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1. Introduction

For a connected Lie group G and a based space X, the set [X,G] of homotopy
classes of based maps from X to G inherits a group structure from G. If X is a
finite dimensional CW complex, the group [X,G] is nilpotent by [13]. Let p be
a prime. We consider the localization [X,G](p) of [X,G] (see [7]) and [X,G](p) is
isomorphic to [X,G(p)] (see [2]).

An important special case occurs when X = G. For then H(G) = [G,G] studied
extensively ([1], [6], [8], [10], [11]).

For an integer l ≥ 2, Gl denotes SU(l) or U(l) and Ḡl = SU(l)/H, where H is
a subgroup of the centre of SU(l) = Z/l. G∞ denotes SU(∞) or U(∞).

The purpose of this paper is to show the following:

Theorem 1.1. Assume n ≥ 3.
(i). H(SU(n))(p) is commutative if and only if p = 2n − 1 for n = 3, 4, 6, 7 or

p > 2n− 1.
(ii). H(U(n))(p) is commutative if and only if p = 2n − 1 for n = 3, 4, or

p > 2n− 1.
(iii). H(Ḡn)(p) is commutative if and only if H(SU(n))(p) is commutative.

Remark 1.2. (i). If n = 2, SU(2) ∼= S3 and SU(2)/(Z/2) ∼= SO(3). H(SU(2)) and
H(SO(3)) are commutative (see [8]). H(U(2)) is known by [10]. H(U(2))(2) is not
commutative and H(U(2))(p) is commutative for p ≥ 3.

(ii). If p > 2n− 1, Gn(p) is homotopy commutative by McGibbon [9]. Therefore
H(Gn)(p) is commutative if p > 2n− 1.

(iii). If n ≥ 3 and p ≥ 2n − 1, then p > n. Therefore if p ≥ 2n − 1 the
natural projection q : SU(n) → Ḡn induces a Hopf equivalence q : SU(n)(p) →
Ḡn(p) denoted by the same symbol. Therefore q∗ : H(Ḡn(p)) → [SU(n), Ḡn(p)] and
q∗ : [SU(n), Ḡn(p)]→ H(SU(n))(p) are isomorphism of groups and

q−1
∗ ◦ q∗ : H(Ḡn)(p) → H(SU(n))(p)

is an isomorphism of groups.

Denote the commutator of Gn and Ḡn by γn and γ̄n respectively. Define a map
α : Gn → Gn by α(A) = Ā for A ∈ Gn. α induces a map ᾱ : Ḡn → Ḡn satisfying
ᾱ ◦ q = q ◦ α. To prove Theorem 1.1, we show the following:

Proposition 1.3. (i). If p < 2n−1, then [α, 1] = γn ◦ (α∧1)◦∆ 6= 0 in H(Gn)(p).
(ii). If p < 2n− 1, then [ᾱ, 1] 6= 0 in H(Ḡn)(p).
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Proposition 1.4. (i). If n ≥ 8 and p = 2n − 1 is a prime, then H(SU(n))(p)

is not commutative. If n ≥ 5 and p = 2n − 1 is a prime, then H(U(n))(p) is not
commutative.

(ii). If n = 3, 4, 6 or 7 and p = 2n − 1, H(SU(n))(p) is commutative. If n = 3
or 4 and p = 2n− 1, H(U(n))(p) is commutative.

Consider the fibre sequence

ΩG∞
Ωπ−−→ ΩWl

δ−→ Gl
j−→ G∞

π−→Wl = G∞/Gl

where π is the projection and j : Gl → G∞ is the inclusion. A lift γ̃l : Gl∧Gl → ΩWl

of γl (γl ' δ ◦ γ̃l) constructed in [5] plays an important role in this paper. We
review results on unstable K-theory, [ , Gl] in section 2. Using the results in
section 2, Proposition 1.3 and Proposition 1.4 are proved in section 3 and section
4 respectively.

2. Unstable K-theory

In this section l ≥ 2. Let Wl = G∞/Gl and π : G∞ →Wl be the projection. As
an algebra

H∗(Gl) ∼=
∧

(x1, x3, . . . , x2l−1)

where deg x2j−1 = 2j − 1, x2j−1 = σ(cj) and x1 = 0 if G = SU and

H∗(Wl) ∼=
∧

(x̄2l+1, x̄2l+3, . . . )

where deg x̄2j+1 = 2j+1, π∗(x̄2j+1 = 2j+1). Moreover P1ρ(x̄2j+1) = jρ(x̄2j+2p−1)
where ρ is the mod p reduction. Put a2j = σ(x̄2j+1). Consider the fibre sequence

ΩG∞
Ωπ−−→ ΩWl

δ−→ Gl
j−→ G∞

π−→Wl.

In [5] a lift γ̃l : Gl ∧Gl → ΩWl of γl satisfying δ ◦ γ̃l ' γl and

γ̃∗l (a2l) =
∑

i+j=l−1

x2i+1 ⊗ x2j+1

is constructed. Moreover by [4]

γ̃∗l (a2k) =
∑

i+j=k−1

x2i+1 ⊗ x2j+1

for k ≥ l. Define a map

x̄ =
∏
j≥0

x2j+1 : Wl → K =
∏
j≥l

Kj

where Kj = K(Z(p), 2j + 1). Then x̄(0) : Wl(0) → K(0) is a homotopy equivalence.
For a finite complex X, consider the map

λ = (Ωx̄)∗ : [X,ΩWl]→
⊕

H2j(X; Z(p)).

We have the following:

Lemma 2.1. (i). λ is a group homomorphism and

λ([f ]) = (f∗(a2l), f∗(a2l+2), . . . ),

where f : X → ΩWl.
(ii). λ⊗Q is an isomorphism.
(iii). λ◦(Ωπ)∗(α) = (l!chl(α), (l+1)!chl+1(α), . . . ) where α ∈ [X,ΩG∞] = K̃(X).
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(iv). If dimX = 2l, then Θ = (Ωx2l+1)∗ : [X,ΩWl]→ H2l(X) is an isomorphism
of groups (see [5]).

Let Ej be the homotopy fibre of a generator of H2j+2p(Kj ; Z(p)) ∼= Zp where
j ≥ 2. As an algebra

H∗(Ej ; Z(p)) ∼=
∧

(v2j+1, v2j+2p−1)

for ∗ ≤ 2j + 4p− 3, where deg vk = k and P1ρ(v2j+1) = ρ(v2j+2p−1). Consider the
fibering:

Kj+p−1 → Ej
θj−→ Kj

if j ≥ l, there is a lift x̂2j+1 of x̄2j+1 satisfying θj ◦x̂2j+1 ' x̄2j+1, (x̂2j+1)∗(v2j+1) =
x̄2j+1 and

(x̂2j+1)∗(v2j+2p−1) ≡ jx̄2j+2p−1

modulo pH2j+2p−1(Wl; Z(p)), since P1ρ(x̄2j+1) = jρ(x2j+2p−1) and βP1ρ(x̄2j+1) =
0. Define

x̂ = x̂l =
l+p−2∏
j=l

x̂2j+1 : Wl(p) → E =
l+p−2∏
j=l

Ej .

We have the following:

Lemma 2.2. If l < p, then x̂ is a (4p− 2)-equivalence.

Proof. (x̂)∗ : H∗(E; Z(p)) → H∗(Wl(p); Z(p)) is an isomorphism for ∗ ≤ 4p− 2 and
injective for ∗ = 4p−1. Therefore H∗(x̂; Z(p)) = 0 for ∗ ≤ 4p−1 and H∗(x̂; Z(p)) = 0
for ∗ ≤ 4p− 2. �

Remark 2.3. Since Ej ' Ω2Ej+1, ΩEj is a homotopy commutative Hopf space.
Therefore for a finite complex X, the group [X,ΩEj ] is commutative. Note that
Ej(0) ' (Kj ×Kj+p−1)(0).

Consider the following exact commutative diagram

H2j+2p−2(X; Z(p)) //

⊗Q

��

[X,ΩEj ] //

⊗Q

��

H2j(X; Z(p))

��
0 // H2j+2p−2(X; Q) // [X,ΩEj ](0)

// H2j(X,Q) // 0

Therefore if H∗(X; Z(p)) is free Z(p)-module,

0→ H2j+2p−2(X; Z(p))→ [X,ΩEj ]→ H2j(X; Z(p))→ 0

is exact and [X,ΩEj ] is a free Z(p)-module and we have

Lemma 2.4. If H∗(X; Z(p)) is a free Z(p)-module, then

[X,ΩE]

is a free Z(p)-module.
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3. Proof of Proposition 1.3

Assume n ≥ 3. Denote a generator of Hj(Sj) by uj . Let m be an integer
satisfying m < n ≤ 2m. Define a map

θ : X = S2m−1 × S2m+1 → Gn

by θ = µ◦(εm×εm+1), where εj denotes a generator of π2j−1(Gn) ∼= Z for 2 ≤ j ≤ n
and µ the multiplication of Gn. Let i : Gn → G2m be the inclusion. Note that
ε∗j (x2j−1) = (j − 1)!u2j−1. Then we have

Lemma 3.1. If j 6= m or m+ 1, θ∗(x2j−1) = 0 and

θ∗(x2j−1) =

{
(m− 1)!u2m−1 if j = m

m!u2m+1 if j = m+ 1.

Note that α∗(x2j−1) = (−1)jx2j−1. Put ξ = i ◦ [α, 1] ◦ θ and

ξ̃ = γ̃2m ◦ (i ∧ i) ◦ (α ∧ 1) ◦∆ ◦ θ.

Then δ ◦ ξ̃ ' γ2m ◦ (i∧ i) ◦ (α∧ 1) ◦∆ ◦ θ = i ◦ γn ◦ (α∧ 1) ◦∆ ◦ θ = i ◦ [α, 1] ◦ θ = ξ.

Lemma 3.2. ξ̃∗(a4m) = 2(−1)m((m− 1)!m!)u2m−1u2m+1.

Proof.

a4m
γ̃∗2m7−→

∑
x2i+1 ⊗ x2j+1

(i∧i)∗7−→
∑

x2i+1 ⊗ x2j+1
(α∧1)∗7−→

∑
(−1)i+1x2i+1 ⊗ x2j+1

7−→ (−1)m((m− 1)!u2m−1)(m!u2m+1) + (−1)m+1(m!u2m+1)((m− 1)!u2m−1)

= 2(−1)m((m− 1)!m!)u2m−1u2m+1.

�

Consider the following exact commutative diagram

K̃(X)
Θ // H4m(X) // [X,G2m]

K̃(S4m)
Θ
//

∼= q∗

OO

H4m(S4m) //

∼= q∗

OO

[S4m, G2m]

OO

where q : X → S4m is the natural projection. Note that Im{Θ: K̃(S4m)→ H̃(S4m)} =
(2m)!Z (see [5]) and Θ(ξ̃) = 2((m − 1)!m!)u2m−1u2m+1. Since the localization is
an exact functor, if there exists m satisfying m < n ≤ 2m and

(2m)!
2(m− 1)!m!

= m

(
2m− 1
m

)
≡ 0 mod p,

then ξ /∈ Im{(Ωπ)∗ : K̃(X)(p) → [X,ΩW2m](p)} and ξ ' δ ◦ ξ̃ 6= 0 in [X,G2m](p).
Therefore [α, 1] 6= 0 in [Gn, Gn](p).

Lemma 3.3. If p < 2n − 1, then there exists m satisfying m < n ≤ 2m and
m
(

2m−1
m

)
≡ 0 mod p.

Proof. If n > p, put m = [(n − 1)/p]p. Then m < n ≤ 2m and m
(

2m−1
m

)
≡ 0

mod p. If n ≤ p < 2n − 1, then p is odd and p ≤ 2n − 3. Put m = p+1
2 then

2m = p+ 1 ≥ n and
(

2m−1
m

)
≡ 0 mod p since 1 ≤ m ≤ p− 1. �
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Proof of (ii). Since γn(ga, g′a′) = γn(g, g′) for g, g′ ∈ SU(n) and a, a′ ∈ H, γn
induces a map γ′n : Ḡn ∧ Ḡn → SU(n) satisfying γ′n ◦ (q ∧ q) = γn and q ◦ γ′n = γ̄n.
Since q is a finite covering,

q∗ : [Ḡn, SU(n)]→ [Ḡn, Ḡn] = H(Ḡn)

is monic. If p < 2n− 1, [α, 1] 6= 0 in H(SU(n))(p). Since

γ′n ◦ (ᾱ ∧ 1) ◦∆ ◦ q = γ′n ◦ (ᾱ ∧ 1) ◦ (q ∧ q) ◦∆

= γ′n ◦ (q ∧ q) ◦ (α ∧ 1) ◦∆

= γn ◦ (α ∧ 1) ◦∆ = [α, 1] 6= 0

in H(SU(n))(p), γ′n ◦ (γ̄ ∧ 1) ◦∆ 6= 0 in [Ḡn, SU(n)](p). Therefore

[ᾱ, 1] = γ̄n ◦ (ᾱ ∧ 1) ◦∆ = q ◦ γ′n ◦ (ᾱ ∧ 1) ◦∆ 6= 0

in H(Ḡn)(p). �

4. Proof of Proposition 1.4

Proof of (i). Note that Gn is p-regular if p = 2n − 1 (see [12]). If n ≥ 8, then
2n− 9 ≥ 7. Consider the following maps:

β1 : SU(n)(p) '
n∏
j=2

S2j−1
(p)

π′′−−→ S3
(p) × S

5
(p) × S

2n−9
(p)

q−→ S2n−1
(p)

εn−→ SU(n)(p)

β2 : SU(n)(p)
π′′′−−→ S2n−1

(p)

εn−→ SU(n)(p)

where π′′, π′′′ and q are projections. Using the fact that the Samelson product
〈εn, εn〉 6= 0 in π4n−2(SU(2n− 1))(p) (see [3]), 〈εn, εn〉 6= 0 in π4n−2(SU(n))(p). We
can prove (i) by a quite similar method to that in the proof of Proposition 4.1 of
[6]. If n ≥ 5, then 2n− 5 ≥ 5 and (i) for G = U is shown similarly. �

Proof of (ii). Assume n ≤ 7 and p = 2n− 1 is a prime.

Lemma 4.1. If X(p) '
∏
Snα(p), then

Im{ch : K̃(X)(p) →
⊕
k>0

H2k(X; Q)}

is equal to
⊕

k>0H
2k(X; Z).

Proof. As is well known Im{chl : K̃(S2l)→ H2l(S2l; Q)} = H2l(S2l). Consider the
following commutative diagram

K̃(X)(p)
∼= K̃(X(p))(p)

β

∼=
//

��

K̃(Σ2 ∧X(p))(p)

ch

��⊕
k>0H

2k(X(p); Q) //⊕
k>0H

2k(Σ2 ∧X(p); Q)

where β is the Bott map. Since Σ2 ∧ X(p) is homotopy equivalent to a wedge of
localized spheres, we get the lemma. �

Since SU(n) is p-regular we can apply Lemma 4.1.
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Lemma 4.2. For any bj ∈ H2j(SU(n); Z(p)) for n ≤ j < p, there is α ∈
K̃(SU(n))(p) such that

chj(α) =

{
(j!)−1bj n ≤ j < p

0 j ≥ p.

Proof. Since SU(n) is p-regular and (j!)−1 ∈ Z×(p) for n ≤ j < p, Lemma 4.2 follows
from Lemma 4.1. �

Lemma 4.3. For any f, f ′ : SU(n)(p) → SU(n)(p),

(γ̃n ◦ (f ∧ f ′) ◦∆)∗(a2k) = 0

for k ≥ p.

Proof. If k > p, then γ̃∗(a2k) = 0 by the dimensional reasons. γ̃n(a2p) = x2n−1 ⊗
x2n−1. Since 3+5+7 = 15 > 2n−1, f∗(x2n−1) = ηx2n−1 and f ′∗(x2n−1) = η′x2n−1

for η, η′ ∈ Z(p). Therefore

∆∗ ◦ (f ∧ f ′)∗ ◦ γ̃∗n(a2p) = ηη′x2
2n−1 = 0

�

Now we can prove (ii). Note that dimSU(n) = n2 − 1. Since 4p− 3 = 8n− 7 >
n2 − 1 if n ≤ 7, the group homomorphism (Ωx̂)∗ : [SU(n),ΩWn](p) → [SU(n),ΩE]
is an isomorphism by Lemma 2.2. Since H∗(SU(n); Z(p)) is a free Z(p)-module,
[SU(n),ΩE] is a free Z(p)-module by Lemma 2.4. Since by 2.1, λ⊗Q is an isomor-
phism, λ is monic. For any maps f, f ′ : SU(n)(p) → SU(n)(p),

λ(γ̃n ◦ (f ∧ f ′) ◦∆) ∈ Im(λ ◦ (Ωπ)∗)

by Lemma 4.2, Lemma 4.3 and (iii) of Lemma 2.1. Since λ is monic,

γ̃n ◦ (f ∧ f ′) ◦∆ ∈ Im(Ωπ)∗

and
[f, f ′] = γn ◦ (f ∧ f ′) ◦∆ ' δ ◦ γ̃n ◦ (f ∧ f ′) ◦∆ = 0

in [SU(n), SU(n)](p) = H(SU(n))(p).
For the case U(n), if 2 ≤ n ≤ 4, then dimU(n) = n2 < 8n − 6 = 4p − 2.

[U(n),ΩWn](p) is a free Z(p)-module. Since 1 + 3 + 5 = 9 > 2n − 1 for n ≤ 4, we
can prove for any f, f ′ : U(n)(p) → U(n)(p), (γ̃n ◦ (f ∧ f ′) ◦∆)∗(a2k) = 0 for k ≥ p.
Therefore we can prove (ii) for G = U(n) similarly. �
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[8] A. Kono and H. Ōshima, Commutativity of group of self-homotopy classes of Lie groups,

Bull London Math. Soc. 36 (2004) 37-52.
[9] C. A. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math. 106 (1985)

665-687.

[10] H. Ōshima, Self homotopy groups of the exceptional Lie groups G2, J. Math. Kyoto Univ. 40
(2001) 177-184.
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