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1 Introduction

We will always assume each space has the homotopy type of a CW-complex.

Let G be a topological group and let P be a principal G-bundle over a space B. The gauge

group of P , denoted G(P ), is the group of automorphisms of P covering the identity of B.

Fix a basepoint b0 of B. Then the basepoint inclusion b0 ↪→ B induces a homomorphism of

topological groups

G(P ) → G(P |b0) ∼= G.

Since we work with CW-complexes which are normal, this homomorphism is easily seen to be

a surjection. We call the kernel of this homomorphism the based gauge group of P and denote

by G0(P ). Namely, G0(P ) consists of automorphisms of P covering 1B which restrict to the

identity on the fibre at the basepoint b0. Now we have an extension of topological groups:

1 → G0(P )
ι→ G(P )

π→ G → 1 (1.1)

The second author [14] classified the homotopy types of G(P ) as spaces, not as topological

groups, when P runs all over principal SU(2)-bundles over S4. Later, Crabb and Sutherland [4]

studied the homotopy type of G(P ) as H-spaces for a general P . Moreover, when B is a simply

connected 4-manifold and G = SU(2), Tsukuda and the second author [15], [22] classified the

homotopy types of the classifying spaces BG(P ), equivalently, the homotopy types of G(P ) as

loop spaces. These results suggest us to study the homotopy theory of gauge groups as spaces

with intermediate higher homotopy associativity in the sense of Stasheff [18], that is, as An-

spaces. In particular, we may study the group extension (1.1) in the category of An-spaces and

An-maps. The aim of this article is to study a splitting of (1.1) in the category of An-spaces

and An-maps which we call an An-splitting. More precisely, we will formulate the An-splitting

and consider:

Question 1.1. 1. What does a geometric meaning of an An-splitting of (1.1)?
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2. Give a criterion for an An-splitting of (1.1).

Regarding the first question, we consider a relation between an An-splitting of (1.1) and the

bundle P . Let ad : G → AutG be the adjoint action of G on itself and let adP = P ×ad G, the

adjoint bundle of P . Introducing fibrewise analogue of An-maps between topological monoids,

we obtain:

Theorem 1.1. There is an An-splitting of (1.1) if and only if adP is fibrewise An-equivalent

to the trivial bundle B × G.

Let map(X,Y ; f) be the path component of the space of maps from X to Y containing

f , where we will always take f to be basepoint preserving. Denote the universal G-bundle by

EG → BG. Regarding the second question, we will be concerned with the classical result of

Atiyah and Bott [2]:

BG(P ) ' map(B,BG; α), (1.2)

where α is the classifying map of P . Naturality of this homotopy equivalence allows us to

identify the map Bπ : BG(P ) → BG with the evaluation fibration map(B,BG; α) → BG.

This leads us to the definition of H(k, l)-spaces having the following property.

Theorem 1.2. There is an Al-splitting of (1.1) if BG is an H(k, l)-space and catB ≤ k.

As above, H(k, l)-space is motivated by the evaluation fibration map(B,BG; α) → BG and,

in particular, H(1, n)-space can be described by the connecting map δ : G → map0(B,BG; α)

in the fibre sequence G
δ→ map0(B,BG; α) → map(B,BG; α) → BG, where map0(X,Y ; f) is

the subspace of map(X,Y ; f) consisting of based maps. Note that the adjoint action ad : G →
aut(G) induces a map Bad : G → map0(BG,BG; 1) which assigns each g ∈ G to the map

Bad(g) : BG → BG. Here we must notice that Bad does not mean the map BG → Baut(G)

induced from the adjoint action ad : G → aut(G). Then we obtain:

Theorem 1.3. The connecting map δ : G → map0(B,BG; α) is given by δ(g) = Bad(g) ◦ α

for g ∈ G.

Let EnG → BnG be the n-th stage of Milnor’s construction of the universal bundle EG →
BG [16]. By definition, BG is an H(1, n)-space if and only if the connecting map δ in Theorem

1.3 is trivial for the inclusion in : BnG → BG. Then we have:

Corollary 1.1. BG is an H(1, n)-space if and only if Bad ◦ in : G → map0(BnG, BG; in) is

null-homotopic.
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We will investigate an H(k, l)-space further in view of higher homotopy commutativity

as follows. By definition, the loop space of an H(1, 1)-space is homotopy commutative and

an H(∞,∞)-space is an H-space. On the other hand, Sugawara [21] constructed a class of

spaces between homotopy commutative topological monoids and the loop spaces of H-spaces,

called higher homotopy commutativity. Then we expect that the loop spaces of H(k, l)-spaces

form a new class of higher homotopy commutativity. Kawamoto and Hemmi [12] introduced

Hk(n)-spaces in order to unify Aguadé’s Tk-spaces [1] and Félix and Tanré’s H(n)-spaces [6].

They also introduced higher homotopy commutativity called Ck(n)-spaces in order to describe

Hk(n)-spaces by higher homotopy. An Hk(n)-space is, in fact, given by patchinig together

H(i, j)-spaces for i + j = n and i = 1, . . . , k. Moreover, in describing an Hk(n)-space by a

Ck(n)-space, they worked at the level of H(i, j)-spaces. This leads us to define a new class of

higher homotopy commutativity, C(k, l)-spaces, by cutting Ck(n)-spaces into pieces and obtain:

Theorem 1.4. A connected topological monoid is a C(k, l)-space if and only if its classifying

space is an H(k, l)-space.

Combining Theorem 1.1, Theorem 1.2 and Theorem 1.4, we can conclude:

Corollary 1.2. Let G be a connected topological group and let P be a principal G-bundle over

B. If G is a C(k, l)-space, then there is an An-splitting of (1.1), equivalently, adP is fibrewise

An-homotopy equivalent to the trivial bundle B × G.

The authors would like to thank Y. Kawamoto for pointing out similarity of Hk(n)-spaces

and H(k, l)-spaces, and for letting the second author know his work with Hemmi [12].

2 An-splitting

In this section, we formulate a splitting of an extension of topological groups in the category of

An-spaces and An-maps which we call an An-splitting. An An-space was introduced by Stasheff

[18] to be a space with a multiplication which enjoys a certain higher homotopy associativity.

Then an An-map should be a map between An-spaces preserving their An-space structures.

Stasheff [19] defined an An-map between A∞-spaces. Later, he [20] defined an An-map from

an An-space to an A∞-space and implied an An-map between An-spaces. Finally, Iwase and

Mimura [13] described an An-map between An-spaces completely. Of course, these definitions

of An-maps are consistent and then we will use convenient one case by case.

An An-splitting of an extension of topological groups should be analogous to a splitting in

the category of topological groups and their homomorphisms. Then we define an An-splitting

of an extension of topological groups as follows.

3



Definition 2.1. An An-splitting of an extension of topological groups 1 → K → H̃ → H → 1

consists of the following:

1. There is an An-structure on H × K, the direct product as spaces, not as topological

groups, which restricts to the canonical group structures on H × {1} and {1} × K.

2. There is an An-map θ : H × K → H̃ with respect to the above An-structure on H × K

satisfying the homotopy commutative diagram:

1 // K // H̃ // H // 1

1 // K // H × K
π //

θ

OO

H // 1,

where π is the second projection.

Let 1 → K → H̃
π→ H → 1 be an extension of topological groups. A splitting of this exten-

sion as groups can be completely described by a section of π which is a group homomorphism.

We shall show that there is an analogy for an An-splitting. Namely, a homotopy section of

π which is an An-map, called an An-section, implies an An-splitting of the extension, where

homotopy section of π is a map s : H → H̃ such that π ◦ s ' 1H .

Let us first recall Stasheff’s polytope, the associahedron, which was used to define an An-

space and an An-map from An-space to an A∞-space (See [18] and [20]). The i-th associahedron

Ki is an (i − 2)-dimensional convex polytope having the face maps

∂k(r, s) : Kr × Ks → Ki

for r + s = i + 1 and 1 ≤ k ≤ i − s + 1 and the degeneracy maps

sj : Ki → Ki−1

for 1 ≤ j ≤ i. In particular, there are relations:

sj ◦ ∂k(r, s) =

{
∂k(r, s − 1) ◦ (1 × sj−k+1) k ≤ j < k + s

∂k(r − 1, s) ◦ (sj−s+1 × 1) j ≥ k + s
(2.1)

There is a one to one correspondence between vertices of Ki and connected binary trees with

n-leaves. In order to define an An-space structure from an An-section, we consider the following

operations of binary trees. Let Tn be the set of connected binary trees with n leaves and let T̂n

be the set of ordered binary trees, not necessarily connected, with n leaves. Then we can label

each leaf of an element of T̂n from 1 to n in the obvious way. Define a map δ : Tn+1 → T̂n by

deleting the branches from the root to the n-th leaf. For example, δ : T7 → T̂6 is:
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Then δ is a bijection. Analogously we define a map δ̂ : T̂n → T̂n−1 by applying the above map δ

to the connected binary tree having the leaf labelled by n. Then δ : Tn → T̂n−1 is the restriction

of δ̂ : T̂n → T̂n−1.

Let X be an H-space. For x1, . . . , xn ∈ X and t ∈ Tn, we define t(x1, . . . , xn) as in [20],

which is consistent with the definition of An-spaces. For example, if t ∈ T4 is
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then t(x1, x2, x3, x4) = x1((x2x3)x4). Let G be a topological group. Using the above map t, for

a map f : X → G, we define a map f̂ : T̂n × Xn → G by

f̂(t̂, x1, . . . , xn) = f(t1(x1, . . . , xn1))f(t2(xn1+1, . . . , tn1+n2)) · · · f(tk(xn1+···+nk−1+1, . . . , xn)),

where t̂ = t1 t · · · t tk ∈ T̂n such that t1 < · · · < tk and ti ∈ Tni
.

Now we consider an extension of topological groups 1 → K → H̃
π→ H → 1. Suppose that

π admits an An-section s whose An-form is {mi : Ki+1 × H i → H̃}1≤i≤n. As noted above, for

a vertex v ∈ Ki+1 corresponding to t̂ ∈ T̂i, we have

hi(v, x1, . . . , xi) = s(t̂, x1, . . . , xi).

We write γj(τ, x) = hj(sj+1sj+2 · · · si(τ), πj+1πj+2 · · ·πi(x)) for τ ∈ Ki, x ∈ Ki and the projec-

tion πj : Ki → Ki−1 omitting the i-th entry. Then, for a vertex v ∈ Ki corresponding to t ∈ Ti

and x = (x1, . . . , xi) ∈ Ki, it follows from (2.1) that

γj(v, x) = s(d̂i−jt, x1, . . . , xi). (2.2)

Define Mi : Ki × (H × K)i → H × K by

Mi(τ, (h1, k1), . . . , (hi, ki)) = (h1h
γ1(τ,k)
2 h

γ2(τ,k)
3 · · ·hγi−1(τ,k)

i , k1 · · · ki)

5



for τ ∈ Ki and k = (k1, . . . , ki) ∈ Ki, where gh = hgh−1 for g, h ∈ H. Then, by (2.2), it

is straightforward to check that {Mi : Ki × (H × K)i → H × K}2≤i≤n+1 is an An+1-form on

H × K such that, for a vertex v ∈ Ki corresponding to t ∈ Ti, Mi(v, (h1, k1), . . . (hi, ki)) =

t((h1, k1), . . . , (hi, ki)). In particular, the multiplication of H × K is defined by

(h1, k1) · (h2, k2) = (h1(h
σ(k1)
2 ), k1k2)

which is analogous to semidirect products of groups.

By a quite analogous observation, we can see that the map θ : H × K → H̃ defined by

θ(h, k) = h · s(k)

for h ∈ H and k ∈ K admits an An-form. Summarizing, we have established:

Lemma 2.1. An extension of topological groups 1 → K → H̃
π→ H → 1 has an An-splitting if

and only if π admits an An-section.

3 Fibrewise An-map

In this section, we introduce fibrewise analogue of An-maps between topological monoids and

characterize them by using fibrewise analogue of projective spaces. Let us first recall from [3]

some notations and terminologies of fibrewise homotopy theory. Fix a space B. A fibrewise

space over B is an arrow X
πX→ B. πX is called the projection and π−1

X (b) for b ∈ B is called a

fibre at b. Then the direct product A × B is a fibrewise space over B and, in particular, so is

B itself. A fibrewise map from a fibrewise space X
πX→ B to Y

πY→ B is a commutative diagram:

X //

πX

²²

Y

πY

²²
B B

Then fibrewise spaces over B and fibrewise maps between them form a category which is

nothing but the comma category Top ↓ B, where Top is the category of topological spaces and

continuous maps. Fibrewise homotopy theory is not homotopy theory by the canonical model

category structure on Top ↓ B induced from Top, but it respects fibre homotopy equivalence

in the classical sense. With this in mind, we recall basic constructions in fibrewise homotopy

theory. The fibrewise product X ×B Y of X
πX→ B and Y

πY→ B is the pullback of the triad

X
πX→ B

πY← Y , that is,

X ×B Y = {(x, y) ∈ X × Y |πX(x) = πY (y)}.
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Then the diagonal map restricts to the fibrewise diagonal map X → X ×B X, denoted ∆B.

We often abbreviate the fibrewise product of n-copies of a fibrewise space X → B by Xn by

abuse of notation. We denote the fibrewise space [0, 1]×B → B by IB and call it the fibrewise

interval, here the projection is the second projection. A fibrewise homotopy is a fibrewise map

X ×B IB → Y and we have a fibrewise homotopy equivalence in the obvious sense, which are

the classical fibre homotopy and fibre homotopy equivalence respectively. With this notion

of fibrewise homotopies, we have a fibrewise fibration and a fibrewise cofibration which are

characterized by a fibrewise homotopy lifting property and a fibrewise homotopy extension

property respectively (See [3]).

The fibrewise unreduced cone of X
πX→ B, denoted CBX, is a pushout of the cotriad IB ×B

X ←↩ {0} × X
πX→ B. Similarly, the fibrewise unreduced suspension of X

πX→ B, denoted ΣBX,

is a pushout of the cotriad IB ×B X ←↩ {0, 1} × X
1×πX−→ {0, 1} × B.

A fibrewise pointed space is a fibrewise space X → B with a distinguished section and then

we assume B ⊂ X. We have a fibrewise pointed map in the obvious sense. The fibrewise reduced

cone CB
B X and the fibrewise reduced suspension ΣB

BX are the fibrewise collapses CBX/BCBB

and ΣBX/BΣBB respectively (See [3, p.55]). A fibrewise pointed space is said to be well-pointed

if the section is a fibrewise cofibration. Then, as in the usual case, if a fibrewise pointed space

X over B is well-pointed, then CBX is fibrewise homotopy equivalent to CB
B X relative to X.

In particular, ΣBX is fibrewise homotopy equivalent to ΣB
BX.

In order to introduce a fibrewise analogue of An-maps between topological monoids, we

need to have a fibrewise analogue of topological monoids which is given by replacing spaces and

structure maps with fibrewise spaces and fibrewise maps of topological monoids as follows. A

fibrewise topological monoid over B is a fibrewise space X
πX→ B with fibrewise maps ε : B → X

and µ : X ×B X → X satisfying two conditions:

µ ◦ (µ × 1) = µ ◦ (1 × µ), µ ◦ (1 × επX) ◦ ∆B = 1 = µ ◦ (ε ◦ πX × 1).

In particular, a fibrewise topological monoid is a fibrewise pointed space and each of its fibre

is a topological monoid. We usually abbreviate µ(x, y) by xy. A fibrewise topological monoid

X
πX

→ B is a fibrewise topological group, if it has a fibrewise map ι : X → X satisfying

µ ◦ (1 × ι) ◦ ∆B = ε ◦ πX = µ ◦ (ι × 1) ◦ ∆B.

Let us look at examples of fibrewise topological monoids.

Example 3.1. Let X
π→ B be a fibrewise pointed space with a distinguished section s. The

fibrewise Moore path space of X is

Ω′
BX =

∐
b∈B

Ω′(π−1(b))
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equipped with an appropriate topology (See [3]), where Ω′Y is the Moore path space of a space

Y . Then the loop multiplication of Ω′(π−1(b)) makes Ω′
BX be a fibrewise topological monoid.

Example 3.2. Let G be a topological group and let π : P → B be a principal G-bundle. Then

the adjoint bundle adP is a fibrewise topological group with the structure maps:

ε : B → adP, ε(b) = [π−1(b), 1],

µ : adP ×B adP → adP, µ([x, g], [x, h]) = [x, gh],

ι : adP → adP, ι([x, g]) = [x, g−1],

where [x, g] is a equivalence class of (x, g) ∈ P × G in adP .

Now we define a fibrewise An-map between fibrewise topological monoids just by replacing

objects and arrows with fibrewise ones and the interval [0, 1] with the fibrewise interval IB (See

[19] for the definition of the usual An-maps between topological monoids).

Definition 3.1. Let X and Y be fibrewise topological monoids over B. A fibrewise map

f : X → Y is called a fibrewise An-map if there exists a sequence of fibrewise maps {hi :

I i−1
B ×B X i → Y }1≤i≤n such that h1 = f and

hi(t1, . . . , ti−1, x1, . . . , xi)

=

{
hi−1(t1, . . . , t̂j, . . . , ti−1, x1, . . . , xjxj+1, . . . , xi) tj = 0

hj(t1, . . . , tj−1, x1, . . . , xj)hi−j(tj+1, . . . , ti−1, xj+1, . . . , xi) tj = 1.

By a quite analogous proof to [20] and [7], we can see the following properties of fibrewise

An-maps.

Proposition 3.1. 1. A fibrewise map f is fibrewise homotopic to a fibrewise An-map, then

so is f .

2. The composition of fibrewise An-maps is a fibrewise An-map.

3. A homotopy inverse of a fibrewise homotopy equivalence which is a fibrewise An-map is a

fibrewise An-map.

It follows from the above proposition that fibrewise homotopy equivalences which are fibre-

wise An-maps give an equivalence relation among fibrewise topological monoids. We call this

equivalence by a fibrewise An-equivalence.

Let us characterize fibrewise An-maps using fibrewise analogue of projective spaces as in

[19]. Note that we do not have appropriate quasi-fibrations in our fibrewise category. That is,
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we do not have weak equivalences nor quasi-fibrations, which can be replaced with fibrewise

fibrations by weak equivalences, in our fibrewise category. Then it seems impossible to mimic

the proof of [19, Theorem 4.5] directly. However, we only need to deal with fibrewise topological

groups and we can overcome the above difficulty by restricting to fibrewise topological groups.

Let G be a fibrewise topological group over B. Then, by [3, p.37], we have a fibrewise

analogue of the Milnor construction for classifying spaces. Denote the n-th stage of the fibrewise

Milnor construction for G by En
BG → Bn

BG which is a finite numerable fibrewise fibre bundle.

Thus, by a quite analogous observation of [17, Corollary 14], we have:

Lemma 3.1. The fibrewise map En
BG → Bn

BG is a fibrewise fibration.

It will be convenient for later use to state a characterization of fibrewise An-maps by using

fibrewise analogue of the Dold-Lashof construction which coincides with the Milnor construction

in the usual case (See, for example, [8]). Then we define the fibrewise Dold-Lashof construction

only by replacing everything in the Dold-Lashof construction with a fibrewise one as follows. Let

H be a fibrewise topological monoid having a fibrewise action on E, denoted m : H ×B E →
E (See [3, p.15]). Start with a fibrewise map q : E → X enjoying q(m(h, x)) = p(x) for

(h, x) ∈ H ×B X. Let DLB(E) be the fibrewise quotient of (H ×B CBE) t E by the relation

(h, (1, x)) ∼ µ(h, x) for (h, (1, x)) ∈ H ×B CBE and let DLB(X) be the fibrewise quotient of

CBE t X by (1, x) ∼ q(x) for (1, x) ∈ CBE. Then the Dold-Lashof construction for q is the

fibrewise map

DLB(q) : DLB(E) → DLB(X), (h, (t, x)) 7→ (t, x).

Note that we do not have to take much care for topologies of DLB(E) and DLB(X) since we work

in the category of spaces having the homotopy types of CW-complexes. Since H is fibrewise

associative, we can apply the Dold-Lashof construction iteratively. We denote the iterated

Dold-Lashof construction DLn
B(πH) : DLn

B(H) → DLn
B(B) for the projection πH : H → B

by πn
B : En

BH → P n
BH. As in the usual case, we can easily verify that if H is a fibrewise

topological group, πn
B : En

BH → P n
BH coincides with the n-th stage of the Milnor construction

En
BH → Bn

BH.

We follow [13] to characterize fibrewise An-maps then we first define a fibrewise An-structure

of a fibrewise An-map. Let Dn
BX = CBEn

BX for a fibrewise topological monoid X.

Definition 3.2. Let X and Y be fibrewise topological monoids over B. A fibrewise An-structure

of a fibrewise map f : X → Y consists of:

1. f respects fibrewise units of X and Y .
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2. There are sequences of commutative squares of fibrewise maps

(Di+1
B X,Ei

BX)
f i

E //

πi+1

²²

(Di+1
B Y,Ei

BY )

πi+1

²²
(P i+1

B X,P i
BX)

f i
P // (P i+1

B Y, P i
BY )

for 1 ≤ i ≤ n − 1 such that f1
E|X = f , f i

E|Di
BX = f i−1

E , f i
P |P i

BX = f i−1
P .

Now we give a characterization of fibrewise An-map.

Theorem 3.1. Let X be a fibrewise topological monoid over B and let Y be a fibrewise well-

pointed topological group over B. A fibrewise map f : X → Y is a fibrewise An-map if and only

if f possesses a fibrewise An-structure.

Proof. The if part is done by Sugawara’s construction [21]. In order to prove the only if part, we

can mimic the proof of [19, Theorem 4.5] instead of replacing quasi-fibrations with fibrations.

Then if we can replace πn
B : En

BY → P n
BY with a fibrewise fibration, the proof is completed.

Consider the Dold-Lashof construction for the projection πY : Y → B in which the unre-

duced cone is replaced by the reduced cone. Then, as in [8], we obtain the Milnor construction

En
BY → Bn

BY and hence a commutative diagram:

En
BY //

πn
B

²²

En
BY

²²
P n

BY // Bn
BY

Moreover, it follows from induction with the hypothesis that Y is fibrewise well-pointed, En
BY

and Bn
BY are fibrewise well-pointed. This implies that the horizontal arrows in the above

diagram are fibrewise homotopy equivalences and thus, by Lemma 3.1, we assume that πn
B :

En
BY → P n

BY is a fibrewise fibration.

4 Set of sections

In this section, we consider the set of sections of a fibrewise space and prove Theorem 1.1.

Let X be a fibrewise space over B. We denote the set of sections of X by Γ(X). Then it is

obvious that Γ is a functor from Top ↓ B to Top. Note that, by the pointwise multiplication,

Γ(X) is a topological monoid and a topological group according as X is a fibrewise topological

monoid and a fibrewise topological group. In particular, for a principal bundle P , Γ(adP ) is a

topological group by which we have an isomorphism of topological groups

G(P ) ∼= Γ(adP ) (4.1)
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(See [2]).

Let C : Top → Top be the unreduced cone functor. We define a natural transformation

λ : CΓ → ΓCB by

λ : CΓ(X) → Γ(CBX), λ(t, s)(b) = (t, s(b)) (4.2)

for b ∈ B. Let H be a fibrewise topological monoid with a fibrewise action µ : H ×B E → E

and let q : E → X be a fibrewise map such that q(µ(h, x)) = x for (h, x) ∈ H ×B E. Then, by

definition, the natural transformation λ induces a commutative diagram

DL(Γ(E))

DL(Γ(q))
²²

λ̄ // Γ(DLB(E))

Γ(DLB(q))
²²

DL(Γ(X)) λ // Γ(DLB(X))

in which all maps respects the action of Γ(H), where DL(−) means the usual Dold-Lashof

construction. Then it follows that we have a commutative square

(Dn+1Γ(H), EnΓ(H))

πn+1

²²

λ̄n // (Γ(Dn+1
B H), Γ(En

BH))

πn+1
B

²²
(P n+1Γ(H), P nΓ(H))

λn // (Γ(P n+1
B H), Γ(P n

BH))

for all n such that

λ̄n|DnΓ(H) = λ̄n−1, λn|P nΓ(H) = λn−1,

where, for a topological monoid Y , πn : EnY → P nY is DLn(∗) : DL(Y ) → DL(∗) and

Dn+1Y = CEnY .

Proof of Theorem 1.1. Suppose that we have an An-splitting of (1.1). Then, by Lemma 2.1, we

have an An-section σ of π : G(P ) → G which is identified with the evaluation at the basepoint

Γ(adP ) → G through the isomorphism (4.1). Define a fibrewise map

θ : B × G → adP, θ(b, g) = σ(g)(b).

Then we have θ|{b0}×G ' 1G since σ is a section of the evaluation at the basepoint Γ(adP ) →
G, where b0 is the basepoint of B. Thus, by Dold’s theorem [5], θ is a fibrewise homotopy

equivalence.

Since σ is an An-map, it possesses an An-structure in the sense of [13], that is, there is a

sequence of homotopy commutative square

(Di+1G,EiG)
σi

E //

²²

(Di+1Γ(adP ), EiΓ(adP ))

²²
(P i+1G,P iG)

σi
P // (P i+1Γ(adP ), P iΓ(adP ))

11



for i = 1, . . . , n − 1 in which σE
1 |G = σ, σi

E|DiG = f i−1
E , f i

P |P iG = f i−1
P . Note that

Di
B(B × G) = B × G, Ei

B(B × G) = B × EiG, P i(B × G) = B × P iG

and then we shall make these identifications. Define fibrewise maps

θi
E : (Di+1

B (B × G), Ei
B(B × G)) → (Di+1

B adP,Ei
BadP )

and

θi
P : (P i+1

B (B × G), P i
B(B × G)) → (P i+1

B adP, P i
BadP )

by

θi
E(b, x) = λ̄i(σ

i
E(x))(b), θi

P (b, y) = λi(σ
i
P (y))(b)

for b ∈ B, x ∈ Di+1G, y ∈ P i+1G. Then these fibrewise maps gives a fibrewise An-structure of

θ and therefore, by Theorem 3.1, θ is a fibrewise An-equivalence.

Let X be a fibrewise space over B. As in (4.2), we have a map

ρ : [0, 1] × Γ(V ) → Γ(IB ×B X), ρ(t, s)(b) = (t, s(b))

for (t, s) ∈ [0, 1] × Γ(V ) and b ∈ B. Then a fibrewise An-map f : X → Y for fibrewise

topological monoids X,Y induces an An-map Γ(f) : Γ(X) → Γ(Y ) in the sense of [19].

Suppose that we have a fibrewise An-equivalence θ : B ×G → adP . Then it follows that we

have an An-equivalence Γ(θ) : Γ(B×G) → Γ(adP ). Now we have an isomorphism of topological

groups Γ(B ×G) ∼= map(B,G) which is natural with respect to B. Then the evaluation at the

basepoint Γ(B×G) → G is nothing but the evaluation at the basepoint map(B,G) → G which

admits a section as topological groups. Then we obtain an An-section of π : Γ(adP ) → G and

thus, by Lemma 2.1, we have established an An-splitting of (1.1).

5 H(k, l)-space

In this section, we consider the second question, that is, a criterion for an An-splitting of (1.1).

Our major tool is the homotopy equivalence (1.2). Then let us first recall the construction of

the construction of the homotopy equivalence (1.2). Let G be a topological group. We denote

by mapG(X,Y ) the space of all G-equivariant maps from X to Y for G-spaces X,Y . Let P and

Q be principal G-bundles. Then G(P ) acts on mapG(X,Y ) by composition. Now we consider

the case Q = EG. Then we have:

Lemma 5.1 ([11, Theorem 5.2], [2, Proposition 2.4]). 1. mapG(P,EG) is contractible.

2. The action of G(P ) on mapG(P,EG) is free.

12



Then we have the universal G(P )-bundle:

G(P ) → mapG(P,EG) → mapG(P,EG)/G(P ) (5.1)

Let us denote by θ the map mapG(P,EG) → map(B,BG; α) induced from the projections

P → B and EG → BG, where B is the base space of P and α is the classifying map of P .

Then one can easily see that the map θ induces a homeomorphism

θ̄ : mapG(P,EG)/G(P )
∼=→ map(B,BG; α) (5.2)

which is natural with respect to P . Thus we obtain a homotopy equivalence

θ̂ : BG(P )
'→ map(B,BG; α)

which is natural with respect to P .

Consider the topological group G as the principal G-bundle over a point and identify G(G)

with G. Then the basepoint inclusion i : b0 → B induces a homotopy commutative diagram:

BG(P ) Bπ //

' θ̂
²²

BG

θ̂

map(B,BG; α) i∗ // map(b0, BG; 0)

, (5.3)

where 0 stands for the constant map. Then the evaluation at the basepoint e : map(B,BG; α) →
BG is a model for Bπ : BG(P ) → BG and this leads us to the following definition of H(k, l)-

spaces. Let ik : P kΩX → P∞ΩX ' X denote the canonical inclusion.

Definition 5.1. A space X is called an H(k, l)-space if there is a map m : P kΩX×P lΩX → X

satisfying a homotopy commutative diagram:

P kΩX ∨ P lΩX
ik∨il //

j
²²

X

P kΩX × P lΩX
m // X,

where j is the inclusion.

It is obvious that an H(k, l)-space is an H(k′, l′)-space if k ≥ k′ or l ≥ l′. The loop space

of an H(1, 1)-space is homotopy commutative and an H(∞,∞)-space is an H-space. The loop

spaces of H(k, l)-spaces give intermediate states between H-spaces and the loop spaces of H-

spaces which will be discussed in section 7. On the other hand, an H(∞, k)-space is Aguadé’s

Tk-space [1]. In particular, an H(1,∞)-space is Aguadé’s T -space and this can be seen also by

the fibrewise homotopy equivalence adEG ' LBG over BG, where LX is the free loop space

of X.

An H(k, l)-space is defined to satisfy the following lemma:

13



Lemma 5.2. If a classifying space of a topological group G is an H(k, l)-space, then there is

an An-splitting of the exact sequence 1 → G0(E
kG) → G(EkG)

π→ G → 1.

Proof. Recall first from [20] that, for A∞-spaces X,Y , a map f : X → Y is an An-map if and

only if its adjoint f̄ : ΣX → P∞Y extends to P nX → P∞Y up to homotopy.

Suppose that X is an H(k, l)-space by m : P kΩX × P lΩX → X. Then, by the exponential

law, the adjoint of m restricts to a map m̂ : ΣΩX → map(P kΩX,X; ik) such that e ◦ m̂ ' i1,

where e : map(P kΩX,X; ik) → X is the evaluation at the basepoint. Then the adjoint of m̂,

say m̄ : ΩX → Ωmap(P kΩX,X; ik), is a homotopy section of Ωe and thus m̄ is an An-map.

Therefore, by Lemma 2.1 and (5.3), Lemma 5.2 is established.

Proof of Theorem 1.2. It is well-known that catB ≤ k if and only if ik : P kΩB → B admits

a homotopy section. Then, by naturality of ik, if catB ≤ k, each map f : B → BG admits

a map f̄ : B → P kG such that ik ◦ f̄ ' f . This implies that f̄−1EkG ∼= P and then an

An-section for π : G(EkG) → G induces that of π : G(P ) → G. Thus, by Lemma 5.2, the proof

is completed.

6 Investigating H(1, n)-spaces

In the previous section, we have obtained the universal G(P )-bundle (5.1). Then it follows from

(5.2) that there is a homotopy equivalence ϕ : mapG(P,EG; α)/G0(P ) → map0(B,BG; α) and

ϕ̄ : BG0(P ) → mapG(P,EG; α)/G0(P ) such that the following diagram of fibre sequences is

homotopy commutative.

G // BG0(P ) Bι //

ϕ̄ '
²²

BG(P ) Bπ //

θ̂'
²²

BG

G(P )/G0(P ) // mapG(P,EG; f)/G0(P )

ϕ '
²²

// mapG(P,EG; α)/G(P )

θ̄ '
²²

// BG

G
δα // map0(B,BG; α) // map(B,BG; α) e // BG

The aim of this section is to study the connecting map δα and characterize H(1, n)-spaces by

it. Consider the following commutative diagram.

G
δ // map0(BG,BG; 1) //

α∗

²²

map(BG,BG; 1) e //

α∗

²²

BG

G
δα // map0(B,BG; α) // map(B,BG; α) e // BG

(6.1)

Then it is sufficient to consider the universal connecting map δ : G → map0(BG,BG; 1).

14



Put E = mapG(EG,EG), G = G(EG) and G0 = G0(EG). Let E0 be the subspace of E
consisting of G-equivariant maps EG → EG restricting to the identity on the fibre at the

basepoint. Then we have a fibre sequence E0 → E → mapG(G,EG) induced from the basepoint

inclusion of BG. Then it follows from Lemma 5.1 that E0 is contractible and G0 acts freely on

E0 by composition. Then we have the universal G0-bundle

G0 → E0 → E0/G0.

On the other hand, the projection θ0 : E0 → map0(BG,BG; 1) induces a homeomorphism

θ̄0 : E0/G0

∼=→ map0(BG,BG; 1).

Note that the inclusion κ : E0 → E induces a map κ̄ : E0/G0 → E/G0 by which the diagram

E0/G0

θ̄0

²²

κ̄ // E/G0

ϕ

²²

// E/G

θ̄
²²

map0(BG,BG; 1) map0(BG,BG; 1) // map(BG,BG; 1)

(6.2)

commutes up to homotopy.

Let us construct an alternative universal G-bundle to describe the connecting map δ. Fol-

lowing Milnor [16], we denote an element of EG by t0g0 ⊕ t1g1 ⊕ · · · for
∑

i ti = 1, ti ≥ 0 and

gi ∈ G such that finite ti’s are positive. The basepoint of EG is 1e ⊕ 0 ⊕ 0 ⊕ · · · , where e is

unity of G. For g ∈ G, we denote by ξg the principal bundle map

EG → EG, t0g0 ⊕ t1g1 ⊕ · · · 7→ t0g
−1g0 ⊕ t1g

−1g1 ⊕ · · · .

Then we have a commutative diagram:

EG
ξg //

²²

EG

²²
BG

Bad(g) // BG

(6.3)

Now we let G act on E0 × EG from right by

(f, x) · g = (ξπ(g)−1 ◦ f ◦ g, x · π(g))

for g ∈ G and (f, x) ∈ E0 ×EG. One can easily check that this action is free and then we have

established the universal G-bundle

G → E0 × EG → (E0 × EG)/G.
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Thus there exist a homotopy equivalence E/G → (E0 × EG)/G and a G-equivariant homotopy

equivalence ν : E → E0 × EG by which the diagram

G // E //

ν '
²²

E/G
'

²²

BG

G // E0 × EG // (E0 × EG)/G BG

commutes up to homotopy. Since the above diagram is that of G0-spaces and G0-equivariant

maps, we obtain a homotopy commutative diagram:

G G/G0
// E/G0

ν̄ '
²²

// E/G
'

²²

BG

G/G0
// (E0 × EG)/G0

// (E0 × EG)/G0 BG

Note that the above action of G on E0×EG restricts to the product of the usual action of G0 on E0

and the trivial action of G0 on EG. Then we have (E0×EG)/G0 = E0/G0×EG and thus the first

projection π1 : E0×EG → E0 induces a homotopy equivalence π̄0 : (E0×EG)/G0
'→ E0/G0. Since

mapG0(E0, E0) is contractible, in particular, path connected, the G0-equivariant map π1 ◦ ν ◦ κ

is homotopic to the identity of E0 as G0-equivariant maps. Then, by (6.2), we have established

a homotopy commutative diagram:

E0/G0

G // (E0 × EG)/G0

π̄1

OO

// (E0 × EG)/G

G // E/G0
//

ν̄

OO

ϕ

¢¢

E/G

'

OO

θ̄ '

²²

E0/G0

κ̄

OO

θ̄0

²²
G // map0(BG,BG; 1) // map(BG,BG; 1)

Therefore we have obtained:

Lemma 6.1. There is a homotopy commutative diagram:

G // E0/G0

θ̄0'
²²

// (E0 × EG)/G
'

²²
G

δ // map0(BG,BG; 1) // map(BG,BG; 1)

In particular, the connecting map δ is Bad.

Theorem 1.3 follows from (6.1).
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7 C(k, l)-space

In this section, we discuss a relation between H(k, l)-spaces and higher homotopy commutativity

as promised in section 5. Higher homotopy commutativity was first introduced by Sugawara

[21] as intermediate states between loop spaces and loop spaces of H-spaces. Later, Williams

[23] introduced another kind of higher homotopy commutativity using associahedra in section

2. Recently, Hemmi and Kawamoto [12] studied a relation between those higher homotopy

commutativity, Aguadé’s Tk-spaces [1] and Félix and Tanré’s H(n)-spaces [6]. In order to

relate them, They introduced Hk(n)-spaces and Ck(n)-spaces. Hk(n)-spaces collect Aguadé’s

Tk-spaces and Félix and Tanré’s H(n)-spaces whose definition is given by a sequence of H(k, l)-

spaces for k + l = n (See [12]). On the other hand, Ck(n)-spaces are defined as follows by using

Gel’fand, Kapranov and Zelevinsky’s polytopes called resultohedra (See [9], [10] for definition

of resultohedra).

Let R+ = {x ∈ R|x ≥ 0}. The resultohedron Nm,n is an (m + n − 1)-dimensional polytope

in Rm+n+2
+ which consists of all points (p0, . . . , pm, q0, . . . , qn) ∈ Rm+n+2

+ satisfying:

m∑
i=0

pi = n,

n∑
i=0

qi = m, hi,j ≥ 0, hm,n = 0,

where

hi,j =
i∑

k=0

(i − k)pk +

j∑
l=0

(j − l)ql − ij (7.1)

for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then, in particular, N0,0 is the one point set and Nk,1 and N1,k

are affinely homeomorphic to the k-simplex ∆k. Vertices of Nm,n is labelled by integer lattice

paths from (0, 0) to (m,n).

For x = pi, qj and hi,j in (7.1), we put

N(x) = {(p0, . . . , pm, q0, . . . , qn) ∈ Nm,n|x = 0}.

Gel’fand, Kapranov and Zelevinsky [10] described the face maps

ε(pi) : Nm−1,n → N(pi), ε(qj) : Nm,n−1 → N(qj), ε(hi,j) : Ni,j × Nm−i,n−j → N(hi,j).

On the other hand, Hemmi and Kawamoto [12] described the degeneracy maps

δi : Nm,n → Nm−1,m, δ′j : Nm,n → Nm,n−1.

Now a Ck(n)-space is defined by a coherent sequence of maps Qr,s : Nr,s × Xr+s → X for a

topological monoid X, r + s ≤ n and s ≤ k (See [12] for precise definition). The main result of

[12] is:
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Theorem 7.1 ([12, Theorem A]). A connected topological monoid is a Ck(n)-space if and only

if its classifying space is an Hk(n)-space.

As noted above, definition of an Hk(n)-space is a collection of that of H(k, l)-spaces for

k + l ≤ n and, actually, the proof of Theorem 7.1 is done by collecting constructions on

H(k, l)-spaces.Then, by defining C(k, l)-spaces as follows which is a modification of that of

Ck(n)-spaces, we obtain Theorem 1.4.

Definition 7.1. A topological monoid X is a C(k, l)-space if there exists a sequence of maps

Qr,s : Nr,s × Xr+s → X for 0 ≤ r ≤ k and 0 ≤ s ≤ l satisfying:

Qr,0(∗, x1, . . . , xr) = x1 · · ·xr, Q0,s(∗, y1, . . . , ys) = y1 · · · ys

Qr,s(ε
(pi)(σ), x1, . . . , xr, y1, . . . , ys) =


x1 · Qr−1,s(σ, x2, . . . , ys) i = 0

Qr−1,s(σ, x1, . . . , xixi+1, . . . , ys) 0 < i < r

Qr−1,s(σ, x1, . . . , xr−1, y1, . . . , ys) i = r

Qr,s(ε
(qj)(σ), x1, . . . , xr, y1, . . . , ys) =


y1 · Qr,s−1(σ, x1, . . . , xr, y2, . . . , ys) j = 0

Qr,s−1(σ, x1, . . . , yjyj+1, . . . , ys) 0 < j < s

Qr,s−1(σ, x1, . . . , ys−1) j = s

Qr,s(ε
(hi,j)(σ1, σ2), x1, . . . , xr, y1, . . . , ys)

= Qi,j(σ1, x1, . . . , xi, y1, . . . , yj) · Qr−i,s−j(σ2, xi+1, . . . , xy, yj+1, . . . , ys)

Qr,s(σ, x1, . . . , xi−1, ∗, xi+1, . . . , ys) = Qr−1,s(δi(σ), x1, . . . , xi−1, xi+1, . . . , ys)

Qr,s(σ, x1, . . . , yj−1, ∗, yj+1, . . . , ys) = Qr,s−1(δ
′
j(σ), x1, . . . , yj−1, yj+1, . . . , ys)
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Math. Ann. 161 (1965) 197-230.

[8] P. Gajer, Geometry of Deligne cohomology, Invent. Math. 127 (1997), no. 1, 155–207.

[9] I.M. Gel’fand, M.M. Kapranov and A.V. Zelevinsky, Newton polytopes of the classical

resultant and discriminant, Adv. Math. 84 (1990), no. 2, 237-254.

[10] I.M. Gel’fand, M.M. Kapranov and A.V. Zelevinsky, Discriminants, resultants, and multi-

dimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc.,
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