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ABSTRACT. We consider three examples of families of curves over a non-archimedean valued field which admit
a non-trivial group action. These equivariant deformation spaces can be described by algebraic parameters (in
the equation of the curve), or by rigid-analytic parameters (in the Schottky group of the curve). We study the
relation between these parameters as rigid-analytic self-maps of the disk.

INTRODUCTION

We consider a situation where one has two natural sets of deformation parameters for the same deforma-
tion problem, and ask what the relation between these two sets of parameters is. In our case, this leads to
interesting analytic relations, generalising the relation between the Legendrian and the Tate parameter on an
elliptic curve.

More precisely, the situation we study is as follows. Suppose X → Y is a Galois cover of projective
curves over a non-archimedean valued field K. Suppose X is a Mumford curve over K with Schottky group
Γ. Then the situation can be described by a diagram
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where ΩΓ is the domain of discontinuity of Γ in P1(K) and N is a subgroup of PGL(2,K) containing Γ
and contained in the normalizer of Γ. Thus, N gives a kind of “orbifold” uniformization of Y .

Now suppose the situation in this diagram admits moduli: in the algebraic sense it means that X with
the action of G has nontrivial deformations; in the analytic sense it means that the embedding of N in
PGL(2,K) admits nontrivial deformations (cf. e.g. [4] for formal definitions). We know from [4], §9, that
the formal algebraic and analytic deformation functors (defined in that reference) are isomorphic. But what
is the nature of the relation between the analytic and algebraic deformation parameters? It can hardly be
algebraic in the general case. We give an explicit form of this map as a rigid analytic infinite product in
three cases. For Tate elliptic curves X covering Y = P1, we find back a classical relation in terms of sigma
functions (cf. 2.2). For four point covers of P1 by Mumford curves, we find a ‘localisation formula’ for the
cross ratio (cf. 3.1). The final, most elaborate, case is over a field K of characteristic p > 0. Suppose K
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contains the finite field Fq with q = pm. Let ∆0 denote the punctured open unit disk ∆0 = {0 < |z| < 1},
and ∆ the open unit disk ∆ = {|z| < 1}. For λ ∈ K, let Xλ denote the algebraic curve

Xλ = {(xq − x)(yq − y) = λ} ⊆ P1 ×P1.

For λ 6= 0, this is a smooth curve of genus g := (q − 1)2, and for λ ∈ ∆0, it defines a Mumford curve.
These curves are quite special from a few points of view. They are the Mumford curves with maximal

automorphism group (and hence their Schottky groups are the analogue of classical Hurwitz groups), cf. [3],
[5]. They are highly symmetric ordinary curves and were first studied by Subrao ([21]), Valentini-Madan
([22] and Nakajima ([15]) from this point of view. Michel Matignon has studied their equivariant liftability
to characteristic zero [13], and the curves play a special role when studying the field of definition versus field
of moduli question for cyclic covers of the projective line (cf. [11]).

A corresponding Schottky group can be constructed as follows: define elements of PGL(2,K) by

εu :=
(

1 u
0 1

)
, τ :=

(
0 t
1 0

)
, ε′u := τεuτ

where u ∈ Fq and t ∈ K× with t ∈ ∆0. Note that these are explicit matrices whose entries are polynomial in
t with Fq-coefficients. If we define a subgroup Γ = Γ(t) of PGL(2,K) to be generated by the commutators
of these elements:

Γ(t) := 〈[εu, ε′v] |u, v ∈ Fq〉,

then it is known that the Schottky group of Xλ occurs as Γ(t) for some t ∈ ∆0.
For p > 2, the algebraic cover Xλ → Aut(Xλ)\Xλ

∼= P1 is ramified over a fixed set of 3 points
(cf. [5], Prop. 1). Nevertheless, it admits non-trivial equivariant moduli (this is a typical phenomenon in
positive characteristic and cannot occur in characteristic zero). On the algebraic side these moduli are given
by varying λ. In some sense, this λ is a substitute for the cross ratio if the number of branch points is below
four. We prove that Xλ and Xµ are isomorphic precisely if λ/µ ∈ F∗q (Theorem 9.1).

On the analytic side, the moduli are given by varying t. We prove that two Schottky groups Γ(t) and Γ(u)
are conjugate precisely if t/u ∈ F∗q (Theorem 9.4). We observe that the method of proof also provides an
amusing ‘analytic’ solution to the conjugacy problem for subgroups of PGL(2,K) generated by matrices
εu, ε

′
v as above (in general, such problems are considered quite hard).

Our further main theorems (cf. 7.3, 8.1, 9.9) will provide an expression for λ as an infinite product of
rational functions of t, that defines a rigid-analytic self-map on the punctured disk ∆0 and hence extends to
∆. We also give a rigid analytic automorphism of ∆0 that provides a correspondence between the actual
moduli, so between isomorphism classes of Xλ and conjugacy classes of Γ(t).

Acknowledgments. We thank Andreas Schweizer for help with the conjugacy problem for ASM-groups,
and the referee for detailed comments.

1. INFINITE PRODUCTS

Before we get started, we recall the following lemma from p-adic analysis. Let K denote a non-
archimedean valued field. An open set of P1 is seen as an analytic subspace of P1 as in [8], Def. 2.6.1
(I.7 in the original French edition). Also, “holomorphic function” should be understood as in that reference,
section 2.2.

1.1. Lemma. (1) A product
∞∏
n=1

an converges if and only if lim
n→∞

an = 1.
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(2) An infinite product
∞∏
n=1

an(t) of holomorphic functions an(t) converges uniformly on an open

set U ⊂ P1(K) to an analytic function, if there is a sequence cn of real numbers such that
|an(t)− 1| ≤ cn for all t ∈ U with lim

n→∞
cn = 0.

(3) If f is a bounded holomorphic function on the punctured open disk ∆0 then it extends to a holomor-
phic function on the whole open disk ∆.

Proof. The first two statements are analogues of classical results in complex analysis, see, e.g. [18] ch. 5,
section 3, but easier since in non-archimedean analysis, a sum converges if and only if the general term
tends to zero. The third statement follows from Remark 2.7.14 in [8] (or from the Lemma after I.8.11 in the
original French edition), applied to closed disks {0 < |t| < 1− ε} before taking ε→ 0. �

2. TATE ELLIPTIC CURVE

2.1. In this section, we present a well understood situation as a guiding example for what is to come in later
paragraphs.

Consider a Tate curve Eq = Gm(K)/qZ over a non-archimedean valued field K. It covers P1 over
four points. Without loss of generality, we can assume the branch points are {0, 1,∞, λ} with |λ| = 1. It
is known that λ then satisfies |1 − λ| < |2|2 (cf. Bradley, [2], Example 3.8). We now compute the (well-
understood) relationship between the period q and the Legendrian 2-torsion modulus λ as a toy model for
the method we will use later on.

We letN denote the group generated by α :=
(

0 1
1 0

)
and β :=

(
0 t2

1 0

)
and we let Γ be the group generated

by αβ =
(

1 0
0 t2

)
. We set q = t−2. Thus, t corresponds to the choice of a two-torsion point in the Tate model

Eq belonging to the group Γ. The orbifold belonging to N is the quotient of Eq by an element of order two,
leading to P1 with four branch points.

2.2. Proposition. The cross ratio of the four points of order two on the Tate curve Eq with q = t−2, for
|t| > 1 is given by

λ(t) =

∏
i≥0

t2i+1 + 1
t2i+1 − 1

8

.

The function λ is a holomorphic function on the open disk |t| > 1 centered at ∞ ∈ P1(K).

2.3. Remark. This is a classical formula in the theory of the Weierstrass σ-function, see [20], p. 89 (1.18).

Proof. The Γ-orbit of the fixed points of α are {qi} and {−qi} for i ∈ Z, which we suppose map to 0
and ∞, respectively, on P1 (this means |q| < 1, so |t| > 1). Now the N -orbits of the fixed points are
the same, with stabilizers of order two: the quotient N/Γ is a group of order two generated by the class
of α, and its non-trivial element acts on qi by qi 7→ α · qi = q−i; on the algebraic side, this is the action
Eq 7→ Eq/{±1} = P1, see the diagram in the introduction with X = Eq, Y = P1 and G = {±1}.
Therefore, if we define u by

u := κ1 ·
∏
i∈Z

(
z − qi

z + qi

)2

then u is a parameter on the quotient P1. If we want u to take on the value 1 at z = t, this fixes the constant
κ1, so

u(z) =
∏
i∈Z

(
(t+ qi)(z − qi)
(t− qi)(z + qi)

)2

.
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The fixed points of β are {tqi} and {−tqi} for i ∈ Z, which we suppose are above 1 (at z = t) and λ (at
z = −t) on P1. Therefore, in the same way we find

λ =
∏
i∈Z

(
(t+ qi)(−t− qi)
(t− qi)(−t+ qi)

)2

=
∏
i∈Z

(
t2i+1 + 1
t2i+1 − 1

)4

.

(Note that the product here is over i ∈ Z.)
For proving that λ(t) is a holomorphic function of t we are going to use Lemma 1.1. Observe that for

|t| > c > 1,

(1)
∣∣∣∣ t2i+1 + 1
t2i+1 − 1

− 1
∣∣∣∣ =

|2|
|t2i+1 − 1|

=
|2|

|t|2i+1
≤ 1
c2i+1

i→∞−→ 0.

Therefore, the product defining λ(t) is uniformly convergent on |t| > c > 1. We are hence allowed to
reorder the terms in the product expression for λ(t) from taking the product over i ∈ Z to i ≥ 0 and
squaring, to arrive at the formula indicated in the proposition. �

2.4. We now compare isomorphisms of elliptic curves expressed in t and λ. Two Tate elliptic curvesEt1 , Et2
are isomorphic if the free groups Γti = 〈

( 1 0
0 t2i

)
〉 uniformizing them are conjugate. This means their (two

possible) generators should map to each other. By direct computation, one finds that this is equivalent to
t1 = ±t2. So the moduli space of Tate curves is given in terms of the t-parameter by dividing the disk
|t| > 1 by the automorphism t 7→ −t.

From the above infinite product expansion, we see that everything is indeed normalized so that |λ(t)| = 1.
We also find immediately the behaviour of λ w.r.t. the disk automorphism t 7→ −t, namely λ(−t) = λ(t)−1.
Also observe that the Mumford conditions |λ| = 1 and |1− λ| < |2|2 are stable under λ 7→ λ−1.

On the algebraic side, two elliptic curves are isomorphic if they have the same j-invariant. We can express
the j-invariant as a function of the cross ratio λ by

j(λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
.

(The Mumford conditions arise from putting |λ| = 1 in this expression and requiring |j(λ)| > 1.) This
defines the S3-cover of modular curves Y0(2) → Y (1). For every j-invariant there are generically 6 values
of λ mapping to this j-invariant, namely

λ,
1
λ
, 1− λ,

1
λ− 1

,
λ

λ− 1
,
λ− 1
λ

,

but the only one of these that satisfies the Mumford conditions (given that λ satisfies them) is λ−1, as is seen
by direct verification.

The infinite product λ(t) induces a bijection

{|t| > 1}/{t 7→ −t} → {|λ| = 1 and |1− λ| < 1}/{λ 7→ λ−1}
T 7→ Λ(T ) := λ±1(±T ),

which is now one-to-one on isomorphism classes of Tate curves.
Compare this section with the discussion in [1], 9.7.3.
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3. FOUR POINT COVERS OF P1 BY MUMFORD CURVES

In this section we show a relation between global and local cross ratios on Mumford curves. Again, this
is a kind of toy model for the theory. Let π : X → P1 be a covering of Mumford curves that is branched
above four points 0, 1,∞, λ, let Γ denote the Schottky group of X and N the subgroup of PGL(2,K)
corresponding to the covering π. Let Ex denote the set of fixed points on P1(K) of the elliptic elements in
N that are above x ∈ {0, 1,∞, λ} and let ex ∈ Ex denote one chosen fixed element for each such x. For
κ1 ∈ K∗, the function

u(z) := κ1 ·
∏
γ∈N

z − γ(e0)
z − γ(e∞)

is a meromorphic function of z with simple zeros at E0 and simple poles at E∞ (cf. [9], pp. 44–47).
Therefore, it is a uniformizer on P1. We normalize it so it takes the value 1 at e1; this determines the value
of

κ1 =
∏ e1 − γ(e∞)

e1 − γ(e0)
uniquely, and then u(eλ) = λ gives the following expression for λ:

λ =
∏
γ∈N

eλ − γ(e0)
eλ − γ(e∞)

· e1 − γ(e∞)
e1 − γ(e0)

.

Since on the right hand side the factors in the product are cross ratios, we can rewrite this formula as follows:

3.1. Proposition. With these notations,

λ = (0, 1;∞, λ) =
∏
γ∈N

(eλ, e1; γ(e0), γ(e∞)).

3.2. Remark. Whether a four-point cover of P1 is a Mumford curve depends on the location of the branch
points (so on λ) and is a rather subtle question. For some answers, see Bradley [2], Theorem 5.4.

4. ARTIN-SCHREIER-MUMFORD GROUP

In the rest of this paper, we analyse our main example: certain fiber products of p-covers in characteristic
p that admit non-trivial equivariant moduli, but with fixed branch points. Hence there is no technology of
cross ratios to rely upon. As a matter of fact, this work could be seen as constructing a kind of cross ratio
for wild covers with less than four branch points. We work in the following situation:

• K is a complete non-archimedean valued field of characteristic p > 0;
• | · | : K → R≥0 is a multiplicative valuation (that is, a norm) of K;
• q = pm, where m > 0 is a positive integer;
• we assume that K contains Fq.

We often write fractional linear transformations, that is, elements of PGL(2,K), in matrix form. Set

εu :=
(

1 u
0 1

)
, τ :=

(
0 t
1 0

)
,

where u ∈ Fq and t ∈ K×. Notice that τ is of order 2, and that the map u 7→ εu is an injective group
homomorphism from the additive group Fq into PGL(2,K); in particular, we have εuεv = εu+v for u, v ∈
Fq and ε−1

u = ε−u. We set

ε′u := τεuτ =
(

t 0
u t

)
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for u ∈ Fq. The subgroup of PGL(2,K) consisting of all elements of the form εu (resp. ε′u) for u ∈ Fq
is denoted by E (resp. E′). The subgroups E and E′ are elementary abelian subgroups, isomorphic to
(Z/pZ)m.

For any a ∈ K×, we define

µa :=
(
a 0
0 1

)
,

that is, µa(z) = az. The following identities are easy to see:

εuµv = µvεu/v, ε′uµv = µvε
′
uv, τµv = µv−1τ,

for u ∈ Fq and v ∈ F×q .
We consider the following subgroups of PGL(2,K)
• N1 := 〈εu, ε′v |u, v ∈ Fq〉;
• Γ := 〈δu,v |u, v ∈ Fq〉,

where δu,v denotes the commutator of εu and ε′v , that is,

δu,v := [εu, ε′v] = εuε
′
vε−uε

′
−v.

The method of isometric circles (for example) proves that for |t| < 1, these groups are discrete in PGL(2,K)
(cf. [3], §8).

Notice that the following identity holds:

δ−1
u,v = τδv,uτ.

Clearly, Γ is a normal subgroup of N1 such that

N1/Γ ∼= E × E′ ∼= (Z/pZ)2m.

It is known (cf. [3], §9) that the subgroupN1 is isomorphic to the free productE∗E′; moreover, the subgroup
Γ is a free group of rank (q − 1)2, and has exactly δu,v for u, v ∈ F×q as its free generators.

4.1. Remark. The normalizer N = N(Γ) of Γ in PGL(2,K) is generated by E, τ , and µv for v ∈ F×q .

We set
N0 := 〈Γ, E′〉, N ′

0 := 〈Γ, E〉,
which are subgroups of N1 containing Γ.

4.2. Lemma. We have N0/Γ ∼= E′ and N ′
0/Γ ∼= E.

Proof. The assertion is clear, since the first and second factors of N1/Γ ∼= E × E′ have sections E′, E ↪→
N1. �

We end this section with a diagram of groups:

(2) 0 // Γ // N // (E × E′) oDq−1
// 0

0 // Γ // N1

?�

OO

// E × E′ //?�

OO

0

0 // [E,E′] // E ∗ E′ // E × E′ // 0
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5. ARTIN-SCHREIER-MUMFORD CURVES

Let Ω ⊂ P1
K be the set of ordinary points with respect to the Schottky group Γ. The quotient X := Ω/Γ

is a Mumford curve over K, which we call an Artin-Schreier-Mumford curve (ASM-curve or ASM-cover).
Let us denote the quotient map Ω → X by ϕ. Similarly, one can consider the quotients Ω/N0, Ω/N ′

0, and
Ω/N1, which we denote respectively by X0, X ′

0, and X1. We have the maps X → X0 and X → X ′
0, which

are Galois covering maps with the Galois groups E′ and E, respectively; we denote these maps by φ and φ′,
respectively. Thus we get the following commutative diagram

X0

$$II
II

Ω
ϕ //

Φ --

Φ′ 11

X

φ ;;vvvv

φ′
##G

GGG
X1

X ′
0

::vvvv

(where we set Φ = φ ◦ ϕ and Φ′ = φ′ ◦ ϕ). By the proof of [5, Prop. 2], we have:
• the curves X0, X ′

0, and X1 are isomorphic to P1
K ;

• the square in the above diagram is Cartesian, that is, X ∼= X0 ×X1 X
′
0.

Let ζ be an inhomogeneous coordinate of X1. Then, by [loc. cit.], we can choose homogeneous coordi-
nates (X : Z) for X0, and (Y : W ) for X ′

0, with corresponding inhomogeneous coordinates x = X/Z and
y = Y/W , in such a way that

• the Galois covering map X0 → X1 is described by xq − x = λζ for some λ ∈ K× with |λ| < 1;
• the Galois covering map X ′

0 → X1 is given by yq − y = ζ−1.
Hence the curve X , regarded as a closed subscheme in X0 ×K X ′

0 = P1
K ×K P1

K , is given by the explicit
equation

(3) (Xq −XZq−1)(Y q − YW q−1) = λZqW q.

Notice that λ is uniquely determined, since the inhomogeneous coordinate ζ of X1 was chosen so that the
Galois covering map X → X1 branches over ζ = 0,∞; another such choice differs only by a non-zero
constant of K, and gives rise to the same λ.

In the sequel, we denote the curve X by Xλ (as a subscheme of P1 × P1) to emphasize that it is given
by the equation (3). Note that since λ 6= 0, 1, there is no confusion with X0, X1. By uniqueness of λ as a
parameter for this moduli problem, one can regard λ as a function of t: λ = λ(t).

6. RAMIFICATION POINTS FOR ASM-COVERS

We know that the maps φ and φ′ are Galois covering maps with Galois group isomorphic to (Z/pZ)m;
moreover, this action of (Z/pZ)m onXλ is expressed in the bihomogeneous coordinates (X : Z)×(Y : W )
as follows:

for φ : (X : Z)× (Y : W ) u7−→ (X : Z)× (Y + uW : W )
for φ′ : (X : Z)× (Y : W ) u7−→ (X + uZ : Z)× (Y : W )

for u ∈ Fq. By this, one easily sees the following:

6.1. Proposition. (1) The ramification points of the map φ are exactly the points of the form (u : 1)×
(1 : 0) for u ∈ Fq.

(2) The ramification points of the map φ′ are exactly the points of the form (1 : 0)× (u : 1).
(3) At each of these points, the map φ (resp. φ′) ramifies completely. �
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Next, to describe the maps Φ and Φ′, let z be the inhomogeneous coordinate of Ω ⊂ P1
K on which the

groups Γ, etc. act by fractional transformations in the given form.

6.2. Proposition. (1) The ramification points of the map Φ are exactly the points of the form γ(u) for
γ ∈ Γ and u ∈ Fq.

(2) The ramification points of the map Φ′ are exactly the points of the form γ(t/u) for γ ∈ Γ and
u ∈ Fq.

(3) At each of these points, the map Φ (resp. Φ′) ramifies completely.
(4) Moreover, by a change of coordinates x 7→ x+u, y 7→ y+ v (for some u, v ∈ Fq), one can assume

that for u ∈ Fq, Φ maps the points γ(u) to (u : 1) × (1 : 0) and Φ′ maps the points γ(t/u) to
(1 : 0)× (u : 1).

Proof. We know from the algebraic picture that Φ (the quotient map byN0) has to ramify (totally) at exactly
q distinct N0-orbits of points in Ω. We will now exhibit q such ramification points, namely z = u ∈ Fq,
show that they are N0-inequivalent, and show that their N0-orbits equal their Γ-orbits, thereby establishing
(1).

Each z = u ∈ Fq is non-trivially stabilized by the q elements of {εuε′vε−1
u = [εu, ε′v]ε

′
v : v ∈ Fq} ∼=

εuE
′ε−1
u ⊂ N0.

We claim that for any γ ∈ N0 and u, v ∈ Fq with v 6= 0, we can find γ̃ ∈ Γ such that

γ · εuε′vε−1
u · γ−1 = γ̃ · εuε′vε−1

u · γ̃−1.

Indeed, since Γ is normal in N0, it suffices to verify this for γ = ε′w for some w ∈ Fq, and then we can set
γ̃ = [ε′w, εu], as one verifies by direct computation.

To prove that none of the elements u ∈ Fq are in the same N0-orbit, assume that ũ = γ · u for some
u 6= ũ and γ ∈ N0. Then the stabilizers of u and ũ are conjugate in N0. By the previous claim, we can
replace N0-conjugacy by Γ-conjugacy. But if we assume that εuε′vε

−1
u = γ · εũε′ṽε

−1
ũ · γ−1 for some γ ∈ Γ,

then if we compute in the abelian group N0/Γ ∼= E′, we find ε′v = ε′ṽ mod Γ, and since E′ ∩ Γ = {1},
this implies v = ṽ. Hence ε−1

u γεũ normalizes ε′v . But the normalizer of any subgroup of E′ is E′ since N1

is isomorphic to the free product of E and E′. Hence γ belongs to (E × E′) ∩ N0 = E′. But by direct
computation, elements of E′ fix any u ∈ Fq, so ũ = γ · u = u.

The same proof works for Φ′. That the maps are totally ramified is clear. Since all ramification points are
now known, it is now also clear we can match them up as in (4). �

6.3. Remark. By Proposition 6.2, in particular, we know that the points of the form γ(u) or γ(t/u) (for
γ ∈ Γ and u ∈ Fq) are in Ω, and hence, are not fixed points of any non-trivial element of Γ.

7. EVALUATION OF λ(t)

After the identification of ramification points in the analytic and the algebraic representation of the ASM-
curve, we now find an analytic relation between t and λ roughly as follows: we are going to write the
algebraic coordinate functions x and y as analytic functions of t (using the location of their zeros and poles,
we can do this with an infinite product). We then insert these expressions into the algebraic equation and
analyse what happens analytically.

7.1 (Coordinate functions). We are in the following situation:

Ω

ϕ

��
Xλ

� � // P1
K ×K P1

K ,
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where ϕ is the quotient map by the free group Γ, and P1
K×KP1

K is considered with the double homogeneous
coordinate (X : Z)× (Y : W ); moreover, the curve Xλ is defined by the equation (3) in §4. By Proposition
6.2 (4), we may assume that the coordinates are chosen in such a way that, for any u ∈ Fq,

ϕ−1((u : 1)× (1 : 0)) = {γ(u) | γ ∈ Γ},
ϕ−1((1 : 0)× (u : 1)) = {γ(t/u) | γ ∈ Γ}.

Notice that the elements of the right-hand sets are precisely parametrized by Γ, that is, for example, γ(u) =
γ′(u) for some u ∈ Fq implies γ = γ′, since u cannot be a fixed point of non-trivial elements of Γ (Remark
6.3).

We view x = X/Z and y = Y/W as functions on Ω by the map ϕ.

7.2. Proposition. (1) For any v ∈ Fq, the function x−v = x(z)−v vanishes exactly at {γ(v) | γ ∈ Γ},
and each zero is of order q. It has poles exactly at {γ(t/u) | γ ∈ Γ, u ∈ Fq}, and they are simple
poles.

(2) For any v ∈ Fq, the function y − v = y(z)− v vanishes exactly at {γ(t/v) | γ ∈ Γ}, and each zero
is of order q. It has poles exactly at {γ(u) | γ ∈ Γ, u ∈ Fq}, and they are simple poles.

Proof. Clearly, (0 : 1)× (1 : 0) is the only point on Xλ with x = 0. Hence we have x−1(0) = {γ(0) | γ ∈
Γ}. Each zero of x is of order q, since the covering map φ : Xλ → X0 ramifies completely at (0 : 1)×(1 : 0).
The proof of the other assertions is similar. �

7.3. Theorem. SetQ := q−1. The algebraic deformation parameter λ can be written as an infinite product
in the analytic deformation parameter t as follows:

λ(t) = −tQ
2+1(1− tQ)2

∏
γ∈Γ−{1}

[
(1− γ(∞))(1− γ(t)Q)

1− γ(0)q
(t− γ(0))(tQ − γ(1)Q)

tq − γ(∞)q
γ(∞)Qγ(t)Q

2

γ(1)qQ

]
.

Proof. The idea of the proof is to write the functions x(z)−v and y(z)−v (for v ∈ Fq) as infinite products.
For example, we want to write

“ x(z)− v = κv
∏
γ∈Γ

∏
u∈Fq

z − γ(v)
z − γ(t/u)

”

for some non-zero constant κv ∈ K×, matching up zeros and poles of the left hand side with those of the
right hand side in Ω, see Proposition 7.2. The right hand side doesn’t really make sense if γ = 1 and u = 0,
but we can replace it by

x(z)− v = κv
zq − v

zq−1 − tq−1

∏
γ 6=1

[
z − γ(v)
z − γ(∞)

∏
u 6=0

z − γ(v)
z − γ(tu)

]
for some non-zero constant κv ∈ K×.

Note that the factor
zq − v

zq−1 − tq−1

in the above product is indeed a function with a zero at z = v of order q and single poles at z = t/u (u 6= 0)
and z = ∞ (since the function has degree q − (q − 1) = 1 as a rational function of z).

The right hand side is a uniformly convergent expression in z on compact subsets of the ordinary set, cf.
[9], pp. 44-47. Since it has the same zeros and poles as x(z)− v, it differs from this function by a constant
κv (since the quotient curve is compact, so has no globally holomorphic functions). One can determine this
κv , since we know x(u) = u for any u ∈ Fq. We calculate κv by computing x(0) for v 6= 0 and x(1) for
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v = 0. We may indeed substitute these values for z since they are in the ordinary set, cf. Remark 6.3. We
find:

κv =


−tq−1

∏
γ 6=1

[
γ(∞)
γ(v)

∏
u 6=0

γ(tu)
γ(v)

]
(v 6= 0)

(1− tq−1)
∏
γ 6=1

[
1− γ(∞)
1− γ(0)

∏
u 6=0

1− γ(tu)
1− γ(0)

]
(v = 0).

We do a similar computation with the y-functions:

“ y(z)− v = κ′v
∏
γ∈Γ

∏
u∈Fq

z − γ(t/v)
z − γ(u)

, ”

that is, for v 6= 0,

y(z)− 1
v

= κ′v−1
zq − tqv

zq − z

∏
γ 6=1

[
z − γ(tv)
z − γ(0)

∏
u 6=0

z − γ(tv)
z − γ(u)

]
,

and

y(z) = κ′0
1

zq − z

∏
γ 6=1

[
z − γ(∞)
z − γ(0)

∏
u 6=0

z − γ(∞)
z − γ(u)

]
.

Now the constants κ′v are calculated by evaluating y(∞) (v 6= 0) and y(t) (v = 0):

κ′v =


−v (v 6= 0)

(tq − t)
∏
γ 6=1

[
t− γ(0)
t− γ(∞)

∏
u 6=0

t− γ(u)
t− γ(∞)

]
(v = 0).

In principle, one can now find an infinite product for λ by multiplying together these functions. But
rather, we first do a further simplication of the infinite products by using the identities in §4. They tell us
that the elements µu (for u ∈ F×q ) normalize Γ (cf. Remark 4.1), that is, we have Γµu = µuΓ. By this, for
example, we have ∏

γ 6=1

γ(tu) =
∏
γ 6=1

uγ(t).

By using this fact, one can now simplify the formula as follows:

κv =


tq−1

∏
γ 6=1

γ(∞)γ(t)q−1

vγ(1)q
(v 6= 0)

(1− tq−1)
∏
γ 6=1

(1− γ(∞))(1− γ(t)q−1)
1− γ(0)q

(v = 0),

and

κ′0 = (tq − t)
∏
γ 6=1

(t− γ(0))(tq−1 − γ(1)q−1)
tq − γ(∞)q

.

We are interested in evaluating the functions xq − x and yq − y. By the above formula, we now see that

λ = (xq − x)(yq − y) =
∏
v∈Fq

(x− v)(y − v) =
∏
v∈Fq

κvκ
′
v.
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Indeed, due to uniform convergence, we can reorder the terms in the middle product, and in this way, all
“non-constant” (i.e., depending on z) factors cancel out and only the right hand side product remains. If we
plug in the value of the terms in this product, we find that λ(t) is given by

λ(t) = −t(q−1)2+1(1− tq−1)2p(t),

where

p(t) =
∏
γ 6=1

[
(1− γ(∞))(1− γ(t)q−1)

1− γ(0)q
(t− γ(0))(tq−1 − γ(1)q−1)

tq − γ(∞)q
γ(∞)q−1γ(t)(q−1)2

γ(1)q(q−1)

]
Observe that the auxiliary variable z ∈ Ω has disappeared from the final result. This proves the product

expansion of λ as a function of t.
�

8. ANALYTIC BEHAVIOUR OF λ(t)

In this section, we study the analytic properties of λ as a function of t. It is important to realise that
we have, up to now, considered infinite product ‘theta functions’ in the variable z ∈ Ω, where t occurs
as a ‘parameter’ in both the group elements over which the infinite product runs, and as argument for the
corresponding Möbius transformations. We now have to switch viewpoint and consider the functional de-
pendence on t. However, the convergence properties of the used theta series products in z imply that the
infinite product on the right hand side in the main formula from Theorem 7.3 is absolutely convergent for a
fixed value of t with 0 < |t| < 1, so this expression defines

λ : ∆0 → ∆0 : t 7→ λ(t)

as a pointwise continuous function from the punctured open unit disk to itself. But there is more:

8.1. Theorem. The function λ(t) is a holomorphic function from ∆0 → ∆0, and it extends across zero to a
holomorphic function from the open disk ∆ to itself.

Proof. For every specific value of t = t0 with 0 < |t0| < 1, we know that the infinite product defining λ(t0)
is absolutely convergent. We define rational functions gn, n > 0 by

(4) gn(t) =
∏

`(γ)=n

[
(1− γ(∞))(1− γ(t)q−1)

1− γ(0)q
(t− γ(0))(tq−1 − γ(1)q−1)

tq − γ(∞)q
γ(∞)q−1γ(t)(q−1)2

γ(1)q(q−1)

]
,

where ` is the word length function on the free group Γ for the given generators δu,v .
It suffices to prove that the product

∏
gn(t) is uniformly convergent on closed annuli in ∆0. So fix

constants 0 < k1, k2 < 1 and assume k1 ≤ |t| ≤ k2.
The rational functions gn(t) have coefficients in Fq, in particular, of absolute value 1 (if they are not

zero). Therefore, if |t| < 1, we have |gn(t) − 1| = |t|en for some integer en that only depends on n and
not on t. (As a matter of fact, en is the difference between the degrees of the lowest non-vanishing terms in
numerator and denominator of gn(t) − 1.) The absolute convergence at a particular point t0 with |t0| < 1
implies |gn(t0) − 1| = |t0|en → 0 as n → +∞, and this gives that en → +∞ as n → +∞. Hence we
find that for all k1 ≤ |t| ≤ k2, |gn(t)− 1| < cn := ken

2 , with cn → 0 uniformly in t. Therefore, the infinite
product gn(t) is also uniformly convergent to a holomorphic function on ∆0. As λ = λ(t) for t ∈ ∆0

corresponds to a Mumford curve, λ(t) takes values in ∆0, and in particular it is bounded as a function of t.
Hence it extends across zero to a holomorphic map on ∆0 by Lemma 1.1, (3). �
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8.2. Remark. For a general family of Schottky groups that depend algebraically on a deformation parameter
t, the corresponding algebraic moduli depend rigid-analytically on t. In general, one can use the theory
of non-archimedean theta functions (cf. [12]) to construct coordinate functions on the algebraic curve, by
identifying their zeros and poles. After specialisation of the argument to enough ordinary points, one finds
that the algebraic moduli can be given explicitly as algebraic functions of analytic functions of t that are
infinite products of rational functions in t. This is the general pattern of the proof of our main results above.

9. λ(t) AS A FUNCTION OF MODULI

We now study what the function λ(t) does if we consider it to depend on the moduli of curves, instead
of the parameters λ and t itself (i.e., we consider the effect of weakening the equivalence relation on λ to
that of mere isomorphism of abstract curves instead of embedded curves in P1 ×P1.) For that, we will first
determine when two ASM-curves are isomorphic, and when two ASM-groups are conjugate.

9.1. Theorem. Two ASM-curves Xλi : (xq−x)(yq − y) = λi, i = 1, 2 λi ∈ K∗ are isomorphic if and only
if λ1/λ2 ∈ F∗q . For ζ ∈ F∗q , an isomorphism ψ between Xλ and Xζλ is given by ψ(x) = ζx, ψ(y) = y. In
particular, since Fq ⊂ K, isomorphisms of ASM-curves are defined over K.

Proof. Let Fλ denote the function field of the ASM-curve

Xλ : (xq − x)(yq − y) = λ.

The group Aut(Xλ) of the curve is generated by the following elements: τa,b(x, y) = (x+ a, y + b) where
a, b ∈ Fq, σ1(x, y) = (y, x), σ2(x, y) = (εx, ε−1y), where ε is a primitive (q−1)-th root of 1, cf. [22, th.7].

9.2. Definition. Call a subfield F of Fλ good if it is a rational subfield of Fλ so that Fλ/F is an extension
with Galois group Gal(Fλ/F ) isomorphic to (Fq,+) as a subgroup of Aut(Xλ).

9.3. Lemma. The fields K(x) and K(y) in Fλ are the only good fields F with G = Gal(Fλ/F ) satisfying:
(a) G is stable by σ2-conjugation,
(b) The action of conjugation by σ2 is transitive on G− {1} and
(c) there does not exist a subgroup H of G of order p whose σ1-conjugate lies in G.

Proof of Lemma. Let F be good. Then G is generated by certain τai,bi
for i = 1, . . . ,m (for a proof, use

that Aut(Xλ) has E × E′ as unique Sylow-p subgroup). We consider three cases:
(1) There exists an i such that aibi 6= 0.

Set a = ai, b = bi. Now a−1b ∈ F∗q and since ε generates F∗q , there exists an integer k such that
a−1b = εk. One computes that

σk2τa,bσ
−k
2 = τεka,ε−kb = τb,a = σ1τa,bσ1.

Now if G is σ2-conjugation stable, we find that H = 〈τa,b〉 is a group of order p in G with a σ1-
conjugate inside G. Hence in this case, condition (a) and (c) cannot be satisfied simultaneously.

(2) Some ai = 0 or some bi = 0, but not all ai = 0 or bi = 0.
We verify that condition (b) is not satisfied in this case. Suppose without loss of generality that
(a, 0) and (a′, b) occur, for some b 6= 0. Then σk2τa,0σ

−k
2 = τεka,0 6= τa′,b for all k.

(3) All ai = 0 or all bi = 0.
Now the fixed field of G is K(x) in the first case and K(y) in the second case. We only treat the
first case, as the second one is symmetric after interchange of ai and bi. We verify the indicated
properties: for a = ai 6= 0, σ2τa,0σ2 = τεa,0 ∈ G and since the action of 〈ε〉 = F∗q is transitive on



RELATING DEFORMATION PARAMETERS 13

F∗q , we find the same for the action of σ2 on G− {1}. For (c), the subgroups H of order p in G are
generated by some τa,0, and σ1 maps these to τ0,a /∈ G.

�

Now consider two curves Xλi : (xq − x)(yq − y) = λi, i = 1, 2 and λi ∈ K∗ with corresponding
function fields Fλi

and let ψ : Fλ1 → Fλ2 be an isomorphism. The map

Aut(Fλ1) → Aut(Fλ2) : σ 7→ ψσψ−1,

is an isomorphism of the corresponding automorphism groups. This implies in particular that the sub-
group structure of the automorphism group is preserved by ψ. Let A ∼= (Fq,+) be the Galois group
Gal(Fλ1/K(x)). Recall that K(x) is stable under σ2. The element ψ(x) generates a rational subfield of
the function field Fλ2 of the curve Xλ2 and K(ψ(x)) = FψAψ

−1

λ2
, so it is good in Fλ2 . Since ψ preserves

the structure of the automorphism group, K(ψ(x)) is good and inherits properties (a), (b) and (c) from the
lemma above. By that lemma, K(ψ(x)) = K(x) or K(ψ(x)) = K(y). By composing, if necessary, with
σ1 to interchange x and y, we can asssume that K(ψ(x)) = K(x). Therefore ψ(x) = g(x) for some invert-
ible fractional transformation g ∈ PGL(2,K). Since ψ is a morphism of fields, it preserves the algebraic
relation defining Xλ1 . Hence if we set y′ = ψ(y), we find(

y′
q − y′

)
(g(x)q − g(x)) = λ1

Thus y′ is a generator of the Artin-Schreier extension Fλ2/K(g(x)) and according to Hasse [10, eq. 3’] and
Pries [16, Lemma 2.4] it is related to the generator y by

(5) y′ = ζy + d,
λ2

xq − x
= ζ · λ1

g(x)q − g(x)
+ dq − d

for some ζ ∈ F∗q and d ∈ K(x). We find in particular that

(6)
λ2

xq − x
− ζ · λ1

g(x)q − g(x)
= dq − d,

for some d ∈ K(x). Now if the function dq − d has any poles, those are of order divisible by q, whereas the
left hand side of the expression has at most simple poles at x ∈ Fq and g−1(Fq). We conclude that d doesn’t
have any poles, so the left hand side of (6) doesn’t have any poles either. But the two individual terms have
poles with respective constant residue λ2 and ζλ1, so in corresponding poles, the residues have to cancel.
Hence the desired result ζλ1 = λ2.

Conversely, if λ1/λ2 = ζ ∈ F∗p then the transformation ψ(x) = ζx, ψ(y) = y makes the function fields
Fλi , i = 1, 2 isomorphic. �

On the analytic side, we independently have the following result:

9.4. Theorem. For t1, t2 ∈ ∆0, the following are equivalent:
(i) the curves Xλ(t1) and Xλ(t2) are isomorphic;

(ii) the groups Γ(t1) and Γ(t2) are conjugate subgroups of PGL(2,K);
(iii) Γ(t1) = Γ(t2);
(iv) t1 = ζt2 for some ζ ∈ F∗q .

Proof. In this proof, we will refer to the features of an individual ASM-curve by the letters used up to now
(N,Γ, εu, etc.), but if we refer to the dependence of such features on an analytic deformation parameter t,
we will indicate this by adding t in brackets (so N(t),Γ(t), εu(t) etc.) Note that in this proof, the notation
g(t) for a matrix g does not mean the evaluation of the fractional linear transformation g at the point t.
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Assume that the Artin-Schreier-Mumford curves Xλ(ti) are isomorphic. According to [14, Corolary
4.11] this is equivalent to the fact that the groups Γ(ti) are conjugate in PGL(2,K), i.e. there is a γ ∈
PGL(2,K) such that γΓ(t1)γ−1 = Γ(t2). So assume this. Let N(ti) denote the normalizer of Γ(ti) in
PGL(2,K). It follows from the definition of normalizer that N(t1) and N(t2) are also conjugate by the
same γ: γN(t1)γ−1 = N(t2).

For i = 1, 2, we can normalize our ASM-groups so that N(ti) ⊆ PSL(2,Fq[t−1
i ]), by multiplying ε′v by

t−1
i . Now the particular element Ai := ε1ε

′
1 has trace 2 + t−1

i , and trace is conjugacy invariant in PSL. (If
one wishes to work in PGL instead, one can use the conjugacy invariant trace2/det.) Hence the relations
γAiγ

−1 ∈ N(ti+1) for i = 1, 2 mod 2, imply that 2 + t−1
1 ∈ Fq[t−1

2 ] and 2 + t−1
2 ∈ Fq[t−1

1 ]. This implies
that t−1

1 = αt−1
2 +β for some elements α ∈ F∗q , β ∈ Fq. (We thank Andreas Schweizer for showing us this

argument.)
This already reduces the number of conjugate groups to a finite set. We will now show that β = 0 if the

groups are conjugate.
For this, we first observe that all elements of order p in N are conjugate to ε1 by a conjugacy in N .

Indeed, since dividing modulo a free group Γ doesn’t kill any torsion elements, an element of order p in N
is pulled back from E × E′ in diagram (2). Hence it is an element of order p in the free product E ∗ E′.
But any such element is conjugate in E ∗E′ to an element of E or E′ (cf. [19], 4.3). Now any element in E
(resp. E′) equals ε1 (resp. ε′1) after conjugation with an appropriate µa ∈ N . Finally, it suffices to note that
ε′1 is conjugate to ε1 in N via τ by definition.

The element γε1γ−1 ∈ N(t2) can hence be conjugated back to ε1 by an element δ ∈ N(t2). Replacing
γ by δγ, we can henceforth assume that γ-conjugation fixes ε1. It is easily computed that this implies
γ =

(
1 b
0 1

)
for some b ∈ K.

Now back to the dependence on t1, t2 with ti ∈ ∆0. We compute γδ1,1(t1)γ−1 =
( ∗ ∗
t−2
1 ∗

)
∈ N(t2).

Using the relation t−1
1 = αt−1

2 + β, the lower left entry of this matrix has absolute value 1/|t2|2. Now it is
also an element of Γ(t2), so a word in δu,v(t2). One proves that the lower left entry of a word

w := δu1,v1(t2) . . . δur,vr (t2)

has absolute value 1/|t2|2r. This can be proven by induction on the word length, by calculating only the
dominant term (in absolute value) of the product, which will equal (recall |t2| < 1)

w =
(
at−2r

2 + . . . bt1−2r
2 + . . .

ct−2r
2 + . . . dt1−2r

2 + . . .

)
for some non-zero constants a, b, c, d depending on u1, v1, . . . , ur, vr.

Therefore, the conjugate expression has word length one, i.e., it is of the form δu,v(t2) for some u, v. But
this has lower left entry exactly equal to uv2/t22, which cannot equal (αt−1

2 + β)2 for non-zero β. Hence
β = 0.

One now easily checks that Γ(t1) and Γ(t2) are indeed conjugate if t1 = ζt2 for some ζ ∈ F∗q . Actually,
we have Γ(t1) = Γ(t2) in this case, since ε′u(t1) = ζ · ε′ζ−1u(t2).

�

Consider the following purely algebraic problem:

9.5. Subgroup Conjugacy Problem. Determine whether or not two subgroupsH1 andH2 of a given group
G are conjugate in that group.

In general, this is believed to be a computationally hard problem. For subgroups of linear groups, an
almost efficient algorithm is known, cf. e.g. Roney-Dougal [17]. We consider the case where K is a field
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containing Fq, and H1 and H2 are groups of the form N1(t) for some t ∈ K, where N1(t) is the subgroup
of PGL(2,K) generated εu and ε′u, with

εu :=
(

1 u
0 1

)
, τ :=

(
0 t
1 0

)
, ε′u := τεuτ

for all u ∈ Fq.
If we consider the case where K is non-archimedean valued, then as an amusing corollary of the above

theorem (or rather, of a substatement in its proof), we get the following ‘analytic’ solution to a part of the
group theoretical conjugacy subgroup problem for N(t1) and N(t2) in PGL(2,K):

9.6. Corollary. Let For t1, t2 ∈ K with 0 < |ti| < 1 (i = 1, 2), we have that N1(t1) and N1(t2) are
conjugate subgroups of PGL(2,K) if and only if t1/t2 ∈ F∗q .

Proof. It suffices to observe that conjugacy of N1(t1) and N1(t2) again implies conjugacy of their normal-
izers N(t1) and N(t2), and use the previous argument.

�

We don’t know to what extent the statement of the corollary is true for arbitrary t1, t2 and an arbitrary
field K, nor whether it can be proven in a purely algebraic way.

9.7. Remark. From the previous theorem, we also expect that λ should depend, up to an element of F∗q ,
only on tq−1. One may indeed verify directly from the infinite product that this is the case. Since it is not
entirely trivial, we prove it here:

9.8. Proposition. For every |t| < 1 and ζ ∈ F∗q we have

λ(ζt) = ζλ(t).

Proof. Since the behaviour of the factors in the product for this transformation is somewhat different, we

decompose the function p(t) as p(t) =
∞∏
n=1

p
(n)
1 (t) · p(n)

2 (t) · p(n)
3 (t), where

(7) p
(n)
1 (t) :=

∏
`(γ)=n

[
(1− γ(∞))γ(∞)q−1(tq−1 − γ(1)q−1)

(1− γ(0))γ(1)q(q−1)

]
,

(8) p
(n)
2 (t) :=

∏
`(γ)=n

(1− γ(t)q−1)γ(t)(q−1)2 ,

(9) p
(n)
3 (t) :=

∏
`(γ)=n

t− γ(0)
tq − γ(∞)

,

for ` the word length function for the generators δu,v of Γ. We will verify that each of the factors is invariant
under t 7→ ζt for ζ ∈ F∗q .

A word in the group Γ(t) of length n in the generators δu,v,t (where we now indicate the dependence on
t by a subscript since we will later evaluate the matrices as fractional transformations at t) will be written as
wū,v̄,t = δu1,v1,t . . . δun,vn,t, where ū and v̄ are two vectors v̄ = (v1, . . . , vn), ū = (u1, . . . , un) in (F∗q)

n.
Observe that δu,v,ζt = δu,ζ−1v,t, and therefore we also have wū,v̄,ζt = wū,ζ−1v̄,t.

We now consider the action of ζ on the three types of factors p(n)
i , i = 1, 2, 3 separately.
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(1) In eq. (7) we consider the product over all elements of length n, i.e., over all vectors ū, v̄ ∈ (F∗q)
n.

Changing p(n)
1 (t) to p(n)

1 (ζt) is equivalent to the action of ζ on the vector v̄, which only permutes
the factors, so we find p(n)

1 (ζt) = p
(n)
1 (t).

(2) We will prove that for any element γ ∈ Γ, there exists an element γ̃ ∈ Γ of the same length as γ
such that γ(ζt) = ζγ̃(t), and such that the association γ 7→ γ̃ is a bijection on words of a given
length. It then follows by a simple calculation that p(n)

2 (ζt) = p
(n)
2 (t). Observe that for an element

γ = δu,v,t of length one we have the following evaluation of the corresponding fractional linear
transformation at the point t:

δu,v,t(t) =
t2 + uvt+ u2v2 − u2v(v − 1)

t+ uv(v − 1)
.

But then δu,v,ζt(ζt) = ζδu
ζ ,v,t

(t). If γ is a word of length n then γ(t) is computed by the composi-
tion of words of length one and the desired result follows by induction.

(3) Consider now the factor p(n)
3 (t). Let γ = wū,v̄,t be a word of length n. We compute

ζt− wū,v̄,ζt(0)
(ζt)q − wū,v̄,ζt(∞)

=
t− wζ−1ū,v̄,t(0)
tq − wζ−1ū,v̄,t(∞)

,

therefore p(n)
3 (ζt) = p

(n)
3 (t).

The desired result follows by combining all the above computations, since

λ(t) = −t · t(q−1)2(1− tq−1)2p(t).

�

9.9. Theorem. The function Λ : ∆0 → ∆0, : T 7→ λ(T
1

q−1 )q−1 extends to a rigid analytic automorphism
of the open unit disk ∆. Every value in ∆0 corresponds to a unique curve up to isomorphism in the family
Xλ.

Proof. Since λ is actually a function of tq−1 up to scaling by an element of F∗q , we find that Λ is a well-
defined rigid-analytic map ∆0 → ∆0. Since it is bounded, it extends across 0. Also, since isomorphism of
curves is given by the compatible F∗q-scaling action on t and λ, the resulting map is one-to-one. �

9.10. Remark. We find that Λ(T ) = T (q−1)2+1P (T ) for some function P with P (0) 6= 0. Since Λ is
also one-to-one, this implies that the continuation of P (T ), and hence p(t), to ∆ acquires a finite order pole
at t = 0. Since p(t) is a uniformly convergent product of rational functions in t (away from t = 0), this
implies that some denominator in the product expansion has zeros in t. We don’t know in which factor(s)
this phenomenon occurs.
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