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1. Introduction

The main purpose of the present paper is to give a criterion for relative

minimality of proper regular rigid analytic surfaces. We have proved the

existence of relatively minimal regular models of proper regular surfaces

in [8]. First, we study coverings of analytic subsets. Second, we study

deformations of divisors. Finally, we apply these studies to the study of

proper regular rigid analytic surfaces. Ueno studied these objects in [10] in

the case of smooth rigid analytic spaces over algebraically closed base fields

of characteristic zero. We give detailed proofs of the theorems concerned

with them in the general case.

First, to analyze analytic subsets on rigid analytic spaces, we study cov-

erings of analytic subsets. Further, we study small tubular neighborhoods

of smooth divisors on smooth rigid analytic spaces. In the affinoid case,

these tubular neighborhoods were studied by Kiehl in [4].

Second, we study deformations of divisors on rigid analytic spaces. We

prove that we can deform effective Cartier divisors on quasi-compact sepa-

rated rigid analytic spaces whenever certain obstructions vanish. The study

of coverings enables us to generalize the result to the case when the rigid

analytic spaces are not quasi-compact. The point of the proof is to show

the convergence of certain series. We show this convergence by using the

non-Archimedean open mapping theorem.

This work was supported by Grant-in-Aid for JSPS Fellows (21-1111).
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2 KENTARO MITSUI

Finally, we give a criterion for relative minimality of proper regular sur-

faces which is similar to Castelnuovo’s criterion in the case of algebraic

surfaces and complex analytic surfaces. The study of deformations enables

us to prove that we can blow down exceptional curves of the first kind on

regular rigid analytic surfaces. Then, by the study of bimeromorphic mor-

phisms in [8], we obtain the desired criterion. When we study deformations

and blowing-downs, we refer to the arguments of complex analytic cases

([7], [6]).

In the appendix, we give methods of calculating intersection numbers and

prove the Riemann-Roch theorem for proper smooth rigid analytic surfaces.

Notations and Conventions. We fix a complete non-Archimedean valu-

ation field K with a non-trivial valuation and assume that rigid analytic

spaces are defined over K. We mainly use the terminologies and notations

of [1] and [8].

Acknowledgment. The author thanks Kenji Ueno for support and sugges-

tions, and Fumiharu Kato for support and helpful comments.

2. Tubular Neighborhoods

In this section, we show the existence of small tubular neighborhoods for

proper smooth divisors on separated smooth rigid analytic spaces of pure

dimension. More precisely, we show that, when a proper smooth divisor

on such a rigid analytic space satisfies a certain condition, there exists a

small admissible open subset that contains the divisor and admits a finite

admissible affinoid covering that consists of tubular neighborhoods of the

divisor. If the rigid analytic space is proper, then the condition is fulfilled

for any smooth divisors.

We start with preparing terminologies and notations. For a special real

number r (see [8]), let us denote a one-dimensional closed disk with the

radius r by B(r). Let V be an affinoid subdomain of an affinoid space U.

When V is relatively compact in U (over K), we write V ⋐ U. Let {Ui}i∈I
and {Vi}i∈I be two finite families of admissible affinoid open subsets of a

rigid analytic space X. When Vi is relatively compact in Ui for all i, we

write {Vi}i∈I ⋐ {Ui}i∈I . If the family {Vi}i∈I covers a subset S of X, then

we say that the family {Ui}i∈I is a relatively big covering of S and that the

family {Vi}i∈I is a relatively small covering of S associated to the relatively

big covering {Ui}i∈I . When S equals X, we say that X admits a relatively big

covering.

Let {Vi}i∈I be a relatively small covering of a subset S of a rigid analytic

space X associated to the relatively big covering {Ui}i∈I . When X is quasi-

separated, for any subset J of I, the family {U j} j∈J is an admissible covering

of an admissible open subset
⋃

j∈J U j of X by the following lemma. When
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X is separated, the family {
⋃

i∈I Ui}∪ {X−
⋃

i∈I Vi} is an admissible covering

of X by Lemma 1.1 in [11].

For two coveringsU andV of a rigid analytic space X and a subsetW of

X, let us denote {U ∩ V | U ∈ U,V ∈ V} and {U ∩W | U ∈ U} byU ∩V

andU ∩W respectively.

Lemma 2.1. Let U be a family of admissible affinoid open subsets of a

quasi-separated rigid analytic space X. Assume that X admits an admis-

sible affinoid covering V all of whose covering elements intersect at most

finite number of elements of U. Then the family U ∩ V is an admissible

covering of an admissible open subset
⋃
U of X. Therefore, the family U

is an admissible covering of
⋃
U.

Proof. Put U :=
⋃
U. Let V be an element of V. Since U ∩ V is a finite

union of an admissible affinoid open subsets of V , Corollary 4 in [1, 9.1.4]

shows that U ∩ V is an admissible open subset of V . Thus, the union U is

an admissible open subset of X. The same corollary shows that U ∩ V has

a refinement which is an admissible covering of U ∩ V . Therefore, since

V ∩ U is an admissible covering of U, the family U ∩V is an admissible

covering ofU. This proves the first assertion. Since the admissible covering

U ∩V is finer than the coveringU, the last assertion follows. �

The next lemma enables us to enlarge the elements of relatively small

coverings.

Lemma 2.2. Assume that two finite familiesU andV of admissible affinoid

open subsets satisfy the relation V ⋐ U. Then there exists a finite family

W of admissible affinoid open subsets such that the relationsV ⋐W ⋐ U

hold.

Proof. It suffices to show that for an affinoid subdomain V which is rela-

tively compact in an affinoid space U, there exists an affinoid subdomainW

of U such that V ⋐ W ⋐ U. Proposition 4 [1, 6.2.1] implies that we may

write U = SpK〈 f1, . . . , fn〉 such that for a suitable special real number ǫ,

the affinoid subdomain V is contained in the set U( f1/ǫ, . . . , fn/ǫ). Take a

special real number ǫ0 such that the inequalities ǫ < ǫ0 < 1 holds. Then we

have only to put W := U( f1/ǫ0, . . . , fn/ǫ0). �

The next lemma shows that the relatively compactness is stable under the

pull-backs by closed immersions.

Lemma 2.3. Let U and V be two admissible affinoid open subsets of a rigid

analytic space X such that V is relatively compact in U. Let Y be an analytic

subset of X. Then V ∩ Y is relatively compact in U ∩ Y. Therefore, if an

analytic subset admits a relatively big covering, then the analytic subset is

proper.
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Proof. We may write U = SpK〈 f1, . . . , fn〉 such that V is contained in the

subset {x ∈ U | | f1(x)| < 1, . . . , | fn(x)| < 1}. For each i, let gi be the

image of fi by the homomorphism corresponding to the closed immersion

U ∩ Y → U. Then U ∩ Y = SpK〈g1, . . . , gn〉, and V ∩ Y is contained in the

subset {x ∈ U ∩ Y | | f1(x)| < 1, . . . , | fn(x)| < 1}, which is equal to the subset

{x ∈ U ∩ Y | |g1(x)| < 1, . . . , |gn(x)| < 1}. This proves the lemma. �

The following lemma shows that the relatively compactness is stable un-

der product and intersection.

Lemma 2.4. Let Vi be an affinoid subdomain of an affinoid space Ui for

i = 1, 2. Assume that each Vi is relatively compact in Ui. Then the product

V1 × V2 is relatively compact in the product U1 × U2. If V1 and V2 are

admissible affinoid open subsets of a separated rigid analytic space X, then

the intersection V1 ∩ V2 is relatively compact in the intersection U1 ∩ U2.

Proof. The first statement follows from Lemma 1 in [1, 9.6.2]. Since X is

separated, the second statement follows from Lemma 2.3. �

Lemma 2.5. Let V be an affinoid subdomain of an affinoid space Y. Assume

that affinoid subdomains U and W are relatively compact in the affinoid

spaces X and V respectively. Then for any morphism φ : X → Y of rigid

analytic spaces, the affinoid subdomain U ∩φ−1(W) is relatively compact in

the affinoid subdomain φ−1(V). In particular, when an affinoid subdomain T

is relatively compact in an affinoid subdomain S , for a family {gi}1≤i≤m+n of

analytic functions on X and a family {ǫi, ǫ
′
i }1≤i≤m+n of special real numbers

such that ǫi < ǫ
′
i for all i, the affinoid subdomain

T (g1/ǫ1, . . . , gm/ǫm, ǫ
′
m+1/gm+1, . . . , ǫ

′
m+n/gm+n)

is relatively compact in the affinoid subdomain:

S (g1/ǫ
′
1, . . . , gm/ǫ

′
m, ǫm+1/gm+1, . . . , ǫm+n/gm+n).

Proof. The graph of φ is an analytic subset of the product X×Y . By Lemma

2.4, the productU×W is relatively compact in the product X×V . Therefore,

the first statement follows from Lemma 2.3. The last statement follows from

the first statement if we put

X := S (g1/ǫ
′
1, . . . , gm/ǫ

′
m, ǫm+1/gm+1, . . . , ǫm+n/gm+n),

Y := B(1)m+n,

and

φ := (g1/ǫ
′
1, . . . , gm/ǫ

′
m, ǫm+1/gm+1, . . . , ǫm+n/gm+n).

�
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Lemma 2.6. Assume that an analytic subset Y of a rigid analytic space X is

defined by analytic functions f1, . . . , fn on X. Let U be an admissible open

subset of X that contains Y. Then there exists a special real number ǫ such

that the affinoid subdomain X( f1/ǫ, . . . , fn/ǫ) is contained in U.

Proof. This lemma is shown in Lemma 2.3 in [5]. See also Lemma 1.1.4 in

[3]. �

We can replace relatively big coverings with enough smaller coverings.

Lemma 2.7. Let Y be an analytic subset of a rigid analytic space X. Assume

that there exists a relatively big covering of Y. Let U be an admissible open

subset of X that contains Y. Then there exists a relatively big covering of Y

that is contained in U.

Proof. Let {Vi}i∈I be a relatively small covering associated to a relatively

big covering {Ui}i∈I of Y . We fix an arbitrary element i of I. We may write

Ui = SpK〈 f1, . . . , fm〉. Put Yi := Y ∩ Ui. We have a finite number of defin-

ing functions g1, . . . , gn of Yi on Ui. By Lemma 2.6, there exists a special

real number ǫ such that Ui(g1/ǫ, . . . , gn/ǫ) ⊂ U. It suffices to show that

for special real numbers ǫ0, ǫ1 such that ǫ0 < ǫ1 < ǫ, the affinoid subdo-

main Vi(g1/ǫ0, . . . , gn/ǫ0) is relatively compact in Ui(g1/ǫ1, . . . , gn/ǫ1). This

follows from Lemma 2.5. �

We can refine relatively big coverings by Zariski coverings.

Lemma 2.8. Let U be a Zariski covering of an affinoid space X. Let V be

an affinoid subdomain that is relatively compact in X. Then there exists a

relatively big covering of V that refinesU.

Proof. RefiningU, we may assume that X is covered by a finite number of

admissible open subsets of the type {x ∈ X | | f (x)| > 0}. Further, by Lemma

6 in [1, 9.1.4], we may assume that the covering elements are rational sub-

domains of the type X(ǫ/ f ). Therefore, it suffices to show that for special

real numbers ǫ0 and ǫ1 such that ǫ0 < ǫ1 < ǫ, the affinoid subdomain V(ǫ1/ f )

is relatively compact in X(ǫ0/ f ). This follows from Lemma 2.5. �

Proposition 2.9. Assume that the family {Ui}i∈I is a relatively big covering

of an analytic subset D of a separated rigid analytic space X. We take a

family { fi j} j∈Ji of defining functions of D on each Ui. Put Uiǫ := {x ∈ U |

∀ j ∈ Ji, | fi j(x)| ≤ ǫ}. Then there exist an admissible open subset U0 of X

and a special real number ǫ satisfying the following conditions.

(1) The family {Ui}i∈I ∪ {U0} is an admissible covering of X.

(2) For all i ∈ I, the restriction Uiǫ is disjoint from U0.
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Proof. Let V be the union of the relatively small covering of {Ui}i∈I. Put

U0 := X − V . The first condition is fulfilled. Since Lemma 2.1 implies that

V is an admissible open subset of X, Lemma 2.6 shows that there exists a

special real number ǫ such that V contains Uiǫ for all i ∈ I. �

Proposition 2.10. Let π : X → Y be a morphism of rigid analytic spaces.

Assume that the rigid analytic space X is quasi-separated. Suppose that the

preimage of a point p on Y admits a relatively big covering. Then there

exists an admissible open subset V of Y that contains p such that the re-

striction π to the preimage of V under π is proper.

Proof. Let D be the preimage of the point p under π. We choose an ad-

missible affinoid open subset W of Y that contains p and a family {gi}i∈I
of defining functions of p on W. For a special real number ǫ, we put

Wǫ := {y ∈ Y | ∀i ∈ I, |gi(x)| ≤ ǫ}.

We take a relatively small covering {Vi}i∈I of D associated to the rela-

tively big covering {Ui}i∈I . Since the family {π
∗gi}i∈I is a family of defining

functions of D on the preimage π−1(W), by Lemma 2.6, we obtain a special

real number ǫ such that the preimage of the admissible affinoid open subset

Wǫ under π is contained in the union of the relatively small covering {Vi}i∈I .

Put Z := π−1(Wǫ). Since the relation Vi ∩ Z ⋐W Ui ∩ Z holds for all i ∈ I,

the restriction π to Z is proper. Thus, by Lemma 2.1, the admissible open

subsetWǫ is a desired one. �

From now on, we assume that a rigid analytic space X is separated and

normal. Let D be a smooth prime divisor on X. Let U be an affinoid open

subset Sp A of X. Put R := D∩U. We say thatU is a local tubular neighbor-

hood of D if there exist a defining function f of D onU and an isomorphism

U � R × B(1) such that the corresponding K-algebra homomorphism

φ : A/ f A〈X〉 −→ A

satisfies the following conditions.

(1) The homomorphism φ sends X to f .

(2) The restriction of φ to A/ f A is a section of the natural homomor-

phism A→ A/ f A.

In this case, we call R an extendable open subset of D. An admissible

affinoid open subset of an extendable open subset is also extendable. For

a special real number ǫ ≤ 1, let us denote the admissible open subset

Sp A/ f A〈X/ǫ〉 of X by Uǫ or R(ǫ). When a smooth prime divisor D ad-

mits a relatively big covering that consists of extendable open subsets, we

say that the divisor D admits an extendable covering. A local tubular neigh-

borhood covering of a smooth prime divisor D is a relatively big covering

of D such that each covering element is a local tubular neighborhood of
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D. A tubular neighborhood of a smooth prime divisor D is an admissible

open subset P of X such that there exist an analytic function F on P and an

admissible covering {Ui}i∈I of P satisfying the following conditions.

(1) The family {Ui}i∈I is a local tubular neighborhood covering of D.

(2) For each i ∈ I, the restriction F|Ui
is the composite of the isomor-

phism Ui → (Ui ∩ D) × B(1) and the projection (Ui ∩ D) × B(1)→

B(1).

For a special real number ǫ ≤ 1, let us denote the preimage F−1(B(ǫ)) by

Pǫ .

Theorem 2.11. Let f1, . . . , fn be a generating family of an ideal I of an

affinoid algebra A. Assume that the affinoid space Sp A is smooth on the

closed subspace Sp A/I. Further, suppose that the closed subspace Sp A/I

is smooth. Then there exist three special real numbers ǫ, ǫ1, and ǫ2, and a

finite family {g j} j∈J of elements of A satisfying the following conditions. For

each j ∈ J, put B j := A〈 f1/ǫ, . . . , fn/ǫ, ǫ0/g j〉.

(1) The inequality ǫ0 < ǫ1 holds.

(2) The family {Sp A〈ǫ1/g j〉} j∈J is an admissible covering of Sp A.

(3) For all j ∈ J, there exists an integer n j and an isomorphism

φ j : (B j/IB j)〈X j1, . . . , X jn j
〉 ∼→ B j

where the left-hand side is a free affinoid algebra over B j/IB j.

(4) For all j ∈ J, the family {φ j(X jk)}1≤k≤n j
generates the ideal IB j.

(5) For all j ∈ J, the restriction φ j on B j/IB j is a section of the natural

homomorphism B j → B j/IB j.

If the affinoid space Sp A is of pure dimension m and the affinoid space

Sp A/I is of pure dimension m − n, then we can require the following addi-

tional conditions.

(6) For all j ∈ J, the integer n j is equal to n.

(7) For all j ∈ J and for all integer k such that 1 ≤ k ≤ n, there exists a

non-zero element ǫ j of K such that the isomorphism φ j maps X jk to

fk/ǫ j.

Proof. This theorem follows from Theorem 1.18 in [4] and the following

remark of the theorem. We have only to note that, when we construct a

family {Sp B j} of affinoid subdomains of Sp A, we restrict a refinement of a

Zariski covering of Sp A to Sp A〈 f1/ǫ, . . . , fn/ǫ〉. �

We give some equivalent conditions of the existence of local tubular

neighborhood coverings.

Theorem 2.12. An extendable covering of a smooth prime divisor D on X

can be extend to a local tubular neighborhood covering of D. Conversely,
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if the rigid analytic space X is smooth on D and the divisor D admits an

extendable covering, then there exists a local tubular neighborhood cover-

ing of D. Therefore, if the rigid analytic space X is smooth on D, then the

following conditions are equivalent.

(1) There exists an extendable covering of D.

(2) There exists a local tubular neighborhood covering of D.

(3) There exists a relatively big covering of D.

Remark. If the rigid analytic space X is proper, the third condition is ful-

filled for any divisors.

Proof. First, we show the first statement. Let {S i}i∈I be a relatively small

covering associated to an extendable covering {Ri}i∈I of D. Take a special

real number δ that is less than one. Then, by Lemma 2.4, S i(δ) ⋐ Ri(1)

for all i. Therefore, the family {Ri(1)}i∈I is a local tubular neighborhood

covering of D.

Next, we show the second statement. Let {Yi}i∈I be a relatively small

covering associated to a relatively big covering {Xi}i∈I of D. By Lemma 5.8

in [8] and Lemma 2.8, we may assume that the family {Xi}i∈I is a locally

principal covering. Further, by Theorem 2.11, we may assume that there

exists a local tubular neighborhood of D on each Xi. Put Ri := Xi ∩ D and

S i := Yi ∩ D for each i. Lemma 2.3 shows that S i ⋐ Ri for all i. Therefore,

the divisor D admits an extendable covering {Ri}i∈I. �

Proposition 2.13. Let {Ui}i∈I be a local tubular neighborhood covering of

a smooth prime divisor D on the rigid analytic space X. Then the following

statements hold.

(1) There exists a local tubular neighborhood covering {Vi}i∈I such that

Vi ⋐ Ui for each i.

(2) For all family {δi}i∈I of special real numbers such that δi ≤ 1 for all

i, the family {Uiδi}i∈I is a local tubular neighborhood covering of D.

(3) Let U be an admissible open subset of X that contains D. Then

there exists a special real number ǫ such that Uiǫ is contained in U

for each i.

(4) Let U be an admissible affinoid open subset of X. Let V be an

admissible open subset of U that contains U ∩ D. Then there exists

a special real number ǫ such that V contains Uiǫ ∩ U for each i.

Proof. Put Ri := D ∩ Ui. By Lemma 2.3 and Lemma 2.2, we have two

coverings {S i}i∈I , {Ti}i∈I of D such that Ti ⋐ S i ⋐ Ri for all i. Take two

special real numbers ǫ0, ǫ1 such that ǫ0 < ǫ1 < 1. By Lemma 2.4, Ti(ǫ0) ⋐

S i(ǫ1) ⋐ Ui for all i. Therefore, the first statement holds. Take a special real

number ǫi such that ǫi < δi. Then the relation S i(ǫi) ⋐ Uiδi holds for all i.
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Therefore, the second statement holds. By Lemma 2.6, the third and fourth

statements hold if we replace the above special real numbers ǫi and δi. �

From the above proposition, we deduce the following proposition.

Proposition 2.14. Let P be a tubular neighborhood of a smooth prime di-

visor D on the rigid analytic space X. Then the following statements hold.

(1) For any special real number ǫ such that ǫ ≤ 1, the subset Pǫ is a

tubular neighborhood of D.

(2) Let U be an admissible open subset of X that contains D. Then there

exists a special real number ǫ such that Pǫ is contained in U.

(3) Let U be an admissible affinoid open subset of X. Let V be an

admissible open subset of U that contains U ∩ D. Then there exists

a special real number ǫ such that V contains Pǫ ∩ U.

3. Deformations of Divisors

In this section, we prove that we can deform a quasi-compact effective

Cartier divisor whenever a certain cohomology group vanishes.

Let D be a quasi-compact reduced Cartier divisor on a quasi-compact

separated rigid analytic space X. Let {Ui}i∈I be an admissible affinoid cov-

ering of X. Put U := {Ui}i∈I . For each i ∈ I, put Di := D ∩ Ui. We may

write Di = Sp Bi and Ui = Sp Ai. Assume that the kernel of the natural

surjective homomorphism θi : Ai → Bi is generated by the single non-zero-

divisor hi of Ai. For each i, j, k ∈ I, put Ai j := Ai ⊗̂ A j, Ui j := Sp Ai ∩ Sp A j,

Ui jk := Sp Ai ∩ Sp A j ∩ Sp Ak, Bi j := Bi ⊗̂ B j, and Di j := D ∩ Ui j = Sp Bi j.

Let hi j be the invertible element hi/h j of Ai j.

Let δ be a special real number. For each i ∈ I, put Viδ := Ui × SpK〈T/δ〉.

Put Yδ := X × SpK〈T/δ〉, andVδ := {Viδ}i∈I.

All complete K-algebra norms on any affinoid algebra is equivalent to

each other (Proposition 2 in [1, 6.1.3] and Corollary 3 in [1, 2.1.8]). For

each i, j ∈ I, we set complete K-algebra norms on affinoid algebras Ai, Ai j,

Bi, and Bi j.

Using a coherent OX-ideal OX(−D), we put OD := OX/OX(−D). The

normal bundle of D is the line bundle OX(D)|D on D. Let us denote this line

bundle by ND/X. For a presheaf F of abelian groups on X, let us denote

the q-cochain group (resp. q-cocycle group) of U with coefficient in F by

Cq(U,F ) (resp. Zq(U,F )).

Theorem 3.1. We use the above notations. Let {ti}i∈I be a section of the

normal bundleND/X of D. Assume that the cohomology group H1(D,ND/X)

vanishes. Then there exist a special real number δ, s = {si}i∈I ∈ C0(Vδ,OYδ),

and f = { fi j}i, j∈I ∈ C1(Vδ,OYδ) satisfying the following conditions:
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(1) For all i ∈ I, the first two terms in the expansion of si with respect

to T is equal to hi + si1T where the image of si1 under θi is equal to

ti.

(2) For all i, j, k ∈ I, the two equalities si = fi js j and fik = fi j f jk hold.

(3) For all i, j ∈ I, the analytic function fi j is invertible.

We prove the above theorem. For each i, j ∈ I, we write

si = hi +

∞∑

m=1

simT
m

and

fi j = hi j +

∞∑

m=1

fi jmT
m.

First, note that it suffices to construct s ∈ C0(V1,OY1) and f ∈ C1(V1,OY1)

that satisfy the conditions (1)–(2). Indeed, if we choose a special real num-

ber δ such that the inequality

sup
m≥1

∣∣∣∣∣∣
fi jmδ

m

hi j

∣∣∣∣∣∣
Ai j

< 1

holds for all i, j ∈ I, then the condition (3) is fulfilled.

We construct a formal solution. For formal power series F,G ∈ A[[T ]]

over an affinoid algebra A, if F ≡ G (mod T µ+1), then we write F ≡µ G.

Put si0 := hi, si1 := ti, and fi j0 := hi j. For µ ≥ 0, put

s
µ

i
:=

µ∑

m=0

simT
m

and

f
µ

i j
:=

µ∑

m=0

fi jmT
m.

Claim. There exist sm = {sim}i∈I ∈ C0(U,OX) and fm = { fi jm}i, j∈I ∈ C1(U,OX)

for all m ≥ 0 such that the equation

(µ) s
µ

i
≡µ f

µ

i j
s
µ

j
on Ui j.

holds for all µ ≥ 0. If the above equation (µ) is satisfied, then the congru-

ence

f
µ

ik
≡µ f

µ

i j
f
µ

jk
on Ui jk

holds.
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Proof. Clearly, the equation (0) holds.

For a positive integer µ, assume that the families {sm}0≤m≤µ−1 and { fm}0≤m≤µ−1
satisfy the equation (µ − 1). We define sµ and fµ such that the equation (µ)

is fulfilled. The equation (µ) is equivalent to the equation

fi jµh j = siµ − hi js jµ + gi jµ on Ui j

where gi jµ ∈ Ai j is defined by the following congruence:

gi jµT
µ ≡µ s

µ−1

i
− f

µ−1

i j
s
µ−1

j
on Ui j.

The cochain {gi jµ|Di j
}i, j∈I satisfies the one-cocycle condition:

gikµ = gi jµ + hi jg jkµ on Di jk.

First, we show that there exists sµ such that the equality

(∗) siµ − hi js jµ + gi jµ = 0 on Di j

holds.

If µ is equal to one, then the equality gi jµ = 0 holds. For each i ∈ I, put

siµ := ıi(ti) where ıi is a set-theoretical section of the surjective homomor-

phism θi : Ai → Bi. Then, since t1 is a section of the normal bundle ND/X,

the equation (∗) is fulfilled.

If µ is greater than one, by the assumption H1(D,ND/X) = 0, there exists

tiµ ∈ Bi such that the equality

tiµ − hi jt jµ + gi jµ = 0 on Di j

holds. For each i ∈ I, put siµ := ıi(tiµ). Then sµ satisfies the equation

(∗). Since the analytic function siµ − hi js jµ + gi jµ vanishes on Di j and the

restriction h j|Ui j
is a defining function of Di j, the analytic function siµ −

hi js jµ + gi jµ is divisible by h j. Set

fi jµ := (siµ − hi jµs jµ + gi jµ)/h j on Ui j.

Then the pair sµ and fµ is a solution of the equation (µ). �

Lemma 3.2. Let h be a defining function of an effective Cartier divisor D

on a affinoid space Sp A. Then there exists a positive real number α such

that if an element f of A vanishes on D, then the equality | f /h|A ≤ α| f |A
holds.

Proof. Since, for all K-linear maps between K-normed spaces, continuity

is equivalent to boundedness (Corollary 3 [1, 2.1.8]), Banach’s theorem

(Theorem 1 in [2, I, §3]) shows that the isomorphism A → f A is homeo-

morphism. This proves the lemma. �
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For each i, j ∈ I, applying the above lemma to the affinoid space Sp Ai j

and the defining function h j|Ui j
of D|Ui j

, we obtain the positive real number

αi j. Put α := maxi, j∈I αi j.

We introduce K-Banach space norms on cochain groups. Put Aq :=

Cq(U|D,OX) and Cq := Cq(U|D,ND/X). Since the family U|D is a finite

admissible affinoid covering of D, for each q, we may regard the q-cochain

group Aq as an affinoid algebra that is the finite direct sum of the affinoid

algebras. Then the q-cochain group Aq is a K-Banach algebra and the q-

cochain group Cq is an Aq-Banach space. For each q = 0, 1, we define

q-coboundary operator δq : Cq → Cq+1 as follows. For u = {ui}i∈I ∈ C0, put

(δ0u)i j := hi ju j − ui on Ui j.

For v = {vi j}i, j∈I ∈ C1, put

(δ1v)i jk := hi jv jk − vik + vi j on Ui jk.

By Z1 and B1 we denote the K-normed subspaces Ker δ1 and Im δ0 of C1

respectively.

Claim. There exists a positive real number β satisfying the following con-

dition. For any v ∈ C1 such that δ1v = 0, there exists u ∈ C0 such that the

equation v = δ0u and the inequality |u|C0 < β|v|C1 hold.

Proof. Since addition, subtraction, multiplication, and restriction are con-

tinuous, the coboundary operators are continuous K-linear maps. There-

fore, the kernel Z1 of δ1 is a K-Banach space. Put η := δ0 : C0 → Z1. Since

the cohomology group H1(D,ND/X) vanishes, the equality Z1
= B1 holds.

Then the K-linear map η between K-Banach spaces is surjective and con-

tinuous. Thus, Banach’s theorem (Theorem 1 in [2, I, §3]) shows that the

K-linear map η is open. Therefore, we obtain a desired positive real number

β. �

We take β in the above claim. Put tµ := {tiµ}i∈I ∈ C0 and gµ := {gi jµ}i, j∈I ∈

C1. If µ is greater than one, then we may assume that |tµ|SpC0 < β|gµ|SpC1 .

By Banach’s theorem (Theorem 1 in [2, I, §3]), we may take a special real

number γ such that the inequality |ı(t)|Ai
< γ|t|Bi

holds for all i ∈ I and all

t ∈ Bi.

By R we denote a real number field or an affinoid algebra with a norm.

For two formal power series F =
∑∞

m=0 amT
m ∈ R[[T ]] andG =

∑∞
m=0 bmT

m ∈

R[[t]], we write F ≪ G if |am| ≤ |bm| for all m ≥ 0. We set a formal power

series over R

P(T ) :=
b

5c

∞∑

m=1

cmTm

m2
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where b and c is a positive real number. Then the relation

P(T )2 ≪
b

c
P(T ).

holds. We choose four positive real numbers a, b, c, and d satisfying the

following inequalities:

(1) max
i∈I

|si1|Ai
< b/5;

(2) max
i, j∈I

|hi j|Ai j
< d;

(3) α(1 + (ab/c) + d) < a;

(4) βγ(1 + (ab/c) + d) < c.

Claim. For all i, j ∈ I and all µ ≥ 0, the relations

(i, j, µ) f
µ

i j
− hi j ≪ aP(T )

and

(i, µ) s
µ

i
− hi ≪ P(T )

hold.

Proof. Clearly, the relations (i, j, 0) and (i, 1) hold.

Suppose that the integer µ is positive. Assume that for all i, j ∈ I, the

relations (i, j, µ−1) and (i, µ) hold. We show that for all i, j ∈ I, the relations

(i, j, µ) and (i, µ + 1) hold. The equation (µ) implies that the congruence

fi jµT
µh j ≡µ s

µ

i
− f

µ−1

i j
s
µ

j

holds. The right side of the above congruence is equal to

s
µ

i
− hi − ( f

µ−1

i j
− hi j)(s

µ

j
− h j) − hi j(s

µ

j
− h j) + hi − ( f

µ−1

i j
− hi j)h j.

Since the last two terms do not contribute to the term containing T ν for each

ν ≥ µ, the relation

s
µ

i
− f

µ−1

i j
s
µ

j
≪ (1 + (ab/c) + d)P(T )

holds. Thus, the relation

fi jµT
µh j ≪ (1 + (ab/c) + d)P(T )

holds. By the choice of α, the relation

fi jµT
µ ≪ α(1 + (ab/c) + d)P(T )

holds. Therefore, the relation (i, j, µ) holds. By the definition of gi jµ+1, the

congruence

gi jµ+1T
µ+1 ≡µ+1 s

µ

i
− f

µ

i j
s
µ

j

holds. The right side of the above congruence is equal to

s
µ

i
− hi − ( f

µ

i j
− hi j)(s

µ

j
− h j) − hi j(s

µ

j
− h j) + hi − ( f

µ

i j
− hi j)h j.
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Since the last two terms do not contribute to the term containing T ν for each

ν ≥ µ, the relation

s
µ

i
− f

µ

i j
s
µ

j
≪ (1 + (ab/c) + d)P(T )

holds. Thus, the relation

gi jµ+1T
µ+1 ≪ (1 + (ab/c) + d)P(T )

holds. Since the inequality |siµ+1|Ai
< γ|tiµ+1|Bi

holds, by the choice of β, the

relation

siµ+1T
µ+1 ≪ βγ(1 + (ab/c) + d)P(T )

holds. Therefore, the relation (i, µ + 1) holds. �

Since P(T ) converges on a neighborhood of 0, the formal solutions converge

for some special real number δ, i.e., s ∈ C0(Vδ,OYδ) and f ∈ C1(Vδ,OYδ).

This proves Theorem 3.1.

We say that a Cartier divisor D admits a global defining function if there

exist an admissible open subset P of X that contains D and a defining func-

tion of D on P.

Theorem 3.3. Let D be an effective Cartier divisor on a quasi-compact

separated rigid analytic space X. Assume that the following conditions are

satisfied.

(i) The cohomology group H1(D,ND/X) vanishes.

(ii) The normal bundle ND/X admits a nowhere vanishing section.

Then the divisor D admits a global defining function.

Proof. There exist δ, s, and f satisfying the conditions in Theorem 3.1. By

the condition (2)–(3) in the same theorem, we obtain the divisor Eδ on Yδ.

By lemma 2.6, for all sufficiently small special real number η, the section

si1 is nowhere vanishing on Sp A
′ for all i ∈ I where A′i = Ai〈hi/η〉. We take

a special real number δ such that the inequality

sup
m≥2

∣∣∣∣∣∣
simδ

m−1

si1

∣∣∣∣∣∣
A′
i

< 1

holds for all i ∈ I. Take a special real number µ that is less than one. For

each i ∈ I, put U′
i := Sp A′i〈si0/si1δµ〉. Since the condition (1) in Theorem

3.1 is satisfied, the restriction of the projection π : Eδ → X to the preimage

π−1(U′
i ) is an isomorphism. Put P :=

⋃
i∈I U

′
i . Then, by Lemma 2.1, the

union P is an admissible open subset of X. Thus, the composite P → B(δ)

of the restriction of the inverse of the morphism π to π−1(P) and the second

projection Yδ → B(δ) is a global defining function of D. �
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The supremum semi-norm on an affinoid algebra A is the K-algebra semi-

norm | · |Sp A : A→ R≥0 defined by the equality:

| f |Sp A := sup
x∈Sp A

| f (x)|, f ∈ A.

Corollary 2 in [1, 3.8.2] shows the following lemma.

Lemma 3.4. For an affinoid algebra A, the inequality | f |Sp A ≤ | f |A holds

for all f ∈ A.

Let D be an effective Cartier divisor on a separated rigid analytic space

X that admits a relatively big covering. By Lemma 2.8 and Proposition 2.9,

we obtain the admissible covering of U ∪ {U0} of X and the special real

number ǫ such that the familyU is an admissible covering in Theorem 3.1.

Put J := I ∪ {0}, V0δ := U0 × SpK〈T/δ〉 andVδ := {V jδ} j∈J.

Theorem 3.5. We use the above notations. Assume that the cohomology

group H1(D,ND/X) vanishes. Then we may take a special real number δ in

Theorem 3.1 satisfying the following additional condition.

(4) For all i ∈ I, the analytic function si dose not vanish on Viδ ∩ V0δ.

Proof. There exist δ, s, and f satisfying the conditions in Theorem 3.1.

By the above lemma, we may take a special real number δ such that the

inequality

sup
m≥1

|simδ
m|Sp Ai

< ǫ

holds for all i ∈ I. This proves the theorem. �

Theorem 3.6. Let D be an effective Cartier divisor on a separated rigid

analytic space X that admits a relatively big covering. Assume that the

following conditions are satisfied.

(i) The cohomology group H1(D,ND/X) vanishes.

(ii) The normal bundle ND/X admits a nowhere vanishing section.

Then the divisor D admits a global defining function.

Further, if the rigid analytic space X and the divisor D are smooth, then

there exists a tubular neighborhood P of D.

Proof. The first assertion follows from the above two theorems.

We show the second assertion. By Lemma 2.12, we may assume that the

family U is a local tubular neighborhood covering. We may write Di =

Sp Bi and Ui = Sp Ai where Ai = Bi〈Xi〉. Further, we may assume that each

hi is the corresponding element to Xi in Ai.



16 KENTARO MITSUI

We define a real valued function | · |C〈X〉 on a free affinoid algebra C〈X〉

over an affinoid algebra C by the following equality:
∣∣∣∣∣
∞∑

e=0

aeX
e

∣∣∣∣∣
C〈X〉

:= max
e≥0

|ae|C.

Then the function | · |C〈X〉 is a complete K-algebra norm on C〈X〉. For each

i ∈ I, we set such a complete K-algebra norm on free affinoid algebras Ai

and Ai〈T 〉 over Bi and Bi〈T 〉 respectively.

Let {ti}i∈I be a nowhere vanishing section of the normal bundle ND/X of

D. Then there exist δ, s, and f satisfying the conditions in Theorem 3.1 and

Theorem 3.5. We may assume that the inequality

sup
m≥1

|simδ
m|Ai

< 1

holds for all i ∈ I. Then the K-algebra homomorphism

φi : Ai〈T/δ〉/(si)
∼→ Bi〈T/δ〉

is an isomorphism for all i ∈ I.

Further, we may take special real numbers δ and η in the following way

such that the K-algebra homomorphism

ψi : Bi〈Xi/η〉
∼→ Bi〈Xi/η, T/δ〉/(si)

is an isomorphism for all i ∈ I. By Lemma 2.6, for all sufficiently small η,

the section si1 is nowhere vanishing on Di(η) for all i. Since the condition

(1) in Theorem 3.1 is satisfied, we have only to take special real numbers δ

and η such that the inequalities

sup
m≥2

∣∣∣∣∣∣
simδ

m−1

si1

∣∣∣∣∣∣
Ai

< 1

and ∣∣∣∣∣
η

si1δ

∣∣∣∣∣
Ai

< 1

hold for all i ∈ I.

By the conditions (2)–(4) in Theorem 3.1 and Theorem 3.5, the cochain

s defines a divisor E on Yδ. Let Ψ be the projection E → X. For each i ∈ I,

put Ei := Ψ
−1(Uiη). Since the restriction Ψ| Ei → Uiη corresponds to the

isomorphism ψi, the restriction is an isomorphism.

The isomorphism φi gives an open immersion Φi : Di × B(δ) → E. By

Lemma 2.6, there exists a special real number δ′ such that Di × B(δ′) is

contained in Φ−1i (Ei) for all i ∈ I. For each i ∈ I, put Wi := Ψ ◦ Φi(Di ×

B(δ′)). Then the family {Wi}i∈I is a local tubular neighborhood covering of

D. Let P be the union
⋃

i∈I Wi. Gluing the composites of the isomorphisms

(Ψ ◦ Φi)
−1|Wi → Di × B(δ′) and the second projections Di × B(δ′)→ B(δ′)
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(Proposition 1 in [1, 9.3.3]), we obtain the analytic function F : P→ B(δ′).

Therefore, the admissible open subset P is a tubular neighborhood of D. �

4. Blowing-downs of Exceptional Curves of the First Kind

In this section, we show that we can blow down exceptional curves of the

first kind on regular surfaces.

An exceptional curve of the first kind is a prime divisor D on a regular

surface X satisfying the following conditions. By C(D), we denote the field

of constant functions H0(D,OD) on D, which is a finite extension of K.

(1) The divisor D is isomorphic to a projective line over C(D).

(2) The degree of the normal bundle of D is equal to − dimK C(D).

When X is proper, by Proposition 5.3, the last condition is equivalent to that

the self-intersection number of the curve is − dimK C(D) (see Appendix). A

local calculation shows that the center of the blowing-up is an exceptional

curve of the first kind. In this section, we show the converse.

Theorem 4.1 (Castelnuove’s criterion). Let D be an exceptional curve of

the first kind on a regular surface X that admits a relatively big covering.

Then we can blow down X along D to a regular surface.

Hopf’s theorem (Theorem 2.2 in [8]) and the above theorem give a nec-

essary and sufficient condition for relative minimality.

Corollary 4.2 (criterion for relative minimality). A proper regular surface

is relatively minimal if and only if the surface does not contain any excep-

tional curves of the first kind.

Proof of Castelnuovo’s criterion. To prove the above theorem, we have only

to show that the divisor D contracts to a regular point. We choose two dis-

tinct C(D)-rational points 0 and ∞ on D. We take an admissible affinoid

open subset U and two analytic functions f and g on U satisfying the fol-

lowing conditions.

(1) The subset U contains 0.

(2) The analytic function f defines the divisor D on U.

(3) The two analytic functions f and g generate the maximal ideal of

the local ring OX,0.

Since the rigid space X is regular and the divisor D is quasi-compact, we

have a finite covering of D on whose element the restriction of the divisor D

is defined by a single analytic function. Since the rigid space X is separated,

by Lemma 2.1, the union Y of the covering elements is an admissible open

subset of X. Applying Lemma 2.6 to the intersection W of the covering

element U and another covering element V , and the restriction of defining

functions of 0 on V to W, we may assume that the single element U of the
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covering contains 0. By the same method, we may assume that the divisor

(g) dose not intersect the other covering elements. Adding two divisors D

and (g) on Y , we obtain the divisor E on Y . Since the normal bundle of the

divisor E is trivial, by Theorem 3.3, we obtain a global defining function φ

of E on a quasi-compact admissible open subset of X. Repeating the same

procedure for the point ∞, we obtain two analytic functions φ and ψ on

a quasi-compact admissible open subset W of X satisfying the following

conditions.

(1) A divisor (φ) − D intersects D at the single point 0.

(2) A divisor (ψ) − D intersects D at the single point∞.

Then the two analytic functions φ and ψ define the divisor D. We may

define a morphism π : W → B(r) × B(r) for a sufficiently large special real

number r. By Proposition 2.10 and Lemma 2.4 in [8], for a sufficiently

small special real number ǫ, the restriction of π to B(ǫ) × B(ǫ) is projective.

Chow’s theorem (Theorem 5.3) shows that the preimage of B(ǫ)×B(ǫ) under

π is the analytification of a regular Noethering scheme of pure dimension

two. Therefore, the theorem follows from Castelnuovo’s criterion for such

schemes [9, 6, p102]. �

5. Appendix: Intersection Theory

In this section, we assume that X is a proper normal surface. We give

some methods for calculating intersection numbers of divisors and line bun-

dles. Then we prove the Riemann-Roch theorem for proper smooth sur-

faces.

For two line bundles L1 and L2 on X, we define the intersection number

of L1 and L2 by the integer:

χ(OX) − χ(L
∨
1 ) − χ(L

∨
2 ) + χ(L

∨
1 ⊗ L

∨
2 ).

Let us denote this integer by L1 · L2. For divisors D1 and D2 on X, de-

fine D1 · D2 as OX(D1) · OX(D2). The following proposition is immediate

consequence of the definition.

Proposition 5.1. For any two line bundles L1 and L2, the following equal-

ities hold:

(1) L1 · OX = OX · L1 = 0;

(2) L1 · L2 = L2 · L1.

Lemma 5.2. For any effective divisor D on X and any line bundle L on X,

the following equality holds:

OX(D) · L = χ(OD) − χ(OD ⊗ L
∨).
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Proof. Since we have the sheaf exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0,

tensoring L∨, we obtain the sheaf exact sequence:

0 −→ OX(−D) ⊗ L
∨ −→ L∨ −→ OD ⊗ L

∨ −→ 0.

These sequences give the equalities

χ(OD) = χ(OX) − χ(OX(−D))

and

χ(OD ⊗ L
∨) = χ(L∨) − χ(OX(−D) ⊗ L

∨).

Subtracting the second equality from the first equality, we obtain the desired

equality. �

The fundamental calculation methods are given by the following propo-

sition.

Proposition 5.3. Let π : Dn → D be a normalization of a prime divisor

D on X. Then, for any two line bundles L1 and L2 on X, the following

equalities hold:

(1) OX(D) · L = degDn π∗L;

(2) OX(D) · L1 ⊗ L2 = OX(D) · L1 + OX(D) · L2.

Proof. The first equality follows from the previous lemma and Theorem

5.13 in [8]. Therefore, the second equality holds since the equality

degDn π
∗(L1 ⊗ L2) = degDn π

∗L1 + degDn π
∗L2

holds. �

Lemma 5.4. For any effective divisor
∑

i∈I aiDi on X and any line bundle L

on X, the following equality holds:

OX


∑

i∈I

aiDi

 · L =
∑

i∈I

aiOX(Di) · L.

Proof. By induction on
∑

i∈I ai, it suffices to show that for any effective di-

visor D1, any prime divisor D2, and any line bundle L on X, the following

equality holds:

OX(D1 + D2) · L = OX(D1) · L + OX(D2) · L.

Since we have the isomorphism

OD2
⊗ OX(−D1) � OX(−D1)/OX(−D1 − D2),

we obtain the sheaf exact sequence:

0 −→ OD2
⊗ OX(−D1) −→ OD1+D2

−→ OD1
−→ 0.
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Tensoring L∨, we obtain the exact sequence:

0 −→ OD2
⊗ OX(−D1) ⊗ L

∨ −→ OD1+D2
⊗ L∨ −→ OD1

⊗ L∨ −→ 0.

These sequences give the equalities

χ(OD1+D2
) = χ(OD1

) + χ(OD2
⊗ OX(−D1))

and

χ(OD1+D2
⊗ L∨) = χ(OD1

⊗ L∨) + χ(OD2
⊗ OX(−D1) ⊗ L

∨).

Subtracting the second equality from the first equality, we obtain the desired

equality by Lemma 5.2 and Proposition 5.3. �

By a direct calculation of intersection numbers, we obtain the following

lemma.

Lemma 5.5. For any three line bundles L1, L2, and L3 on X, the following

equations are equivalent:

(1) L1 · L2 ⊗ L3 = L1 · L2 +L1 · L3;

(2) χ(OX)−χ(L
∨
1
)−χ(L∨

2
)−χ(L∨

3
)+χ(L∨

1
⊗L∨

2
)+χ(L∨

2
⊗L∨

3
)+χ(L∨

3
⊗

L∨
1
) − χ(L∨

1
⊗ L∨

2
⊗ L∨

3
) = 0.

Lemma 5.6. Let L1, L2 and L3 be line bundles on X. Assume that one of

these line bundles is isomorphic to OX(D) where D is an effective divisor.

Then the following equality holds:

L1 · L2 ⊗ L3 = L1 · L2 +L1 · L3.

Proof. By Lemma 5.5, it suffices to show that the following equality holds:

OX(D) · L1 ⊗ L2 = OX(D) · L1 + OX(D) · L2.

This equality follows from Lemma 5.4 and Proposition 5.3. �

Proposition 5.7. Let L1, L2 and L3 be three line bundles on X. Assume

that one of these line bundles is isomorphic to OX(D) where D is a divisor.

Then the following equality holds:

L1 · L2 ⊗ L3 = L1 · L2 +L1 · L3.

Proof. By Lemma 5.5, it suffices to show that the equality

OX(D) · L1 ⊗ L2 = OX(D) · L1 + OX(D) · L2.

holds. We may write D = D1 − D2 where D1 and D2 are effective divisors.

Lemma 5.6 shows that the equalities

OX(D) · L = OX(D1) · L + OX(−D2) · L

and

0 = OX(D2) · L + OX(−D2) · L
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hold. Subtracting the second equality from the first equation, we obtain the

equality:

OX(D) · L = OX(D1) · L − OX(D2) · L.

Thus, the desired equality follows from Lemma 5.6. �

Corollary 5.8. Let D be a divisor
∑

i∈I aiDi on X. Let πi : D
n
i → Di be a

normalization of a prime divisor Di. Then, for any line bundle L on X, the

following equality holds:

OX(D) · L =
∑

i∈I

ai degDn
i
π∗iL.

Corollary 5.9. For any two divisors
∑

i∈I aiDi and
∑

j∈J b jD j, the following

equality holds:
∑

i∈I

aiDi ·
∑

j∈J

b jD j =

∑

i∈I, j∈J

aib jDi · D j.

We show that local calculations yield the intersection number of two dis-

tinct prime divisors. The local intersection number of two distinct prime di-

visors D1 and D2 at a point p on D1∩D2 is the integer dimK(OX/OX(−D1)+

OX(−D2))p. Let us denote this number by I(p,D1,D2). Since the intersec-

tion D1 ∩ D2 is a finite number of points, the sum
∑

p∈D1∩D2
I(p,D1,D2) is

finite.

Proposition 5.10. For any two distinct prime divisors D1 and D2 on X, the

following equality holds:

D1 · D2 =

∑

p∈D1∩D2

I(p,D1,D2).

Proof. Put

F := OX/OX(−D1) + OX(−D2).

By definition, the equality

χ(F ) =
∑

p∈D1∩D2

I(p,D1,D2)

holds. Since we have the exact sequence

0 −→ OX(−D1 − D2) −→ OX(−D1) ⊕ OX(−D2) −→ OX −→ F −→ 0,

we obtain the equality:

χ(F ) = χ(OX) − χ(OX(−D1)) − χ(OX(−D2)) + χ(OX(−D1 − D2)).

Since the right side of the above equality is equal to D1 · D2, we obtain the

desired equality. �
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The line bundle Ω2
Y of regular two-forms on a smooth surface Y is called

the canonical line bundle on Y . Let us denote this line bundle by KY . We

prove the Riemann-Roch theorem for proper smooth surfaces.

Theorem 5.11 (Riemann-Roch theorem for proper smooth surfaces). As-

sume that X is smooth. For any line bundle L on X, the following equality

holds:

χ(L) =
L · K∨

X − L · L∨

2
+ χ(OX).

Proof. The Serre duality theorem (Theorem in [11, 5.1]) gives the equality:

L · K∨
X = χ(L) − χ(L

∨).

Adding the above equality to the equality

−L · L∨
= χ(L) + χ(L∨) − 2χ(OX),

we obtain the desired equality. �
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