ON THE COMMUTATIVITY OF THE LOCALIZED SELF
HOMOTOPY GROUPS OF SU(n)
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1. INTRODUCTION

For a connected Lie group G and a based space X, the set [ X, G] of homotopy
classes of based maps from X to G inherits a group structure from G. If X is a
finite dimensional CW complex, the group [X, G| is nilpotent by [13]. Let p be
a prime. We consider the localization [X, G], of [X,G] (see [7]) and [X, G|, is
isomorphic to [X, G (] (see [2]).

An important special case occurs when X = G. For then H(G) = [G, G] studied
extensively ([1], [6], [8], [10], [11]).

For an integer | > 2, G; denotes SU(I) or U(l) and G; = SU(l)/H, where H is
a subgroup of the centre of SU(I) = Z/l. G denotes SU(c0) or U(co).

The purpose of this paper is to show the following;:

Theorem 1.1. Assume n > 3.

(i). H(SU(n)) @) is commutative if and only if p = 2n — 1 for n = 3,4,6,7 or
p>2n—1.

(ii). H(U(n))p) is commutative if and only if p = 2n — 1 for n = 3,4, or
p>2n—1.

(iii). H(Gn)(p is commutative if and only if H(SU(n)) ) is commutative.

Remark 1.2. (i). If n =2, SU(2) = $3 and SU(2)/(Z/2) = SO(3). H(SU(2)) and
H(SO(3)) are commutative (see [8]). H(U(2)) is known by [10]. H(U(2))(2) is not
commutative and H(U(2))p) is commutative for p > 3.

(ii). If p > 2n — 1, Gy(p) is homotopy commutative by McGibbon [9]. Therefore
H(Gr)(p) is commutative if p > 2n — 1.

(iii). T n > 3 and p > 2n — 1, then p > n. Therefore if p > 2n — 1 the
natural projection q: SU(n) — G, induces a Hopf equivalence q: SU(n) ) —

G (p) denoted by the same symbol. Therefore ¢*: H(G () — [SU(n), Gy and

¢« [SU(n), Grpy] — H(SU(n))(p) are isomorphism of groups and
@t oq": H(Gr) ) — H(SU(n)) )
is an isomorphism of groups.

Denote the commutator of G, and Gpn by 7, and 7, respectively. Define a map
a: G, — G, by a(A) = A for A € G,,. « induces a map a: G, — G, satisfying
aoq=qoa. To prove Theorem 1.1, we show the following:

Proposition 1.3. (i). Ifp <2n—1, then [a, 1] =y 0 (A1) o A # 0 in H(Gn)(p)-
(ii). If p < 2n— 1, then [@,1] # 0 in H(Gp)(p)-
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Proposition 1.4. (i). Ifn > 8 and p = 2n — 1 is a prime, then H(SU(n))y)
is not commutative. If n >5 and p = 2n — 1 is a prime, then H(U(n))q, is not
commutative.

(ii). If n =3,4,6 or 7 and p = 2n — 1, H(SU(n)), is commutative. If n =3
or4 andp=2n—1, H({U(n))q is commutative.

Consider the fibre sequence

QG 25 W, 5 G L Goo & Wi = Goo /G

where 7 is the projection and j: G; — G, is the inclusion. A lift 4;: GiAG; — QW]
of 1 (71 =~ § o 4;) constructed in [5] plays an important role in this paper. We
review results on unstable K-theory, [ ,G] in section 2. Using the results in
section 2, Proposition 1.3 and Proposition 1.4 are proved in section 3 and section
4 respectively.

2. UNSTABLE K-THEORY

In this section | > 2. Let W; = G /G; and 7: Go, — W, be the projection. As
an algebra

H*(Gh) = /\(xlaxfiv e Tor—1)
where deg o1 =2j — 1, z2j_1 = 0(¢;) and 1 =0 if G = SU and

H* (W) = \ (@241, Ty, - )
where deg "f2j+1 = 2_]+].7 7T*(£2j+1 = 2]+1) Moreover 'Plp("fgjqu) = jp(i'nger,l)
where p is the mod p reduction. Put agj = 0(Z2;41). Consider the fibre sequence
0Goo 25 W S G L Goe 5 WL
In [5] a lift 4;: G; A G; — QW of ~; satisfying 6 o 4; ~ ~; and
i (az) = Z T2i+1 ® Toj+1
itj=1-1
is constructed. Moreover by [4]
i (azr) = Z T2i+1 @ T2j41
itj=k—1
for k > [. Define a map
z=[[w2s: Wi - K =[] K;
Jj=0 Jj=l
where K; = K(Z,),2j +1). Then Z(y: Wiy — K(o) is a homotopy equivalence.
For a finite complex X, consider the map
A= (Qz).: [X,QW)] - P HY (X; Z,)).
We have the following:

Lemma 2.1. (i). A is a group homomorphism and

AU = (f(a), [ (a2iy2), - - - ),

where f: X — QW,.
(ii). A ® Q is an isomorphism. _
(iii). Ao (Qm)y () = (llchi(a), (I4+1)!chi11 (@), ...) where a € [X, QG ] = K(X).
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(iv). Ifdim X = 2l, then © = (Qrory1).: [X, QW] — H?(X) is an isomorphism
of groups (see [5]).

Let E; be the homotopy fibre of a generator of H**?P(Kj;Z,)) = Z, where
j > 2. As an algebra

H*(Ej; Zy)) = [\ (0241, v2542p-1)

for x < 2j +4p — 3, where deg v, = k and P'p(vaj4+1) = p(v2j12p—1). Consider the
fibering:
9,
Kjsp1— Ej = K;
if j > [, there is a lift i‘gj+1 of Toj11 satisfying ej Oi‘gj_;,.l ~ X241, (i‘2j+1)*(1}2.j+1) =
Toj+1 and
(Z2j+1)" (V2j42p—1) = JT2j42p1

modulo pH> 2P~ (W5 Z ), since P p(Z2j11) = jp(2aj42p—1) and P p(T2j41) =
0. Define

l+p—2 l+p—2
g=dy= [] doj41: Wiy~ E= [] E
7=l 7=l

We have the following:
Lemma 2.2. Ifl < p, then & is a (4p — 2)-equivalence.
Proof. (2)*: H*(E;Zy)) — H*(W(p); Z(p)) is an isomorphism for * < 4p — 2 and

injective for ¥ = 4p—1. Therefore H*(;Z,)) = 0 for * < 4p—1 and H.(%;Z(,)) =0
for x < 4p — 2. g

Remark 2.3. Since E; ~ Q?E; 1, QF; is a homotopy commutative Hopf space.
Therefore for a finite complex X, the group [X,QFE;] is commutative. Note that
Ejo) = (K; X Kjip-1)(0)-

Consider the following exact commutative diagram
HA2072(X Zy)) — [X, Q] —— HY (X3 Zp))
Joa |oa |
0 ——= HY#72(X;Q) — [X,QEj](o) —— H¥(X,Q) —>0
Therefore if H*(X;Z,)) is free Z,)-module,
0 — H¥P2P72(X Zy)) — [X,QE)] — HY(X;Z) — 0
is exact and [X, QF}] is a free Z,)-module and we have
Lemma 2.4. If H*(X;Zy) is a free Z,-module, then
[X,QE]

is a free Z,y-module.
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3. PROOF OF PROPOSITION 1.3

Assume n > 3. Denote a generator of H7(S7) by u;. Let m be an integer
satisfying m < n < 2m. Define a map

0: X = §%2m—1 x §2m+l _, g

by 8 = po(€em X €mt1), where €; denotes a generator of my;_1(G,) = Zfor2 < j<n
and g the multiplication of G,,. Let i: G,, — G2, be the inclusion. Note that
€ (w2j-1) = (j — 1)!ugj—1. Then we have

Lemma 3.1. If j #m orm+1, 6*(x2;-1) =0 and
* m — 1 'u m— Z 1 =m
0 (I'ijl) = ( ) 2 ! fj
mugm41 ifj=m+ 1.
Note that O(*(l‘zj_l) = (—l)jl‘gj_l. Put § =170 [Oé, 1] o6 and
£=Amo(iNi)o(aAl)oAod.
Then § o€ ~ ygm 0 (i Ai)o(aAl)oAof =ioy,0(aAl)oAol =iola,1]ol =¢.
Lemma 3.2. £*(am) = 2(

Proof.

=)™ ((m — 1)!mDugm—_1u2ma1-

Fam (ini)™ (an1)” i1
Agm — Zx2i+1 X Jj2j+1 — Zx2i+1 X x2j+1 — Z(_l)z“r T2i41 ® x?j—‘rl

— (= 1)™((m = Dlugm—1) (Mlugm1) + (1) (mlugg 1) ((m = 1)luzg 1)
= 2(—1)m((m — 1)!m!)u2m_1u2m+1.
[

Consider the following exact commutative diagram

K(X) —2> H'™(X) ——> [X, Gam]

gTq* ETQ* T

[}(S4m) — HAm(§4m) — > [§4m G, ]

where ¢: X — S4™ is the natural projection. Note that Im{©: K(S%m) — H(8%™)} =

(2m)!Z (see [5]) and O(&) = 2((m — 1)!m)ugm—1uzm+1. Since the localization is
an exact functor, if there exists m satisfying m < n < 2m and

(2m)! B 2m —1
2(m — 1)lm! m< m

then ¢ ¢ Im{(Qm).: K (X)) — [X, QWam]p} and € = §0 € # 0 in [X, Gam) ().
Therefore [a, 1] # 0 in [Gy, Grl(p)-

>EO mod p,

Lemma 3.3. If p < 2n — 1, then there exists m satisfying m < n < 2m and

m(*"1) =0 mod p.
Proof. If n > p, put m = [(n — 1)/plp. Then m < n < 2m and m(*"7") =0
modp. If n < p < 2n —1, then pis odd and p < 2n — 3. Put m = p—;l then

2m—1
m

2m:p+12nand( )EO mod p since 1 <m <p-—1. O
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Proof of (ii). Since vn(ga,g'a’) = vn(g,9') for g,¢g" € SU(n) and a,a’ € H, v,
induces a map v,,: G, A G,, — SU(n) satisfying v/, o (¢ A q) = yn and qo ), = .
Since ¢ is a finite covering,

¢t [Gn, SU ()| = [Grn, Gpn] = H(G)
is monic. If p < 2n — 1, [a, 1] # 0 in H(SU(n))(p). Since
yo(@Al)oAog=~,0(@nl)o(ghng)oA
=T o(gAg)o (aAl)OA
= yno(anl)oA=[a1]#£0
in H(SU(n))p), 7o (3 A1) o A #0in [Gy, SU(n)]). Therefore
[@, 1] =0 (@A1)oA=qor,o(@A1)oA#0
in H(Ghp)(p)- O

4. PROOF OF PROPOSITION 1.4
Proof of (i). Note that G, is p-regular if p = 2n — 1 (see [12]). If n > 8, then
2n — 9 > 7. Consider the following maps:

Br: SU(n) ) ~ Hs T 83 % ST, x S0 L g3l L S ()
j=2

Ba: SU(n) () —— SGy " = SU(n) )

where 7", 7" and ¢ are projections. Using the fact that the Samelson product
(€ny€n) # 010 T4 2(SU(2n — 1)) (see [3]), (€n, €n) # 0 in map2(SU(N)) (). We
can prove (i) by a quite similar method to that in the proof of Proposition 4.1 of
[6]. If n > 5, then 2n —5 > 5 and (i) for G = U is shown similarly. O

1

Proof of (ii). Assume n <7 and p=2n — 1 is a prime.
Lemma 4.1. If X, ~ HS(p), then

Im{ch: K(X),) — P H*(X;Q)}
k>0

is equal to @, H**(X;Z).

Proof. As is well known Im{ch;: K(S%) — H?(5%;Q)} = H2!(52). Consider the
following commutative diagram

Do HQk(X(pﬁ Q) —— Do H?* (32 A X Q)

where 3 is the Bott map. Since X2 A X(p) is homotopy equivalent to a wedge of
localized spheres, we get the lemma. [

Since SU (n) is p-regular we can apply Lemma 4.1.
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Lemma 4.2. For any b; € H¥(SU(n);Z,) for n < j < p, there is o €
IN((SU(n))(p) such that

(GO, n<j<p
Chj(a):{o J i>p

Proof. Since SU(n) is p-regular and (j!)~! € Z(Xp) for n < j < p, Lemma 4.2 follows
from Lemma 4.1. ([l

Lemma 4.3. For any f, f’: SU(n)p) — SU(N) ),
(Fn o (f A f') 0 A) (azk) =0
for k > p.

Proof. If k > p, then 7*(aax) = 0 by the dimensional reasons. 3, (azp) = Tan—1 @
ZTop—1. Since 3+5+7 =15 > 2n—1, f*(ron—1) = NTon—1 and f*(zo,—1) = N Ton_1
for n,n" € Z,y. Therefore

A*o (f N[ oF(azp) =mn'a3, 1 =0
O

Now we can prove (ii). Note that dim SU(n) = n? — 1. Since d4p —3 =8n — 7 >
n? —1if n < 7, the group homomorphism (Q&),: [SU(n), QW,],) — [SU(n),QE]
is an isomorphism by Lemma 2.2. Since H*(SU(n);Z,) is a free Z,)-module,
[SU(n),QE] is a free Z(,)-module by Lemma 2.4. Since by 2.1, A® Q is an isomor-
phism, A is monic. For any maps f, f': SU(n)y — SU(n) ),

Ao (f A f) o A) € Im(Ao (Qr).)
by Lemma 4.2, Lemma 4.3 and (iii) of Lemma 2.1. Since A is monic,
Fno (fA f')o A eIm(Qm).

and
[ T=mo(fAf)oA=doqno(fAf)oA=0
in [SU(n), SU(n)]p) = H(SU(n))(p).-

For the case U(n), if 2 < n < 4, then dimU(n) = n? < 8n — 6 = 4p — 2.
[U(n), QWy]p is a free Z(,)-module. Since 1 4+3+5 =9 > 2n — 1 for n < 4, we
can prove for any f, f': U(n) ) — U(n)py, (o (f A f') o A)*(azk) =0 for k> p.
Therefore we can prove (ii) for G = U(n) similarly. O
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