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1. Introduction

The main purpose of the present paper is to give the existence theorem of

relatively minimal regular models of proper regular rigid analytic surfaces.

We study bimeromorphic morphisms between quasi-compact regular rigid

analytic surfaces. Then we calculate certain cohomology groups to show

the existence of relatively minimal regular models. We also study minimal

models of fibered surfaces.

We show that any bimeromorphic morphism between quasi-compact reg-

ular rigid analytic surfaces is a finite succession of blowing-downs. Hopf

proved the corresponding theorem in the case of compact smooth complex

analytic surfaces in [10]. Ueno stated the theorem in the case of proper

smooth rigid analytic surfaces without proof in [23].

We give two proofs of the theorem. The first proof is similar to Hopf’s.

The second proof is based on the fact that we may algebraize bimeromor-

phic morphisms locally.

This work was supported by Grant-in-Aid for JSPS Fellows (21-1111).
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We explain the details of the second proof. First, since any proper rigid

analytic space of dimension one is projective (see Appendix), extending a

relatively ample divisor, we may algebraize any bimeromorphic morphism

over a sufficiently small neighborhood of any fundamental point. Then, to

conclude the proof of the theorem, we use Köpf’s relative GAGA theorems

in [15] and Shafarevich’s study of birational transformations between two-

dimensional Noetherian schemes in [21].

Notations and Conventions. We fix a complete non-Archimedean valu-

ation field K with a non-trivial valuation and assume that rigid analytic

spaces are defined over K. Wemainly use the terminologies and notations of

[4]. However, we make a modification of the definition of smoothness. Let

X be a rigid analytic space. When the local ring OX,x is regular for all x ∈ X,

we say that the rigid analytic space X is regular. When the base change

X ×K K′ for any extension K′/K of complete valuation fields is regular, we

say that the rigid analytic space X is smooth (or geometrically regular). If

the base field K is perfect, then regularity is equivalent to smoothness (see

[12]).

The dimension of a rigid analytic space X is the supremum of the Krull

dimension of the local ring OX,x for all x ∈ X. When the Krull dimension

is constant for all x ∈ X, we say that the rigid analytic space X is of pure

dimension.

Let us denote the residue field at a point x on a rigid analytic space by

K(x), which is a finite extension of K. We set a complete valuation on K(x)

which is the unique extension of that on K.

We call the absolute value of a non-zero element of K raised to a rational

number power a special real number. We denote the set of all special real

numbers by
√
|K×|.

Acknowledgment. The author thanks Kenji Ueno for support and sugges-

tions, and Fumiharu Kato for support.

2. BimeromorphicMorphisms

2.1. Blowing-ups and Blowing-downs. A proper surjective morphism φ : X →
Y of rigid analytic spaces is called a bimeromorphic morphism if there exist

analytic subsets S and T of X and Y of codimension at least one respec-

tively such that the restriction φ| X − S → Y − T is an isomorphism. Note

that Corollary 7 in [4, 9.1.4] implies that the subsets X − S and Y − T are

admissible open subsets.

A surface is a reduced separated rigid analytic space of pure dimension

two. Let φ : X → Y be a bimeromorphic morphism between quasi-compact

surfaces with the analytic subsets S and T in the above definition. Then the

analytic subset S is the union of a finite number of points and proper curves.
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By Proposition 4.6 in [3], the fiber φ−1(y) is a point or a proper connected
curve for each y ∈ Y . By the same proposition, we may assume that the

analytic subset T is a finite number of points and that the analytic subset S

is equal to the preimage φ−1(T ). We call an element y of T a fundamental

point for φ and the curve φ−1(y) an exceptional curve for φ.
Conrad defined and studied blowing-ups of rigid analytic spaces in [7,

4.1] (see also [20] for algebraically closed base field cases). The blowing-

ups provide examples of bimeromorphic morphisms since the blowing-ups

are proper (Corollary 2.3.9 in [7]). Any blowing-up on an affinoid space is

isomorphic to the analytification of the algebraic one. We only treat regular

surfaces and their blowing-ups at a point. Let π : X̃ → X be the blowing-up

of a regular surface X at a point p. Then the resulting surface is also regular.

In this case, we say that the morphism π is the blowing-down of X̃ along the

divisor π−1(p). The following extension theorem shows the uniqueness of

such contractions of divisors.

Theorem 2.1 (extension theorem). Let T be a nowhere dense analytic sub-

set of a normal rigid analytic space Y. Assume that a morphism f : Y−T →
Z of rigid analytic spaces satisfies the following condition: There exists an

admissible covering {Ui}i∈I of Y such that each image f (Ui−T ) is contained
in an admissible affinoid open subset of Z. Then there exists a unique mor-

phism g : Y → Z such that the restriction g|Y − T → Z is equal to f .

Proof. First, we assume that the rigid analytic spaces Y and Z are affinoid

spaces Sp A and Sp B respectively. Applying the Riemann extension theo-

rem to the pull-backs of the analytic functions on Sp B under f ([2, §3]),
we obtain the unique K-algebra homomorphism B → A. The uniqueness

follows from the uniqueness in the Riemann extension theorem. Therefore,

we obtain the desired morphism g : Sp A → Sp B. The construction of g

is compatible with the restriction of Sp A to any admissible affinoid open

subset. Thus, by assumption, the general case follows from Proposition 1

in [4, 9.3.3]. �

In the following subsections, we prove the following theorem.

Theorem 2.2 (Hopf’s theorem). Any bimeromorphic morphism between

quasi-compact regular surfaces is a finite succession of blowing-downs.

2.2. Analytic Approach. In this subsection, we prove Hopf’s theorem via

an analytic approach.

We prove Hopf’s theorem by induction on the number of the irreducible

components of the union of all the exceptional curves. Let y be one of

the fundamental points for a bimeromorphic morphism φ : X → Y . We

take an admissible affinoid open subset V and two analytic functions f ′ and
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g′ on V that generates the maximal ideal of the local ring OY,y. We may

assume that the subset V does not contain the other fundamental points. Put

U := φ−1(V). Since any proper morphism is quasi-compact, the admissible

open subset U is quasi-compact. Put f := φ∗ f ′ and g := φ∗g′.

Claim. The principal divisors ( f ) and (g) are given by C + E and D + F

respectively where the divisors C, D, E, and F satisfy the following condi-

tions.

(1) The divisors C and D are prime divisors that are not contained in

φ−1(y).
(2) The supports of the divisors E and F equal φ−1(y).

Proof. Since the restriction φ|U − φ−1(y)→ V − {y} is an isomorphism, the
claim follows from Corollary 2.2.9 in [5]. �

Claim. Choosing suitable analytic functions f ′ and g′, we may assume that
the divisor E equals F in the above claim.

Proof. Since the admissible open subset U is quasi-compact, by Theorem

5.9, we have a finite locally principal covering of U for all prime divisors

that appear in the finite sum ( f ) or (g). Then the above claim follows from

the following lemma. �

Lemma 2.3. Let I be an ideal of an affinoid algebra A. Let f and g be two

elements of A. Assume that at least one of the two elements is not contained

in I. Then there exists a positive real number ǫ satisfying the following

condition. For all two non-zero elements α and β of K whose absolute

values are less than ǫ, neither f + αg nor β f + g is contained in I.

Proof. Let ψ : B(1)2 → A2 be the continuous map defined by ψ(s, t) = ( f +

sg, t f + g). If the ideal I contains f or g, then the condition is fulfilled

on an open neighborhood of (0, 0) minus {s = 0} or {t = 0} respectively.
Therefore, there exists a desired positive real number ǫ in this case. Assume

that the ideal I contains neither f nor g. By Proposition 2 in [4, 3.7.2],

the subset I × A ∪ A × I of A2 is closed. Therefore, the complement of

ψ−1(I ×A∪A× I) is an open neighborhood of (0, 0). This proves the second

case. �

Claim. The ratio ( f : g) defines a morphism from U to P1V over V .

Proof. We have only to show that the two divisors C and D do not intersect.

Suppose that these two divisors intersected. Let p be one of the intersec-

tions. Then the point p is contained in φ−1(y).
Let π : Dn → D be the normalization of D. The restriction φ ◦ π|Dn −

(φ◦π)−1(y)→ {g′ = 0} − {y} is an isomorphism. Since the normalization Dn

is separated, there exists a finite family {Wq}q∈π−1(p) of disjoint admissible



MINIMAL MODELS OF RIGID ANALYTIC SURFACES 5

affinoid open subsets of Dn such that each elementWq contains q. PutW :=⋃
q∈π−1(p)Wq and h := π∗ f . Taking an admissible affinoid covering of Dn

and applying Lemma 2.3 in [14], we obtain a special real number ǫ such

that the admissible affinoid open subset {z ∈ Dn | |h| ≤ ǫ} is contained in
W. Put G := {x ∈ X | | f ′| ≤ ǫ, g′ = 0}. Then the preimage of G under

φ is an admissible affinoid open subset of Dn. Thus, Theorem 2.1 shows

that the rigid spaceG is isomorphic to an admissible affinoid open subset of

Dn. Therefore, the pull-back h is a parameter at the point π−1(p) while the
analytic function π∗g vanishes.
We may make the same argument with respect to C. The two results

show that the two analytic functions f and g generate the maximal ideal

of the local ring OX,p This contradicts the assumption that the point y is a

fundamental point for φ. �

Let π : Ỹ → Y be the blowing-up of Y at the point y. The above claim

enables us to define the morphism φ̃ : X → Ỹ of rigid analytic spaces such

that φ = π ◦ φ̃. Then the number of the irreducible components of the union
of all the exceptional curves for φ̃ is less than that for φ. Therefore, Hopf’s

theorem follows by induction on this number.

2.3. Algebraic Approach. In this subsection, we prove Hopf’s theorem by

an algebraic approach. To algebraize bimeromorphic morphisms locally, we

prepare the following lemma.

Lemma 2.4. Let π : X → Y be a proper morphism of rigid analytic spaces.

Assume that the fiber at a point p on Y is of dimension at most one. Then

there exists an admissible open subset U of Y that contains p such that the

base change π ×Y U : X ×Y U → U is projective.

Proof. Put Xp := π−1(p). By Theorem 5.12, the fiber Xp is a projective

curve over K(p). By Proposition 7.1.32 in [17], we have an effective ample

Cartier divisor
∑

i∈I aiDi on Xp.

We fix i ∈ I. Since the morphism π is proper, there exists two admissible

affinoid open subsets P and Q of the preimage of an admissible affinoid

open subset V of Y under π such that the relations Di ∈ P and P ⋐V Q hold.

Since the affinoid open subset Q does not contain the whole fiber Xp, there

exists an effective Cartier divisor E on Xp whose support is not contained in

Q. Then, by Corollary 7.3.23 in [17], there exist a meromorphic function f

on Xp and a positive integer b such that the inequality ( f ) ≥ Di − bE holds.

We may assume that the admissible affinoid open subset P is given by

{x ∈ Q | |g1(x)| ≤ ǫ, . . . , |gn(x)| ≤ ǫ} where the family {g1, . . . , gn} is an
affinoid generating family of Q over V and ǫ is a special real number that is

less than one. Put R :=
⋃

j=1,...,n Q〈g1/ǫ, . . . , gn/ǫ, ǫ/g j〉. Replacing ǫ with
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a larger special real number, we may assume that the restriction of R to Xp

dose not contain the support of ( f ).

We choose an analytic function h on Q whose restriction to the analytic

subset Q ∩ Xp is equal to the restriction of f to it. Then the relations Xp ∩
R ⊂ R − {h = 0} ⊂ R hold. Applying Lemma 1.1 in [14], we obtain a

connected admissible affinoid open subsetWi of V that contains p such that

the restriction {h = 0} ∩ π−1(Wi) is contained in (Q − R)∩ π−1(W). Then we

obtain the Cartier divisor π−1(Wi) ∩ P ∩ {h = 0} on Q. Thus, by Lemma 1.1

in [24], we obtain the Cartier divisor Fi on π
−1(Wi), whose restriction to Xp

is greater than Di.

Repeating the same procedure for each i ∈ I, we obtain the intersection

W ′ of the admissible open subsetsWi and the sum F′ of the restriction of the
Cartier divisors Fi to π

−1(W ′). By Proposition 7.5.5 in [17], the restriction
of the Cartier divisor F′ to Xp is ample. Applying Theorem 3.2.9 in [7] to

the line bundle defined by the Cartier divisor F′, we conclude the proof of
the lemma. �

Proof of Hopf’s theorem. Let φ : X → Y be a bimeromorphic morphism be-

tween quasi-compact regular rigid analytic spaces of pure dimension two.

Since the statement is local with respect to Y , we may assume that the mor-

phism φ has a single fundamental point y.

By the above lemma and Chow’s theorem (Theorem 5.3), we may al-

gebraize the bimeromorphic morphism φ over an admissible affinoid open

subset which contains y. Therefore, the theorem follows from the Hopf’s

theorem for two-dimensional Noetherian regular schemes ([21, 4, p.55]).

�

3. MinimalModels

A relatively minimal regular surface (resp. relatively minimal smooth

surface) is a proper regular surface X (resp. proper smooth surface) such

that any bimeromorphic morphism from X to a proper regular surface (resp.

proper smooth surface) is an isomorphism. A relatively minimal regular

model (resp. relatively minimal model) of a proper regular surface X (resp.

proper smooth surface) is a relatively minimal regular surface Y (resp. rel-

atively minimal surface) such that there exists a bimeromorphic morphism

from X to Y .

To show the existence of relatively minimal regular models and relatively

minimal models, we prove the following proposition.

Proposition 3.1. Let π : X̃ → X be the blowing-up of a proper regular

surface X at a point p. Then the inequality

dimK H1(X̃,Ω1

X̃
) > dimK H1(X,Ω1

X)
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holds. For any line bundle L, the equality
dimK Hq(X̃, π∗L) = dimK Hq(X,L)

holds for all q.

Proof. We take an admissible affinoid open subset U of Y such that two

analytic functions on U generate the maximal ideal of the local ring OY,p.

Then the assertion follows from the Mayer-Vietoris sequence (Proposition

5.6) and the local calculation in [21, 5, pp.59–65]. �

Proposition 3.1 and Hopf’s theorem (Theorem 2.2) show the existence of

relatively minimal regular models and relatively minimal models.

Theorem 3.2 (existence of relatively minimal regular models). Any proper

regular surface admits a relatively minimal regular model.

Theorem 3.3 (existence of relatively minimal models). Any proper smooth

surface admits a relatively minimal model.

4. MinimalModels of Fibered Surfaces

A (regular) fibered surface with fibers of arithmetic genus g (over a reg-

ular curve) is a triple (X, S , π) where X is a regular surface, S is a regular

curve, and π is a proper flat morphism from X to S satisfying the following

condition. There exists a nowhere dense analytic subset S 0 of S such that

for all p ∈ S − S 0, the fiber π
−1(p) is an irreducible curve of arithmetic

genus g over K(p).

Remark. The flatness of the morphism π is equivalent to the surjectivity of

the morphism π.

We define algebraic fibered surfaces over algebraic regular curves in the

same way. An (algebraic) fibered surface (X, S , π) is said to be smoothly

fibered if the projection π is smooth. An (algebraic) fibered surface (X, S , π)

is said to be proper if the total space X and the base space S are proper.

A relatively minimal fibered surface is a fibered surface (X, S , π) satisfy-

ing the following condition. For any fibered surface (Y, S , ρ), any bimero-

morphic morphism from X to Y over S is an isomorphism. A relatively

minimal model of a fibered surface (X, S , π) is a relatively minimal fibered

surface (Y, ρ, S ) with a bimeromorphic morphism from X to Y over S . If

all the relatively minimal models of X are isomorphic to Y over S , we call

each relatively minimal model the minimal model of X over S or the mini-

mal fibered surface. A prime divisor E on a fibered surface (X, S , π) is said

to be exceptional if there exists a fibered surface (Y, S , ρ) and a bimeromor-

phic morphism β : X → Y over S satisfying the following conditions.

(1) The restriction β|X−E is an isomorphism.
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(2) The image β(E) is a point on Y .

We also define algebraic (relatively) minimal fibered surfaces in the same

way except for replacing bimeromorphic morphisms by proper birational

morphisms.

Theorem 4.1 (Castelnuovo’s criterion). A prime divisor E on a fibered sur-

face (X, S , π) is exceptional if and only if the following conditions are satis-

fied.

(1) The divisor E is contained in a fiber at a point on S .

(2) The cohomology group H1(E,OE) vanishes.

(3) The degree of the normal bundleOX(E)|E of E is equal to − dimK C(E).

In this case, the divisor E is isomorphic to the projective line over C(E).

Proof. For any bimeromorphic morphism φ : X → Y over S between fibered

surfaces, the image of exceptional curves of φ under π is a nowhere dense

analytic subset of S . Therefore, Lemma 2.4, Chow’s theorem (Theorem

5.3), and the GAGA theorems (see [15]) enable us to use algebraic results.

Thus, the theorem follows from the algebraic Castelnuovo’s criterion (The-

orem 9.3.8 in [17], [21, 6, p.102], Theorem 3.10 in [16]). �

Lemma 4.2. An algebraic fibered surface over an affinoid algebra is mini-

mal if and only if its analytification is minimal.

Proof. We have only to show the only if part. We assume that the analyti-

fication is not minimal. Then Hopf’s theorem (Theorem 2.2) and Castel-

nuovo’s criterion (Theorem 4.1) show that the analytification contains an

exceptional divisor. Thus, the lemma follows from the GAGA theorems

and the algebraic Castelnuovo’s criterion. �

The following lemma shows that the analytification commutes with base

change.

Lemma 4.3. Let Y be a locally of finite type scheme over an affinoid alge-

bra A. Then, for a K-algebra homomorphism A → B of affinoid algebras,

there exists a canonical isomorphism

Yan ×Sp A Sp B
∼→ (Y ×Spec A Spec B)

an

where Yan is the analytification of A-scheme Y and (Y ×Spec A Spec B)
an is

the analytification of B-scheme Y ×Spec A Spec B.

Proof. We can prove this lemma by the same method as in the proof of Satz

1.9 in [15]. �

Lemma 4.4. The image of any flat morphism of affinoid spaces is a finite

union of affinoid subdomains.
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Proof. This lemma is shown in [19, 3.4.8] (see also Proposition 3.1.7 1 in

[8]). �

A morphism ρ : Y → T is said to be locally projective if there exists an

admissible covering {Ui}i∈I of T such that each base change ρ ×T Ui : Y ×T

Ui → Ui is projective.

Lemma 4.5. For any proper flat surjective morphism ρ : Y → T to a reg-

ular curve with fibers of dimension at most one, there exist two morphisms

α1 : T1 → T and α12 : T2 → T1 satisfying the following conditions.

(1) The morphism α1 is an admissible affinoid covering.

(2) The morphism α12 is étale quasi-compact, and surjective.

(3) The base change ρ ×T T2 is locally projective.

Proof. This lemma is a special case of Theorem 2.1.4 in [6]. �

Lemma 4.6. For any fibered surface π : X → S and any étale morphism

α : T → S , the base change π ×S T : X ×S T → T is also a fibered surface.

Moreover, if the arithmetic genus of the fibers of π is at least one and the

morphism α is surjective, the fibered surface X is minimal if and only if the

base change π ×S T : X ×S T → T is minimal.

Proof. Since the morphism α is étale, by (21.D) Theorem 51 in [18], the

base space T and the fiber product X ×S T are regular. This implies the first

statement.

We show the second statement. By Castelnuovo’s criterion (Theorem

4.1) and Lemma 4.4, it suffices to show the case when the base spaces S

and T are affinoid spaces. Moreover, by Lemma 2.4, we may assume that

the projection π is projective. By Chow’s theorem (Theorem 5.3), Lemma

4.3, and Lemma 4.2, the second statement follows from Proposition 9.3.28

in [17]. �

Theorem 4.7 (existence of minimal models). Any fibered surface with fibers

of arithmetic genus at least one over a quasi-compact regular curve admits

a minimal model.

Proof. The last two lemmas and Theorem 9.3.21 in [17] show that the image

of the exceptional divisors is a finite number of points. Thus, Castelnuovo’s

criterion (Theorem 4.1) implies that there exists a relatively minimal model

of the fiberd surface. Lemma 2.4 and Corollary 9.3.24 in [17] show that the

relatively minimal model is a minimal model of the fiberd surface. �

5. Appendix

5.1. Coherent Algebras and Finite Rigid Analytic Spaces. In this sub-

section, we study coherentOX-algebras on a rigid analytic space X and finite
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rigid analytic spaces over X. By CohAlg(X) we denote the category of co-

herent OX-algebras on a rigid analytic space X. By Fin(X) we denote the

category of finite rigid analytic spaces over X. We prove that the category

CohAlg(X) is equivalent to the category Fin(X). Then we prove that we can

algebraize finite rigid analytic spaces over a projective rigid analytic space

over an affinoid space.

First, recall that for any K-homomorphism A → B between affinoid al-

gebras and any finite A-module M, the completion tensor product M ⊗̂A B is

isomorphic to a finite B-module M⊗AB (Proposition 6 in [4, 3.7.3]). There-

fore, for an arbitrary morphism f : X → Y of rigid analytic spaces and an

arbitrary coherent OY-module F , we may define the pull-back f ∗F of F
under f , which is a coherent OX-module. In particular, we obtain a functor

µXY : CohAlg(Y) → CohAlg(X). We also obtain a functor νXY : Fin(Y) →
Fin(X) by the base change of finite rigid analytic spaces over X via f .

By local calculation, we obtain the projection formula.

Proposition 5.1 (projection formula). Let π : X → Y be a finite morphism

of rigid analytic spaces. Then, for any coherent OX-module F and any co-

herentOY-moduleG, there exists a canonical isomorphism π∗(F ⊗OX
π∗G) �

π∗F ⊗OY
G.

For a finite rigid analytic space X′ over X, the push-forward of the struc-
ture sheaf of X′ is a coherent OX-algebra (Proposition 5 in [4, 9.4.2]). This

gives a functor φX : Fin(X)→ CohAlg(X). Since any finite algebra over an

affinoid algebra is an affinoid algebra (Proposition 5 in [4, 6.1.1]), from a

coherent OX-algebra we obtain a finite rigid analytic space over X by past-

ing spaces and morphisms (Proposition 1 in [4, 9.3.2] and Proposition 1 in

[4, 9.3.3]). This gives a functor ψX : CohAlg(X) → Fin(X). Then we have

a following theorem.

Theorem 5.2. For an arbitrary rigid analytic space X, the functors φX and

ψX give an equivalence of the category of coherentOX-algebras and the cat-

egory of finite rigid analytic spaces over X. The equivalence commutes with

base change in the following sense. For an arbitrary morphism f : X → Y

of rigid analytic spaces, the diagram

CohAlg(Y)
∼

µXY

��

Fin(Y)

νXY

��

CohAlg(X)
∼
Fin(X)

is commutative.

In the rest of this subsection, we prove that we can algebraize finite rigid

spaces over a projective rigid analytic space over an affinoid space. We fix
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an affinoid algebra A. Köpf gave the analytification functor from the cate-

gory of locally of finite type schemes over an affine scheme Spec A to the

category of rigid analytic spaces over an affinoid space Sp A in [15, §1].
Let us denote each analytification of a locally of finite type scheme X over

Spec A, a morphism f over Spec A between such schemes, and a coher-

ent OX-module F by Xan, f an, and F an respectively. When the morphism

f : X → Y is proper, we have the isomorphism

(q) (Rq f∗F )an � Rq f an∗ F an

for any coherentOX-moduleF and all q (Folgerung 3.13 in [15]). First, note

that the following analogue of Chow’s theorem follows from the GAGA

theorems (Satz 5.1 in [15], Satz 4.11 in [15]).

Theorem 5.3 (Chow’s theorem). The analytification functor gives an equiv-

alence between the category of projective schemes over an affine scheme

Spec A, where A is an affinoid algebra, and the category of projective rigid

analytic spaces over an affinoid space Sp A.

By Fin(X) we denote the category of finite schemes over a scheme X.
Theorem 5.4. For any projective scheme X over an affinoid algebra, the

analytification functor yields an equivalence between the category Fin(X)
and the category Fin(Xan). In particular, any finite rigid analytic space over

a projective rigid analytic space over an affinoid space is projective.

Proof. Let F be the composite of functors

Fin(X) ∼→ CohAlg(X) ∼→ CohAlg(Xan) ∼→ Fin(Xan),

where the second analytification functor gives an equivalence by the GAGA

theorems. We have only to show that there exists a natural transformation

from the functor F to the analytification functor of finite schemes over X.
This follows from Theorem 5.2 and the above isomorphism (0). The last

statement follows from Corollaire 6.1.11 in [9]. �

5.2. Cohomology Groups. We review the theory of cohomology groups

and giveMayer-Vietoris sequences of cohomology groups of abelian sheaves.

First, we review some facts of cohomology groups of abelian sheaves on

rigid analytic spaces. The category of abelian sheaves on a rigid analytic

space is enough injective (see [25]). For a quasi-separated paracompact

rigid analytic space, Čech cohomology agrees with cohomology (Lemma

2.5.7 in [8] and Remark 2.5.5 in [8]). If a quasi-separated paracompact rigid

analytic space is of pure dimension d, then the q-th cohomology group of

any abelian sheaf vanishes for q > d (Corollary 2.5.10 in [8]). The q-th co-

homology group of any coherent module on an affinoid space vanishes for

q > 0 (Theorem 8,7 in [22], Satz 2.4 in [13]). Therefore, using Leray-Cartan
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spectral sequence (Corollaire 3.3 [1]) with respect to an admissible affinoid

covering, we can calculate cohomology groups of any coherent module on

a separated paracompact rigid analytic space. The q-th cohomology groups

of any OX-coherent module F on a proper rigid analytic space X is a finite

dimensional K-vector space (Theorem 3.3 in [11]). Let us denote the di-

mension of this K-vector space by hq(F ). In this case, we define the Euler
characteristic χ(F ) of F in the following way:

χ(F ) :=
∞∑

q=0

(−1)q dimK Hq(X,F ).

Since the pull-back of an admissible affinoid covering by a finite morphism

is again an admissible affinoid covering (Proposition 1 in [4, 9.4.4]), we

have the following proposition.

Proposition 5.5. Let π : X → Y be a finite morphism between separated

paracompact rigid analytic spaces X and Y. Then, for a coherent OX-

module F , there exists an isomorphism

Hq(X,F ) � Hq(Y, π∗F )
for all q ≥ 0. In particular, if the rigid analytic spaces X and Y are proper,

then the equality χ(F ) = χ(π∗F ) holds.
Proposition 5.6 (Mayer-Vietoris sequence). Let {U1,U2} be an admissible

covering of an admissible open subset of a rigid analytic space X. Then,

for any abelian sheaf F , there exists a canonical exact sequence:

0 −→ H0(U1 ∪ U2,F |U1∪U2
) −→ H0(U1,F |U1

) ⊕ H0(U2,F |U2
) −→

−→ H0(U1 ∩ U2,F |U1∩U2
) −→ H1(U1 ∪ U2,F |U1∪U2

) −→ · · · .
Proof. We use geometric points on rigid analytic spaces (see [25]). Let

ı0 : U1 ∪ U2 → X, ı1 : U1 → X, ı2 : U2 → X, and ı3 : U1 ∩ U2 → X be the

inclusion morphisms. Theorem 1 in [25, 4] implies that the sheaf sequence

0 −→ ı0!(F |U1∪U2
) −→ ı1!(F |U1

) ⊕ ı2!(F |U2
) −→ ı3!(F |U1∩U2

) −→ 0.

is exact. Therefore, we obtain the long exact sequence:

0 −→ H0(X, ı0!(F |U1∪U2
)) −→ H0(X, ı1!(F |U1

)) ⊕ H0(X, ı2!(F |U2
)) −→

−→ H0(X, ı3!(F |U1∩U2
)) −→ H1(X, ı0!(F |U1∪U2

)) −→ · · · .
Let G be an abelian sheaf on an admissible open subset U of X. Let ı : U →
X be the inclusion morphism. For any geometric point x on X, we have the

isomorphism:

ı!Gx �


Gx, x ∈ U,

0, otherwise.
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Therefore, if a sheaf sequence G → I• is the canonical injective resolution,
so is the extension ı!G → ı!I• of the sheaf sequence. Thus, we obtain the
isomorphism

Hq(U,G) � Hq(X, ı!G)
for all q. This proves the proposition. �

For a rigid analytic space X, by O×
X we denote the abelian sheaf of units

in the sheaf of the ring OX. Then there exists a canonical isomorphism

Pic X � H1(X,O×
X).

Lemma 5.7. LetI be a coherentOX-ideal on a paracompact quasi-separated

rigid analytic space X. Assume that I2 = 0. Put X0 := (X,OX/I). Let

π : X0 → X be the natural closed immersion. Then the sheaf sequence

0 −→ I −→ O×
X −→ π−1O×

X0
−→ 0

is exact where, on an admissible affinoid open subset U of X, the morphism

I → O×
X is given by a 7→ 1 + a and the the morphism O×

X → π−1O×
X0

is

induced by the natural projection OX(U) → OX(U)/I(U). Therefore, we

obtain the long exact sequence:

· · · −→ H1(X,I) −→ Pic X −→ Pic X0 −→ H2(X,I) −→ · · · .
In particular, if the rigid analytic space X is of dimension one, the morphism

π∗ : Pic X → Pic X0 is surjective.

Proof. Since the sheaf sequence is exact on any affinoid open subset, it is

exact at any geometric point on X. Therefore, the sheaf sequence is exact.

�

5.3. Weil Divisors and Cartier Divisors. We define Weil divisors and

Cartier divisors on normal rigid analytic spaces. Then we prove that these

are the same notion on regular rigid analytic spaces.

We refer to [3] and [5] for the definition and fundamental results of Weil

divisors on normal rigid analytic spaces. We refer to [3] for these of mero-

morphic functions on rigid analytic spaces. Let us denote the sheaf of mero-

morphic functions on a rigid space X by MX. A Cartier divisor on X is

a global section of the abelian sheaf M×
X/O×

X. The Cartier divisor class

group of X is the quotient group Γ(X,M×
X/O×

X)/Γ(X,M×
X). Let us denote

this abelian group by CaCl(X). The long exact sequence induced by the

sheaf exact sequence

0 −→ O×
X −→M×

X −→M×
X/O×

X −→ 0

gives the injective group homomorphism CaCl(X)→ Pic(X),D 7→ OX(D).

We may represent a Cartier divisor by the family {(Ui, fi)}i∈I where the
family {Ui}i∈I is an admissible covering of X and fi is an element ofM×

X(Ui).
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The meromorphic function fi is called a defining function of D on Ui. The

Cartier divisor D is said to be effective if the Cartier divisor D is represented

by the family {(Ui, fi)}i∈I where each meromorphic function fi is an analytic

function onUi. An effective Cartier divisor defines the closed subspace. We

sometimes identify the closed subspace with the Carier divisor.

When the rigid space X is normal, we may describe Cartier divisors in

the following way. Note that we may restrict Weil divisors to an arbitrary

admissible open subset. A locally principal covering for a Weil divisor D

on a normal rigid analytic space X is an admissible covering {Ui}i∈I of X
such that the restriction of D|Ui

is a principal divisor ( fi) on Ui. Then a

Cartier divisor on X is a Weil divisor on X that admits a locally principal

covering. Note that we may assume that a locally principal covering is an

admissible affinoid covering if exists.

Lemma 5.8. A prime Weil divisor D on a regular affinoid space Sp A admits

a finite locally principal Zariski covering.

Proof. Let I be the ideal of A corresponding to D. We take a point x on

Sp A. Let m be the corresponding maximal ideal. Then the localization Am
is a unique factorization domain since it is a regular local ring. Therefore,

we may write Im = fxAm where fx ∈ Am. Let Ux be the subset of Sp A that

is the complement of the support of the divisor D − ( fx). By Corollary 7 in

[4, 9.1.4], the subset Ux is an admissible open subset of Sp A. We take such

an admissible open subset for each point x on Sp A. Since the admissible

open subset Ux contains x, the family {Ux}x∈Sp A is a Zariski covering of

Sp A. We take a finite subcoveringU of this covering. By Corollary 7 in [4,

9.1.4], the coveringU is an admissible covering of Sp A. Since the equality

D|Ux
= ( fx) holds, the coveringU is locally principal for D. �

The above lemma implies the global case.

Theorem 5.9. All Weil divisors on a regular rigid analytic space X are

Cartier divisors on X.

5.4. Proper Rigid Analytic Spaces of Dimension One. A curve is a re-

duced separated rigid analytic space of pure dimension one. In this section,

we assume that C is a proper curve. We prove the Riemann-Roch theo-

rem for proper curves. Using this theorem, we show that any proper rigid

analytic space of dimension one is projective.

Since any affinoid algebra is excellent (see [5, 1.1]), the singular locus

of quasi-compact curve is the union of a finite number of points. A regular

divisor on a proper curve is a formal finite sum of regular points. A prime

regular divisor is a divisor which is defined by a single regular point. The

degree of a regular divisor
∑

P aPP is the sum
∑

P aP dimK K(P). Let us
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denote this integer by degC D. Since we may regard a regular divisor as a

Cartier divisor, a regualr divisor D on C defines the line bundle on C. Let

us denote this line bundle by OC(D).

To calculate the dimensions of cohomology groups of line bundles, let us

show the following lemma.

Lemma 5.10. Let P be a prime regular divisor on a proper curve C. Then,

for any line bundle L, the following inequalities and equality hold:

(1) 0 ≤ h0(L ⊗ OC(P)) − h0(L) ≤ dimK K(P);

(2) 0 ≤ h1(L) − h1(L ⊗ OC(P)) ≤ dimK K(P);

(3) χ(L ⊗ OC(P)) = χ(L) + dimK K(P).

Proof. We define the coherent OC-module F by the following sheaf exact

sequence:

0 −→ OC(−P) −→ OC −→ F −→ 0.

Tensoring the line bundle L, since the support of cokernel F is the point P,

we obtain the sheaf exact sequence:

0 −→ L −→ L ⊗ OC(P) −→ F −→ 0.

Since, by Proposition 5.5, the equality

hi(C,F ) =

dimK K(P), i = 0,

0, i ≥ 1

holds, the lemma follows from the long exact sequence induced by the

above exact sequence. �

Theorem 5.11 (Riemann-Roch theorem for proper curves (the first form)).

For any regular divisor D on a proper curve C, the equality

χ(OC(D)) = χ(OC) + degC D

holds.

Proof. We write D =
∑

P aPP. By induction on |
∑

P aP|, the theorem follows

from the equality of Lemma 5.10. �

Theorem 5.12. Any proper rigid analytic space of dimension one is projec-

tive.

Remark. If the base field K is separably closed, the theorem follows from

Theorem 2.1.4 in [6].

Proof. It suffices to show that any proper rigid analytic space of pure di-

mension one is projective. Moreover, by Lemma 5.7 and Corollary 3.1.6

[7], we have only to show that any proper curve is projective. Let
⋃

i∈I Ci be

the irreducible decomposition of a proper curve C. Choose a regular point
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Pi on each Ci. By Lemma 5.10 and Theorem 5.11, there exists a positive

integer ni such that the line bundle OC(niPi) admits a section that is not a

section of OC((ni − 1)Pi). The section gives the meromorphic function fi,

which is analytic except for the pole at the point Pi. Let f be the summation

of all the meromorphic functions fi. Then the restriction of f to each Ci is

non-constant. The meromorphic function f gives the morphism φ : C → P1K
of rigid analytic spaces.

Proposition 4 in [4, 9.6.2] and the following sentences show that the mor-

phism φ is proper. Therefore, the proper mapping theorem (Proposition 3

in [4, 9.6.3]) shows that the image φ(C) is an analytic subset of P1K . We put

the reduced structure on φ(C). Since the morphism φ is proper, we have the

Stein factorization µ ◦ λ : C → S → φ(C) (Proposition 5 in [4, 9.6.3]). By

Lemma 4 in [4, 9.6.3], the morphism λ is surjective and for any point s on

S , the preimage λ−1(s) is a connected analytic subset of C. If the preimage
λ−1(s) is not a point, then the meromorphic function f is constant on a ir-

reducible component of C. This is absurd. Therefore, the preimage λ−1(s)
is a point on C. Thus, Lemma 4 in [4, 9.6.4] shows that the morphism λ is

an isomorphism. Since the morphism µ is finite, Theorem 5.4 implies that

the rigid analytic space S is projective. Therefore, the proper curve C is

projective. �

Theorem 5.13 (Riemann-Roch theorem for proper curves (the second form)).

Let π : Cn → C be the normalization of a proper curve C. For any line bun-

dle L on C, the equality

χ(L) = χ(OC) + degCn π
∗L

holds.

Proof. We define a coherent OC-module F by the following sheaf exact

sequence:

0 −→ OC −→ π∗OCn −→ F −→ 0.

Since the singular locus of each Ui is a finite number of points, the support

of F is a finite number of points. Then, tensoring L, we obtain the sheaf
exact sequence:

0 −→ L −→ π∗OCn ⊗ L −→ F −→ 0.

These sequences give the equalities

χ(π∗OCn) − χ(OC) = χ(F )
and

χ(π∗OCn ⊗ L) − χ(L) = χ(F ).
Eliminating χ(F ), we obtain the equality:

χ(L) − χ(OC) = χ(π∗OCn ⊗ L) − χ(π∗OCn).
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Since, by the projection formula (Proposition 5.1), we have the isomor-

phism

π∗OCn ⊗ L � π∗π∗L,
the right-hand side of the above equality is equal to χ(π∗π

∗L) − χ(π∗OCn).

Therefore, Proposition 5.5 gives the equality

χ(π∗π
∗L) − χ(π∗OCn) = χ(π∗L) − χ(OCn),

which is equal to degCn π∗L by the Riemann-Roch theorem for proper reg-

ular curves (Theorem 5.11). �
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