wi a1, .., a,) # 0 if and only if
(i) (P, q) = (in—1-ix),

(ii) bin oo tju gty =iy oot

tp—27
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(ifi) j =41 or j = is.
4. THE STRUCTURE OF THE GRADED QUOTIENTS LY (k)

In this section, we determine the group structure of the graded quotient LY (k) of
the lower central series of FV. Set K = [[',(3),T,,(3)][[[n(2),Tn(2)],Tn(2)]. If k < 5,
we have £ (k) = £, (k). Hence there is nothing to do anymore in this case. Consider
a surjective homomorphism

s £ (k) — £ (k)
of abelian groups induced from a natural map FY — FM. Since LM (k) is a free abelian
group due to Chen [2], if we denote by IC,,(k) the kernel of ¢, we have

LY (k) = Kn(k) ® L (k).
Hence it suffices to determine the group structure of K, (k) for k£ > 6.

First, we have natural isomorphisms

LN (k) = Fn(k)K/Fn(k F1K,

L, (k) 2= T (k) [Ca(2), Fn(2)]/Fn(k + D[(2), Fu(2)]-

In general, for a group F and its normal subgroups G, H and K such that H is a
subgroup of G, we have a natural isomorphism

(5) GK/HK = G / H(GNK).
Using (5), we see
L (k) = Tu(k) /Tl + DT (k) N K.
£3(k) 2 T (k) /Tl + 1) (k) 0 [T (2), Tu(2)]).
Under these isomorphisms above, we verify that
() = Tk + 1)(Ta (k) 0 [La(2), Ta(2)]) /T (k + 1)(Ta(k) 0 K),
= Do(k) N [Fa(2), Tn(2)]/(Fn(k) NE)(Cn(k +1) N [a(2), Tn(2)]),
= (Fa(k) N[ (2), Tn(2)])K/(Fn(k +1)N[C(2), T (2)DE
by using (5).

To determine the structure of IC,,(k), we prepare a descending series of subgroups of
F,. For k > 3, denote by ©,,(k) the subset of F,, which consists of elements w such that

Li(f,w;a1,...,a,) =0, 1<j<n
for any ay,...,a, € Z and any f € RJ[t] such that
(6) deg(f) <k =3, f=g+gertar+ - Gnn-1tnn
for some ¢, g;; € R[t1,...,t,]. Then we have

0,(3) D On(4) >0, (5) D - .
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Since [;(1,w;aq,...,a,) = I;(1,w) is the sum of the exponents of those x; which occur
in w, we see ©,(3) = I',(2). By Lemma 3.4 and (2) of Corollary 3.2, ©,(k) is a
subgroup of F,, for each k& > 3. Furthermore, by (3) of Corollary 3.2, each of ©,(k)
contains [[',,(3),T',(3)]. Here we show each of ©,(k) is a normal subgroup of F,,. First,
we consider

Lemma 4.1. 6,(4) C I',(3).

Proof. For any w € 0,,(4), since w € I',,(2), considering the mod-I',,(3) normal form
of w, we have

w = [To, 1| - [, Tpq |y

for some w; ; € Z and v € I',,(3). For any 1 < j < < n, from Lemmas 3.4 and 3.5, we
see

[j(tia wiay, ... 7an) = Ij(tiv [Q;Qa $1]w2,1 Tt [xna xnfl]wn’n_l; Qy, ... 7an)
+ ]J(tw’Ya ar, ..., an)a

= Zwr,sjj(tia [‘rr‘u .’l's], ag, ... 7a’n)7
>S5
= wi,j = O

This shows w = v € I',,(3). This completes the proof of Lemma 4.1. [

Now, consider the case where k& > 4. For any w € ©,(k), v € F, and f € R[]
satisfying (6), we have

L(fawu ™ an, . ay)
= ]j(f7u;a17 s 7an) + [j(f o TPu(al ..... an)aw;al +U1, N7 + un)

- ]j(f © TPuw“_l(al ..... an)> U;Agy v 7an)7
=0

since uwu~! € T',(3). Therefore ©, (k) is a normal subgroup of F,.

Lemma 4.2. For k>3, [[I',(2),[,(2)],T'(2)] C ©,(k).
Proof. Since [[I',(2),T,(2)],T'»(2)] is normally generated by

{[z,y,2] | =, y, 2 € T (2)}

in F,, and since ©,,(k) is a normal subgroup of F,,, it suffices to show [z,y, z] € ©,(k)
for z,y,z € I',(2). For any f € R[t] satisfying (6), using (3) of Corollary 3.2, we have

Ij(f7 [xvyvz];ala---aa'n)
:Ij(f?[x7y];a17-..;an)+Ij(fOTP[EVy](a1 ..... an)s 23 Q15 - - -5 Q)
—Ii(fo TPy oty (@1,emsn) s [z,y];a1, ..., a,)

=ILi(f = foThp, iyu(ar,man) [T Y a1, - an).

On the other hand, if

z = [Tg, 11" [, T [T € L(3)
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for z; ; € Z, we have

P[z,y}z[y,x]<a17 cee 7an) = 22,1t2,1 + -+ Zn,nfltn,nfl-

Hence if we set

= 291921+ "+ Znn-19nn—1 € R[tl, - 7tn]a

then I;(g, [z,y];a1,...,a,) = I;(g, [x,y]) = 0 since the Chen’s integration I;(g,-) van-
ishes on [I',,(2),1',(2)] in general. This completes the proof of Lemma 4.2. O

Lemma 4.3. For k> 5, [I',(k —2),[,(2)] C ©,(k).
Proof. Since [[',,(k — 2),T,(2)] is normally generated by elements type of

[xilv cee Lig_gs [Iikfﬂxik]]?
and since ©,,(k) is a normal subgroup of F,,, we obtain the required result from (1) of

Corollary 3.3. This completes the proof of Lemma 4.3. [J

Lemma 4.4. For any k > 5 and w € [[',(2),1,(2)], there ezists some r > 1 and
e1,...,e. € 4 such that

w=c e (mod [Tk —2),Tn(2)])

T

where ¢; < --- < ¢, are the basic commutators of F,, which belong to [I',(2),T,(2)].

Proof. In general, for any y,z € I',(2), there exist some ¢/, 2z € I',(k — 2), and

di,j,d;j €Zfor2<i<k-—1and1<j<m,;such that

dj— d dj_
y= G, =g
Hence,
d A1y, d i1y,
2 = Y e ] (mod [T (k = 2), T (2).

Since [I',(2),T,(2)] is generated by [y,z] for y,z € T',(2), we see that any w €
I(2),T,(2)] is written as

w=e- % (mod [To(k — 2),Th(2)])
where ¢; are the basic commutators in I',,(2).

Then if we apply the Hall’s correcting process to w' := Eill e

[',,(2k — 4) normal form, we have

& to obtain the mod-

! el er
W =Cp -Gy

where all ¢; belong to [[',(2),T,(2)], and v is a product of commutators [ug, us, . . ., u] in
€ I',(2k —4) and each element u; of the component is in I',(2). Since such commutators
belong to [I',,(k — 2),1',(2)], so does . This completes the proof of Lemma 4.4. [J

Lemma 4.5. For k > 5, Ty(k) N [T(2), Tu(2)] € [To(k — 2), Tn(2)][T(3), T (3)].
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Proof. For any w € I';,(k) N [[,(2),T,(2)], we see
w=clt--c (mod [y (k —2),T,(2)])

r

for basic commutators ¢; < --- < ¢, of F,, which belong to [I',(2),T,(2)] from Lemma
4.4. Since w € T',(k), we may assume the weight of ¢; is greater than k — 1 for each
1 <4 <r. On the other hand, such basic commutators belong to [I',,(k — 2),T',(2)] or
I'.(3), ' (3)]. This completes the proof of Lemma 4.5. [J

From Lemmas 4.3 and 4.5, we see that for each k > 5,
La(k)N(a(2),Th(2)] € ©,(k).
Using this, we can determine the group structure of /C,, (k). Set
C = {[miy, . Ty [Ty, T )] 11 > 00 <y < oov <ldggy Gg—1 > ik}
Theorem 4.1. For k > 6, K,(k) is a free abelian group with basis €.
Proof. For any x € I',,(k) N [[,(2),T,(2)], we have
r=cptcral

for some basic commutators ¢; < -+ < ¢, of weight k, and ' € T',,(k + 1). Since
z € [[,(2),[,(2)], observing the image of x by the natural map L, (k) — LM(k), we
may assume that ¢; € [[',(2),T,(2)] for 1 <i < r. Hence 2’ € [[',(2),T,(2)], and each
of ¢; belongs to [I',(3),T,(3)], [['n(2),Tn(2)], T (2)] or € since k > 6. This shows that
¢ generates IC, (k). Set

L= Z Z [x'h? sy Lig_gs [mik—17xik]]bi1 """ * € ’Cn(k)
11 >0 < <ip_2 tp—1>0k

for b;,.. s, € Z, and suppose z = 1.

Now, for any 71 > jo < j3 < -+ < jr_o and Jr_1 > jg, consider
9=t tholj_ 1 € R[t]
Since deg(g) = k — 2 and x € O,,(k + 1), for any a4, ..., a,, we have
' ak_3<tj2 U tjk72)
""" Oty - Ot

0=1I;(g9,7;a1,...,a,) = (=1)""b, :
Jk—2
from Proposition 3.1. Since
ak_g(th o 'tjk—Q) £0,
Otj, --- 0t
we obtain b;, ; = 0. This shows that € is linearly independent. This completes the
proof of Theorem 4.1. [

Corollary 4.1. For k > 6,

Jk—2

ranky (K () = %n(n 1) (k—3) (” k- 4>,

k—2

and

rankz (£ (k) = (k — 1)("" e 2) + %n(n — )k —3) <”Zf;4)
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5. AN APPLICATION TO THE STUDY OF THE JOHNSON HOMOMORPHISMS

In this section, we consider a reduction of the target of the Johnson homomorphism
7 to H* @z LN (k +1). Let
Tew gt (AL) = HY @7 L (k+1)
be the composition of 7, and the natural projection H* @z L, (k+1) — H*®@z LY (k+1).
It is easily seen that 7;, v is a GL(n, Z)-equivariant homomorphism.

In the following we study the cokernel of (7, y)q for n > k+2. In particular, we show

that there is an obstruction H, ([572’12] for the surjectivity of T,/C’Q, and that it also appears
in Coker((7;, y)q)- Finally, we conclude that the GL(n, Z)-irreducible decomposition of

Coker((1;, y)q) is S"Hq @ Hg—2,12] for n >k + 2.

5.1. The image of 7}.

In the next section, we detect Hg_Q’lg] in Coker(;, ) using trace maps. To do this,
we prepare a finitely generated submodule of H* ®z L,,(k + 1) which contains Im(7}).
Let V,,(k) be a submodule of H* ®z L, (k + 1) generated by

(A1): 2 ® [A, B,

(A2): zf ® [A, B, (],
(A3) T & [$i1,$i2,$i3,...,.rik+l],
(Ad): 27 @[5, Ty, -, Ty ] — X @ [T, Tig,y -+ o, Tiy 5 T
(AB): @ @ [T, iy - -+ Ty ] — TF @ [T, Ty, -+ Ty, Ty
(A6): o} ® [T, Tiy, Ti, Tiy, - -, Ty, | — TF @ (i), Tig, Tiy T - -+, Ty, Ty
(A7) fﬂz@[ﬂjipxigaxi>xi4,$i5,$i6,...,xik+1]—$?®[$il,$i2,$i,xis,1'1'4,1'1'6 "'?xik+1]7
(A8)5 z; ® [l’z‘,ﬁig,xz’,xu, ce 7=Tz'k+1] - x;“ ® [xj,$i2,xi,xi4, - 7xik+1]
_1‘; (%9 [lL‘i,fL’m,l'j,Im, . 7mik+1]

where the induces 1 <1, 7,7 < n satisty the condition

(A1): wt(A), wt(B) > 3 and wt(A) + wt(B) =k + 1,

(A2): wt(A), wt(B), wt(C) > 2 and wt(A) + wt(B) + wt(C) = k + 1,

(Ag)' 1 # ’il, ig, ig,

(A4): i # iy,i3,j and j # i3, 14,

(A5) 1 7é iQ, ig, 7:4,

(AG), (A7) 1 7é ’il,ig,

(A8): i # j,ip and j # iy
respectively. We do not consider (A1) and (A2) for £ < 5. In this subsection, we use
= for the equality in the quotient module of H* ®z L, (k + 1) by V,,(k). Then we show

Theorem 5.1. For k> 1 and n > 6, Im(7;,) C V,(k).
Before showing Theorem 5.1, we prepare

Lemma 5.1. For any n > 3, we have
(1) For any i # iy, 1o,
xf@[wil,xiQ,xi, Ligs e ,CEZ'k_H]

% *
— x@' ® [’ri)xig)xil?‘rua ... 7xik+1] - xi ® [Iiaxi17xi27xi47 oo 7xik+1]7
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(2) For any i,j # 11,12 and 0 € Sj_3,

x;k ® [ziwximaji?xh»'"vxjk—z] = QS; ® [xil’xianjvzﬂ(jl) s 7‘(170(%72)]’
(3) Ifn > 6; fOT' any Za] 7& 2'252'377/-4 andz#],
Ty @ [T, Tig, -, Ty, Ex;f®[xj,xi2,...,xik+l].

Proof of Lemma 5.1. The part (1) is immediately obtained from the Jacobi identity
[xila xiza xl] == ['Ti7 .1:7;2, ‘ril} - [$i, xil ) xig]-

For the part (2), if j = 4, it is obtained from (A6) and (AT7). If not, we have

*

mi®[xi17xi27xi7'rj17"’7‘%‘]‘k72]
@) *
=z ® [mi;xizaxipxiy'"7xik+1] —T; & [xiaxilaxiwxiw'--vxik+1]
(Aad) *
= .Tj & [«Tj7xi1713i47 <o 7xik+17xl'2] o x] ® [xj7xi27xi47 ce 7xik+1’xi1]
(A5) * *
= 1 X [q;j7xi2,xil,$i4, B ,xikﬂ] —Z; ® [xj;xilaxizaxiu T 7xik+1]
I«
- QC] &® [xilamizaxj7x]'17 tee 7xjk72]

Hence we obtain the part (2).

For the part (3), we can take some 1 < k < n such that k # i, j,4s,13,74. Then we
see

TIQ[Tiy Tigy -y iy )] = T @ [Ty Ty -+ 3 Ty Tiy| = T @[5, Ty - -+, Ty
by (A4). This completes of the proof of Lemma 5.1. [

Proof of Theorem 5.1. We prove this theorem by the induction on k. For k = 1, since
gri(A,) = IAiLL]D is generated by K;; and K, it is clear from (4). Assume k > 1. Since

= @Té :gr(Al) — Der(L,)
k>1

is a Lie algebra homomorphism, it suffices to show that [(A1), 71 (K )], - - -, [(A8), 71 (K )]
and [(A1), 71 (Kpg)], - -+, [(A8), 71 (K )] belong to V,(k+1) for any successive p, ¢ and
r. We show this by direct computation. Here we give some examples of it.

Step 1. [(A1),71(K,,)]

Observe

[l’: ® [A7 B]? Tl(KPQ>]
=z} @ [APU) B) 4 af @ [A, BO U] — 5, jan @ [[A, B), 2
— 0iqT, @ [xp, [A, B]].

By the Jacobi identity, we have

HA> B]>$q] = _[[Bﬂxq]v A] - [[xlb A]> B]> [xp’ [A’ BH = _[A’ [B’ xp“ - [B> [xm AH
Hence [(A1), 71(Kp,)] € Va(k + 1). Similarly, we see [(A1), 71 (Kpyr)] € Val(k + 1).
Step II. [(A2), 71 (K,
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Observe
['Ij ® [Av B’ C]’ Tl(KPQ)]
= x;" ® [A‘%'l(qu)7 B7 C] + l‘j ® [A7 BaTl(qu)7 C] + —l—l’: ® [A, B7 CaTl(qu)]
— 0ipT) ® [[4, B,C], x4 — i) @ [z,, [A, B, C]].
By the Jacobi identity, we have
[[Aa B7C]7xtI] = _[[07 l‘q], [AvBH - qua [A BH? ]7
:[A’B7 [C7xQ]]+[A7 [B,Iq] ] [ ,[ZL‘ 7A]7 ]7
[xpv [Av B> CH = _[A7 B7 [07 xp]] - [Aa [Ba xp] ] [Bv [le, A]? ]
Hence [(A2), 71(Kp,)] € Vo(k + 1). Similarly, we see [(A2), 71 (Kpyr)] € Va(k + 1).

Step IIL. [(A3),7(K,,)]-

In
[(A3), Tl(qu)]
= 5i17px;k ® [xilv Lqs Ligs Ligy - - - 7xik+1] + 51'2,ij ® [in {xiw SCq], Ligs oo+ ?xikﬂ]

+ 52‘3,:01‘; & [fil,IiQ, [LL'Z‘3, {L‘q], LL'M, e 7mik+1]
k+1

+ Z 61’1»1"%‘: ® [‘riﬂxiw Ligy Liyy - - - wr’il,l’ [xila xq]u xil+17 cee 7xik+1]®
=4

— 0ip%F @ [Tiy, Tigs Tigs - - - ,xikﬂ,xq]@ — 0ig Ty @ [Ty, [Tiy, Tig, Tigy - -5 Ti ]

@ = 0 by (A3). On the other hand, using the Jacobi identity
(7) [X7 [x(ma:b]] = [Xa xawqu] - [Xa xbaxaL

we see D = 0 by (A3). If ¢ # i, we see [(A3), 71(K,)] = 0 since all terms other than
@ and (@ in the equation above are of type (A3). Hence, consider the case where

q=r1.
Suppose p = iy. If i3 # i1, we have
[(A3), 71 (K]
= —x] @ (24, Tiy, Tig, Tig,y - - -, Ty, | + 25, @ [Tiy, Tig, Ty, -+, Tiyy 5 Tiy) = 0

by (A4). If i3 = iy, using (A5), (A6) and (A8), we have

[(A3), 71 (£p)]

= —T; @ [T, Tiy, Tig, Tiy, Tigs -+ - Tiy ) — T @ [Ty, Tig, Tiy Ty Tigy - -+ Ty,
+LU,>;1 ® [$i1,xi2,xi1,£€i4 e 7Iik+17xi1]7

= —35: ® [xiaxi2>$i3>$i4> s 7xik+1’xi1] - x;k ® [$i17$i27$i’xi4’ s 7’Iik+17xi3]
+ 25, @ (X4, Tiy, Tiyy Tig - iy Ty,

= 0.
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Similarly, we see [(A3),71(K,,)] = 0 for p = iy. Suppose p = i3 and p # iy,i3. By
(A6), we have

[(A3), 71 (Kpg)]
= _x: ® [Iipxha Li, xi37 .Ti4, L 7Iik+1] + I‘;; ® [$i17xi27 xiga xi4 . 7Iik+17‘ri3 )
=0.

Therefore we have [(A3),7(K,,)] € Vu.(k + 1) for any cases. Similarly, we obtain
[(A3), 71 (Kpgr)] € Vi(k +1).
Step IV. [(A6),71(K,,)].
In
[(A6), Tl(qu>]
= 05y p(@] ® [Ty, Ty Tig, Tiy Tigs - -, Ty, | — Tf @ [Tiy, Ty, Tig, Tiy Tig - -+, Tiggy 1 Tiy])
+ 5@4:(@ ® [xin [371‘2, CCq]v Ly Ligy e - - 7Iik+1] - x;k Y [xin ["L‘iza xq]» Lis Tig -+ 3y Tig g9 xi4])

+ 51'717(%: ® [xinxiza [xh xq]? Ligs - - 7$ik+1] - :L'j ® [$i1,$i2, [33‘2-, wq]v Lig -+ - ?xik+1?xi4]®)

+ 52‘47117(x;K ® [Iinxiw i, [$i47 mq]v B 7xik+1] - $j ® [xinxiw Liy Lig -+ vy Ligyqs [%47 $q]]®)
k+1

*
+ E :51'14)(371' ® [xiuxiz? Liy Ligy - oy Lig_qs [xizv xQ]v Ly - 7xik+1]
=5

=7 @ [Ty, Tigs Ty Tig -+ -5 Tiy_y5 [Ty Tg|y Ty o5 Ty xm]@)

* *
- 5i,p(xi X [xila Ly Ly Ligy e - 7xik+17 xq] —Z; X [xiu Ly Ly Ligy - - - 7xik+17'ri4a Iq]@)

— Gig(T) @ [T, [Tiy s Tigs Tis Tigs -+, Vi ]| — T @ [, [Tay, Ty, Ty T Ty, T4y ]),

wesee ) = - =@ =0 by (7) and (2) of Lemma 5.1. Furthermore, if ¢ # 1,
[(A6), 71(Kp)] = 0 since all terms other than (D, ..., @ are of type (A3). Hence, we
consider the case where ¢ = . In this case, p # 1.

If p # 1,19, it is clear [(A6), 71(Kp;)] = 0 by (A3). Suppose p = iy. Then,

[(A6), 71 (Kp)]
J— * 3
= —xi X [Z’i,$i1,$i2,$i,$i4, Ce ,.I’ik+1] + .Ti X [337;, xil, Z’iQ, Z’i,ZEZ’B Ce 7$7;Ic+17xi4]
* *
+ CC’il ® [xil’xiQ"ri7 xi47 e ’IikJrl?xil] - xil ® [x7;17xi27xi7 Ii5 e ink+1; xi47 xil]y

=0

by (A4). Similarly, we see [(A6),71(K,,)] = 0 for p = iy. Furthermore, by an
argument similar to the above, we verify that [(A6), 7 (Kpy)], [(A7), 71(Kp,)] and
(A7), T1(Kpgr)] € Vi(k+1).

Step V. [(A5), (K]
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In

[(A5), 71 (£p)]

= 0, (] ® [mi, T4, Tiy, - - - ,xik+1]® — X @ [T, Tq, Tigy -+ Ty, xw]@)

+ (Siz,p(x;'k ® [xh [xiza xq]a Ligy - - 7xik+1] - x;k ® [xh Ligy oo Tigys [xiwxq]])

+ 6i37p(m;'k ® [‘ri? Ligs [mi:i? xQ]’ Lig - - - 7xik+1] - $f ® [xi’ [$i37 .I‘q], Liy - - 7'T7:k+17xi2]>

+ (51-4,1,(33': @ [xi7 Ligs Tig, [372'47 x(I]a ) 7xik+1] - SU: ® [xiv Tig, [xim xfI]7 Lig - - - 7xik+17xi2])
k+1

+ Z (Sil,p(m;f< & ['xi? Ligyeo ey Tiy_qs [xiz’ xq]’ Ligyysre-- 7xik+1]@
=5

—27 @ [T, Tigy o, Ty, [Tiy, Tgls Tigys - - - ,xikﬂ,xiz])@

+ (51',10(_'%: ® [xiaxiza s 7xik+1?xq]® + x;k ® [wi? Ligy -« - >$ik+1’xi27xq]®)

+ 61',(1(_33; ® [xpa [mi’ Ligy -+ 7mik+1“ + I; ® [IZ” [xh Ligy o+ o3 Ligpqs xi2“>’

D =@ =@ =0by (7) and (A5). Furthermore, if ¢ # i, we see [(AB5), 71 (Kp)] =0
similarly. Hence it suffices to consider the case where ¢ = i. In this case, p # i. Then
using (7) and (A5), we see

[(A5), 71(£)]
= Oipp (] @ [T, Tig, iy Ty, -+ - Tiy ] — TF @ [T, Ty, Ty, Ty, T
+ & @ [T, Tigs - -y Tig 1, Ty Tiy))
04 p(T] @ (T4, Ty, i, Ty Ty - - Ty, | — TF @ X4, Tiy, Ty Tiy, Ty -+ -, Ty, |
— X @ [T T, Tiy Ty -+ - Tiy 1, Tig])
— 03y p(T] @ [T, iy, Wiy, Ty Ty o, Ti ] — X @ [Ty, Ty, Ty Ty T+ - Tiy |, Tiy))

* *
+ T @ (X4, Tiy, -y Tig s Tp] = T @ [Tiy Ty -+ oy Ty 15 Ty T

Since n > 6, there exist some 1 < j < n such that j # i, 19, i3, 74. We fix it.
Case I. iy,13 and 74 are distinct.

If i5,43 and i, are distinct, using (A3), we have

[(A5), 71 (Kpg)]
= Oiy (0] @ (T4, Tig, Tiy Ty, Tiy ] — X7 @ [T, Ty oo, Tiy | Vi, T
+ 2] @ [T, Tigs ooy Tig 1 Ty Ti) + T, @ [T, Ty, Ty - -+, Tigy 1 Tig])
+ 0iy p(T] @ [T, Tiy, Ty, T, Ty -, Ty | — TF @ (X4, Tiy, Tiy Tiy, Ty -+ -, Ty, |
— T} @ [T, Tig, Tiy Tiy -, Ty Ti) + T, @ [T, Ty, Tig, Ty o -, Ty, i)
— T, @ (T4, Tig, Tigy - o, iy, Ty, Tig))
— 05y p (@] @ [T, iy, Ty Tiy Ty oy Tiggy ] — T @ [Ty, T Ty Ty T -5 Tiy T

*
+ xz’4 ® [xia Ligy Ligy - - - 7$ik+17$i27 $i4])'
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Then from (A8) and (3) of Lemma 5.1, the §;, ,-part is equal to

* *
T5 @ [T, Tiys Tiy Tigy -+, Tiy ] + Tj @ [Ti, Ty Ty Ty - -+, Ty |
* *
— T @ [T, Tigy o Ty, Vi, T + T @ [T, Ty o oo, Ty, Ty Ty
*
— Ij ® [Q?j,l’i,$1'3, N ,xikﬂ,xi?].

Hence, by (A5), we obtain the §;, ,-part is equal to zero modulo V,,(k + 1). Similarly,
we see that the d;, ,-part and the d;, ,-part of the equation above equal to zero modulo
V,.(k + 1). Therefore we obtain [(A5), 71 (K,,)] = 0.

Case II. ig = i3 7é i4.
If iy = i3 = m and iy # m, using (A3), we have

[(A5), 7y (qu)]

— * *
= 5m,p(x7; 02y [-Ii; Ty iy Ty Liyy o o - 7x’ik+1]@ - X 02y [.CEZ‘, Ty Liyy e - - 7xik+1>$m7$i]
* *
+ €; X [xhxm)xim s 7x'ik+17 I‘i,l'm] + €; X [xiaxm7xm)xia Liy v v 7xik+1]
* *
=T @ (T4, Ty Tify Ty Ty - - - ,xikﬂ]@ — T} ® [ X, Ty, Tiy Ty -+ - Tigy 1 T
* *
- Ty, ® [xma Lis Ty Tigy -+ o5 Tigyys "L‘m] — T, ® [xiaxmyxim ce oy Lig gy Ty Im])
* *
- 6i4,p(xi ® [xiv Ly Lmy Lis Ligs - - - 7xik+1] —Z; ® [:UZ-, Ty Tiy Ligy - - - 7xik+17'rm]
*
+ xi4 ® [xia Ly Liygy v v - 7Iik+1yxmaxi4])-

In the 6, ,-part, @ = 0. From (A8) and (3) of Lemma 5.1, the other terms are equal
to

* *
_x] ® [xj7xm7xi47 e 7:Cik+17xmaxi] +IJ & I:ijxm7‘f’C’l:47 <. 7xik+17xi7xm]@

+25 @ [T, T, Trms Ty Ty - - - ,Iik+1]® —Z @ [T, Ty Tiy Tiy -+ -5 Ty xm]®

* *
— T ® [T Ty Tjy Ty 5 Ty Tn] =T @ [T, Ty Ty Ty, - - - ,$ik+1,$m]®

* *
- ZL'] & [xmaxhxj?xim s 7$ik+17xm] +:E] X ['xj?xiaxim cee 7xik+17mm7'xm]@

modulo V,,(k+ 1). Then &) =0 by (A5), and
@ = —l'; X [mﬁ Ly Liy Ty Liygsy v v - 7xik+1] + ZE;( X [{E], Ly Lmy Ty Liyy v v - 7mik+1]
=T @ [T, Ty Ty Ty Ty - - -5 Tig ]
by (A5) and (1) of Lemma 5.1. Similarly,
@ =7} @ [Ti, Ty Tjy Ty -+ + 5 Ty Tm)-
Hence, using (2) of Lemma 5.1, we see that the d,,,-part = 0. Similarly, we can show
the 0;, ,-part = 0, and hence,
[(A5), 71 (Kpg)] = 0.

By an argument similar to the above, we show [(A5), 71 (K,)] = 0 for the other cases
iy = iy # i3, i3 = 14 # lp and iy = i3 = i4. Furthermore we obtain [(A5), 71 (K )],
[(Ad), 71 ()], [((A4), 71 (Kpgr)], [(A8),71(K)] and [(A8), 71 (Kpgr)] € Vi(k +1). We
leave it to the reader for exercises. This completes the proof of Theorem 5.1. [J

23



5.2. Contractions and trace maps.

The main purpose of this subsection is to detect the module S*Hgq and H [k=2,17]

in the cokernel (7; y)q using trace maps. For k¥ > 1 and 1 <1 < k + 1, let oF
H*®7H®* ) — H®k he the contraction map defined by

* *
Z; ®xj1 ®"'®xjk+1 Hxi(‘rjl) * Ljy ®"'®sz—1 ®sz+1 ®"'®xjk+1'

For the natural embedding (1 : £, (k+1) — H®*+1 we obtain a GL(n, Z)-equivariant
homomorphism

OF = o o (idye @ FTY)  H*@zL,(k 4+ 1) — H®,
We also call ®F a contraction map.

] € H* @z H®* and 1 < m < k + 1, let denote
q)im(l’: ® [Iiu s 7xik+1])

the element obtained by the contraction of #] with the only element z;, . For example,

*
For any «} @ [@;,, ..., T4,

(I)?,Q(x: ® [xil ) xiwmis])
= ‘P‘Z’,Q(If R (T4, @ Tiy @ Tiy — Tiy @ Ty ® Tjy — Tjy Ty @ Ty
+ Lig & Lig & 1‘11))
= —0ii, Ti; @ Tjy
OF (0] @ [y, iy, Tiy]) = =iy Tiy ® Tiy + iy iy ® T,
Then we have
k+1

O (2] @ [Ty, ooy T,y )) Z@lmx ® [Ty s Tigyr])

For each k > 5, if we set @, (k) := (I, (k)N KT (k+ 1)/I‘n(k+ 1), we have an exact
sequence
0 — Qu(k) = Ln(k) — L (k) — 0
of GL(n, Z)-equivariant free abelian groups. This induces an exact sequence
0— H* ®zQn(k) = H @z L,(k) — H* @z LY (k) — 0.

Therefore we can regard H* @z LY (k) as a quotient module of H* ®z L,,(k) by H* @z
Qn(k). Since the basic commutators of type

(@i, yx ] and [z, .. @, [T, %]
form a basis of the free abelian group £Y (k) by Theorem 4.1, those of type
[c1,c0] for wt(cy), wt(cg) >3

and
[c1,09,c3] for wt(cy), wt(co), wt(cg) > 2
form a basis of @, (k).
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5.2.1. The Morita trace.
Here we recall the Morita trace map. Let
Try : H*®zL,(k+1) — S*H

be the composition map of the contraction ®¥ and the natural projection Jiw o H ®k _,
SkH defined by

The Morita trace was introduced with remarkable pioneer works by Shigeyuki Morita
who showed that Try is surjective and vanishes on the image of the Johnson homo-
morphism 75, for n > 3 and k > 2. This shows that S*Hgq appears in the irreducible

decomposition of Coker(7;,q) and Coker(7}, o) as a GL(n,Z)-module. We call S*Hgq
the Morita obstruction.

Let ¢ = [c1,¢] € T, (k + 1) be a basic commutators of weight k + 1 such that
wt(cy), wt(cg) > 2. Then for any 1 < i < n,

i @c) =01l ®@c))®cy — PN (ol @ cy) @y € HOF,
Hence Trp (2] ® ¢) = 0. This shows that Ty factors through H* ®z L (k). Therefore
we see that the Morita obstruction S*Hgq also appears in Coker((7}, y)q)-

5.2.2. Trace map for HF-217,

Next we detect H([g_Q’lQ] in the cokernel (77, y)q. Let p: H®* — A*H ®7 S**H be
a homomorphism defined by

%1@@% ’—>(IE“/\$12/\1’23)®ZL’241’%

Since H*~21"] is considered as a quotient module of A3H @z S*3H, (See [6].), we have
a natural projection v : A3H ®g SF¥3H — HF-21 et
Tr_012) H*®zL,(k+1) — k=21

%]

be the composition of ®% and fie—2,2) := v o . The map Try_s 42 is a GL(n,Z)-
equivariant homomorphism. We call it the trace map for H*=21*], In the following, we
show

Theorem 5.2. Forn > 3 and k > 3,
(1) Tr[k 012 18 surjective,
(2) TI‘[k 2,12 @) TIQ =0.

To show the part (2) of the theorem above, it suffices to show that Tr(;_2,12) vanishes
on (Al), ..., (A8) in Theorem 5.1.

Lemma 5.2. For k > 5,

(1) Trpp—oq2(2; ® [A, B]) = 0 for wt(A), wt(B) >3
(2) Trparey(zt @ [A, B,C]) = 0 for wi(A), wt(B), wi(C) > 2.

Proof. For the part (1), we may assume wt(A) > wt(B). If wt(B) = 4, we have
h(2; ®[A,B]) = (27 ® A) @ B — ®}(z; ® B) ® A.
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If wt(A) > 4 and wt(B) = 3,
¥ (2 ® [A, B]) = ®f(z; ® A) ® B— B® &/ 3 (2 @ A).
If wt(A) = wt(B) = 3,
Ph (2 ®[A,B]) = A® &2 (27 ® B) — B® & 3 (2} ® A).

Hence, we obtain Trp,_s 12) (2] ® [A, B]) = 0 for any case. Similarly, we see the part (2).
This completes the proof of Lemma 5.2. [J

From this lemma, we verify that Try,_,,2) vanishes on (A1) and (A2).
Lemma 5.3. Fork>3 and4<m<k+1
fie—2,12] © (IDZm(:B;‘ ® [Ty, Tiy, -+ - Ty, ]) = 0.

Proof. Since the element [z;,, %4, ..., z;,,] in H®¥ is written as a sum of elements
types of

A®[x’i17"'7xim—l]®xim®8 or A®xim®[xil7""xi7n—l]®B’
OF (@7 @ (4, @4y, ., 2, ,,]) 18 & sum of elements types of
61'1'4 [xlj ) xi27 xi3] ® B

or
Siin A® [Ty, ...,z |®B for Ae€ H®3,

Considering the image of fj;_2 2, we obtain the required result. This completes the
proof of Lemma 5.3. [J

Corollary 5.1. For k > 3,
Trpp—o12)(2] @ [T, iy, .., 24,,,]) = 0
if i # iy, 49, 03. That is, Try,_o12) vanishes on (A3).
Proof. Since

TI'[;C_2712]($;< (024 [Zlfil, Ligy e ,l’ik_H])
k+1

= Z Jik—2,12 © @’ZM(m;‘ ® [Ty Tigy -, iy )
m=1
we immediately obtain the required result from Lemma 5.3. [J
Lemma 5.4. For k > 3, and i # i, 13,
Trpp—oq2)(2] @ 245, Tiy, Tiy, - - -, Tiy,,])

— — E (xill /\xil2 /\:Cil3) ®:Ci2 '..x;l:; ...wil2 ...mill ...xikJrl'
2<l3<la<i <k+1
Proof. From Lemma 5.3 and ¢ # 19, i3, we see
*
Trip—0.12)(2] ® (@5, Tiy, Tigs - - Tiy )

= f[k‘—2,12] o q)li’1<w;k (9 [xi, Ligy Ligy - - - ’xik+1]>'
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On the other hand, in general, if we write [z, 2;,,2);,..., 25 ] € H®*1 as a sum of
elements 7 @ -+ ® T the sum of the elements such that jj = j; is given by

- E szl®sz2®95j13®$j1®"'sz3"'sz2"'szl"'®95jk+1‘
2<lz<la<li <k+1

Hence we obtain the required result. This completes the proof of Lemma 5.4. [J

This Lemma induces

Corollary 5.2. For k > 3, we have
(1) FOTZ.#Z.277;37 j?’éi37i4 L‘L’I’Ldl?é],
Trip—2,12)(T] @ (24, Ty, Tig, -+, Ty, ] — TF @[5, Ty, Ty, -+, Ty, Tiy]) = 0,
(2) FOTi?é 7;2,7;3,i4,

* *
Tl"[k—2,12](33,~ (29 [.Z'i, .CCZ‘Q, .CCZ‘S, Ce ,.Z'ik+1] — .737; X [.CCZ‘, I’is, ilfl'4, Ce ,.fEikJrl,.%'iQ]) = O

Hence we verify that Try,_5 2] vanishes on (A4) and (A5).

Lemma 5.5. For k > 3, and i # i1, is,

*
Tl"[k_2712](l’i X [l’i1,$i2, LiyLiygy - ,[L’ik_H])
k+1
=— 5 2(ws, N Tiy NTiy) @ Ty - T, -0 Ty,
J=4

Proof. From Lemma 5.3 and i # i1, 12, wWe see
*
Tr[k*2,12} (xz ® [:Eh ) xiz; Zi, xi47 .o 7xik+1])
o k *
= f[k—2,12] o @43(%2- X [l’il, .CITiQ, Xy, ZL',L'4, PN ,:z:ikH]).

In general, an element [z}, 2}, Zj,, ...,z ] € H®**! is written as a sum of elements
of types

ARxj, ® [zj,7j,] ® B or A® [zj,x),] @xj @ B.
Hence ®f 4(] ® [, T4y, Ti, Ty - - -, T4 ,,]) IS @ written as a sum of
A® [z, 2,] ® B
for wt(A) =3, or
T, @ |25, 2] ® B
for 4 <j <k+1. Then fj_o12)(A® [2;,7:,] ® B) =0 for wt(A) = 3.

On the other hand, in [x;,, j,, Tjs, . .- 7xjk+1] € H®+1 the sum of the elements type
of x;, ® [zj,,2,,] ® B is given by

k+1
- E :sz ® [xjnsz] ®xj4 - “ Lyt ®:Cjk+1'
=4

From this, we obtain Lemma 5.5. [

This Lemma 5.4 induces
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Corollary 5.3. For k> 3 and any v € &,
Trip—0.12) (2] @ [Ty, Tig, Tiy Tjys - -+, gy y) — 27 @ [Ti, T, Tiy Ty g5+ -5 T _y]) = 0
That is, Tryy_912) vanishes on (A6) and (AT).
Furthermore, by an argument similar to that in Lemmas 5.4 and 5.5, we obtain
Lemma 5.6. Fori,j # iy and i # 7,
Tri—012)(] ® 25, Tiy, i, Tiy, - -, Ty, ] — T ® [T, Tig, Tiy Tigy - -, Ty,
~- 7} ® [T, @iy Ty Ty -y Xy, ]) = 0.

Proof. We leave the calculations to the reader for exercises. [
Therefore Tr,_o 12 vanishes on (A8). Finally, we consider the surjectivity of Tr
Since n > 3, we can choose distinct 1 < i, j,] < n. Then from Lemma 5.5,

Q
[k_2»12].
Tl"g_mg](l‘;k X [$j,$l, TiyLjy .. ,{L'l]) = —2(/@ — 2)(1‘, N Z; VAN 37l) XX, Zi,

£0

in Hg—z,ﬁ]_ Since H([S_Q’lz] is irreducible, we see that Trf‘li2 12] is surjective. This

completes the proof of Theorem 5.2. As a corollary, we obtain

Corollary 5.4. Forn >3 and k > 3,
(1) Hgﬁ’ﬁ] C Coker(T,:;,Q),
(2) HE ¢ Coker((7] x)q)-

Proof. The part (1) is clear. The part (2) follows from that Try,_, 2 factors through
H* @z LY (k) since Trjy_o 12) vanishes on (A1) and (A2). O

5.3. An upper bound on Coker((7; y)q)-

In this subsection, we show that Coker((7/, y)q) is a direct sum of S*Hg and Hg—2,12}
as a GL(n, Z)-module for n > k+2. To show this, it suffices to show that Coker((7; y)q)

is generated by
n+k—1 +(k:—2)(k:—1) n+k—-3
k 2 k

elements for n > k + 2 since we have already shown that Coker((7; y)q) D S*Hq &
H[k_z’ﬂ.
Q

In general, H* ®z LY (k + 1) is generated by
& = {2] @ [z, Tip, ..., i, | |1 <405 < m}
Hence Coker(7;, y) is also generated by these elements.
Lemma 5.7. Forn >3 and k > 1,
T] @ [T, Tiy,y ..., 24| = 0 € Coker(ry y)

ifu#i for1 <l <k+1.
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Proof. We show the lemma by induction on k. For k = 1, we have 7 y(Kji,) =

xf & |2, ;). Assume k > 2. By the inductive hypothesis, there exists a certain
o€ Al (k—1) such that

Tléfl,N(o-) - ‘rr ® [‘r’tu ng; e 7xik]-
On the other hand, we have 7{ y(Kj,,,) = 7} ® [z;,4,,,]. Then
TIQ,N([Kiik+17 U]) = Ij ® [xinxiw cee 7wik+1]-
This completes the proof of Lemma 5.7. [

Let § be a set consisting of elements x ® [x;,, %4, . . ., 2;,,,] of & such that 4, = i for
some 1 <[ <n, and i,, # i for m #[.

Lemma 5.8. Forn >k + 1, Coker(7;, ) is generated by §.

Proof. Take any xf ® [x;,,24,,. .. ,xikﬂ] € & such that ¢, = 4, = ¢ for distinct
l1,15. Since n > k + 1, there exists a certain j € {1,2,...,n} such that j # 4,4, for
1<1<k+1. Set

o= {Kiﬁkﬂ’ @ F k1,
K, i =iy
Then
Tn(0) = 2] ® [15, 24, |-
On the other hand, from Lemma 5.7, there exists a certain ¢’ € A} (k — 1) such that
TN (0) = 2 @ [wiy, Ty, - -, 14,
Then we obtain

Tl::,N([O-’ OJ]) = ZL‘: ® [:L‘il’ xiza s xik+1]

— E 5“1 J® xll""’xil—ﬂ[xj?xikJrl]?xiHl?'"7xk]'

Observing the Jacobi identity

in the graded Lie algebra gr(.A!)), we see that the right hand side of the equation above
is equal to

* *
TF @ [Tiy, Tigy -+ o5 Tig | + 03y T @ [T, Ty 5 Tigs - -, T
k
*
_ 5 (5iil(xj®[xil,...,xilil,xj,xikﬂ,xml,...,xk]
1=2

- ® [Ty ooy @iy Ty Ty Ty - - - ,xk]>
This completes the proof of Lemma 5.8. [J

Lemma 5.9. Forn > 3 and k > 2,
T; @ [Ty, Tiy,y - .o, T4y, 23] = 0 € Coker (7, y)

ifu #1 for1 <l <k.
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Proof. We show the lemma by induction on k. For k = 2, we have
Té,N([Kiin KMQD = Ij ® [xi’ Liys wh] - Ij ® [xiv Liys xiz] = ZE: ® [xiu Ligs :EZ]

Assume k > 3. By the inductive hypothesis, there exists a certain o € A/ (k — 1) such
that

T,Q_LN(J) =2 @ [Ty, Tigy ooy Tiy_ 5 Ty
On the other hand, we have 7] y(Kj;,) = 2} ® [i,4x]. Then, by the Jacobi identity,
TIQ,N([Kiim U]) - x;k ® [Iilv Ligy oy Tigo_ys iy xlk] - x;k ® [xilv Ligy -y Tig_1y [Ih xlk]]’
= $;k X [xil,xi2, RN ,fljik,.flfi].
This completes the proof of Lemma 5.9. [J
Lemma 5.10. For k> 2 andn > k + 2,
TF @ [Ty, Tig,y - - oy Tiy_ s Tiy Ty s+ o o5 Ty, ) = 0 € Coker(7, y)
if iy £ 1 for m #£ 1.

Proof. Since n > k + 2, there exists a certain j € {1,2,...,n} such that j # 4,4,
for 1 <m < k+1and m # [. From Lemma 5.7, there exist 0 € A/ (k — [+ 1) and
7€ A/ (Il —1) such that

Tl::—l—‘,—l,N(O-) = ZL‘: ® [Ijv Ligyyse-- 7xik+1]7
Tl/—l,N(T) = .Z'; ® [‘/L‘ilﬂ o 7Iil_17'ri]'
Then we have
TIQ,N([U’ T]) = x;k ® [wipxiy sy Ty Ty Ty gy - e 7Iik+1]'

This completes the proof of Lemma 5.10. [J

Lemma 5.11. For k > 2,
T ® [T, Tig,y - -, Ty, | = i ® [T, Tigy s Tigy - - - Ty | € Coker(TAN)
ifi,7 % gy ipes and i # j.
Proof. From Lemma 5.7, there exists a certain o € A/ (k — 1) such that
Tr_1n(0) = L5 @ [T, Ty, -, Ty ).
Then,
7']27N([Kijik+l, o)) = ] @ (@5, Tiy, -+, iy | — TF @[3, iy s Ty, -, Ty -
This completes the proof of Lemma 5.11. [J
Lemma 5.12. Forn > k + 2,

T] @ [T, Tig, - oo, iy, | = X5 @ (T4, Ty, -, Ty, Ty) € Coker(7y )

Z'fi#i%"'aik-i—l-
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Proof. Since n > k + 2, there exists a certain j € {1,2,...,n} such that j # i,4; for
3 <! <k+1. From Lemma 5.11, there exists a certain o € A/ (k — 1) such that

Toan(0) = 2] @ [T, iy, - Tiy ] — X5 @ [, Ti oy, Tigy - - o5 Ty ]
Then,
TN ([0, Kiiy)) = 27 @[3, gy - o Xip )] — T @ (X4, Ty, Ty Ty
— 0jin ] @ [T4, Ty 15 Tig, - - -, Tiy, T

Hence from Lemma 5.9, we obtain the required result. This completes the proof of
Lemma 5.12. [

Next, we consider the case where k = 3.
Lemma 5.13. Forn >4, if i & 11,19, 14, then
(1) o @ [wi), Tiy, Tiy Tiy) = XF @ X4, Ty, Tig, iy | — TF @ (T4, Ty, Ty, Tiy)
(2) xf @ [wiy, Tiy, Ty, Ty,) = F @ [T4y, Tiy, Ty T4, ]
in Coker (73 v ).
Proof. From Lemma 5.9, there exists a certain o € A/ (2) such that
75(0) = 2] @ [w3y, iy, 4]
Then, we obtain
T3 v ([Kiigs 0]) = 27 @ [wiy, Tiy, w3, ] — 27 @ [y, @iy, [23, 244,
=2} ® [Ty, Tiy, Ti, Tiy| + TF @ [T, iy, [Ty, T,
=2} @ [Tiy, Tiy, Ti, Tiy| — T] ® [T4, Ty, Ty, Tiy ] + ] @ [T, Ty, Ty, Ty ).
Hence we have the part (1). For the part (2), from the part (1), we have
T @ [Ty iy, Tiy iy | = T @ (T4, Tiy, Ty, Tiy | — X7 @ X4, Tiyy Tiy, Ty ],
T} @ [Tiy, Tiyy T, Tiy | = TF @ (X4, T4y, Tiy, Ty | — 27 @ (24, T4y, Ty, T4,

in Coker(73 ). Then from Lemma 5.12, we obtain the required result. This completes
the proof of Lemma 5.13. [

Lemma 5.14. For k> 5 and n > k + 2,
T ® [Ty Tigy - oo Tiy 15 Ty Ty ] =0 € Coker(T,;,N)
if iy # 1 forl # k.

Proof. Since n > k + 2, there exists some j € {1,...,n} such that j # i;,7 for
1 <m<k+1and m # k. From Lemmas 5.13 and 5.7, there exist some o € A/ (3)
and 7 € A, (k — 3) such that

TZ;,N(O-> - I: ® [xja Lig_1> Lis xik+1] - l‘: ® [xik717 Ligr1s Tiy xj]v
Troan(T) =25 @[22, ]
respectively. Then,
TIQ,N([U7 T]) = .1;:( ® [xiﬂxiQ? sy T gy T,y xik+1]-

This completes the proof of Lemma 5.14. [
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Lemma 5.15. For k > 2,
T[Ty, Tig, Ty Tigs - -, Ty,
=25 @ [T, Tiys - ooy Tiyyy s Tigy Tiy] — T @ [T, Ty o, Ty, Ty, Tiy) € Coker (7, )
ifi,j # i forl #£3, and i # j.

Proof. From Lemmas 5.9 and 5.7, there exist some o € A/ (k — 2) and 7 € A,(2)
such that

Té,N(O-) = x;k ® [xja Ligy- - 7xik+1]7
Tl::72,N(T> = l‘; ® [xiu Ligs xz]

respectively. Then, by the Jacobi identity,

TN ([0, 7)) = 27 @ [Tiy, Tiy, T4, Tiy - -+ Ty, )
— T @ [Ty, Ty, [T, Ty - T ]
=& @ [Ty, Tig, Tis Tigs - - -, Ty,
+ T @ [T, Tigs - Tigrs Ty, Tig) — Tf @ [, Tigy o, Tiy 1> Ty, Ty -

This completes the proof of Lemma 5.15. [
Lemma 5.16. For k > 5,

T @ [Tiy, Tigy Ty Tiyy oo Ty = T ® [Ty, Tigy gy Ty - o Ty, Ty ] € Coker(T,g’N)
if i, # 4 for 1 # 3, and i # j.

Proof. From Lemma 5.7, there exist some o € A, (k — 1) such that

TI::—I,N(O) = x;k ® [winajiwajj?l'iy s 7$ik+1]-

Then,
Tllc,N([07 Kﬁﬂ]) = x;k ® ['xi17 Lig s [.Z'u,l'i], Ligy - - 7xik+1]
+IE;® ["Eiul‘iwl‘jvwisa~--7xik+1axi4]a
= x;k ® [xilﬂxizvxiwxivxig,’ e 7xik+1]
— 1} @ [Ty, Tiy, T, Tiy, Tigy - -+ 5 Tiy ]
+$;® [l’il,l’iz,x]’,xis,...,Iik+l,$i4].

Hence From Lemma 5.10, we obtain the required result. This completes the proof of
Lemma 5.16. U

In the following, we consider the case where n > k + 2. From the Lemmas 5.9, 5.10

and 5.14, we see that Coker(7; ) is generated by elements z} ® [z, ¥4y, ..., %] and
T @ (T4, Tiy, T4, Ty - - -, T4y, | Of § such that 1 < i,4; < n and i # 4;. Furthermore, if we
set

(1,42, igg1) = T @ T4, Ty, - .., T4, | € Coker(7, x)

for 4, # 4, then from Lemmas 5.11 and 5.12, we see that s'(i,4s,...,ik11) does not
depend on the choice of i such that ¢ # 4; for 2 <[ < k + 1. Hence we can set

S('ég, s aik-‘rl) = S/(i7i27 s aik’-‘rl)

and have
S(ig, ..o ikg1) = S(i3, ..o kg1, 02) = - -+ = S(igs1, 92 . ., Uk)
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in Coker(7y, ).
Next, set
(i1, 02,0, 0 -y dkg1) = T @ [Tiy, Tig, T, Ty - ., Ty, ] € Coker(ry )
for i; # 7. From Lemma 5.15, we verify that
U,/(il,ig,i, i4 c. ,ik+1) = S(i4, c. ,ik+1,i2,’i1) — 3(i4, c. ,ik+1,i1,i2)

and it also does not depend on the choice of ¢ such that ¢ # i; for [ # 3. Hence we can
set

u(Zb 22,74 ... 7lk+1> =u (Z177/27?’7 lq ... ,Zk+1).
Here we consider some relations among u(iq,4,y . . ., ig1)s. First, using
U(il, ?:2,7:4 Ce ,ik+1> = 8(i1,i4, . ,ik+1, 22) — S(il, ig,i4, e ,ik+1),

we obtain

(8) (g, g1y Jos - -+ Jk) T uldy Jas - - o5 Jay J1) + o+ u(d, Gk Gy -+ o5 Je—1) = 0.
From Lemma 5.16, we see

(9) Wiy, G2, 04 -« oy ikr1) = w(iy, G2, 05 . ., igt1, 4)-

In general, for & > 5,

0= ZE? ® [Iil’ Ligs [fuxu]a [mimxis]v Ligy e -+ ’xik+1]7
= T} @ @iy, Tig, Tiy Ty [T, Tig|, Tigs -+ - Tiy ]
— T} @ [Ty, Ty, Ty, Ty [T, Tig)s Tigs - - -5 Tig ]
= x;k ® [xila Ligy Liy Liys [$i57xi6}7 Ligy - 7xik+1]7
= & ® [T, Tig, Tiy Tiys Tigs Tigs Tigy - - - 5 Tig 1)
- JJ: ® [xiu Ligs Tiy Tigs Tigy Ligy Ligy - - - ;Iikﬂ]

in Coker(7, ). This shows

(10) u(il, ig, 7:47 i5, iﬁ, i7, e ,ik+1) = u(il, ig, 7:4, iﬁ, i57 i7, ce ,ik+1).

Observing the fact that for any [, the symmetric group &; of degree [ is generated by
a cyclic permutation of length /[ and a transposition, we verify that

(11) U(ib 12, J15J25 - - - ajk72) = U(i17 7;2>j'y(1)7j'y(2)a cee 7‘7‘7(1%2))
for any v € &,_2 by (9) and (10).

In order to reduce the generators more, we consider the rational case. By the same
argument as above, we see that Coker((7; y)q) is also generated by s(ia, ..., x4 1)s and
w(iy,i9,04 ... ,1541)s as a Q-vector space for n > k + 2. Denote by W the subspace of
Coker((7;, x)q) generated by elements u(iy, ia, i3 . . ., ig) for iy > iy > iz <y < -+ - <.
Then we have

Lemma 5.17. Fork>5,n>k+2, and any 1 < j1,...,Jr < n,

u<j17j27j3 s 7jk) eWw.
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Proof. By (11), we may assume that j; > jo and j3 < -+ < jry1. Suppose jo < js.
If j5 < j3, by (8), we obtain

U(jl,j2,j3 <o 7]16) = _u(j17j37j27j4 B 7]7€) - u(j17j47j27j37j5 v 7jk>
- u(jhjk;j?)jB- .. ajk—l) e W.

If jo = js, there exists some [ such that 3 <[ <k and

J2=J3="=0<Jji1 < <k
Then, by (8), we see
(l - 1)u<.j17j27j3 s 7]]{:) = _u(jlajl+17j27 s 7jl7jl+17 .. jk>
- _u(jlajk7j2a--'>jk—1)~

Therefore, we obtain the required result. This completes the proof of Lemma 5.17. [J

Now, if we set V' := Coker((7;, 5)q)/W, we have

S(j17j27j37 cee 7.7k) = S(j27j17j37 s 7jk) eV.
This shows
S(jl)j2’j3’ s 7]]43) = S(.i’y(l)a.j’y(?)aj’y(?)% s 7.]’7(]6)) ev

for any v € &y. In particular, V' is generated by s(j1, 2,73, - - -, jk) such that 1 < j; <
-+« < jp < n. Therefore we conclude that

Proposition 5.1. For k > 5 andn > k + 2, Coker((1; y)q) s generated by
{s(in 4,03, .. i) [ 1 <dp < -2 i <}

and
{uliv, ig, s ... i) [i1 > dg > i3 <iig < -0 <y}

as a Q-vector space. In particular, the number of the generators above is

(n+ll;:—1>+(k:—2)2(k—1)<n+llz—3>'

Therefore we conclude that

Theorem 5.3. Forn > k + 2,

Coker((14 x)q) = S"Hq ® Hgﬂ’ﬂ.
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