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1. Introduction

The main purpose of the present paper is to give examples of algebraic

elliptic surfaces and non-algebraic rigid analytic elliptic surfaces by means

of twistings and logarithmic transformations.

First, we construct twistings and logarithmic transformations of fami-

lies of Tate curves on a disk. These operations come as surgeries of rigid

analytic elliptic fibrations. Although Ueno gave a rough sketch of such

surgeries in characteristic zero in [12, 6], we give precise definitions and

proofs in arbitrary characteristics and unify these two kinds of surgery to

algebraize the resulting surfaces.

In particular, we treat logarithmic transformations which produce multi-

ple fibers whose multiplicities are divided by the characteristic of the base

field. When such fibers appear, we obtain plenty of regular one-forms on

the resulting surface.

In the algebraic case, Mumford discovered the following pathology in

[10, II]: In the case of positive characteristic, there exists a proper smooth

algebraic surface X such that the dimension h0(Ω1
X) of regular one-forms is

equal to one while the dimension h1(OX) of the first cohomology group of

the structure sheaf is equal to zero.

This work was supported by Grant-in-Aid for JSPS Fellows (21-1111).
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Algebraizing the above rigid analytic elliptic surfaces, we obtain alge-

braic surfaces X such that the dimension h0(Ω1
X) is arbitrarily greater than

the dimension h1(OX).

Second, we treat algebraic elliptic surfaces of Kodaira dimension zero

without singular fibers. Bombieri andMumford classified the possible com-

binations of multiple fibers of such surfaces in [1]. However, it is unknown

that all of possible combinations actually occur. We construct some cases

of known and unknown elliptic surfaces of this type in a unified method.

Finally, we construct non-algebraic rigid analytic elliptic surfaces. In the

case of characteristic zero, the equality h0(Ω1
X) = h1(OX) gives a necessary

and sufficient condition for algebraicity of certain elliptic surfaces. In the

case of positive characteristic, the condition of multiple fibers of algebraic

elliptic surfaces (Theorem 3.3 in [5]) gives a criterion for non-algebraicity.

Even in the situation where the criterion does not work, we give another cri-

terion for non-algebraicity by Grothendieck’s lifting criterion for projective

smooth schemes (Théorème 7.3 in [3, III]).

Notations and Conventions. We fix an algebraically closed complete non-

Archimedean valuation field K with a non-trivial valuation. We assume that

rigid spaces and schemes are defined over K. Let us denote the character-

istic of K by p ≥ 0. We mainly use the terminologies and notations of [2],

[9], [8], and [7].

Acknowledgment. The author thanks Fumiharu Kato for support.

2. Preliminaries

In this section, we review some facts on rigid analytic elliptic fibrations.

We refer to the previous paper [7] in detail.

An elliptic fibration (over a smooth curve) is a triple (X,C, π) where X

is a smooth surface, C is a smooth curve, and π is a proper flat morphism
from X toC with connected fibers satisfying the following condition. There

exists a nowhere dense analytic subset C0 ofC such that for any p ∈ C−C0,

the fiber π−1(p) is a proper smooth curve of arithmetic genus one over K(p).
We define algebraic elliptic fibrations over algebraic smooth curves in

the same way. An (algebraic) proper smooth surface X is called an elliptic

surface if X admits a structure of (algebraic) elliptic fibration. The ana-

lytification of an algebraic elliptic fibration over an affinoid algebra A is an

elliptic fibration over Sp A.

Let us denote the genus of a proper smooth curve C by g(C). For an

elliptic fibration (X,C, π), let us denote the length of the torsion submodule
of R1π∗OX by l(π). We have the canonical bundle formula and Noether’s

formula.
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Proposition 2.1. Let π : X → C be an elliptic surface. Then there exists a

canonical isomorphism

KX � π
∗L ⊗OX

OX(D)

where the line bundle L on C and the divisor D on X satisfy the following

conditions:

(1) The degree of L is equal to χ(OX) + l(π) + 2g(C) − 2.

(2) Let C0 be the subset of points on C where the fiber is not smooth.

We write the multiplicity mq and the fiber mqDq at q ∈ C0. Then the

divisor D is given by the following equality:

D =
∑

q∈C0

cqDq.

Here, each integer cq satisfies the inequalities 0 ≤ cq < mq.

Remark. If the fiber is tame at q ∈ C0, then the integer cq is equal to mq − 1.

If all the fibers are tame, then the equality l(π) = 0 holds. This is the case

when the characteristic p is equal to zero.

Proposition 2.2. Let π : X → C be an elliptic surface. Then the Euler

characteristic χ(OX) of the structure sheaf is equal to zero if and only if the

fibration π is free from singular fibers.

3. Twistings and Logarithmic Transformations

In this section, we construct twistings and logarithmic transformations.

We treat these two kinds of surgery in the same method. Since we use Tate’s

uniformization of elliptic curves, we only treat families of elliptic curves

with j-invariants whose absolute values are greater than one. Note that,

comparing to the logarithmic transformations of complex analytic elliptic

surfaces ([6, 9]), we treat the restricted cases in the rigid analytic case.

Put C := SpK〈T 〉. Assume that the elliptic fibration π : X → C admits

a relative uniformization in the following sense: There exists an analytic

function α(T ) on C satisfying the following conditions. Put X := A1×
K ×C.

(1) The inequalities 0 < α(t) < 1 hold for all t.

(2) The quotient of X by the automorphism (x, t) 7→ (α(t)x, t) is iso-
morphic to X over C. Note that we have the fundamental domain

{(x, t) ∈ X | α(t) ≤ |x| ≤ 1} for this action.

In this case, we obtain the commutative diagram:

X
φ

//

ψ
��

??
??

??
?

X

π
����

��
��

�

C.

�
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We take integers a and m such that the conditions gcd(a,m) = 1, a , 0,

and m > 0 are satisfied. Choose integers b and n such that the equality

ab − mn = 1 holds. For a positive real number ǫ, put

Yǫ := {(y, u) ∈ A
1×
K × A1

K | |y
bum| ≤ ǫ}.

Further, put

Y := Y1,

Y∗ := {(y, u) ∈ Y | u , 0},

C∗ := C − {0},

and

X∗ := ψ−1(C∗).

We may define the isomorphism X∗ → Y∗ by the equalities:

x = ynua,

t = ybum.

Let Y be the quotient of Y by the automorphism:

(y, u) 7→
(
α(ybum)−my, α(ybum)bu

)
.

Note that we have the fundamental domain

{(y, u) ∈ Y | |α(ybum)|m ≤ |y| ≤ 1}

for this action. We define the fibration τ : Y → C by a projection (y, u) 7→
ybum. Put Y∗ := τ−1(C∗). Let us denote the restrictions of π and τ to the
preimages of C∗ by π∗ : X∗ → C∗ and τ∗ : Y∗ → C∗ respectively.

We construct the isomorphism µ : Y∗ → X∗ over C∗ in the following way.

We define relative Tate’s elliptic functions onY by the equalities (cf., [11]):

Xα(x, t) :=

∞∑

i=−∞

α(t)ix

(1 − α(t)ix)2
− 2

∞∑

i=1

ti

(1 − ti)2

and

Yα(x, t) :=

∞∑

i=−∞

(α(t)ix)2

(1 − α(t)ix)3
+

∞∑

i=1

ti

(1 − ti)2
.

These analytic functions give the morphism X∗ → P2C∗ by the correspon-

dence:

(x, t) 7→ ((Xα(x, t) : Yα(x, t) : 1), t) .

Let Z∗ be the image of this morphism. Then the morphism induces an iso-

morphism X∗ → Z∗. We may define a morphism Y∗ → Z∗ by the corre-

spondence:

(y, u) 7→
(
(Xα(y

nua, ybum) : Yα(y
nua, ybum) : 1), ybum

)
.
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This morphism induces an isomorphism Y∗ → Z∗. Compositing the last

isomorphism Y∗ → Z∗ and the inverse of the first isomorphism X∗ → Z∗,

we obtain the isomorphism µ : Y∗ → X∗ over C∗.

As a result, the fibration τ : Y → C satisfies the following conditions.

(1) The fibration τ is an elliptic fibration with only one tame multiple
fiber over the origin. The multiplicity of the multiple fiber is equal

to m.

(2) The fibration Y∗ is isomorphic to the fibration X∗ over C∗. The iso-

morphism is induced by µ.

The construction of the fibration τ dose not depend on the choice of b and
n.

For the relative uniformization ψ : X → C of the elliptic fibration

π : X → C, let us denote the fibration τ : Y → C by L(0,m, a) X → C.

When the positive integer m is equal to one, we call the surgery the twisting

of the elliptic fibration π. Otherwise, we call the surgery the logarithmic

transformation of the elliptic fibration π.
Assume that the elliptic fibration π admits another relative uniformiza-

tion:

X′
φ′

//

ψ′
  

@@
@@

@@
@@

X

π
����

��
��

�

C.

�

We take Y′ and construct Y ′ in the same way. Then the parameter (x′, t′) of
X′ and the parameter (y′, u′) of Y′ satisfy the following equalities:

x′ = y′nu′a,

t′ = y′bu′m.

Suppose that the morphism λ : X → X′, (x, t) 7→ (β(t)x, ρ(t)) is an iso-

morphism where β(t) is a nowhere-zero analytic function on C and ρ is an
automorphism of C. Then the diagram

X
λ

//

φ
��

??
??

??
?

X′

φ′
~~~~

~~
~~

~~

X

�

is commutative. For a sufficiently small positive real number ǫ, we may
define the nowhere-zero analytic function γ := ρ(t)/t for all t such that

|t| ≤ ǫ. We define the isomorphism λ̃ : Yǫ → Y′
ǫ over C by the equality:

λ̃(y, u) :=
(
β(ybum)−mγ(ybum)ay, β(ybum)bγ(ybum)−nu

)
.

Then the isomorphism λ̃ induces the isomorphism Y → Y ′ over C.
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4. Regular One-Forms and Regular Vector Fields

In this section, we calculate the dimensions of cohomology groups of the

regular one-forms and regular vector fields on the modified elliptic surfaces.

Let α is an element of K such that the inequalities 0 < |α| < 1 hold. Let

C be a smooth curve. Put E := A1×
K /〈α〉, X := A1×

K × C, and X := E × C.

We consider the surgery in the previous section and use the notations in the

previous section.

First, we assume that the curve C is isomorphic to the disk SpK〈T 〉.

Since we have the isomorphism

Ω
1
X � π

∗OC

dx

x
⊕ π∗Ω1

C,

we obtain the isomorphism:

φ∗Ω1
X � ψ

∗OC

dx

x
⊕ ψ∗Ω1

C.

Thus, we may write a global section of this sheaf on X∗ in the following

way:

F(t)
dx

x
+G(t) dt.

The global section may be written as

F(ybum)

(
n
dy

y
+ a

du

u

)
+G(ybum)(byb−1um dy + mybum−1 du)

on Y∗. We assume that the global section extends to the whole space Y.

If the characteristic p divides m, then the function F(t) has an at least first

order zero, and the functionG(t) has an at most first order pole at the origin.

If the characteristic p does not divide n, then the function F(t) is analytic

at the origin. In this case, if the value F(0) is zero, then the function G(t)

is analytic at the origin. Otherwise, the function G(t) has a first order pole

with the residue −aF(0)/m at the origin.

In the same method, we may describe a global section of Ω1
X ⊗ OX((m −

1)D0) on Y. We write a global section of this sheaf on X∗ in the following

way:

F(t)
dx

x
+G(t) dt.

We assume that the global section extends to the whole space Y. Then the

function F(t) is analytic at the origin, and the function G(t) has an at most

first order pole at the origin.

Next, we assume that C is a proper smooth curve of genus g(C). Let S be

a finite subset of the points of C. For each element q of S , we take integers

aq and mq such that the conditions gcd(aq,mq) = 1, aq , 0, and mq > 0

holds. Put T := {q | p divides mq}. If the characteristic p is equal to zero,
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then the set T is empty. For all elements q of S , we apply L(q,mq, aq) to
X. Let us denote the resulting elliptic fibration by X({(q, aq/mq)}q∈S ). Put

Y := X({(q, aq/mq)}q∈S ).

Theorem 4.1. If the set T is non-empty, then the equality h0(Ω1
Y) = g(C) +

♯T − 1 holds.

Proof. The above calculations show that the equality

h0(Ω1
Y) = h0

(
Ω

1
C ⊗ OC(D)

)

holds where the divisor D is given by
∑

q∈T q. This proves the theorem. �

Assume that the set T is empty. We consider the first Cousin problem of

the rational differential one-forms on the proper smooth curve C. The sheaf

exact sequence

0 −→ KC −→MC ⊗ KC −→ (MC/OC) ⊗ KC −→ 0.

gives the connecting homomorphism δ : H0(C, (MC/OC)⊗KC)→ H1(C,KC).

We put

θ :=
∑

q∈S

aq

mqtq
dtq

in H0(C, (MC/OC) ⊗ KC) where tq is a parameter at the point q. Put

η :=
∑

q∈S

aq

mq

in K. Then the image of δθ under the residue map H1(C,KC)→ K is equal

to η.

Theorem 4.2 (cf., Lemma 6.1 in [12]). If the set T is empty, then the equal-

ity

h0(Ω1
Y) =


g(C), η , 0,

g(C) + 1, η = 0

holds.

Theorem 4.3. If the base space C is isomorphic to the projective line, then

the equality

h2(ΘY) =


0, ♯S ≤ 3,

♯S − 3, otherwise

holds.
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Proof. Since the base space is isomorphic to the projective line, there exists

a canonical isomorphism

KY � τ
∗OP1

K
(−2) ⊗ OY


∑

q∈S

(mq − 1)Dq



where the divisor mqDq is the multiple fiber over q. Calculation of h
0(Ω1

Y ⊗

KY) and the Serre duality theorem show the theorem. �

Remark. In this case, in the case of positive characteristic, if the elliptic

surface Y is algebraic and if the inequality ♯S ≤ 3 holds, then the surface is

liftable to characteristic zero.

5. Criterion for Algebraicity

We study the elliptic surface Y over the proper smooth curve that is con-

structed in the previous section. We use the notations in the previous sec-

tion.

Let l be the least common multiple of the integers {mq}q∈S . We define the

divisor D on C by the equality:

D :=
∑

q∈S

aql

mq

· q.

Theorem 5.1. If there exists an integer m such that the divisor mD is prin-

cipal, then the elliptic surface Y is algebraic.

Proof. The above condition shows that there exists a rational function f on

C such that the divisor ( f ) is equal to mD. Put M := lm. We define the

divisor D∗ on the relative uniformization A1×
K × (C − S ) by the equality

xM − f . Put D∗ := φ(D∗). Then the image D∗ is a divisor on the preimage

of C − S under τ. We show that the divisor D∗ extends to the whole rigid

analytic space Y . For q ∈ S , we take parameters (x, t) and (y, u) for the
surgery L(q,mq, aq). Take integers b and n such that aqbq − mqnq = 1. We

may write f (t) = taqM/mqg(t) on a neighborhood of qwhere g(t) is a nowhere-

zero analytic function. Then the divisor D∗ extends to the divisor D on Y

by the equality:

xM − f (t) = ynqMuaqM
(
1 − yM/mqg(ybqumq)

)
.

Thus, the divisor D∗ extends to the divisor D on Y . Since the image τ(D) is
equal to C, Lemma 4.4 in [7] proves the theorem. �

Remark. In this case, if the set T is empty, then the equality h0(Ω1
Y) =

g(C) + 1 holds.
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6. Algebraic Elliptic Surfaces with κ = 0 and χ = 0

We construct algebraic elliptic surfaces τ : Y → C of Kodaira dimension

zero without singular fibers by Theorem 5.1. The notation (c1/m1, . . . , cn/mn)

describes the multiple fibers of the fibration τ. The integer mi is the mul-

tiplicity of the i-th multiple fiber. The integer ci is the coefficient of the

divisor in the canonical bundle formula. The symbol ∗ over mi means that

the i-th multiple fiber is wildly ramified.

From now on, we assume that the curve C is isomorphic to the projective

line. By Theorem 5.1, we obtain some examples.

Example 6.1. We obtain the algebraic elliptic surface

X((0,−1/2), (1, 1/3), (∞, 1/6))

with κ = 0 and χ = 0. The combination of the multiple fibers is of type

(1/2, 2/3, 5/6). In the same way, we obtain the algebraic elliptic surfaces
with the desired invariants whose multiple fibers are of type (1/2, 3/4, 3/4),
(2/3, 2/3, 2/3), and (1/2, 1/2, 1/2, 1/2).

Example 6.2. Let λ be a point on C which is not equal to −1, 0, 1, or ∞.

We obtain the algebraic elliptic surface

X((0, 1/2), (1, 1/2), (λ, 1/2), (λ + 1, 1/2), (∞,−2/1))

with κ = 0 and χ = 0. The combination of the multiple fibers is of type

(1/2, 1/2, 1/2, 1/2). Assume that the characteristic p is equal to two. By the
quotient as in Example 8.1 in [5], we obtain the algebraic elliptic surface

with the same invariants. The combination of the multiple fibers is of type

(1/2∗, 1/2, 1/2).

Example 6.3. Let λ be a point on C which is not equal to 0, 1, or ∞. We

obtain the algebraic elliptic surface

X((0, 1/3), (1, 1/3), (λ, 1/3), (∞,−1/1))

with κ = 0 and χ = 0. The combination of the multiple fibers is of type

(2/3, 2/3, 2/3). Assume that the characteristic p is equal to three. Put λ :=
2. By the quotient as in Example 8.1 in [5], we obtain the algebraic elliptic

surface with the same invariants. The combination of the multiple fibers is

of type (1/3∗, 2/3).

7. Criterion for Non-Algebraicity

In this section, we give criterions for non-algebraicity of proper smooth

rigid analytic surfaces and examples of non-algebraic elliptic surfaces.
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g(C) l(τ) multiple fibers p examples

0 0 (1/2, 2/3, 5/6) 2 ©

3 ©

, 2, 3 © [1, 3]

(1/2, 3/4, 3/4) 2 ©

, 2 © [1, 3]

(2/3, 2/3, 2/3) 3 © [4, 5.2]

, 3 © [1, 3]

(1/2, 1/2, 1/2, 1/2) 2 ©

, 2 © [1, 3]

0 1 (0/2∗, 1/2, 1/2) 2 ©

(1/2∗, 1/2) 2 unknown

(1/3∗, 2/3) 3 © [4, 5.2]

(1/4∗, 3/4) 2 unknown

(2/4∗, 1/2) 2 unknown

(2/6∗, 2/3) 2 [5, 8.4]

(3/6∗, 1/2) 3 [5, 8.4]

0 2 (0/pa∗) , 0 [1, 3], [5, 8.1] (some

cases)

(0/pa∗, 0/pb∗) , 0 [1, 3] (some cases)

1 0 none product of two ellip-

tic curves

Table 1. The possible invariants of elliptic surfaces τ : Y →

C of Kodaira dimension zero without singular fibers. The

symbol© means that we treat the type in the present paper.

Proposition 7.1 (cf., Theorem 27 in [6]). Assume that the characteristic p

of the base field K is equal to zero. Suppose that the element η in Section 4

is not equal to zero. Then the surface Y in Section 4 is not algebraic.

Remark. If the genus of the base curve is equal to zero, then Theorem 5.1

and the above proposition give the necessary and sufficient condition for the

algebraicity of the surface Y (cf., Appendix 1 in [5]).

Proof. Since the characteristic p is equal to zero, for any proper algebraic

surface Z, the equality h1(OZ) = h0(Ω1
Z) holds. Since we have the equality

h0(KY) = g(C), by the Serre duality theorem and by the equality χ(OY) = 0,

we obtain the equality h1(OY) = g(C) + 1. Thus, Theorem 4.2 shows the

proposition. �
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Lemma 7.2. Assume that the characteristic of the base field K is positive.

Then any proper smooth algebraic surface Z with the invariants χ(OZ) = 0,

h0(KZ) = 0, and h0(Ω1
Z) = 0 is non-liftable to characteristic zero.

Proof. Assume that the surface Z admitted a lifting. Let Y be the generic

fiber of this lifting. The constancy of the Euler characteristic and the upper-

semicontinuity of the dimension of the cohomology groups of coherent

sheaves on a proper flat family of schemes shows that the equalities χ(OY) =

0, h0(KY) = 0, and h0(Ω1
Y) = 0 hold. The Serre duality theorem (Theorem

in [13, 5.1]) shows that the equality h0(KK) = 0 holds. Therefore, we ob-

tain the inequality h0(Ω1
Y) < h1(OY). Since the inequality dose not hold in

characteristic zero, this is a contradiction. �

The above lemma, the canonical bundle formula, and Noether’s formula

give the following proposition.

Proposition 7.3. Assume that the characteristic of the base field K is pos-

itive. Then any algebraic elliptic surface Z over the projective line without

singular fibers with the invariant h0(Ω1
Z) = 0 is non-liftable to characteristic

zero.

The above proposition and Grothendieck’s lifting criterion (Théorème

7.3 in [3, III]) show the following proposition.

Proposition 7.4. Assume that the characteristic of the base field K is posi-

tive. Then any elliptic surface Z over the projective plane without singular

fibers with the invariants h0(Ω1
Z) = 0 and h2(ΘZ) = 0 is not algebraic.

The conditionUi (Theorem 3.3 in [5]) gives a criterion for non-algebraicity

of some elliptic surfaces. Here, we give an example of non-algebraic elliptic

surfaces such that the criterion does not work. Let q and r be two distinct

points on the projective line C. Assume that the integers mq and mr are

larger than one and not divided by p. Put aq = 1 and ar = mr − 1. Then

we can not conclude that the resulting surface Y is not algebraic only by

the conditions U1 and U2. The above proposition proves, however, that the

surface Y is not algebraic.
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