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Notations

We list the notations and collect the definitions that we use throughout this
article.

(i) C, R, Ry, Z, N denote the set of complex number, real number, non-
negative number, integer, and positive integers.

(i) We denote by R™ the Euclidean n-dimensional space with point = =
(al, ce ,J}n).

(iii) A := B means that A is defined by B.

(iv) Let w: R®™ — C (or R® — R) is smooth. 0, denotes the partial
derivatives of a function u with respect to x;. We sometimes write
0;, for short. When n = 1, we denote u’ the derivative of a function
u. Moreover, 9% denotes (0*1/0g})--- (9% /0gn) for a multi-index
a=(ag,...,an) € N

(v) We denote by Vu the gradient of a function u, that is, Vu = (d1u, . . ., Opu).
When n = 1, we use d/dz instead of V.

(vi) A stands for the Laplacian on R", that is, A = > | 8?/d?. When
n =1, we use d?/dz? instead of A.

(vii) V2 denotes the tensor product of V, that is, V?u is the n x n matrix
(0i0ju)1<i,j<n-

(viii) f(x) = O(g(x)) as * — xp means that |f(x)/g(z)| is bounded as
x — xg. Moreover, f(z) = o(g(z)) as * — x¢ means that |f(x)/g(x)|
tends to zero as r — xg.

(ix) C*(R™) stands for the set of k-time differentiable function on R”, and
C®(R") = Mg0C*(R") for the set of infinitely differentiable func-
tion on R™. C§°(R) is the set of infinitely differentiable function with
compact support.

(x) Let I be an interval of R and let X be a Banach space. CF(I, X) is
the space of k-time continuously differentiable function from I to X.



(xi) LP(R™) denotes the Banach space of measurable functions u: R" — C
(or R™ — R) such that [lu[pgny < co with

</ \u(x)wdx)’l’ if p € [1,00),

ess sup |u(x)] if p € oco.
TER™

||u”LP(R”) =

We write LP if there is no risk of confusion.

(xii) S(R™) is the set of Schwartz function (rapidly decreasing function) on
R™. S'(R™) is the set of tempered distributions.

(xiii) F denotes the Fourier transform

(FFE) = — / e f(a

(2m)"/? Jr

(xiv) For s € R and f € S(R"), we define (1 — A)¥/2 as ((1 — A)¥?f)(z) =
FHA+IERY?Ff)(x), and |V|* as (|V]*f)(z) = FH{[g]*F fl(z). We
sometimes denote (1 — A)Y/2 by A.

(xv) For s € Rand p € [1,00], W*P(R") denotes the Sobolev space, that is,
Banach space of functions u: R” — C (or R” — R) equipped with the
norm

H“HWs,p(Rn) = H(l — A)S/Qu) < 0.

Lp
If there is no risk of confusion, we write W*P.

(xvi) H*(R") := W*2(R"). If there is no risk of confusion, we write H*.



Chapter 1

Introduction

1.1 Introduction

In this article, we consider the Cauchy problem of the semiclassical nonlinear
Schrodinger equation

2
iedpu® + %AuE = N(Ju®)u;  u®(0,2) = up(z), (NLS)

where u® = u®(t,z) is a complex-valued function on (¢t,2) € R x R™. ¢
is a positive parameter corresponding to the scaled Planck’s constant € ~
h and N denotes the nonlinearity. We are concerned with the problem
of semiclassical limit ¢ — 0. The aim of this article is to describe the
results about the asymptotic behavior of the solution u® in this limit. In
particular, we are interested in a phase-amplitude approximation, called
WKB approximation, of the solution u®:

w(t, ) = ¢ (ao(t, ) + car(t,x) + 2as(t @) + ), (1.1.1)

where ¢y is a real-valued function and a; (i = 0,1,2,...) is a complex-valued
function.

The nonlinear Schrodinger equations appears in many physical contexts.
For example, (NLS) with the quintic nonlinearity N(u®)u® = |uf|*u is
sometimes used as a model for one-dimensional Bose-Einstein condensation
in space dimension n = 1. When n = 2 or n = 3, a cubic nonlinearity
N (uf)uf = |uf|?u® is usually considered. The Schrédinger-Poisson system
((SP) below) is studied as the fundamental equation in semiconductors ap-
pication, with b > 0 standing for a constant background charge and A > 1
being the reciprocal of the square of the Debye number.

In Chapter 2, we justify the WKB approximation of the solution to
(NLS) with some typical nonlinearities in a time interval which is small (in
general) but independent of . For this approximation, several approaches
are known. We follow the one by the pioneering works of Gérard [30] and



Grenier [34], for the NLS with local nonlinearity. It consists in using the
modified Madelung transform u® = ae’*"/¢. Then, it turns out that the
problem boils down to the analysis of the system

oa® + (V¢ - V)a® + %agAng = ngaE,
06 + 5[V + N (o) =0, (112)
(a0, 2), 6°(0,2)) = (45, ®).

Note that u¢ = a®¢'= is an exact solution of (NLS) if (a%, ¢°) solves (1.1.2).
The main purpose of this chapter is the following two points: First is to clar-
ify the difficulty of this method which appears in all kinds of nonlinearity.
Second is to present how to overcome this difficulty with some typical exam-
ples. In this chapter, we treat the (essentially) cubic nonlinear Schrodinger
equation, Schrodinger-Poisson system, Hartree equation, and Hartree equa-
tion with local nonlinearity. For cubic nonlinear Schrodinger equation, we
give a slightly different formulation of the proof of the result in [34], and
generalized this result into the above typical equations. Though the basic
strategy of the proof is the same. However, the details are quite different
and so far there is no general theory to treat them at once.

In Chapter 3, we turn to the analysis of classical trajectories. It is
a fundamental principle in quantum mechanics that, when the time and
distance scales are large enough relative to the Planck constant A, the system
will approximately obey the laws of classical Newtonian mechanics. The
equations (1.1.2) is a kind of quantum hydrodynamics equations, which
is classical hydrodynamics equations with a quantum correction term. In
the limit, the Euler equation for an isentropic compressible flow is formally
recovered from the nonlinear Schrédinger equation. Indeed, denoting p :=
lim. ¢ |a®|? and v := lim._,q V¢° for a solution of (1.1.2), one verifies that,
at least formally, (p,v) solves the Euler equation

{ dyp + div(pv) =0, 113

ov+ (v-V)v+VN(/p) =0,

which are the statements of the conservation of mass and Newton’s second
law, respectively. In this chapter, we analyze (1.1.3) by using the method
of characteristic curves. The characteristic curve of v is called classical
trajectory in the context of Schédinger equations. It is known that when the
characteristic curves cross each other, the solution to this equation breaks
down by a formation of singularity, a shock. This is also related to the theory
of geometrical optics. The classical trajectory is an analogue of the notion
of ray developed initially to describe the propagation of electro-magnetic
waves, such as light. The breakdown of the solution of (1.1.3)) is closely



related to the occurrence of caustics. We choose the Schrédinger-Poisson
system with constant background b > 0:

2
ie0pu® + %Aus = AVpuf, —AVp=|u]*—b, Vp —0as|z|— oo (SP)

and corresponding Euler-Poisson equations

Op + div(pv) = 0,
O+ (v-V)v+AVip =0, (EP)
—AVp=p—0b, Vp—0as|z|— o0

as a target equation of this chapter. Under the radial symmetry, we derive
the necessary and sufficient conditions that ensure the classical solution to
(EP) is global. In the case where b > 0 and n = 1 and the case where b =0
and n > 1 (and some more case such as the presence of relaxation term)
are studied precisely in [25]. We stem the missing parts and give complete
descriptions of the necessary and sufficient conditions for all n > 1 and
b > 0. As a result, we will see that, under the assumption that n > 3, p is
integrable, and v decays at spatial infinity (and they are radially symmetric),
there is only one possible form of the initial data which admits the global
solution (Theorem 3.3.14)).

In Chapter [4, we justify the WKB approximation (1.1.1)) of the solution
to Sherddinger-Poisson system (SP) for large time. In one dimensional case,
Liu and Tadmor [46] show by applying the result [25] that, for a class of
initial data admitting a global solution of (EP)), (1.1.1) holds for an interval
which depends on the parameter € and becomes arbitrarily large as € — 0.
In this chapter, we generalize this result to the n > 3 case. This is done by
a combination of results in Chapters 2l and [3. An example of global solution
to (EP) is given by the results in Chapter 3. Then, using (the modified
version of) the analysis in Chapter 2, we justify (1.1.1) for large time.

1.2 Several remarks on function spaces

We give several remarks on the function spaces which we use throughout
this article.

1.2.1 Lebesgue space

The first is the Lebesgue space LP(R™). In this article, we often use Lebesgue
spaces to investigate the decay property of functions. As usual, it is defined
as the Banach space of measurable functions f: R” — C (or R” — R) such



([ verw) e

ess sup | f(z)| it p € 0.
zeR™

HfHLp(R")

In general, if a measurable function f is not integrable, then the one of the
following holds:

1. There exists a bounded set  C R™ (with arbitrarily small measure)
such that [, |f|dz = co.

2. [ | fldz is finite for any bounded set Q C R™. However, [, |f|dz — oo
as |Q] — oc.

In the first case, f has a singularity at some point. An example of such
function is f(x) = |2[7"1jz/<13(2). In the second case, f is not integrable
because the decay of f is not enough. f(x) =1 is an example.

It can be said that the index p of LP(R™) indicates both the strength
of the singularity and the rate of the decay. For example, |z|™91;<13()
belongs to L space if and only if ¢ < n/p. Similarly, [x|~"1{; <1} (x) belongs
to LP space if and only if » > n/p. Hence, very roughly speaking, an element
of LP space is a function which has a singularity of order at most O(\xr%%)

and decays at spatial infinity at least order O(|$|_%_E). L™ space is rather
special: The functions in L* do not necessarily decay at spatial infinity.

D ‘ small «— large --- 00
singularity at a point | strong «— weak --- none
decay at spatial infinity | rapid +«— slow --- none

The Holder inequality |A.1.2 shows that these two properties, singularity and
decay, are “monotone” in p. To concentrate on singularities, assume that
f is supported on a bounded set @ C R"™. Then, we have LP(Q2) D L9(2)
(1 < p < q) since

1_1
1@y < 19055 Il for1<p<gq

by Holder inequality. This suggests that if the singularity of f is so weak
that f € L?(Q) then f automatically belongs to LP(€2). The converse is not
true, as the following example shows: For a bounded set €2 2 0 and p < ¢,
\:L‘F%lg(x) e LP(Q)\ L1(Q) since n/p > 2n/(p+q) > n/q. To concentrate
on the decay property we now assume g is bounded. In this case,

q 1—2
lgllre < llgllZa llgllo  forp>q>1,
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and so (LP(R™) N L*°(R™)) C (LYR™) N L*(R™)) for p > ¢ > 1. This
suggests that if the decay of f is so rapid that f € L4(R™) then this decay
is enough for being f € LP(R™). The converse is false, as the following
example shows: For p > ¢, \x|7%1{|x‘>1}(az) € LP(R™) \ LY(R™) since
n/p <2n/(p+q) <n/q.

Tail estimate

Let 1 < p < ¢ < oo. Take a function f € L9N L with f ¢ LP. If there
exists some function g such that f—g¢g € LP N L then g is an approximation
of the “tail part” of f in such a sense that the decay of f — g is faster than
f itself. In this respect, we call such an estimate as a tail estimate.

1.2.2 Sobolev space

The next is the Sobolev space H*(R™) and W*P(R"). For s € R and p €
[1,00], W*P(R™) denotes the Banach space of functions u: R" — C (or
R™ — R) equipped with the norm

< oQ.

I —— H(1 _ A)s/m’ .

Moreover, H*(R") := W*%2(R"). The Sobolev embedding reveals the con-
nection between the integrability of higher derivative and of lower derivative.
Indeed, for 1 < g < p < 0o, we have

£l <C [V,

It suggests the fundamental principle that the differentiz}ltioyp makes the
singularity stronger and the decay faster. Indeed, for |V|« » f € LI(R")
(¢ < p) being true, f is required to have so weak singularity that f € LP(R™)
holds, however, the decay is not required no more than f € LP(R™). The
Hardy-Littlewood-Sobolev inequality (Lemma A.1.5)) is a counterpart of the
Sobolev embedding in a sense. For v € (0,n), we have

Flz| ™ = cnqlel"

(see e.g. [65]). Therefore, the Hardy-Littlewood-Sobolev inequality can be
written as

(o E=y]| <l

for 1 < ¢ < p < oo. Hence, it suggests the fundamental principle that the
integration makes the singularity weaker and the decay slower.

11



1.2.3 Zhidkov space

We also use the Zhidkov space X*(R") and its modified space Y7 (R™). The
Zhidkov space is defined as follows: For s > n/2,

X5(R™) := {u € L%®°(R")|Vu € H*}(R™)}.
The norm of X? is given by

s ey = -l oo ey + IVl s gy -

The space was introduced in [74] in the case n = 1, and its study was
generalized to the multidimensional case in [26] (see also [5,15]). In general,
a function in the Zhidkov space does not have spatial decay at all. For
example, constant function f(z) = 1 belongs to X*(R"™), while it does not
belongs to any Lebesgue spaces or Sobolev spaces. However, if n > 3 then we
see from Lemma 2.2.1/ below that for all f € X*(R") there exists a constant
C such that f —C € L?"/("=2) 0 [ This is a kind of tail estimate. Recall
that f itself belongs to L? only if p = co. In Chapter 4, we will use the
modified one Y7 (R"). Forn >3, s >n/2+1, p € [1,00], and ¢ € [1, 0],
we define a function space Y, (R") by

n o0 ||'||§/S RT
)ps,q (]R ) CO (]Rn) a5
with norm

Il ey = I-llzogeny + 1V pageey + (V2] o qgeny -

The indices p and ¢ indicate the decay rate of the function and its first
derivative, respectively. This is a generalized version of X*(R") if n > 3.
Y5 o(R™) is almost equal to X°(R™). The difference is the fact that all
functions in YQ,Q(R") decays at spacial infinity. However, as noted above,
for all f € X*(R"), there exists a constant C' such that f —C € Y3 ,(R").
We also deduce form Lemma 2.2.1 that Y3 o(R") = Y3 o(R™) N Y5 5(R"),
where 2* = 2n/(n — 2). We discuss this space again in Section 4.3.1.

12



Chapter 2

Small time WKDB analysis for
nonlinear Schrodinger
equations

2.1 Introduction

2.1.1 Equations and main results

In this chapter, we consider the asymptotic behavior of the solution to the
Cauchy problem

2
icOs + %Auf = N(juf ;s (0,2) = A5(x) exp(i®o(z)/e).  (2.1.1)

In particular, the purpose of this chapter is to give a WKB-type approxi-
mation

Wt @) ~ &7 (bo(t, @) + ebi(t, @) + e2balt @) + ) (2.1.2)

in a time interval [0,7] which is small in general but independent of «.
We construct suitable phase ¢ and amplitude b;, and provide a pointwise
description of u® as € — 0 in the following cases:

e Defocusing nonlinearity which is cubic at the origin: N (|u]) = f(|u®|?)
with f: Ry — Ry satisfying f > 0, f/ > 0, and f(0) = 0.

e Focusing or defocusing nonlocal nonlinearity: N(|uf|) = £(—A)"|u|?
or N(Ju]) = £(jz| ™7 * [u[?).

We also analyze the case where the nonlinearity is the sum of the above two
types. More precisely, the target equations of this chapter are the following:

13



. The defocusing (essentially) cubic nonlinear Schrodinger equation

2
iedpu® + %Au€ = f(JufP)us;  u(0,2) = Af(x) exp(i®o(x)/e)
(CNLS)
with f : Ry — Ry satisfying f > 0, f'(y) > 0, and f(0) = 0. This
is treated in [34] (for generalized or other types of local nonlinearities,
see [3|, 4} 13} 20, 23] 28, 44]).

. The Schrédinger-Poisson system without background
2
ie0pu® + EAUE = A\Vpu®,
CAVE = [, ViE — 0 as |z] — oo, (SP)
u®(0,z) = Af(x) exp(i®o(x)/e),
where A = £1. For this equation, see [5, 43, 146, 72} [73].

. The Hartree equation

2
ie0pu® + %Au€ = M|z| 77 [ufP)us;  wf(0,2) = A5(x) exp(i®o(z)/e),

(H)

where A = £1. Hartree equation is treated in [15].

. The nonlinear Schrodinger equation with local nonlinearity and non-
local nonlinearity

2
1e0su’ + %Aus = F([uf]?) + M|z * [uf|?)uf,
u®(0,z) = Af(z) exp(i®o(x)/¢)

(L-NL)

with f : Ry — Ry satisfying f > 0, f'(y) > 0, and f(0) = 0, and
A=+=1.

We reformulate and generalize the previous results. Especially, we would like
to relax the decay condition on the initial phase ®¢. This is due to the fact
that ®g is not necessarily to be bounded for being u®(0) = A5e'®0/c € H*.
From this respect, in the following theorems, we try to make our assumptions
on @ so close to the one “V&q is bounded (without spatial decay)” as
possible.

The following are the main results of this chapter.

Theorem 2.1.1 ([34], WKB analysis for (CNLS))). Let f € C*°(R4 : Ry)
with f(0) =0 and f' > 0. Let k > 1 be an integer and s > n/2 + 2k + 4 be
a real number. Assume that ®g € X1, and that AG writes

k
5= c/Aj+o(e¥) inH® (2.1.3)
j=0

14



for e € [0,1]. Then, there exist a ezistence of time T > 0 independent

of € and a solution u® € C([0,T]; H®) of (CNLS). There also exists ¢y €

C([0,T); X5 and B; € H~%72 such that

‘¢

(B + B+ + TGy +o(eF 7)) in O([0,T); HIT2R).
(2.1.4)

ut =e

Furthermore, ¢y satisfies
do(t, ) — Po(z) € WHI(R™).

Theorem 2.1.2 (WKB analysis for (SP)). Let n > 3 and A € R. Let k
be a positive integer and let s > n/2 + 2k + 3 be a real number. Assume
that ®y € C?k+5 with V2®y € H*, and that A§ writes (2.1.3). for e € [0,1].
Then, there exist a existence of time T > 0 independent of € and a solution
ut € C([0,T); H%) of (SP). There also exists ¢pg € C([0,T]; C***5) and
B; € H¥"272 such that (2.1.4) holds. Furthermore, there uniquely exists a
constant o such that V®g — ¢ as |x| — oo and ¢ satisfies

Voo(t,z) — VPo(z — coot) € (LT N L) (R™),
t
do(t,x) — Po(x) + ;/ Vo (x — coos)|?ds € (L7210 L®)(R™).
0

Theorem 2.1.3 (WKB analysis for (H)). Let n > 3 and A € R. Let vy be
a positive number with n/2 —2 < v < n — 2. Let k be a positive integer
and let s > n/2 + 2k + 3 be a real number. Assume that &y € C**+5 with
V2®) € H®, and that A5 writes (2.1.3). or e € [0,1]. Then, there exist a
existence of time T > 0 independent of € and a solution u® € C([0,T]; H®)
of (H). There also ezists ¢g € C([0,T); C?**) and B; € H*=2~2 such that
(2.1.4) holds. Furthermore, there uniquely exists a constant co such that
V&) — coo as |z| — 0o and ¢y satisfies

Vo(t,z) — V®o(z — coot) € (L7 T 1 L®)(R™),
t
bo(t, z) — Po(z) + ;/ IV®o(z — coos)|?ds € (L7 N L) (R™).
0

Theorem 2.1.4 (WKB analysis for (L-NL)). Let n > 2 and A\ € R. Let
f e C®°Ry : Ry) with f(0) =0 and f' > 0. Let A € R and let v be
a positive number with n/2 —1 < v < n — 1. Let k be a positive integer
and let s > n/2 + 2k + 4 be a real number. Assume that ®g € X+ and
A5 writes (2.1.3). for € € [0,1]. Then, there exist a existence of time
T > 0 independent of € and a solution u® € C([0,T]; H®) of (L-NL). There
also exists ¢o € C([0,T); X*T1) and B; € H 2772 such that (2.1.4) holds.
Furthermore, ¢g satisfies

bo(t,z) — Do(z) € (L7 N L®)R™).
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Remark 2.1.5. The assumption on the phase function ®g reflects the shape
of nonlinearity. Under the assumption in above theorems, ®y does not nec-
essarily decay at spatial infinity and moreover is not necessarily bounded,
in general. In Theorems 2.1.1 and 2.1.4, we assume ®; € X**1. In this
case, Pg is always bounded but does not necessarily decay. For the n > 3
case, Lemma 2.2.1 below shows the existence of the constant ¢y € R such
that ®g — co € L?. On the other hand, the assumption for Theorems
2.1.2 and 2.1.3/is &y € C%+5 and V2d, € H5. This class is much larger
than X**t1(R"). Especially, this ®, can tend to infinity as |z| — oo.
Lemma 2.2.1 below shows that there exists a constant c,, € R™ such that
V®y — ¢ € L* since n > 3, and moreover that there exists a constant ¢
such that ®g — ¢y — coo - € L2 if n > 5, where 2°* = (2)* = 2n/(n — 4).
Nevertheless, in all above theorems, we can construct a function P(¢,x) ex-
plicitly given only by ®( such that ¢o(t) — P(t) decays at spacial infinity
as long as solution exists. The decay rate of this difference also reflects
the shape of nonlinearity. One of the most remarkable difference between
Theorems 2.1.1/ and [2.1.4' is this point.

Remark 2.1.6. We need f’ > 0 in Theorems 2.1.1 and 2.1.4 because the
quantity 1/f" appears when we estimate the energy. If we try to treat more
general nonlinearity such as quintic nonlinearity f(y) = %? then what pre-
vents us is the fact that f'(0) = 0. We refer to [3}, 4, 20] for such generalized
local nonlinearities.

Remark 2.1.7. Tt is remarked in [12, 62] that the above WKB analysis and a
geometrical transform can help understand the behavior of a wave function
near a focal point, in a supercritical régime (see also [10, 11} 13, [14] 16, [60),
61]).

2.1.2 Two different approaches

We now address an outline for the method to justify the WKB approximation
(2.1.2) (see also [13}, 128, 166]). One approach to obtain a WKB-type estimate
is to use Madelung’s transform

. SE(t,x)
ut(t,x) = /p°(t, x)e" =

Plugging this to (2.1.1) and separating real and imaginary part, we find the
quantum Euler equation

Op® + div(p°V.S®)

0,

A £
OV SE 4 (VS®-V)VSE + VN (VpF) = eV ( \)21?) ,

(p°(0,2), V5%(0,2)) = (JAG[*, V(Do + £ arg A7)).
(2.1.5)

16



The term £2V (A+/p?/\/p?) is called quantum pressure. The equations (2.1.5)
represent a fluid dynamics formulation of the (2.1.1) and are known as
Madelung’s fluid equations [48, 49]. Taking ¢ — 0, we obtain, at least
formally, the compressible Euler equation

Op + div(pv) =0,
o+ (v-V)v+ VN(\/p) =0, (2.1.6)
(P(O, 1’), U(O> l’)) = (|A0|2a vq)O)7

where p = lim._,9p%, v = lim.,o VS®, and Ag = lim. 9 Af. With this
method, the convergence of the quadratic quantities

[uf]? = p, eIm(ufVu) — pv
as € — 0 is proved in several situations. The Wigner measure is one of the
strong tool for justifying this limit For this limit and the Wigner measure,
consult [13, 29, 32, 37, 38| 45, 55, 56, 57, [72, 73] and references therein.
Though this convergence suggests that the solution u* may have the asymp-
totics of the form uf = e*9/¢ (v/p +o(1)), it is not satisfactory. In particu-
lar, the argument of the solution u° is not clear. In fact, the asymptotics
e"/%(\/p+0(1)) is not true. The leading order term of the amplitude of the
approximate solution cannot be expected to be real-valued, even if so is this
at the initial time.

Another way to justify (2.1.2) is to employ a modified Madelung trans-
form '
u® =a‘e'’= (2.1.7)

and consider the system
1 €
oa® + (Vo - V)a® + §a€A¢E = ZiAae,
1
0u6° + 51V + N(la*]) = 0, (2.18)

(a°(0,2),9%(0,z)) = (Ag, Po)-

It is essential that a® takes complex value. and so, S # ¢°, in general. If we
know this system has a solution (a®, ¢¢) and the solution can be expanded
as

a*=ag+ea+elay+--, ¢ =go+ep+ehat -,

then, by means of (2.1.7), we obtain WKB type estimate (2.1.2) with by =
ape’®. The explicit formulae of higher order terms of amplitude b; are
given in Section 2.2.4. This method is first applied to (CNLS) within the
framework of analytic function spaces in [30] and of Sobolev spaces [34] for
(CNLS). We remark that (Jag|?, Vo) solves the compressible Euler equation
(2.1.6).
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In this chapter, we use the second method to justify the WKB approxi-
mation (2.1.2) for (CNLS), (SP), (H), and (L-NL) in a time interval which
is small but independent of €. We first clarify the difficulty and illustrate
the general strategy of the proof in Section 2.2. Then, we consider (CNLS)
in Section 2.3l We give a slightly different proof from [34] which is based
on the modified energy method. Section 2.4/ is devoted to the study of the
equation with nonlocal nonlinearities, (SP) and (H). In final Section 2.5, we
treat (L-NL).

2.2 General strategy and problem

In this paragraph, we show an outline for obtaining the WKB type approxi-
mation (2.1.2) of the solution of (2.1.1). No rigorous result is given through
this Section 2.2, although we make some observation with calculations which
we use in later sections.

We follow the approach by Grenier [34] (the second one introduced in
Section 2.1.2) and work with a data in Sobolev space: We apply the modified
Madelung transform (2.1.7) to (2.1.1) and consider the system (2.1.8)) for
amplitude a® and phase ¢*. Let us introduce a new variable v* = V¢°*.
Differentiating the second equation of (2.1.8), we find

Bra® + (v° - V)as + %afv vf = i-Ad,
v + (v° - V) + VN([a®|) =0, (SH3)
(aa(O,Jj‘),UE(O,J?)) = ( (6)7V(I)0)

The main point of Grenier’s idea is that this system can be regarded as
a symmetric hyperbolic system with perturbation. We call this system as
(SHS)) in this respect. In this section, we give a general strategy to show that
(SHS) admits a solution (a®,v®) (Section 2.2.1); that the solution (a%, ¢°) of
(2.1.8) can be constructed from (a®, v®) (Section 2.2.2); and that the solution
is expanded in powers of £ (Section 2.2.3). Once we obtain this expansion
of (a®,¢%), the WKB approximation (2.1.2) is an immediate consequence
(Section 2.2.4]).

2.2.1 Existence of the solution and the problem on the en-
ergy estimate

Our first step is to show that (SHS) has a solution. We try to obtain a
solution (a®,v) in the class C([0, T]; (H*)?). The main part of the proof is
a priori estimate. Hence, we shall detail this part only. For other parts of
proof, see [15, 50, 68]. Let us go along the classical energy method. Consider
the energy

B(t) = la®|s + lv* s
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As a matter of fact, we cannot close the energy estimate with this energy.
The purpose of this section is only to reveal what is wrong with this energy.
In the concrete examples below, we modify this energy. These modifications
are considered in Sections 2.3.1, 2.4.1, and 2.5.1.

Let us proceed with the standard energy argument as further as we can.
Estimates in this section are quoted sometimes in forthcoming sections. We
use the convention for the inner product in L?:

(o) = [ fada.

We also denote (1 — A)Y/2 by A. Take s > 0. From the first line of (SHS),
we have

d
pr |a%||3s = 2Re (A*Dsa®, A%af) [
= — 2Re (A*((v° - V)a®),A%a®) ;2 — Re (A*(a°V - v7), A%a%) ;2
+ Re (ieA°Aa®, A°a®) ;-
=L+ 1L+ (2.2.1)
By integration by parts, we see

I3 = — Re(ic |Vas||3.) = 0. (2.2.2)

This fact is one of the most remarkable point of modified Madelung’s trans-
form (2.1.7). It is very contrast with the fact that treatment of quantum
pressure term often needs some care (such as p° > 0) when we employ Mad-
lung’s transform and work with (2.1.5) (see [72]). Moreover, I; is a good
term: It writes

I = — 2Re{(v° - V)A*a, A%F) o — 2Re ([A%, v° - V]a®, A%af)
= Re (V- v9)A%a®, A%F) 2 — 2Re ([A*, v° - V]aF, A®a®) o

by integration parts. By the Hoélder inequality and the commutator estimate
(Lemma [A.2.2)), we obtain

2
L] < OV oo 0" [ 7s + IVO | gt IVl oe la®[|e)- - (2:2:3)

Therefore, if we set s > n/2 + 1 then the right hand side is bounded by
C(lla®|l s + [[v¥|| s )3. On the other hand, I is rather bad in such a sense
that it requires the bound of (s + 1)-th derivative of v°. Indeed, extracting
the main part, we have

I = —Re (a®A°V - 0%, A%a®) ;2 — Re ([A%,a°]V - 0%, A%a®),» .
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Remark that integration by parts does not work so well as in the estimate
of I. Therefore, we estimate as

|To| < [IVO%[l s la®]l oo lla®[| s
+ C(IVa|lpee VU7 -1 + V7] oo [Va [l go=a) 0™ s - (2.2.4)

Thus, we need (s + 1)-th derivative of v* to be bounded in a suitable sense.
For s > n/2+ 1, the right hand side is bounded by C(||a®|| s + [|v|| gs+1).
Alternatively, we have

I, + Re (aA®V - v°, A%a®) 5 |
< C(IVa|| oo V" | a1 + VUl oo (V@ [ gra-r) %[l s - (2.2.5)

If we are able to remove the bad part, then we only need s-time derivative
of v°. We will see later that this fact is the key for (CNLS) case.

Now let us turn to the estimate of v*. We estimate H® norm of v°,
although the estimate actually required in (2.2.4) is the H® norm of V°©.
The estimate of H® norm of Vv is an easy modification. From the second
line of (SHS)), we find

d

— [[vf]]%. = 2Re (A*0p0°, A*v°) s
= —2Re (A%((v° - V)v°), A%0®) ;2 — 2Re (A*V N (|a®]), A°v®) 2

=: Iy + I5. (2.2.6)
14 is also a good term. The estimate of I is similar to that of I1: Since

Iy = —2Re((v° - V)A*v®, A%0%) 2 — 2Re ([A%, 07 - V]o©, A%0) 2
= Re ((V - v°)A%0", A%0%) 2 — 2Re ([A%,0° - V]o©, A%0%)

by integration by parts, the Holder and the commutator estimate (Lemma
A.2.2)) yield
L] < OV 0513 (2:27)

I5 is the nonlinear term. The treatment of this term is the main difficulty.
A straight forward calculation does not give any more than

[Is| < CIVN(a Dl gs 107 s - (2.2.8)

Notice that the (s+1)-time derivative of the nonlinear term N (|a®|) appears.
Our naive hope is that this term might be bounded by the derivative of order
(s — 1) for a®, which may enable us to close the energy estimate and obtain
an estimate like

d 2 2 2 2
2 allzzs + 0% [[aer) < Cllallgs + [0 een)-
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However, of course it is impossible in general. In particular, when we con-
sider the local nonlinearity such as N(|a°|) = f(]a®|?) with some smooth
function f, we have VN ([af]) = 2f/(|a|?) Re(a®Va®), whose H® norm seems

not to be bounded by H® norm of a®. So, we need to make some trick.

At the end of this section, we summarize the problem which we observed
in this section:

1. The estimate of % ||a5\|§{s requires the bound of derivative of order
(s + 1) for v¢ through I.

2. The estimate of % ||| requires the bound of derivative of order
(s 4+ 1) for the nonlinearity N (|a®|) through Is.

In forthcoming examples, we will see how to get over this difficulty and close
the energy estimate. The required technique strongly depends on the non-
linearity N (|a®]). In the local nonlinearity case, the key is the cancellation
(Section 2.3.1)), which is another formation of symmetrizability of (SHS).
On the other hand, when the nonlinearity is nonlocal, we use the smoothing
property of the nonlinearity (Section 2.4.1)).

2.2.2 Construction procedures of the phase function

Once a solution (a®,v%) of (SHS)) is known, we can reconstruct a solution
(a,¢°) of (2.1.8). In this section, we discuss this integration procedures
which we use to define ¢° from v° so that V¢® = v and ¢°(0,z) = Po(z).
There are at least three possible ways to do this.

The Poicaré lemma

The first is the Poicaré lemma. We suppose that a solution (a®, v®) of (SHS)
and the initial data ¢°(0,z) = ®¢(x) are known. If v is irrotational, that
is, if V x v® = 0, then there exist a function ¢* such that V¢* = v°. At
this step, there is a freedom of choice of a constant: Adding an arbitrary
function ¢ = ¢(t) of time only, we see ¢°+c(t) also satisfies V(¢ +c(t)) = v°.
However, we can determine this function by ¢(0) = ®(z) — ¢°(0, ) and

1~ -
d(t) = §|V€Z5€|2 + N([a®]) — Oe”.
Then, we see that (a®, o + c) is a solution of (2.1.8). Note that the right

hand side does not depend on space variable by the definition of ¢*. Let us
remind that this method requires the irrotational property of v=.

Direct definition

The second is to define directly by the equation. We suppose that we obtain
(a®,v%) and the uniqueness of (SHS)) is known. Then, we can define ¢¢ from
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its initial data by

¢ (t, ) = Do(z) — /Ot <;]v€(s,x)|2 + N(|a®|)(s, x)) ds.

One easily checks that (a®, ¢°) solves (2.1.8) and (a®, V¢©) solves (SHS).
Then, by uniqueness, we conclude that V¢* = v°. This method requires the
uniqueness of the solution to (SHS)). Note that in this case the irrotational
property immediately follows from the fact that v® is given by the gradient
of ¢°.

The Hardy-Littlewood-Sobolev inequality

The third is a consequence of the Hardy-Littlewood-Sobolev inequality,
which can be found in [36, Th. 4.5.9] or [31, Lemma 7]:

Lemma 2.2.1. If ¢ € D'(R") is such that 0;¢ € LP(R"), j =1,...,n for
some p € (1,n), then there exists a constant ¢ such that ¢ — ¢ € L4(R"™),
with 1/p=1/q+ 1/n.

By this lemma, we can construct ¢° as in the first case without the
irrotational property of v® nor uniqueness of the solution to (SHS). However,
for this method, we need the decay property of v in the sense that it must
belong LP(R"™) for some p < n. Especially, this method is difficult to apply
when n = 2 since the property v® € L?(R") is not sufficient: In space
dimension n = 2, consider a function f(z1,z2) = log(1 + |log(z} + x3)]).
One can check that Vf € H>*, while f & L™.

The first two methods are intended for giving ¢° from its first derivative
v® = V¢*. We will see later that, in some case, not the first derivative
v® = V¢° but the second derivative Vv© = V2¢¢ is first given as a source
(see the proof of Theorem 2.4.2) below). The third can also be used to
construct v* from Vo©.

2.2.3 Expansion of the solution of the system

We have discussed the existence of the solution to (2.1.8)) in the preceding
two sections. As mentioned in Section 2.1.2, to obtain the WKB-type ap-
proximation (2.1.2)) it suffices to expand the solution of (2.1.8) in powers of
e:

af = aptear+--+efapto(e?), ¢F = potepr+-+eFppto(e”). (2.2.9)

In this section, we turn to the method to obtain this expansion and illustrate
a scheme for the justification of (2.2.9). It turns out that (ag, ¢g) solves a
system (2.1.8) with ¢ = 0 and (a;, ¢;) solves a i-th linearized system of
(2.1.8)), and that the existence result for (2.1.8)) can again be used to solve
these systems and determine approximate solutions.
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Let us describe our observation. We suppose that this expansion is given
at the initial time, that is, there exists an integer £ > 1 such that

A5 = Ag+eAr+ -+ eV Ap +o(e¥) in HS (2.2.10)

Then, letting ¢ = 0 in (2.1.8), we obtain

1
(%ag + (V¢Q . V)ag + §GOA¢0 = 0,

1
Do + 5Vl + N(lao|) = 0, (2.2.11)

(CLO(O, ':E)a ¢0(05 :E)) = (A()a q)O)
This system can be solved exactly the same way as in the case of (2.1.8), and
moreover the existence time T' can be chosen the same. This follows from
the fact that the existence time T" of solution (a, ¢°) of (2.1.8) depends only

on the size of the initial data: If the initial data is bounded uniformly in &
then T' can be independent of e. Thus, we obtain (ag, ¢o) := (a%, ¢°)|.—o-

The zeroth order

We first prove that (a®, ¢°) converges to (ag, ¢o) as € — 0 in a suitable sense.
This convergence immediately provides

a® = ap + o(1), ¢° = ¢o + o(1),

which is (2.2.9) with £ = 0. The proof of this convergence again relies on the
energy method. For example, we estimate time derivative of ||a® — a0||§{s +
||v® — U()st- At this step, again the problem is how to close the energy
estimate (as in Section 2.2.1).

The first order

We next put b] := (a® — ag)/e, ¢ = (¢° — ¢o)/e. Then the system for
(b3, 95) is very similar to the system (2.1.8) which (a®, ¢°) solves. Indeed,
that system becomes

€ e 1
Opb] + Q1 (b1, 97) + Q1(bT, o) + Q1(aog, i) = i5Ab + i5 Aag,
N(|a®|) — N(lao|)
g

€
O + SV + Vo - Vi + =0,

A5 — A
0502, 07(0.0) = (B0,
(2.2.12)
where 1 denotes the quadratic term @Q1(a, ) := (Vo - V)a + (1/2)alAg.
Note that the main quadratic part of (2.2.12) is the same that of (2.1.8))
up to a constant . Therefore, we can solve (2.2.12)) in the same way as in
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(2.1.8)), although the existence of new linear terms and the nontrivial exter-
nal force (i/2)Aag cause loss of one-time derivative and two-time derivative,
respectively. Note that if (2.2.10)) is satisfied for £ > 1 then the initial value
bi| +—o is uniformly bounded for € € [0, 1], which ensure that the existence
time can be chosen independently of €. Furthermore, it coincides with A;
when & = 0. We therefore obtain (a1, ¢1) := (b7, ¢7).—o which solves

Orar + Q1(a1, o) + Q1(ao, p1) = %Aao,

dpr + Vo - Vor + N =0,
(01(0,33'),(]51(0,56)) (A17 )

(2.2.13)

Here, we denote

e —
N _ N(l)(ao,al) _ lir% <N(|a ) - N(|a0|)> (a0, a1 = b1|e o)-

Repeating the argument in the first step, we can claim that (b5, ¢)]) converges
to (a1,¢1) as € — 0 by an energy estimate. This convergence implies

a® = ap +¢eay + o(e), ¢° = ¢o + b1 + o(e),
which is (2.2.9) with k£ = 1.

The [-th order

We use an induction argument. For [ < k, we put 0] := (a® — Zé-_:%] elaj) /e,
Pp = (¢° — Zé'_:lo e/¢;)/e'. Then the system for (b5, ) is also similar to
(2.1.8):

atbl5 + ElQl( lea sz)la) =+ Ql(bi ¢0)
-1
+Q1(a0, ¥]) + Y Qu(ai dr- z)—l Abj + i Aaz 1
=1
!
e, & €12 X €
oy + 5 VY= + Vo - Vi (2.2.14)
-1 =1 _jnr(j
1 N(ja|) = Yj—p e/ NV
5 3V Vo) + =0
=1 £
A5 — ST el A,
(b7 (0, ), 47 (0,2)) = ( o ’,0>
\

Note that the main quadratic part of (2.2.14)) is still the same that of (2.1.8))
up to a constant e!. Therefore, we can solve (2.2.14) in the same way as in
(2.1.8). In this step, we need the boundedness of (i/2)Aa;_1. Therefore, we
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lose two-time derivative in each step. So long as | < k, we see from (2.2.10)
that the initial value bls‘ +—o 1s uniformly bounded for e € [0, 1]. In particular,
it coincides with A; when e = 0. We therefore obtain (a;, ¢;) := (b}, ¢7) =0,

which solves

!
1
Oray + § Q1(ai, o1—i) = ZiAal—la
i=0

1 l (2.2.15)
Ohdr + 5 zg(w Vi) + NO =0,

(a(0,2), ¢1(0, 7)) = (A, 0),

where N is given inductively by N(© = N(|ao|) and

(N(W - i ejN@) |

NW = NO(qaq, ..., a) = lim

e—>0 El

The explicit form of N is given in the following sections (see Remarks2.3.6
and 2.4.10). As in the previous steps, we can claim that (b],v7]) converges
to (a, ¢1) as € — 0. This convergence implies

l I
Z elaj + oe qSE:Zejgbj—l—o(sl
=0 j=0
which is (2.2.9) with k£ = (.

2.2.4 Nonlinear WKB approximation

We finally give a WKB type approximation (2.1.2) of the solution (2.1.1).
Let us start our observation at the step where we obtain an e-power expan-
sion of the solution (a®, ¢¢) to the system (2.1.8) such as

a® = ag+ear+ -+ +o(e"), ¢ = o +edr 4+ +o(eh)

in a suitable topology, say in C([0,T]; H®) with s > n/2+1, for some integer

k > 1. Recall that if (a%, ¢°) solves (2.1.8), then u® = a%ei’s is an exact
solution to (2.1.1). Now, we plug the above expansion to u® to have

uf = (ap + - + *ay + o(e")) exp <zio gy + e igy + o(s’”))
in C([0,T]; H®), which is written as a WKB type approximation

3 %Q(

uf = Bo+efi+ -+ 181 + o(eF 1)) (2.2.16)
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in C([0,7]; H*). Remark that the leading order of the amplitude of u®
not ag but fy = ape’®. The important thing is that the e'-order term
¢1 have some influence on the leading order, and so that the e'-term of
the initial amplitude A; is not negligible when we try to obtain the correct
WKB estimate. This fact leads us to some instability results [2, 13}, 15, 69]
by the approach initiated in [8, 9, 21} 22, 41], 142]. We conclude this section
with giving the explicit formulae of 3; for j > 1.

Notation 2.2.2. For a positive integer k, a set of positive integers P is called
a partition of k if

k
PEU{aeNl|1<a1<a2<...<al,a1+---—|—al:k‘}.
=1

For a partition P of k, let 4P be the integer L for which P € N holds.
Moreover, for a partition P of k, denote the components of P by P, (I =
1,2,...,tP).

Then, the amplitude §; (j =1,2,...,k — 1) in (2.2.16) is given by
§p §p
B; = e > (angprl +i tap, H¢1+pl> . (2.217)
P:partition of j =1 =2
We see from the trivial partition {j} of j that §; contains ¢;;1 in its defini-
tion. Therefore, we cannot define 3, from the source {(a;, ¢i)}1<i<k- Note
that 8; € H® as long as {(a;, ¢i) }1<igjv1 is in H® x H®.
2.3 Example 1: Local nonlinearity
In this section, we consider (CNLS). Then, the system (2.1.8) is
€ (> > 1 15 (> € &€
oa® + (Vo© - V)a® + 24 Ag® = ziAa ,
1
0 + 5IVo° + f(la*P) =0, 231)
(a*(0,2), ¢"(0,2)) = (Aj, Do)

We introduce new unknown v° := V¢* and consider

0a® + (v° - V)a® + aEV v® —z;Aa

atvs+( AV —|—Vf(]a5] ) (232)
(a*(0,2),v°(0, 7)) = (AE,V%),

which corresponds to the system (SHS).
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2.3.1 Cancellation

For the model case f(y) = y, let us first observe how we overcome the
difficulty in obtaining an energy estimate listed in Section 2.2.1. We keep
the notation I; (i = 1,2,...,5) in Section 2.2.1. Using N(|a®|) = |a|?, we
have
Is = —2Re (A°(2Re(a®Va)), A°v%) 2
= —4Re(a®A°Va®, A°v%) 2 — 4Re ([A%, af]Va®, A*v%) s .
The first term of the right hand side is a bad term because it contains

(s + 1)-time derivative of a®. We now apply the integration by parts to
obtain

Is = 4Re (a°A°V - 0%, A%a)
+ 4Re (Va®A®a®, A°v®) o — 4Re ([A%, af]Va®, Av7) - .
This still contains a bad term and use of the Holder inequality and commu-
tator estimate (Lemma A.2.2)) yield
15| < Clla" [l oo IVV°l s 0%l s + C AV | oo la®[[ggs ([0 s - (2:3.3)

So far, it seems to be impossible to close the estimate. Indeed, plugging
(2.2.3), (2.2.4), (2.2.2), (2.2.7), and (2.3.3) to (2.2.1) and (2.2.6), we obtain
a bad estimate

d 2 2 2 2 3

2 Ul + 0% [7) < Cllla e + 10" lpeen)
However, one trick solves all problems at once. The remarkable fact is that
the bad term of I5 is the same as that of I with different sign. In particular,
we deduce that

I~ 4Re (a"A°Y - 0%, A7) 12 | < OV e e [0 e (2:3.4)

and combining this estimate with (2.2.5) causes a cancellation:

1
I + —I5

1
1 < |I2 + Re (a®A°V - 0%, A%a®) o |+ 1]15 —4Re (a°A°V - 0%, A%a®) 2 |

< C(IVallpoo 105 gs + V0"l oo 0" grs) a1 grs -

Namely, the sum of two terms which contain bad part becomes good, and
so we conclude that

d 1 1 2
o (1o + 1171 ) <€ (1ol + 111 ) T 239)

This cancellation is the heart in the case of local nonlinearity. Therefore,
the sign of nonlinearity is essential, and this argument does not apply to the
“focusing” case f(y) = —y. In the focusing case, we need analyticity of the
data ([13, 305 69]). In the original proof in [34], we construct a symmetrizer.
Our cancellation can be regarded as another formulation of symmetrizability.
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2.3.2 Existence result
We now state the result about the existence of the solution to (2.3.1).

Theorem 2.3.1 (Grenier [34]). Let f € C°(R4 : Ry) with f(0) =0 and
f'>0. Let s >n/2+2. Assume that ®g € X1, and that A§ is uniformly
bounded in H® fore € [0,1]. Then, there exist T > 0 independent of ¢ € [0, 1]
and s > n/2+2, and uf = ae'"/¢ solution to (CNLS) on [0, T] fore € (0,1].
Moreover, a® and ¢° are the unique solution to (2.3.1) which are bounded
in C([0,T]; H*) and C([0,T]; X*TY), respectively, uniformly in ¢ € [0,1].
Moreover, ¢° — ®q is bounded in C([0, T); W) uniformly in ¢ € [0,1].

This result is extended to NLS with more general local nonlinearities in
[3, 4, 20} 23] 28, 144] (see also [13]).
Remark 2.3.2. Tt is obvious from the following proof that if &, € LP(R"™) for
some p > 1 then ¢° € C([0,T]; LP(R™)) for the same p. In particular, if &y €
H**1 is assumed, as in the original proof in [34], then ¢° € C([0,T]; H*T1).

Proof. The strategy is the same as in the case f(y) = y. We derive the
cancellation of bad terms. For this purpose, set the energy E(t) as
E(t) = a3 + { i A%F, A%
' Naf(jes)
Since Aj and V®q are bounded in H® — L°°, there exists Cp independent
of £ € [0, 1] such that E(0)"/2 < Cy. So long as ||a|| ;s < 2C0, it holds that
la®|| oo < 2C and so there exist m and M such that

1

L2

1
O<m< inf —— < sup

<M < .
velo.ac?) f'(y) y€[0,4C2) f'()
With these constants, it holds that
m en2 1 M 2
e . < 71\86,1\35 <= e ..
Ll <4f,(|a6|2) v®, A% >L2 el

We estimate %E (t). However, since the estimate of the time derivative of
the Sobolev norm of af is the same as in Section 2.2, we omit the detail. We
estimate the time derivative of the second term of E(t):

iisﬁse_isese Lsssa
dt<4f/Av,Av>—<2f/A8tv,Av + {0 17 Av®, Ao

__ <1AS((UE - V)vs),Asv5>

2f
_ <21f,A5(Vf),A5v5> + <at <41f’> AS0F, A5v5>
= I+ I5 + L. (2.3.6)
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The estimate of I is similar to (2.2.7):

T S, AS,E - € AS,E
I, = 2Re<2f/( V)AU,AU>L2 2Re<2f/[ U V]U,AU>L2

_ R6<2f/( S)AS,UE’ASUE>L2 +Re<< 2f/> (v v )Asva’Asv€>L2
— 2Re <2f' A%, 0 - V]U€7A5y5>

Since there exists a constant C' = C(f, Cy) such that

L2

1
V———
H e,

we see from (2.2.7) that

<( s LY 9102, < 00907
o0 y€[0,4C3] (f'(v))

|14] < C(M |[Vo°| oo + Co [Va™ o) 0% s (2.3.7)
We next estimate jr:r, An elementary calculation shows

I; = <2f/A5(2f Re(a®Va® )),A3v5>
715 - Re<f/[ f’]aé‘Vag,Asv5> ,
where I5 is introduced in Section 2.3.1. Therefore, by (2.3.4), we have
1I5 — Re (a*A°Vo®, A®a®) |

1 _
< 1’15 — 4Re (a®A°Vo®, A%a®) | + '<f’ [A% f ]aé‘VaE,Asv5>

< CNIVallpee o[l gz [[0% ] s + ‘<f,[As,f’]<fVa5,Asva>’ (2.3.8)

By the commutator estimate, we have

‘<f,[As FagVas, Ao 8>‘ M|V f]| Lo 16"V o
F IV gomr 165V | o) 0% s -

Here, we apply the estimate of composite function (Lemma A.2.4) to obtain

V]

Hs—1

pre1 < O(L+ [la][7) ™! ( sup If(’“)(y)|> [V]a®P?|

y€[0,4C2],k€E(1,[s]+1]
< C(1+4C3)1Co [la| s
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where [s] denotes the smallest integer bigger than or equal to s. Combining
these estimates to (2.3.8)), we find

|15 = Re (a°A*Vo®, M%) | < Cl|alypae [l s 0% s - (2.3.9)

We finally estimate Is. Using the first equation of (2.3.2)), we have
1 i
815 (f/) < < sup |f (y)|2> H8t|a€|2”Loo
LOO

veloacz) (F'())
We hence obtain

< CO([la%[lyyroo 105l + € | AGT] oo )-

T 2
15| < C(lla" oo [0 [[wrco + € 1A% | poo) [[0% 15 - (2.3.10)

The assumption s > n/2 4+ 2 comes from this point. We suppose this to
ensure the Sobolev embedding ||Aa®||; e < C||Aa®|| sz < C'|a®||ys. We

also note that the term Ig does not appear if we assume f’ is a constant as
we have seen in Section 2.3.1. In this case we need only s > n/2 + 1.

We summarize estimates (2.2.1), (2.2.3) (2.2.5), (2.2.2), (2.3.6), (2.3.7),
(2.3.9), and (2.3.10). Then,

th(t)‘g oL+ Y I

i=1,2,3 j=4,5,6
< ||+ [I2 + Re (a®A°V - 0%, A®a®) 12 | 4+ 0
+ | I4] + |Is — Re (aA°V - 0, A%af) ;o | + |Io]
< CO(lla®llyproo + 107 l[wree + lla% e 0% 100 + € 1A% oo
% (lla®l3s + 0% 77+
< C(E(t)? + E(t)?).
Therefore, by the Gronwall lemma, for any ¢ > 0 there exists T'=T'(§) > 0
such that E(t) < 4F(0) holds for ¢t € [0,7]. For t € [0,7T], it holds that

la®|l s < E(t)'/?2 < 2F(0)Y/2 < 2C), which ensures the above estimates.
We obtain a priori estimate.

Uniqueness and construction of ¢°

The uniqueness of (a®, v®) also follows from the energy estimate. Let (aj, v§)
and (a$,v5) be two solutions of (2.3.2) bounded in C([0,T]; H*)?. Then,
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denoting (d5, d5) = (aj — a5, vf — v5), we have

1 1
%ﬁ+@jVM?H@~W@+E£Vwﬁ+§@vmﬁ:%A@,
Ordy, + (d - V)i + (v5 - V)d;, + 2f'(|a5]?) Re(d5 Vai + a5V dy)
1
Hﬁﬁ+aW$/nfﬂ@P+9W®2|@2WWWQF=&
0

(d2(0> :E)? dqg)(oa $)) = (07 O)'

The bad terms are (1/2)a5V-d5 and 2f(|a§|?) Re(a5Vds) because the others
do not include any derivative on (d5, d5). To handle these term by cancella-
tion, we consider

13 1 13 €
Eult) = 151+ ez o)

Then, mimicking the estimate for E(t), we obtain

d
g Ea(t) < Cllaillgs , [Jvill grs ) Ea(?)-

Therefore, by Gronwall’s lemma, E4(t) = 0 for t € [0,T] follows from
E;(0) =0, and so (ai,v1) = (az,v2) holds. Once the uniqueness of (2.3.2)
is known, along the argument in Section 2.2.2, we can construct ¢¢ directly
by

b1
o =0 [ (G £ ) s

0
Then, (af,¢°) is a unique solution of (2.3.1). Since a®,v* € L? N L>™ and
f(0) = 0, we see the second term belongs to L' N L. Therefore, if ®
belongs to LP for some p € [1,00] then so is ¢f, which ensures ¢¢ € X*+!
and completes the proof. Remark 2.3.2] also follows. O
2.3.3 Justification of WKB approximation

We now prove the WKB approximation of the solution to (2.3.1).

Theorem 2.3.3. Let f satisfy the same assumption as in Theorem [2.3.1.
Let k > 1 be an integer and s > n/2+ 2k +4 be a real number. Assume that
g € X5t and that A5 writes

k
6= Aj+o(e") inH
j=0
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for e € 0,1]. Then, the unique solution (a®, $°) of (2.3.1) has the following
expansion:

a® = Zejaj +o(e®) in C([0,T); H*=2k72),

. (2.3.11)

¢ = Zsj¢j +o(e¥) in C([0,T); H 21,

J=0

Remark 2.3.4. Theorem 2.1.1 immediately follows from (2.3.11)) by an argu-
ment in Section 2.2.4. Indeed, we obtain

ut = TO(50 +efi4 -+ 1B +o(eFTY)) in €([0,T]; HS272),

where ) = ape®! and f3; is given by the formula (2.2.17).

Remark 2.3.5. Recall that ¢f —¢g = (¢°—Pg) — (o —Pg) € W*! while ¢° and
¢o belong to X**t! and so they do not necessarily decay at spatial infinity.
Similarly, the asymptotic of ¢° in (2.3.11) holds in C([0, T]; W*—2k=11),

Proof. The proof proceeds along the way which we show in Section 2.2.3.
Instead of the asymptotic expansion of ¢° itself, we consider the expansion
of v* = V¢*:

k
=> el +o(e*) in C([0,T]; H).
7=0

This is due to the following two reason: Firstly, it is rather easier to analyze
the system for (a®, v®) than the system for (a%, ¢°) itself, and, secondly, once
we obtain the above expansion of v° then it is easy to construct each ¢; from
the corresponding v;. Since Af is uniformly bounded and AO|€ o = Ao, we
see that (2.3.2) admits a solution even in the case ¢ = 0. We denote this
solution by (ag, ¢o), which solves

1
Orag + (’U(] . V)CLQ + 5CLQV -9 =0,

Oyvo + (vo - V)vo + Vf(Jaol?) =
(ao(0,x),v9(0,2)) = (Ag, VPy).

(2.3.12)
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The zeroth order

We first prove (a®,v®) converges to (ap,vp) as € — 0. Set aj = a® — ag and
U5 = v° — vg. Then,

~ ~ - 1._ 1 - ~
orag + (U5 - V)a® + (vo - V)ag + §a0V 0t + iaov S i%Aag + ’i%Aag,
O + (T - V)0F + (vo - V)TE + 2f'(Jao|?) Re(@Va® + @V as)

e 1
+ (aga® + ao’dé)/ f"(laol* + 0(|a*|* — |ao|*))dOV |a*[* = 0,
0

(a5(0, ), 76(0,2)) = (Ag — Ao, 0).

(2.3.13)
The bad terms are (1/2)aoV - 05 and 2f’(|ag|?) Re(apVas). In order two
derive cancellation between these two terms, we set

~ 1
|2 G
Bolt)i= 15165 + { 770y 75 AT )
If s > n/2 4 2 then, in the way similar to the energy E(t) in the proof of
Theorem 2.3.1, we obtain

d ~ ~ -
- Bo(t) < CEq(t) + Cz [lao .12 (Eo(t))? (2.3.14)

< Clﬁo(t) + Coe.

Note that the lower order term comes from the estimate of ((ic/2)A°Aag, A*ag),
and that C; depends on f, [|aol| gs+2, l[voll gst1, |a%||gs+1, and [[0%]] fasa-
Therefore, if (a®, v), (ag, vo) € C([0,T]; H*+?)? then Gronwall’s lemma yields

Co
67

Eo(t) < Ep(0)e +
Cy

(eC1t —1).

The right hand side converges to zero as ¢ — 0 uniformly in [0, 7], which
implies

a® =ap+o(l) inC([0,T];H?), v°=wv9+o(l) in C([0,T]; H?)

as ¢ — 0.

The first order

We now put b := af/e and wj := vj/e, and also set

(> 1 S,,,€ S,,,€
Bv(0)i= 1051 + (oo A A0uE).
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Then, since E;(t) = e~ 2Eq(t), we deduce from (2.3.14) that

d =
aEl(t) < CE(t) + Clao]| o2 (E1(t))2
< ClEl(t> + CQ,
and so that -
sup B1(t) < Br(0)eT + 2 (M — 1),
t€[07T] 1

By assumption on the initial data, we know that Ey(0) = ||(A5 — Ag)/e||%. is
uniformly bounded. Therefore, sup,c(o ) £1(¢) is uniformly bounded. This
implies that (b5, w$) € C([0,T]; H®)? exists, where T is the existence time
of (a%,v¥). Here, we remark that (b5,w$) € C([0,T]; H®)? requires ag €
C([0,T); H**2). Similarly, we will see that we lose two-time derivative in
each step.

Since bf,_, ._ = A1 by assumption, we can define (a1, v1) € C([0,T); H®)?
by
(a1,v1) := (b7, w)e=o-

One sees from (2.3.13)) that the system for (a;,v;) is the following:

1 1 1
a1 + (v1 - V)ag + (v - V)ar + §a1V v + iaov S = ziAao,
Ov1 + (v1 - V)vg + (vo - V)i + 2f(Jao|?) Re(@rVag + @ Vay)
+ (@@ + agar) f(|aol*) V]ao|* = 0,
(a1(0,2),v1(0,2)) = (A1,0).
(2.3.15)
As in the zeroth order, we then estimate the distance af := b — a; and
0§ = wi —v1. From (2.3.13) and (2.3.15), we verify that the equation for
(@, 7%) is
((9ia5 + (05 - V)a® + (v1 - V)ag + (vo - Va3
1. 1 e 1 -, €~ .
+ iaiv v 4 §a1V -G + §a0V NTHES Z%Aa‘i + ngal,
0 + (V5 - V)v° + (v1 - V)5 + (vo - V)05
+ 2f'(Jao|*) Re(a5 Va® + arVag + apVas)
1
+ @+ s+ i) [ (ol + 0000~ aof)dbVIa? (2:3.16)
0
+ (aoat + a1ap)(a”ag + a5ao)
1 1
< [ [ 0187 Gaol + 01610 o))t V] =0,
0 Jo

@0,0).7(0,2) = (B2 0).

9
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The point is that bad terms are (1/2)aoV - o and 2f’(|ag|?) Re(agVa5),
which is essentially same as in the previous (2.3.13)). All other terms do not
include any derivative on (aj,v]) except for (ic/2)Aaj, which vanishes in
the energy estimate. Setting the energy

) ~ 1 SE A ST
Bu(t) = @1 + <4f<|O|>A 5 A >

we obtain

d ~ ~ ~
ZE(1) < CE(t) + Ce | Aar | . (Ea(1))?

< Clﬁl(t) + Coye.

The constant depends on the H*t2 norm of a; and H® norm of vy, ag, vo,
a®, and v¢. Using Gronwall’s lemma and assumption, we see that

0< sup Ei(t) < E1(0)eST + Eg(eCIT -1)—0

t€[0,7] 1
as € — 0, which show

a® =ag+ea; +o(e) in C([0,T]; H?),
v =wvg +evy +o(e) in C([0,T]; H?)

as ¢ — 0.

Higher order

We repeat the argument in the first order: Define (b5, w5) := (aj /e, v5/e).
Then, from the estimate of Fj(t), we see that

1
. I1KE112 L As € AS, €
EQ(t) = ”b2”H5 + <4f/(|a0|2)A 'LU2,A ’LU2>

is uniformly bounded as long as so is E2(0). Therefore, (b5, w5) exists as
a function in C([0,T]; (H®)?) for all € € [0,1]. Set (az,v2) := (b3, w$)|c—o-
Then, (a5,75) = (b5 — a2, w5 — v2) solves a system similar to (2.3.16)) and/or
(2.3.13). Removing bad parts by the cancellation technique, we obtain the
energy estimate on (a5,v5) which ensures (a5,v5) — 0 in C([0,T]; (H*)?)
and so

a° = ag + eay + e2ag + o(e?) in C([0,T]; H?),
v® = vy + vy + e2ve 4 0(e?) in C([0, T); H?)

and so on.
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Regularity counting

As we seen above, we construct three sequences from (bf, w§) = (a®,v%) by

(ar,vy) :

= (
(a7, v7) = (b — a, wi —vp),

aé ¢
._ LY
(b§+17w16+1) = (6 7> .

c €
bhwl)\s:(]v

€

By assumption, for some k > 1, Af is uniformly bounded in H* for s >
n/2 + 2k + 2, and moreover

k
Ap = ZejAj +o(e®) in H.
j=0
For a while we denote C([0,T]; (H®)?) by Cr(H?)?, for simplicity. By Theo-
rem 2.3.1), (b§, v5) exists in Cp(H®)?, which shows that (ag, v) also belongs
to this space. Then, we obtain (a5, v5) € Cr(H*2)? along the argument
in the first order. Recall that for (ag,v5) € Cr(H*)? being true, we need

(ap,v9) € CT(HS/+2)2. At this step, we lose two-time derivative. Repeating
this argument, we see inductively that

(a5, v1) € C([0,T); H*™22,  (a,7F) € C([0,T); H272)2,

2.3.17
(bfr1,wip) € C([0,T]; H272)2, ( )

By assumption, 'di‘ o = € F(A° - Z?:o gl Ay) is uniformly bounded in

H?® for ¢ € [0,1], and however, Dfstjt—o = e~hH(Af — Z;?:o el Ay) is not

necessarily uniformly bounded. Therefore, the above induction argument
stops with obtaining the uniform C7p(H*~2*72)? bound of (G, ;). Thus,
we conclude that

k
a® = Zajaj +o(e¥) in C([0,T); H~%#72),
. (2.3.18)
v® =Y el +o(") in C((0,T]; H*2),
7=0
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where (aj,v;) (j = 1) solves the system

7
Ora; + Z ( (vi, - V)ai, +ai, V - UZ'Q) — iAaj_l =0,

i1+i2=]

;

Opvj + Z (vi, - V)vi,

il +ig=j

L
+Zf (laol) > JI D. 2Re(@;Vas,)

J1+-+Jp=7 =1 i1+i2=Jl
12
J

L
3 e VIaoP) S I S (anam) =o.

L=1 Ji+ I =i (=1 41+i2=J;

121

\ (aj(ovx)vvj(()?m)) = (Aj(.%'),O).

Expansion of ¢°

So far, we obtain the expansion of the solution (a®,v%) of (2.3.2). At the
final step, we derive the expansion of (a®, ¢°) of (2.3.1). To do this, it suffices
to expand ¢°. Recall that ¢° is defined in the proof of Theorem 2.3.1/ by the

formula
€ ¢ 1 12 12
o =@~ | (G P+ () ) ds
0

Substituting (2.3.18) to this formula, we see that
k

¢ = Zgjcbj +o(R) in C([0,T]; HS2F1)

J=0

as € — 0, where ¢; is given by the following formula:

Po(t) = Dy — /0 (;\110]2 + f(a0|2)> ds (2.3.19)

and, for j >

/ Z Viy * Uiy ds

i1 +i2 ]
L
/Zf(L (ool Y I X (anap)ds.  (2.3.20)
0 =1 Ji+ =i 1=1 i1 +ia=J]

1=

By (2.3.17) and the assumption on ®, it is easy to see that ¢g € C([0, T]; H5™1)
with ¢g — @9 € C([0,T]; W*+11) and that

¢; € C([0, T W2 N C([0, T); H* ).
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Remark 2.3.6. The integrand of the second time integral in the right hand
side of (2.3.20) is the explicit formula of N introduced in Section 2.2.3.
If the nonlinearity is cubic, say f(y) = Ay, then, this term is simplified as

A Z 2Re(ai, a5,).

i1+ia=j
2.4 Example 2: Nonlocal nonlinearities

Now we turn to the case of nonlocal nonlinearities. Our equations are the
Schrodinger- Poisson system (SP) and the Hartree equation (H). As we ob-
served in Section (2.2)), we mainly analyze the system (2.1.8). If we consider
(SP) and (H), then the corresponding systems are

1
Oha” + (Vo - V)a + sa D¢ = ngaf,
1
0% + S|V + A5 =0, (2.4.1)

—AVE = af?, Vi —0as|z| — oo,
\ (a6(07$)>¢6(07x)) = ( 87(1)0)7

and 1
Ora® + (Vo - V)a + sa"Ag” = z’%AaE,

1
0 + |Vo* 2+ A(la| 7 ¢ [aP?) = 0, (24.2)

(a°(0,2), ¢°(0, 2)) = (A5, Do),
respectively. When n > 3, (SP) and (2.4.1) correspond to (H) and (2.4.2)
with v = n—2 since the Newtonian potential is written as ¢, |z|>~" for n > 3
(see [33]). We therefore mainly treat (2.4.2) with n > 3.

2.4.1 Smoothing by the nonlocal nonlinearity

Let us first discuss how to manage to obtain an energy estimate in the case
of nonlocal nonlinearity. Differentiation of the second equation of (2.4.2)
yields

1
oa® + (v° - V)a® + QCLEV Cf = igAae,
Or® + (v° - VUF + AV (Ja] 7 xa*[?) =0, (2:4.3)
(a°(0, ), v"(0, 2)) = (A5, V®o),
which corresponds to (SHS). As presented in Section 2.2.1], the estimate of

4 l|a%||3;« involves || Vo¢|| o: We deduce from (2.2.1), (2.2.3), (2.2.4), and
(2.2.2) that
d

2 10l < Clllallce + 1V o) (a1 7gs + V0% 7). (24.4)
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In the previous Section 2.3, we derive the cancellation which vanishes out
both this bad term and another bad term in the nonlinearity of local type.
Now, we are concerned with nonlocal nonlinearities involving integrals, and
so it seems to be impossible to make this kind of cancellation. We hence
accept the estimate of || Vv®|| ;.. Thus, as mentioned at the end of Section
2.2.1, the problem is that we have to estimate the (s + 2)-time derivative of
the nonlinearity by the s-time derivative of the amplitude a®. Fortunately, it
is possible in the case of nonlocal nonlinearity. We use the following estimate
used in [5, [15] to make the nonlocal nonlinearity produce two-time derivative
gain. This is the key.

Lemma 2.4.1. Letn > 1, k > 0, and s € R. Let v € (0,n) satisfy
5 —k <y <n—k. Then, there exists C = C(n,k,p,s,) such that, for all
F e LNR™) N H(RY),

19l = )] < CUS e+ 110):

Proof. Since Fl|z|™7 = C|&|7"*7 for v € (0,n), it holds that

|19t Gal= )| = ¢ | ez

L2’

The high frequency part (|£| > 1) is bounded by C'|| f|| 5+ if —n+~v+k < 0.
On the other hand, the low frequency part (|{| < 1) is bounded by

D=

CIF | [ 1P g ) <l
|€]<1
if 2(—n+~v+ k) > —n, that is, if y > n/2 — k. O

2.4.2 Existence result

Differentiating the second line of (2.4.3) again, we obtain

1
oa® + (v° - V)a® + §aEV = igAaa,
BV + V(0F - V)0 + AV (2|77 % [a%?) = 0, (2.4.5)
(a%(0, ), Vo (0, z)) = (A5, V2Dy).

In the local nonlinearity case, we work with (2.3.2) corresponding to (SHS)
which can be solved in the usual H® framework with cancellation. However,
it turns out that, in the nonlocal nonlinearity case, it is not (2.4.3) (corre-
sponding to (SHS)) and (2.3.2)) but (2.4.3) which can be solved in the usual
H? framework. Adding a L*°-bound of v*, we obtain the solution to (2.4.3)
in the Zhidkov space.
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Theorem 2.4.2. Letn > 3 and A € R. Let v be a positive number with
n/2—2 <y <n—2. Lets >n/2+1. Assume that @y € C? with V>®o € H®,
and that A is uniformly bounded in H® for e € [0,1]. Then, there exist T >
0 independent of e € [0,1] and s > n/2+1, and (a®, ¢°) € C([0,T]; C* x C*)
unique solution to (2.4.2) on [0,T] for e € [0,1]. Moreover, a° and V¢°
are bounded in C([0,T]; H®) and L*(]0,T] x R™), respectively, uniformly in
e € [0,1]. Moreover, with the notation co := limp, o V®o(x) € R", ¢°
engjoys the following properties:

o (Tail estimates of ¢°) It holds that
V¢ (t,x) — VBo(x — coct) € (L7 T A L) (R™), (2.4.6)
1 [t n
¢ (t,x) — Do(z) + 2/ VB (2 — coos)|?ds € (L7 N L2)(R™).
0
(2.4.7)

Furthermore, they are bounded in above norm uniformly in t € [0,T]
and € € [0, 1].

o [fV® decays at spacial inﬁnity,nthat 1S, if coo = 0, then V¢© and?5 —
®q are bounded in C([0,T]; (L7117 N L®)(R™)) and C([0,T); (L>" N
L*>®)(R™)), respectively, uniformly in ¢ € [0,1].

Remark 2.4.3. Since n > 3, by means of Lemma [2.2.1 and the Sobolev
embedding, the assumption V2®, € H* implies the existence of a constant
Coo such that V®g — ¢ € LP for p € [2n/(n — 2),00]. Similarly, V¢© —
¢l € LP holds with some constant ¢ for p € [2n/(n — 2),00]. Thus,
(2.4.7) is the asymptotics in such a sense that ¢, = coo and moreover
Voo (t,x)—VP®o(x—coot) € L for g € (n/(y+1),00]. Recall that n/(y+1) <
2n/(n —2) =n/(n/2 — 1) by assumption on ~.

Remark 2.4.4. In general, both ¢* and ® are not bounded in any Lebesgue
space. If n > 5 then Lemma 2.2.1/ implies that there exist a real constant
d such that &g —d — ¢ - T € L27/(n=4) n 1% This is not true for n < 4,
as shown by the following example; f(z) = log(1 + log|x|), which is not
bounded nor this form but satisfies V2f € H>(R"). Nevertheless, (2.4.7)
shows the left hand side is always bounded and decays at spacial infinity.
We also remark that

t
v <<I>0(x) - ;/ Vo (a — coos)|2ds>
0
t 1 t
= V& (t — coo) — / (0L (V@0 (T — coot))p=sds — 3 / VIV®(x — coos)|?ds
0 0

= VOy(t — coox) — /Ot((V(I)o(:U — CooS) — Coo) - V)V (T — coos)ds.
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The first term of the right hand side is bounded and the difference of the
first term and V¢° belongs to (L#+ N L) as shown in (2.4.6). The second
term is a “good tail” term belonging to L" for r € [n/(n — 1),00]. Recall
that n/(y+ 1) > n/(n — 1) by assumption on +.

Remark 2.4.5. If &y = 0 then we have the uniform bound of ||¢°||;, and
|V¢?|| e for p € (n/v,00] and q € (n/(y+ 1), c0].

Remark 2.4.6. The decay property of ¢° is different from in the case of
local nonlinearities: The solution (af,¢f) to (2.3.1) satisfies ¢f — @y €
C([0,T); W*') (Theorem 2.3.1).

Remark 2.4.7. In the Schrodinger-Poisson case, the corresponding result fol-
lows by letting v =n — 2.

Proof. The proof is based on the classical energy method. We set a partial
energy
2 2
Epart(t) := l[a"[5s + [V s -

Estimates similar to (2.2.7) and (2.2.8) give

V0S|l grs)-

d . _
IV I < CUV Il (19015 + [ V2 (2] 5 (02|

We apply above Lemma 2.4.1 with £ = 2. Then,
V(2] 77 % [a°1?) || o < CU[la® P 1o+ (/16| 57
< CO(lla®][ g2 + lla® [l poo) lla™ s -

Therefore, we end up with
d €12 e € € €12 €112
2 1Vl < CUVE oo + llallzz + ol oo ) (la” s + VO [s)-

Together with (2.4.4), this implies the desired (partial) energy estimate
d
dt

This estimate is partial in such a sense that we do not obtain any information

about the boundedness of v itself.

Njw

Epart (t) < C(Epart (t))

First integration and decay properties of v°

Let us add the bound of v*. By Lemma 2.2.1} there exists a function F*(t)
of time only such that v* + F(t) belongs to C([0,T]; L**("=2)). Tt also
follows from this lemma that F*¢(0) is uniquely determined as a constant
such that V&g + F*(0) € L*/("=2) Therefore, F*(0) is independent of «.
Let us denote ¢, := F©(0). We now use the Sobolev embedding and Lemma
221 Forn >3 and 0 > n/2,if f — 0 as |x| — oo then

£l e < CUNVFll ot -
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This yields the uniform L*-bounds |[v® + F*(£)|| oo (jo 7)xrny < 00 Since
F<(t) is a time function, we also have ||[v|| fec (o 7yxrn) < 00 for each fixed
e. Therefore, we obtain the (full) energy estimate

LB < O(B)3,
dt
where E(t) == [|a®||3s + ||v°]| 3 + || V%[ 3. From this estimate, we obtain a
solution (a%,v%) € C([0,T]; H® x X**1) of (2.4.3). For the detail of the proof
of this part, see [5,[15]. Note that, at this step, we do not now whether v is
bounded in L>°(R™) uniformly in € or not, and so that the existence time T
may depend on . Applying the Holder and the Hardy-Littlewood-Sobolev
inequalities to the second equation of (2.4.3)), we have

0" = —(v° - V)0 — AV (|77 % |af[?) € L™, (2.4.8)

In particular, this implies (F©)" = 0. Recall that F*(0) is independent of e. It
turns out that F¢(t) = co as long as v° exists. Therefore, we can choose the
existence time 7' independently of . We also have v — V& € L2255+

from (2.4.8)).

Second integration and construction of ¢°

Now, we shall define ¢*. As mentioned in Section 2.2.2, the main step is to
show the uniqueness of the solution of (2.4.3). Let (a5, v5) € C([0,T7; H® x
X5*1) be two solutions to (2.4.3) with v; — V&g € L7255 %) Then,
denoting d;, = a] — a5 and dj, = v] — v5, we find
1 1 €
Od;, + (di, - V)a§ + (v5 - V)d, + §d2V -uf + §a§V dy = ziAdz,
Ods, + (dS - V)i + (v5 - V)5, + AV (|z| ™7 * (d5a5 + a5ds) = 0,

(dZ(Ov :ZJ), di(ov ‘T)) = (07 O)

We now define Ed,part(t) = HdZH%Q + HdeE)HQLQ Since

%Ed,part(t) < C(Ed,part(t))%

by the same calculation as in Epay(t), we see af — a5 = V(v —v5) = 0.
Moreover, by assumption, we have v{ — v§ = (v — V®q) — (v5 — V®q) €
L2559 In particular, v8 — v§ — 0 as |z] — co. Thus, a; = as and
v1 = vy holds, and hence the solution is unique. Once the uniqueness of the
solution of (2.4.3) is deduced, we can use direct definition

50,0) = 0o(o)~ [ (507 (o0) + A(el 10 (s12) ) ds € COTHC).

42



Asymptotic behavior of ¢°

Let us prove (2.4.6). A computation show

(V5 (t, 7 + coot)) = (O°) (L, + coot) + ((Coo - V)VO) (£, T + Cool)
= —[((v° = c0) - V)5 + AV(J2| 77 % [a®])] (t, 2 + cool)-

Since v° — coo — 0 as |z| — 00, ||[v° — cxoll;p < C||VV®| s is uniformly
bounded for p € [2n/(n — 2),00]. Then, by the Holder inequality,

((v° = co0) - V)o¥ € LI(R™)

holds for ¢ € [n/(n — 1),00]. Moreover, by the Sobolev and the Hardy-
Littlewood-Sobolev inequalities,

V(|z[7" x |a%]) € L(R")

for r € (n/(y+ 1), 00]. Therefore,
t
v (t, & + coot) — VPp(x) = / (Op(v"(t, @ + coot)) ) j=sds € L"(R™)
0

for r € (n/(y+ 1),00]. Hence (2.4.6). We finally prove (2.4.7). By the
definition of ¢°,

¢ (t,z) — Po(z) + ;/0 |V®q (2 — coos)|*ds
= /0 %((V%(x — Coo8) = 0°(5,7)) - VPo( — Coos))ds

+/0 %(va(s,m) (VOg(x — coos) — v°(s,2)))ds

—/ Mz|~7 * [a¥[2) (s, w)ds.
0

By the L bound of v and the asymptotics (2.4.6), the first two terms
of the right hand side belong to L" for r» € (n/(y + 1),00]. On the other
hand, by the Hardy-Littlewood-Sobolev inequality, the last term is in L™
for ' € (n/~, 0|, which completes the proof. O

2.4.3 Justification of WKB approximation

Theorem 2.4.8. Let n > 3 and A € R. Let v be a positive number with
n/2—2<~y<n—2. Let k be a positive integer and let s > n/2 + 2k + 3
be a real number. Assume that &g € C?*+5 with V2®, € H®, and that Aj
writes

k
5= Aj+o(e") inH
j=0
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for e € 10,1]. Then, the unique solution (a®, $°) of (2.4.2) has the following
expansion:

glaj +o(") in C(0,T]; H~2#72),

Q
m
I
-

7=0
k n
¢° = elp;+o(e¥) in C(0,T);L7" N L>).
7=0
k
Ve =S eVe; +o(e¥) in C([0,T); X521 n LT h).
7=0

Moreover, ¢g has the same asymptotic behavior as ¢° given in Theorem
2.4.2.

Remark 2.4.9. As in Theorem 2.4.2) ¢ and ¢y do not necessarilyngoes to
zero as |x| tends to infinity, while their distance satisfies ¢° —¢g € L TnL™®

and Vg5 — Vo € L7+ T N L.

Proof. We proceeds along in the similar way as in the proof of Theorem
2.3.3 (‘or as outlined in Section 2.2.3)). Let (a®,v%) = (a%, V¢°) be a solution
to (2.4.3)) given in the proof of Theorem 2.4.2. We first prove the expansion

k
aft = Zejaj + 0(5’“) in C([O,T}; Hszk—z)’
j:o (2.4.9)
o = Zsjvj + 0(5k) in C([O,T};Xs—%—l A L#Jr)'
Jj=0

Since Ag = Af__, exists, we obtain (ao,vo) = (a°,v)|c.—¢ Which solves

g
Ole=

1
Orag + (’Uo . V)ao + §aov -vg =0,

Oy + (vo - V)vg + AV (|27 * |a0\2) =0,
(ap(0,2),v9(0,2)) = (Ao, VPy).

(2.4.10)

The zeroth order

Introduce (ag,v5) = (a® — ag, v® — vg). This solves the system
B + (V5 - V)a® + (vo - V)G + %aov o %aov T = i%A'dS + i%Aao,
G + (U5 - V)v° + (vo - V)T + V(|27 % (afa® + agag)) = 0,

(@5(0, ), 76(0,2)) = (Ag — Ao, 0).
(2.4.11)
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Mimicking the energy estimate for (a®,v%), we obtain

 Bolt) < O(Eo(0)} + O= |1 aol 7. (Bo(1)

< CI<EO<t))% + Cae,

where Bo(t) i= @)% + [T o+ + [Tl2= + V7|3 and C; depends
on |lag|| gs+2, [|vol xs+2, ||a%|| gs+1, and ||v°]| ys+2. Note that by using the fact
that 58|t20 = 0, we can add the term HESHL%JF to the energy. This yields

sup Eo(t) < Ep(0)e” + E@(eCIT -1)—0
te[0,T] C1

as € — 0, which ensures (2.4.9) for £ = 0.

The first order

We put (b5, wf) := (a5/e, 05/) and Ei(t) == |65 )17 + w§|7 + [ Ve |3
Since Ej(t) = Ep(t)/e and it is bounded at ¢ = 0 uniformly in e, we see
that sup,cpo) £1(t) is uniformly bounded. Therefore, we obtain (bf,wf) €

C([0,T]; H® x X5t1 0 L)1) as a unique solution of a system similar to
(2.4.11), provided ag € H*"2. Since A; = bitzo .o €xists by assumption,
we can define (a1, v1) := (b, wf)|.—p, which solves

1 1 1
a1 + (v1 - V)ag + (v - V)ar + 5a1V v + §a0V = ZEAGO,
Oyv1 + (v1 - V)vg + (vo - V)vr + Re V(|z| 77 * (a1ag + apar)) = 0,

(a1(0,2),v1(0,2)) = (A41,0).
(2.4.12)
Let us estimate (aj, v§) := (b5 — a1, w§ —v1). From (2.4.11) and (2.4.12), we
see that

oai + (V5 - V)a® + (v1 - V)ag + (vo - V)aj
1. 1 — 1 ~ E o~ :
+ iaﬁv -0 + ialv -G + iaov S0 = ngai + z%Aal,
901 + (0 - V)o© + (v1 - V)05 + (vo - V)05 (2.4.13)
+ V(|z| 77 * (@5a° + a1a§ + aoa3)) = 0,

Af — Ag— €A
(0,07 (0.2) = (B2 o).

We use the energy method to obtain

SE(0) < CB(0)F + O< | Aa] . (Br(1)

< Cl<El<t))% + Cae,
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~ ~c 12 ~c 112 ~c |2 ~e||2
where Eq(t) := @il + [0l 2+ + 105z + VUil and C; depends

on ||ai|| gs+2. This yields

~ ~ C
sup Fy(t) < E1(0)e9T + E—Q(eCIT -1)—0
te[0,1] i
as € — 0, which gives (2.4.9)) for £ = 1. Higher order estimate is similar, so
we left the detail. The strategy is the induction argument as in the proof of
Theorem 2.3.3. We only remark that the system for (a;,v;) (j > 1) is given
as

¢ 1 ;
Oaj + ' Z ' <2(’Uz’1 -V)ai, +a;, V- ’UZ'Q> — iAaj_l =0,
11+12=)
O+ Y ((wiy - V)via + AV (2| 7 # (ai,75))) = 0,
i1+i2=7J

(a;(0,2),v;(0,2)) = (A4;(x),0).

Expansion of ¢°

We finally prove the expansion of ¢*. Since ¢° is given by the formula
b1
¢° =Dy — / (2\v5|2 + A(|x| 77 |a5|2)> ds.
0

Now, we plug the expansion (2.4.9) to this. Then, this concludes

k
o° = elg;+o(e") in L2(0,T] x R"),
j=0
where
AT - 2
do(t) = Py —/ <2|U0\ + A(|Jz|77 * |ao| )) ds (2.4.14)
0

and, for j > 1,
t 1
@(t) = —/ Z <2vil vy + A(|z| 77 (ail%))) ds. (2.4.15)
O iy tin=j
Notice that (ag, ¢o) = (a°, ¢°)|.—o and so the asymptotic behavior of ¢ is the

same as for ¢° given in Theorem 2.4.2. Furthermore, ¢; € C([0,T]; L"/7* N
L) for j > 1 by the Sobolev and the Hardy-Littlewood-Sobolev inequali-
ties. =

Remark 2.4.10. The integrand of the second time integral in the right hand
side of (2.4.15) is the explicit formula of NU)| introduced in Section [2.2.3:

ND = N a7 * (ai,a5,))

i1+i9=j
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2.5 Example 3: Local and nonlocal nonlinearity

We next consider the presence of both the local and the nonlocal nonlinear-
ities. We consider the following model, the nonlinear Schrédinger equation
with local and nonlocal nonlinearity,

2
z’satuEJr%Aus = f([u )+ TPy (0, 2) = A§(x) exp(i®o(x)/e),
(L-NL)
where f is supposed to be essentially cubic: f : Ry — R, satisfies f €
C*®(Ry), f/ >0, and f(0) = 0. Writing u° = ae'*"/¢, we find the system

1
oa® + (v° - V)a® + §a6V 0 = i%Aaa,

0% + SV + £(1a") + Mal ¢ la"f2) =0, 2:5.)
(0°(0.2).6°(0.2) = (45. %),

2.5.1 Cancellation versus smoothing

The difficulty of obtaining WKB approximation lies in obtaining energy es-
timate for the system for (a®, V¢®) (Section 2.2). As we seen in Section 2.3
if the nonlinearity is of local type then we obtain the energy estimate by de-
riving the cancellation of bad terms. On the other hand, if the nonlinearity
is of nonlocal type then we use the smoothing property of nonlinearity (Sec-
tion 2.4). In this section, we shall observe what happens with the existence
of both local and nonlocal nonlinearities. Let us introduce v® := V¢* and
consider

oa® + (v° - V)a® + %afv S0t = i%Aas,
0" + (v - V)o° + V(ja°?) + AV (|27 * |a*[?) = 0, (25.2)
(a6(07$)7¢€(0’x)) = (A(e]v @0)’

If we use the energy E(t) := |la®||5. + ||v°||;s, then the difficulty is the
following two points (see Section 2.2.1)):

1. The estimate of £ [|a° |3+ requires the bound of (s+1)-time derivative
of v°.

2. The estimate of % 0%+ requires the bound of (s 4 1)-time derivative
of the nonlinearity f(|a®|?) + (||~  |a®|?).

It might be necessary to produce the cancellation by the local nonlinearity
V f(]a®|?) which solves the above two problem simultaneously. Otherwise, it
would be difficult to handle the bad term coming from the local nonlinearity
f(|a?]?), although we can accept the (s + 2)-time derivative of (|z|~7 * |a®])
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by the smoothing property of the nonlocal nonlinearity. Once the cancella-
tion occurs, we do not need any longer to estimate (s + 2)-time derivative
of (Jx|~7 % |a®|) by gaining two-time derivative. This causes the change of
admissible range of . Thus, the nonlocal nonlinearity is almost a pertur-
bation, however we can see the influence of the nonlocal nonlinearity in the
tail estimate of ¢°.

2.5.2 Existence result

Theorem 2.5.1. Letn > 2 and s > n/2+ 2. Let f € C*(Ry : Ry) with
f(0)=0and f' > 0. Let A € R and let v be a positive number withn/2—1 <
v <n—1. Assume that ®y € X! and A§ is uniformly bounded in H® for
e € [0,1]. Then, there exist T > 0 independent of € € [0,1] and s > n/2+2,
and u® = e/ solution to (L-NL) on [0,T] for ¢ € (0,1]. Moreover,
(a%,¢°) € C([0,T); H® x X*T1) is the unique solution to (2.5.1). Both a°
and V¢© are bonded in C([0,T]; H®) uniformly in € € [0,1]. Furthermore,
¢° — @ is bounded in C([0,T]; L7+ N L®) uniformly in € € [0, 1].

Proof. We first show the existence of a unique solution to (2.5.2). Now, set
the energy as

1 S S
B0) = 1oV + (g A0 A >L ,

where s > n/2+1 and A = (1 — A)'/2. Take a constant Cj so that E(0) <
(Co)Y/2. As long as ||a®|| ;s < 2Co, we obtain
d

SLB() < C(E()

A

2 - 2

+ C(E(t)) + )<4f/(a€’2)ASV(|I| R k |CL€| )7ASU€> .
Estimates are the same as in the proof of Theorem 2.3.1. Lemma [2.4.1 with
k = 1 implies that

Njw

_ 2
[V (12|77 1a®*) || o < Clla*ll oo lla%[lgs + lla®[I72)

if n/2—-1<~y<n-—1, and so that the third term of the right hand side is
bounded by

Njw

(o™l oo + M@l z2) la®[| s 1% [ e < CCE(E))

for such v. Therefore, by Gronwall’s lemma, there exists a time 7" > 0
depending only on F(0) such that

sup E(t) < 4E(0) < (2Cp)3.
te[0,7)

This yields [|a®|| ;s < 2Cp. Along the standard method, we see that the
solution (a®,v%) € C([0,T]; H® x H®) of (2.5.2) exists.
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Uniqueness and construction of ¢°

We next show the uniqueness of (a®,v%). Let (aj,v]) and (a§,v5) be two
solutions of (2.3.2) bounded in C([0,7]; H*)?. Then, denoting (d5,d5) =
(a§ — a5, v] —v§), we have

1 1
Oud, + (d5- V)as + (v5 - V)d; + 5d5V - 0f + 55V - df = z’%Ade,
edy, + (5 - V)i + (05 - V)dg + 2f(|a5|*) Re(d; Vai + a5V )

1
+(diai+a§di)/o f"(|a5]* + 0(ai|* — |a5[*))dOV a5 |

AV (J2| 77+ (dgaf + a3dz)) = 0,
(dé(O,l‘),di(O,l’)) = (070)

\

We estimate )
€112 e e
Eq(t) == ||| 7s + <4f’(\a§]2)dv’dv>L2 )

As in the proof of Theorem [2.3.1), we estimate

d

g Ea(t) < Cllaill g, laill ) Ea(t)

A B _ .
# { ae V el ¢ G5 + ). )|
By the use of the Hardy-Littlewood-Sobolev inequality and the Holder in-
equality, the second term in the right hand side is bounded by

C|V (2= * (d5a5 + a55)| 2 1 e
el (71 [ —— 7 1

for n/2—1 < v < n—1, where we read P
we infer from Gronwall’s lemma that

Eqt) < CE4(0) =0

= oo if ¥ = n—1. Therefore,

as long as (a;,v;) exists. Hence, the uniqueness holds. Then, using the
argument in Section 2.2.2, we can determine ¢° directly by

b1
5 =0 [ (GIFOR + F P + Mol x o)) ds € OO THXH).
0
One can easily check that [v°|> € L' N L> and f(|a®(s)|?) € L' N L*, and
from the Hardy-Littlewood-Sobolev inequality and the Sobolev inequality
that (|z|~ * |a®|?) € L™+ N L. Therefore,

¢ (t) — g € C([0,T); L7+ N L™).
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2.5.3 Justification of WKDB estimate

Theorem 2.5.2. Let n > 2. Let f satisfy the same assumption as in
Theorem [2.5.1. Suppose that Let k > 1 be an integer and s > n/2 + 2k + 4
be a real number. Assume that ®g € X*T! and that A§ writes

k
5= eAj+o(c") inH?
j=0

for e € [0,1]. Then, the unique solution (a®, ) of (2.5.1) has the following
exTpansion:

k
af = Zsjaj +o(eF) in C([0,T]; H2F2),
n (2.5.3)
¢5 — Zaj(bj + 0(€k) in C([O,T]; L%+ N Xszkfl).
=0

We note that the expansion of ¢° never holds in C([0,T]; Ws=2F=11),
This part is different from (CNLS) case, and due to the presence of the
nonlocal nonlinearity. The proof is similar to that for Theorem 2.3.3. We
hence omit the details.
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Chapter 3

Analysis of Classical
trajectories

3.1 Introduction
In previous Chapter 2, we consider the solution to the semiclassical nonlinear
Schrodinger equation
&2
ie0yu® + EAUE = N(Ju)u®, u°(0,z) = Aj(z)exp(i®o(z)/e). (3.1.1)
and give an approximate solution of phase-amplitude form

.o (t,x)
u(t,x) ~ ¢ ™ (bo(t,x) +ebi(t,z) + eba(t,x) +--+) (3.1.2)

for small time. Our next problem is whether we can extend this approxi-
mation for large time or not. In general, there exists a critical time ¢, < oo
such that the approximation (3.1.2) breaks down at ¢ = t.. This is due to
the fact that ¢g makes singularity in finite time and so that the right hand
side of (3.1.2) is not defined globally in time. A set of singular point of ¢g
is called caustic set. At the caustic, the approximation of the form (3.1.2)
ceases to be valid. The analysis of the asymptotic behavior of the solution
near and after the caustic is one of the most interesting problem of semiclas-
sical analysis. In this chapter, we investigate with the model case when ¢g
exists globally in time (global existence, GE) and when ¢g breaks down in
finite time with the formulation of singularity (finite-time breakdown, FB).
More explicitly, we consider the compressible Euler-Poisson equations as the
model case:

pr +div(pv) =0,

v+v-Vo+ AVIip =0,

- AVYP =pP— b’

(p,v)(o,x) = (,OQ,UQ)(SU), 0o

(EPy)

WV

0,
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where (t,z) € Ry xR™, X is given physical constant, and b is the background
or impurity. We assume b is a nonnegative constant.

In this chapter, we assume that the unknowns have radial symmetry and
concentrate on the multi-dimensional isotropic model:

oy + 0,(r" " pu) = 0,

v + 09 + A0 Vp = 0,

— 0, (r" 0, Vp) = r"(p — b),
(p7 1))(0, 7’) = (p()a UO)(T)v po =0

(I‘EPb)

for (t,r) € Ry x Ry with initial data Here, r > 0 denotes the distance from
the origin. Now, the unknowns are p = p(t,r) and v = v(t,r). Vp = Vp(t,r)
is defined by

T 1 B
Vp(t,r) = Vp(t, o) +/ — (/ Y Yo(t,re) — b)dr2> dry.
1 0

T0

We suppose suitable boundary condition such as Vp(t,00) = 0.

The Euler-Poisson equations arise in many physical problems such as
fluid mechanics, plasma physics, gaseous stars, quantum gravity and semi-
conductors, etc. There is a large amount of literature available on the global
behavior of Euler-Poisson and related problem, from local existence in the
small H*-neighborhood of a steady state [27, 51}, 53] to global existence of
weak solution with geometrical symmetry [19]. For the two-carrier types in
one dimension, see [71]. The relaxation limit for the weak entropy solution,
consult [54] for isentropic case, and [39] for isothermal case. The global
existence for some large class of initial data near a steady state is obtained
by Guo [35] assuming the flow is irrotational.

For isotropic model, the finite time blowup for three dimensional case
with the attractive force, pressure, and compactly supported mass density is
obtained in [52], and the blowup for the repulsive case in the similar settings
is deduced in [63] (see also [24)[64]). In [25], the global existence/finite-time
breakdown of the strong solution is studied from the view point of critical
threshold. They give a complete criterion in one-dimensional case without
spatial symmetry and with spatial symmetry in one and four dimension. A
sufficient condition for finite-time breakdown without spatial symmetry is
obtained in [17, [18], and the complete description of the critical threshold
phenomenon for the two-dimensional restricted Euler-Poisson equations is
given in [47]. In [67], the similar issue is treated with pressure term.

In this chapter, applying the method in [25], we discuss the necessary
and sufficient conditions for the global existence of the solution to the Euler-
Poisson equations with spatial symmetry (rEP) in multi-dimensional case.
One of the main result is Theorem 13.3.14, which is used in Chapter 4. The
results are too much to state them all here, we only quote them.
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The b =0 case The necessary and sufficient conditions for the global ex-
istence are given in Theorem 3.3.1/ for attractive (A < 0) case, and in
Theorems [3.3.2} 3.3.3, 3.3.7, and 3.3.12 for repulsive (A > 0) case.

The b > 0 case The necessary and sufficient conditions for the global ex-
istence are given in Theorems 3.4.1, [3.4.2] and [3.4.3 for attractive
(A < 0) case, and in Theorems [3.4.4, [3.4.5, and [3.4.7 for repulsive
(A > 0) case.

Section 3.5/ is devoted to the study of the limit b — 0. This limit reveals the
feature of two dimensional case.

3.1.1 Semiclassical analysis and Euler equation

As we seen in Section 2.1.2, there is at least two approach to obtain a WKB

approximation (3.1.2) of the solution to (3.1.1). Let us now recall briefly.
iSE(t,ac)

First is to apply the Madelung transform u®(t,z) = \/p(t,x)e' =  and
work with the quantum Euler equation

Op° + div(p°V S®) =0,

A £
BIVSE + (VS - V)VS® + VN(V/5F) = 2V < g) :

(p°(0,2), V5°(0,2)) = (JAG[*, V(Do + £ arg A7)).
(3.1.3)

The second is employing the modified Madelung transform u® = a° ¢S and
considering the system

oa® + (V¢ - V)a® + %(ZEAd)E = igAaE,
06 + 5[V + N (o) =0, (3.1.4)
(0(0,), 6°(0,)) = (45, %0).

Either way we take, we encounter the compressible Euler equation: Set
(p1,v1) := (p°, V.S%)|c=0 and (p2,v2) := (|a®|, V¢®)|.—g. Then, one sees that
both (p1,v1) and (p2,v2) solve, at least formally, the system

Op + div(pv) =0,
v+ (v-V)v+VN(/p) =0, (3.1.5)
(p(0,),v(0,2)) = (| Ao|?, Vo).
In Theorems 2.1.1),2.1.2, 2.1.3, and 2.1.4, we actually justify the WKB type
approximation

7;@
€

ut =€ (Bp+efr+ -+ "By +o(eFh)) (3.1.6)
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of the solutions to (CNLS), (SP), (H), and (L-NL), respectively, by analyzing
the system (3.1.4)'. Let us give some examples of (3.1.5):

o If (3.1.1) has the defocusing nonlinearity of power type, that is, if
N(y) = y?~! then (3.1.1) is the power-type nonlinear Schrodinger
equation

iedpu® + nguE = |uf [P~ uf (NLS)
and (3.1.5) becomes the compressible Euler equation with pressure:
Op + div(pv) =0,
A+ (v- Vv + V(p2) =0, (3.1.7)
(p(0,2),v(0,)) = (|Ao|*, Vo).

We justify the small time WKB approximation of the solution in Sec-
tion [2.3| for the cubic case p = 3.

e If (3.1.1) is the Schrédinger-Poisson system
2
ieduE + %Aus = AVpus, —AVp = |uf]%, (SP)
then (3.1.5) becomes the compressible Euler-Poisson equations:

Op + div(pv) =0,

v+ (v-V)v+ AVip =0,

—AVp = p,
(p(0,2),v(0, 2)) = (|Ao|?, Vo).

(EP)

We justify small time WKB approximation in Section 2.4. In this chap-
ter, we consider this equations in the presence of background (EP}).

e If the nonlinearity of (3.1.1) is the sum of above two nonlinearities like
2
ieOE + %Azf = AVpf + [P uf, AVp = [wf2 (LNL)

(3.1.5) becomes the compressible Euler-Poisson equations with pres-
sure:
Op + div(pv) =0,
Ao+ (v- Vv + AVVp + V(p2) =0,
AVp = p,
(p(0,2), v(0,)) = (| Aol, V).

! In the approximation solution (3.1.6), the main amplitude By is not ap = lim._, a*
but age’®t, where (af, ¢°) is a solution to (3.1.4) and ¢1 is '-order term of ¢° (see Section
2.2.4). However, |ao|> = |aoe'®!|> = |Bo|? and so both (|ao|?, Vo) and (|Bo|?, Vo) solve
(3.1.5), where ¢o = lim._o ¢°.

(3.1.8)
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In Section 2.5, the WKB approximation of the solution to this equation
is deduced.
3.1.2 Classical trajectory

Let us introduce the notion of classical trajectory.

Linear case

We first briefly recall the linear case N = 0. Substitution of u® = ae®0/¢
to (3.1.1) suggests that ¢g = @ik, Where ¢ey solves the eikonal equation:

1
Oy Peix + §IV¢611(’2 =0, ¢eik(0,z) = Do(z). (3.1.9)

The term “eikonal” comes from the theory of geometric optics: The solution
to this equation determines the set where light is propagated. We remark
that the equation (3.1.9) is regarded as a Hamilton-Jacobi system. One can
solve this equation by a characteristic curve X = X (¢,y) : R x R" — R"
defined by and ordinal differential equation

d
%Xeik(ta y) = v¢€ik(t7 Xeik(tv y))7 Xeik(07 y) =Y.

Xeik(t,y) is called classical trajectory, or ray. With this notation, (3.1.9)
is simply %Xeik(t, y) = 0. Therefore, in the linear case (without external
potential), the classical trajectory Xk is a straight line

Xeik(t,y) =y + tVo(y).
For more detail, see [13, Sectionl.3] and references therein.

Nonlinear case

Now we turn to the nonlinear equation (3.1.1). We now consider general
nonlinearity. As shown in Chapter 2, the principal phase ¢g of WKB ap-
proximation (3.1.6)) solves the system

Bua + (Vo - V)ao + Saoo =0,
0160 + 5V 0l + N(laol) =0, (3.1.10)
(ao(0,2), ¢0(0,2)) = (Ao, Po)

whose second equation is the eikonal equation (3.1.9) with nonlinear inter-
action term. We now suppose that the solution ¢ exists with a certain
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regularity and that the characteristic curve X(¢,y) can be defined by an
ordinal differential equation

%X(t, y) = Voot X(ty)), X(0,y) = 0. (3.1.11)

Although the system (3.1.10) is not always regarded as a Hamilton-Jacobi
system, let us call X (t,y) as classical trajectory in this article, by an analogy
of the linear case. Unlike X, the classical trajectory X defined from
(3.1.11) is not always a straight line even without the presence of external
force. This is because %X(t, y) = N(Jao|)(t, X (¢,y)) is not zero in general.
This reflects the fact that there are interactions, represented by the nonlinear
term N, which bends the classical trajectory. When we consider (rEPy), the
use of classical trajectory works extremely well, and the equation can be
reduced to an ordinal differential equation of classical trajectory. Remark
that the analysis of the classical trajectories does not always yield a good
analysis of ¢g. This strongly depends of the nonlinearity and the geometry
of considering space. Nevertheless, the classical trajectory X has a general
property: This traces the flow of the “mass”. We conclude this section with
this property.

Proposition 3.1.1. Let (ag, ¢g) be a smooth solution of (3.1.10) on [0,T
and X be a classical trajectory on [0,T] defined by (3.1.11). Let Q be a
bounded set in R™ and define a set Q := {X (t,y) € R"|y € Q} fort € [0,T].
Then, for p(t,x) = |ag(t, z)|?, we have

/Qt p(t,z)dr = /Q,O(O,:L’)d.%‘
for allt € [0,T].

Proof. Let X (t,y) be the classical trajectory. Then, by the change of vari-
able z = X (t,y), we have

/ plt,)da = / p(t, X (1)) (det(V260)) (t. X (t,y))dy,
Q4 Q

where V2¢yq is the n x n matrix (0;0j¢0)i,j. The time derivative of the right
hand side is equal to

/Q(ﬁtp + Vo - Vp)(t, X (t,y))(det(V2¢o)) (¢, X (t,))dy

+/Qp(t,X(t,y))jt[(det(VQ%))(t,X(t,y))}dy. (3.1.12)
We now claim

 [(det(260)) (1, X (1)) = (30 (1, X (t,1)(det(V60)) (¢, X (1,9)).
(3.1.13)
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If this is true, then, plugging to (3.1.12), we deduce from the first equation
of (3.1.10) that

/Q (Oup+ Vo - Vp + pAdo) (1, X (1, y)) (det(V20)) (1. X (t,y))dy = 0,

which shows the proposition. Hence, it suffices to prove (3.1.13). By the
relation %@Xi = 1y Opvi(t, X)0; Xy, we have

L1 (det(V260) (1 X 1,9)

dt
d T
= Z agnaH&XU(i)(t,X)
0ESh i=1
= Z signaz (Z 0kva(j)(t,X)8ij> H 8¢XU(i)(t,X)
o€Sy Jj=1 \k=1 i=1i#j
= Z signaz Z 8kvg(j)(t,X)8ij H ang(i)(t, X)
o€Sn J=1 \k=1,k#0(j) i=1,i#j

+ (Ago det(V2¢)) (t, X),

where o is a permutation and S,, denotes the symmetric group. Let us now
prove that the first term of the right hand side is zero. For fixed o € S,, 7,
and k # o(j), we can choose o’ € S, so that

o'(j) =k, d'(o7 (k) =0(j), o'()=0() [L,n]>Vi#j o " (k)

Then, it holds that signo’ = —signo. We put 5/ = o~ '(k) and k¥ =
k. Note that ((¢"), ("), (k")) = (0,4,k) and so that the correspondence
(0,7,k) — (0,75, k') is a bijection on {(c, j, k) € Spx[1,n]x[1,n]||k # o(j)}.
Furthermore, one verifies that

sign O'ak'l)o-(j)ank H 8ZXU(1)+s1gn g’ak/val(j/)aj/Xk/ H 8i’Xo"(i/) =0
i=1,i#j i'=1,4'#j"
Hence, we obtain (3.1.13). O

3.2 Preliminary results

The method of characteristic curve (the use of classical trajectory introduced
in Section [3.1.2) does not necessarily give a good analysis of compressible
Euler equations. However, in the radial Euler-Poisson case, there is an
amazing transform which reduces the system to an ODE of the classical
trajectory X. Let us first describe this reduction of (rEP}) which is intro-
duced in [25] (Section [3.2.1). Then, Section [3.2.2 is devoted to the study
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of local existence of classical solution to (rEP;) by the analysis of classical
trajectories. The criterion of global existence/finite-time breakdown is also
translated in words of classical trajectory (Section3.2.3). We introduce the
notion of pointwise condition for finite-time breakdown in Definition [3.2.8,
which is introduced in [59].

3.2.1 Reduction of Euler-Poisson equations to an ODE of
classical trajectories

Let us recall the radial Euler-Poisson equations:
"oy + 0:(r" " pv) = 0, (
v+ v0v + A0, Vp =0, (

— 0, (r" o Vp) =" p —b) (3.2.3
(p;v)(0,7) = (po,v0)(r), po = 0. (

Note that (3.2.1)—(3.2.4) is equal to (rEP}). Let X be a classical trajectory
defined by

WV

%X(t, R) = u(t, X(,R)), X(0,R)=R.

We also introduce the “mass”
,
m(t,r) = / p(t,s)s" ds.
0

Then, an integration of (3.2.1) yields

om + vorm =0, (3.2.5)
which is written as g
%m(t,X(t, R))=0. (3.2.6)

Note that (3.2.5) implies that the mass is conserved along the characteristic
curve. This property holds for general nonlinearity without symmetry (see
Proposition 3.1.1). Integrating (3.2.3) and combining with (3.2.2), we also
have

22 _d ~Am(t, X(t,R))
X (L R) = —o(t, X (4, R)) = X R

dt?
Thus, it turns out that the system (3.2.1)—(3.2.4) is reduce to an ODE for
X:

- %bX(t, R). (3.2.7)

)\mo(R) by . B -
X R YR, X'(O.R)=w(®), X(O.R)=F

(3.2.8)
where myg is the “initial mass” mg(R) = fOR po(s)s"tds. This reduction is
the key for our analysis in this chapter.

X"(t,R) =
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We also introduce the integral form of this equation. Multiply both sides
by X’ to obtain

(X'(t,R))? = vo(R)*+

if n > 3 and
/ 2 2, Ao 2 X
(X'(¢, R))? = vo(R)? + SH(R = X(t, R)®) + 2\mo(R) log =
if n = 2. They are also useful.

3.2.2 Local existence of classical solution

In this section, we shall show the local existence of classical solution to
(rEPp) by using the classical trajectories. The strategy is the following:
We first show the existence of classical trajectory X which solves the ODE
(3.2.8) (Proposition 3.2.1). Then, the solution of (rEP}) is defined from X
by an explicit formula (Proposition 3.2.3)).

Local existence of classical trajectory

Let us begin with the local existence of X. We regard X (¢, R) as a function
R4 x Ry — R. For a nonnegative integer k, we define

Dk {0([0,00)) if k =0,

C([0,00)) N C*((0,00)) if k> 0. (3.2.11)

For nonnegative integers k1, ko and intervals Iy, Is, we define

CFrok2 (I x L) = {f(t,x) : [, x Iy — R|§FOLf € C(I) x I),
Va € [0, k1], Vb € [0, ko] }.

Proposition 3.2.1 (Existence of solution of (3.2.8)). Suppose that n > 1,
ANER, and b > 0. Let k be a nonnegative integer and assume py € DF and
vy € DFT with v9(0) = 0. Then, mg € D**1 holds, and for any R > 0
there exists t(R) > 0 such that X (t, R) is uniquely defined from the ODFE
(3.2.8) in an interval [0,t(R)). Moreover, if there exists T > 0 such that
X(t,R) > 0 holds for all (t,R) € [0,T) x (0,00), then we have

X € CPFL([0,T) x (0,00)) N CFFTL((0,T) x (0, 00)).

This proposition follows by applying a general theory of ordinal differ-
ential equations for each fixed R. We omit the detail.
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Local existence of the solution to (rEP})

Let us turn to the local existence of the classical solution to (rEP;). We
introduce the indicator function

T(t, R) := exp </Ot &nu(s,X(s,R))ds) . (3.2.12)

The interpretation of I'(¢, R) will be clear from the following lemma and
Proposition 3.2.6), below.

Lemma 3.2.2. Consider the Euler-Poisson equations (tEPy). Let X be the
classical trajectory, then

(t,R) = 9 X (t, R).

Moreover, the solution of (tEPy) is given by

v(t, X(t,R)) = %X(t7 R), (3.2.13)
n—1

p(t, X(t,R)) = m, (3.2.14)

d,0(t, X (t, X)) = m. (3.2.15)

Even if it is possible to determine a function X which solves the ODE
(3.2.8)) for large time, we can define the solution to the Euler-Poisson equa-
tions (rEP}) by Lemma 3.2.2 as long as X and I' = dp X are positive.

Proposition 3.2.3 (Local existence of the solution of (rEP)). Suppose that
n>1,ANeR, andb > 0. Let k be a nonnegative integer and assume pg € D*
and vg € D1 with vo(0) = 0. Let X be the solution of (3.2.8) given by
Proposition3.2.1. Define I' by (3.2.12). If X (t,R) > 0 and I'(t, R) > 0 hold
forall R >0 andt € [0,T) and if liminfr_oT'(¢t,R) > 0 fort € [0,T), then
X(t,0) =0 fort € [0,T) and (rEP}) has a unique solution

p € C*([0,T),DF) nC>((0,T), DF),
v e CLY([0,T), D)y N C*((0,T), D).

Remark 3.2.4. In above proposition, if s = 0 then p is not spatially differ-
entiable. In that case, we use the mass m instead of p and consider the
modified equations (3.2.5) and (3.2.2)—(3.2.4) instead of (rEPy).

Proof. We first show X (¢,0) = 0 for t € [0,T). Since (3.2.8) can be solved
explicitly, one easily checks this if n = 1. Let us consider n > 2. By
liminfr_oI'(¢, R) > 0, we have R < CX(t, R) for small R. Plugging this to
(3.2.9) and (3.2.10), we deduce from mo(R) = O(R") as R — 0 that

Ab

n

lim (X’(t, R)% +

—0

X2(t, R)> =0.
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If A > 0 then, it immediately follows that X'(¢,0) = X (¢,0) = 0 for ¢t €
[0,7). On the other hand, if A < 0 then we have

Al

(X (@ 0)" < [X'(t,0) = /= =1X(#,0)]

and so |X(t,0)] < |X(0,0)|e?VIN¥/m = 0. Hence, X(t,0) = 0 for ¢t € [0,T).
It gives the continuities of X, X’ and X" (and higher time derivatives)
around R = 0:

X e C%0([0,T) x [0,00)) N C%*+L([0,T) x (0, 00))
N CY((0,T) x [0,00)) N CFL((0,T) x (0, 00)).

Then, the existence part is an immediate consequence of Lemma [3.2.2.

We prove the uniqueness. It suffices to show in the case k = 0. Let
(pi,vi) (i = 1,2) be two solutions to (3.2.5) and (3.2.2)—(3.2.4) which satisfy

pi € C%([0,T),DY),
v; € CY([0,T), D).

Now, solving %Xi(t, R) = v;i(t, X (t,R)), we can define the classical trajec-
tories X7 and Xo, and the indicator functions I'y and I's. Then, we have

X; € C?*([0,T), DY), I; € C%([0,T),C((0,00))).

Since two solutions exist until ¢ < T, for all R > 0 and § > 0 there exist
positive constants ¢; = ¢;(R, ) and ¢z = c2(R, d) such that

Xi(t,R)>c1 >0 and Ty (t,R)>co>0, Vtel|0,T -9
Recall that both X; and X5 solve

Amg(R) b

X" R) = 5 gt~ XGR, XOB) = w(R), X(0.R)=R

We fix R > 0 and § > 0. Using the fact that

1 1
X1 (t,R)" 1 Xy(t, R)" 1

n—1
<= | X1(t, R) — Xa(t, R)|
1

for all t € [0,T — 0], and applying Gronwall’s lemma to
t
X(t,R) = R+/ X'(r)dr,
0

X'(t,R) = vo(R) +/0 (m - %X(Tv R)) dr,
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we deduce that X (¢, R) = X}(t,R) and X;(t,R) = Xs(t, R) hold for t €
[0,T — ¢]. Since R > 0 is arbitrary, we also have X;(¢,0) = X»(¢,0) for all
t € [0, — 4] by continuity. Thus, we see that X;(¢, R) = Xa(t, R) for all
R >0andte[0,T) since § > 0 is also arbitrary. Applying Lemma [3.2.2,
we conclude that p; = ps and v = ve. O

So far, we obtain the unique solution to (rEP;). We finally confirm that
this solution solves the original equation in the distribution sense.

Proposition 3.2.5. Suppose n > 1, A € R, and b > 0. Assume py € D°
and vg € D' with vo(0) = 0. Let (p,v) be a solution to (rEPy) given in
Proposition [3.2.5. Then, r(t,x) := p(t,|z|) and v(t,z) = (x/|z|)v(t, |z|)
solve the Euler-Poisson equations

r; + div(rv) =0,

vi+v-Vv+AVVp =0,
—AVPZI'—b.

in the distribution sense.

Proof. Suppose that the solution of (rEP}) exists for ¢ < T. Since (m,v)
solves (3.2.5) and (3.2.2)—(3.2.4) in the classical sense, and since moreover
it is continuous at x = 0 with v(0) = 0, the pair (r,v) solves the (EP}) in
the distribution sense. O

3.2.3 Pointwise condition for finite-time breakdown

Let us proceed to the discussion on global existence. By means of Lemma
3.2.2, it is clear that the existence of ¢t. > 0 such that I'(¢., R) = 0 implies
the finite-time breakdown of the solution.

Proposition 3.2.6. The smooth solution to the radial Euler-Poisson equa-
tions (3.2.1)—(3.2.4)) is global if and only if T'(t, R) is positive for allt > 0 and
R > 0. On the other hand, the smooth solution to the Euler-Poisson equa-
tions breaks down at t = t. if and only if the following equivalent condition
is met for some R = R.:

1. foc Opv(1, X (7, Re))dT = —00;
2. T(te, R.) = 0;
3. 8RX(tC,RC) =0.

The next elementary lemma suggests that the existence of ¢35 > 0 such
that X (t9, Rp) = 0 holds for some Ry > 0 also leads to the same situation.
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Lemma 3.2.7. Let X be a characteristic curve. If X (to, R1) = X (to, R2) for
some tg > 0 and 0 < Ry < Ry, then there exist t € [0,t9] and R € [Ry, Rs]
such that I'(t, R) = 0. In particular, if X (to, Ro) = 0 for some to > 0 and
Ry > 0, then there exist t < tg and R < Rg such that T'(t, R) = 0.

By Proposition 3.2.6, to ensure the existence of the global regular solu-
tion, it suffices to start with the initial data for which

X(t,R)>0, VR>0 and I'(t,R)>0, VR>0

hold for all ¢ > 0. Now, we introduce the notion of pointwise condition for
finite-time breakdown.

Definition 3.2.8. For fired R > 0, we call a necessary and sufficient con-
dition for the existence of t. € (0,00) such that X (t., R) =0 orI'(t;, R) =0
hold as a pointwise condition for finite-time breakdown. In the case of R =0,
we regard a necessary and sufficient condition for the existence of t. € (0,00)
such that I'(t.,0) = 0 as a pointwise condition for finite-time breakdown. We
denote PCFB, for short.

With this notion, Propositions 3.2.6 is reduced as follows:

Proposition 3.2.9. The local solution to the radial Euler-Poisson equations
(3.2.1)—(3.2.4) given in Proposition [3.2.3 breaks down in finite time if and
only if there exist some R > 0 such that the PCFB is met.

3.3 Global existence of classical solutions to ra-
dial Euler-Poisson equations 1: without back-
ground
In this section, we give a necessary and sufficient condition for global existence/finite-
time breakdown of the classical solution to the radial Euler-Poisson equation
without background:
r”_lpt + ﬁr(r”_lpv) =0,
v + v + A0 Vp = 0,

— 8T(7“"718TVP) =" 1), (rEPo)
(p,0)(0,7) = (po, vo)(r), po =0
for (t,r) € Ry x R4, which is a radial model of
pt + div(pv) =0,
v +v-Vo+AVip =0, (EPy)

- AVP =P
(p,v)((),:v) = (,00,’1}0)(.7}), po = 0.
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As seen in the previous section, the problem boils down to the analysis of
the classical trajectory X (¢, R) which satisfies

Amg(R)

X// —
(t7 R) X(t, R)n—l ’

X'(0,R) =v(R), X(0,R)=R. (3.3.1)

It turns out that, for n > 3, the use of the quantities

_Amyp(r)

_ A(r)
A(r) := (n—2)

Tn—2

C(r) == vo(r)* + (3.3.2)

makes the description of the condition clearer. We also note that the (3.2.9)
is written as

(X'(t,R))? = C(R) — X(fg)n_l. (3.3.3)
For n = 2, we use another quantity
A(r) := 2 mo(r),  C(r) := vo(r)? — A(r)logr (3.3.4)
which enables us to translate (3.2.10) into
(X'(t,R))* = C(R) + A(R)(log X (t, R)). (3.3.5)

3.3.1 Attractive case

Let us begin with the attractive case A < 0. In this case, A(R) < 0.

Theorem 3.3.1. Suppose A < 0, n > 1, pg € D°, and vg € D' with
7)0(0) =0.

1. If n = 1 or 2 then the solution to (rEP) is global if and only if
po(r) =0, vo(r) =0, and dyvo(r) = 0 holds for allr > 0. In particular,
if po Z 0 then the solution breaks down in finite time.

2. If n > 3 then the solution is global if and only if
vo(r) =20, C(r) =0, and 0,C(r)=0
hold for all r = 0.

Let k be a nonnegative integer. If pg € DF and vg € DFT satisfy the condi-
tion for global existence, then the corresponding solution of (rEPg) satisfies

p € C2([0,00), D¥) N C™((0, 00), D¥),
v € C([0,00), D*) N C%((0, 00), DF),

The solution is unique in C2([0,00), DY) x C*(]0,00), D') and also solves
(EPq) in the distribution sense.
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Proof. Step 1.

We begin with the one-dimensional case. If pg is not identically zero, then
we can choose Ry so that mo(Ry) > 0. Twice integration of (3.3.1) yields
X (t, Ro) = Ro + vo(Ro)t — (|]\|mo(Ro)/2)t?. Therefore, we can find ¢y such
that X (to, Ro) = 0, which leads to the finite-time breakdown of the solution.
On the other hand, if pg = 0 then X(¢,R) = R + vo(R)t and I'(t,R) =
1 4+ v(R)t. Hence, the solution is global if and only if vg(R) > 0 and
v4(R) = 0 holds for all R > 0..

Step 2.

We next treat the two-dimensional case. If pg is not identically zero, then
we can choose Ry so that mg(Ry) > 0. Recall that X solves

(X'(t, Ro))? = vo(Ro)? — 2|\|mo(Ry) log (X(;’,()RO)> . (3.2.10)

Since the left hand side is nonnegative, we obtain the upper bound of X:

vo(Rp)?

X(t, Ro) < Roexp <2|/\|mO(R0)

> =: Xup > 0.

Plugging this to (3.3.1), we see that

_ |Almo(Ro)

X"(t,Rp) <
( 0) Xub

< 0.
Therefore, there exists ¢y such that X (¢9, Rg) = 0. In the case where p =
0, by the same argument as in the one-dimensional case, we see that the

solution is global if and only if vo(R) > 0 and v{(R) > 0 hold for all R > 0.

Step 3.

Let us proceed ton > 3 case. Let A and C be as in (3.3.2). We first note that
vo = 0 is necessary for global existence. Indeed, if vo(Rp) < 0 for some Ry >
0, then X" (¢, Ry) < 0 follows from (3.3.1) and so X'(¢t,R) < X'(0,R) =
vo(R) < 0 for t > 0. Hence, there exists ¢y such that X (tg, Rg) = 0. We next
show that C' > 0 is also necessary for global existence. Assume that there
exists Ry such that C'(Rp) < 0. In this case, A(Ry) < —R§ 2vo(Ro)? < 0
by definition of C. Then, from (3.3.3)), we have

. A(R
0 < (X'(t,Ro))? = —|C(Ro)| + X(t,(ROO))"|2'

This yields an upper bound of X:

Ko <]
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Then, the same argument as in the two-dimensional case shows the existence
of ty such that X(to, Ry) = 0. Therefore, C' > 0 is necessary for global
existence.

In the followings, we suppose vg > 0 and C' > 0 are satisfied. Under this
restriction, we show that the solution is global if and only if 9,C(R) > 0
holds for all R > 0. Namely, what to show is that

0,C(R)>20<«~=T(t,R) >0, Vt=>0 (3.3.6)

under the assumption C(R) > 0 and vo(R) > 0. We first consider the case
vo(R) > 0. Then, C(R) > 0 or A(R) < 0 holds. Moreover, X (¢, R) — oo as
t — oo since X”(¢t,R) > 0 and so X'(¢,R) > X'(0,R) = vo(R) > 0 for all
t > 0. In this case, by (3.3.3)

X'(t,R) = \/C’(R) T X R > 0,

and so

/X(t,R) dy
=t.
R VO(R) — A(R)y—(n=2)

Differentiate with respect to R to obtain

reRrR 11 /X(t,R) 8,C(R) — 0, A(R)y~ (2 dy—0
X'(t,R) w(R) 2Jgr (C(R) B A(R)y*(”*Q))S/Q .
We put
_ Tt,R) 1 1 X(t,R) 8,C(R) — 6TA(R)y*(”*2)
B(t,R) := X'(t,R)  w(R) 2/5: (C(R) _A(R)y_(n_Q))g/Q Y-

Two quantity B and I' have the same sign. Notice that
2\

-2
and the denominator in the last integral is always positive. Therefore, if
0rC(R) > 0 then the above integral is positive, and so B(t, R) stays positive
for all ¢ > 0. On the other hand, if 9,C(R) < 0 then the integral in
B(t, R) tends to —oo as t — oo. This is because, choosing X so large that

—10,C(R)| + |0, A(R)| Xy "2 < —10,C(R)|/2, we have
YR —19,0(R)| + |0, A(R) [y~ "2 XER) 19,C(R)|y> -2/
/Xo (C(R) + |A(R) |y~ (»=2))?/? e /X 2|A(R)3/2
if A(R) <0 and
/XWR) 0. CR) + 10 ARy "2 /XW) (B,
Xo (C(R)+|A(R)y=(=2)

po(R)R"1 <0

O, A(R) = —

dy

Xo ZC(R)B/Z
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if C(R) > 0. The right hand sides of both inequalities tend to —oco as t — oo
(X(t,R) — o0). Therefore, we can choose t. such that I'(t., R) = 0. We
finally discuss the case where vo(R) = 0. In this case, since C(R) > 0,
we have C(R) = 0 and so A(R) = 0 (mo(R) = 0) by the definition of
C. It implies that p(r) = 0 for all » < R and so that, for all » < R,
X'(t,r) = 0 and X(¢,7) = r. Hence, by continuity of ', one verifies that
I'(t,R) = limyp OrX(t,r) =1 > 0 for all t > 0. Note that 9,C(R) = 0
since p(R) = 0. Thus, (3.3.6)) is justified. O

3.3.2 Repulsive case 1: n=1

Theorem 3.3.2 (Critical thresholds in 1D case [25]). Supposen =1, A > 0,
po € D°, and vy € D' with vo(0) = 0. Then, the classical solution to (rEPy)
is global if and only if

vo(R) > —v/2ARmo(R) and v{(R) > —+/2XApo(R), VR >0, (3.3.7)

where, in both inequalities, we allow the case where the both sides equal zero.
Let k be a nonnegative integer. If pg € D* and vy € D**' satisfy vo(0) = 0
and (3.3.7) then the corresponding solution of (tEP) satisfies

p € C?([0,00), D*) N C>((0, 00), DY),
v e CY[0,00), D**1) N C*((0, 00), DEFL).

The solution is unique in C2([0,00), D) x C1([0,00), D') and also solves
(EPq) in the distribution sense.

Proof. Integrating (3.3.1) twice, we immediately obtain

A
X(t,R) = R+ vo(R)t + m;(R) 2
and so \on(R
L(t,R) =1+ v\ (R)t + p°2()t2.

The solution is global if and only if these two values stay positive for all
positive time. X (¢, R) > 0 holds for all ¢ > 0 if and only if vo(R) > 0 or
vo(R)? — |A\|Rmo(R)/2 < 0, and X (¢, R) > 0 holds for all ¢ > 0 if and only
if vj(R) = 0 or (vh(R))* — Apo(R)/2 < 0. Therefore, the solution is global if
and only if

vo(R) > —v/2ARmo(R), and v{(R) > —+/2XApo(R)

holds for all R > 0. Moreover, it is easy to check that the case vg(R) =
mo(R) = 0 and the case v{(R) = p(R) = 0 is also admissible. O
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3.3.3 Repulsive case 2: n >3
We first consider the special case n = 4.

Theorem 3.3.3 (Critical thresholds in 4D case [25]). Supposen =4, X\ > 0,
po € DY, and vy € D' with vy(0) = 0. Let C(r) be defined in (3.3.2). The
classical solution to (rEPg) is global if and only if both of the following
conditions hold for all R > 0:

1. vo(R) =0 or fOR po(s)s3ds > 0;

2. 0,C(R) > 0 and vo(R) + Rvj(R) > —/2R0,C(R);
where, in the last inequality, we allow the case where the both sides equal
zero. Let k be a nonnegative integer. If pg € D* and vy € D**1 satisfy the
above condition then the corresponding solution of (rEPg) satisfies
p € C%([0,00), D*) N C*>((0,0), D*),
v € C'([0,00), D) N C*((0, 00), D).

The solution is unique in C2([0,00), DY) x C*(]0,00), D') and also solves
(EPq) in the distribution sense.

In the general n > 3 case, things are not so simple. We rely on Proposi-
tion3.2.6. Then, our task is to determine the PCFB introduced in Definition
3.2.8. Now let us give a complete description.

Definition 3.3.4 (PCFB for vy > 0). Suppose A > 0 andn > 3. The PCFB
under vo(R) > 0 is that either one of following three conditions holds:

1. 9,C(R) < 0;
2. 0,C(R) =0 and

1 AR [® y(1-2)
w(R) 2 /R(C(R)—A(R)y—(n—2))3/2

dy < 0;

3. 0 < 9.C(R) < 8, A(R) R~ "2 and

orA(R)

_1
L1 /%Tcm))“ 9,C(R) — 9, A(R)y~ ("2
vo(R) 2

dy < 0.
s (C(R) — A(R)y 232

Definition 3.3.5 (PCFB for vg = 0). Suppose A > 0 andn > 3. The PCFB
under vo(R) = 0 is that either one of following three conditions holds:

1. 0,C(R) < 0;
2. 0,C(R) =0 and
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(a) n=3;

(b) n=4 and vi{(R)R < 0;
(¢c) n>5 and v{(R)R < —% ”C(R)(l —Tn),

where I, is a constant given by

3. 0,C(R) >0 and
(a) n=3 and

R < — Z\/C + RO,C

N \Fc< R&C’)lo VC+VC+R,C\
2c ) 8 JRO,C ’

2

(b) n =4 and v,R < —/2R0,C;
(¢) n>5 and

‘R - (n—2)2(R0,C)? <1+ (n2)C’>2<nn2>

4C RoO,C

(n—2)C2 | _RoC
2 2C

(4 525) ~ g -

(n z)c

X

Here, we omit R variable in C, 0,C, and v, for simplicity.

Definition 3.3.6 (PCFB for vy < 0). Suppose A > 0 andn > 3. The PCFB
under vo(R) < 0 is that A(R) = 0 or either one of following five conditions
holds:

1. 8TC(R) < 0;
2. 0,C(R) =0 and
L1/ ARy " .
[oo(R)| 2/R (C(R) — A(R)y— 2))3/2 dy < 20,t.(R);

3. 0 < 8,C(R) <9AR)R "2 and

OrA(R)

11 (R a.0(R) — o, ARy
|’U0(R)|+2/R (C(R) — A( )y~ (=2))3/2

dy < 20,t.(R);
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4. O-A(R)R~(""2) < 9,C(R) < 9, A(R)(R~ "2 + vo(R)?/A(R)) and

_1
(5ret®) ™ 9,C(R) — 8, A(R)y~("~2)

_1 .1 /
lvo(R)| 2 Jr (C(R) — A(R)y—(n—2))3/2

dy < max(0,20,t.(R));

5. O, A(R) (R~ + vo(R)?/A(R)) < 0,C(R),
where
1
1 /R(é‘iﬁi) 4
1 V1— 2z (=2

Theorem 3.3.7. Suppose A > 0, n > 3, pg € D°, and vg € D' with
vo(0) = 0. Then, the classical solution of (rEPg) breaks down in finite
time if and only if there exists R such that the one of the PCFB given in
Definitions 3.58.4), [3.3.5, and|3.3.6 is met. On the other hand, the classical
solution is global if and only if, for all v > 0, the PCFB does not hold.
Moreover, if pg € D* and vy € D**! (k > 0) satisfy the condition for global
existence, then the corresponding solution satisfies

p € C%([0,00), D*) N C=((0, 00), D),
v e CY([0,00), D*1) N C>((0, 00), DEFL).

Furthermore, it is unique in C2([0, 00), D) x C1([0,00), D') and also solves
(EPg) in the distribution sense.

Proof. Case 1: vy > 0.

We first note that, by (3.3.1) and the assumption A < 0, X" (¢, R) > 0 holds
as long as X (¢, R) > 0. Since X'(0, R) = vo(R) > 0, we have X'(¢, R) > 0, at
least for small time ¢ € [0, Tp]. Note that X'(¢, R) > 0 for ¢ € [0, Tp] implies
that, for t € [0,Tp], X(¢,R) > X(0,R) = R > 0 and so X" (¢, R) > 0. Then,
it means that X' is also increasing for ¢ € [0,7p]. Thus, we can choose Tp
arbitrarily large, that is, X'(¢t, R) > 0 for all ¢ > 0. Then, for all ¢ > 0, it
follows from (3.3.3) that

/X(t,R) dy
=1.
R VC(R) — A(R)y~ (=2

This identity tells us that X (¢, R) — oo as t — oo (This also follows from
the fact that X'(t, R) > X'(0, R) = vo(R) > 0). For simplicity, we omit the
R variable in the followings. Differentiate with respect to R to obtain

3/2dy = 0.

ING) 11 /X@) 9,C — 9, Ay~ ("=2)

VO—AX(6) 2w 2Jrp (0 ay-(-2)

70



I'(t 1 1 [*® 5.0 -8, Ay=(n—2)
B(t) == ®) - — 4= / Y

dy.
VO — AX—(n—2) v 2 Jg (C_Ay—(n—z))3/2 Y
Assume 0,C'(R) < 0. Then, since X (t) — oo as t — oo,

— —(n—2)
gB(w: 0,C — 9, AX (t) 32X’(t><a’“—&v0<0
dt 2 (C — AX (t)~(n=2)¥ 2C%/

holds for sufficiently large ¢t. Hence, we have B(t) — —o0 as t — oo, and
so there always exists a time ty > 0 such that B(tp) < 0. We see that
0rC(R) < 0 is a sufficient condition for finite-time breakdown.

Next we assume 0,C(R) = 0. Then, B(t) is monotone decreasing because

d O AX (t)~(n=2)

W= (C — AX (1)~ (=2)/? X'(H) < 0.

Therefore, there exists a time ¢9 > 0 such that B(tp) < 0 if and only if
lim;_. B(t) < 0 (including the case lim;_,o, B(t) = —00). This condition is
equivalent to

dy < 0.

11 /OO o, Ay~ (n=2)
vg 2

w o 2Jr (O - ay--2)>

We finally assume 0,C(R) > 0. We first consider the case (g:é)ﬁ > R.
Then, B(t) takes it minimum at a time ¢ = ¢; > 0 such that

1
"=
X(t1,R) = <g C) "SR

because %B(t) is as above and ¢; is the time such that %B(tl) = 0. There-
fore, there exists a time ¢¢ such that B(typ) < 0 if and only if

a1
1 1 &) 9.0 — 0, Ay~ ("2
B(t)) =—+4 = dy <0
W=wtsfy Ca Y
We finally consider the case (%) = < R. However, in this case, B is

monotone increasing. Therefore, B > B(0) =1/vp > 0 for all t > 0.

Case 2: vy = 0.

First note that we have, at least in a small time interval, X (¢, R) > 0 because
X(0,R) = R > 0. Since X"(t, R) > 0 holds as long as X (¢, R) > 0 by (3.3.1),
we can find a time ¢y > 0 such that X'(¢tg, R) > X'(0, R) = vo(R) = 0. Note
that t¢ can be chosen arbitrarily small. Then, repeating the argument as in
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the previous case, we see that, X'(¢, R) > X'(to, R) > 0 for all t > t(, which
shows X'(t,R) > 0 for all ¢t > 0 and X(t,R) — oo as t — oo. Moreover,
X(t,R) ~ C(R)?t for sufficiently large t since X'(t,R) — C(R)/? as
t — oo. It reveals that if 9,C(R) < 0 then the characteristic curves must
cross and so the solution breaks down in finite time by Lemma [3.2.7.

We now suppose 9,C(R) > 0. We omit R variable in the followings.
Since X'(t) > 0 for all ¢ > 0, an integration of (3.3.3) gives

=1.
R \/C—Ay—(n—2)

By a change of variable z = y/R, the left hand side is equal to

X(t)/R Rd>
/1 VO — AR-(n=2) ;—(n-2)

We temporally assume that vy > 0 and take the limit vy | 0 later. This
computation is justified, for example, by replacing vy by X'(eR,R) > 0
with small € > 0 and taking the limit £ | 0. Differentiation with respect R
yields

ROr(X(t)/R) /X@)/R dz
= -
VC —AX(t) -2 )y VO — AR-(n=2) ;~(n-2)
R /XWR 9,C — (0,AR~("=2) _ (n — 2) AR~ (n=1)) = (n=2)
1 92 (C _ AR—(n—Q)Z—(n—Q))3/2

dz.

For simplicity, we omit ¢ variable in X and OrX for a while because the
following computations do not include any differentiation. An elementary
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calculation shows
OrX X/R dz

X
- +
VO —AX-(=2)  R\/C—AX-(n-2 /i \/C— AR (n=2)z~(n-2)

(3.3.8)

0:

B @ X/R o _ AR~ (n—2),—(n-2) "
20 i (C— AR-(n-2),-(n=2))/?

B @ X/R AR (n—2) ,—(n—2) "
20 i (€= AR-(n-2)5-(n-2))/?

N /X/R R(0,AR~("=2) — (n — 2) AR~ ("))~ (n—2)
1 2 (C — AR-(1=2)z=(n=2))%/?

dz

OrX _ X n X/R dz
C—AX-(-2 RYC-AX-(-2 Ji /O — AR-(n-2);-(n-2)
B RO, C X/R dz
20 Ji (€ — AR-(n-2)5-(n-2))1/?
(—8,CAR + C8, AR — (n — 2)AC) /X/R L~ (n=2)
+ n—2
2CR 1 (C— AR~ (n=2)z~(n-2))

dz

3/2

Now, it also holds that
—0,CAR+ CO, AR — (n — 2)AC < v A OrAR — (n — 2)Av > y
= 0 | vo-

2CRn—2 - CRn3 2CRn—2
Now, let us show that
) X/R 2~ (n=2) 2
i Uo/l (C— AR-(n-2)(n-2)) 2 ARy Y

Fix a small € > 0. Then, we have

dz =0,

lim Vo

/X/R 5—(n—2)
wl0 " Jipe (€ — AR-(n=2)z-(n-2))/

since the integral is uniformly bounded with respect to vg. Moreover,

1+e zf(nf2)
vo/ R 3/2dz
I (C - AR-(=2),~(n-2)
20p(1 4 ¢) /H‘E AR~ (=2 (p — 2)z~(n=1)
CART D -2) i 9 (0= AR (-2~ (n-2)3/?
2up(1 +¢) -\ (g e(n-2) —n-2)\ "2
< T3 [(C AR0D) (€= AR (14 )7 ()
2(1+¢)
.
AR~(n=2)(n — 2)
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as vg — 0. Similarly,

1+e ,—(n—2)

UU/ 3202

1 (C — AR*(”*2),Z*(”*2))
< 2vg /1+E AR~ (n—2) (n— 2)2_(”_1)
AR —-2) Ji 9(C = AR (-2 ~(n-2))/?

2

R

AR-(n=2)(n — 2)

as vgp — 0. Since £ > 0 is arbitrary, we obtain (3.3.9). Then, taking the
limit vg | 0 in (3.3.8),

0 OrX - X . /X/R dz
C'V2T=(R/X)"2  RC'V2/T—(R/X)2 i 21—z
_Ro.Co MR de  29R

2082 Jy /1=, (n-2)C
Thus, we have
OrX(1) _ X(t) e
VI—(R/X®)2 Ry1—(R/X(®)"2 N
Ro,.C X(t)/R dz 27)6R

+ 20 J; V1= o—(n—2) + (n —2)CY2"

We denote this by B(t).

Case 2-a.

We first assume that 9,C(R) = 0. We put

S s dz
G(s) := —/
(#) V1 — s~ (n=2) 1 \/1—2z"(n=2)

An elementary calculation shows, for s > 1,

(n —2)s~ (=2

G'(s) = —2(1 Dy <

0,

and so G is monotone decreasing. Moreover, considering the inverse map of
2z (1 — 2= (=2)=1/2 e have

s dz s—1 e DT
= + 1— =2 —1)dy.
/1 V1— (-2 /1 - 5~ (n-2) /(1_s—<n—2>)% (( v ) Y
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Therefore,

G(s) “ar 1) dy.

1 %
- _ 1 — g2
71— S—(n—2) /(1_5(712))—% <( Y )

One verifies that if n = 3 then lim;_,o, G(s) = —o0. We now put, for n > 4,

I, := /100 ((1 - y_2)_ﬁ - 1) dy.

For any m > 1 > 4 and y € (1,00), it holds that (1 — y_z)_ml*2 < (1-
1
y~2)"7=2. This leads to Z,,, < Z; for m > 1 > 4. If n = 4 then

7, = lim 1N ((1 oy E 1) dy

N—oo

— lim ((N2—1)%—(N—1)):1.

N—oo

Thus, we obtain

—00 if n =3,
lim G(s) = <0 ifn=4,
1-7,>0 ifn>5.
Since
20)R
(n —2)C/2’
we conclude that there exists tp € [0, 00) such that I'(¢p) < 0 if and only if

B(t) = G(X(t)/R) -

1. n=3;

2. n =4 and v,R < 0;

3. n>5and )R < —M(l —Tp).

Case 2-b.

We assume that 9,C(R) > 0. We write B(t) = H(X(t)/R). Then, it holds
that s

d —2)s~ ("~ RO,C

O A, s

ds 2(1— s~ (1=2))3/2 T 2C(1 — s~ (n1-2))1/2

Therefore, the minimum of H, hence of B, is
(n—2)C\ 7
n— n—
1+ — .
" << " TRo,C > )
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The solution breaks down in finite time if and only if this value is less than
or equal to zero. This gives the condition

R < —

(n—2)R5,C (| N (n—2)C\ 22
2 RO,C

(n72)C) n%Q

dz

n— 20% <R8,,C 1) /(H‘ RO,C
2 20 1 A1 — Z—(n—Q) ’

Using the identity

1
/(H%a?f)”dz_ L m2OVEE ) (), RAO
. e R9,C (n=2)C

’ /<i ROyC )% <(1 a yiz)_ﬁ B 1) dy,

(n—2)C

we obtain the equivalent condition

—2)2(R9,C)? (n—2)C\ -2
ipe (0 (n—-2)C
Vot < iC SR T ¥G:

_(=C (1 ROC

2 2C
1
RO,C \2 [® ;
X 1+’“) / s ((T—y™2) 772 —1) dy]| .
< (n—2)C (1+220.) 2 ( )

In particular, if n = 3 or 4, then the above integral is computable, and we
have more explicit condition

vhR < —% C + RO,C + ve (1 N Raﬂ) log <@+ C+R&C>

2 2C VRO, C
if n =3 and
véR < —+v/2R0,C
if n =4.

Case 3: v9 < O0.

We first note that if A(R) = 0, then X'(¢, R) = vg(R) < 0. Therefore, the
solution breaks down no latter than ¢t = R/|vy(R)| by Lemma 3.2.7. Hence,
we assume A(R) > 0. Then, since X'(0,R) = vo(R) < 0, we deduce from
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(3.3.3) that X'(t,R) = —/C — AX(t)~("=2) as long as X'(t, R) < 0. Take

t :/R dy
@y VO - Ay

N
= (407%) /1 \/1_iz—<n—2>'

We see that, for all t € [0,t.), X(t,R) > X (t., R) = (A(R)/C(R))"/(»=2) >
0 and X'(t, R) < X'(t«, R) = 0. Since X" (t., R) > 0 by (3.3.1), repeating
the same argument as in the previous two cases, we have X'(¢, R) > 0 for
all t > ¢, and so

—/C(R) — A(R)X(t,R)~(n=2)  for t
VC(R) — A(R)X(t,R)~("=2),  fort

*

/ <t
X'(t,R) =
= Ty
We also obtain X (¢t,R) — oo as t — oo. In the followings, we omit R
variable. For sufficient large ¢, X(t) ~ C'/?t holds since X'(t) — C/?
as t — oo. It implies that if 9,C(R) < 0 then the characteristic curves
must cross and so the solution breaks down in finite time by Lemma [3.2.7.
Differentiation of X (t,, R) = (4/C)Y("=2) with respect to R gives

(O£)X (1, R) + OnX (1, R) = 0, <A> "

Using the fact that X'(t.) = 0, we obtain

1
A\
OrX(t., R) = 0, <) ©

Hence, if 9,(A/C)Y("=2) < 0 then the solution breaks down no latter than
[

Thus, we assume 8,C(R) > 0 and (0,(A/C)(R))"™=2) > 0 in the fol-
lowings. Notice that the latter condition is equivalent to the following two
conditions:

9,C < 9, A(R~("=2) £ 42 /A), (g) R <

O.A\ 2
0.C '

Step 1. We determine the condition that solution can be extended to
time t = t,. For t < t,, we have

fe Vo
X /O — Ay=(n=2)

77



Differentiation with respect to R yields

L ~ r(t) 1 / toC oAy
VO —AR-(=2) /O — AX(t)- (2 2 Jxq (C — Ay=(n=2))3/2 y=0.
For 0 <t < t4, it holds that

0 < /O AX(t) ) < VO — AR = Jug|
Therefore, I'(t) has the same sign as
Lt 11 (" 9.0-0,4y~ "
Bi) = —— = L [ Ay
C—AX-(m=2) vl 2 /x@ (C— Ay )

Taking time derivative, one verifies that By takes it minimum at ¢t = ¢; €

[0, ¢4) such that
1
X(tl,R) = min (R’ <§:é> n—2> ‘

Note that (4/C)Y (=2 < X (t;) by assumption, and that (9,A4/8,C)" (=2 <
R is equivalent to 9,C' > 9,AR~ ("2 Since we have already known that
I'(0) = 1 > 0, the solution can be extended to the time ¢ = t, UNLESS
0,C > 9, AR~ ("2 and

Bi(t1) =

L A <
vol 2 J(

1 dy <
g:%) nlg (C_Ay—(n—Q))3/2

is satisfied. Notice that this condition is a sufficient condition for finite-time
breakdown.

Step 2. We consider the condition that the solution can be extended
from the time t = t, to t = oo. For simplicity, we suppose that solutions are
extended to time ¢ = ¢, (we keep assuming 0 < 8,C' < 9, A(R~("=2) 442 /A)
holds). Recall that, for t > t,, X'(t) = \/C — AX(t)~("=2) > 0. As in the
case vg = 0, this inequality with X”(¢) > 0 gives X(t) ~ C'/?t — o as
t — o0.

We define t.. as the time that t., > t, and X (t.x) = R. Then, we have

[ s

by — by = ) = t,.
()72 VO — Ay
Therefore, t,, = 2t, and

X(t) dy

R JC—Ay =D

t— 2ty
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for all t > t,. As in the previous step, we set

I(t) 11 /XG) 9,C — 9, Ay~ (=2
R

By(t) == = —+= (C Ay 22

dy—20,1+.
JC—AX({) @D Jul 2 Y

Bs(t) and I'(t) has the same sign for ¢ > t,. We also note that By(t) — oo
as t | t. because I'(t,) > 0 and /C — AX(t)~("=2) — 0 as t | t,. It holds
that

d 0,C — 9, AX (t)~(n=2)
- Ba(t) = —()—2 3/2
2(C — AX (1)~ (-2))3/

1. If 9,C(R) = 0 then By is monotone decreasing because %Bg(t) < 0.
Therefore, solution can be extended to ¢ = oo if and only if

, 1 1 [ 9 Ay 2
= — — - —_ >
Jim Bs(t) vl 2 /R CEYTEC=IE dy — 20,t, >0

2. If 9,C(R) > 0 then By takes it minimum at ¢ = t5 such that X (t3) =
(0,A/8,C)/("=2) " Therefore, solution can be extended to t = oo if

and only if
11 B 00— 0,0
Bs(t2) = ol T2 /R (é - AyT_(n_z))g 75y — 20:t. > 0.
O
A remark

Before proceeding to the two-dimensional case, let us see that Theorem 3.3.7
gives the same criterion as in Theorem 3.3.3 if n = 4.

Corollary 3.3.8. If n = 4, the PCFB given in Definitions|5.5.4,15.5.5, and
3.53.0 is reduced to the following condition:

A(R) =0 and vo(R) < 0.
2. 9,C(R) <
3. 0,C(R) =0 and vo(R) + v}(R)R < 0;
4. 9,C(R) > 0 and vo(R) + vj(R)R < —\/2R9,C(R).
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Proof. Before the proof, we prepare some elementary computations. We
note that

e 0,0 — aAyz
C A —2)3/2
e y (i+A@C—C@A/V&é y ;
CJn  C@—ar C (€7 — 2™

1
o,.C 0, A 2 1
— = T A — 2 _ Az
v |(cha-a) - - ay
1
A0,.C — CO, A 9 _1 orA T2
2(0,C)2 1 JulR Co,A— Ad,C
02 (CO, -C)2 2 C C2uo|R
and that
1 ]1)0|Ra o Co,A— Ao,.C
|U0’ 202 202’U0|R
_ L+U0R2+Ar . 0A _|UO\R8TC
|U0| 202|'U0|R 20|U0’R 02
_ 20R+ R%0,C — 0, A B \UolRa o
N 20’U0|R 02 "
/
— (sign o) (Uo —i—CRvo _ vg];arc>

. ’U()R
- o, (21
(signwvp) < c )
where we have used v%RQ + A =CR? and

2CR + R?0,C — 0, A
— <2’U8R+ 2/\];%) + (2vong2 + 0,4 — 2)‘m°> —0,A

R
= 2v9R(vo + Rvp).

It also holds that

1

_ JAc—: RC - '“O’R

J>Q

dz

2v/z—1
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From Definitions 3.3.4), [3.3.5, and [3.3.6, we see that 0,C < 0 is the
sufficient condition for blow-up. Moreover, the PCFB in the case 0,C = 0
is

@.0)2

o2 <0

!
(CO,A — AD,C)E + 0, <”0R> _ ot Ry

C C

if vg > 0,
Ruvy <0

if vg =0, and

% /
(600) (CO,A— Ad,C)% — 8, (”‘)f) + 20, <”00R) = +CR“0 <0

if v9 < 0. Hence, the PCFB can be summarized as vy + Rvj, < 0.
Let us proceed to the case 9,C > 0. If vg > 0 then Definition [3.3.4
implies that the PCFB is 9,C < 0,AR™2 < vy + Rul, < C'/vp and

(6,0)2
CQ

(COA — AD,C)2 + 0, <”OCR> <0. (3.3.10)
We put a = vy + Ruj), 8 = v9R0,C/C > 0, and v = 9,C(CI, A— A5,C)/C?.
Note that, by assumption, we have 0 < A/C < R? < 0,A/0,C, which
implies v > 0. Then, (3.3.10) can be written as o < § — /7. We make
this condition clearer. An elementary computation shows that § := v +
243 — 32 = 2RH,C > 0, and that § — 203 — RBTC(*arg”TAR‘Q’ > 0. The
latter one means 3% < ~. Thus, the inequality a < 8 — V7 < 0 is reduced
to a < —/v+2af — 52 = —/5, that 1s vo + Rv) < —v/2R0,C. This
condition is stronger than 9,C < 9,AR™2 & vy + Ru) < C)/vp.

If 0,C > 0 and vg = 0, then it immediately follows from Definition 3.3.5
that o < —V/d is the PCFB.

We next consider the case 0,C > 0 and vg < 0. Definition [3.3.6! gives
the PCFB. If 0,C < 9,AR2, then the condition is

1
(OTCC;)Q (CO,A — ADC)% — 8, (?) + 20, <”°CR) <0.

We keep the above notations «, (3, v, and §. Then, this is written as a <
B— /7. Note that the right hand side is negative By the same argument as

above, it is also written as a < —V/§. If 9, AR™2 < 0,C < 9, A(R™2+1¢/A),

then the condition is
v R
o, [ -2
( ¢ )

which is written as /7 < |o — B|. Note that 9,C < 9, A(R™% + v}/A) =
CO,A/A is equivalent to v > 0. By assumption, we also have § < 0 and

(8,C)3

= (CO. A~ A0 .0)2 <

)
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v— 3% =0 —2a8 < 0. We now show that a > 3 leads the contradiction. In
this case, \/7 < |a — 3| is equivalent to o > 8 + /7. However, this is also
written as

0<7<la-fBl=a-pB=a’2v+2a8-3*=6>0
<:>a>\/50ra<—\/g.

The last inequalities cannot be iquivalent to o > 3 + /7 since V6 > 0 and
B+/7 < 0. This is the contradiction. Hence, 3 > a. Then, \/7 < |a—f| =
B — a corresponds to o < —V/4.

We finally treat the case 8,C > 9,A(R™2 + v3/A). We prove this con-
dition is stronger than o < —v/. An elementary computation show that
0,C > 0, A(R™2 + v3/A) implies

C UoRarA

< —
“ 7.10+ 2A

Moreover, introducing the function P(t) = 9,Ct? + 2at + 2R, we see that

_ a2 2

< 0.

o0,C C

o A ., AN
— 2(vg + Ruj)voR <v0 + RZ> + 2R <Uo + R2>

1 2A2

== @ (v%@rA - 2’UOU6A + R?’)
A o v

= — — | — < 0.
A (&A <R T A) arc) <0

3.3.4 Repulsive case 3: n =2

We finally consider the two-dimensional case. Though we can calculate the
characteristic curve in an implicit way ([25]), we use the argument similar
to the previous n > 3 case. Let us recall the ODE which we analyze:

X"(t,R) = i?zz(g), X'(0,R) = w(R), X(0,R)=R. (3.3.1)
and its integral form
(X'(t,R))*> = C(R) + A(R)(log X (t, R)). (3.3.5)
Let us first describe the PCFBs with A and C introduced as
A(r) =2 mg(r), C(r) := vo(r)*> — A(r)logr (3.3.4)
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Definition 3.3.9 (PCFB for vg > 0). Suppose A > 0 andn = 2. The PCFB
under vo(R) > 0 is that

/ A(R)
) < SRR

(& exp(—0,C(R)/0,A(R)) > R) and either one of following conditions hold:
1. po(R) =0 (0, A(R)=0);
2. 0, A(R) >0 and

1 1 e"p( 87A<R>> 0 C(R) + 0, A(R)logy
vo(R) +2/R (C(R) + A(R) logy)>2" =

Definition 3.3.10 (PCFB for vy = 0). Suppose A > 0 and n = 2. The
PCFB under vo(R) = 0 is that A(R) > 0 and either one of following condi-
tions hold:

1. po(R) =0 (0, A(R)=0);

2. 9, A(R) > 0 and

AR RO AR) _Aw

RUé(R) < 5 e Ror A(R)
A(R)
. 2A(R) — RO, A(R) /6”’“*“” dz
4 1 Viogz'

Definition 3.3.11 (PCFB for vy < 0). Suppose A > 0 and n = 2. The
PCFB under vg(R) < 0 is that A(R) = 0 or either one of following condi-
tions holds (we omit all R variables, for simplicity):

1. £0 =0 (&AzO},
2. 0, A >0 and

(a) 9, (v3) = A/R + (8,A) log(ReC);
(b) A/R < 0,(v3) < A/R + (0,A) log(ReA/C) and

1+1/exp( #5) o.c v o Alogy

0,20t
wl 2 ), (€ + Alog yypz ¥ < max(0:20L);

(c) 0r-(v}) < A/R and

exp
1 1/ (82 o.c+ oty o
|U0| R

(€ + Alog )32
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where

ev0(R)?/A(R)

b= t(R) = R dz
e o A(R)l/QgUO(R)Q/A(R) 1 \/]ogz'

Theorem 3.3.12. Suppose A > 0, n =2, and py € D, and vo € D' with
vo(0) = 0. Then, the classical solution of (rEP() breaks down in finite time
if and only if there exists R such that one of the PCFB given in Definitions
3.8.9,15.5.10, and 3.3.11 is met. On the other hand, the classical solution
is global if and only if, for all r > 0, the PCFB does not hold. Moreover, if
po € D¥ and vy € D*1 (k > 0) satisfy the condition for global existence,
then the corresponding solution satisfies

p € C2([0,00), D¥) N C™((0, 00), D*),
v € CL([0, 00), D) N C™((0, 00), D).

Furthermore, it is unique in C2([0,00), D) x C1([0,00), D') and also solves
(EPq) in the distribution sense.

Proof. Case 1: vg > 0.

We first note that X'(t, R) > vo(R) > 0, Vt > 0 follows from the same
argument as in the Case 1 of the proof of Theorem[3.3.7. Then, X (¢, R) — oo
as t — oo, and, by (3.3.5),

/-X(t,R) dy _,
r uw(R?+AR)log(y/R)

for all ¢ > 0. For simplicity, we omit the R variable in the followings.
Differentiate this with respect to R to get

L(t) _1_1/X(t> 2090y — A/R + 0, Alog(y/R)
R (vg + Alog(y/R))>/?

re 1 1/X(t) 2090, — A/R + 0, Alog(y/R)
R (vg + Alog(y/R))*/?

()._X/(t)_vo 2
Since X'(t) > 0 for all ¢ > 0, B(t) and I'(¢) has the same sign. Since 9,.4 > 0
by definition, the right hand side is positive for all time if 2vgvy —.A/R > 0.
Now, we suppose 2vpv, — A/R < 0. Recall that X (¢) — oo as t — oo and
that A and vy are independent of time. If 9,4 = 0 then one sees that there
exist tg > 0 such that

X(to) dy 2
/R (v3 + Alog(y/R))*/>  wol|2v0v — A/R]
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since fg(t)(vg + Alog(y/R))~%?dy — oo as t — oo. This implies T'(tg) =
B(tp) = 0, which lead to finite-time breakdown. Let us proceed to the case
0rA > 0. An elementary computation shows that the minimum of B is

orC
B (6_077). Therefore, under the assumption vov) —.A/R < 0 and 9,4 > 0,
there exists a time ¢y such that I'(tp) < 0 if and only if

1.1 /exp(_g:j) 0,C + 9, Alogy

vo 2 JR (C + Alogy)3/? v

Case 2: vy = 0.

Let us begin with pointing out that the exactly same argument as in the
Case 2 of the proof of Theorem 13.3.7 shows that X'(t, R) > 0 for all ¢ > 0
and X (t,R) — oo as t — co. We omit R variable in the followings. Let
us temporarily suppose that vg > 0 and let vg — 0 later. Integration of

(3.2.10) gives

R 2+ Alog(y/R)
By a change of variable z = y/R, the left hand side is equal to

dz
/ \/UO%—Alogz

Hence, differentiation with respect R yields

ROR(X(t)/R)
"~/ + Alog(X(1)/R) / m
—R/ XO/E 9,02 + 9, Alog 2
1 2 (v + Alog 2)3/

For a while, we omit also t variable. An elementary calculation shows

OrX X X/R dz
\/vo + Alog(X/R) R\/v + Alog X/R) 1 \Jvg + Alog 2
_ RO, A (¥R dz | RegorA (YR dz

2A 1 \/U§+Alogz 2A 1 (U(Q)+Alogz)3/2
X/R
_ Rvovg/ dz - (3.3.11)
1 (v + Alogz)
We now show that

X/R 2
lim vo/ dz 75 = 7 (3.3.12)

wl0 J1 (v + Alog z) A
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Fix a small € > 0. Then, we have

' X/R dz
hH(l)’Uo/ . 373 = 0,
vol 1+ (v + Alogz2)

since the integral is uniformly bounded with respect to vg. Moreover,

/1+€ dz
vo
1 (v + Alog 2)3/2

1+e
N 2vp(1 +€) / A I
1 2z(v3 + Alog 2)3/2

= A
2v9(1 1 -1 2(1
< Q)O(A—'—g) [ — (v§ + Alog(1 +¢)) 2} - ( ;8)
as vg — 0. Similarly,
1+e
dz < 2v9 A A — 2
2z(v3 4+ Alog 2)3/2 A

1+e
UO/ = T
1 (B4 Alog2)? T A
as vg — 0. It proves (3.3.12) since ¢ > 0 is arbitrary. Taking the limit vy | 0

in (3.3.11),
0 OrX B X/R L] XIR gy
A2\ log(X/R)  A2\/log(X/R) A2 ), gz

_ RO,A (YR dz 2Ry
243/2 [, Vlog z A
Thus, we have
OrX (1) X(@t)/R  [XOE 4
1 Vlog z

PO = xR s X0/
RO, A [XO/E g,
FRA L Ve T

Case 2-a.

We first assume that 9,.4 = 0. Put
S dz
05)i= - |
Vdog s 1 Vlogz

An elementary calculation shows G'(s) = —(1/2)(logs)™%/2 < 0 for s > 1,
and so G is monotone decreasing. We also see that G’ is not integrable, and

so that lim,_,. G(s) = —oo. Since
2 Rv),
B(t) = G(X(t)/R) + Al/g,

we conclude that there always exists tg € (0, 00) such that I'(tg) = 0.
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Case 2-b.
We next assume that 9,4 > 0. Write B(t) =: H(X (¢)/R). Then, it holds

that
1 N RO, A
2(log s)3/2 ~ 2A(log s)Y/2"

d
£H(S) = —

A
Therefore, the minimum of H, hence of B, is H(eFor4). The solution breaks
down in finite time if and only if this value is less than or equal to zero. This
leads to the condition

VEGA _a < R@A)/m

R < —

Case 3: vy < 0.

If A(R) = 0, then X'(t,R) = vo(R) < O for all ¢ > 0. Therefore, we

deduce from Lemma [3.2.7/ that the solution breaks down no latter than t =

R/|vo(R)|. Hence, we assume A(R) > 0. Then, since X'(0, R) = vo(R) < 0,
—/v(R)?2 + A(R) log(X (t, R)/R) as long as X'(t,R) < 0. Put

611(2) /A

t, = /R dy o R / dz
" JRred/A V2 + Alog(y/R)  AV/2e%/A Jy Viog 2z

Then, one sees that, for t € [0,t.), X(¢t,R) > X (t«,R) = Re v/A > 0 and
X'(t,R) < X'(t«, R) = 0. Since X" (t., R) > 0, the same argument as in the
Case 3 of the proof of Theorem 3.3.7 shows that X'(¢, R) > 0 for all t > ¢.
and so that

Xt ) — | VU T AR g (Xt R)/R), - for ¢
’ \/UO(R)2 + A(R)log(X(t,R)/R), for ¢

X(t,R) — o0 as t — oo is also deduced. We omit R variable in the follow-
ings. Differentiation of the identity X (¢, R) = Re~v6/A with respect to R

gives
2
OpX(t,) = e v0/A (1 — RO, (ﬁ)) .

Hence, if RO, (v3/.A) > 1 then the solution breaks down no latter than t = ¢,.
Thus, we assume RO,(v3/A) < 1 in the followings. This is equivalent to
o3 < A/R+ (v3/A)0,A and to —C/A < —9,C/0,.A.

Step 1. We first consider the condition that solution can be extended
to time t = t,. For t < t,, we have

-
x@) VC + Alogy
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Differentiation with respect to R yields

VCt+AlogR  \/C+ AlogX(t) 2

1 I'(t) 1/R 0TC+3TAlogyd _o
X (C+ Alogy)¥2™ ~ 7

For 0 <t < i,

0 < /C+ Alog X(t) < \/C + Alog R = |vy|

holds. Therefore, I'(¢) has the same sign as

(¢ 1 1 (B 9.C+9,A1
B =0 ___ L 1] %8V 4
x(t) (C+ Alogy)

VC+ Alog X (1) |vo| 2

Taking time derivative, one verifies that B; takes it minimum at ¢t = ¢; €

[0, ) such that
X (t1) = min (R, exp (—3:51)) .

Here, note that X (¢.) = exp(—C/.A) < X (t1) by assumption. Also note that

> _
exp <_(§TC) _ Rexp <_W> '

Since we have already known that I'(0) = 1 > 0, the solution can be extended
to the time ¢ = t, UNLESS 9,03 > A/R and

y<0
xp (- 2% (C + Alogy)3/?

1 1 [k 0,C + 0, Alogy
Bt = =3

is satisfied. Notice that this condition is a sufficient condition for finite-time
breakdown.

Step 2. We next consider the condition that the solution can be ex-
tended from the time t = ¢, to ¢ = oco. For simplicity, we suppose that
solutions are extended to time ¢ = t. (we keep assuming 9,03 < A/R +

(v3/A)0rA holds). Recall that, for t > t., X'(t) = \/C + Alog X (t) > 0.
We define t,, as a time such that t.. > t, and X (T,) = R. Then, we
have

t**_t*:/R L:t*y
Re—v8/A /C + Alogy

and so t.s = 2t,. Thus,

— 2ty

Yy
/R vC + Alogy
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for all t > t,. As in the previous step, we set

I(t) 11 [*®g,c+0,Alogy
By(t) := = 4=
VC+ AlogX(t) vl 2Jp  (C+ Alogy)3/?

_ 11 /X“) drvg — (A/R) + 8, Alog(y/R)
lvo| ~ 2 /g (C + Alogy)?3/?

Bs(t) and I'(t) has the same sign for ¢ > t,. We also note that By — oo as
t | t« because I'(ty) > 0 and /C + Alog X — 0 as ¢ | t,. It holds that

d _ 003 — (A/R) + 0, Alog(X (t)/R) _,
a0 = ; (C + Alog X (t))3/2 XLe).

dy — 20,t,

dy — 20,14

If 9, A(R) = 0 then Bs is monotone decreasing by assumption 9,03 — A/R <
0. Moreover, 4 By(t) is uniformly bounded by (9,v3 — (A/R))/|vo| < 0 from
above, and so there exists time to such that By(t2) = 0. Therefore, now we
suppose 0, A(R) > 0.

By takes it minimum at ¢ = ¢ such that X(t2) = exp(—0,C/0,A).
Therefore, the solution can be extended to t = oo if and only if

Or

Byts) = — +1/exp(_an‘) 0rC + Or Alogy
2 Jwol T2 /g (C + Alogy)®/2

dy — 20,t, > 0.

3.3.5 Applications

Ezample 3.3.13. In the following cases, (rEP() has a unique global solution,
and the solution solves (EP) in the distribution sense.

1. n=1, A >0, and

_r [ A :
p(](?") =€ , UO(’I") = m S r.

2. n=2, 2> 0, and

po(r) = 1Jir2> vo(r) = V.

Theorem 3.3.14. Let A < 0 orn > 3. Suppose pg € D’NLY((0,00), 7™ Ldr)
is not identically zero and vg € D' satisfies vo(0) = 0 and vg — 0 as r — oco.
Then, the solution of (tEPg) is global if and only if A < 0 and n > 3, and
the initial data is of particular form

_ 22l ’ -
vo(r) = \/(n—Z)r”_?/o po(s)snLds.
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Suppose X < 0 andn > 3. If pg € D* N LY((0,00), 7" dr) for k > 0 and if
v 1s as above, then vy € D1 and the corresponding solution is

p € C2([0,00), D*) N C>((0, 00), D),
v e CH([0,00), D*) N C*((0, 00), D).
given explicitly by
_ nvo(R) 7 (4, 2ANBeo(B) N\
p(t, X (t,R)) = po(R) <1 + 5 t> (1 ACy 2)vo(R)t> :

1—-2
nvo(R) A
2R ’

o(t, X(t, R)) = vo(R) <1 +

where X (t,R) = R(l—i—%}(;{mt)wn. Furthermore, it is unique in C%([0, 00), D%) x
C1(]0,00), DY) and also solves (EPy) in the distribution sense.

Proof. In the case where n = 1, 2 and A < 0, we deduce from Theorem [3.3.1
that the solution breaks down in finite time because pg is nontrivial. Let
n > 3, then the assumptions py € L1((0,00),r" !dr) and vg — 0 as r — oo
lead to C(R) — 0 as R — oo, where

2Amp(R)

C(R) = wo(R)* — R

Since C(0) = 0 by assumption, we see from Theorems 3.3.1 and [3.3.7 that
the solution is global only if C = 0. In the case A > 0, C' = 0 implies pg = 0,
which is excluded by assumption. In the case A < 0, the solution is global if

we take the positive root vy(R) = (n_gl)% OR po(s)s"~1ds. In this case,

C =0 and so X satisfies the equation

X = [ 2 xom=n

By separation of variables, we obtain

X(t,R) = (RSJFZ Wt>n =R<1+m§§f)>n-

Then, Lemma 3.2.2 gives the solution to (rEPg)). O

Remark 3.3.15. In this theory, the case A > 0, n = 1 and the case A > 0,
n = 2 are excluded. If A > 0 and n = 2 then it is not clear whether or not
the assumption of Theory [3.3.14] leads to nonexistence of global solution,
but following another non-existence result holds. On the other hand, the
case where A > 0 and n = 1 must be excluded since the first example in
Example 3.3.13 is a counter example. This example also suggests that the
following different version also fails if n = 1.
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Theorem 3.3.16. Let A > 0 and n > 2. Suppose pg € D is not identically
zero and vg € D' satisfies vo(0) = 0. Suppose, in addition, that there erists
a sequence {rj};>1 with rj — 00 as j — oo such that vo(r;) = 0 for all
j =1, limsup;_, rjvy(ry) < oo, and r7po(r;) — 0 as j — oo. Then, the
solution of (rEPq) breaks down in finite time.

Proof. In the n > 3 case, vg(rj) = 0 leads to

(T po(ry) — (n—2) [ pols)s"~"ds)

n—1
(n—2)r}

9,C(rj) =

Since py is nontrivial, [;7 po(s)s™ ds > 0 for large j. Moreover, ripo(rs) —
0 as j — oo by assumption. Hence, we conclude that 9,C(r;) < 0 for large
4, which is a sufficient condition for finite-time breakdown.

Let us proceed to the two dimensional case. We now show that, if j is
sufficiently large, then the PCFB (given in Definition 3.3.10) is satisfied at
R = r; and so the solution breaks down in finite time. Since pg is nontrivial,
we can suppose A(r;) = 2X [7 po(s)sds > 0. The case po(r;) = 0 is trivial
and so we now suppose 0, A(r]) > 0 It suffices to prove that the inequality

\/.A(Tj)r]@ A(rj) A(r )

rjvp(r) < — 5 T AT
A(rj)
2A(rj) — rj0, A(ry) T d 3.3.13
+ y /1 o (3319

is true for some j. Since the left hand side is upper bounded for large j, by
assumption, it suffices to show that the right hand side is arbitrarily large
for large j. Notice that the right hand side of (3.3.13) can be written as

(A(r5)/2) f(A(r;)/r;0,A(r;)), where
o)==z /‘JMz %/‘JMm

Since f(1/2) = —v2e and f'(z) = (22%)7! [ “(log 2)"1/2dz > (22%/2) 1 (e®

1), we see that f(z) — oo as ¢ — oo. By assumption, A(r;)/r;0,A(r;) =
Jo? po(s)sds/rjpo(r;) — oo as j — oco. Thus, the right hand side of (3.3.13)
goes to infinity as j — oo. O

Corollary 3.3.17. Suppose n > 1, pg = p. > 0 is a constant, and vy = 0.
Then, the solution of (rEPq) is global if and only if X > 0. If X > 0 then the
corresponding solution satisfies

p € C2(]0,00), D®) N C=((0, 00), D™,
v € C([0, 00), D®) N C((0, 00), D).

Furthermore, it is unique in C2([0, 00), D) x C1([0,00), D') and also solves
(EPg) in the distribution sense.
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Proof. We first consider negative A case. Since py is not zero, solution breaks
down if n =1, 2. In the case n > 3, we have C(R) < 0 for all R > 0, which
immediately leads to finite time breakdown.

Let us show that the solution is global if A > 0. The one-dimensional
case is obvious from Theorem [3.3.2. In the two-dimensional case, we apply
Theorem [3.3.12. The PCFB is given by Definition 3.3.10 for all R > 0
because vy = 0. Notice that A(R) = A\p.R? > 0 and 9, A(R) = 2Ap.R > 0
for all R > 0. Therefore, in the end, we see that the solution breaks down
if and only if there exists Rg > 0 such that

\/A(RO)RO@TA(RO) A(Eg)

R()U()(R(])g— B e RodrA(Ro)
A(Rg)
2A(Ry) — Rody A(Rg) 27 a2

However, the left hand side is zero, and the second term of the right hand
side is also zero by the relation 2A(R) — RO, A(R) = 0. Since the first term
in the right side is negative, such Ry does not exist and so the solution to
(rEPg)) is global.

We proceed to the case n > 3. The proof is the same as in two-
dimensional case. Notice that 0,C(R) = 4A\p.R/n(n —2) > 0 and so that
the PCFB is given in Definition [3.3.5. In the case n = 4, it is obvious that
there does not exist Ry such that v{(Ro)Ry < —v/2R00,C(Rp). In the cases
n = 3 and n > 5, by using the fact that C'(R) = 2/\pcR2/n(n —2) and so
RO, C/2C = 1, we verify nonexistence of Ry for which the PCFB holds. [

3.4 Global existence of classical solutions to ra-
dial Euler-Poisson equations 2: existence of
constant background

In this section, we consider the effect from the presence of background con-
stant. Our equation is the following:

o4+ 0.(r" pv) = 0,
v + 09w + A0, Vp = 0,

rEP
0,60, e) =1 (), e
(p7 ’U)(O, 7’) = (PO, UO)(T>7 po =0
with b > 0 for (t,7) € Ry x R, which is a radial model of
pt + div(pv) =0,
v +v-Vo+ AV =0,
(EPy)

~AVe =p—b,
(p,v)((),:v) = (,00,’1}0)(.7}), 0o = 0.
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We analyze the classical trajectory which solves
X"(t,R)=G(X(t,R)), X'(0,R)=v9(R), X(0,R)=R, (3.4.1)

where \ b
G(z) = o 2%,

zn—1 n

If n > 2 then the function G(x) is monotone increasing for A < 0 and
monotone decreasing for A > 0. In particular, if b > 0 then G(x) has only
one zero point

z=Xp(R) = (”mg(R)>l/n.

Multiply the both side of (3.4.1) by X’ to obtain
(X'(t,R))* = D(R) = F(X(t,R)), D(R):=u(R)’+F(R) (34.2)
if n > 3, where

A(R)

xn—2

~ 2\mo(R) b

F(x) = Fr(x) := p—

+ Bz?,  A(R):

Similarly, if n = 2 then (3.4.2) holds with
F(z) = Fr(z) := —A(R)logz + Ba®, A(R) := 2 mg(R). (3.4.4)

The function F' defined (3.4.3) or (3.4.4) satisfies F' = —2G. In particular,
at x = Xp, F takes its minimum if A > 0. and takes its maximum if A < 0.
We denote them by Fii, and Fiax, respectively.

3.4.1 Attractive case 1: n = 1.

We first consider the case A < 0.

Theorem 3.4.1. Supposen =1, A <0, b> 0, pg € D°, and vo € D' with
vo(0) = 0. Then, the classical solution of (tEPy) is global if and only if

() > VI (" ir), g = (0 - )

holds for all R > 0. Let k be a nonnegative integer. If po € D* and
vo € DFHL satisfy the condition for global existence then the corresponding
solution of (rEPy) satisfies

p e C%([0,00), D*) N C>((0,00), DY),
v e CY([0,00), D*1) N C*°((0, 00), DEFL).

The solution is unique in C2([0,00), DY) x C*(]0,00), D') and also solves
(EPy) in the distribution sense.
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Proof. Since (3.4.1) is solved explicitly:

mo(R) mo(R) vo(R) .
X(t = — h /| A|bt h+/|\|bt.
(t,R) 2 +<R 2 cosh \/|A|bt + \/Esm I\l
We have
/
I'(t,R) = pOéR) + <1 - poéR)> cosh \/|\|bt + U\O/()? sinh /| \|bt.

Fix R > 0. Since X (¢, R) and I'(¢, R) are positive at ¢t = 0, they stay positive
for all ¢ > 0 if and only if

/
<R— mo(R)> L vo(R) >0, <1 3 PO(R)> L Yo() >0,
b VIAb b VAR
respectively. Similarly, liminfr_oI'(¢, R) > 0 for all ¢ > 0 if and only if
liminfr o vi(R) = —+/|A|b. Hence, the theorem. O

3.4.2 Attractive case 2: n > 3.

Theorem 3.4.2. Supposen >3, A <0,b>0, po € D°, and vy € D' with
vo(0) = 0. The classical solution to (xEPy) is global in time if and only if
the one of the following four conditions is satisfied for each R > 0:

1. mo(R) =0, vo(R) > —R|B|, and vj(R) > —|B|;
2. mo(R) > 0, vo(R)? > Fuax — F(R), vo(R) > 0, and

20(R) "~ 0, AR) [y " (D(R) — F(y)"*dy.

OrD(R) > [ (D(R) — F(y))~3/2dy ,

3. mo(R) >0, vo(R)? = Fuax — F(R), and either

(a) R < Xp(
(b) R = Xp(
(¢c) R > Xp(R) and either
i. vo(R) <0 and 0,D(R) < —8TA(R)XD(R)—(H—2)}
it. vo(R) > 0 and

R), vwo(R) > 0, and 8,D(R) > —8,A(R)Xp(R)~("2),
R)

7

OrD(R) <

[ (D(R) = F(y))~3/2dy

4. mo(R) >0, vg(R)? < Fpax — F(R), R > Xp(R), and either
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(a) vo(R) > 0 and

209(R)~! f°° ~=2(D(R) — F(y))~%?dy
fR D(R) — F(y )) 3/2dy

orD(R) < —

(b) vo(R) =0 and

o _ GR) _G(R) <R3TA(R)—nA(R)> /oo R-(n=2) _ y~(n-2)
R

O T RIB 2R

(c) w(R) <0, 3,D(R) — 8, A(R)&; " <0, and

%) _ —(n—2)
11 / 0,D(R) — 9, A(R)y Cann 50
R

[vol (F(&) = F(y))*/?

where &3 is the root of F (&) = F(R) 4+ vo(R)? bigger than Xp(R)

and
[P dy

VF(&)—Fly)

Let k be a nonnegative integer. If pg € D* and vg € D*! satisfy the condi-
tion for global existence then the corresponding solution of (tEPy) satisfies

ty :=

p € C?([0,00), D*) N C>((0, 00), DF),
v e CH([0,00), D*1) N C*((0, 00), DEFL).

The solution is unique in C2([0,00), DY) x C*(]0,00), D') and also solves
(EPy) in the distribution sense.

Proof. We first consider the special case mg(R) = 0. In this case, A(R) =0
and so (3.4.1) becomes X" (¢, R) = BX(t, R). Therefore, we obtain

X(t,R) = R“’O;R)”B’ewu N }%—1m(2}%)/®6|3|t7

re, 7y = /Bl g 1= 1B

Now, the situation is the same as in the one dimensional case, and so one
easily verifies that they stay positive for all positive time if and only if
R+ v9(R)/|B| 2 0 and 1+ v{(R)/|B| = 0 hold.

Case 1: v9(R)? > Fpax — F(R).

We first note that vo(R)? > 0 and (X'(t,R))?> = D(R) — F(X(t,R)) >
D(R) — Fiax = vo(R)? 4+ F(R) — Fpax > 0 hold. In particular, by continuity,
X'(t, R) does not change its sign. If vo(R) < 0 then we have X'(¢, R) <
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—+/D(R) — Fihax < 0, which leads to X < 0 for large ¢ and so to the finite-
time breakdown. If vg(R) > 0 then X'(t, R) > \/D(R) — Fpax > 0 holds
and so X (¢, R) — oo as t — oo. By a differentiation of the equality

/X(D(R) — F(y)) " dy =t
R

with respect to R, we obtain

I'(t,R) 1 1 X(tR) 5. D(R) — 8, A(R)y~ ("2 B
X'(t, R) - vo(R) 2 /R (D(R) — F(y))3/2 dy =0.
We put
IRy 1 1 [X(R) d,D(R) — arA(R)y—(n—Q)
B(#) = X'(t,R)  wvo(R) + 2/R (D(R) — F(y))3/? dy.

Since X’ > 0, B and ' have the same sign. If 9,D(R) > 0 then B(t)
stays positive for all time because 0,4 < 0 by definition. Now, we suppose
0rD < 0. An elementary calculation shows that there exists ty such that B
is monotone increasing for ¢t < ty and monotone decreasing for ¢ > 3. Since
B(0) > 0, B stays positive for all time if and only if

(3] _ —(n—2)
i By — L4 L / 9,D(R) — 0, A(R)y

t—00 vo(R) + 2 R (D(R) — F(y))3/2 dy > 0, (3.4.5)

which implies the stated condition.

Case 2: v9(R)? = Fpax — F(R).

In this case, (X'(t, R))?> = D(R)—F(X(t,R)) = vo(R)>*+F(R)-F(X(t,R)) =
Fnax — F(X(t,R)). Note that the right hand side is nonnegative and
O((X — Xp)?) as X — Xp.

We first consider the case R < Xp(R). If vg(R) < 0 then, the finite-time
breakdown is straightforward as in the previous case, and so we omit the
detail. Let us assume vg(R) > 0. An integration gives, for R < Xp(R),

X(t,R) dy
— =y
R vV Fmax - F(y)

The left hand side tends to infinity as X (¢, R) T Xp(R) because the inte-
grand is order O((Xp — y)~'). Hence, we see that X(t,R) — Xp(R) as
t — oo. Differentiate the above identity to obtain

L(t, R) 11 /X@R) 8,D(R) — 9, A(R)y— "% dy— 0

X'(t,R) w(R) 2/ (Fnax — F(y))3/2
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We put

_ItR) 1 1 [X(R) 8,D(R) —37«A(R)y*("*2)
B(t) — X/(t, R) - UO(R) + 2/R (FmaX — F(y))3/2

Since X’ > 0, B and T have the same sign. Here, d,D(R) — 9, A(R)y~ "2
is nonincreasing (recall 9,4 < 0), and so B stays positive for all time if

dy.

0rA(R) S0

OTD(R) — W =

On the other hand, if this condition fails then B(t) — —oo as t — oc.

We next consider R = Xp(R). In this case, v9(R)? = Fiax—F(Xp(R)) =
0 and so X'(t,R) = Fnax — F(X(t,R)). Since holds X' = X" = 0 at
X = Xp, we have X(t,R) = R.

Let us proceed to the third case R > Xp(R). Note that vo(R)? > 0 and
so vo(R) # 0. Let us first suppose vg(R) > 0. By the differentiation of

X(t,R)
/R (D(R) — F(y)) 2dy =1

with respect to R, we obtain

dy = 0.

reGR) 1 _1/X(t»R) 0,D(R) — 0, A(R)y~("=2
R (Fnax = F(y))?/?

X'(t,R) w(R) 2
Recall that D(R) = Fax holds in this case. An analysis of the sign of B(t) :=
I'(t,R)/X'(t,R) gives the condition as in the case vo(R)? > Fpax — F(R)
and vo(R) > 0, and so we left the detail. We consider vg(R) < 0. As in the
case R < Xp(R) and vo(R) > 0, one verifies X(¢,R) | Xp(R) as t — oo.
The differentiation of

/ (D) - Py =
X(t,R)

with respect to R yields

I't,rR) 1 1 [®0.D(R) - 8, A(R)y~ 2
3k R R

[ X'(t,R)|  |vo(R)| 2
We put G(t) := I'(t,R)/|X'(t,R)|. Note that 9,D — 9,Ay~ ("2 is nonin-
creasing in y and X (¢, R) | Xp(R) ast — oco. If 9, D(R)+0,A(R)Xp(R)~ ("2 <
0 stays positive for all time. On the other hand, if this value is positive then
limy_oo B(t) = —o0 since (F(y) — Finin)~%/? is not integrable in (Xp, R].

dy.
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Case 3: v9(R)? < Fpax — F(R).

We first show that R < Xp(R) leads to the finite-time breakdown. Since
D(R) — F(R) = v3 > 0 and D — F(Xp) < 0 by assumption, there exists
& € [R, Xp) such that D—F(&) = 0. Then, D—F(X) = (X')? > 0 provides
the upper bound of X; X < & < Xp. Recall that G is monotone increasing
and that Xp is the only zero point of G. Hence, we have X' (t,R) =
G(X(t,R)) < G(&) < 0. Integration twice gives X (¢, R) < R+ vo(R)t +
(G(&1)/2)t?, which implies X < 0 for large .

Now, let us suppose R > Xp(R). In this case, one sees that X (¢, R) — oo
as t — oo. Since D(t,R) — F(R) = v} > 0 and D — F(Xp) < 0 by
assumption, there exists {3 € (Xp, R] such that D — F(&) = 0.

Case 3-a: vg(R) > 0.

If vg > 0 then a differentiation of

X dy
/ T ! (3.4.6)
R VD —F(y)
with respect to R gives
I'(t,R) B 1 N I/X(t,R) d-D(R) — 8TA(R)y7(n*2)
X6 R) — w(B) © 25 (D(R) ~ F(y))

As in the previous cases, we obtain the stated condition.

Case 3-b: v(R) = 0.

We next consider the case vg(R) = 0. We would like to perform the similar
analysis with differentiation of (3.4.6) with respect to R, as above. The
point is that we must first differentiate before letting vo(R) = 0 in (3.4.6) in
order to obtain correct identities. For this purpose, we temporary assume
vo(R) > 0. Then, we change the variable in (3.4.6);

Rdz

t_/X(t,R) dy _/X(t,R)/R
~ Jr VD@R)-F(y) i D(R) — F(Rz)
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We differentiate with respect R to obtain

_ ROp(X/R) N X/R dz
VD-Fx) s JD-F@®)
R /X/R D — 22G(Rz) — 0, A(Rz)~ ("2
2 (D — F(Rz))3/?

I R S / . dy
X' RX' " Jp RVZ—F(y)+ F(R)
1 /X 8,D — 8, Ay~ "2 —2(y/R)G(y)
R (v — F(y) + F(R))3/?

d
5 Y,

where we omit all ¢ and R variables for simplicity. Here, we shall take the
limit vy | O in this identity. However, F(R) — F(y) = O(y — R) asy — R

and so an integral fg(vg + F(y) — F(R))™3/2dy diverges as vy | 0. Here, we
employ the following limit identity;

X
1
li 2 _ —3/2 .
lim UO/R (vog — F(y) + F(R))/"dy = GIR)

An elementary calculation shows that

1 /X 0,D — 9, Ay~ ") + 2(y/R)G(y)
2Jp T R- Fly) T F(R)

X
—%(m/<ﬁ—ﬂw+Fm»W%@

R

HA  (n—2)A\ (X R _ (-2
<2 - 2R >1¥u%—F@»+FGmW2

+ dy

B X y2_R2
- = d
RL (W2~ F(y) + F(R)2Y

oA n—2 X _
T ) F + Py
A

_ n—2> * dy
RV —F(y) + F(B)

/X y2 _ R2 J
r (- Fy) + F(R)P2EY
where we have used the relation

vi — Fy) + F(R)) — v + B(y* — R?)

-2 —(mn-2) _ (
R Yy v .
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Combining these identities and taking the limit vg — 0, we obtain

r X v},

X’:RX’+G(R)+<2A 2R>/ \/7

(A n X — R?
+|—=——-—=—=)B d 3.4.7
(55 -%) ), w@ =g 647
for t > 0. This manipulation is justified by considering X'(¢R, R) > 0 and
taking the limit € | 0. Note that the last integral is finite thanks to the
factor y? — R%. We put B(t) := I'(t, R)/X'(t,R). Since X’ > 0 for positive
time, B and I' have the same sign for positive time. We have

B’(t)—l— bo.¢ N HA  n N A  n\ B(X?-R?
R R(X')? 2A 2R 2A 2R (X)2

F(R) - F(X) - XG(X) <R8TA - n) AX-(-2) _ AR—(n—2)
2

R(X')? 24 R(X')?
RE) A 4 RO A n A
2Xn—2 2A 2 ) Rn—2

RO A 1 1

{ (Rn o) e <o

for all £ > 0 since R > Xp, G(R) > G(Xp) =0, and 9, A < 0. Therefore, B
is positive for all time if and only if lim; .o, B(t) > 0, which is equivalent to
(

Uo oA nA R~(n=2) _ y=(n=2)
+ -5 577 4y = 0,
R«/|B 2 2R)Jr (F(R)-F(y)*
where we have used X'(t, R)?/X(t.R)?> — —B > 0 as t — oc.

Case 3-c: vp(R) < 0.

We finally treat the case vo(R) < 0. Recall that X > & holds, where & is
the zero of D(R) — F'(x) bigger than © = Xp. Therefore, there exists a time
ty = t«(R) € (0,00) such that X (t., R) = &, X'(t«, R) = 0, and

—/D - F(X(t,R)) fort<t,,
VD —F(X(t,R)) fort>t,.

X'(t,R) = {

Moreover, t, is described by

_ /R dy /R/fz &rdz
" Jo VD-F@y) 1 /D-F(&z)

Let us restrict our attention to the case t < ¢, and derive the condition for
the existence of solution in [0,¢,]. For t < t,, we have X (¢, R) > & and

fr
X(tRr) VD — F(y)
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Differentiation in R gives

R _ —(n—2)
1T / 0.D(R) ~ 9 ARy 2

X2 X(t,R) (D(R) — F(y))3/?

We put B :=I'/|X’|. Since 9,D(R) — 8, A(R)y~ ("2 is nonincreasing and
f)?(t R) (D — F(y))~3/2dy tends to infinity as X (t,R) | &, B stays positive
for all ¢t < t, if and only if

0.D(R) — 0, A(R)&; "2 <0.

Note that this condition is equivalent to OrX(t.) = 0 and to 0,{; > 0
because one deduces from the differentiation of identity X (t., R) = &2 that

Oy = X' (te, R)Orty + OrX (ts, R) = Or X (t, R),
and from the identities D — F'(§2) = 0 and F’ = —2G that

9,D — 8,46 "

b2 = 26(&)

by assumption G(&2) > G(Xp) = 0.

Now, let us find the condition that the solution which can be extended
up to time t = ¢, is global. For simplicity, we suppose that all solution can
be extended up to time ¢t = t, since we have already known the condition

for existence of the solution in [0,¢.]. Let ., be a time bigger than ¢, such
that X (t., R) = R. Since for any t, < to < t., it holds that

/R Wy
X(to) VD — F(y)

letting ty | t«, we obtain t,, = 2t,.. Therefore, for all ¢ > ¢, it holds that

X d
‘/ Y-
= .
r /D —F(y)
Note that X'(2t., R) = |vg| > 0. Thus, the same analysis as in the case
vg > 0 tells us that I' stays positive for all ¢ > ¢, if and only if

—20,t, = 0.

11 /OO ,D — 9, Ay~ ("2
vl 2Jr  (D—F(y))3?
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3.4.3 Attractive case 3: n = 2.

We consider two-dimensional case. We recall that X solves (3.4.1) and
(3.4.2) with (3.4.4).

Theorem 3.4.3. Suppose n =2, A <0, b >0, pg € D°, and vy € D' with
vo(0) = 0. The classical solution to (xEPy) is global in time if and only if
one the following four conditions is satisfied for each R > 0:

1. mp(R) =0, vo(R) = —R|A|b/2, and v((R) > —|\|b/2;

2. mo(R) >0, vo(R)? > Fpax — F(R), vo(R) > 0, and

200(R)™' + 9, A(R) [ logy(D(R) — F(y))_3/2dy.

Jr (D(R) — F(y))=3/2dy ’

3. mo(R) > 0, vo(R)? = Fax — F(R), and either
(a) R < Xp(R)
(b) R= Xp(R)
(¢c) R > Xp(R) and either

i. vo(R) <0 and 0,D(R) < 0, A(R)log Xp(R),
ii. vo(R) > 0 and

8,.D(R) > —

, vo(R) >0, and 0,D(R) > 0, A(R)log Xp(R),

)

2v9(R)™! + 0, A(R) [ logy(D(R) — F(y))~*?dy
J7 (D(R) — F(y))=3/2dy ’

4. mo(R) >0, vo(R)? < Fax — F(R), R > Xp(R). and either

OrD(R) < —

(a) vo(R) > 0 and

2u0(R) ! + 0, A(R) [ logy(D(R) — F(y))~**dy

o-D(R) < — [=(D(R) = Fly)*2dy ;

(b) vo(R) =0 and
/ G(R) O-AR) A(R)
U0>_R\/®_G(R)< 5 -R >
(c) vo(R) <0, 0, D(R) + 0, A(R)log & < 0, and

11 /°° 9, D(R) + 8, A(R) log y
vl 2Jr  (F(&) - F(y))3/?

where & is the root of F(&) = F(R) +vo(R)? bigger than Xp(R)
and

> log(y/R)
A(ﬂm—ﬂww@’

—20,t, >0,

&2 dy

R VF(&)-F(y)

ty :=
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Let k be a nonnegative integer. If po € D¥ and vg € D**! satisfy the condi-
tion for global existence then the corresponding solution of (rEPy) satisfies

p € C%(]0, 00), D¥) N C™((0, 00), D¥),
v e C1([0,00), DF1) N C™((0, 00), DF).

The solution is unique in C2([0,00), DY) x C*(]0,00), D') and also solves
(EPy) in the distribution sense.

The proof is the exactly the same as Theorem [3.4.2. The only difference
is that F' is defined by not (3.4.3) but (3.4.4). The F' defined by (3.4.4) is
the same as the one defined by (3.4.3) in the following respect: F' = —2G;
it takes it maximum at x = Xp if A < 0.

3.4.4 Repulsive case 1: n = 1.

We consider the case A > 0. In this case, the classical trajectory (and the
solution) becomes time-periodic.

Theorem 3.4.4 ([25]). Supposen =1, A >0, b >0, py € D°, and vg € D!
with vo(0) = 0. The classical solution of (rEP}) is global if and only if

[vo(R)| < VA2Rmo(R) —bR?),  [v(R)| < v/A(2p0(R) — b)

holds for all R > 0. In particular, if po(Ro) < b/2 holds for some Ry = 0

then the solution breaks down in finite time.

Proof. Since (3.4.1) is solved explicitly:

X(t,R) = mo(R) + ( mo(R)> cos Vbt + vo(B) sin v/ Abt.

b b Vb
We have
po(R) < po(R)> up(R) .
I'(t,R) = +(1- cos Vbt + sin vV \bt.
(t, R) A 5 NoY;
Therefore,
2
’U()(R)2
rtn>161X(t R) \/(R + %
vé(R)2

rgl>1n I'(t,R) \/ 1— + b

These values stay positive for all ¢ > 0 if and only if

lvo(R)| < V/A(2Rmo(R) — bR?), 0o (R)| < v/A(2p0 — b)

103



holds. Let k be a nonnegative integer. If pg € D¥ and vy € D*+! satisfy
the condition for global existence then the corresponding solution of (rEP})
satisfies

p € C*([0,00), D*) N C*((0,00), D*),

v e CH([0,00), DM N C*((0, 00), DF).

The solution is unique in C?([0,00), DY) x C*(]0,00), D!) and also solves
(EPy) in the distribution sense. O

3.4.5 Repulsive case 2: n > 3.

We proceed to the case n > 3.

Theorem 3.4.5. Supposen >3, A >0, b >0, pg € D°, and vy € D' with
vo(0) = 0. The solution to (rEPy) is global if and only if mo(R) > 0 for all
R > 0, the value

&2 d
T, = T.(R) : Y

" Jo VD®) - F(y)

is a universal constant for R € {R € Ry|vg(R) # 0 or R # Xp}, and the
following condition holds for all R € {R € Ry|vo(R) #0 or R# Xp}:

< () <o

and either

e vy(R) #0 and

- 1/(n—2)
75) | 9,D(R) — 0,A(R)y~ "2

1 +1/<aw<R)
lvo(R)| 2 Jr (D(R) — F(y))3/?

dy > max(0, —20gt1);

e vy(R) =0 and

R\/F(R) _F ((@A(R))ﬁ) T G(R)

(&A(R) ) = 1 "

3, D(R)

- 1/(n—2)
L (OAWR) _nAR) /(%3?&3) ROyt
2 2R ) Jn F(R) = F(y)p» ™~

where & and & are two roots of D(R) — F(§) = 0 with & < & and

B &2 dy
n-, DR )



Let k be a nonnegative integer. If po € D¥ and vg € D**! satisfy the condi-
tion for global existence then the corresponding solution of (rEPy) satisfies
p € C*([0,00), D¥) N C((0,00), D*),
v e CY([0,00), D*1) N C*°((0, 00), DEFL).

The solution is unique in C2([0,00), DY) x C*(]0,00), D') and also solves
(EPy) in the distribution sense.

Remark 3.4.6. The time Ty is the period: If X (¢, R) exists with T} € (0, 00
then it satisfies X (¢t + T, R) = X(¢,R). In four dimensional case, T\, =
7T/2\/§ since

T /52 dy 1 /8 n
CJagte g - Ay -y WBJg VE-§)E -2

1 1y 1 ™
= — t2(1 —t)2dt = ———.
2v/B /0 ( ) 2v/ B
Therefore, T, is independent of R.

Proof. We first consider the two special cases: First is the case where
mo(R) = 0. In this case, X" (t, R) = —BX(t, R) by (3.4.1), and so

X(t,R) = Rcos Bt + UO(BF) sin Bt.

Hence, X (t, R) = 0 holds in finite time, which is a sufficient condition for
finite-time breakdown (Lemma 3.2.7). Second is the case where vyp(R) = 0
and Xp(R) = R. In this case, by (3.4.2), we have

0 < (X'(t,R))? = D(R) — F(X(t,R)) = F(Xp) — F(X(t,R)) < 0

since F(Xp) = ming>o F(z). Therefore, X'(t, R) = 0 and X (¢,R) = R. We
also have I'(t, R) = 1 > 0. Thus, this case is admissible.

In the followings, we assume that mo(R) > 0 for all R > 0, and
that either vo(R) # 0 or Xp(R) # R holds. These conditions leads to
max,~o(D(R) — F(x)) = v9(R)?+ F(R) — Fin > 0. Recall that F’ is mono-
tone increasing and that lim, o F(z) = lim, . F(z) = oo. Therefore,
there exist two roots & and &» satisfying

D(R) = F(&) =0, 0<& <Xp(R) <& <oo.

We remark that X solves (3.4.2) and so X (¢, R) satisfies 0 < §; < X (¢, R) <
& < oo forall t > 0.
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Step 1. We now claim that X (¢, R) is periodic in time and the period
is given by
&2 dy

=2 ) VDB _F)

We first note that T < co: Since F'(&;) = —2G(&;) # 0, we see that
‘ §i—y

T, (3.4.8)

D(R) = F(y)

for i = 1,2, and so that (3.4.8) is integrable. We first consider the case
vo(R) > 0. Because (X')2 = D(R) — F(X) > 0 as long as X € (&,&2),
X'=4/D(R) — F(X) > 0 holds before X reaches to &. Since

‘<oo asy — &

X(t,R) d

Y _
x VDR _Fu

holds for such time. The left hand side is integrable and so there exists a
time ¢; < oo such that X (¢1, R) = &. Note that ¢; is given by

_ /e dy
"= ). VD® _Fw)

where T is given by (3.4.8). By (3.4.2) and (3.4.1), we see that X'(¢;, R) =0
and X" (t1, R) < 0, respectively. Therefore, for a time such that 0 < t—t; <
1, we have X'(t, R) < 0. We put to = t1 +T%/2 € (T%/2,Ty). Repeating the
above argument, one sees that X'(¢, R) = —/D(R) — F(X) < 0 and

€ (0,7./2),

1=1 (3.4.9)

&2 dy
/ +t
xR vD(R) - F(y)
hold for ¢ € (t1,t2), and that, at t = to,
X(tQ,R) :fl, X,(tQ,R) :0, X”(tQ,R) > 0.

Now, we remark that, letting X (¢, R) = R in (3.4.9), we obtain X (2¢1, R) =
R and X'(2t1, R) = —vo(R). Similarly, for t € (t2,t2 + Ti/2), we have
X(t,R) d

Y
e VD® Fw)

By the definitions of ¢; and to9, we can rewrite this identity as

—

X(t,R) d

y
R VvV D(R) — F(y)

Therefore, we obtain X (T, R) = R. Then, (3.4.2) gives X'(T\, R) = vo(R).
By uniqueness of X (Proposition 3.2.1), we conclude that X (¢t + T, R) =
X(t, R).

+ T, =t.
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The case vg(R) < 0 can be handled in the same way. If vo(R) = 0 then
either R = & or R = & holds and so we obtain either

X(0,R)=¢&, X'(0,R)=0, X"(0,R)>0

or
X(0,R) =&, X'(0,R)=0, X"(0,R)<0.
Hence, we can show X (t 4+ Ty, R) = X (t, R) also in the same way.

Step 2. We next prove that dgrTy = 0 is a necessary condition for
global existence. We suppose vo(R) # 0. Let m be a positive integer. By
periodicity, we have

X(mT.,R) = R, X'(mT,, R) = vo(R),
X (mT* + 2t1, R) = R, X' (mT* + 2t1, R) = —Uo(R).

Hence, we obtain

1 = 0r(X(mTy, R)) = m(vo(R)ORT:) + T'(mTy, R).
Similarly,

1 = —m(vo(R)OrTy) — 2v00rt1 + ' (mT\ + 2t1, R) .

Therefore, if OrT, # 0 then either I'(mT, R) < 0 or I'(mT, + 2t;,R) < 0
holds for large m. Even if vg(R) = 0, since X'(e, R) # 0 holds for any small
e > 0, the above argument is applicable. Thus, 0gTs = 0 is a necessary
condition for global existence.

Step 3. Under the restriction OgTy = 0, we derive the condition on
initial data which ensures I'(¢, R) > 0 for all ¢ > 0. We first consider the
case vo(R) > 0. Let ¢; be defined in (3.4.9). Differentiating the equalities
X(t1,R) = & and D(R) — F(&) = 0, we see that

8,D(R) — 0,A&, "2
2G(&2)

['(t1, R) = Oréa = —

Similarly, we obtain

8,.D(R) — 0,A¢g; "

I'(ty +T./2,R) = Oré = ——
(t1 /2, R) = Or&1 26
These two values are positive if
O, A(R)\ 72
. 4.1
§1<<8TD(R)> <& (3.4.10)
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This condition is necessary for global existence, so let us assume this. Let
t1 be as in (3.4.9). However t; — T,/2 < 0, by periodicity, we consider
t € (t1 — Ti/2,t1). In this case, X'(t,R) = \/D(R) — F(X(t,R) > 0 and so

X(t,R) dy

R VD(R) = F(y)

Differentiate with respect to R to obtain

t=

_TR) 1<_1/X@maJXR»—aAmew2>
CX'(tLR) w(R) 2/ (D(R) — F(y))3/?
Put B(t) = T'(t,R)/X'(t,R). An elementary calculation shows that B(t)

takes it minimum at ¢t = to such that X (to, R) = (8, A(R)/8,D(R))"/ (=2,
Since X’ > 0, T stays for all ¢t € (t; — T, /2,t1) if and only if

dy.

A \ 1/ (n—2)
3@)—»'1+1/(i§%) 0,D(R) = 0, ARy~ "2
U w®) 2 (D) - F)yr 7T
Let us proceed to the case t € (t1,t1+7%/2). Since X'(t,R) = —y/D(R) — F(y) <
0 and so

t—2t—/R dy
' Jxwr) VDR) - F(y)

we have

min Tt R) = 20pt +71
ettty [ X' R) T w(R)
ArA(r) )1/("—2)

1/<arD<R> 9.D(R) — 0, A(R)y~ ("2
2Jr (D(R) = F(y))*/?

in the similar way. Hence, we obtain stated condition.

We next suppose vg(R) < 0. Mimicking the previous case, we deduce
from the identity

t:/R dy , te(—t1,Tx/2 —t1)
xR v D(R) — F(y)

that I'(¢, R) > 0 holds for all t € (—t1,7/2 — 1) if and only if

ar A(R) )1/(71*2)

_1 .1 / (&t 8, D(R) — 8, A(R)y~n=2)
lvo(R)| 2 Jg (D(R) — F(y))3/2

dy > 0.

Furthermore, we see from

X(t,R) dy
R VD(R) - F(y)’
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that I'(t, R) > 0 holds for all t € (T%/2 — t1, T\ — t1) if and only if

8y A(R) ) 1/(n-2)

1 1 (BTD(R)
20pt1 + ——— + /
lwo(R)| 2 Jr

9, D(R) — 9, A(R)y~ ("2
(D(R) — F(y))*

dy > 0.
We finally treat the case vo(R) = 0. In this case, either R = &; or R = &
holds. Suppose R = &;. For t € (0,7,/2), we have
X(t,R) dy
r J/F(R)-F(y)

We set B(t) :=T'(t,R)/X'(t, R). By the same calculation as in Case 3-b of
the proof of Theorem 3.4.2, we see that B(t) is given by (3.4.7). Therefore,

t =

d
—B(t
dtB

(1) = R()l(/)2 {R&«A ( 1 1

5 = X”—2> - RG(R)] .

Since G(R) > 0 and 0, A(R) > 0, we see that B takes it minimum at ¢ = ?,
where t( satisfies

o= (- 50) - (5m)

Therefore, I'(¢, R) > 0 holds for ¢ € (0,7%/2) if and only if B(ty) > 0. For
t € (T/2,T), it holds that

X(t,R) dy
R FR)-F(y)

Since the left hand side is independent of R, we can repeat the same analysis.
We next suppose R = &». In this case,

T, —t=

X(t,R) dy

R F(R) - F(y)

—t =

holds for ¢ € (0,7/2) and
X(t,R) dy
R VE(R) = F(y)

holds for t € (T /2,T). Therefore, the condition becomes the same form as
in the previous R = &; case. 0

t—T, =
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3.4.6 Repulsive case 3: n =2

Theorem 3.4.7. Supposen =2, A >0, b >0, po € D°, and vy € D' with
vo(0) = 0. The solution to (rEPy) is global if and only if

B &2 dy
~Ja /D(R) - F(y)

is independent of R € {R € Ri|vg(R) # 0 or R # Xp}, and the following
condition holds for all R € {R € Ry|vg(R) #0 or R# Xp}:

con(-520) <6

T, = T.(R) :

and
e vy(R) #0 and

8- A(R) ) 1/(n=2)

! /(amm) 9,D(R) + 8, A(R) logy
lvo(R)| 2 /g (D(R) — F(y))*/?

dy > max(O, —283751),

e vo(R) =0 and

8rD(R)
e 9rA(R) U6
+

RWR) () a

9r A(R)

/"”’T”R) log(y/R)
7 (F(R) = F(y))*?

orA(R)  A(R)
(%57
where £ and & are two roots of D(R) — F(§) = 0 with & < & and

&2 dy

~Jr VDR -Fy)

Let k be a nonnegative integer. If pg € D* and vg € D**! satisfy the condi-
tion for global existence then the corresponding solution of (tEPy) satisfies

tq

p € C2([0,00), D*) N C>((0, 00), D*),
v e CY[0,00), D**1) N C*((0, 00), DEFL).

The solution is unique in C?([0,00), DY) x C*([0,00), D') and also solves
(EPy) in the distribution sense.
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3.5 The zero background limit

At the end of this chapter, we observe the correspondence of the results in
Section 3.4 to the results in Section 3.3in the zero background limit. More
precisely, we check whether or not the necessary and sufficient condition for
global existence of the classical solution to (rEP}) coincides with that for
the classical solution (rEPg) in the limit b | 0. In the one-dimensional case
with vo(R) > 0, this limit is considered in [25]. This limit especially reveals
that the two-dimensional case is special.

3.5.1 Attractive case.

It turns out that, in the attractive case, the answer is yes.

Theorem 3.5.1. By letting b — 0, the conditions in Theorems|3.4.1,(3.4.2,
and 3.4.5 becomes the same as in Theorem 3.3.1.

One dimensional case.

In the one dimensional case, one necessary condition for global existence is

that R
wo(R) = VI <m°( ) _ \/5R>
Vb
holds for all R > 0 (Theorem 3.4.1). If mg(Rog) > 0 holds for some Ry
then, for such Ry, the right hand side tends to infinity as b | 0 and hence
this condition breaks. On the other hand, once we have mo(R) = 0, the
condition becomes

w(R) > —V/ABR,  vh > —/I\,

which is identical with the condition in Theorem [3.3.1]in the limit b | 0.

Two dimensional case.

The two dimensional case is special. The necessary and sufficient condition
for the global existence for b > 0 case given in Theorem [3.4.3 is very similar
to the condition for the n > 3 case established in Theorem [3.4.2. This is
due to the fact that the functions G(z) and F(x) appearing in (3.4.1) and
(3.4.2)), respectively, have the similar shape in the n = 2 and the n > 3 cases.
However, as far as the limit equation (rEP() is concerned, the situation is
quite different from the n > 3 case, and rather similar to the previous one
dimensional case. We deduce from Theorem 3.3.1 that if n = 2 then nonzero
initial density pp never admit the global solution as in one dimensional case,
while it does in the n > 3 case as Theorem 13.3.14/ suggests. The zero
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background limit b | 0 clarifies this difference: We fix R > 0 and suppose
mo(R) > 0. Then, for n = 2, it holds that

limmax F(x) = lbil%l F(Xp)

bl0 >0
— lim (—)\mo(R) log <2m%(R)> +A <bm°2(R)> §> — o0,

bl0

while the same limit is

limmax F'(x) = lbifﬁl F(Xp)

bl0 >0
n—1_n-—2 n—1 1
. (2)\m0(R)n b Wb mo(R)n> 0

b0 (n—2)nn n"w

if n > 3. Therefore, in Theorem [3.4.3, the cases 2 and 3 do not happen
for sufficiently small b. Moreover, since Xp(R) = (nmg(R)/b)"/" — +oc as
b | 0for n > 2, we have Xp(R) > R for small b and so the conditions in
the case 4 is not fulfilled, neither. Hence, the only possibility for admitting
the global classical solution is that the condition in the case 1 is true for all
R > 0, that is, mo(R) = 0 and

CRAb

[A[b
vo(R) > 5 vp(R) > 5

holds for all R > 0. Hence, in the limit b | 0, the condition is identical to
the one given by Theorem [3.3.1.
Three and higher dimensional cases.

As mentioned above, we have limy|o max,;~ F'(z) = 0 and Xp(R) — 0 as
b | 0. Therefore, in Theorem [3.4.2, the three cases 1, 2, and 3-(a) can
happen for sufficiently small b. The condition in the case 1 becomes

mo(R) =0, w(R) >0, vh(R)>0

in the limit b | 0. Similarly, one verifies that the condition in the case 2
tends to

mo(R) >0, wv(R)*>> —F(R), w(R)>0, 8,C(R)>0,
and the condition in the case 3-(a) to
mo(R) >0, w(R)*>=—F(R), w(R)>0, 8,C(R)>0,

where C is defined in (3.3.2). Note that vo(R)? + F(R) = C(R). Hence, we
conclude that the above three conditions can be unified into

w(R) =0, C(R) =0, 8.C(R)=>0,

which is the one in Theorem 13.3.1.
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3.5.2 Repulsive case

In the Repulsive case, the results given in Theorems 3.4.4, [3.4.5, and 3.4.7
are not the same as the result given in Theorems [3.3.2), 13.3.7, and 3.3.12,
respectively, in the zero background limit. This is closely related to the
periodicity of the solution.

We consider the simplest case n = 1. The higher dimensional case is
similar. If we let b | 0, Theorem [3.4.4 suggests that the classical solution to
(rEPg) is global if and only if

[vo(R)| < v/2Amo(R),  [vp(R)] < /2Apo(R) (3.5.1)

holds for all R > 0. However, as Theorem 3.3.7/ shows, the correct condition
is not (3.5.1) but

vo(R) > —v/22mo(R), v{(R) > —+/2Apo(R). (3.5.2)

The question is the followings: What produces this difference, and what

happens if vg(R) > /2 Amo(R) and/or vy(R) = /2Xpo(R)?

We can answer all these questions by the periodicity. Let us assume that
mo(R) > 0 and vo(R) = /2 Amo(R). For b > 0, we deduce from (3.4.1) that

B ) _m0<R) _mO(R) cos @sin
X(t,R) = X(t, R b) = —— +<R — ) \/Et—i—m Vb,

We consider ¢ € [0, 2m/+v/Ab) because X is (27/v/\b)-periodic in time. We fix
b so small that 2mo(R)—bR > 0. Since vo(R) = v/A(2Rmo(R) — bR), we can
choose tg so that X (to, R;b) = 0. Therefore, the classical solution to (rEPj)
breaks down in finite time. However, we note that ty € (m/v/\b, 27/v/Ab).
This is because, for t € [0, 7/+/Ab], we have

X(t, R;b) > mob(R) — ‘R - mob(R) ‘ — min (R, 2m%(R) ~ R) > 0.

Hence, we can choose a finite time ¢y < oo so that X(tp, R) = 0 for all
b > 0 but cannot in the limit case b = 0. As it were, such tg goes “beyond
the infinity” as b | 0. Thus, once we deduce the condition which ensures
X(t,R) > 0T(t,R) > 0 for t € [0,7/v/\b], this is sufficient to claim that the
solution to the limit equation exists for all ¢ € R;. The condition (3.5.2)
corresponds to nothing but this limit condition.

On the other hand, the condition (3.5.2) is the condition for the existence
of classical solution to (rEP) for all time ¢ € R including also the negative
time. Let b > 0 be sufficiently small. By periodicity of X, if mo(R) > 0
and vo(R) > /2Amg(R) then we have X (tg — 27/vAb, R;b) = 0. Now we
remark that limy_o(tg — 27 /v/Ab) > —oo follows from the fact that X (¢, R)

113



has at most two zero in the interval (— 7r/ VAb,0) for all b > 0, and that

these zeros tend to 2R/ (vo(R) % v/vo(R)% — 2ARmg(R)) as b | 0 because
sin V' \bt
lim X (¢, R; b limcos VAbt | +v lim ———
bl0 ( )= ( ) o(R)t (blO vV Abt )
1 — cos VAbt
2 4.
lim - > VAT
+ Amo(R)t (glrg 2 )
A
:R+mmﬁ+7%m%?

Therefore, the limit solution breaks down in finite (negative) time. Similarly,
we have

LmI'(t, R;b) = <hmcos \/>t> + vy(R)t (lim M)

bl0 bl0 /bt
1 — cos Vbt
Apo(R)E [ lim —————
A
=1+uaRﬁ+-p§R%?

We see that if (3.5.1) is satisfied then X (¢, R;0) > 0 and I'(¢, R; 0) > 0 hold
for all t € R.
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Chapter 4

Large time WKB analysis for
Schrodigner-Poisson system

4.1 Introduction and main result

In this chapter, we back to a phase-amplitude approximation of the semi-
classical nonlinear Schrédinger equation. We consider Schrodinger-Poisson

System
2

iedu® + %Aug = AVpu®,

— AVE = |[uf]?, VE — 0 as |z| — oo, (SP)
u®(0,2) = A§(x) exp(i®o(x)/e),
In Chapter 2, we justify the WKB approximation of the solution
u =& (Bo+efy -+ B+ o(e)) (4.1.1)

in a time interval [0, T'] for a data in Sobolev space (Theorem 2.1.2). The aim
of this chapter is to show the asymptotics (4.1.1) for a large time interval.
In [46], this kind of result is established in one-dimension case. Now, we
generalize to the n > 3 case. This is done by a combination of the results
in Chapters 2/ and [3. Let us describe the outline of proof. In Chapter 2,
the asymptotics (4.1.1) is established for small time. We apply the modified
Madelung transform u¢ = ae’?”/¢ and consider the system

1
oa® + (Vo - V)a® + §a€A¢€ = z’%Aae,

1
06" + S IVE[* + AV5 =0, (4.1.2)
~AVES = a°?, V§ —0as |z| — oo,
(ae(ovm)7¢5<07x)) = ( 87(1)0)'
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Then, we show the asymptotic expansion

k1 k1
af =ag+ Y ela;+ o), ¢ =o+ Y elp;+o(e"h),
=1 =1

which leads to the desired WKB approximate solution (4.1.1). Here we note
that (ag, ¢o) is the solution to

1
Orap + (V¢0 . V)ao + iaoAqﬁg =0,

1
Orpo + §’V¢0|2 + AVp =0, (4.1.3)
— AVp = |ag’, Vb — 0 as |z| — oo,

( (a0(0, ), $0(0,2)) = (Ao(x), Po(z)).

Then, we see that p = |ag|? and v = V¢ solve the Euler-Poisson equations:

pt + div(pv) =0,

v+ v-Vo+ AV =0,
—AVp=p, Vp—0as |z] — o0,
(p;0)(0,2) = (|Aol*, Vo) ().

In Chapter 3, we derive the necessary and sufficient condition on the initial
data for global existence of a classical solution to (4.1.4) under the radial
symmetry (Theorems [3.3.1},13.3.2, [3.3.7, and 3.3.12). In particular, Theorem
3.3.14/shows that there actually exists an example of initial data (] Ag|?, V&)
forn > 3 and A < 0 which admits a global solution of (4.1.4). For such initial
data, it turns out that the functions (a;, ¢;) in the expansion of (a®, ¢°) are
defined globally in time. Then, applying the analysis in Chapter 2, we can
conclude that (4.1.1) is extended to an arbitrarily large interval. The size
of the interval in which (4.1.1) is valid depends on the parameter e, and
tends to infinity as € — 0. Since the assumptions for the main theorem is
complicated, here we only state the theorem.

(4.1.4)

Theorem 4.1.1. Let Assumption [4.5.3 be satisfied. Let (a®, ¢%) be the so-
lution to (4.1.2) given by Theorem [}.4.2 and (ag, ¢o) be the global solution
to (4.1.3) given by Theorem 4.2.1. Then, there exist

(aj,6;) € C([0,00); HS =243 x (X5=2+5 q [ a2 t))

(1 < j < k) and constant Cy depending only on n and s such that, for any
T > 0, it holds that

wf = &2 (Borefrte e B +OER)) i L([0, T); HS 25 1) (4.1.5)

for e < Cn(T)e3C1MT  yhere n: Ry — Ry is an increasing function
defined in (4.5.1).
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This chapter is organized as follows: In Section 4.2, we first construct
the solution (ag, ¢g) of (4.1.3) time-globally by using Theorem 3.3.14. Then,
Section 4.3/ is devoted to the study of the regularity of this global solution.
Namely, we investigate in which function space this solution lies. Then, it
turns out that the above global solution is out of reach of the framework in
Section 2.4. Hence, we choose the function space as something like Sobolev
space so that we can apply the analysis of Chapter 2, and make some mod-
ification in Section 4.4. In the end, we prove Theorem [4.1.1 in Section 4.5
by modifying the argument in [46].

4.2 Global existence of limit solution

We first construct the global (classical) solution of (4.1.3). Theorem 13.3.14
suggests that there is only one global solution (ag, ¢g) of (4.1.3) under certain
restriction such as radial symmetry. We consider a radial version of the
equation:

da + ar<1>ara + L_l&w(r"’l&@) =0, ay—o(r) = Ao(r);

2rn
0% + S(0,8) + \p =, B (r) = Bo(r); (121)
— 0r(r" 10, Vp) = r"al?, Vp — 0asr— oo,

where unknowns a and ® are the function of (¢,r) € R}fl, and take complex
value and real value, respectively. We have removed the index “0” from ag
and ¢, for simplicity. Through this Section 4.2 and next Section 4.3, we
use the bold style characters to denote the radial functions; a for a, Ay for
Ay, ® for ¢, B for Dy, etc. We use the function space D* introduced in
(3.2.11). Let us introduce three more function spaces:

D’; = D* N LY((0,00), r"tdr),
DF .= DF N L2((0, 00), 7™ Ldr)

and

? 1 0L([0,00)) N Ck((0,00))  if k> 1.

The main result of this section is the following:

Dh_{CﬂQm» if k=1,

Theorem 4.2.1. Suppose A < 0 or n > 3. Suppose Ay € D. is not
identically zero and ®y € Df; satisfies 0, ®p(0) = 0 and 0, ®o(r) — 0 as
r — oo. Then, the solution of (4.2.1) is global if and only if X < 0 and
n 2 3, and the initial data is of particular form

2[\
/ \/ | .|9" 2 ’AO( )]2o"~1dods + const. (4.2.2)
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Moreover, if Ag € D for some m > 1 and ®q is given by (4.2.2), then
by € Dg” holds and the corresponding global solution

a € C*([0,00), Dg) N C*((0,00), Dy)

® € C'([0,00), D5*?) N C>((0,00), D5*?)

are giwen explicitly in terms of vo(r) = 0, ®o(r) as

1

nv 2 ’ )
a(t, X (t, R)) = Ao(R) <1+ ;éR)Q <l+mt> ’

% (vo(R)2 + 2 ; 2 /OR Voir)er> +g(1),

where X (t, R) = R(1 + %}(f)t)w” and g is a function of time given by

[NIE

®(t,X(t,R)) = ®o(R) +

g(t) =
2\ /OO |Ag(r)[2r? (1 N nvo(r)t> a1 P PR
(n—2)(n—4) Jo vo(r) 2r ’ ’
[T AP 2vo(r),\ 4. o
/\/0 e 1g<1+ . t>d, fn=A4.

Furthermore, the solution is unique and (a,)(t,x) = (a, ®)(t, |z|) solves
(4.1.3)) in the distribution sense.

Remark 4.2.2. If n = 3 or 4, then the integral in (4.2.2) is not integrable
over (0,00) and so @y, ® ¢ L.

The key is Theorem 3.3.14. Let us quote it. For the equation
vy 4+~ "V9.(r" lev) = 0, r(0,7) = [Ag(r)]?;
Vi +vOv+ Ao Vp =0, v(0,7) = 0, ®(r); (4.2.3)

—r D (" W) =1, Vb —O0asr — oo,
we have showed the following theorem in Chap 13:

Theorem 4.2.3 (Theorem [3.3.14). Let A < 0 or n > 3. Suppose Ay € D?
is mot identically zero and ®¢ € D; satisfies 0, ®(0) = 0 and 0, Py — 0
as v — oo. Then, the solution of (4.2.3) is global if and only if A < 0 and
n = 3, and the initial data is of particular form

vo(r) = a,@o(m:\/ Q’ALn 2/ |Ag(s)[25m1ds.
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Suppose X < 0 and n > 3. If Ag € D¥ for k > 0 and if vo is as above, then
vo € D*1 and the corresponding solution is

r € C%([0, 00), D) N C((0,00), DY),
v e CL([0,00), DM N C>((0, 00), D)

and given explicitly by

nv - AN
r(t,X(t,R))_|Ao(R)\2<1+ ;éR)t> (”WQ ’

1—2
nVO(R)t n
2R ’

v(t,X(t,R)) = vo(R) (1 +

where X (t, R) = R(l—f—%}f)t)?/”. Furthermore, it is unique in C%(]0, 00), D) x
C([0, 50), DY) and (p(t, ), v(t,2)) = (x(t 2]}, (2/[2])v(2, 2]))) solves (4.1.1)
in the distribution sense.

4.2.1 Auxiliary system

To prove Theorem 4.2.1, we introduce following auxiliary system:

a —
O+ voa+ o 0,(r" V) =0, ap—o = Ao,
3tV =+ VarV + )\OTVP = 0’ Vlt:() — 67.@0’ (424)
— 871(7“"718TVP) = Tnilfap, Vp — 0asr — oo,

This is the radial version of the following system:

Oa+v-Va+ %av v =0, ap=o(z) = Ao(),
D+ v - Vo+ AV =0,  vy_g(z) = Vo(z), (4.2.5)
— AVp = |af?, Vp — 0 as |z| — oo.

Now we have the following lemma.

Lemma 4.2.4. Let Ay € ij and ®( € D(]ZH for some k > 0. Then, the
following three statements are equivalent;
1. the system (4.2.1) has a unique solution (a, ®) € C([0,T), D¥ ngH)ﬂ
CL((0,T), DE x D5?) with initial data (a, ®);_o = (Ao, ®o);

2. the system (4.2.4) has a unique solution (a,v) € C([0,T), Dk x DF+1)n
CH((0,T), DY x D) with initial data (a,v);—g = (Ao, vo = 0r®p);

3. the radial Euler-Poisson equations (4.2.3) has a unique solution (r,v) €
C([0,T), DEx DM 1)NCY((0,T), DX x D¥1) with initial data (v, v)j—g =
(I‘O = ‘A()’Z,Vo).
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Moreover, the mazimal existence times of (a, ®), of (a,v), and of (r,v) are
the same.

Remark 4.2.5. It seems that the information on the amplitude of Ay is lost
in Euler-Poisson equations (4.2.3). However, we can recover. This is due to
the fact that the classical trajectory, which is defined only by the modulus
of Ay, propagates the information of the amplitude.

Proof. We first prove 2 = 1. Let (a,v) be a unique solution of (4.2.4). We
define

®ip(t,r) = /07" v(t,s)ds + ®¢(0).

Note that ®mp € C([0,T), D5T?) N CY((0,T), D5T?) and @imp(0,7) =
®((r). Integration of the second equation of (4.2.4) over [0, 7] gives

1 1
P mp (t,7) = —iv(t, )2 — A\Vp(t,r) + 5v(t, 0)2 + A\Vp(t,0).

Hence, ®(t,7) = ®imp(t,7) fo 2+ A\Vp(s,0))ds solves the second
equation of (4.2.1)), so the pair (a, <I>) is the solution of (4.2.1). Let us proceed
to the uniqueness. Let (&, ®) € C([0,T), Dk x Dk+2)ﬂC’1((O T), DF x Dk+2)
be another solution of (4.2.1) with initial data (a, <I>)|t:0 = (Ap, ®p). Then,
(2,0,®) € C([0,T), DF x D) N CY((0,T), Dk x D*+1) solves (4.2.4) with
initial data (a, 9,®)=o = (Ao, 0, ®o). By the uniqueness of the solution to
(4.2.4), we see that (a,d,®) = (a,v). Moreover, by definition of ®,

®(t,x) = /07’ 9, ®(t, s)ds + ®o(0) — /Ot (;&&;(8,0)2 + )\VP(S,O)> ds
= ®(t,r) — ®(t,0) + (0,0) — /t (;&&)(s, 0)2 + AVp(s, 0)> ds
0

=®(t,r) — /Ot <ati>(s,0) + %a@(s,oﬁ + vp(s,0)> ds = ®(t,r).

Hence, we see that the solution of (4.2.1) is unique. This also show that the
maximal existence time of (a, ®) is larger than or equal to that of (a,v). A
similar argument shows 1 = 2 and the maximal existence time of (a,v) is
larger than or equal to that of (a, ®). We omit the details.

We next show 3 = 2. Suppose that (4.2.3) has a unique solution (r,v) €
C([0,T), Dk x DMy N CY((0,T), Dk x D) with initial data (r,v)—o =
(ro,vo). We define a € C([0,T), D) N C'((0,T), D¥) by

a(t, X (1, R)) = Ao(R) exp < /O Co(r X(r, r))d7'>
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with a classical trajectory X defined by

%X(t R)=v(t,X(t,R)), X(0,R)=0.

Then, one sees that the pair (a, v) is a solution of (4.2.4) and that |a|? = r.
We prove the uniqueness of (4.2.4). Let (a,v) € C([0,T), Dt x D¥1)n
C'((0,T), Dk x D*+1) be another solution of (4.2.4). Then, (T := |a|?,¥) €
C([0,T), D x D¥1YyNCY((0,T), DY x D¥+1) solves (4.2.3) with initial data
(T, V)jj=0 = (ro,vo) Note that a is given by

a(t, X(t,R)) :== Ag(R) exp </ v (r, X (r, r))dT)
0
with a classical trajectory X defined by

%X(t R) =v(t,X(t,R)), X(0,R) =0,

Since (T, v) = (r,v) by uniqueness, we see that X = X and so a = a holds.
Hence, the solution to (4.2.4) is unique. A similar argument shows 2 = 3
and the maximal existence time of (r,v) is larger than or equal to that of
(a,v). We omit the details. O

As a byproduct, we have the following theorem:

Theorem 4.2.6. Suppose A < 0 or n > 3. Suppose Ag € DY is not
identically zero and vo € D' satisfies vo(0) = 0 and vo — 0 as r — oo.
Then, the solution of (4.2.4)) is global if and only if A < 0 and n > 3, and
the initial data is of particular form

2[A|
vo(r):\/n_2 = 2/ |Ag(s)|?s"1ds.

Moreover, if Ag € D for some k > 0, then the above vy belongs to D*+1
with vo(r) = O(r) as r — 0 and vo(r) = O(r'="?) as r — oo, and the
corresponding global solution

a € C2([0,00), Dg) N C*((0,00), Dg)

v € C1([0,00), D) N C%((0, 00), DY)

are given explicitly by

N

i

2\ "2
<1+ 2AR|Ao(R)| t)

a(t, X (. ) = Ao(R) <1+ nvo(R)t>_ (n — 2)vo(R)

2R

-3
v(t, X (t, R)) = vo(R) (1 + nv;](f) t) :

where X (t,R) = R(1+ nvo( )t)Q/" Furthermore, the solution is unique and
also solves (4.2.5)) in the dzstmbutwn sense.
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Proof. This is an immediate consequence of Theorem4.2.3/and Lemma 4.2.4l.
We note two points: Firstly, a is given explicitly by the classical trajectory
X and the indicator function I' as

a(t, X (t,R)) := Ag(R) exp ( /O opv(r, X (r, R))dT> = X(t;o)(@R&t R)

Secondly, the solution to (4.2.5) is given by

(a(t, x),v(t, x)) = (a(t, [z]), (z/|2z])v(t, [z]))-
This solves (4.2.5) for # # 0 and it is continuous at = 0 for all time, and
so it solves (4.2.5)) in the distribution sense. O
4.2.2 Proof of the theorem

We now in a position to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. The result follows from Theorem 4.2.3/ and Lemma
4.2.4. The solution is global if and only if ®((r) is such that

0, ®o(r) = \/(,1_22))\741—2 /07" lag(s)|2s"1ds.

Note that, then, a(t,r) is given as in the proof of Theorem [4.2.6, and that
it solves (4.1.3) in the distribution sense because it solves (4.1.3) for x # 0
and it is continuous at x = 0. We conclude with the construction of ®. As
in the former part of the proof of Lemma 4.2.4, ® is given by

<I>(t,r):/OTv(t,s)ds+<I>o(0)—/0t <;|v(5,0)|2+)\<1>(8,0)> ds.

Combining the explicit formulae of v(t, X (¢, R)) and X (¢, R) in Theorem
4.2.3 (or Theorem 4.2.6) and letting » = X (¢, R), we see that the first term
of the right hand side equals to

/ v(t, X(t,s))OrX(t,s)ds

)
( ( ) T vo(s)s0s <V°S(S)> t> ds,
:/O ( o(s) + 5 L"a( Vg(s)2)> ds

— RV S
:‘IZ'()(R)—(I)()(O)-F% <V0(R>2+n2 2/0 Oi )2d8> .
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Therefore,
R
B, X (1, R)) = /O vt X (1)) OpX (£, r)dr
+ ®((0) — /O G\V(T, 0)|2 + AVp (T, 0)) dr
— B vo(r t
= ®o(R) + (VO(R)2 + 2/0 Oi )2dr> - )\/O Vo(r, 0)dr.

Notice that v(t,0) = 0. We denote g(t) := —\ [; Vp(7,0)dr. Then, by the
boundary condition Vp — 0 as r — oo, we have

oo 1 S
. / L / la(t, 0)[2o"dods
r S 0
and so ¢(t) is equal to

t © 1 r
)\// _1/ (T, s)|2s" s dr dr
oJo ™ Jo
A t proo A 2 n—1
- // s|a(t,s)\2dsd7——// [Ao(r)lr g drdr
n—2 o Jo t 7" TL

4

B A o0 9 t nvo(r) \»
__n—2/0 |A0(r)|r</0 <1+2r T d7' dr
1

4
2\ | Ag(r)|?r? nvo(r) \» )
1 t —1|d f 4
(n—2)(n—4)/0 vo(r) T ro ifngd,
A 2,2 )
- /\/ [Ao(r)I™r log <1 + vO(T)t) dr, it n =4,
0 vo(r) r
which completes the proof. O

4.3 Regularity of limit solution

As performed in Chapter 2, to obtain the solution (a, ¢®) of (4.1.2) and
its e-power expansion, we introduce the velocity v®* = V¢® and analyze the
system

1
oa® + (v° - V)a® + §a€V S0 = i%AaE,
O + (v° - V)uF + AVVE =0, (4.3.1)
—AVE = |a°|?, V§ — 0 as |z| — oo,
(a*(0,2),v°(0,2)) = (Ap, V®o)

by regarding this as a symmetric hyperbolic system. We see in Theorem
4.2.6/ that the limit radial system (4.2.4) of (4.3.1) has time-global solution
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if the velocity is of particular form. Namely, we would like to choose the
initial data of (4.3.1) as

Aj(w) = Aol wofa) = vo(fe) (4.3.2)

with Ag(r) € D¥ and

vo(r) = \/(2’)\’ /OT |Ag(s)[2ds € DFFL,

n—2)rn—2

4.3.1 Choice of the function space and regularity theorem

Let us consider (4.3.1) with the data (4.3.2). Then, it holds that A5 € L>
by assumption on Ag. Since vo(r) = O(r) as r — 0 and vo(r) = O(r'~2)
as r — 00, we see that

vo(z) € LP(R)  for p € (2%, o0,

where r* = nr/(n —r) for r < n. Note that, no matter how fast Ay decays
at spatial infinity (such as Ag € S or Ay € C§°), the decay rate of vo(r) is
the same as long as Ay is nontrivial (and in D?). Similarly, we will see in
Proposition 4.3.4] that

Vug(z) € LI(R)  for q € (2,00].

Hence, Vug(= V2®q) never belongs to the Sobolev space H* and so we
cannot apply Theorem 2.1.2. This lack of decay of vy is one of the main
obstacle of this chapter.

Nevertheless, we can verify V2vy € L?. According to this fact, we intro-
duce the following function space.

Definition 4.3.1. Forn >3, s >n/2+ 1, p € [1,00], and q € [1, 0], we
define a function space Y, (R™) by

Yy (RY) = Cge () it (133)
with norm
Il @ny 7= [l zony + 11Vl Laqny + Hvz'Hsz(Rn) - (4.3.4)
We denote Y, =Y, (R"), for short.

For ¢ < n, we use the notation ¢* = ng/(n — ¢). This space Y, is
a modification of the Zhidkov space X*®, which is defined, for s > n/2,
by X3(R") := {f € L®(R")|Vf € H*"1(R")}. The Zhidkov space was
introduced in [74] (see, also [26]). Roughly speaking, the exponents p and ¢
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in Y7, indicate the decay rates at spatial infinity of the function and of its
first derivative, respectively. Moreover, the Zhidkov space X corresponds
to Y, o in a sense, if n > 3 (see, [62]). The difference is that all function in
Y5 o decays at spatial infinity. We also note that Y5’y is the usual Sobolev
space H®. We use the following notation:
Yia 7= Ns>0Ypg Yiq = Nper¥yg, Yo = Nger¥yg,

where I is an an interval of R. These notations are sometimes used simul-
taneously, for example YIOOI2 i= Ns>0pely qel> Y pq- Recall that all functions
in Y’ decays at spatial infinity, by definition. Hence if f €Y, for some
s>n/24+1,p=>1,and g € [1,00), then ||V f]| 0 < ||V2f||Hs . < o0 by
Sobolev embedding and so it holds that Y}, =Y~ o Similarly, we have

q,00]"

Y, =Y?

S S 3
p.q p,[q,OO]U[Q*,OO]’ Yp’q C Yq*’q lf q < n.

We now state the main theorem of this section:

Theorem 4.3.2. Let A < 0 and n > 3. Let s > n/2+ 1 and [s] be
the minimum integer larger than or equal to s. Let Ag € C*1([0,00)) be
nontrivial function satisfying

118199 A € L2((0,00), 7" 1dr) 1< j < [s],
DI Ag € L2((0,00), 7" tdr) 0<j<][s],
FAy=00r""?) asr—oo0 0<j<]s],

and that there exits ko > [s] — [(n — 1)/2] such that
(0/A0)(0) =0 forj € [0,k —1], (9°Ag)(0) #0.

Define ®g by (4.2.2)). Let (a, ®) be the unique global solution of (4.2.1) given
in Theorem 4.2.1. Then, (a,)(t,x) = (a, ®)(t,|z|) is a global solution of
(4.1.3) satisfying a(t) € H®, V¢(t) € Y;’:io] (2,00] for allt > 0. Moreover,
o(t) € L™ for allt > 0 if and only if n >

In the rest of this section, we prove this theorem: We confirm that
V0 € Y5 o) (2,00) DOIds for a good Ap (Section 4.3.3), and moreover the
corresponding global solution (a,v) of (4.2.5) given explicitly in Theorem
4.2.6/ enjoys the same property for all t > 0 (Section 4.3.4).

4.3.2 Preliminary lemma

Before the proof of Theorem 14.3.2, we state a preliminary lemma. This is
the key tool for investigation of higher derivatives of ¢. This reflects the
special form of vy.
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Lemma 4.3.3. Let n > 3 and A < 0. Suppose Ay € C™([0,00)) for large

m. Define
Vo(r) = \/(n_z|2))‘|rn_2 /OT |A0(S)‘23n—1d8‘

Then, the following equality holds for k € [1,m + 1]:

k o k Hﬁ: p(mi) p2U+Iml
Z%WV&J) => > ﬁl,mi,k( ' ‘(:211) , (4.3.5)
§=0

I=1 me(NU{0})!,|m|<k—I 0

where po = |Ag|?, g™ denotes the m-th derwative of g with ¢©©) = g, and
a and B are real constants with oy, ), = 1. Moreover, ag, = 0 for k > 2.

Proof. By definition, v satisfies

n—2
2

|/\\ /)07“2

vo + 7V (4.3.6)

n—2 Vo '
This implies that (4.3.5) holds if £ = 1. Suppose (4.3.5) is true for k = ko <
m. Differentiate (4.3.5) with respect to R and multiply by R. Then, the left
hand side becomes

ko ko+1

S AN)) i, (9)
> ik ve + Y agiakrIvg
=0 =1

which can be expressed as Zfo:(;l aj7k0+1rjv(()]). Note that o1 ke+1 =

Ok ko = 1 and g ry4+1 = 0. Moreover, the same operation makes the right
hand side as

mi+0;; m
. Sl )

Z Z Bumi ko 21—1

V,
=1 me(NU{0}!,|m|<ko—1 0

(Hé:l p((]mi)> P24 m)
+ (21 + |m]) ST
Vo

l (m;) m
]

vo +
=

+(1=20) 2 n—2 vy

where we have used (4.3.6). This can be written as

fot) iy ™) 21!

> > Blmi ko1
i-ko 21

=1 me(NU{0})!,|m|<ko+1—1 0

Hence, (4.3.5) holds by induction. O
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4.3.3 Regularity at the initial time

Proposition 4.3.4. Let s > n/2+ 1 and [s]| denote the minimum integer
bigger than or equal to s. Assume Ag € CI°1(]0,00)) is nontrivial and
satisfies

118199 A € L2((0,00), 7" Mdr) 1< j < [s],
DI Ag € L2((0,00), 7" tdr) 0<j<[s],
FAy=00r""?) asr—oo0 0<j<]Js].

Assume that there exits ko > [s] — [(n — 1)/2] such that
(OF°Ag)(0) £ 0, (3 A0)(0)=0 forje [0,k —1].

2\ T
VO(T) = \/(71—2)7“"‘_2/0 |A0(5)|23n71d8

and (AG,vo) be defined as in (4.3.2). Then, A € H*(R") and vy € Y(‘;floo} (2,00] (R™).
In particular, it holds that

0 (rk”l) as T — 0,
(4.3.7)
{ 0 <r1*”/2) as r — 00,

Let

vo(r) =

and so that vo € LP((0,00),7"1dr) for all p € (2*,00]. Moreover,
0 (rk‘)) asr — 0,
Orvo(r) = (4.3.8)
@) (7‘_”/2> as r — oo,

and so 0,vo € LI((0,00),r"Ldr) for all ¢ € (2,00]. Furthermore, for all
k € [2,[s] + 1], it holds that 9Fvo € L*((0,00),7" *dr) and that

) (rkOH*k) asr — 0,

IMvo(r) = (4.3.9)
0] (r_”/2) as r — 00.

Proof. We first note A5 € L*(R") follows from Ay € L%((0,00),r" tdr).

Moreover, for k € [1, [s]], we have

Hvag

< ci I P @20y )

L2(R™) L2((0,00),rm—1dr)

Ed

L2((0,1),rm—1dr)

< ZHr =11 (07 A0)(1 - 1)
=

+ CZ (9 Ao)( - |)HL2((100),7""—1dr) < 0o.
j=1
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Therefore, Ag € HIs (R™) ¢ H*(R™). Let us prove that vy € 1/(521”7100]7(2700] (R™)

and (4.3.7)—(4.3.9) hold. The proof proceeds in three steps.

Step 1. We first show (4.3.7) and vy € LP(R™) for p € (2%, 00]. Since
|Ag(r)|? = O(r?) as r — 0 by assumption, vo(r) = O(r**!) asr — 0. On
the other hand, since Ay is nontrivial and in L?((0, 00),r" 1dr), there exist
two positive constants ¢ and C such that

1- < Vo(r) < C/rl_% (4310)

cr

V|3

for large 7. Therefore, sup, >, vo(r) < co and

o0
/ [vo(s)[Ps™ tds < oo
0

if p(1 —n/2) +n—1 < —1, that is, if p > 2*. Hence, (4.3.7) holds and
vg € LP(R™) for p € (2%, 00].

Step 2. We next show (4.3.8) and Vvg € LY(R™) for g € (2,00]. Note
that

1 oo
VU0l oy < CZ/ |77 0o (r)| " "
=070

Since r~'vo(r) is O(rk) as r — 0 and O(r~"/?) as r — oo by (4.3.7), we
have [ [s™'vo(s)]?s™" ds < oo for ¢(—n/2)+n—1 < —1, that is, for ¢ > 2.
It also holds that sup,>q(vo(r)/r) < co. We now use (4.3.6) to obtain

[Ag(r)*r
vo(r)

vhr)=a®® 1 g

with suitable constants a and 3. As shown above, the first term belongs
to LI((0,00),r" tdr) for ¢ € (2,00]. The second term in the right hand
side is O(r*0) as r — 0. Moreover, |Ag(r)|?r™ is bounded for large r by
assumption, and so the second term is O(r~™/2) as 7 — oco. Thus, v{(r) has
the same decay order as vo(r)/r and so belongs to L%((0,00), 7" 1dr) for
q € (2,00], which completes the proof of (4.3.8) and of Vvy € LI(R™) for
q € (2,00].

Step 3. We finally show (4.3.9) and V¥vy € L2(R") for all k € [2, [s]+1].
An elementary computation shows that

K .
A vo(r)
k T V0
HV UO‘ L2(R") S CZ rk—i
j=0 L2((0,00),rn~1dr)
Hence, it suffices to show that
dvy e L3((1,00),r" Ldr) for j € [2,[s] + 1], (4.3.11)
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|- ’J'*Mflazvo e L*((0,1),7" Ydr) for j €0, [s] + 1], (4.3.12)
and

dlvo(r) = O(rkot1=7)y asr — 0, (4.3.9a)
dvo(r) =02 asr— oo (4.3.9b)

for all j € [2,[s] + 1].
We now prove (4.3.11) and (4.3.9b) by induction. In the followings, we
denote |Ag|? by po, for simplicity. It follows from (4.3.5) with k& = 2 that
/
vo(r) e Po
r vo(r)

27“2

(1), 5 )T o o)

2o (r) 3 Vo (r)3

vo(r) = —aip

with suitable coefficients. It follows from (4.3.8) that v{,/r € L*((1,00),r"1dr)
and v /r = O(r~™?) as r — co. By (4.3.10), we also have

o] 2 00
/ po(?") T‘nildT‘ <C pO(T)ZTanBdT
1

and

0 4,.4 e’}
/ po(r) Z =Ly < C/ po(r) 413y
1 vo(r) 1

<cmemwwzmmmw1m<m,

r>1

mm%izzocmmwy>=ﬂf5 (r — o0).

r

Therefore, v{j € L*((1,00),r" *dr) and v{ = O(r~"/?) as 7 — oo.
We now take jo € [2,[s]] and suppose for induction that V(()]) is in

L?((1,00), 7" 'dr) and v(()j) = O(r~™?) as r — oo hold for all j € [2,jo).
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By (4.3.5) with k& = jo + 1, we have

. Jo (4)
V(()JO—H)(T) _ M (T)

0
= E Qs . -
Jrjo+1 74‘]0—‘,-1—‘]
Jj=1

jo+1 (Hli:1 p(()mi)(r)) 21+ |m|—jo—1

+ Z Z Blms jo+1 vo(r)2—1

I=1 me(NU{O})L|m|<jo+1—1

Notice that r=7ov) € L2((1,00),7" 'dr) and r=7ov) = O(r~"/?) as r — oo
follow as in the previous jy = 2 case. Similarly, since V(()j ) e L2((1,00), 7" tdr)
and v(()j ) = O(r~™?) as r — oo hold for j € [2, o] by assumption of induc-
tion, V(()j)r*j‘)*lﬂ also belongs to L?((1,00),7" 'dr) and is order O(r~"/?)
as r — oo for j € [2,jo]. Moreover, for all I € [1,jo + 1] and m € (NU {0})!
with |m| < jo + 1 — [, it holds that

Hi’: p(mi)(r) p2ltim|—jo—1 . l _ .
( 1o vo(r)ZZ_l rz =0 ((H P(()ml)(r)rn> r'mHO) =0(1)

i=1

and that

) 2 )
1—[2:1 (p(()ml)(T)> > 7n4l+2\m\723072

o < n—1
/1 V()(T)4l_2 r' " dr

o /1
< C/l (H (p((]mi)>2> 2-20. (211, n—1 .

=1
) (m1) l mpn) )
< mi n—1 mi n m; n
<C </1 oo™ Ir d?“) (gg (1§ 1 )) H2 <§}§1> (1pg™Ir )> < o0,

where we have used (4.3.10). Hence, (4.3.11) and (4.3.9b) hold by induction.

Let us proceed to the proof of (4.3.12) and (4.3.9a). (4.3.9a) is equivalent
to

Avo(r)

T = O@ko=Isly asr—0 forje 2 [s]+1]. (4.3.13)
,

Recall that vo(r) = O(rko*1) and v{(r) = O(r*) as r — 0, and so that
(4.3.13) is true for j = 0,1. Then, by the assumption that kg — [s] >
—n/2, (4.3.12) immediately follows from (4.3.13)). Hence, it suffices to prove
(4.3.13). Take j; € [1,[s]] and suppose that (4.3.13) holds for all j € [0, j1].
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Then, by (4.3.5) with k£ = j; + 1, we have

(j1+1) i ()
v () _ v (r)
plsl=in Zl G+ sl 1
]:

J1+1 (H§:1 p(()mi)(r)) 20+m|—Ts]-1

+ Z Z Bims ji+1 vo(r)2-1

I=1 me(NU{0})!,|m|<j1+1-1

The first sum is O(r*0~[1) as r — 0 by assumption of induction. Recall
that po(r) = O(r?%0) as r — 0. This implies rjpé])(r) = O(r?*0) as r — 0 for
all j > 0. By this fact, the second sum is also O(rko_m) as 7 — 0 because,
for each [ € [1,1 + 1] and m € (NU {0})! with |m| < j1 + 1 — [, we have

(Hézl p((]mi)(r)> 21+ |m|—[s]-1 B (H§:1 ,rmipémi)(r)) F20-[51-1 ot
vo(r)2T = vo(r)21 =O(r )

as r — 0. Therefore, (4.3.13) holds by induction. O

4.3.4 Persistence of the regularity

We next show that the (4.2.4) keeps the same regularity as the initial data
for all positive time, thanks to its explicit representation.

Proposition 4.3.5. Under the same assumption as in Proposition [4.5.4),
let (A(t,r),v(t,T)) be the global solution of (4.2.4) given by Theorem 4.2.6:

nv _% ’ )

1—-2
nvo(R)t n
2R

[NIES

v(t,X(t,R)) = vo(R) (1 +

with X(t,R) = R(1 + %]@t)wn. Then, the corresponding global solution
i
||

of (4.2.5) belongs to the space H*(R™) x Y(S;,floo} (2.00] (R™) for allt > 0.

a(t,x) = A(t, |z]), v(t,z)=-—=v(t,|z|) (4.3.14)

Proof. First of all, we put

nVO(R)
2R

>0, G(R) ::W vo(R) +

(n—2)vo(R) ~ ° R

F(R) := 3R

= 0.
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Then, it simplifies the notations into

A(t,X(t,R)) = Ag(R)(1 + F(R)t)"Y2(1 + G(R)t) /2,
v(t,X(t,R)) = vo(R)(1 + F(R)t)* /",
X(t,R) = R(1+ F(R)t)*/™,
D(t,R) := OrX(t,R) = (1+ F(R)t)*" (1 + G(R)t).

Moreover, (4.3.7)—(4.3.9) give
LF(R) = O(RM=7),  9L,G(R) = O(RF ) (4.3.15)
as R — 0 for all j € [0, [s] + 1]. We also have

PLF(R) =0 <R_%_min(j’1)> PLG(R) =0 (R—%) (4.3.16)

as It — oo.
Step 1. We show a(t,-) € H*(R"). Let us claim that
OFA)LX(ER) = > 2.

1;20,l1 +lo+13<k m;e(Nu{oti,
[my|+Imal=k—l1 —lo—l3

Crtymrma (02 A0)(R) (1 + F(R)t) =070 (1 q(Ryr) =5 aghovta

ll 12
[[o-"™F®) [ o "2G(R), (4.3.17)

i1=1 io=1

where we let ngl 8T1+m“1F(R) =1 and |my| = 0 if I; = 0, the similar rule
is applied to the case lo = 0. By definition of A, (4.3.17) is true if £ = 0.
Then, differentiate with respect to r and multiply by I'"! to obtain

(0,A)(t, X (1, R)) = 0, Ao(R)(1 + F(R)t)z (1 + G(R)t)"2

- %AO(R)(l + F(R)t) 2% (14 G(R)t)"20,F(R)t
~ SANR)(1 + F(R)Y)

D=

“u(1+ G(R)t)"39,G(R)t.

Repeating this operation, we obtain (4.3.17) by induction. Since Ag(t, X (¢, R))
is written as Ag(R)R"1/X (¢, R)""'T'(¢, R), one verifies that the L? norm
is conserved: ||a(t)|| p2gny = llaolL2(gny- For k =1, we have

ot

k—j

2 k S
<C /
L2(R™) ; 0

(BIA)(t, X (1, R)) n—
ROV |X(t,R) I1(t, R)dR.

(4.3.18)
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Recall that F,G > 0 and sup,.»(|F(r)| + |G(r)|) < co. Hence, it suffices to
show that

Il A ( al m .
/ ‘R% 20] n+1 H o "™ F)(R)? H(&}+ *2G)(R)%dR < oo (4.3.19)
0 11=1 19=1

for each k € [1,[s]], j € [1,k], l; >0 (: = 1,2,3) with [; +lo + I3 < j, and
c (NU{0})b (i = 1,2) with |mq| + |me| = j — 1 — Iz — I3. By (4.3.15),

l l

OB A T altma 2 olma; _ _

m'kigj-iﬂ [T 10" FP IT o261 = o=l
i1=1 io=1

as r — 0 and so this is integrable around r» = 0 by the choice of ky. On the
other hand, (4.3.16) gives

l2

sup rr—2k+2 H 1+ml”F)( )2 H(@i+m2i2G)(r)2 < 00,

rz2l i1=1 io=1

and so we conclude that (4.3.19) follows from the integrability property of
Ay (Proposition 4.3.4)).
Step 2. We show v € Y(‘(”Jrl L@ Oo}( "). Since sup,~o(|F(r)| + |G(7)]) <

0o, we see that [[v(t)||prny < C [[v(0)|| fpgny < oo for allt >0 and p €
(2*,I]. Similarly, we have

Vel <€ [ 75

\Ct/ |vo(R )\qR”qldRJrCt/ [vh(R)|*R"'dR
0 0

X“lrdR+C/ v/ (t, X)|"X""'TdR
0

+C’t/ [vo(R)|9|0,F(R)|*R"'dR.
0

By (4.3.7), (4.3.8), (4.3.15), and (4.3.16), one sees that the right hand side

is finite. Now, let us prove V¥v € L2(R") for k € [2, [s] + 1]. Note that
v (t, X (t, R))

Hw<cz/

XGRS X"L(t, R)T(t, R)dR.

|9

(4.3.20)
The same calculation as in (4.3.17) shows the following identity:

O XER) = Y >

1;20,l2<k,l1+l2+13<k m; € (NU{O})i |mi |[+|me|=k—11—la—I3

ot mrma (09v0) (R) (1 + F(R))*D (=)=l (1 1 G(R)t)~F2ghi+h

l1 l2
[[o-"™F®) [] o "*2G(R). (4.3.21)

i1=1 ip=1
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Therefore, our task is to prove that

8l3 1+m1 1+ma;
/0 ]|32k: 25— n+1 H ") (R) H(ar *2GQ)(R)%*dR < oo (4.3.22)

i1=1 io=1

foreach k € [2,[s]],7 € [0,k],1; >0 (i =1,2,3) with lo < jand l; +la+13 <
j,and m; € (NU{0pb (i =1 2) with ]m1| +mal =7 —UL —1la—13. We
divide [;° = f + J7° and denote the left hand side of (4.3.22) as I + I5.
By (4.3.7)-(4.3.9) and (4.3.15)), the integrand of I; is

l1 l2
O ((T,k‘o+1l3)2r2k+2j+nl H (Tk0717m1i1)2 H (Tk01m2i2)2>

i1=1 io=1
— O(T2k072(k71)+n71+2k0(l1+l2)) — O(T2k072[s]+n71)

as r — 0, and so this is integrable near » = 0 thanks to the choice of
ko. Hence, I; < oo. We finally show that Io < oo. Suppose I3 = 0
or 1. Then, it automatically holds that [; 4+ [ > 1 because, otherwise
0 =|ma| + |me| #j—1 —lo— I3 > 1. Then, by (4.3.7) and (4.3.16), we
deduce that the integrand of I is

I lo
10) ((Tlglg)2r2k+2j+n1 H (7‘7%71)2 H (T;)2>
i1=1 ig=1
_ O(Tfn+1f2(kfj)72(l1+13)7n(l1+1271)) _ O(T,fnJrl)

as r — 00. Hence, Is < 0. We next suppose l3 > 2. In this case, we have

l1 l2

r21 i1=1 ia=1

x/ 10%vo(R)|?R"1dR < 0.
1

by (4.3.16) and by (4.3.11) in the proof of Proposition 4.3.4. O

4.4 Local existence with slowly decaying data

In previous Sections 4.2 and 4.3, we see that if A < 0 and n > 3 then
there exists an example of global solution of (4.1.3). That solution can be
constructed so that

a(t) € H*(R"), ¢(t) € C3R™), Vo(t) €YGIL 0oy V20
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for some s > n/2 + 1. Remark that V2¢ ¢ L?(R") and so that we cannot
apply Theorem 2.1.2. In this section, we adapt the results in Chapter 2 so
that the system

1
oa® + (V¢ - V)a® + §a5A¢E = i%AaE,

1
09" + IV + AVE =0, @.1.2)
—AVE = a°?, V§ —0as|z| — oo,
(a°(0,2),9%(0,z)) = (Aj, Po)

(and (4.1.3)) can be solved for such a initial data. For this purpose, we
prove that there exists a unique solution to (4.1.2) for an initial data satisfies
A5 € HSTHR™), @y € C*, and VO, € }Q;f;f? (s >n/241,p>2* and q > 2).
We remove the radial symmetry and forget the specific definition of V®y.
We generalize nonlinearity and work with the Hartree type nonlinearity: We
replace (SP) by

2
iedwu® + %Au‘E = X|z|77 * |[ufP)uf;  uf(0,z) = AG(x) exp(i®o(x) /)
(4.4.1)
and (4.1.2) by

oa® 4+ (Vo© - V)a® + %aEAgZ)E = i%Aaa,
06 + VP + Allal ™ [a7[) =, (442)

(a°(0,2), ¢°(0,2)) = (Ag, ®o)-

The case v = n — 2 corresponds to the Scrhrodinger-Poisson system because
the Newtonian potential is given by ¢, |z|~ ("2 for n > 3. This generaliza-
tion clarifies the required smoothing property of the nonlocal nonlinearities
slightly. We also assume that A is not necessarily negative. The main result
of this section is Theorem 4.4.2/ in Section 4.4.3

4.4.1 Lack of the decay of the phase function

In Section 2.4, we have establish the WKB approximation of the solution of
(4.4.1) (and (SP)) for a data (A§, ®g) such that A5 € H® and V®, € X5,
It is convenient to employ the velocity v® := V¢*° and consider the system

1
Oa® + (v° - V)a® + QaEV c0° = i%AaE,
OF + (v° - VoF + AV(Ja] 7 ¢ |a*[?) = 0, (4.43)
(a%(0,%),v°(0,2)) = (A, Vo)
because this system can be regarded as a symmetric hyperbolic system with
perturbation. We observe in Section 2.2 that the general strategy and the
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common problem in solving this system, and in Section 2.4.1] that the key
for treating the nonlocal nonlinearity is to derive the smoothing property
from the nonlinearity. The main step of the proof is to obtain a priori bound
by the energy method. For the proof of Theorems 2.1.3| and 2.1.2, we have
chosen the energy E(t) := [a%||%. + [[Vv||3,. We select this energy by the
following respects:

1. When we estimate % l|a®(t) |3, we need to bound the s+ 1-time deriva-
tive of the v, such as |[|[Vv®|| gs.

2. When we estimate % ||Vv*||%., we need to bound the s+ 2-time deriva-
tive of the nonlinear term. At this step, we can gain two-time deriva-
tive from the nonlocal nonlinearity by using Lemma 2.4.1, and bound
it with ||a®(¢)||zs.

However, we cannot go along this scenario any more because we are now
considering the data such that Vv® ¢ L2. According to the fact that V2v® €
L?, we modify the energy as

2 2 2 2
B(t) = 0 Faer + |92 3 + 19020 + 102 (4.4.4)
and change the above strategy as follows:

1. When we estimate %Has(t)ﬂzsﬂ, we bound it with not | Vv®|| gs+1 but
V20 .-

2. We estimate 4| V?v%||%. by ||a|ss+1 with the two-time derivative
gain, as above.

3. Since p, g > 2, we cannot estimate ||[Vv®||;, and ||[v®||;, by the energy
method. Hence, we try to obtain this bound by using the equation.

4.4.2 Modified energy estimate

At this section we perform the energy estimate, along the strategy given in
the previous section. We would like to choose the energy defined by (4.4.4)).
As a first step, we shall show the following proposition.

Proposition 4.4.1. Let n > 3 and A € R. Assume s >n/2+1 and v >0
satisfies n/2 —2 < v < n — 2. Also assume p € (2*,00] and q € (2,00). If
(af,0%) € H¥T1 x Y312 solves (4.4.3), then the “partial energy” Epa(t) :=

[ HV%EHZS satisfies

4
dt

(NI

Epart (t) < CEpart(t) .
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Proof. We first estimate the H**! norm of a®. As in Chapter 2, we use the
following convention for the scalar product in L?:

(.0)i= [ plaiods
We use the notation A = (I — A)/2. We have
d
7 a5 || 3es1 = 2Re (A a%, AST1af) .

Let us bound the right hand side. The point is that we cannot use ||Vv®|| 2
as a bound. By commuting A*T! with the equation for a®, we find:

1
OASTra® + AT (v° - Vaf) + §A5+1(aev “v%) — i%AAsHaE =0. (4.4.5)
The coupling of the second term and A*t!a® is written as
<As+1(ve . vafs) As+1as> — <’U€ . VAS—HCLE As+1a5>
+ ([AST1 5] - Vas, A5Ta®) .
We see from the integration by parts that
1
| Re (v° - VASHaf, AS+1a5> | < 3 INE Ha€||§fs+1 . (4.4.6)
Moreover, the commutator estimate (Lemma A.2.2)) with £ = 2 shows that
|Re <[AS+1, vg] . VQE, As+1as> |
<OVl oo V0 e + [ V207 oo 1V [l o0) 0% posa - (44.7)
We estimate the third term of (4.4.5) by (A.2.2) as
|Re <As+1(aev X ,UE)’ AS+1a6> |
< Clllall g V0l oo + lla®] oo [[ V205 o) 1ol e - (4.4.8)

Recall that this part is the bad term: This is the only term which contains
the (s + 2)-time derivative of v°. The last term vanishes as in (2.2.2)):

Re (—iAA*Ta, A*t!a) = Rei |Val[37e1 = 0. (4.4.9)
Therefore, summarizing (4.4.5)—(4.4.9), we have
d
dt
Recall that Vo® € L7 (¢ < o0) and so Vv — 0 as |z| — oo. Hence, by the
Sobolev embedding ||Vv?|| .« < C||V*0°]| ., we end up with
d

3
% Ha||12115+1 < CEpart(t)2~ (4410)

2
la*l7zo+1 < Clllallwroe + IVV° Nl o) ol ggasr + [V20% | o) lla® [ o -
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Let us proceed to the estimate of v°. We denote the operator A*V? by
Q. From the equation for v*, we have

9 Qv° + Q(v° - V) + QV(|z| ™7 * |a5*) = 0 (4.4.11)

We consider the coupling of this equation and Quv®. The second term can
be written as

(Q(v° - V%), Qu°) = (v° - VQu°, Qu7) + ([A°V,v%] - V207, Quv°)
+ (A°V (Vo - Vo©), Qv°) .

As the previous case, integration by parts shows

| Re (o - VQUF, Qv) | < % IV e V20 e (4.4.12)
and the commutator estimate with k¥ = 1 also shows
| Re <[ASV,7)§] - V20E, Qv€> |
< CUIVEll oo ([P0 o + ([ V205 o (1V205 | o) ([ V205 s - (4.4.13)

For the estimate of the Hartree nonlinearity, we use Lemma2.4.1lwith p = oo

and k£ = 2 to obtain
[AV? (|| 77 * |a | C ||V % [a[?)]| yosn

C(lla | oo lla®l gsr + lla[72). (4.4.14)

)| s <
<

Sum up (4.4.11)—(4.4.14) to have

% IV20° 30 < CEpans (B2, (4.4.15)

which completes the proof. O

4.4.3 Existence result
We now show our main result in this section.

Theorem 4.4.2. Let n > 3 and A € R. Let v be a positive number with
n/2—2 <~y <n—2. Lets > n/2+1. Assume that &y € C* with V@, € Yps,gz
forp € (2%,00] and q € (2,00) with p > q. Also assume that Aj is uniformly
bounded in H**' for e € [0,1]. Then, there exist T > 0 independent of
e€[0,1] and s > n/2+1, and (a%,¢%) € C([0,T]; C% x C*) unique solution
to (4.4.2) on [0,T] for e € [0,1]. Moreover, af is bounded in C([0,T]; H*T1)
uniformly in € € [0,1]. Furthermore, ¢¢ is bounded in L*°([0,T] x R™)
uniformly in ¢ € [0,1] if n = 5. ¢° — &g and V(¢° — ®y) are bounded in

max(ﬂ,ﬂ—&-) max(ﬂi—i-)
([0, 7% (L35 4) ALy ®n)) and ([0, T); (L™ 74) A Loy Rny),
respectively, uniformly in € € [0, 1].
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Remark 4.4.3. In above theorem, the case v = n—2 is admissible. Therefore,
we immediately obtain the same results for (4.1.2).

Proof. As in the proof of Theorem 2.4.2, we first obtain the solution (a®, v%)
of (4.4.3) and then integrate v° to construct ¢°.

Local existence of the solution to (4.4.3).

Let us obtain the solution (a®,v) € C([0,T]; H¥™! x Y,$2) for small T > 0.
The proof of this part proceeds along the classical energy method, and so
it suffices to establish a priori bound of the solution. We first deduce from
Proposition 4.4.1 that

qa
dt

Njw

Epart (t) < CEpart(t) )

where Epai(t) = 0|3 e1 + ||[V?0°||%.. Therefore, by Gronwall’s lemma,
there exist 7" and C' such that

sup Epart(t) < C(Epart(0)). (4.4.16)
te[0,T

Next we estimate v® and Vov®. Let E(t) be as in (4.4.4). By the second
equation of (4.4.3), we obtain

t
(t) = Vb —/ ((o° - V)0 + AV (|2~ * |a[?)) ds.
0
Therefore, we have

105l oo 0,170y < 1V Poll Lo + T |0% | oo o, 77:20) VO] oo 0,77 xR

+ TNV 277 5 10| oo g0 17,201 -

and

IV | oo o71.20) < [[V2®0|| 10 + T IVl oo 0.17:20) V0 | oo (0 77 )

+T HUEHLOO([O,T];LP) Hv2v€ HLoo([QT];L%)

+ TN V22l ™ * 1) e o.17:10) -

We have H® < L2 L® < L 1 since % € (2, 00| holds by assumption
p = q > 2. Moreover, we deduce from Lemma 2.4.1] that

HV(‘Z”_’Y % ’a5’2)HLp < C H’v‘l-i-n(%_%)(’x’—’y * ’CLEP)‘

L <l s,

1_1 _
V32l ™ a2,y < [V (ol 510, < C s

L2
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provided n/p—1 <y <n—2and n/q—2 <y < n—2, respectively. By the
assumptions p > 2* and ¢ > 2, we see that

Hence, for so small T" that T'C(Epar(0)) < 1/3, we see from (4.4.16) that

HU€||L°°([O,T];LP)+||VUEHLOO([O,T];LQ) <3 ”V‘I’O||Lp+3 Hvzq’OHLq‘FC(Epart(O))-
(4.4.17)
Plugging (4.4.17) to (4.4.16)), we obtain desired energy estimate: There exist
T and C such that
sup E(t) < C(E(0)).
te[0,7)

Hence, we obtain the solution (a®,v%) € C([0,T]; H**! x Y512).

Tail estimate of v* and the uniqueness

We next investigate the decay property of v*: By the Holder inequality and
the Hardy-Littlewood-Sobolev inequality, we have

t n
v — V) = —/ ((v° - V)o" + AV (|2 77 % [a°]?)) ds € (e t).
0

(4.4.18)
Let us proceed to the proof of the uniqueness of (4.4.3). Let (aj,v]) and
(a3, v5) be two solutions of (4.4.3) in C([0, T]; H*+! x Y5 +?) with (a, v£)(0) =
(A5, V@p). Put df = af — a§ and d = vf — v5. We remark that d5(0) =0
and d5(0) = 0. Moreover, we see from the above estimate (4.4.18) that
d5 = (v] — V@) — (v5 — V) and so d5 — 0 as |x| — co. Now, we estimate

Eq(t) = |ldg|72 + IV 5|72 -

It is important to note that Vo and Vv do not necessarily belong to L?
by definition of Y, . Nevertheless, their difference d;, does so because it is
identically zero and so belongs to L? at the initial time. We shall follow this

part precisely. The system for (dS, d5) is rewritten as

1 1
Oudy + - Vai + 05 - Vel 4 S5 - Vof + Sa5 - Vd; = i%Adi,
Ouds + dF - VS + 05 - Ve + AV (|27 % (d50 + a5d5)) = 0

(4.4.19)

Now estimate the L? norm of d5. From the first equation in (4.4.19), it holds
that

d
7 Iz = 2Re (91, d5)

< C|Re(d, - Vai,dy) | + C|Re (v5 - Vdg, dg) | + C|Re (dg - Vi, dg) |
+ C|Re (a5 - Vd;,d;) | + |Re (iAd,, d;,) |
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Now, Holder’s inequality and integration by parts show that
|Re (a3 - Vdy, dg) | < llagll poe [Vl 2 lldall 2
2
|Re (vy - Vdg, dg) [+ |Re (dg - Vi, dg) | < (IIWTIILM + [IVe3llge) ldallz2
Re (iAd;, d;) =
Another use of Holder’s and Sobolev inequalities shows
[(d5 - Vai, dg) | < [ld5ll 20, [Vaillpa lldall 2

<C IIV%HH%A IVl 2 (Il 2
Thus, we end up with the estimate

d
AR (CAPER AR

where the constant C' depends only on |[af|| gn/2, [|a5] 0, and ||[VO5]|;
(i = 1,2). Therefore, this can be written as

d e
7 1dallze < Cllagl[mrs+1, |07 llysr2) Ea(). (4.4.20)

Similarly, for all 1 <, j < n, we have the estimates for 9;dj ;:

(@) - V)05 5, 05 ;)| < C || Vi || oo 105522
((d5 - V)5 1, 0,5 ;)| < C | Vars . de\l 2 [|Oacly 5
[{(@:05) - V)5 5,065 5)] < C 19351 [V 5
[((v5 - V)0ids, 5,045, ;)| < C | VoSl oo ||0id, JHL2’
1(8:0; (|| ™7 % (dag)), 9sdy, ;)| < Clllaf | poo + a5l 12) 1]l 12 Hada7]HL2’
(0,05 (J| ™ % (a55)), 055 ;)| < Cll a5l oo + N5l 2) Il 2 (|00 5 ]

where vf ; and d, ; denote the j-th components of v] and dj, respectively.
Summing up over i and j, we obtain

d
T IVd5 1172 < Claf ]| provrs 105 lyp22) Ealt)- (4.4.21)

Plugging (4.4.20) and (4.4.21)), we obtain
d
g Ea(t) < Clllai o+, 107 llys52) Ba(t).

Hence, we conclude from Gronwall’s lemma that
Eq(t) < C([lag | g+, [107 [lye42) Ea(0) = 0

as long as the solutions (a5, v{) exist. This implies that d; = 0 and Vd; = 0.
In particular, there exists a function d = d(t) of time such that df,(t,x) =
d(t). Recall that d;(t,x) — 0 as |z| — co. As a result, d(¢) = 0 follows and
we finally obtain (aj,v]) = (a5, v5).
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Construction of ¢°.

Since we have obtained the uniqueness of the solution to (4.4.3), we can use
the direct definition introduced in Section 2.2.2: We define ¢° by

t
50 =0~ [ (G + A ) ) ds

then (af, ¢°) is a unique solution to (4.4.2). Though ¢° and ®( themselves
do not necessarily belong to any Lebesgue space, it follows from the Holder
inequality and the Hardy-Littlewood-Sobolev inequality that

b1 2 _ 2 max(ﬂ ﬂ—s—)
¢€(t)—q>0:—/ (2\u€| (2| # |t )) ds e L"(557),
0

Moreover, it is bounded uniformly in e € [0,1]. If n > 5 then, applying
Lemma [2.2.1 twice, we see that there exist constants ¢cg € R and ¢; € R”
such that
2
|20 —co—cr- |,z <OV — | 20, < C V>0 -
Since V@ € L9 (¢ < o0), we see that V@, — 0 as |z| — oo, and so that
c1 = 0. By the Sobolev embedding, we also have

|0 — coll oo < C||[ V2P0 . »
which shows &y € L*° and so ¢° € L*°. ]

Remark 4.4.4. There is another way to construct ¢° from v* which depends
on the characteristic curve method. As long as v® exists with Vo® € L, we
can define corresponding characteristic curve (classical trajecotry) uniquely.
Then, by an argument in [17] shows that irrotational property propagates
along the characteristic curve. Then, we can apply the first method in
Section 2.2.2| based on the Poincaré lemma. However, this method does not
give the uniqueness (of v).

4.5 Large time WKB analysis

4.5.1 Main result

We now in a position to prove Theorem 4.1.1. Using all results in the
previous sections of this chapter, we shall justify the WKB approximation
(4.1.1) of the solution u® of (SP)). The strategy of the proof is the same
as the general strategy observed in Section 2.2.3l Let us recall briefly: We
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consider the system
g £ g 1 g £ 8 g
oa® + (Vo - V)a® + 50 Ag® = nga ,

1
09" + S|V + AV =0, (4.1.2)
—AVE = af?, V§ —0as|z| — oo,

(a°(0,2), (0, z)) = (Aj, Po)-

Our goal is to show an e-power expansion of this solution

k k
@ =ag+ Y a;+oleh), & =0+ Y ¢ +o(")

Jj=1 J=1

for large time. The difference is that we have already known that the zeroth
order term (ag, o) can be defined globally in time. Recall that (ao, ¢o)
solves the system

1
Orag + (Voo - V)ag + §CLOA¢O =0,

1
Do + 5Veol” + AVe =0, (4.1.3)
—AVp = \a0|2, Vp — 0 as |z| — oo,
(a0(0,2), ¢0(0,2)) = (Ao(z), Po(z)).

We have given a global solution to this system in Theorem4.2.1 and observed
its regularity in Theorem 4.3.2. It will turn out that, for any fixed T" > 0,
a® — ag and ¢° — ¢g are finite for sufficiently small € > 0 and tend to zero
as ¢ — 0. Thanks to this fact, we infer that the existence time of (a, ¢%)
can be chosen arbitrarily large as long as e is sufficiently small. We will
also verify that if (ag, ¢o) is global in time, then it is true for all (aj, ¢;).
Then, the e-power expansion of (a, ¢) is valid on an arbitrarily large time
interval if € is enough small. For making the notation simpler, we write

AVE = AT af 2 = e (2]~ « |af?)

and denote Ac, again by A, where ¢, is a positive constant. This changes
the second and the third lines of equations (4.1.2) into

1
" + §\V¢al2 +A(j2] "7+ ja%?) = 0.

Assumptions

We now clarify our assumptions. First of all, the initial data (A§, ®¢) of
(4.1.2)) should lie in the framework of Theorem 4.4.2:
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Assumption 4.5.1 (Assumption for local existence). Suppose n > 3 and
AER. Let s >n/2+ 1. Assume that

o &g c C* with VO, € Y;ﬁ;‘z for p € (2%,00] and q € (2,00) with p > q
o A5 is uniformly bounded in HS™! for e € [0,1],
where Y512 is defined by (4.3.3) and (4.3.4).

If this Assumption 4.5.1 is met, we can apply Theorem 4.4.2 and give a
unique local solution (af, %) € C([0,T]; H*T! x C*) of (4.1.2) with V¢© €
C([0,T); Y5 ?). In order to apply Theorems4.2.1/and 4.3.2, we further make
the following assumption on Ag := lim._o Af and ®(, which corresponds to

the initial data of the limit equation (4.1.3).

Assumption 4.5.2 (Assumption for global existence of the limit solution).
In addition to Assumption|4.5.1, we assume A < 0 and that Ay := lim._,¢ Aj
exists in the H5T1 sense. Assume that there exist functions Ag: Ry — C and
®y: Ry — R such that Ag(z) = Ao(|z]) and Oo(z) = ®o(|x|), respectively,
and satisfy following properties:

o Ay e CIsH31([0,00)) is nontrivial function satisfying
rI=I19I Ay € L2((0,00), 7" Hdr) 1< <[
&) Ag € L*((0,00), 7" dr) 0<j<[s+3],
HAy=00r""% asr—oo 0<j<]|
and that there exits ko > [s + 3| — [(n — 1)/2] such that
(DIA)(0) =0 forje[0,kg—1], (9F°Ag)(0)# 0,
where [s]| denotes the minimum integer larger than or equal to s.

o B is given from Ag by the formula

2‘)\’ 2,n—1
/\/n_2sn 2/|A0 o)|?o""tdods + const.  (4.2.2)

One verifies that if this Assumption 4.5.2is satisfied then Theorem [4.3.2
gives the global (radial) solution (ag, ¢g) € C([0,00); H**3 x C%) of (4.1.3)
with Vo € C([0,T]; Y;55*). Here we remark that the limit solution (ag, ¢o)
is assumed to have more regularity than (a®, ¢%). This is because we rely
on the regularity of (ag, ¢9) when we close an energy estimate of error term.
Furthermore, in order to justify the e-power expansion of (a®, ¢°), we assume

that this expansion is already known at the initial time ¢ = O:
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Assumption 4.5.3 (Assumption for expansion). In addition to Assump-
tions |4.5.1 and |4.5.2, we assume that there exists a positive integer k such
that s satisfies s > n/2 + 2k + 1 and that Af is expanded as

k
Af=Ag+ ) A+ 0 in BT
j=1

Namely, we assume 6*(]““)(146 - Z?:o el Aj) is bounded in H*T' uniformly
ine € (0,1].

Remark 4.5.4. The assumption on ®g in Assumption 4.5.1/ is automatically
satisfied if @ is given as in Assumption 4.5.2/ (see Proposition 4.3.4).

Remark 4.5.5. In the above assumptions, Ag = lim._g Aj and @ are as-
sumed to be radial. However, Af itself is not necessarily radial function.

Main theorem.
Before stating the result, we define

77(T) = Ha0||L°°([0,T};HS+3) =+ ||V¢OHLOO([07T];YS+4 (4'5-1)

(2% 0], (2,00])

It follows from Theorem 4.3.2/ that n(T") < oo for all T > 0. Under the
assumption 4.5.3, we have the following theorem:

Theorem 4.5.6. Let Assumption [4.5.5 be satisfied. Let (a,$%) be the so-
lution to (4.1.2) given by Theorem [4.4.2 and (ag, ¢o) be the global solution
to (4.1.3) given by Theorem[{.2.1. Then, there exist

(aj7¢j) c C([O’OO);Hsf2j+3 % Ys—ﬂ?j-‘rS )

(E,OO],(%,OO]

(1 < j < k) and constant Cy depending only on n and s such that, for any
T > 0, it holds that

k
a° =ag+ Yy _eaj+OE"Y) in L=([0,T], H M H(R™)),
j=1

k
O = b0 eI, + O™ in L(OTL Y oy o (R
]:

for e < Cn(T)e 31T " and so (4.1.5) holds.

Remark 4.5.7. We note that ¢* and ¢g themselves do not belong to the space
Y, ool 2yl B):
n—2"Cb\ 1

Theorem [4.1.1] immediately follows from this theorem by the argument
in Section 2.2.4. In order to avoid the complexity, we separate the proof of
Theorem 4.5.6/into three steps, and prove them individually in the following

Sections 4.5.2H4.5 4.
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4.5.2 Proof the theorem — part 1: the zeroth order

In this section, we shall estimate the distance a® — ag and ¢° — ¢q for large
time, where (a®, ¢°) is the solution to (4.1.2) given by Theorem 4.4.2/ and
(ao, ¢o) is the global solution to (4.1.3) given by Theorem 14.2.1.

Proposition 4.5.8. Let Assumption [{.5.5 be satisfied. Let (a®, ¢) be the
solution to (4.1.2) given by Theorem|}.4.2 and (ao, ¢o) be the global solution
to (4.1.3) given by Theorem [4.2.1. Let n be as in (4.5.1). Then, there exists
a constant C,s depending on n and s and I'y on Af such that

lla® = aoll Lo (jo,17, 141y + V" — V¢0HL°°([0,T],Y(S+,? < elpeCenMT
n—1

,00]7[2,00]))

(4.5.2)
holds for all 0 < € < eo(T) < p(T)Ce= "D I, particular, the existence
time T of (a%,¢°) can be chosen so that & ~ n(T)e~ 1T,

Proof. Denote v = V¢© and vg = Vo. We set (af, vg) = (a® — ag, v® — vp).
Then, we deduce from (4.1.2) and (4.1.3)) that (ag,vj) solves the equation

(. _ 1_ — o~ ~
orag + vg - Vag + 5@‘6 -V + 05 - Vag + vo - Vag
1_ 1 ~ ~
+§a5 - Vg + 00 Vg = i%AaB + i%Aao,
D05 + 05 - VI + AV (|2~ « |a5 ) + 5 - Vg
+ug - VT 4 22V (|2] ™2 « (Re(aSag)) = 0.

(4.5.3)
The point is that we exclude all a® and v® by using a®* = ap + af and
v® = vy + v, respectively. We set

Eo(t) := llaoll grs+1 + [Ty 42

1 o], [2,00]

Since v§(0) = 0 and so we can repeat the energy estimate which we made
in the proof of 2.4.8 and obtain

d ~ - -
—Eo(t) < Cs(Eo(t)* + Co(t) Eo(t) + eCo(t)), (4.5.4)
where Cy depends on n and s, and Cp on ||a(t)|| yets + ||v(t)||y(s+4 - We
2* 00],(2,00

recall that 7(T) := sup,cp, ) Co(t) and n(T') < oo for T' < co. Therefore, to
prove the theorem, it suffices to show the estimate

sup Eo(t) < eDpeCsnMT (4.5.2)
t€[0,T]

holds for € < g9(T) < Cn(T)e~C"TT . Once this is proven, then we have

sup <Ha€(t)HHs+1 + [[0° (@) lly s ) <n(T) + sup Ey(t) < oo
te[0,T) (2%,00],(2,00] t€[0,T)
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for ¢ < go(T), which implies the solution (a®,v®) exists until ¢ = 7. The
following Lemma [4.5.9/ completes the proof. O

Lemma 4.5.9. Let EQ (t) be a nonnegative function depending on a parame-
ter £ and satisfying the inequality (4.5.4). Assume that limsup, o Eo(0)/e <
00. Letn be a function such that Co(t) < n(T) < oo for all 0 <t < T < oo.
Then, for any T > 0 there exist g = eo(T) < Cn(T)e= "M and a
constant Ty = T1(limsup,_ Eo(0)/e) > 0 such that SUPeo,7) Eo(t) <
el eCsn(DT for e < eg.

Proof. We fix some T' > 0 and analyze (4.5.4) for ¢ € [0, T];

d ~ - -

g Eo(t) < Cs(en(T) +n(T) Eo(t) + Eo(1)?),

where we denote n(7T') by n for short. This gives the inequality for Z(t) =
Eo(t)e’CSt”,

d ~
S2(t) < Cynee” O 4 CeCMZ ()2, Z(0) = Eo(0).

By assumption, there exist €91 > 0 such that EO(O) < e holds for some
Bo>0all e <epr. We set

- \/1+,60—1 O — 50605T77
0T T T ooy

Multiplying the above inequality by 0 we obtain

o
1+90Z)2 )
002 (t)

m < Csnaogeicstn + 0500_1€Cst77.
Integration over [0, t] gives

1 1
> _
14+600Z(t) = 1+ 09Ey(0)

—efp(1 — e ) — 7l (% — 1), (4.5.5)

We now show that for small e the right hand side is bounded by dy/2 from
below. If € < e and T' > Ty = Tp(B), then it holds that

N Y Al 1)
L+ 00Ep(0) ~ THbsfo T (VIFBo+ DelTn—2
1 5

> ST 2 (4.5.6)

Moreover, the right hand side of (4.5.5) is monotone decreasing in ¢, and
dp — €bp(1 — e_CST”) - n_IH()_l(eCST” — 1) > 0 is equivalent to

e(1 — e 9TMgZ — 506y 4+ n~ (%17 — 1) < 0. (4.5.7)
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Since 0y is the minimizer of the left hand side, we see that if € < gp2 :=
62neCsTn /4(eCsT — 1)2 then (4.5.7) holds. Plugging (4.5.6) and (4.5.7) to
(4.5.5), we obtain (1 + 6pZ(t))~ > 69/2, which implies

Z(t) < (14 21+ Bo)05 " < 3v/1+ Boby "
We set eg = min(eg,1,€0,2). Notice that ¢ is independent of T', and g9 2 ~
(62/4)ne=CTn if T is large. Then, for all T > Ty = Tp(Bo) and € < g9 =
eo(8,T), we conclude that

Con(T)T
6(1+ /1 —I;Sﬁo)e n(T) ) e = e[y Con(DT
0

sup Eo(t) <
te[0,7

where T'; depends on o, that is, on limsup, o Eo(0)/e. O

4.5.3 Proof the theorem — part 2: the first order

In this section, we show the following two point: First is that (a1, ¢1) is
defined globally in time as a limit ¢ — 0 of (af, ¢f) (Proposition 4.5.10)).
Second is the asymptotics

a® = ag +eay + O(?), v =g +evy + O(e?)
for large time (Proposition 4.5.11). If the number k in Assumption 4.5.3 is
one, then Proposition 4.5.11] completes the proof of Theorem 14.5.6.
Proposition 4.5.10. Let Assumption 4.5.3 be satisfied. Then, there exists

(a1a¢l) € C([O’ OO),HS+1 X YSJ;:S

RESES FEE)

Let Ey1(t) := |la1(t)]] gs+1 + HV(ﬁl(t)Hy(sw . Then, for any T > 0, we
n 2

I o], [2,0]

have the following bound

sup By (t) < 17T = ny(T), (4.5.8)
t€[0,T
where I'1, Cs, and n are the same one as in Proposition|4.5.8. In particular,
(a1,¢1) is defined globally in time.

Proposition 4.5.11. Let Assumption [4.5.3 be satisfied. Let (a®,¢®) be
the solution to (4.1.2) given by Theorem [4.4.2 and (ag, o) be the global
solution to (4.1.3) given by Theorem [{.2.1. Let (a1, $1) be the limit defined
in Proposition |4.5.10. Let C be the same one as in Proposition |4.5.8. Let
n be as in (4.5.1). Then, there exists a constant I'y depending on A such
that

||a€ —ap — €a1||L°°([O,T],H571) + ||V(¢6 _ ¢0 — €¢1)HLDO([O7T]7Y(SL olll2 Oc]))
n—1" e

< 82F2n(T)—163Csn(T)T656’S771 (1T
(4.5.9)
holds for all 0 < e < e1(T) < Ce=2Cn(MT [y particular, the existence time
T of (a%,¢°) can be chosen so that ¢ ~ e~ 2Csn(MT,
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Proofs.

Proof of Proposition 4.5.10. Fix T > 0. By (4.5.2), we infer that (a®—ag)/e
and (V¢ — V¢yp)/e are uniformly bounded in the limit ¢ — 0. Therefore,
there exists a weak limit (aj,v1). This limit satisfies (4.5.8) by lower semi-
continuity of the weak limit. Since (a§,vf) solves (4.5.3), one sees that
(a1,v1) solves

1 1 1
Orar + (v1 - V)ag + (vo - V)ag + §a1V -vg + §a0V v = §Aa0,

dvr + (v1 - Vg + (vo - V)vr + AV (2|2 x (2Re(a1ag)) = 0,
a1(0) = A1, v1(0) =0.
(4.5.10)
We verify that the solution is unique by a standard energy method. We now
define ¢1 by

P1(t) = — /0 t (vo v 4 20 (|27« (Re(alﬁo)))) ds.

It is easy to see that (a1, V¢1) solves (4.5.10). Hence, V¢; = v; by unique-
ness. The first term of the integrand belongs to L0 NL*® and the second
term belongs to LY for ¢ € (n/(n —2),00) by the Hardy-Littlewood-Sobolev
inequality. We also deduce from Lemma 2.4.1 that

|2l =2+ Re(@r@))|| < € |[V(lal =2 Re(@a)|,, .

< C(llaraol gs+1 + llaraol| 1) < oo.

Therefore, ¢, € C([0,00); Ln-2T N L™®). O

Proof of Proposition[4.5.11. We first put b = (afj/e — a1)/e and wj =
(v§/e — v1)/e, where v; = V¢1. One verifies from (4.5.3) and (4.5.10) that
(b5, w3) solves

1
Oib5 + £* <w§ ALESUAE w§> +w§ - V(ag + €ay)
1 1
+ (vo +evy) - V] + ibfv (vo +evr) + §(ao +ea1)V - wf

1 1
+v1-Var +-a1V -1 = ZEAb‘i +i=Aayq,
2 2 2 (4.5.11)
s + g2 (wf -Vw] + AV (|z|77 * |b§|2)) +wi - V(v+ev)
+ (v +evy) - Vwi 4+ 2AV(|z] 77 * (Re(b](a + €a1)))
+ o1 - Vo + AV(Jz|77 \a1]2) =0,
N AS - AO - €A1

b(0) -

. wi(0) =0.
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We now put Ey(t) := 165 || ps—1 + llwi|lys . Mimicking the previous
(=21 00],[2,00]
arguments, we obtain

iEl(zt) < Cs (62151(75)2 + (n(t) + em () Er(t) + c1m (t)2> . (4.5.12)

The constant Cs can be exactly the same as in (4.5.4) since the quadratic
and linear parts in the left hand sides of the first and the second equation
of (4.5.11) is the same as (4.5.3) up to multiplications by e. If necessary, we
denote supye(a/ny1, Cs again by Cs. ¢ is an adjusting constant. Then,
the following Lemma completes the proof. This lemma is a modification of
Lemma 4.5.9. O

Lemma 4.5.12. Let E; (t) be a function Ry — Ry depending on a param-
eter € and satisfying (4.5.12) and limsup,_,; E1(0) < co. Let n(t) and n(t)
be as in (4.5.1) and (4.5.8), respectively. Then, for large T' > 0 there exists
e1=¢e1(T) ~ ne 20T gych that if e < &1 then

F263CS77(T)T

sup Fi(t) < ECsm(NT

te[0,T] n(T)

Proof. We fix T'> 0 and analyze (4.5.12) for t € [0, T]. We write n = n(T’)
and 71 = n;(T), for short. Take €17 > 0 and 3; > 0 so that E;(0) < 5 for
e<ern. Put Zi(t) = B4 (t)e_CSt(”+5"1). Then, for ¢t < T,

d

£Z1 (t) < Cynle=Cstlrrem) o ) Oye2eCstlnrrem) 7, (1)

with Z,(0) = E1(0). We set

\/1+ﬁ1—1
B

_ S1(n + ey )eCeTrkem)

01 = y O= 23 (eCsTntem) — 1)

Multiplying the above inequality by 0 we obtain

01
1+91Z1)2 ?
!

m < 059177%6—0575(77-‘:-5771) + 010591_162605t(77+‘3’71)_
141

Integration over [0, ¢] gives

1 1 n3

> = 1
L+0121 = 1+ 6,F(0) N+ em

(1 — e~ Cstlutem))

2
_ 01,1L eCstntem) _ 1). (4.5.13)
n+em
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We now show that for small € and large T' the right hand side is bounded
by 01/2 from below. We first prove that

1 )
—— — > (4.5.14)
1+ 60FE:1(0) 2
Indeed, if € < €11 then we have
R S S bl B103 P, p)eCsTtrrem) — 2(1 — 1)
1+ 61FE41(0) (2+ 6151P€’T)6CST(77+5771) -2 ’

where P.7 := (n+em)/n?. Recall that i, = T1e%7". There exists Tp
depending on I'y and Cy such that if 7" > Ty then P.pr < 1 for e < 1. We
suppose T > Ty. Then,

1 eCsTlntem) _ 9(1 — §)) 1 o1

L1050 7 T+ vVITB0eCTorem —2 7 31+ I+ 8) | 2

for T > Ty = 3T (Cs, B1), where we have used the relation 1—24; — 3167 = 0.
We next consider the inequality

0152

2
(1 G Ttem)) g2 50,

n+em o (€T 1) <0. (45.15)

Since 1 is the minimizer of the left hand side, we see that if

51 (7’] + 57]1) eCsT(n+em)
ﬁm (eCST(n—i—am) _ 1)2

then (4.5.15) holds. We assume ¢ < n/n;. Then, n + en; < 2n and so

€<

01 (T] + 57]1) eCsT(n+em) S n eCsT(n+em) N o1
vern | (e Tlrrem) —1)2 = ey | (eCTOrrem))2 = fepy et

We denote the most right hand side by €1 2. Then, (4.5.15)) holds if ¢ < &1 o.
Note that, in this case, the ¢ < eta/m is automatically satisfied. The right
hand side of (4.5.13) is monotone decreasing in ¢t. Hence, plugging (4.5.14)
and (4.5.15) to (4.5.13)), we obtain (1 + 61 Z1(t))~! > 61/2 for t < T, which

implies
Z1(t) < 3y/14 36t
for t < T. We set 1 = min(eq,1,€1,2). Notice that €1 is independent of

T, and that if T is large then e15 ~ ne 2" by (4.5.8). Hence, for all
T > max(Ty,T1) and € < g1 = 1(06,T), we conclude that

~ 34/1 F2
Sup El(t) < @6303717]683037—'7]1‘

te[0,T) o1n
We set 'y := 31 + 5151_1F% to obtain the desired estimate. O
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4.5.4 Proof the theorem — part 3: higher order

We finally consider the higher order expansion. Assume that the constant
k in Assumption 4.5.3| is bigger than one. It is because if K = 1 then the
proof is already finished with Proposition 4.5.11. The proof is based on the
induction argument. We make following notations and definitions: Our goal
is to show that the asymptotics

o =aog+ Y ela;+ 0™ in Lo([0,T), H* > H(R™)),
j=1
¢ =do+ Y o+ O0(E™) in LO(0, T, Y L2 (R™)

(n72 700}7(.”,17
=1

(4.5.16)
for m = k. We introduce the system

| 1
das+ Y Vou-Va+ Y 5auddyn izl =0, q0) =4

i14i2=j 11+i2=j

oo+ Y %V¢¢-V¢j+)\ S (o2 « Re(as,a5;)) =0 5(0) = 0.

i1+i2=J i1+i2=j
(4.5.17)
We define the following function:
r; i
ni(T) = n(Ti)Jj_le@J DCen(D)T (4.5.18)

with n(7") is an increasing function defined in (4.5.1)), Cs is the same constant
as in (4.5.4) (and in (4.5.12)) depending on s and n, I’y and I'y are as in
Propositions (4.5.8) and (4.5.11), respectively, and I'; (j > 3) is a constant
depending only on Af to be chosen later. Note that

N (T) > -1 (T) > - > m(T) > n(T) >0
for large T'. The following two propositions complete the proof by induction.

Proposition 4.5.13. Let Assumption [4.5.5 be satisfied for some k > 2.
Let (ao, ¢o) be the global solution to (4.1.3) given in Theorem 4.3.2. Fix
ko € [1,k—1]. Assume that (aj, ¢;) € C([0,00); H* 72113 x Y(S_n2‘7Jr5 n

1 ol (22001

(1 < j < ko) exist and all of them solve (4.5.17). We further assume that
there exists I'y 11 such that

V(g — Y5yl gy)

8k0+1

e _ N~ko _j,.
8k0+1

lim sup
e=04¢e0,17

_l’_

H372k0+1 Y572Ic0+2

(7271 ,00],[2,00])

152



is bounded by ng,+1(T") defined in (4.5.18)) for any fired T > 0. Then, there
exists (agy11, Pror1) € C([0,00); HS~2kot1 x Y(STL%OH n OO}) which solves

7zl
(4.5.17) and satisfies

sup (Hako+1||Hs2ko+1 + IV kot s—2mo+2 ) < Mo1 (7).
te[0,T (F21,00):[2,00])

Proposition 4.5.14. Let Assumption [4.5.5 be satisfied for some k > 2.
Let (ag, ¢o) be a global solution to (4.1.3) given in Theorem [.3.2. Fix ky €
1,k —1]. Assume that, for all 1 < j < ko + 1, the solution (aj,¢;) €
C([0,00); H=2%H3 5 (L7201 L)) of (4.5.17) exists and satisfies

D lag a0 + [Voyllyozrn  <y(T)

te[0,7 et »0015[2,00])

Then, for any fized T > 0,

€ ko+1 5
a _ijo ela;

€k0+2

V(pF — Y5 el )

+ Ek0+2

HS—Qko—l

sup
t€[0,T]

s—2k

Y2y ool 2,00])
is bounded uniformly in e € (0, ek 42]|. In particular, the asymptotics (4.5.16))
holds with m = ko+1 fore € (0,egy+2]. €ryra can be chosen so that g2 <
Cn(T)e 31T Moreover, there exists a constant Ty, o depending only
on A§ such that ni,4+2(T) defined in (4.5.18) bounds

ko+1 _j ko+1 _j
0* = 3% o V(o — X5 € e5)

5k0+2

+

Hs—2ko—1

lim sup
e—=0¢¢(0,7]

872]60
Yy oo, [2,000)

for any fized large T > 0.

Indeed, once these two propositions are shown, we immediately obtain
the theorem: Proposition 4.5.11/ implies that the assumption of Proposition
4.5.13| is satisfied for kg = 1. Then, by Proposition [4.5.13, the assumption
of Proposition [4.5.14' is met for kg = 1, which ensures the assumption of
Proposition [4.5.13| for kg = 2. After repeating this argument k — 1 times, we
see that Proposition 4.5.14 holds for ky = k — 1. Then, this gives (4.5.16)
with m = k.

Proofs

Before the proof, we introduce the notation. We write

e o— a® — ZT:O ela; Vo© — Z;n:o eIV,

I nt” A g
m em+1 ; m em+1

w,
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An elementary computation shows that (b5,, ws,) satisfies
€ m~+1 € (3 1 (3 €
Oby, + € wy, - Vb, + §me Wy,

m
1 1
+ ZEK (wfn -Vag+ v - VU, + ibfnv g+ §agV . vfn>
=0

m—1

1 1
+) e > (w Va; + 50V - uj) — i Aay, = i%Abfn,
=0 i j<mit+j=m+1+L

(4.5.19)

O, + &1 (wg, - Vg, + AV (|2~ < b, 2))

+ Z e ((ws, - Vo + vg - Vus,) + AV (2] "2 % Re(agbs,))

=0
m—1
+ e Z (Ui -V, + AV (|z]~ (=2 « Re(amj))) =0,
=0 ij<myitj=m—+1+L
(4.5.20)
and
k—1-m '
b5,(0) = > A+, ws, (0) =0 (4.5.21)
=0

as long as (ao,vo) = (ag, Vo) and (aj,v;) := (aj, Vo;) (1 < j < m) solve
(4.1.3) and (4.5.17), respectively, where r{,; is e *™1(Af — Z?:o el Aj). If
Assumption 4.5.3/is satisfied then rj_; is bounded in H*tlas e — 0.

.Proof of Proposition|/.5.15. By assumption, (bio,wio) is uniformly bounded
in
LOO([O,T)7H872]€0+1 % (H372k0+2 N Lﬁ—i-))
in the limit ¢ — 0. Note that Y °,.2k0+t2 = Fs—2ko+2 0 [755F gince
(n_l,OO},[Q,OO]

n/(n—1) < 2 for n > 3. Therefore, extracting a subsequence, there exists
a weak limit, denoted by (@g,+1,Vk,+1), in the same class. Moreover, we
obtain the bound

sup (Hako+1||Hs—2ko+1 + [V rot1llys-2mo+2 ) < Mo1(T).
tel0,7] A oc].[2,00]
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by the lower semi-continuity of the weak limit. Since (bj ,wy ) solves
(4.5.19)—(4.5.21), we see that (ak0+1,vk0+1) solves

1
Ora; + Z Vi, - Vag, + Z a“V Uiy — ngaj_l =0, a;(0) = A,
i1+i2=j 11+12= J

Owj +V Z fuz vj + AV Z (||~ % Re(ai,a5,)) =0 vj(0) = 0.
t1+i2= J i1+i2=]

(4.5.22)
for j = ko + 1. By the way, once we know (a;j,v;) (j = [0, ko]), we can solve
this system directly by a standard argument and obtain unique solution
(@kg+1,Vky+1) in the same space. Therefore, the above weak limit is the
unique solution to (4.5.22). We now define ¢y, 11 by

t
1
b == [ | 3 Jueuad Y (a0 s Relayan) | ds
0

i1+i2=j i1+i2=7j

Then, Vp,+1 = vg,+1 holds by the uniqueness of (4.5.22). Hence, Vi, +1
is the unique solution to (4.5.17) for j = ko + 1. By definition of ¢p,+1, we
see it decays at spatial infinity. Thus, Lemma [2.2.1 provides

| Pro+1llys-2x0+3 <C Hv¢ko+1|| a=2k0-+2
(n:lz,oo],(%,oo] 1 ,00],[2,00].
T is arbitrary, and so we obtain the proposition. ]

Proof. By assumption, we can define (b, . 1, wg, ;) solving (4.5.19)—(4.5.21).
We will bound

Ekoﬂ(t) = Hblsﬂo-i-l(t)HHS*QkO*l + szo-&-l(t)HYS—%O :
n%r,oo],[loo]

Recall that the quadratic part and the linear part of (4.5.19)—(4.5.20) are
the same as (4.5.11). Hence, we deduce by the standard energy estimate
that, for any fixed T' > 0,

d ~ - ~
S Brg1(8) < Cole™ By 1 (02 + iy 1 B (1) + Chpvy ) (45.23)

holds for all ¢ € [0,T]. Here, we define

ko+1
oot = Hinr1(T) :=n(T) + > elny(T)

which bounds the constant part

ko+1

|3 e

ko+1
Eeag
=0

+ ”Uo” s— 2k0+2
00],(2,00]

sup
te[0,T]

—2kg+1 s—2kg+2
Hs—2kot n

Y (o ool [2,00]
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and

ko ko+1
Vigt1 = Vio1(T) = g1 (T) + ZEZ Z i (T)gt2+0-i(T))
(=0 i=l+1

which is an upper bound of the linear terms

ko
1
an (318000 bOY Y

t€[0,T]

=0 4,J<kg+1,
i+j=ko+2+€
<”vi”ﬁs;3f?;]2,m,oo1 ij”ﬁsff(,’;]z,p,oo + llasl| prs—2k0+1 HajHHs2ko+1) >

up to an adjusting constant cy1.

Uniform bound of EkoH

We now show that sup,c(o m Eko+1(t) is uniformly bounded for small €. We
keep fixing T' > 0. By Assumption (4.5.3)), we see that there exists a positive
constant (y,+1 depending only on Af such that Ej41(0) < By+1 holds for
e € (0,1]. Set a function

Zro1 (1) = Ego1 (1) exp(—Cipiy 11 (T)1)

and two constants

ko1 = (14 /T+ Brgg1)
5M20+1(T)

9m+1 = .
—Csus T
26/§0+11/,‘20+1(T)(1 — ¢ Cethona(D) )

0k0+1 eXp(*CstMiO.tﬂ)

(U001 Zog 1 ()% we obtain

Then, multiplying the both sides of (4.5.23) by

Oro+12Z)5 14 ()
(1 + 9k0+1Zk0+1(t))2

where we denote ug . (T) and v (T) by pg . and pg ., respectively,
for short. Integration over [0, t] gives

ko+2 Cstus, -1 —Cstus
Cgemee™? k0+19k0+1+080k0+w£0+16 R0 H10k 11,

N

1 1
> =
1+ 9k0+IZko+1(t) 1+ 0k0+1E1€0+1(0)
C v e ko+2 €
— kol (1- eicswko“)eko—s—l - 85 (eost“koﬂ - 1)912014-1- (4.5.24)

€
Ho4+1 Fio4+1

Let us show that the right hand side of (4.5.24) is bounded by dy,+1/2
from below. For simplicity, in the followings, we omit the index kg + 1 and
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denote Biy+1, Cko+1, Okg+1, Higt1 Vigr1» and Og11 by 3, ¢, 6, uf, V¢, and 0,
respectively. We also omit 7" variable in n(T") and 7;(T"). By the fact that
nj+1 > n; for each j and large T' and by definitions of p° and v®, if T' is
large then cv® > pf holds for all € € [0,1]. Then, replacing T" with larger
one if necessary, we obtain

1 S 1 . BCSMET -1
1+ 0B, 1(0) ~ 1+68 eConT(1 4 2200)
S eCor 1 O (2 - 25 — §23) — 2+ 26
TeCw (14 By 1 T eOHT (24 55) - 2
2 — 26 —6° 1 141 5
> L _ _14VIdB ¢ (4.5.25)

Z 22+ 0p) 22408 21+ iTpR 2

where we have used the relation 1 — 26 — 628 = 0. Moreover, 6 is the
minimizer of the quantity

ko+2

e A S e (T =)

cv®

and so this quantity becomes less than or equal to zero if

1
62(M5)2eCsu5T ko+2
€< (cys(eCS#ST — . (4.5.26)

We now replace this condition with stronger but clearer one. We first let e
be so small that

£<  min (”)JZ min — : (4.5.27)
j€[Lko+1] \ 1 j€lko+1] r;/ﬂe(zfl/j)csmT)T

For such €, we have u® < (ko + 2)n and, by definition of 7; (4.5.18),

ko ko+1
¢
V= Mot ) e D Wiyt
/=0 i=0+1
_ o(2ko+2)CsnT  (2ko+3)ConT ko _ ¢
€ € € (2-1/0)CenT
< Mkot1 + 11 o + RS > Ton <?7€
=1
_ o(2ko+2)ConT  _ (2ko+3)ConT
< Mig+1 + FIT + FsT
~ e(2k0+3)CsTIT
< -
B F4 77k0 3
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where I'; is a constant depending on kg and I'; (1 < j < kg + 1). Therefore,
the right hand side of (4.5.26) is bounded below by

1
52 (/16)2605 peT ko+2 52772 k01+2
€ 2 g
cve (eCsT — 1)2 cveeCsuT

f 772 k01+2
>
= 20\ (o e@Ro+3)CanT ) o (ko +2) Can T

= n = Ui ko+2
= > == 0

Is B—523)CsnT ~ Is 30T —C

e - ko+2

where fg) depends on f4, B, and c. Then, the condition € < €f,42 ensures
(4.5.26) and so
£ ko+2
§— L (1 e CarTyg — & (O _1)9=1 > 0, (4.5.28)
pe He

Note that ej,4+2 is smaller than the right hand side of (4.5.27) and so that
€ < €kyt2 is stronger than (4.5.27). Furthermore, plugging (4.5.25) and
(4.5.28) to (4.5.24), we obtain

- N NG T
mp. Ergi1(t) < 3y/1+ po1eCwT < C(g;ﬁ”e@“ T (4.5.29)
te[0, T

which is the desired uniform bound. Indeed, the right hand side is bounded
by _
Gev 1+ By o, (sko+smT
577k0+1
as long as € < g 42. We finally confirm that the right hand side of (4.5.29)
tends to ny,+2(7") with a suitable constant. By definition, it holds that
lim pi® lim i (T) = (1),

e—0

ko+1 A
. . Chot2 (2ko+2)Con(T)T
lim v° = 31_{% Vig+1(T) = M1 + Z NiMko+2—i WE( oFACnDT,

e—0 :
=1

where fk0+2 depends on kg and I'; (1 < j < ko + 1). Therefore, we end up
with the estimate

6T+ B(Lhypon(T) FoePhotDCo(DT) 0 o,

limsup sup ep41(t) < e
e—0 te[0,T] " 677(T)
L'lo+2 .
= 477(1_')0}:;4_1 €(2k0+3)0577(T)T — nk0+2(T)7
which completes the proof. O
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Appendix A

Tool box

A.1 Basic inequalities

A.1.1 The Holder inequality

Lemma A.1.1 (The Young inequality). Let1 < p,q < oo andp~t+q~! = 1.
Then
al bl
ab< — + —
p q

for all a,b > 0.
Proof. By convexity of e,
log aP | log bl elog aP 6log b4 aP ba

ab=¢ » a < + = — + —.
p q b q

O]

Lemma A.1.2 (The Hélder inequality). Let 1 < p,q,r < oo satisfy p~! =

q ' +r~L. Then it holds for all f € LY(R™) and g € L"(R™) that

1f9ll oy < N1l Loy 9l r ) -

Proof. If one of p,q,r is infinity then the result is trivial. So, we assume
p,q,r,< co. In the case p = 1, it follows from the Young inequality that
11l Lary

19l L1 m) _/
e M9l Joe
< [ Upde e [ o=,
A ol Jar

1 1 1
Ifp > 1 then [|fgll o = 1 £gP 15 < AP, g IE, = 1l gl O

f g

dx
91l £ ()
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Corollary A.1.3. Let f be a complex-valued function on R™. If f belongs
to both LP(R™) and LY(R™) (1 < p < q < o), then f belongs to L"(R™) for
all v € [p,q|. In particular,

1y < 11Ty 1 1 ey

where 0 € [0, 1] is given by 0/p+ (1 —0)/q=1/r.

Proof. 1t is an immediately consequence of the Holder inequality. ]

A.1.2 The Sobolev inequality

Lemma A.1.4 (The Sobolev inequality). Let 1 < ¢ < p < o0 and o =
n(g~t —p~1) = 0. Then, there exists a constant C > 0 such that

1fllze < CNIVI®Fl Lo

holds, provided that the right hand side is finite. Moreover, if p > 1 and
s > n/p then there exists a constant C > 0 such that

[fllzee < Cllfllwsn@n)
holds, provided the right hand side is finite.

For some more properties of Sobolev spaces we refer to [1, 7, [70].

A.1.3 The Hardy-Littlewood-Sobolev inequality

Lemma A.1.5 (The Hardy-Littlewood-Sobolev inequality). Let v € (0,n)
and 1 < p < q < oo satisfies

p q n
Then, there exists a constant C' > 0 such that

[zl ™% £l < C Il
holds, provided the right hand side is finite.

1 1 n-—vw

A.2 Tools for energy estimates

A.2.1 Gronwall’s lemma

Lemma A.2.1 (Gronwall’s lemma). Let g and h be continuous functions
on R. If f satisfies the inequality

f(#) < g(t) f(t) + h(t),
then it holds that

ft) < ef(f g(s)ds <f(0) n /t h(s)e- Iz g(o’)d0'> )

0
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Proof. Multiply the both side by e~ Jo 96)ds t6 obtain

%(fe_ fot g(S)dS)(t) < h(t)e_ fg o(s)ds
Integration over (0,t) gives

t t s
f(t)e_ Jo g(s)ds _ f(O) < / h(s)e_ Is g(o)do
0

Hence the Lemma. O

The point is that f is bounded by f(0) and the coefficient functions g
and h. We mainly use this lemma to estimates the energy. By this lemma,
we can give the upper bound of the energy from its initial value.

A.2.2 Commutator estimate

We denote 1 — A by A. The following lemma can be found [6, 40].

Lemma A.2.2 (Commutator estimate). Let s > 0 be a real number and
and k > 0 be an integer. There exists C > 0 such that

1A°(f9) = FA%gll > < CUIV Fll oo Ngllgrems + IV Fllizs— llgll poo)-

Lemma A.2.3. Let s > 0 be a real number and and k > 0 be an integer.
There exists C' > 0 such that

1A (g2 < CUS s gl o + 1 lzoo V5 gl ror),s (A.2.1)

for all f € H N L>® and g € H* N H* N L>®, and that

AV (F)ll e < CUNV flls 9l oo + 1l oo [Vl ), (A2.2)
forall f,g e H' N H*N L.
The next lemma, is the estimate of a composite function.

Lemma A.2.4. Let I be closed interval of R. Take a nonnegative integer
m. Let s > —m be a real number and let o be the smallest integer such
that o < s. Take a complez-valued function F € WotmtLeo(T) and let v
be a valued in I and such that |V|"™v € H®. Then, there exists a constant

C = Uy 1 such that

IV E@)] e < OO+ Tl )™ [ ooy V170l
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