Splitting of gauge groups

Daisuke Kishimoto and Akira Kono

March 24, 2009

1 Introduction

We will always assume each space has the homotopy type of a CW-complex.

Let G be a topological group and let P be a principal G-bundle over a space B. The gauge group of P, denoted $\mathcal{G}(P)$, is the group of automorphisms of P covering the identity of B.

Fix a basepoint b_0 of B. Then the basepoint inclusion $b_0 \hookrightarrow B$ induces a homomorphism of topological groups

$$\mathcal{G}(P) \to \mathcal{G}(P|_{b_0}) \cong G.$$

Since we work with CW-complexes which are normal, this homomorphism is easily seen to be a surjection. We call the kernel of this homomorphism the based gauge group of P and denote by $\mathcal{G}_0(P)$. Namely, $\mathcal{G}_0(P)$ consists of automorphisms of P covering 1_B which restrict to the identity on the fibre at the basepoint b_0 . Now we have an extension of topological groups:

$$1 \to \mathcal{G}_0(P) \xrightarrow{\iota} \mathcal{G}(P) \xrightarrow{\pi} G \to 1 \tag{1.1}$$

The second author [14] classified the homotopy types of $\mathcal{G}(P)$ as spaces, not as topological groups, when P runs all over principal SU(2)-bundles over S^4 . Later, Crabb and Sutherland [4] studied the homotopy type of $\mathcal{G}(P)$ as H-spaces for a general P. Moreover, when B is a simply connected 4-manifold and G = SU(2), Tsukuda and the second author [15], [22] classified the homotopy types of the classifying spaces $B\mathcal{G}(P)$, equivalently, the homotopy types of $\mathcal{G}(P)$ as loop spaces. These results suggest us to study the homotopy theory of gauge groups as spaces with intermediate higher homotopy associativity in the sense of Stasheff [18], that is, as A_n spaces. In particular, we may study the group extension (1.1) in the category of A_n -spaces and A_n -maps. The aim of this article is to study a splitting of (1.1) in the category of A_n -spaces and A_n -maps which we call an A_n -splitting. More precisely, we will formulate the A_n -splitting and consider:

Question 1.1. 1. What does a geometric meaning of an A_n -splitting of (1.1)?

2. Give a criterion for an A_n -splitting of (1.1).

Regarding the first question, we consider a relation between an A_n -splitting of (1.1) and the bundle P. Let $\mathrm{ad}: G \to \mathrm{Aut}G$ be the adjoint action of G on itself and let $\mathrm{ad}P = P \times_{\mathrm{ad}} G$, the adjoint bundle of P. Introducing fibrewise analogue of A_n -maps between topological monoids, we obtain:

Theorem 1.1. There is an A_n -splitting of (1.1) if and only if adP is fibrewise A_n -equivalent to the trivial bundle $B \times G$.

Let $\operatorname{map}(X, Y; f)$ be the path component of the space of maps from X to Y containing f, where we will always take f to be basepoint preserving. Denote the universal G-bundle by $EG \to BG$. Regarding the second question, we will be concerned with the classical result of Atiyah and Bott [2]:

$$B\mathcal{G}(P) \simeq \max(B, BG; \alpha),$$
 (1.2)

where α is the classifying map of P. Naturality of this homotopy equivalence allows us to identify the map $B\pi : B\mathcal{G}(P) \to BG$ with the evaluation fibration map $(B, BG; \alpha) \to BG$. This leads us to the definition of H(k, l)-spaces having the following property.

Theorem 1.2. There is an A_l -splitting of (1.1) if BG is an H(k, l)-space and $\operatorname{cat} B \leq k$.

As above, H(k, l)-space is motivated by the evaluation fibration $\operatorname{map}(B, BG; \alpha) \to BG$ and, in particular, H(1, n)-space can be described by the connecting map $\delta : G \to \operatorname{map}_0(B, BG; \alpha)$ in the fibre sequence $G \xrightarrow{\delta} \operatorname{map}_0(B, BG; \alpha) \to \operatorname{map}(B, BG; \alpha) \to BG$, where $\operatorname{map}_0(X, Y; f)$ is the subspace of $\operatorname{map}(X, Y; f)$ consisting of based maps. Note that the adjoint action $\operatorname{ad} : G \to$ $\operatorname{aut}(G)$ induces a map $B\operatorname{ad} : G \to \operatorname{map}_0(BG, BG; 1)$ which assigns each $g \in G$ to the map $B\operatorname{ad}(g) : BG \to BG$. Here we must notice that $B\operatorname{ad}$ does not mean the map $BG \to B\operatorname{aut}(G)$ induced from the adjoint action $\operatorname{ad} : G \to \operatorname{aut}(G)$. Then we obtain:

Theorem 1.3. The connecting map $\delta : G \to \operatorname{map}_0(B, BG; \alpha)$ is given by $\delta(g) = \operatorname{Bad}(g) \circ \alpha$ for $g \in G$.

Let $E_n G \to B_n G$ be the *n*-th stage of Milnor's construction of the universal bundle $EG \to BG$ [16]. By definition, BG is an H(1, n)-space if and only if the connecting map δ in Theorem 1.3 is trivial for the inclusion $i_n : B_n G \to BG$. Then we have:

Corollary 1.1. BG is an H(1,n)-space if and only if $Bad \circ i_n : G \to map_0(B_nG, BG; i_n)$ is null-homotopic.

We will investigate an H(k, l)-space further in view of higher homotopy commutativity as follows. By definition, the loop space of an H(1, 1)-space is homotopy commutative and an $H(\infty, \infty)$ -space is an H-space. On the other hand, Sugawara [21] constructed a class of spaces between homotopy commutative topological monoids and the loop spaces of H-spaces, called higher homotopy commutativity. Then we expect that the loop spaces of H(k, l)-spaces form a new class of higher homotopy commutativity. Kawamoto and Hemmi [12] introduced $H_k(n)$ -spaces in order to unify Aguadé's T_k -spaces [1] and Félix and Tanré's H(n)-spaces [6]. They also introduced higher homotopy commutativity called $C_k(n)$ -spaces in order to describe $H_k(n)$ -spaces for i + j = n and $i = 1, \ldots, k$. Moreover, in describing an $H_k(n)$ -space by a $C_k(n)$ -space, they worked at the level of H(i, j)-spaces. This leads us to define a new class of higher homotopy commutativity, C(k, l)-spaces, by cutting $C_k(n)$ -spaces into pieces and obtain:

Theorem 1.4. A connected topological monoid is a C(k, l)-space if and only if its classifying space is an H(k, l)-space.

Combining Theorem 1.1, Theorem 1.2 and Theorem 1.4, we can conclude:

Corollary 1.2. Let G be a connected topological group and let P be a principal G-bundle over B. If G is a C(k, l)-space, then there is an A_n -splitting of (1.1), equivalently, adP is fibrewise A_n -homotopy equivalent to the trivial bundle $B \times G$.

The authors would like to thank Y. Kawamoto for pointing out similarity of $H_k(n)$ -spaces and H(k, l)-spaces, and for letting the second author know his work with Hemmi [12].

2 A_n -splitting

In this section, we formulate a splitting of an extension of topological groups in the category of A_n -spaces and A_n -maps which we call an A_n -splitting. An A_n -space was introduced by Stasheff [18] to be a space with a multiplication which enjoys a certain higher homotopy associativity. Then an A_n -map should be a map between A_n -spaces preserving their A_n -space structures. Stasheff [19] defined an A_n -map between A_∞ -spaces. Later, he [20] defined an A_n -map from an A_n -space to an A_∞ -space and implied an A_n -map between A_n -spaces completely. Of course, these definitions of A_n -maps are consistent and then we will use convenient one case by case.

An A_n -splitting of an extension of topological groups should be analogous to a splitting in the category of topological groups and their homomorphisms. Then we define an A_n -splitting of an extension of topological groups as follows. **Definition 2.1.** An A_n -splitting of an extension of topological groups $1 \to K \to \tilde{H} \to H \to 1$ consists of the following:

- 1. There is an A_n -structure on $H \times K$, the direct product as spaces, not as topological groups, which restricts to the canonical group structures on $H \times \{1\}$ and $\{1\} \times K$.
- 2. There is an A_n -map $\theta : H \times K \to \tilde{H}$ with respect to the above A_n -structure on $H \times K$ satisfying the homotopy commutative diagram:

where π is the second projection.

Let $1 \to K \to \tilde{H} \xrightarrow{\pi} H \to 1$ be an extension of topological groups. A splitting of this extension as groups can be completely described by a section of π which is a group homomorphism. We shall show that there is an analogy for an A_n -splitting. Namely, a homotopy section of π which is an A_n -map, called an A_n -section, implies an A_n -splitting of the extension, where homotopy section of π is a map $s: H \to \tilde{H}$ such that $\pi \circ s \simeq 1_H$.

Let us first recall Stasheff's polytope, the associahedron, which was used to define an A_n -space and an A_n -map from A_n -space to an A_∞ -space (See [18] and [20]). The *i*-th associahedron K_i is an (i-2)-dimensional convex polytope having the face maps

$$\partial_k(r,s): K_r \times K_s \to K_i$$

for r + s = i + 1 and $1 \le k \le i - s + 1$ and the degeneracy maps

$$s_i: K_i \to K_{i-1}$$

for $1 \leq j \leq i$. In particular, there are relations:

$$s_j \circ \partial_k(r,s) = \begin{cases} \partial_k(r,s-1) \circ (1 \times s_{j-k+1}) & k \le j < k+s \\ \partial_k(r-1,s) \circ (s_{j-s+1} \times 1) & j \ge k+s \end{cases}$$
(2.1)

There is a one to one correspondence between vertices of K_i and connected binary trees with n-leaves. In order to define an A_n -space structure from an A_n -section, we consider the following operations of binary trees. Let T_n be the set of connected binary trees with n leaves and let \widehat{T}_n be the set of ordered binary trees, not necessarily connected, with n leaves. Then we can label each leaf of an element of \widehat{T}_n from 1 to n in the obvious way. Define a map $\delta : T_{n+1} \to \widehat{T}_n$ by deleting the branches from the root to the n-th leaf. For example, $\delta : T_7 \to \widehat{T}_6$ is:

Then δ is a bijection. Analogously we define a map $\hat{\delta} : \widehat{T}_n \to \widehat{T}_{n-1}$ by applying the above map δ to the connected binary tree having the leaf labelled by n. Then $\delta : T_n \to \widehat{T}_{n-1}$ is the restriction of $\hat{\delta} : \widehat{T}_n \to \widehat{T}_{n-1}$.

Let X be an H-space. For $x_1, \ldots, x_n \in X$ and $t \in T_n$, we define $t(x_1, \ldots, x_n)$ as in [20], which is consistent with the definition of A_n -spaces. For example, if $t \in T_4$ is

then $t(x_1, x_2, x_3, x_4) = x_1((x_2x_3)x_4)$. Let G be a topological group. Using the above map t, for a map $f: X \to G$, we define a map $\hat{f}: \hat{T}_n \times X^n \to G$ by

$$\hat{f}(\hat{t}, x_1, \dots, x_n) = f(t_1(x_1, \dots, x_{n_1}))f(t_2(x_{n_1+1}, \dots, t_{n_1+n_2}))\cdots f(t_k(x_{n_1+\dots+n_{k-1}+1}, \dots, x_n)),$$

where $\hat{t} = t_1 \sqcup \cdots \sqcup t_k \in \widehat{T}_n$ such that $t_1 < \cdots < t_k$ and $t_i \in T_{n_i}$.

Now we consider an extension of topological groups $1 \to K \to \tilde{H} \xrightarrow{\pi} H \to 1$. Suppose that π admits an A_n -section s whose A_n -form is $\{m_i : K_{i+1} \times H^i \to \tilde{H}\}_{1 \le i \le n}$. As noted above, for a vertex $v \in K_{i+1}$ corresponding to $\hat{t} \in \hat{T}_i$, we have

$$h_i(v, x_1, \ldots, x_i) = s(\hat{t}, x_1, \ldots, x_i).$$

We write $\gamma_j(\tau, x) = h_j(s_{j+1}s_{j+2}\cdots s_i(\tau), \pi_{j+1}\pi_{j+2}\cdots \pi_i(x))$ for $\tau \in K_i, x \in K^i$ and the projection $\pi_j : K^i \to K^{i-1}$ omitting the *i*-th entry. Then, for a vertex $v \in K_i$ corresponding to $t \in T_i$ and $x = (x_1, \ldots, x_i) \in K^i$, it follows from (2.1) that

$$\gamma_j(v,x) = s(\hat{d}^{i-j}t, x_1, \dots, x_i).$$
 (2.2)

Define $M_i: K_i \times (H \times K)^i \to H \times K$ by

$$M_i(\tau, (h_1, k_1), \dots, (h_i, k_i)) = (h_1 h_2^{\gamma_1(\tau, k)} h_3^{\gamma_2(\tau, k)} \cdots h_i^{\gamma_{i-1}(\tau, k)}, k_1 \cdots k_i)$$

for $\tau \in K_i$ and $k = (k_1, \ldots, k_i) \in K^i$, where $g^h = hgh^{-1}$ for $g, h \in H$. Then, by (2.2), it is straightforward to check that $\{M_i : K_i \times (H \times K)^i \to H \times K\}_{2 \le i \le n+1}$ is an A_{n+1} -form on $H \times K$ such that, for a vertex $v \in K_i$ corresponding to $t \in T_i$, $M_i(v, (h_1, k_1), \ldots, (h_i, k_i)) =$ $t((h_1, k_1), \ldots, (h_i, k_i))$. In particular, the multiplication of $H \times K$ is defined by

$$(h_1, k_1) \cdot (h_2, k_2) = (h_1(h_2^{\sigma(k_1)}), k_1k_2)$$

which is analogous to semidirect products of groups.

By a quite analogous observation, we can see that the map $\theta: H \times K \to \tilde{H}$ defined by

$$\theta(h,k) = h \cdot s(k)$$

for $h \in H$ and $k \in K$ admits an A_n -form. Summarizing, we have established:

Lemma 2.1. An extension of topological groups $1 \to K \to \tilde{H} \xrightarrow{\pi} H \to 1$ has an A_n -splitting if and only if π admits an A_n -section.

3 Fibrewise A_n -map

In this section, we introduce fibrewise analogue of A_n -maps between topological monoids and characterize them by using fibrewise analogue of projective spaces. Let us first recall from [3] some notations and terminologies of fibrewise homotopy theory. Fix a space B. A fibrewise space over B is an arrow $X \xrightarrow{\pi_X} B$. π_X is called the projection and $\pi_X^{-1}(b)$ for $b \in B$ is called a fibre at b. Then the direct product $A \times B$ is a fibrewise space over B and, in particular, so is B itself. A fibrewise map from a fibrewise space $X \xrightarrow{\pi_X} B$ to $Y \xrightarrow{\pi_Y} B$ is a commutative diagram:

$$\begin{array}{c} X \longrightarrow Y \\ \pi_X \middle| \qquad \qquad \downarrow \pi_Y \\ B = B \end{array}$$

Then fibrewise spaces over B and fibrewise maps between them form a category which is nothing but the comma category $\underline{\text{Top}} \downarrow B$, where $\underline{\text{Top}}$ is the category of topological spaces and continuous maps. Fibrewise homotopy theory is not homotopy theory by the canonical model category structure on $\underline{\text{Top}} \downarrow B$ induced from $\underline{\text{Top}}$, but it respects fibre homotopy equivalence in the classical sense. With this in mind, we recall basic constructions in fibrewise homotopy theory. The fibrewise product $X \times_B Y$ of $X \xrightarrow{\pi_X} B$ and $Y \xrightarrow{\pi_Y} B$ is the pullback of the triad $X \xrightarrow{\pi_X} B \xrightarrow{\pi_Y} Y$, that is,

$$X \times_B Y = \{(x, y) \in X \times Y | \pi_X(x) = \pi_Y(y)\}.$$

Then the diagonal map restricts to the fibrewise diagonal map $X \to X \times_B X$, denoted Δ_B . We often abbreviate the fibrewise product of *n*-copies of a fibrewise space $X \to B$ by X^n by abuse of notation. We denote the fibrewise space $[0,1] \times B \to B$ by I_B and call it the fibrewise interval, here the projection is the second projection. A fibrewise homotopy is a fibrewise map $X \times_B I_B \to Y$ and we have a fibrewise homotopy equivalence in the obvious sense, which are the classical fibre homotopy and fibre homotopy equivalence respectively. With this notion of fibrewise homotopies, we have a fibrewise fibration and a fibrewise cofibration which are characterized by a fibrewise homotopy lifting property and a fibrewise homotopy extension property respectively (See [3]).

The fibrewise unreduced cone of $X \xrightarrow{\pi_X} B$, denoted $C_B X$, is a pushout of the cotriad $I_B \times_B X \leftrightarrow \{0\} \times X \xrightarrow{\pi_X} B$. Similarly, the fibrewise unreduced suspension of $X \xrightarrow{\pi_X} B$, denoted $\Sigma_B X$, is a pushout of the cotriad $I_B \times_B X \leftrightarrow \{0,1\} \times X \xrightarrow{1 \times \pi_X} \{0,1\} \times B$.

A fibrewise pointed space is a fibrewise space $X \to B$ with a distinguished section and then we assume $B \subset X$. We have a fibrewise pointed map in the obvious sense. The fibrewise reduced cone $C_B^B X$ and the fibrewise reduced suspension $\Sigma_B^B X$ are the fibrewise collapses $C_B X/_B C_B B$ and $\Sigma_B X/_B \Sigma_B B$ respectively (See [3, p.55]). A fibrewise pointed space is said to be well-pointed if the section is a fibrewise cofibration. Then, as in the usual case, if a fibrewise pointed space X over B is well-pointed, then $C_B X$ is fibrewise homotopy equivalent to $C_B^B X$ relative to X. In particular, $\Sigma_B X$ is fibrewise homotopy equivalent to $\Sigma_B^B X$.

In order to introduce a fibrewise analogue of A_n -maps between topological monoids, we need to have a fibrewise analogue of topological monoids which is given by replacing spaces and structure maps with fibrewise spaces and fibrewise maps of topological monoids as follows. A fibrewise topological monoid over B is a fibrewise space $X \xrightarrow{\pi_X} B$ with fibrewise maps $\epsilon : B \to X$ and $\mu : X \times_B X \to X$ satisfying two conditions:

$$\mu \circ (\mu \times 1) = \mu \circ (1 \times \mu), \ \mu \circ (1 \times \epsilon \pi_X) \circ \Delta_B = 1 = \mu \circ (\epsilon \circ \pi_X \times 1).$$

In particular, a fibrewise topological monoid is a fibrewise pointed space and each of its fibre is a topological monoid. We usually abbreviate $\mu(x, y)$ by xy. A fibrewise topological monoid $X \xrightarrow{\pi_X} B$ is a fibrewise topological group, if it has a fibrewise map $\iota : X \to X$ satisfying

$$\mu \circ (1 \times \iota) \circ \Delta_B = \epsilon \circ \pi_X = \mu \circ (\iota \times 1) \circ \Delta_B.$$

Let us look at examples of fibrewise topological monoids.

Example 3.1. Let $X \xrightarrow{\pi} B$ be a fibrewise pointed space with a distinguished section s. The fibrewise Moore path space of X is

$$\Omega'_B X = \coprod_{b \in B} \Omega'(\pi^{-1}(b))$$

equipped with an appropriate topology (See [3]), where $\Omega' Y$ is the Moore path space of a space Y. Then the loop multiplication of $\Omega'(\pi^{-1}(b))$ makes $\Omega'_B X$ be a fibrewise topological monoid.

Example 3.2. Let G be a topological group and let $\pi : P \to B$ be a principal G-bundle. Then the adjoint bundle adP is a fibrewise topological group with the structure maps:

$$\epsilon : B \to \mathrm{ad}P, \ \epsilon(b) = [\pi^{-1}(b), 1],$$
$$\mu : \mathrm{ad}P \times_B \mathrm{ad}P \to \mathrm{ad}P, \ \mu([x, g], [x, h]) = [x, gh],$$
$$\iota : \mathrm{ad}P \to \mathrm{ad}P, \ \iota([x, g]) = [x, g^{-1}],$$

where [x, g] is a equivalence class of $(x, g) \in P \times G$ in adP.

Now we define a fibrewise A_n -map between fibrewise topological monoids just by replacing objects and arrows with fibrewise ones and the interval [0, 1] with the fibrewise interval I_B (See [19] for the definition of the usual A_n -maps between topological monoids).

Definition 3.1. Let X and Y be fibrewise topological monoids over B. A fibrewise map $f: X \to Y$ is called a fibrewise A_n -map if there exists a sequence of fibrewise maps $\{h_i: I_B^{i-1} \times_B X^i \to Y\}_{1 \le i \le n}$ such that $h_1 = f$ and

$$h_i(t_1, \dots, t_{i-1}, x_1, \dots, x_i) = \begin{cases} h_{i-1}(t_1, \dots, \hat{t_j}, \dots, t_{i-1}, x_1, \dots, x_j x_{j+1}, \dots, x_i) & t_j = 0\\ h_j(t_1, \dots, t_{j-1}, x_1, \dots, x_j) h_{i-j}(t_{j+1}, \dots, t_{i-1}, x_{j+1}, \dots, x_i) & t_j = 1. \end{cases}$$

By a quite analogous proof to [20] and [7], we can see the following properties of fibrewise A_n -maps.

Proposition 3.1. 1. A fibrewise map f is fibrewise homotopic to a fibrewise A_n -map, then so is f.

- 2. The composition of fibrewise A_n -maps is a fibrewise A_n -map.
- 3. A homotopy inverse of a fibrewise homotopy equivalence which is a fibrewise A_n -map is a fibrewise A_n -map.

It follows from the above proposition that fibrewise homotopy equivalences which are fibrewise A_n -maps give an equivalence relation among fibrewise topological monoids. We call this equivalence by a fibrewise A_n -equivalence.

Let us characterize fibrewise A_n -maps using fibrewise analogue of projective spaces as in [19]. Note that we do not have appropriate quasi-fibrations in our fibrewise category. That is,

we do not have weak equivalences nor quasi-fibrations, which can be replaced with fibrewise fibrations by weak equivalences, in our fibrewise category. Then it seems impossible to mimic the proof of [19, Theorem 4.5] directly. However, we only need to deal with fibrewise topological groups and we can overcome the above difficulty by restricting to fibrewise topological groups.

Let G be a fibrewise topological group over B. Then, by [3, p.37], we have a fibrewise analogue of the Milnor construction for classifying spaces. Denote the *n*-th stage of the fibrewise Milnor construction for G by $\mathbf{E}_B^n G \to \mathbf{B}_B^n G$ which is a finite numerable fibrewise fibre bundle. Thus, by a quite analogous observation of [17, Corollary 14], we have:

Lemma 3.1. The fibrewise map $\mathbf{E}^n_B G \to \mathbf{B}^n_B G$ is a fibrewise fibration.

It will be convenient for later use to state a characterization of fibrewise A_n -maps by using fibrewise analogue of the Dold-Lashof construction which coincides with the Milnor construction in the usual case (See, for example, [8]). Then we define the fibrewise Dold-Lashof construction only by replacing everything in the Dold-Lashof construction with a fibrewise one as follows. Let H be a fibrewise topological monoid having a fibrewise action on E, denoted $m : H \times_B E \to$ E (See [3, p.15]). Start with a fibrewise map $q : E \to X$ enjoying q(m(h, x)) = p(x) for $(h, x) \in H \times_B X$. Let $DL_B(E)$ be the fibrewise quotient of $(H \times_B C_B E) \sqcup E$ by the relation $(h, (1, x)) \sim \mu(h, x)$ for $(h, (1, x)) \in H \times_B C_B E$ and let $DL_B(X)$ be the fibrewise quotient of $C_B E \sqcup X$ by $(1, x) \sim q(x)$ for $(1, x) \in C_B E$. Then the Dold-Lashof construction for q is the fibrewise map

$$DL_B(q) : DL_B(E) \to DL_B(X), \ (h, (t, x)) \mapsto (t, x).$$

Note that we do not have to take much care for topologies of $DL_B(E)$ and $DL_B(X)$ since we work in the category of spaces having the homotopy types of CW-complexes. Since H is fibrewise associative, we can apply the Dold-Lashof construction iteratively. We denote the iterated Dold-Lashof construction $DL_B^n(\pi_H) : DL_B^n(H) \to DL_B^n(B)$ for the projection $\pi_H : H \to B$ by $\pi_B^n : E_B^n H \to P_B^n H$. As in the usual case, we can easily verify that if H is a fibrewise topological group, $\pi_B^n : E_B^n H \to P_B^n H$ coincides with the *n*-th stage of the Milnor construction $\mathbf{E}_B^n H \to \mathbf{B}_B^n H$.

We follow [13] to characterize fibrewise A_n -maps then we first define a fibrewise A_n -structure of a fibrewise A_n -map. Let $D_B^n X = C_B E_B^n X$ for a fibrewise topological monoid X.

Definition 3.2. Let X and Y be fibrewise topological monoids over B. A fibrewise A_n -structure of a fibrewise map $f: X \to Y$ consists of:

1. f respects fibrewise units of X and Y.

2. There are sequences of commutative squares of fibrewise maps

$$\begin{array}{c|c} (D_B^{i+1}X, E_B^iX) \xrightarrow{f_E^i} (D_B^{i+1}Y, E_B^iY) \\ \hline & & & & \\ \pi_{i+1} \\ (P_B^{i+1}X, P_B^iX) \xrightarrow{f_P^i} (P_B^{i+1}Y, P_B^iY) \end{array}$$

for $1 \le i \le n-1$ such that $f_E^1|X = f$, $f_E^i|_{D_B^i X} = f_E^{i-1}$, $f_P^i|_{P_B^i X} = f_P^{i-1}$.

Now we give a characterization of fibrewise A_n -map.

Theorem 3.1. Let X be a fibrewise topological monoid over B and let Y be a fibrewise wellpointed topological group over B. A fibrewise map $f: X \to Y$ is a fibrewise A_n -map if and only if f possesses a fibrewise A_n -structure.

Proof. The if part is done by Sugawara's construction [21]. In order to prove the only if part, we can mimic the proof of [19, Theorem 4.5] instead of replacing quasi-fibrations with fibrations. Then if we can replace $\pi_B^n : E_B^n Y \to P_B^n Y$ with a fibrewise fibration, the proof is completed.

Consider the Dold-Lashof construction for the projection $\pi_Y : Y \to B$ in which the unreduced cone is replaced by the reduced cone. Then, as in [8], we obtain the Milnor construction $\mathbf{E}_B^n Y \to \mathbf{B}_B^n Y$ and hence a commutative diagram:

$$\begin{array}{c} E_B^n Y \longrightarrow \mathbf{E}_B^n Y \\ \xrightarrow{\pi_B^n} & \downarrow \\ P_B^n Y \longrightarrow \mathbf{B}_B^n Y \end{array}$$

Moreover, it follows from induction with the hypothesis that Y is fibrewise well-pointed, $\mathbf{E}_B^n Y$ and $\mathbf{B}_B^n Y$ are fibrewise well-pointed. This implies that the horizontal arrows in the above diagram are fibrewise homotopy equivalences and thus, by Lemma 3.1, we assume that π_B^n : $E_B^n Y \to P_B^n Y$ is a fibrewise fibration.

4 Set of sections

In this section, we consider the set of sections of a fibrewise space and prove Theorem 1.1. Let X be a fibrewise space over B. We denote the set of sections of X by $\Gamma(X)$. Then it is obvious that Γ is a functor from <u>Top</u> \downarrow B to <u>Top</u>. Note that, by the pointwise multiplication, $\Gamma(X)$ is a topological monoid and a topological group according as X is a fibrewise topological monoid and a fibrewise topological group. In particular, for a principal bundle P, $\Gamma(adP)$ is a topological group by which we have an isomorphism of topological groups

$$\mathcal{G}(P) \cong \Gamma(\mathrm{ad}P) \tag{4.1}$$

(See [2]).

Let $C: \underline{\mathrm{Top}} \to \underline{\mathrm{Top}}$ be the unreduced cone functor. We define a natural transformation $\lambda: C\Gamma \to \Gamma \overline{C_B}$ by

$$\lambda: C\Gamma(X) \to \Gamma(C_B X), \ \lambda(t, s)(b) = (t, s(b))$$
(4.2)

for $b \in B$. Let H be a fibrewise topological monoid with a fibrewise action $\mu : H \times_B E \to E$ and let $q : E \to X$ be a fibrewise map such that $q(\mu(h, x)) = x$ for $(h, x) \in H \times_B E$. Then, by definition, the natural transformation λ induces a commutative diagram

$$\begin{array}{c|c} \mathrm{DL}(\Gamma(E)) & \stackrel{\lambda}{\longrightarrow} \Gamma(\mathrm{DL}_B(E)) \\ \\ \mathrm{DL}(\Gamma(q)) & & & & & \\ \mathrm{DL}(\Gamma(X)) & \stackrel{\lambda}{\longrightarrow} \Gamma(\mathrm{DL}_B(X)) \end{array}$$

in which all maps respects the action of $\Gamma(H)$, where DL(-) means the usual Dold-Lashof construction. Then it follows that we have a commutative square

$$\begin{array}{c|c} (D^{n+1}\Gamma(H), E^{n}\Gamma(H)) \xrightarrow{\lambda_{n}} (\Gamma(D_{B}^{n+1}H), \Gamma(E_{B}^{n}H)) \\ & & & & \\ & & & & \\ \pi^{n+1} \\ (P^{n+1}\Gamma(H), P^{n}\Gamma(H)) \xrightarrow{\lambda_{n}} (\Gamma(P_{B}^{n+1}H), \Gamma(P_{B}^{n}H)) \end{array}$$

for all n such that

$$\bar{\lambda}_n|_{D^n\Gamma(H)} = \bar{\lambda}_{n-1}, \ \lambda_n|_{P^n\Gamma(H)} = \lambda_{n-1},$$

where, for a topological monoid $Y, \pi^n : E^n Y \to P^n Y$ is $DL^n(*) : DL(Y) \to DL(*)$ and $D^{n+1}Y = CE^n Y$.

Proof of Theorem 1.1. Suppose that we have an A_n -splitting of (1.1). Then, by Lemma 2.1, we have an A_n -section σ of $\pi : \mathcal{G}(P) \to G$ which is identified with the evaluation at the basepoint $\Gamma(\mathrm{ad}P) \to G$ through the isomorphism (4.1). Define a fibrewise map

 $\theta: B \times G \to \mathrm{ad}P, \ \theta(b,g) = \sigma(g)(b).$

Then we have $\theta|_{\{b_0\}\times G} \simeq 1_G$ since σ is a section of the evaluation at the basepoint $\Gamma(\mathrm{ad}P) \to G$, where b_0 is the basepoint of B. Thus, by Dold's theorem [5], θ is a fibrewise homotopy equivalence.

Since σ is an A_n -map, it possesses an A_n -structure in the sense of [13], that is, there is a sequence of homotopy commutative square

$$\begin{array}{cccc} (D^{i+1}G, E^{i}G) & \stackrel{\sigma_{E}^{i}}{\longrightarrow} (D^{i+1}\Gamma(\mathrm{ad}P), E^{i}\Gamma(\mathrm{ad}P)) \\ & & \downarrow \\ (P^{i+1}G, P^{i}G) & \stackrel{\sigma_{P}^{i}}{\longrightarrow} (P^{i+1}\Gamma(\mathrm{ad}P), P^{i}\Gamma(\mathrm{ad}P)) \end{array}$$

for i = 1, ..., n - 1 in which $\sigma_1^E|_G = \sigma, \sigma_E^i|_{D^iG} = f_E^{i-1}, f_P^i|_{P^iG} = f_P^{i-1}$. Note that

$$D^i_B(B \times G) = B \times G, \ E^i_B(B \times G) = B \times E^iG, \ P^i(B \times G) = B \times P^iG$$

and then we shall make these identifications. Define fibrewise maps

$$\theta^i_E: (D^{i+1}_B(B\times G), E^i_B(B\times G)) \to (D^{i+1}_B\mathrm{ad} P, E^i_B\mathrm{ad} P)$$

and

$$\theta_P^i: (P_B^{i+1}(B \times G), P_B^i(B \times G)) \to (P_B^{i+1} \mathrm{ad}P, P_B^i \mathrm{ad}P)$$

by

$$\theta_E^i(b,x) = \bar{\lambda}_i(\sigma_E^i(x))(b), \ \theta_P^i(b,y) = \lambda_i(\sigma_P^i(y))(b)$$

for $b \in B, x \in D^{i+1}G, y \in P^{i+1}G$. Then these fibrewise maps gives a fibrewise A_n -structure of θ and therefore, by Theorem 3.1, θ is a fibrewise A_n -equivalence.

Let X be a fibrewise space over B. As in (4.2), we have a map

$$\rho: [0,1] \times \Gamma(V) \to \Gamma(I_B \times_B X), \ \rho(t,s)(b) = (t,s(b))$$

for $(t,s) \in [0,1] \times \Gamma(V)$ and $b \in B$. Then a fibrewise A_n -map $f : X \to Y$ for fibrewise topological monoids X, Y induces an A_n -map $\Gamma(f) : \Gamma(X) \to \Gamma(Y)$ in the sense of [19].

Suppose that we have a fibrewise A_n -equivalence $\theta : B \times G \to \mathrm{ad}P$. Then it follows that we have an A_n -equivalence $\Gamma(\theta) : \Gamma(B \times G) \to \Gamma(\mathrm{ad}P)$. Now we have an isomorphism of topological groups $\Gamma(B \times G) \cong \mathrm{map}(B, G)$ which is natural with respect to B. Then the evaluation at the basepoint $\Gamma(B \times G) \to G$ is nothing but the evaluation at the basepoint $\mathrm{map}(B, G) \to G$ which admits a section as topological groups. Then we obtain an A_n -section of $\pi : \Gamma(\mathrm{ad}P) \to G$ and thus, by Lemma 2.1, we have established an A_n -splitting of (1.1).

5 H(k, l)-space

In this section, we consider the second question, that is, a criterion for an A_n -splitting of (1.1). Our major tool is the homotopy equivalence (1.2). Then let us first recall the construction of the construction of the homotopy equivalence (1.2). Let G be a topological group. We denote by map^G(X,Y) the space of all G-equivariant maps from X to Y for G-spaces X, Y. Let P and Q be principal G-bundles. Then $\mathcal{G}(P)$ acts on map^G(X,Y) by composition. Now we consider the case Q = EG. Then we have:

Lemma 5.1 ([11, Theorem 5.2], [2, Proposition 2.4]). 1. $\operatorname{map}^{G}(P, EG)$ is contractible.

2. The action of $\mathcal{G}(P)$ on map^G(P, EG) is free.

Then we have the universal $\mathcal{G}(P)$ -bundle:

$$\mathcal{G}(P) \to \operatorname{map}^{G}(P, EG) \to \operatorname{map}^{G}(P, EG) / \mathcal{G}(P)$$
 (5.1)

Let us denote by θ the map map^G(P, EG) \rightarrow map(B, BG; α) induced from the projections $P \rightarrow B$ and $EG \rightarrow BG$, where B is the base space of P and α is the classifying map of P. Then one can easily see that the map θ induces a homeomorphism

$$\bar{\theta} : \operatorname{map}^{G}(P, EG) / \mathcal{G}(P) \xrightarrow{\cong} \operatorname{map}(B, BG; \alpha)$$
 (5.2)

which is natural with respect to P. Thus we obtain a homotopy equivalence

$$\hat{\theta}: B\mathcal{G}(P) \xrightarrow{\simeq} \max(B, BG; \alpha)$$

which is natural with respect to P.

Consider the topological group G as the principal G-bundle over a point and identify $\mathcal{G}(G)$ with G. Then the basepoint inclusion $i: b_0 \to B$ induces a homotopy commutative diagram:

where 0 stands for the constant map. Then the evaluation at the basepoint $e : \operatorname{map}(B, BG; \alpha) \to BG$ is a model for $B\pi : B\mathcal{G}(P) \to BG$ and this leads us to the following definition of H(k, l)-spaces. Let $i_k : P^k \Omega X \to P^\infty \Omega X \simeq X$ denote the canonical inclusion.

Definition 5.1. A space X is called an H(k, l)-space if there is a map $m : P^k \Omega X \times P^l \Omega X \to X$ satisfying a homotopy commutative diagram:

$$\begin{array}{c|c} P^{k}\Omega X \lor P^{l}\Omega X \xrightarrow{i_{k} \lor i_{l}} X \\ \downarrow & & \\ p^{k}\Omega X \times P^{l}\Omega X \xrightarrow{m} X, \end{array}$$

where j is the inclusion.

It is obvious that an H(k, l)-space is an H(k', l')-space if $k \ge k'$ or $l \ge l'$. The loop space of an H(1, 1)-space is homotopy commutative and an $H(\infty, \infty)$ -space is an H-space. The loop spaces of H(k, l)-spaces give intermediate states between H-spaces and the loop spaces of Hspaces which will be discussed in section 7. On the other hand, an $H(\infty, k)$ -space is Aguadé's T_k -space [1]. In particular, an $H(1, \infty)$ -space is Aguadé's T-space and this can be seen also by the fibrewise homotopy equivalence $adEG \simeq LBG$ over BG, where LX is the free loop space of X.

An H(k, l)-space is defined to satisfy the following lemma:

Lemma 5.2. If a classifying space of a topological group G is an H(k, l)-space, then there is an A_n -splitting of the exact sequence $1 \to \mathcal{G}_0(E^kG) \to \mathcal{G}(E^kG) \xrightarrow{\pi} G \to 1$.

Proof. Recall first from [20] that, for A_{∞} -spaces X, Y, a map $f : X \to Y$ is an A_n -map if and only if its adjoint $\overline{f} : \Sigma X \to P^{\infty}Y$ extends to $P^n X \to P^{\infty}Y$ up to homotopy.

Suppose that X is an H(k, l)-space by $m : P^k \Omega X \times P^l \Omega X \to X$. Then, by the exponential law, the adjoint of m restricts to a map $\hat{m} : \Sigma \Omega X \to \max(P^k \Omega X, X; i_k)$ such that $e \circ \hat{m} \simeq i_1$, where $e : \max(P^k \Omega X, X; i_k) \to X$ is the evaluation at the basepoint. Then the adjoint of \hat{m} , say $\bar{m} : \Omega X \to \Omega \max(P^k \Omega X, X; i_k)$, is a homotopy section of Ωe and thus \bar{m} is an A_n -map. Therefore, by Lemma 2.1 and (5.3), Lemma 5.2 is established. \Box

Proof of Theorem 1.2. It is well-known that $\operatorname{cat} B \leq k$ if and only if $i_k : P^k \Omega B \to B$ admits a homotopy section. Then, by naturality of i_k , if $\operatorname{cat} B \leq k$, each map $f : B \to BG$ admits a map $\overline{f} : B \to P^k G$ such that $i_k \circ \overline{f} \simeq f$. This implies that $\overline{f}^{-1} E^k G \cong P$ and then an A_n -section for $\pi : \mathcal{G}(E^k G) \to G$ induces that of $\pi : \mathcal{G}(P) \to G$. Thus, by Lemma 5.2, the proof is completed. \Box

6 Investigating H(1, n)-spaces

In the previous section, we have obtained the universal $\mathcal{G}(P)$ -bundle (5.1). Then it follows from (5.2) that there is a homotopy equivalence $\varphi : \operatorname{map}^{G}(P, EG; \alpha)/\mathcal{G}_{0}(P) \to \operatorname{map}_{0}(B, BG; \alpha)$ and $\bar{\varphi} : B\mathcal{G}_{0}(P) \to \operatorname{map}^{G}(P, EG; \alpha)/\mathcal{G}_{0}(P)$ such that the following diagram of fibre sequences is homotopy commutative.

The aim of this section is to study the connecting map δ_{α} and characterize H(1, n)-spaces by it. Consider the following commutative diagram.

Then it is sufficient to consider the universal connecting map $\delta: G \to \text{map}_0(BG, BG; 1)$.

Put $\mathcal{E} = \operatorname{map}^G(EG, EG)$, $\mathcal{G} = \mathcal{G}(EG)$ and $\mathcal{G}_0 = \mathcal{G}_0(EG)$. Let \mathcal{E}_0 be the subspace of \mathcal{E} consisting of *G*-equivariant maps $EG \to EG$ restricting to the identity on the fibre at the basepoint. Then we have a fibre sequence $\mathcal{E}_0 \to \mathcal{E} \to \operatorname{map}^G(G, EG)$ induced from the basepoint inclusion of *BG*. Then it follows from Lemma 5.1 that \mathcal{E}_0 is contractible and \mathcal{G}_0 acts freely on \mathcal{E}_0 by composition. Then we have the universal \mathcal{G}_0 -bundle

$$\mathcal{G}_0 \to \mathcal{E}_0 \to \mathcal{E}_0/\mathcal{G}_0$$

On the other hand, the projection $\theta_0: \mathcal{E}_0 \to \mathrm{map}_0(BG, BG; 1)$ induces a homeomorphism

$$\bar{\theta}_0: \mathcal{E}_0/\mathcal{G}_0 \xrightarrow{\cong} \max_0(BG, BG; 1)$$

Note that the inclusion $\kappa : \mathcal{E}_0 \to \mathcal{E}$ induces a map $\bar{\kappa} : \mathcal{E}_0/\mathcal{G}_0 \to \mathcal{E}/\mathcal{G}_0$ by which the diagram

commutes up to homotopy.

Let us construct an alternative universal \mathcal{G} -bundle to describe the connecting map δ . Following Milnor [16], we denote an element of EG by $t_0g_0 \oplus t_1g_1 \oplus \cdots$ for $\sum_i t_i = 1, t_i \ge 0$ and $g_i \in G$ such that finite t_i 's are positive. The basepoint of EG is $1e \oplus 0 \oplus 0 \oplus \cdots$, where e is unity of G. For $g \in G$, we denote by ξ_g the principal bundle map

$$EG \to EG, t_0g_0 \oplus t_1g_1 \oplus \cdots \mapsto t_0g^{-1}g_0 \oplus t_1g^{-1}g_1 \oplus \cdots$$

Then we have a commutative diagram:

Now we let \mathcal{G} act on $\mathcal{E}_0 \times EG$ from right by

$$(f,x) \cdot g = (\xi_{\pi(g)^{-1}} \circ f \circ g, x \cdot \pi(g))$$

for $g \in \mathcal{G}$ and $(f, x) \in \mathcal{E}_0 \times EG$. One can easily check that this action is free and then we have established the universal \mathcal{G} -bundle

$$\mathcal{G} \to \mathcal{E}_0 \times EG \to (\mathcal{E}_0 \times EG)/\mathcal{G}.$$

Thus there exist a homotopy equivalence $\mathcal{E}/\mathcal{G} \to (\mathcal{E}_0 \times EG)/\mathcal{G}$ and a \mathcal{G} -equivariant homotopy equivalence $\nu : \mathcal{E} \to \mathcal{E}_0 \times EG$ by which the diagram

commutes up to homotopy. Since the above diagram is that of \mathcal{G}_0 -spaces and \mathcal{G}_0 -equivariant maps, we obtain a homotopy commutative diagram:

Note that the above action of \mathcal{G} on $\mathcal{E}_0 \times EG$ restricts to the product of the usual action of \mathcal{G}_0 on \mathcal{E}_0 and the trivial action of \mathcal{G}_0 on EG. Then we have $(\mathcal{E}_0 \times EG)/\mathcal{G}_0 = \mathcal{E}_0/\mathcal{G}_0 \times EG$ and thus the first projection $\pi_1 : \mathcal{E}_0 \times EG \to \mathcal{E}_0$ induces a homotopy equivalence $\bar{\pi}_0 : (\mathcal{E}_0 \times EG)/\mathcal{G}_0 \xrightarrow{\simeq} \mathcal{E}_0/\mathcal{G}_0$. Since map $\mathcal{G}_0(\mathcal{E}_0, \mathcal{E}_0)$ is contractible, in particular, path connected, the \mathcal{G}_0 -equivariant map $\pi_1 \circ \nu \circ \kappa$ is homotopic to the identity of \mathcal{E}_0 as \mathcal{G}_0 -equivariant maps. Then, by (6.2), we have established a homotopy commutative diagram:

Therefore we have obtained:

Lemma 6.1. There is a homotopy commutative diagram:

In particular, the connecting map δ is Bad.

Theorem 1.3 follows from (6.1).

7 C(k, l)-space

In this section, we discuss a relation between H(k, l)-spaces and higher homotopy commutativity as promised in section 5. Higher homotopy commutativity was first introduced by Sugawara [21] as intermediate states between loop spaces and loop spaces of H-spaces. Later, Williams [23] introduced another kind of higher homotopy commutativity using associahedra in section 2. Recently, Hemmi and Kawamoto [12] studied a relation between those higher homotopy commutativity, Aguadé's T_k -spaces [1] and Félix and Tanré's H(n)-spaces [6]. In order to relate them, They introduced $H_k(n)$ -spaces and $C_k(n)$ -spaces. $H_k(n)$ -spaces collect Aguadé's T_k -spaces and Félix and Tanré's H(n)-spaces whose definition is given by a sequence of H(k, l)spaces for k + l = n (See [12]). On the other hand, $C_k(n)$ -spaces are defined as follows by using Gel'fand, Kapranov and Zelevinsky's polytopes called resultohedra (See [9], [10] for definition of resultohedra).

Let $\mathbf{R}_+ = \{x \in \mathbf{R} | x \ge 0\}$. The result hedron $N_{m,n}$ is an (m+n-1)-dimensional polytope in \mathbf{R}_+^{m+n+2} which consists of all points $(p_0, \ldots, p_m, q_0, \ldots, q_n) \in \mathbf{R}_+^{m+n+2}$ satisfying:

$$\sum_{i=0}^{m} p_i = n, \ \sum_{i=0}^{n} q_i = m, \ h_{i,j} \ge 0, \ h_{m,n} = 0,$$

where

$$h_{i,j} = \sum_{k=0}^{i} (i-k)p_k + \sum_{l=0}^{j} (j-l)q_l - ij$$
(7.1)

for $0 \leq i \leq m$ and $0 \leq j \leq n$. Then, in particular, $N_{0,0}$ is the one point set and $N_{k,1}$ and $N_{1,k}$ are affinely homeomorphic to the k-simplex Δ^k . Vertices of $N_{m,n}$ is labelled by integer lattice paths from (0,0) to (m,n).

For $x = p_i, q_j$ and $h_{i,j}$ in (7.1), we put

$$N(x) = \{ (p_0, \dots, p_m, q_0, \dots, q_n) \in N_{m,n} | x = 0 \}.$$

Gel'fand, Kapranov and Zelevinsky [10] described the face maps

$$\epsilon^{(p_i)}: N_{m-1,n} \to N(p_i), \ \epsilon^{(q_j)}: N_{m,n-1} \to N(q_j), \ \epsilon^{(h_{i,j})}: N_{i,j} \times N_{m-i,n-j} \to N(h_{i,j}).$$

On the other hand, Hemmi and Kawamoto [12] described the degeneracy maps

$$\delta_i: N_{m,n} \to N_{m-1,m}, \ \delta'_j: N_{m,n} \to N_{m,n-1}.$$

Now a $C_k(n)$ -space is defined by a coherent sequence of maps $Q_{r,s} : N_{r,s} \times X^{r+s} \to X$ for a topological monoid $X, r+s \leq n$ and $s \leq k$ (See [12] for precise definition). The main result of [12] is:

Theorem 7.1 ([12, Theorem A]). A connected topological monoid is a $C_k(n)$ -space if and only if its classifying space is an $H_k(n)$ -space.

As noted above, definition of an $H_k(n)$ -space is a collection of that of H(k, l)-spaces for $k + l \leq n$ and, actually, the proof of Theorem 7.1 is done by collecting constructions on H(k, l)-spaces. Then, by defining C(k, l)-spaces as follows which is a modification of that of $C_k(n)$ -spaces, we obtain Theorem 1.4.

Definition 7.1. A topological monoid X is a C(k, l)-space if there exists a sequence of maps $Q_{r,s}: N_{r,s} \times X^{r+s} \to X$ for $0 \le r \le k$ and $0 \le s \le l$ satisfying:

$$\begin{split} &Q_{r,0}(*,x_1,\ldots,x_r) = x_1 \cdots x_r, \ Q_{0,s}(*,y_1,\ldots,y_s) = y_1 \cdots y_s \\ &Q_{r,s}(\epsilon^{(p_i)}(\sigma),x_1,\ldots,x_r,y_1,\ldots,y_s) = \begin{cases} x_1 \cdot Q_{r-1,s}(\sigma,x_2,\ldots,y_s) & i = 0 \\ Q_{r-1,s}(\sigma,x_1,\ldots,x_{i+1},\ldots,y_s) & 0 < i < r \\ Q_{r-1,s}(\sigma,x_1,\ldots,x_{r-1},y_1,\ldots,y_s) & i = r \end{cases} \\ &Q_{r,s}(\epsilon^{(q_j)}(\sigma),x_1,\ldots,x_r,y_1,\ldots,y_s) = \begin{cases} y_1 \cdot Q_{r,s-1}(\sigma,x_1,\ldots,x_r,y_2,\ldots,y_s) & j = 0 \\ Q_{r,s-1}(\sigma,x_1,\ldots,y_{j+1},\ldots,y_s) & 0 < j < s \\ Q_{r,s-1}(\sigma,x_1,\ldots,y_{s-1}) & j = s \end{cases} \\ &Q_{r,s}(\epsilon^{(h_{i,j})}(\sigma_1,\sigma_2),x_1,\ldots,x_r,y_1,\ldots,y_s) & = Q_{r-1,s}(\delta_i(\sigma),x_1,\ldots,x_{i-1},x_{i+1},\ldots,y_s) \\ &Q_{r,s}(\sigma,x_1,\ldots,x_{i-1},*,x_{i+1},\ldots,y_s) = Q_{r-1,s}(\delta_i(\sigma),x_1,\ldots,x_{i-1},x_{i+1},\ldots,y_s) \\ &Q_{r,s}(\sigma,x_1,\ldots,y_{j-1},*,y_{j+1},\ldots,y_s) = Q_{r,s-1}(\delta'_j(\sigma),x_1,\ldots,y_{j-1},y_{j+1},\ldots,y_s) \end{split}$$

References

- [1] J. Aguadé, Decomposable free loop spaces, Canad. J. Math. 39 (1987), no. 4, 938-955.
- M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523-615.
- [3] M. Crabb and I. James, *Fibrewise Homotopy Theory*, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1998.
- [4] M.C. Crabb, and W.A. Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc. (3) 81 (2000), no. 3, 747-768.
- [5] A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963) 223-255.
- [6] Y. Félix and D. Tanré, *H*-space structure on pointed mapping spaces, Algebr. Geom. Topol. 5 (2005), 713-724 (electronic).

- M. Fuchs, Verallgemeinerte Homotopie-Homomorphismen und klassifizierende Räume, Math. Ann. 161 (1965) 197-230.
- [8] P. Gajer, Geometry of Deligne cohomology, Invent. Math. 127 (1997), no. 1, 155–207.
- [9] I.M. Gel'fand, M.M. Kapranov and A.V. Zelevinsky, Newton polytopes of the classical resultant and discriminant, Adv. Math. 84 (1990), no. 2, 237-254.
- [10] I.M. Gel'fand, M.M. Kapranov and A.V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994.
- [11] D.H. Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23-50.
- [12] Y. Hemmi and Y. Kawamoto, *Higher homotopy commutativity and the resultohedra*, preprint.
- [13] N. Iwase and M. Mimura, *Higher homotopy associativity*, Algebraic topology (Arcata, CA, 1986), 193-220, Lecture Notes in Math., **1370**, Springer, Berlin, 1989.
- [14] A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), no. 3-4, 295-297.
- [15] A. Kono and S. Tsukuda, 4-manifolds X over BSU(2) and the corresponding homotopy types map(X, BSU(2)), J. Pure Appl. Algebra 151 (2000), no. 3, 227-237.
- [16] J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436.
- [17] E.H. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London 1966.
- [18] J.D. Stasheff, Homotopy associativity of H-spaces I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
- [19] J.D. Stasheff, Homotopy associativity of H-spaces II, Trans. Amer. Math. Soc. 108 (1963), 293-312.
- [20] J.D. Stasheff, *H-spaces from a Homotopy Point of View*, Lecture Notes in Mathematics 161, Springer-Verlag, Berlin-New York 1970.
- M. Sugawara, On the homotopy-commutativity of groups and loop spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 257-269.

- [22] S. Tsukuda, Comparing the homotopy types of the components of map(S⁴, BSU(2)), J.
 Pure Appl. Algebra 161 (2001), no. 1-2, 235-243.
- [23] F.D. Williams, *Higher homotopy-commutativity*, Trans. Amer. Math. Soc. **139** (1969) 191-206.