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Notations

We list the notations and collect the definitions that we use throughout this
article.

(i) C, R, R+, Z, N denote the set of complex number, real number, non-
negative number, integer, and positive integers.

(ii) We denote by Rn the Euclidean n-dimensional space with point x =
(a1, . . . , xn).

(iii) A := B means that A is defined by B.

(iv) Let u: Rn → C (or Rn → R) is smooth. ∂xi denotes the partial
derivatives of a function u with respect to xi. We sometimes write
∂i, for short. When n = 1, we denote u′ the derivative of a function
u. Moreover, ∂α denotes (∂α1/∂α1

x1
) · · · (∂αn/∂αn

xn
) for a multi-index

α = (α1, . . . , αn) ∈ Nn.

(v) We denote by∇u the gradient of a function u, that is,∇u = (∂1u, . . . , ∂nu).
When n = 1, we use d/dx instead of ∇.

(vi) ∆ stands for the Laplacian on Rn, that is, ∆ =
∑n

i=1 ∂2/d2
i . When

n = 1, we use d2/dx2 instead of ∆.

(vii) ∇2 denotes the tensor product of ∇, that is, ∇2u is the n× n matrix
(∂i∂ju)16i,j6n.

(viii) f(x) = O(g(x)) as x → x0 means that |f(x)/g(x)| is bounded as
x → x0. Moreover, f(x) = o(g(x)) as x → x0 means that |f(x)/g(x)|
tends to zero as x → x0.

(ix) Ck(Rn) stands for the set of k-time differentiable function on Rn, and
C∞(Rn) := ∩k>0C

k(Rn) for the set of infinitely differentiable func-
tion on Rn. C∞

0 (R) is the set of infinitely differentiable function with
compact support.

(x) Let I be an interval of R and let X be a Banach space. Ck(I, X) is
the space of k-time continuously differentiable function from I to X.
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(xi) Lp(Rn) denotes the Banach space of measurable functions u: Rn → C
(or Rn → R) such that ‖u‖Lp(Rn) < ∞ with

‖u‖Lp(Rn) =





(∫

Rn

|u(x)|pdx

) 1
p

if p ∈ [1,∞),

ess sup
x∈Rn

|u(x)| if p ∈ ∞.

We write Lp if there is no risk of confusion.

(xii) S(Rn) is the set of Schwartz function (rapidly decreasing function) on
Rn. S ′(Rn) is the set of tempered distributions.

(xiii) F denotes the Fourier transform

(Ff)(ξ) =
1

(2π)n/2

∫

Rn

e−ix·ξf(x)dx.

(xiv) For s ∈ R and f ∈ S(Rn), we define (1−∆)a/2 as ((1−∆)a/2f)(x) =
F−1[(1+ |ξ|2)a/2Ff ](x), and |∇|a as (|∇|af)(x) = F−1[|ξ|aFf ](x). We
sometimes denote (1−∆)1/2 by Λ.

(xv) For s ∈ R and p ∈ [1,∞], W s,p(Rn) denotes the Sobolev space, that is,
Banach space of functions u: Rn → C (or Rn → R) equipped with the
norm

‖u‖W s,p(Rn) :=
∥∥∥(1−∆)s/2u

∥∥∥
Lp

< ∞.

If there is no risk of confusion, we write W s,p.

(xvi) Hs(Rn) := W s,2(Rn). If there is no risk of confusion, we write Hs.
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Chapter 1

Introduction

1.1 Introduction

In this article, we consider the Cauchy problem of the semiclassical nonlinear
Schrödinger equation

iε∂tu
ε +

ε2

2
∆uε = N(|uε|)uε; uε(0, x) = u0(x), (NLS)

where uε = uε(t, x) is a complex-valued function on (t, x) ∈ R × Rn. ε
is a positive parameter corresponding to the scaled Planck’s constant ε ∼
~ and N denotes the nonlinearity. We are concerned with the problem
of semiclassical limit ε → 0. The aim of this article is to describe the
results about the asymptotic behavior of the solution uε in this limit. In
particular, we are interested in a phase-amplitude approximation, called
WKB approximation, of the solution uε:

uε(t, x) = ei
φ0(t,x)

ε (a0(t, x) + εa1(t, x) + ε2a2(t, x) + · · · ), (1.1.1)

where φ0 is a real-valued function and ai (i = 0, 1, 2, . . . ) is a complex-valued
function.

The nonlinear Schrödinger equations appears in many physical contexts.
For example, (NLS) with the quintic nonlinearity N(uε)uε = |uε|4uε is
sometimes used as a model for one-dimensional Bose-Einstein condensation
in space dimension n = 1. When n = 2 or n = 3, a cubic nonlinearity
N(uε)uε = |uε|2uε is usually considered. The Schrödinger-Poisson system
((SP) below) is studied as the fundamental equation in semiconductors ap-
pication, with b > 0 standing for a constant background charge and λ À 1
being the reciprocal of the square of the Debye number.

In Chapter 2, we justify the WKB approximation of the solution to
(NLS) with some typical nonlinearities in a time interval which is small (in
general) but independent of ε. For this approximation, several approaches
are known. We follow the one by the pioneering works of Gérard [30] and
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Grenier [34], for the NLS with local nonlinearity. It consists in using the
modified Madelung transform uε = aεeiφε/ε. Then, it turns out that the
problem boils down to the analysis of the system





∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + N(|aε|) = 0,

(aε(0, x), φε(0, x)) = (Aε
0, Φ0).

(1.1.2)

Note that uε = aεei φε

ε is an exact solution of (NLS) if (aε, φε) solves (1.1.2).
The main purpose of this chapter is the following two points: First is to clar-
ify the difficulty of this method which appears in all kinds of nonlinearity.
Second is to present how to overcome this difficulty with some typical exam-
ples. In this chapter, we treat the (essentially) cubic nonlinear Schrödinger
equation, Schrödinger-Poisson system, Hartree equation, and Hartree equa-
tion with local nonlinearity. For cubic nonlinear Schrödinger equation, we
give a slightly different formulation of the proof of the result in [34], and
generalized this result into the above typical equations. Though the basic
strategy of the proof is the same. However, the details are quite different
and so far there is no general theory to treat them at once.

In Chapter 3, we turn to the analysis of classical trajectories. It is
a fundamental principle in quantum mechanics that, when the time and
distance scales are large enough relative to the Planck constant ~, the system
will approximately obey the laws of classical Newtonian mechanics. The
equations (1.1.2) is a kind of quantum hydrodynamics equations, which
is classical hydrodynamics equations with a quantum correction term. In
the limit, the Euler equation for an isentropic compressible flow is formally
recovered from the nonlinear Schrödinger equation. Indeed, denoting ρ :=
limε→0 |aε|2 and v := limε→0∇φε for a solution of (1.1.2), one verifies that,
at least formally, (ρ, v) solves the Euler equation

{
∂tρ + div(ρv) = 0,

∂tv + (v · ∇)v +∇N(
√

ρ) = 0,
(1.1.3)

which are the statements of the conservation of mass and Newton’s second
law, respectively. In this chapter, we analyze (1.1.3) by using the method
of characteristic curves. The characteristic curve of v is called classical
trajectory in the context of Schödinger equations. It is known that when the
characteristic curves cross each other, the solution to this equation breaks
down by a formation of singularity, a shock. This is also related to the theory
of geometrical optics. The classical trajectory is an analogue of the notion
of ray developed initially to describe the propagation of electro-magnetic
waves, such as light. The breakdown of the solution of (1.1.3) is closely
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related to the occurrence of caustics. We choose the Schrödinger-Poisson
system with constant background b > 0:

iε∂tu
ε +

ε2

2
∆uε = λVPuε, −∆VP = |uε|2 − b, VP → 0 as |x| → ∞ (SP)

and corresponding Euler-Poisson equations




∂tρ + div(ρv) = 0,

∂tv + (v · ∇)v + λ∇VP = 0,

−∆VP = ρ− b, VP → 0 as |x| → ∞
(EP)

as a target equation of this chapter. Under the radial symmetry, we derive
the necessary and sufficient conditions that ensure the classical solution to
(EP) is global. In the case where b > 0 and n = 1 and the case where b = 0
and n > 1 (and some more case such as the presence of relaxation term)
are studied precisely in [25]. We stem the missing parts and give complete
descriptions of the necessary and sufficient conditions for all n > 1 and
b > 0. As a result, we will see that, under the assumption that n > 3, ρ is
integrable, and v decays at spatial infinity (and they are radially symmetric),
there is only one possible form of the initial data which admits the global
solution (Theorem 3.3.14).

In Chapter 4, we justify the WKB approximation (1.1.1) of the solution
to Shcrödinger-Poisson system (SP) for large time. In one dimensional case,
Liu and Tadmor [46] show by applying the result [25] that, for a class of
initial data admitting a global solution of (EP), (1.1.1) holds for an interval
which depends on the parameter ε and becomes arbitrarily large as ε → 0.
In this chapter, we generalize this result to the n > 3 case. This is done by
a combination of results in Chapters 2 and 3. An example of global solution
to (EP) is given by the results in Chapter 3. Then, using (the modified
version of) the analysis in Chapter 2, we justify (1.1.1) for large time.

1.2 Several remarks on function spaces

We give several remarks on the function spaces which we use throughout
this article.

1.2.1 Lebesgue space

The first is the Lebesgue space Lp(Rn). In this article, we often use Lebesgue
spaces to investigate the decay property of functions. As usual, it is defined
as the Banach space of measurable functions f : Rn → C (or Rn → R) such
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that ‖f‖Lp(Rn) < ∞ with

‖f‖Lp(Rn) =





(∫

Rn

|f(x)|pdx

) 1
p

if p ∈ [1,∞),

ess sup
x∈Rn

|f(x)| if p ∈ ∞.

In general, if a measurable function f is not integrable, then the one of the
following holds:

1. There exists a bounded set Ω ⊂ Rn (with arbitrarily small measure)
such that

∫
Ω |f |dx = ∞.

2.
∫
Ω |f |dx is finite for any bounded set Ω ⊂ Rn. However,

∫
Ω |f |dx →∞

as |Ω| → ∞.

In the first case, f has a singularity at some point. An example of such
function is f(x) = |x|−n1{|x|61}(x). In the second case, f is not integrable
because the decay of f is not enough. f(x) ≡ 1 is an example.

It can be said that the index p of Lp(Rn) indicates both the strength
of the singularity and the rate of the decay. For example, |x|−q1{|x|61}(x)
belongs to Lp space if and only if q < n/p. Similarly, |x|−r1{|x|61}(x) belongs
to Lp space if and only if r > n/p. Hence, very roughly speaking, an element
of Lp space is a function which has a singularity of order at most O(|x|−n

p
+ε)

and decays at spatial infinity at least order O(|x|−n
p
−ε). L∞ space is rather

special: The functions in L∞ do not necessarily decay at spatial infinity.

p small ←→ large · · · ∞
singularity at a point strong ←→ weak · · · none

decay at spatial infinity rapid ←→ slow · · · none

The Hölder inequality A.1.2 shows that these two properties, singularity and
decay, are “monotone” in p. To concentrate on singularities, assume that
f is supported on a bounded set Ω ⊂ Rn. Then, we have Lp(Ω) ⊃ Lq(Ω)
(1 6 p 6 q) since

‖f‖Lp(Ω) 6 |Ω| 1p− 1
q ‖f‖Lq(Ω) for 1 6 p 6 q

by Hölder inequality. This suggests that if the singularity of f is so weak
that f ∈ Lq(Ω) then f automatically belongs to Lp(Ω). The converse is not
true, as the following example shows: For a bounded set Ω 3 0 and p < q,
|x|− 2n

p+q 1Ω(x) ∈ Lp(Ω)\Lq(Ω) since n/p > 2n/(p+q) > n/q. To concentrate
on the decay property we now assume g is bounded. In this case,

‖g‖Lp 6 ‖g‖
q
p

Lq ‖g‖1− q
p

L∞ for p > q > 1,
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and so (Lp(Rn) ∩ L∞(Rn)) ⊂ (Lq(Rn) ∩ L∞(Rn)) for p > q > 1. This
suggests that if the decay of f is so rapid that f ∈ Lq(Rn) then this decay
is enough for being f ∈ Lp(Rn). The converse is false, as the following
example shows: For p > q, |x|− 2n

p+q 1{|x|>1}(x) ∈ Lp(Rn) \ Lq(Rn) since
n/p < 2n/(p + q) < n/q.

Tail estimate

Let 1 6 p < q 6 ∞. Take a function f ∈ Lq ∩ L∞ with f 6∈ Lp. If there
exists some function g such that f−g ∈ Lp∩L∞ then g is an approximation
of the “tail part” of f in such a sense that the decay of f − g is faster than
f itself. In this respect, we call such an estimate as a tail estimate.

1.2.2 Sobolev space

The next is the Sobolev space Hs(Rn) and W s,p(Rn). For s ∈ R and p ∈
[1,∞], W s,p(Rn) denotes the Banach space of functions u: Rn → C (or
Rn → R) equipped with the norm

‖u‖W s,p(Rn) :=
∥∥∥(1−∆)s/2u

∥∥∥
Lp

< ∞.

Moreover, Hs(Rn) := W s,2(Rn). The Sobolev embedding reveals the con-
nection between the integrability of higher derivative and of lower derivative.
Indeed, for 1 6 q 6 p < ∞, we have

‖f‖Lp 6 C
∥∥∥|∇|nq−n

p f
∥∥∥

Lq
.

It suggests the fundamental principle that the differentiation makes the
singularity stronger and the decay faster. Indeed, for |∇|nq−n

p f ∈ Lq(Rn)
(q < p) being true, f is required to have so weak singularity that f ∈ Lp(Rn)
holds, however, the decay is not required no more than f ∈ Lp(Rn). The
Hardy-Littlewood-Sobolev inequality (Lemma A.1.5) is a counterpart of the
Sobolev embedding in a sense. For γ ∈ (0, n), we have

F|x|−γ = cn,γ |ξ|−n+γ

(see e.g. [65]). Therefore, the Hardy-Littlewood-Sobolev inequality can be
written as ∥∥∥|∇|−(n

q
−n

p
)
f
∥∥∥

Lp
6 C ‖f‖Lq

for 1 < q < p < ∞. Hence, it suggests the fundamental principle that the
integration makes the singularity weaker and the decay slower.
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1.2.3 Zhidkov space

We also use the Zhidkov space Xs(Rn) and its modified space Y s
p,q(Rn). The

Zhidkov space is defined as follows: For s > n/2,

Xs(Rn) := {u ∈ L∞(Rn)|∇u ∈ Hs−1(Rn)}.

The norm of Xs is given by

‖·‖Xs(Rn) := ‖·‖L∞(Rn) + ‖∇·‖Hs−1(Rn) .

The space was introduced in [74] in the case n = 1, and its study was
generalized to the multidimensional case in [26] (see also [5, 15]). In general,
a function in the Zhidkov space does not have spatial decay at all. For
example, constant function f(x) ≡ 1 belongs to Xs(Rn), while it does not
belongs to any Lebesgue spaces or Sobolev spaces. However, if n > 3 then we
see from Lemma 2.2.1 below that for all f ∈ Xs(Rn) there exists a constant
C such that f −C ∈ L2n/(n−2) ∩L∞. This is a kind of tail estimate. Recall
that f itself belongs to Lp only if p = ∞. In Chapter 4, we will use the
modified one Y s

p,q(Rn). For n > 3, s > n/2 + 1, p ∈ [1,∞], and q ∈ [1,∞],
we define a function space Y s

p,q(Rn) by

Y s
p,q(Rn) = C∞

0 (Rn)
‖·‖Y s

p,q(Rn)

with norm

‖·‖Y s
p,q(Rn) := ‖·‖Lp(Rn) + ‖∇·‖Lq(Rn) +

∥∥∇2·∥∥
Hs−2(Rn)

.

The indices p and q indicate the decay rate of the function and its first
derivative, respectively. This is a generalized version of Xs(Rn) if n > 3.
Y s
∞,2(Rn) is almost equal to Xs(Rn). The difference is the fact that all

functions in Y s
∞,2(Rn) decays at spacial infinity. However, as noted above,

for all f ∈ Xs(Rn), there exists a constant C such that f − C ∈ Y s
∞,2(Rn).

We also deduce form Lemma 2.2.1 that Y s
∞,2(Rn) = Y s

∞,2(Rn) ∩ Y s
2∗,2(Rn),

where 2∗ = 2n/(n− 2). We discuss this space again in Section 4.3.1.
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Chapter 2

Small time WKB analysis for
nonlinear Schrödinger
equations

2.1 Introduction

2.1.1 Equations and main results

In this chapter, we consider the asymptotic behavior of the solution to the
Cauchy problem

iε∂tu
ε +

ε2

2
∆uε = N(|uε|)uε; uε(0, x) = Aε

0(x) exp(iΦ0(x)/ε). (2.1.1)

In particular, the purpose of this chapter is to give a WKB-type approxi-
mation

uε(t, x) ∼ ei
φ(t,x)

ε (b0(t, x) + εb1(t, x) + ε2b2(t, x) + · · · ) (2.1.2)

in a time interval [0, T ] which is small in general but independent of ε.
We construct suitable phase φ and amplitude bi, and provide a pointwise
description of uε as ε → 0 in the following cases:

• Defocusing nonlinearity which is cubic at the origin: N(|uε|) = f(|uε|2)
with f : R+ → R+ satisfying f > 0, f ′ > 0, and f(0) = 0.

• Focusing or defocusing nonlocal nonlinearity: N(|uε|) = ±(−∆)−1|uε|2
or N(|uε|) = ±(|x|−γ ∗ |uε|2).

We also analyze the case where the nonlinearity is the sum of the above two
types. More precisely, the target equations of this chapter are the following:
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1. The defocusing (essentially) cubic nonlinear Schrödinger equation

iε∂tu
ε +

ε2

2
∆uε = f(|uε|2)uε; uε(0, x) = Aε

0(x) exp(iΦ0(x)/ε)

(CNLS)
with f : R+ → R+ satisfying f > 0, f ′(y) > 0, and f(0) = 0. This
is treated in [34] (for generalized or other types of local nonlinearities,
see [3, 4, 13, 20, 23, 28, 44]).

2. The Schrödinger-Poisson system without background




iε∂tu
ε +

ε2

2
∆uε = λV ε

Puε,

−∆V ε
P = |uε|2, V ε

P → 0 as |x| → ∞,

uε(0, x) = Aε
0(x) exp(iΦ0(x)/ε),

(SP)

where λ = ±1. For this equation, see [5, 43, 46, 72, 73].

3. The Hartree equation

iε∂tu
ε +

ε2

2
∆uε = λ(|x|−γ ∗ |uε|2)uε; uε(0, x) = Aε

0(x) exp(iΦ0(x)/ε),

(H)
where λ = ±1. Hartree equation is treated in [15].

4. The nonlinear Schrödinger equation with local nonlinearity and non-
local nonlinearity





iε∂tu
ε +

ε2

2
∆uε = f(|uε|2) + λ(|x|−γ ∗ |uε|2)uε,

uε(0, x) = Aε
0(x) exp(iΦ0(x)/ε)

(L-NL)

with f : R+ → R+ satisfying f > 0, f ′(y) > 0, and f(0) = 0, and
λ = ± = 1.

We reformulate and generalize the previous results. Especially, we would like
to relax the decay condition on the initial phase Φ0. This is due to the fact
that Φ0 is not necessarily to be bounded for being uε(0) = Aε

0e
iΦ0/ε ∈ Hs.

From this respect, in the following theorems, we try to make our assumptions
on Φ0 so close to the one “∇Φ0 is bounded (without spatial decay)” as
possible.

The following are the main results of this chapter.

Theorem 2.1.1 ([34], WKB analysis for (CNLS)). Let f ∈ C∞(R+ : R+)
with f(0) = 0 and f ′ > 0. Let k > 1 be an integer and s > n/2 + 2k + 4 be
a real number. Assume that Φ0 ∈ Xs+1, and that Aε

0 writes

Aε
0 =

k∑

j=0

εjAj + o(εk) in Hs (2.1.3)
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for ε ∈ [0, 1]. Then, there exist a existence of time T > 0 independent
of ε and a solution uε ∈ C([0, T ]; Hs) of (CNLS). There also exists φ0 ∈
C([0, T ]; Xs+1) and βj ∈ Hs−2j−2 such that

uε = ei
φ0
ε (β0 + εβ1 + · · ·+ εk−1βk−1 + o(εk−1)) in C([0, T ];Hs−2k−2).

(2.1.4)
Furthermore, φ0 satisfies

φ0(t, x)− Φ0(x) ∈ W s,1(Rn).

Theorem 2.1.2 (WKB analysis for (SP)). Let n > 3 and λ ∈ R. Let k
be a positive integer and let s > n/2 + 2k + 3 be a real number. Assume
that Φ0 ∈ C2k+5 with ∇2Φ0 ∈ Hs, and that Aε

0 writes (2.1.3). for ε ∈ [0, 1].
Then, there exist a existence of time T > 0 independent of ε and a solution
uε ∈ C([0, T ];Hs) of (SP). There also exists φ0 ∈ C([0, T ]; C2k+5) and
βj ∈ Hs−2j−2 such that (2.1.4) holds. Furthermore, there uniquely exists a
constant c∞ such that ∇Φ0 → c∞ as |x| → ∞ and φ0 satisfies

∇φ0(t, x)−∇Φ0(x− c∞t) ∈ (L
n

n−1
+ ∩ L∞)(Rn),

φ0(t, x)− Φ0(x) +
1
2

∫ t

0
|∇Φ0(x− c∞s)|2ds ∈ (L

n
n−2

+ ∩ L∞)(Rn).

Theorem 2.1.3 (WKB analysis for (H)). Let n > 3 and λ ∈ R. Let γ be
a positive number with n/2 − 2 < γ 6 n − 2. Let k be a positive integer
and let s > n/2 + 2k + 3 be a real number. Assume that Φ0 ∈ C2k+5 with
∇2Φ0 ∈ Hs, and that Aε

0 writes (2.1.3). or ε ∈ [0, 1]. Then, there exist a
existence of time T > 0 independent of ε and a solution uε ∈ C([0, T ]; Hs)
of (H). There also exists φ0 ∈ C([0, T ]; C2k+5) and βj ∈ Hs−2j−2 such that
(2.1.4) holds. Furthermore, there uniquely exists a constant c∞ such that
∇Φ0 → c∞ as |x| → ∞ and φ0 satisfies

∇φ0(t, x)−∇Φ0(x− c∞t) ∈ (L
n

γ+1
+ ∩ L∞)(Rn),

φ0(t, x)− Φ0(x) +
1
2

∫ t

0
|∇Φ0(x− c∞s)|2ds ∈ (L

n
γ
+ ∩ L∞)(Rn).

Theorem 2.1.4 (WKB analysis for (L-NL)). Let n > 2 and λ ∈ R. Let
f ∈ C∞(R+ : R+) with f(0) = 0 and f ′ > 0. Let λ ∈ R and let γ be
a positive number with n/2 − 1 < γ 6 n − 1. Let k be a positive integer
and let s > n/2 + 2k + 4 be a real number. Assume that Φ0 ∈ Xs+1 and
Aε

0 writes (2.1.3). for ε ∈ [0, 1]. Then, there exist a existence of time
T > 0 independent of ε and a solution uε ∈ C([0, T ]; Hs) of (L-NL). There
also exists φ0 ∈ C([0, T ]; Xs+1) and βj ∈ Hs−2j−2 such that (2.1.4) holds.
Furthermore, φ0 satisfies

φ0(t, x)− Φ0(x) ∈ (L
n
γ
+ ∩ L∞)(Rn).
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Remark 2.1.5. The assumption on the phase function Φ0 reflects the shape
of nonlinearity. Under the assumption in above theorems, Φ0 does not nec-
essarily decay at spatial infinity and moreover is not necessarily bounded,
in general. In Theorems 2.1.1 and 2.1.4, we assume Φ0 ∈ Xs+1. In this
case, Φ0 is always bounded but does not necessarily decay. For the n > 3
case, Lemma 2.2.1 below shows the existence of the constant c0 ∈ R such
that Φ0 − c0 ∈ L2∗ . On the other hand, the assumption for Theorems
2.1.2 and 2.1.3 is Φ0 ∈ C2k+5 and ∇2Φ0 ∈ Hs. This class is much larger
than Xs+1(Rn). Especially, this Φ0 can tend to infinity as |x| → ∞.
Lemma 2.2.1 below shows that there exists a constant c∞ ∈ Rn such that
∇Φ0 − c∞ ∈ L2∗ since n > 3, and moreover that there exists a constant c0

such that Φ0 − c0 − c∞ · x ∈ L2∗∗ if n > 5, where 2∗∗ = (2∗)∗ = 2n/(n− 4).
Nevertheless, in all above theorems, we can construct a function P (t, x) ex-
plicitly given only by Φ0 such that φ0(t) − P (t) decays at spacial infinity
as long as solution exists. The decay rate of this difference also reflects
the shape of nonlinearity. One of the most remarkable difference between
Theorems 2.1.1 and 2.1.4 is this point.

Remark 2.1.6. We need f ′ > 0 in Theorems 2.1.1 and 2.1.4 because the
quantity 1/f ′ appears when we estimate the energy. If we try to treat more
general nonlinearity such as quintic nonlinearity f(y) = y2 then what pre-
vents us is the fact that f ′(0) = 0. We refer to [3, 4, 20] for such generalized
local nonlinearities.

Remark 2.1.7. It is remarked in [12, 62] that the above WKB analysis and a
geometrical transform can help understand the behavior of a wave function
near a focal point, in a supercritical régime (see also [10, 11, 13, 14, 16, 60,
61]).

2.1.2 Two different approaches

We now address an outline for the method to justify the WKB approximation
(2.1.2) (see also [13, 28, 66]). One approach to obtain a WKB-type estimate
is to use Madelung’s transform

uε(t, x) =
√

ρε(t, x)ei
Sε(t,x)

ε .

Plugging this to (2.1.1) and separating real and imaginary part, we find the
quantum Euler equation





∂tρ
ε + div(ρε∇Sε) = 0,

∂t∇Sε + (∇Sε · ∇)∇Sε +∇N(
√

ρε) = ε2∇
(

∆
√

ρε

√
ρε

)
,

(ρε(0, x),∇Sε(0, x)) = (|Aε
0|2,∇(Φ0 + ε arg Aε

0)).
(2.1.5)
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The term ε2∇(∆
√

ρε/
√

ρε) is called quantum pressure. The equations (2.1.5)
represent a fluid dynamics formulation of the (2.1.1) and are known as
Madelung’s fluid equations [48, 49]. Taking ε → 0, we obtain, at least
formally, the compressible Euler equation





∂tρ + div(ρv) = 0,
∂tv + (v · ∇)v +∇N(

√
ρ) = 0,

(ρ(0, x), v(0, x)) = (|A0|2,∇Φ0),

(2.1.6)

where ρ = limε→0 ρε, v = limε→0∇Sε, and A0 = limε→0 Aε
0. With this

method, the convergence of the quadratic quantities

|uε|2 → ρ, ε Im(uε∇uε) → ρv

as ε → 0 is proved in several situations. The Wigner measure is one of the
strong tool for justifying this limit For this limit and the Wigner measure,
consult [13, 29, 32, 37, 38, 45, 55, 56, 57, 72, 73] and references therein.
Though this convergence suggests that the solution uε may have the asymp-
totics of the form uε = eiS/ε(

√
ρ + o(1)), it is not satisfactory. In particu-

lar, the argument of the solution uε is not clear. In fact, the asymptotics
eiS/ε(

√
ρ+ o(1)) is not true. The leading order term of the amplitude of the

approximate solution cannot be expected to be real-valued, even if so is this
at the initial time.

Another way to justify (2.1.2) is to employ a modified Madelung trans-
form

uε = aεei φε

ε (2.1.7)

and consider the system




∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + N(|aε|) = 0,

(aε(0, x), φε(0, x)) = (Aε
0, Φ0).

(2.1.8)

It is essential that aε takes complex value. and so, Sε 6= φε, in general. If we
know this system has a solution (aε, φε) and the solution can be expanded
as

aε = a0 + εa1 + ε2a2 + · · · , φε = φ0 + εφ1 + ε2φ2 + · · · ,

then, by means of (2.1.7), we obtain WKB type estimate (2.1.2) with b0 =
a0e

iφ1 . The explicit formulae of higher order terms of amplitude bi are
given in Section 2.2.4. This method is first applied to (CNLS) within the
framework of analytic function spaces in [30] and of Sobolev spaces [34] for
(CNLS). We remark that (|a0|2,∇φ0) solves the compressible Euler equation
(2.1.6).
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In this chapter, we use the second method to justify the WKB approxi-
mation (2.1.2) for (CNLS), (SP), (H), and (L-NL) in a time interval which
is small but independent of ε. We first clarify the difficulty and illustrate
the general strategy of the proof in Section 2.2. Then, we consider (CNLS)
in Section 2.3. We give a slightly different proof from [34] which is based
on the modified energy method. Section 2.4 is devoted to the study of the
equation with nonlocal nonlinearities, (SP) and (H). In final Section 2.5, we
treat (L-NL).

2.2 General strategy and problem

In this paragraph, we show an outline for obtaining the WKB type approxi-
mation (2.1.2) of the solution of (2.1.1). No rigorous result is given through
this Section 2.2, although we make some observation with calculations which
we use in later sections.

We follow the approach by Grenier [34] (the second one introduced in
Section 2.1.2) and work with a data in Sobolev space: We apply the modified
Madelung transform (2.1.7) to (2.1.1) and consider the system (2.1.8) for
amplitude aε and phase φε. Let us introduce a new variable vε = ∇φε.
Differentiating the second equation of (2.1.8), we find





∂ta
ε + (vε · ∇)aε +

1
2
aε∇ · vε = i

ε

2
∆aε,

∂tv
ε + (vε · ∇)vε +∇N(|aε|) = 0,

(aε(0, x), vε(0, x)) = (Aε
0,∇Φ0).

(SHS)

The main point of Grenier’s idea is that this system can be regarded as
a symmetric hyperbolic system with perturbation. We call this system as
(SHS) in this respect. In this section, we give a general strategy to show that
(SHS) admits a solution (aε, vε) (Section 2.2.1); that the solution (aε, φε) of
(2.1.8) can be constructed from (aε, vε) (Section 2.2.2); and that the solution
is expanded in powers of ε (Section 2.2.3). Once we obtain this expansion
of (aε, φε), the WKB approximation (2.1.2) is an immediate consequence
(Section 2.2.4).

2.2.1 Existence of the solution and the problem on the en-
ergy estimate

Our first step is to show that (SHS) has a solution. We try to obtain a
solution (aε, vε) in the class C([0, T ]; (Hs)2). The main part of the proof is
a priori estimate. Hence, we shall detail this part only. For other parts of
proof, see [15, 50, 68]. Let us go along the classical energy method. Consider
the energy

E(t) := ‖aε‖2
Hs + ‖vε‖2

Hs .
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As a matter of fact, we cannot close the energy estimate with this energy.
The purpose of this section is only to reveal what is wrong with this energy.
In the concrete examples below, we modify this energy. These modifications
are considered in Sections 2.3.1, 2.4.1, and 2.5.1.

Let us proceed with the standard energy argument as further as we can.
Estimates in this section are quoted sometimes in forthcoming sections. We
use the convention for the inner product in L2:

〈f, g〉L2 =
∫

Rn

fgdx.

We also denote (1 −∆)1/2 by Λ. Take s > 0. From the first line of (SHS),
we have

d

dt
‖aε‖2

Hs = 2 Re 〈Λs∂ta
ε, Λsaε〉L2

= − 2Re 〈Λs((vε · ∇)aε),Λsaε〉L2 − Re 〈Λs(aε∇ · vε), Λsaε〉L2

+ Re 〈iεΛs∆aε, Λsaε〉L2

=: I1 + I2 + I3. (2.2.1)

By integration by parts, we see

I3 = −Re(iε ‖∇aε‖2
Hs) = 0. (2.2.2)

This fact is one of the most remarkable point of modified Madelung’s trans-
form (2.1.7). It is very contrast with the fact that treatment of quantum
pressure term often needs some care (such as ρε > 0) when we employ Mad-
lung’s transform and work with (2.1.5) (see [72]). Moreover, I1 is a good
term: It writes

I1 = − 2Re 〈(vε · ∇)Λsaε, Λsaε〉L2 − 2 Re 〈[Λs, vε · ∇]aε, Λsaε〉L2

= Re 〈(∇ · vε)Λsaε, Λsaε〉L2 − 2Re 〈[Λs, vε · ∇]aε, Λsaε〉L2

by integration parts. By the Hölder inequality and the commutator estimate
(Lemma A.2.2), we obtain

|I1| 6 C(‖∇vε‖L∞ ‖aε‖2
Hs + ‖∇vε‖Hs−1 ‖∇aε‖L∞ ‖aε‖Hs). (2.2.3)

Therefore, if we set s > n/2 + 1 then the right hand side is bounded by
C(‖aε‖Hs + ‖vε‖Hs)3. On the other hand, I2 is rather bad in such a sense
that it requires the bound of (s + 1)-th derivative of vε. Indeed, extracting
the main part, we have

I2 = −Re 〈aεΛs∇ · vε, Λsaε〉L2 − Re 〈[Λs, aε]∇ · vε, Λsaε〉L2 .
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Remark that integration by parts does not work so well as in the estimate
of I1. Therefore, we estimate as

|I2| 6 ‖∇vε‖Hs ‖aε‖L∞ ‖aε‖Hs

+ C(‖∇aε‖L∞ ‖∇vε‖Hs−1 + ‖∇vε‖L∞ ‖∇aε‖Hs−1) ‖aε‖Hs . (2.2.4)

Thus, we need (s + 1)-th derivative of vε to be bounded in a suitable sense.
For s > n/2 + 1, the right hand side is bounded by C(‖aε‖Hs + ‖vε‖Hs+1)3.
Alternatively, we have

|I2 + Re 〈aεΛs∇ · vε, Λsaε〉L2 |
6 C(‖∇aε‖L∞ ‖∇vε‖Hs−1 + ‖∇vε‖L∞ ‖∇aε‖Hs−1) ‖aε‖Hs . (2.2.5)

If we are able to remove the bad part, then we only need s-time derivative
of vε. We will see later that this fact is the key for (CNLS) case.

Now let us turn to the estimate of vε. We estimate Hs norm of vε,
although the estimate actually required in (2.2.4) is the Hs norm of ∇vε.
The estimate of Hs norm of ∇vε is an easy modification. From the second
line of (SHS), we find

d

dt
‖vε‖2

Hs = 2Re 〈Λs∂tv
ε, Λsvε〉L2

= − 2Re 〈Λs((vε · ∇)vε),Λsvε〉L2 − 2Re 〈Λs∇N(|aε|),Λsvε〉L2

=: I4 + I5. (2.2.6)

I4 is also a good term. The estimate of I4 is similar to that of I1: Since

I4 = − 2Re 〈(vε · ∇)Λsvε, Λsvε〉L2 − 2 Re 〈[Λs, vε · ∇]vε,Λsvε〉L2

= Re 〈(∇ · vε)Λsvε,Λsvε〉L2 − 2Re 〈[Λs, vε · ∇]vε, Λsvε〉L2

by integration by parts, the Hölder and the commutator estimate (Lemma
A.2.2) yield

|I4| 6 C ‖∇vε‖L∞ ‖vε‖2
Hs . (2.2.7)

I5 is the nonlinear term. The treatment of this term is the main difficulty.
A straight forward calculation does not give any more than

|I5| 6 C ‖∇N(|aε|)‖Hs ‖vε‖Hs . (2.2.8)

Notice that the (s+1)-time derivative of the nonlinear term N(|aε|) appears.
Our naive hope is that this term might be bounded by the derivative of order
(s− 1) for aε, which may enable us to close the energy estimate and obtain
an estimate like

d

dt
(‖a‖2

Hs + ‖vε‖2
Hs+1) 6 C(‖a‖2

Hs + ‖vε‖2
Hs+1).
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However, of course it is impossible in general. In particular, when we con-
sider the local nonlinearity such as N(|aε|) = f(|aε|2) with some smooth
function f , we have ∇N(|aε|) = 2f ′(|aε|2)Re(aε∇aε), whose Hs norm seems
not to be bounded by Hs norm of aε. So, we need to make some trick.

At the end of this section, we summarize the problem which we observed
in this section:

1. The estimate of d
dt ‖aε‖2

Hs requires the bound of derivative of order
(s + 1) for vε through I2.

2. The estimate of d
dt ‖vε‖2

Hs requires the bound of derivative of order
(s + 1) for the nonlinearityN(|aε|) through I5.

In forthcoming examples, we will see how to get over this difficulty and close
the energy estimate. The required technique strongly depends on the non-
linearity N(|aε|). In the local nonlinearity case, the key is the cancellation
(Section 2.3.1), which is another formation of symmetrizability of (SHS).
On the other hand, when the nonlinearity is nonlocal, we use the smoothing
property of the nonlinearity (Section 2.4.1).

2.2.2 Construction procedures of the phase function

Once a solution (aε, vε) of (SHS) is known, we can reconstruct a solution
(aε, φε) of (2.1.8). In this section, we discuss this integration procedures
which we use to define φε from vε so that ∇φε = vε and φε(0, x) = Φ0(x).
There are at least three possible ways to do this.

The Poicaré lemma

The first is the Poicaré lemma. We suppose that a solution (aε, vε) of (SHS)
and the initial data φε(0, x) = Φ0(x) are known. If vε is irrotational, that
is, if ∇ × vε = 0, then there exist a function φ̃ε such that ∇φ̃ε = vε. At
this step, there is a freedom of choice of a constant: Adding an arbitrary
function c = c(t) of time only, we see φ̃ε+c(t) also satisfies ∇(φ̃ε+c(t)) = vε.
However, we can determine this function by c(0) = Φ(x)− φ̃ε(0, x) and

c′(t) =
1
2
|∇φ̃ε|2 + N(|aε|)− ∂tφ̃

ε.

Then, we see that (aε, φ̃ε + c) is a solution of (2.1.8). Note that the right
hand side does not depend on space variable by the definition of φ̃ε. Let us
remind that this method requires the irrotational property of vε.

Direct definition

The second is to define directly by the equation. We suppose that we obtain
(aε, vε) and the uniqueness of (SHS) is known. Then, we can define φε from
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its initial data by

φε(t, x) = Φ0(x)−
∫ t

0

(
1
2
|vε(s, x)|2 + N(|aε|)(s, x)

)
ds.

One easily checks that (aε, φε) solves (2.1.8) and (aε,∇φε) solves (SHS).
Then, by uniqueness, we conclude that ∇φε = vε. This method requires the
uniqueness of the solution to (SHS). Note that in this case the irrotational
property immediately follows from the fact that vε is given by the gradient
of φε.

The Hardy-Littlewood-Sobolev inequality

The third is a consequence of the Hardy-Littlewood-Sobolev inequality,
which can be found in [36, Th. 4.5.9] or [31, Lemma 7]:

Lemma 2.2.1. If φ ∈ D′(Rn) is such that ∂jφ ∈ Lp(Rn), j = 1, . . . , n for
some p ∈ (1, n), then there exists a constant c such that φ − c ∈ Lq(Rn),
with 1/p = 1/q + 1/n.

By this lemma, we can construct φε as in the first case without the
irrotational property of vε nor uniqueness of the solution to (SHS). However,
for this method, we need the decay property of vε in the sense that it must
belong Lp(Rn) for some p < n. Especially, this method is difficult to apply
when n = 2 since the property vε ∈ L2(Rn) is not sufficient: In space
dimension n = 2, consider a function f(x1, x2) = log(1 + | log(x2

1 + x2
2)|).

One can check that ∇f ∈ H∞, while f 6∈ L∞.
The first two methods are intended for giving φε from its first derivative

vε = ∇φε. We will see later that, in some case, not the first derivative
vε = ∇φε but the second derivative ∇vε = ∇2φε is first given as a source
(see the proof of Theorem 2.4.2 below). The third can also be used to
construct vε from ∇vε.

2.2.3 Expansion of the solution of the system

We have discussed the existence of the solution to (2.1.8) in the preceding
two sections. As mentioned in Section 2.1.2, to obtain the WKB-type ap-
proximation (2.1.2) it suffices to expand the solution of (2.1.8) in powers of
ε:

aε = a0+εa1+· · ·+εkak+o(εk), φε = φ0+εφ1+· · ·+εkφk+o(εk). (2.2.9)

In this section, we turn to the method to obtain this expansion and illustrate
a scheme for the justification of (2.2.9). It turns out that (a0, φ0) solves a
system (2.1.8) with ε = 0 and (ai, φi) solves a i-th linearized system of
(2.1.8), and that the existence result for (2.1.8) can again be used to solve
these systems and determine approximate solutions.
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Let us describe our observation. We suppose that this expansion is given
at the initial time, that is, there exists an integer k > 1 such that

Aε
0 = A0 + εA1 + · · ·+ εkAk + o(εk) in Hs. (2.2.10)

Then, letting ε = 0 in (2.1.8), we obtain




∂ta0 + (∇φ0 · ∇)a0 +
1
2
a0∆φ0 = 0,

∂tφ0 +
1
2
|∇φ0|2 + N(|a0|) = 0,

(a0(0, x), φ0(0, x)) = (A0, Φ0).

(2.2.11)

This system can be solved exactly the same way as in the case of (2.1.8), and
moreover the existence time T can be chosen the same. This follows from
the fact that the existence time T of solution (aε, φε) of (2.1.8) depends only
on the size of the initial data: If the initial data is bounded uniformly in ε
then T can be independent of ε. Thus, we obtain (a0, φ0) := (aε, φε)|ε=0.

The zeroth order

We first prove that (aε, φε) converges to (a0, φ0) as ε → 0 in a suitable sense.
This convergence immediately provides

aε = a0 + o(1), φε = φ0 + o(1),

which is (2.2.9) with k = 0. The proof of this convergence again relies on the
energy method. For example, we estimate time derivative of ‖aε − a0‖2

Hs +
‖vε − v0‖2

Hs . At this step, again the problem is how to close the energy
estimate (as in Section 2.2.1).

The first order

We next put bε
1 := (aε − a0)/ε, ψε

1 := (φε − φ0)/ε. Then the system for
(bε

1, ψ
ε
1) is very similar to the system (2.1.8) which (aε, φε) solves. Indeed,

that system becomes




∂tb
ε
1 + εQ1(bε

1, ψ
ε
1) + Q1(bε

1, φ0) + Q1(a0, ψ
ε
1) = i

ε

2
∆bε

1 + i
1
2
∆a0,

∂tψ
ε
1 +

ε

2
|∇ψε

1|2 +∇φ0 · ∇ψε
1 +

N(|aε|)−N(|a0|)
ε

= 0,

(bε
1(0, x), ψε

1(0, x)) =
(

Aε
0 −A0

ε
, 0

)
,

(2.2.12)
where Q1 denotes the quadratic term Q1(a, φ) := (∇φ · ∇)a + (1/2)a∆φ.
Note that the main quadratic part of (2.2.12) is the same that of (2.1.8)
up to a constant ε. Therefore, we can solve (2.2.12) in the same way as in
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(2.1.8), although the existence of new linear terms and the nontrivial exter-
nal force (i/2)∆a0 cause loss of one-time derivative and two-time derivative,
respectively. Note that if (2.2.10) is satisfied for k > 1 then the initial value
bε
1|t=0 is uniformly bounded for ε ∈ [0, 1], which ensure that the existence

time can be chosen independently of ε. Furthermore, it coincides with A1

when ε = 0. We therefore obtain (a1, φ1) := (bε
1, φ

ε
1)|ε=0 which solves





∂ta1 + Q1(a1, φ0) + Q1(a0, φ1) = i
1
2
∆a0,

∂tφ1 +∇φ0 · ∇φ1 + N (1) = 0,

(a1(0, x), φ1(0, x)) = (A1, 0).

(2.2.13)

Here, we denote

N (1) = N (1)(a0, a1) = lim
ε→0

(
N(|aε|)−N(|a0|)

ε

)
(a0, a1 = bε

1|ε=0).

Repeating the argument in the first step, we can claim that (bε
1, ψ

ε
1) converges

to (a1, φ1) as ε → 0 by an energy estimate. This convergence implies

aε = a0 + εa1 + o(ε), φε = φ0 + εφ1 + o(ε),

which is (2.2.9) with k = 1.

The l-th order

We use an induction argument. For l 6 k, we put bε
l := (aε−∑l−1

j=0 εjaj)/εl,
ψε

l := (φε − ∑l−1
j=0 εjφj)/εl. Then the system for (bε

l , ψ
ε
l ) is also similar to

(2.1.8):




∂tb
ε
l + εlQ1(bε

l , ψ
ε
l ) + Q1(bε

l , φ0)

+ Q1(a0, ψ
ε
l ) +

l−1∑

i=1

Q1(ai, φl−i) = i
ε

2
∆bε

l + i
1
2
∆al−1,

∂tψ
ε
l +

εl

2
|∇ψε

l |2 +∇φ0 · ∇ψε
l

+
1
2

l−1∑

i=1

(∇φi · ∇φl−i) +
N(|aε|)−∑l−1

j=0 εjN (j)

εl
= 0,

(bε
l (0, x), ψε

l (0, x)) =

(
Aε

0 −
∑l−1

j=0 εjAj

εl
, 0

)
.

(2.2.14)

Note that the main quadratic part of (2.2.14) is still the same that of (2.1.8)
up to a constant εl. Therefore, we can solve (2.2.14) in the same way as in
(2.1.8). In this step, we need the boundedness of (i/2)∆al−1. Therefore, we
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lose two-time derivative in each step. So long as l 6 k, we see from (2.2.10)
that the initial value bε

l|t=0 is uniformly bounded for ε ∈ [0, 1]. In particular,
it coincides with Al when ε = 0. We therefore obtain (al, φl) := (bε

l , φ
ε
l )|ε=0,

which solves




∂tal +
l∑

i=0

Q1(ai, φl−i) = i
1
2
∆al−1,

∂tφl +
1
2

l∑

i=0

(∇φi · ∇φl−i) + N (l) = 0,

(al(0, x), φl(0, x)) = (Al, 0),

(2.2.15)

where N (l) is given inductively by N (0) = N(|a0|) and

N (l) = N (l)(a0, . . . , al) = lim
ε→0

(
N(|aε|)−∑l−1

j=0 εjN (j)

εl

)
.

The explicit form of N (l) is given in the following sections (see Remarks 2.3.6
and 2.4.10). As in the previous steps, we can claim that (bε

l , ψ
ε
l ) converges

to (al, φl) as ε → 0. This convergence implies

aε =
l∑

j=0

εjaj + o(εl), φε =
l∑

j=0

εjφj + o(εl),

which is (2.2.9) with k = l.

2.2.4 Nonlinear WKB approximation

We finally give a WKB type approximation (2.1.2) of the solution (2.1.1).
Let us start our observation at the step where we obtain an ε-power expan-
sion of the solution (aε, φε) to the system (2.1.8) such as

aε = a0 + εa1 + · · ·+ εkak + o(εk), φε = φ0 + εφ1 + · · ·+ εkφk + o(εk)

in a suitable topology, say in C([0, T ]; Hs) with s > n/2+1, for some integer

k > 1. Recall that if (aε, φε) solves (2.1.8), then uε = aεei φε

ε is an exact
solution to (2.1.1). Now, we plug the above expansion to uε to have

uε = (a0 + · · ·+ εkak + o(εk)) exp
(

i
φ0

ε
+ iφ1 + · · ·+ εk−1iφk + o(εk−1)

)

in C([0, T ]; Hs), which is written as a WKB type approximation

uε = ei
φ0
ε (β0 + εβ1 + · · ·+ εk−1βk−1 + o(εk−1)) (2.2.16)
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in C([0, T ];Hs). Remark that the leading order of the amplitude of uε is
not a0 but β0 = a0e

iφ1 . The important thing is that the ε1-order term
φ1 have some influence on the leading order, and so that the ε1-term of
the initial amplitude A1 is not negligible when we try to obtain the correct
WKB estimate. This fact leads us to some instability results [2, 13, 15, 69]
by the approach initiated in [8, 9, 21, 22, 41, 42]. We conclude this section
with giving the explicit formulae of βj for j > 1.

Notation 2.2.2. For a positive integer k, a set of positive integers P is called
a partition of k if

P ∈
k⋃

l=1

{
α ∈ Nl|1 6 α1 6 α2 6 . . . 6 αl, α1 + · · ·+ αl = k

}
.

For a partition P of k, let ]P be the integer L for which P ∈ NL holds.
Moreover, for a partition P of k, denote the components of P by Pl (l =
1, 2, . . . , ]P ).

Then, the amplitude βj (j = 1, 2, . . . , k − 1) in (2.2.16) is given by

βj = eiφ1


 ∑

P :partition of j

i]P

(
a0

]P∏

l=1

φ1+Pl
+ i−1aP1

]P∏

l=2

φ1+Pl

)
 . (2.2.17)

We see from the trivial partition {j} of j that βj contains φj+1 in its defini-
tion. Therefore, we cannot define βk from the source {(ai, φi)}16i6k. Note
that βj ∈ Hs as long as {(ai, φi)}16i6j+1 is in Hs ×Hs.

2.3 Example 1: Local nonlinearity

In this section, we consider (CNLS). Then, the system (2.1.8) is




∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + f(|aε|2) = 0,

(aε(0, x), φε(0, x)) = (Aε
0, Φ0).

(2.3.1)

We introduce new unknown vε := ∇φε and consider




∂ta
ε + (vε · ∇)aε +

1
2
aε∇ · vε = i

ε

2
∆aε,

∂tv
ε + (vε · ∇)vε +∇f(|aε|2) = 0,

(aε(0, x), vε(0, x)) = (Aε
0,∇Φ0),

(2.3.2)

which corresponds to the system (SHS).
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2.3.1 Cancellation

For the model case f(y) = y, let us first observe how we overcome the
difficulty in obtaining an energy estimate listed in Section 2.2.1. We keep
the notation Ii (i = 1, 2, . . . , 5) in Section 2.2.1. Using N(|aε|) = |aε|2, we
have

I5 = − 2Re 〈Λs(2Re(aε∇aε)),Λsvε〉L2

= − 4Re 〈aεΛs∇aε, Λsvε〉L2 − 4Re 〈[Λs, aε]∇aε, Λsvε〉L2 .

The first term of the right hand side is a bad term because it contains
(s + 1)-time derivative of aε. We now apply the integration by parts to
obtain

I5 = 4 Re 〈aεΛs∇ · vε,Λsaε〉L2

+ 4 Re 〈∇aεΛsaε, Λsvε〉L2 − 4Re 〈[Λs, aε]∇aε, Λsvε〉L2 .

This still contains a bad term and use of the Hölder inequality and commu-
tator estimate (Lemma A.2.2) yield

|I5| 6 C ‖aε‖L∞ ‖∇vε‖Hs ‖aε‖Hs + C ‖∇aε‖L∞ ‖aε‖Hs ‖vε‖Hs . (2.3.3)

So far, it seems to be impossible to close the estimate. Indeed, plugging
(2.2.3), (2.2.4), (2.2.2), (2.2.7), and (2.3.3) to (2.2.1) and (2.2.6), we obtain
a bad estimate

d

dt
(‖aε‖2

Hs + ‖vε‖2
Hs) 6 C(‖aε‖2

Hs+1 + ‖vε‖2
Hs+1)

3
2 .

However, one trick solves all problems at once. The remarkable fact is that
the bad term of I5 is the same as that of I2 with different sign. In particular,
we deduce that

|I5 − 4Re 〈aεΛs∇ · vε, Λsaε〉L2 | 6 C ‖∇aε‖L∞ ‖aε‖Hs ‖vε‖Hs (2.3.4)

and combining this estimate with (2.2.5) causes a cancellation:
∣∣∣∣I2 +

1
4
I5

∣∣∣∣ 6 |I2 + Re 〈aεΛs∇ · vε,Λsaε〉L2 |+ 1
4
|I5 − 4 Re 〈aεΛs∇ · vε,Λsaε〉L2 |

6 C(‖∇aε‖L∞ ‖vε‖Hs + ‖∇vε‖L∞ ‖aε‖Hs) ‖aε‖Hs .

Namely, the sum of two terms which contain bad part becomes good, and
so we conclude that

d

dt

(
‖aε‖2

Hs +
1
4
‖vε‖2

Hs

)
6 C

(
‖aε‖2

Hs +
1
4
‖vε‖2

Hs

) 3
2

. (2.3.5)

This cancellation is the heart in the case of local nonlinearity. Therefore,
the sign of nonlinearity is essential, and this argument does not apply to the
“focusing” case f(y) = −y. In the focusing case, we need analyticity of the
data ([13, 30, 69]). In the original proof in [34], we construct a symmetrizer.
Our cancellation can be regarded as another formulation of symmetrizability.
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2.3.2 Existence result

We now state the result about the existence of the solution to (2.3.1).

Theorem 2.3.1 (Grenier [34]). Let f ∈ C∞(R+ : R+) with f(0) = 0 and
f ′ > 0. Let s > n/2 + 2. Assume that Φ0 ∈ Xs+1, and that Aε

0 is uniformly
bounded in Hs for ε ∈ [0, 1]. Then, there exist T > 0 independent of ε ∈ [0, 1]
and s > n/2+2, and uε = aεeiφε/ε solution to (CNLS) on [0, T ] for ε ∈ (0, 1].
Moreover, aε and φε are the unique solution to (2.3.1) which are bounded
in C([0, T ];Hs) and C([0, T ];Xs+1), respectively, uniformly in ε ∈ [0, 1].
Moreover, φε − Φ0 is bounded in C([0, T ]; W s,1) uniformly in ε ∈ [0, 1].

This result is extended to NLS with more general local nonlinearities in
[3, 4, 20, 23, 28, 44] (see also [13]).

Remark 2.3.2. It is obvious from the following proof that if Φ0 ∈ Lp(Rn) for
some p > 1 then φε ∈ C([0, T ]; Lp(Rn)) for the same p. In particular, if Φ0 ∈
Hs+1 is assumed, as in the original proof in [34], then φε ∈ C([0, T ]; Hs+1).

Proof. The strategy is the same as in the case f(y) = y. We derive the
cancellation of bad terms. For this purpose, set the energy E(t) as

E(t) := ‖aε‖2
Hs +

〈
1

4f ′(|aε|2)Λ
svε, Λsvε

〉

L2

.

Since Aε
0 and ∇Φ0 are bounded in Hs ↪→ L∞, there exists C0 independent

of ε ∈ [0, 1] such that E(0)1/2 6 C0. So long as ‖aε‖Hs 6 2C0, it holds that
‖aε‖L∞ 6 2C0 and so there exist m and M such that

0 < m 6 inf
y∈[0,4C2

0 ]

1
f ′(y)

6 sup
y∈[0,4C2

0 ]

1
f ′(y)

6 M < ∞.

With these constants, it holds that

m

4
‖vε‖2

Hs 6
〈

1
4f ′(|aε|2)Λ

svε, Λsvε

〉

L2

6 M

4
‖vε‖2

Hs .

We estimate d
dtE(t). However, since the estimate of the time derivative of

the Sobolev norm of aε is the same as in Section 2.2, we omit the detail. We
estimate the time derivative of the second term of E(t):

d

dt

〈
1

4f ′
Λsvε, Λsvε

〉
=

〈
1

2f ′
Λs∂tv

ε, Λsvε

〉
+

〈
∂t

(
1

4f ′

)
Λsvε, Λsvε

〉

= −
〈

1
2f ′

Λs((vε · ∇)vε), Λsvε

〉

−
〈

1
2f ′

Λs(∇f), Λsvε

〉
+

〈
∂t

(
1

4f ′

)
Λsvε,Λsvε

〉

=: Ĩ4 + Ĩ5 + Ĩ6. (2.3.6)
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The estimate of Ĩ4 is similar to (2.2.7):

Ĩ4 = − 2Re
〈

1
2f ′

(vε · ∇)Λsvε, Λsvε

〉

L2

− 2 Re
〈

1
2f ′

[Λs, vε · ∇]vε,Λsvε

〉

L2

= Re
〈

1
2f ′

(∇ · vε)Λsvε, Λsvε

〉

L2

+ Re
〈(

∇ 1
2f ′

)
(∇ · vε)Λsvε, Λsvε

〉

L2

− 2Re
〈

1
2f ′

[Λs, vε · ∇]vε, Λsvε

〉

L2

.

Since there exists a constant C = C(f, C0) such that

∥∥∥∥∇
1

f ′(|aε|2)

∥∥∥∥
L∞

6
(

sup
y∈[0,4C2

0 ]

|f ′′(y)|
(f ′(y))2

)
∥∥∇|aε|2∥∥

L∞ 6 CC0 ‖∇aε‖L∞ ,

we see from (2.2.7) that

|Ĩ4| 6 C(M ‖∇vε‖L∞ + C0 ‖∇aε‖L∞) ‖vε‖2
Hs . (2.3.7)

We next estimate Ĩ5. An elementary calculation shows

Ĩ5 = −
〈

1
2f ′

Λs(2f ′Re(aε∇aε)), Λsvε

〉

=
1
4
I5 − Re

〈
1
f ′

[Λs, f ′]aε∇aε, Λsvε

〉
,

where I5 is introduced in Section 2.3.1. Therefore, by (2.3.4), we have

|Ĩ5 − Re 〈aεΛs∇vε, Λsaε〉 |

6 1
4
|I5 − 4Re 〈aεΛs∇vε,Λsaε〉 |+

∣∣∣∣
〈

1
f ′

[Λs, f ′]aε∇aε,Λsvε

〉∣∣∣∣

6 C ‖∇aε‖L∞ ‖aε‖Hs ‖vε‖Hs +
∣∣∣∣
〈

1
f ′

[Λs, f ′]aε∇aε, Λsvε

〉∣∣∣∣ (2.3.8)

By the commutator estimate, we have

∣∣∣∣
〈

1
f ′

[Λs, f ′]aε∇aε, Λsvε

〉∣∣∣∣ 6 CM(
∥∥∇f ′

∥∥
L∞ ‖aε∇aε‖Hs−1

+
∥∥∇f ′

∥∥
Hs−1 ‖aε∇aε‖L∞) ‖vε‖Hs .

Here, we apply the estimate of composite function (Lemma A.2.4) to obtain

∥∥∇f ′
∥∥

Hs−1 6 C(1 + ‖aε‖2
L∞)dse

(
sup

y∈[0,4C2
0 ],k∈[1,dse+1]

|f (k)(y)|
)

∥∥∇|aε|2∥∥
Hs−1

6 C(1 + 4C2
0 )dseC0 ‖aε‖Hs ,
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where dse denotes the smallest integer bigger than or equal to s. Combining
these estimates to (2.3.8), we find

|Ĩ5 − Re 〈aεΛs∇vε, Λsaε〉 | 6 C ‖aε‖W 1,∞ ‖aε‖Hs ‖vε‖Hs . (2.3.9)

We finally estimate Ĩ6. Using the first equation of (2.3.2), we have

∥∥∥∥∂t

(
1
f ′

)∥∥∥∥
L∞

6
(

sup
y∈[0,4C2

0 ]

|f ′′(y)|
(f ′(y))2

)
∥∥∂t|aε|2∥∥

L∞

6 CC0(‖aε‖W 1,∞ ‖vε‖W 1,∞ + ε ‖∆aε‖L∞).

We hence obtain

|Ĩ6| 6 C(‖aε‖W 1,∞ ‖vε‖W 1,∞ + ε ‖∆aε‖L∞) ‖vε‖2
Hs . (2.3.10)

The assumption s > n/2 + 2 comes from this point. We suppose this to
ensure the Sobolev embedding ‖∆aε‖L∞ 6 C ‖∆aε‖Hs−2 6 C ‖aε‖Hs . We
also note that the term Ĩ6 does not appear if we assume f ′ is a constant as
we have seen in Section 2.3.1. In this case we need only s > n/2 + 1.

We summarize estimates (2.2.1), (2.2.3) (2.2.5), (2.2.2), (2.3.6), (2.3.7),
(2.3.9), and (2.3.10). Then,

∣∣∣∣
d

dt
E(t)

∣∣∣∣ 6

∣∣∣∣∣∣
∑

i=1,2,3

Ii +
∑

j=4,5,6

Ĩj

∣∣∣∣∣∣
6 |I1|+ |I2 + Re 〈aεΛs∇ · vε, Λsaε〉L2 |+ 0

+ |Ĩ4|+ |Ĩ5 − Re 〈aεΛs∇ · vε, Λsaε〉L2 |+ |Ĩ6|
6 C(‖aε‖W 1,∞ + ‖vε‖W 1,∞ + ‖aε‖W 1,∞ ‖vε‖W 1,∞ + ε ‖∆aε‖L∞)

× (‖aε‖2
Hs + ‖vε‖2

Hs)

6 C(E(t)
3
2 + E(t)2).

Therefore, by the Gronwall lemma, for any δ > 0 there exists T = T (δ) > 0
such that E(t) 6 4E(0) holds for t ∈ [0, T ]. For t ∈ [0, T ], it holds that
‖aε‖Hs 6 E(t)1/2 6 2E(0)1/2 6 2C0, which ensures the above estimates.
We obtain a priori estimate.

Uniqueness and construction of φε

The uniqueness of (aε, vε) also follows from the energy estimate. Let (aε
1, v

ε
1)

and (aε
2, v

ε
2) be two solutions of (2.3.2) bounded in C([0, T ]; Hs)2. Then,
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denoting (dε
a, d

ε
v) = (aε

1 − aε
2, v

ε
1 − vε

2), we have




∂td
ε
a + (dε

v · ∇)aε
1 + (vε

2 · ∇)dε
a +

1
2
dε

a∇ · vε
1 +

1
2
aε

2∇ · dε
v = i

ε

2
∆dε

a,

∂td
ε
v + (dε

v · ∇)vε
1 + (vε

2 · ∇)dε
v + 2f ′(|aε

2|2) Re(dε
a∇aε

1 + aε
2∇dε

a)

+(dε
aa

ε
1 + aε

2d
ε
a)

∫ 1

0
f ′′(|aε

2|2 + θ(|aε
1|2 − |aε

2|2))dθ∇|aε
1|2 = 0,

(dε
a(0, x), dε

v(0, x)) = (0, 0).

The bad terms are (1/2)aε
2∇·dε

v and 2f(|aε
2|2)Re(aε

2∇dε
a) because the others

do not include any derivative on (dε
a, d

ε
v). To handle these term by cancella-

tion, we consider

Ed(t) := ‖dε
a‖2

L2 +
〈

1
4f ′(|aε

2|2)
dε

v, d
ε
v

〉

L2

.

Then, mimicking the estimate for E(t), we obtain

d

dt
Ed(t) 6 C(‖ai‖Hs , ‖vi‖Hs)Ed(t).

Therefore, by Gronwall’s lemma, Ed(t) = 0 for t ∈ [0, T ] follows from
Ed(0) = 0, and so (a1, v1) = (a2, v2) holds. Once the uniqueness of (2.3.2)
is known, along the argument in Section 2.2.2, we can construct φε directly
by

φε = Φ0 −
∫ t

0

(
1
2
|vε(s)|2 + f(|aε(s)|2)

)
ds.

Then, (aε, φε) is a unique solution of (2.3.1). Since aε, vε ∈ L2 ∩ L∞ and
f(0) = 0, we see the second term belongs to L1 ∩ L∞. Therefore, if Φ0

belongs to Lp for some p ∈ [1,∞] then so is φε, which ensures φε ∈ Xs+1

and completes the proof. Remark 2.3.2 also follows.

2.3.3 Justification of WKB approximation

We now prove the WKB approximation of the solution to (2.3.1).

Theorem 2.3.3. Let f satisfy the same assumption as in Theorem 2.3.1.
Let k > 1 be an integer and s > n/2+2k +4 be a real number. Assume that
Φ0 ∈ Xs+1, and that Aε

0 writes

Aε
0 =

k∑

j=0

εjAj + o(εk) in Hs
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for ε ∈ [0, 1]. Then, the unique solution (aε, φε) of (2.3.1) has the following
expansion:





aε =
k∑

j=0

εjaj + o(εk) in C([0, T ]; Hs−2k−2),

φε =
k∑

j=0

εjφj + o(εk) in C([0, T ]; Hs−2k−1).

(2.3.11)

Remark 2.3.4. Theorem 2.1.1 immediately follows from (2.3.11) by an argu-
ment in Section 2.2.4. Indeed, we obtain

uε = ei
φ0
ε (β0 + εβ1 + · · ·+ εk−1βk−1 + o(εk−1)) in C([0, T ];Hs−2k−2),

where β0 = a0e
iφ1 and βj is given by the formula (2.2.17).

Remark 2.3.5. Recall that φε−φ0 = (φε−Φ0)−(φ0−Φ0) ∈ W s,1 while φε and
φ0 belong to Xs+1 and so they do not necessarily decay at spatial infinity.
Similarly, the asymptotic of φε in (2.3.11) holds in C([0, T ];W s−2k−1,1).

Proof. The proof proceeds along the way which we show in Section 2.2.3.
Instead of the asymptotic expansion of φε itself, we consider the expansion
of vε = ∇φε:

vε =
k∑

j=0

εjvj + o(εk) in C([0, T ];Hs).

This is due to the following two reason: Firstly, it is rather easier to analyze
the system for (aε, vε) than the system for (aε, φε) itself, and, secondly, once
we obtain the above expansion of vε then it is easy to construct each φi from
the corresponding vi. Since Aε

0 is uniformly bounded and Aε
0|ε=0 = A0, we

see that (2.3.2) admits a solution even in the case ε = 0. We denote this
solution by (a0, φ0), which solves





∂ta0 + (v0 · ∇)a0 +
1
2
a0∇ · v0 = 0,

∂tv0 + (v0 · ∇)v0 +∇f(|a0|2) = 0,

(a0(0, x), v0(0, x)) = (A0,∇Φ0).

(2.3.12)
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The zeroth order

We first prove (aε, vε) converges to (a0, v0) as ε → 0. Set ãε
0 = aε − a0 and

ṽε
0 = vε − v0. Then,




∂tã
ε
0 + (ṽε

0 · ∇)aε + (v0 · ∇)ãε
0 +

1
2
ãε

0∇ · vε +
1
2
a0∇ · ṽε

0 = i
ε

2
∆ãε

0 + i
ε

2
∆a0,

∂tṽ
ε
0 + (ṽε

0 · ∇)vε + (v0 · ∇)ṽε
0 + 2f ′(|a0|2)Re(ãε

0∇aε + a0∇ãε
0)

+ (ãε
0a

ε + a0ãε
0)

∫ 1

0
f ′′(|a0|2 + θ(|aε|2 − |a0|2))dθ∇|aε|2 = 0,

(ãε
0(0, x), ṽε

0(0, x)) = (Aε
0 −A0, 0).

(2.3.13)
The bad terms are (1/2)a0∇ · ṽε

0 and 2f ′(|a0|2)Re(a0∇ãε
0). In order two

derive cancellation between these two terms, we set

Ẽ0(t) := ‖ãε
0‖2

Hs +
〈

1
4f ′(|a0|2)Λ

sṽε
0,Λ

sṽε
0

〉
.

If s > n/2 + 2 then, in the way similar to the energy E(t) in the proof of
Theorem 2.3.1, we obtain

d

dt
Ẽ0(t) 6 CẼ0(t) + Cε ‖a0‖Hs+2 (Ẽ0(t))

1
2 (2.3.14)

6 C1Ẽ0(t) + C2ε.

Note that the lower order term comes from the estimate of 〈(iε/2)Λs∆a0, Λsãε
0〉,

and that Ci depends on f , ‖a0‖Hs+2 , ‖v0‖Hs+1 , ‖aε‖Hs+1 , and ‖vε‖Hs+1 .
Therefore, if (aε, vε), (a0, v0) ∈ C([0, T ]; Hs+2)2 then Gronwall’s lemma yields

Ẽ0(t) 6 Ẽ0(0)eC1t + ε
C2

C1
(eC1t − 1).

The right hand side converges to zero as ε → 0 uniformly in [0, T ], which
implies

aε = a0 + o(1) in C([0, T ];Hs), vε = v0 + o(1) in C([0, T ]; Hs)

as ε → 0.

The first order

We now put bε
1 := ãε

0/ε and wε
1 := ṽε

0/ε, and also set

E1(t) := ‖bε
1‖2

Hs +
〈

1
4f ′(|a0|2)Λ

swε
1, Λ

swε
1

〉
.
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Then, since E1(t) = ε−2Ẽ0(t), we deduce from (2.3.14) that

d

dt
E1(t) 6 CE1(t) + C ‖a0‖Hs+2 (E1(t))

1
2

6 C1E1(t) + C2,

and so that
sup

t∈[0,T ]
E1(t) 6 E1(0)eC1T +

C2

C1
(eC1T − 1).

By assumption on the initial data, we know that E1(0) = ‖(Aε
0 −A0)/ε‖2

Hs is
uniformly bounded. Therefore, supt∈[0,T ] E1(t) is uniformly bounded. This
implies that (bε

1, w
ε
1) ∈ C([0, T ]; Hs)2 exists, where T is the existence time

of (aε, vε). Here, we remark that (bε
1, w

ε
1) ∈ C([0, T ];Hs)2 requires a0 ∈

C([0, T ]; Hs+2). Similarly, we will see that we lose two-time derivative in
each step.

Since bε
1|t=0,ε=0 = A1 by assumption, we can define (a1, v1) ∈ C([0, T ]; Hs)2

by
(a1, v1) := (bε

1, w
ε
1)ε=0.

One sees from (2.3.13) that the system for (a1, v1) is the following:




∂ta1 + (v1 · ∇)a0 + (v0 · ∇)a1 +
1
2
a1∇ · v0 +

1
2
a0∇ · v1 = i

1
2
∆a0,

∂tv1 + (v1 · ∇)v0 + (v0 · ∇)v1 + 2f ′(|a0|2) Re(a1∇a0 + a0∇a1)

+ (a1a0 + a0a1)f ′′(|a0|2)∇|a0|2 = 0,

(a1(0, x), v1(0, x)) = (A1, 0).
(2.3.15)

As in the zeroth order, we then estimate the distance ãε
1 := bε

1 − a1 and
ṽε
1 := wε

1 − v1. From (2.3.13) and (2.3.15), we verify that the equation for
(ãε

1, ṽ
ε
1) is





∂tã
ε
1 + (ṽε

1 · ∇)aε + (v1 · ∇)ãε
0 + (v0 · ∇)ãε

1

+
1
2
ãε

1∇ · vε +
1
2
a1∇ · ṽε

0 +
1
2
a0∇ · ṽε

1 = i
ε

2
∆ãε

1 + i
ε

2
∆a1,

∂tṽ
ε
1 + (ṽε

1 · ∇)vε + (v1 · ∇)ṽε
0 + (v0 · ∇)ṽε

1

+ 2f ′(|a0|2)Re(ãε
1∇aε + a1∇ãε

0 + a0∇ãε
1)

+ (ãε
1a

ε + a1ãε
0 + a0ãε

1)
∫ 1

0
f ′′(|a0|2 + θ(|aε|2 − |a0|2))dθ∇|aε|2

+ (a0a1 + a1a0)(aεãε
0 + ãε

0a0)

×
∫ 1

0

∫ 1

0
θ1f

′′′(|a0|2 + θ1θ2(|aε|2 − |a0|2))dθ2dθ1∇|aε|2 = 0,

(ãε
1(0, x), ṽε

1(0, x)) =
(

Aε
0 −A0 − εA1

ε
, 0

)
.

(2.3.16)
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The point is that bad terms are (1/2)a0∇ · ṽε
1 and 2f ′(|a0|2)Re(a0∇ãε

1),
which is essentially same as in the previous (2.3.13). All other terms do not
include any derivative on (ãε

1, ṽ
ε
1) except for (iε/2)∆ãε

1, which vanishes in
the energy estimate. Setting the energy

Ẽ1(t) := ‖ãε
1‖2

Hs +
〈

1
4f ′(|a0|2)Λ

sṽε
1,Λ

sṽε
1

〉
,

we obtain

d

dt
Ẽ1(t) 6 CẼ1(t) + Cε ‖∆a1‖Hs (Ẽ1(t))

1
2

6 C1Ẽ1(t) + C2ε.

The constant depends on the Hs+2 norm of a1 and Hs norm of v1, a0, v0,
aε, and vε. Using Gronwall’s lemma and assumption, we see that

0 6 sup
t∈[0,T ]

Ẽ1(t) 6 Ẽ1(0)eC1T + ε
C2

C1
(eC1T − 1) → 0

as ε → 0, which show

aε = a0 + εa1 + o(ε) in C([0, T ]; Hs),
vε = v0 + εv1 + o(ε) in C([0, T ]; Hs)

as ε → 0.

Higher order

We repeat the argument in the first order: Define (bε
2, w

ε
2) := (ãε

1/ε, ṽε
1/ε).

Then, from the estimate of Ẽ1(t), we see that

E2(t) := ‖bε
2‖2

Hs +
〈

1
4f ′(|a0|2)Λ

swε
2, Λ

swε
2

〉

is uniformly bounded as long as so is E2(0). Therefore, (bε
2, w

ε
2) exists as

a function in C([0, T ]; (Hs)2) for all ε ∈ [0, 1]. Set (a2, v2) := (bε
2, w

ε
2)|ε=0.

Then, (ãε
2, ṽ

ε
2) = (bε

2−a2, w
ε
2− v2) solves a system similar to (2.3.16) and/or

(2.3.13). Removing bad parts by the cancellation technique, we obtain the
energy estimate on (ãε

2, ṽ
ε
2) which ensures (ãε

2, ṽ
ε
2) → 0 in C([0, T ]; (Hs)2)

and so

aε = a0 + εa1 + ε2a2 + o(ε2) in C([0, T ];Hs),

vε = v0 + εv1 + ε2v2 + o(ε2) in C([0, T ]; Hs)

and so on.
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Regularity counting

As we seen above, we construct three sequences from (bε
0, w

ε
0) = (aε, vε) by

(al, vl) := (bε
l , w

ε
l )|ε=0,

(ãε
l , ṽ

ε
l ) := (bε

l − al, w
ε
l − vl),

(bε
l+1, w

ε
l+1) :=

(
ãε

l

ε
,
ṽε
l

ε

)
.

By assumption, for some k > 1, Aε
0 is uniformly bounded in Hs for s >

n/2 + 2k + 2, and moreover

Aε
0 =

k∑

j=0

εjAj + o(εk) in Hs.

For a while we denote C([0, T ]; (Hs)2) by CT (Hs)2, for simplicity. By Theo-
rem 2.3.1, (bε

0, v
ε
0) exists in CT (Hs)2, which shows that (a0, v0) also belongs

to this space. Then, we obtain (ãε
0, ṽ

ε
0) ∈ CT (Hs−2)2 along the argument

in the first order. Recall that for (ãε
0, ṽ

ε
0) ∈ CT (Hs′)2 being true, we need

(a0, v0) ∈ CT (Hs′+2)2. At this step, we lose two-time derivative. Repeating
this argument, we see inductively that

(al, vl) ∈ C([0, T ];Hs−2l)2, (ãε
l , ṽ

ε
l ) ∈ C([0, T ];Hs−2l−2)2,

(bε
l+1, w

ε
l+1) ∈ C([0, T ];Hs−2l−2)2.

(2.3.17)

By assumption, ãε
k|t=0 = ε−k(Aε − ∑k

j=0 εjAk) is uniformly bounded in

Hs for ε ∈ [0, 1], and however, bε
k+1|t=0 = ε−k+1(Aε − ∑k

j=0 εjAk) is not
necessarily uniformly bounded. Therefore, the above induction argument
stops with obtaining the uniform CT (Hs−2k−2)2 bound of (ãε

k, ṽ
ε
k). Thus,

we conclude that

aε =
k∑

j=0

εjaj + o(εk) in C([0, T ]; Hs−2k−2),

vε =
k∑

j=0

εjvj + o(εk) in C([0, T ]; Hs−2k−2),

(2.3.18)
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where (aj , vj) (j > 1) solves the system




∂taj +
∑

i1+i2=j

(
1
2
(vi1 · ∇)ai2 + ai1∇ · vi2

)
− i

2
∆aj−1 = 0,

∂tvj +
∑

i1+i2=j

(vi1 · ∇)vi2

+
j∑

L=1

f (L)(|a0|2)
∑

J1+···+JL=j
Jl>1

L∏

l=1

∑

i1+i2=Jl

2Re(ai1∇ai2)

+
j∑

L=1

f (L+1)(|a0|2)(∇|a0|2)
∑

J1+···+JL=j
Jl>1

L∏

l=1

∑

i1+i2=Jl

(ai1ai2) = 0,

(aj(0, x), vj(0, x)) = (Aj(x), 0).

Expansion of φε

So far, we obtain the expansion of the solution (aε, vε) of (2.3.2). At the
final step, we derive the expansion of (aε, φε) of (2.3.1). To do this, it suffices
to expand φε. Recall that φε is defined in the proof of Theorem 2.3.1 by the
formula

φε = Φ0 −
∫ t

0

(
1
2
|vε|2 + f(|aε|2)

)
ds.

Substituting (2.3.18) to this formula, we see that

φε =
k∑

j=0

εjφj + o(εk) in C([0, T ]; Hs−2k−1)

as ε → 0, where φj is given by the following formula:

φ0(t) = Φ0 −
∫ t

0

(
1
2
|v0|2 + f(|a0|2)

)
ds (2.3.19)

and, for j > 1,

φj(t) = −
∫ t

0

∑

i1+i2=j

1
2
vi1 · vi2ds

−
∫ t

0

j∑

L=1

f (L)(|a0|2)
∑

J1+···+JL=j
Jl>1

L∏

l=1

∑

i1+i2=Jl

(ai1ai2)ds. (2.3.20)

By (2.3.17) and the assumption on Φ, it is easy to see that φ0 ∈ C([0, T ]; Hs+1)
with φ0 − Φ0 ∈ C([0, T ];W s+1,1), and that

φj ∈ C([0, T ]; W s−2j+1,1) ∩ C([0, T ]; Hs−2j+1).
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Remark 2.3.6. The integrand of the second time integral in the right hand
side of (2.3.20) is the explicit formula of N (j), introduced in Section 2.2.3.
If the nonlinearity is cubic, say f(y) = λy, then, this term is simplified as

λ
∑

i1+i2=j

2Re(ai1ai2).

2.4 Example 2: Nonlocal nonlinearities

Now we turn to the case of nonlocal nonlinearities. Our equations are the
Schrödinger- Poisson system (SP) and the Hartree equation (H). As we ob-
served in Section (2.2), we mainly analyze the system (2.1.8). If we consider
(SP) and (H), then the corresponding systems are





∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + λV ε

P = 0,

−∆V ε
P = |aε|2, V ε

P → 0 as |x| → ∞,

(aε(0, x), φε(0, x)) = (Aε
0,Φ0),

(2.4.1)

and 



∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + λ(|x|−γ ∗ |aε|2) = 0,

(aε(0, x), φε(0, x)) = (Aε
0, Φ0),

(2.4.2)

respectively. When n > 3, (SP) and (2.4.1) correspond to (H) and (2.4.2)
with γ = n−2 since the Newtonian potential is written as cn|x|2−n for n > 3
(see [33]). We therefore mainly treat (2.4.2) with n > 3.

2.4.1 Smoothing by the nonlocal nonlinearity

Let us first discuss how to manage to obtain an energy estimate in the case
of nonlocal nonlinearity. Differentiation of the second equation of (2.4.2)
yields





∂ta
ε + (vε · ∇)aε +

1
2
aε∇ · vε = i

ε

2
∆aε,

∂tv
ε + (vε · ∇)vε + λ∇(|x|−γ ∗ |aε|2) = 0,

(aε(0, x), vε(0, x)) = (Aε
0,∇Φ0),

(2.4.3)

which corresponds to (SHS). As presented in Section 2.2.1, the estimate of
d
dt ‖aε‖2

Hs involves ‖∇vε‖Hs : We deduce from (2.2.1), (2.2.3), (2.2.4), and
(2.2.2) that

d

dt
‖aε‖2

Hs 6 C(‖aε‖W 1,∞ + ‖∇vε‖L∞)(‖aε‖2
Hs + ‖∇vε‖2

Hs). (2.4.4)
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In the previous Section 2.3, we derive the cancellation which vanishes out
both this bad term and another bad term in the nonlinearity of local type.
Now, we are concerned with nonlocal nonlinearities involving integrals, and
so it seems to be impossible to make this kind of cancellation. We hence
accept the estimate of ‖∇vε‖Hs . Thus, as mentioned at the end of Section
2.2.1, the problem is that we have to estimate the (s + 2)-time derivative of
the nonlinearity by the s-time derivative of the amplitude aε. Fortunately, it
is possible in the case of nonlocal nonlinearity. We use the following estimate
used in [5, 15] to make the nonlocal nonlinearity produce two-time derivative
gain. This is the key.

Lemma 2.4.1. Let n > 1, k > 0, and s ∈ R. Let γ ∈ (0, n) satisfy
n
2 − k < γ 6 n− k. Then, there exists C = C(n, k, p, s, γ) such that, for all
f ∈ L1(Rn) ∩Hs(Rn),

∥∥∥|∇|k(|x|−γ ∗ f)
∥∥∥

Hs
6 C(‖f‖Hs + ‖f‖L1).

Proof. Since F|x|−γ = C|ξ|−n+γ for γ ∈ (0, n), it holds that
∥∥∥|∇|k(|x|−γ ∗ f)

∥∥∥
Hs

= C
∥∥∥〈ξ〉s |ξ|−n+γ+kFf

∥∥∥
L2

.

The high frequency part (|ξ| > 1) is bounded by C ‖f‖Hs if −n+ γ + k 6 0.
On the other hand, the low frequency part (|ξ| 6 1) is bounded by

C ‖Ff‖L∞

(∫

|ξ|61
|ξ|2(−n+γ+k)dξ

) 1
2

6 C ‖f‖L1

if 2(−n + γ + k) > −n, that is, if γ > n/2− k.

2.4.2 Existence result

Differentiating the second line of (2.4.3) again, we obtain





∂ta
ε + (vε · ∇)aε +

1
2
aε∇ · vε = i

ε

2
∆aε,

∂t∇vε +∇(vε · ∇)vε + λ∇2(|x|−γ ∗ |aε|2) = 0,

(aε(0, x),∇vε(0, x)) = (Aε
0,∇2Φ0).

(2.4.5)

In the local nonlinearity case, we work with (2.3.2) corresponding to (SHS)
which can be solved in the usual Hs framework with cancellation. However,
it turns out that, in the nonlocal nonlinearity case, it is not (2.4.3) (corre-
sponding to (SHS) and (2.3.2)) but (2.4.3) which can be solved in the usual
Hs framework. Adding a L∞-bound of vε, we obtain the solution to (2.4.3)
in the Zhidkov space.
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Theorem 2.4.2. Let n > 3 and λ ∈ R. Let γ be a positive number with
n/2−2 < γ 6 n−2. Let s > n/2+1. Assume that Φ0 ∈ C3 with ∇2Φ0 ∈ Hs,
and that Aε

0 is uniformly bounded in Hs for ε ∈ [0, 1]. Then, there exist T >
0 independent of ε ∈ [0, 1] and s > n/2+1, and (aε, φε) ∈ C([0, T ]; C1×C4)
unique solution to (2.4.2) on [0, T ] for ε ∈ [0, 1]. Moreover, aε and ∇φε

are bounded in C([0, T ]; Hs) and L∞([0, T ]×Rn), respectively, uniformly in
ε ∈ [0, 1]. Moreover, with the notation c∞ := lim|x|→∞∇Φ0(x) ∈ Rn, φε

enjoys the following properties:

• (Tail estimates of φε) It holds that

∇φε(t, x)−∇Φ0(x− c∞t) ∈ (L
n

γ+1
+ ∩ L∞)(Rn), (2.4.6)

φε(t, x)− Φ0(x) +
1
2

∫ t

0
|∇Φ0(x− c∞s)|2ds ∈ (L

n
γ
+ ∩ L∞)(Rn).

(2.4.7)

Furthermore, they are bounded in above norm uniformly in t ∈ [0, T ]
and ε ∈ [0, 1].

• If ∇Φ decays at spacial infinity, that is, if c∞ = 0, then ∇φε and φε−
Φ0 are bounded in C([0, T ]; (L

n
γ+1

+ ∩ L∞)(Rn)) and C([0, T ]; (L
n
γ
+ ∩

L∞)(Rn)), respectively, uniformly in ε ∈ [0, 1].

Remark 2.4.3. Since n > 3, by means of Lemma 2.2.1 and the Sobolev
embedding, the assumption ∇2Φ0 ∈ Hs implies the existence of a constant
c∞ such that ∇Φ0 − c∞ ∈ Lp for p ∈ [2n/(n − 2),∞]. Similarly, ∇φε −
c′∞ ∈ Lp holds with some constant c′∞ for p ∈ [2n/(n − 2),∞]. Thus,
(2.4.7) is the asymptotics in such a sense that c′∞ = c∞ and moreover
∇φε(t, x)−∇Φ0(x−c∞t) ∈ Lq for q ∈ (n/(γ+1),∞]. Recall that n/(γ+1) <
2n/(n− 2) = n/(n/2− 1) by assumption on γ.

Remark 2.4.4. In general, both φε and Φ0 are not bounded in any Lebesgue
space. If n > 5 then Lemma 2.2.1 implies that there exist a real constant
d such that Φ0 − d − c∞ · x ∈ L2n/(n−4) ∩ L∞. This is not true for n 6 4,
as shown by the following example; f(x) = log(1 + log |x|), which is not
bounded nor this form but satisfies ∇2f ∈ H∞(Rn). Nevertheless, (2.4.7)
shows the left hand side is always bounded and decays at spacial infinity.
We also remark that

∇
(

Φ0(x)− 1
2

∫ t

0
|∇Φ0(x− c∞s)|2ds

)

= ∇Φ0(t− c∞x)−
∫ t

0
(∂t(∇Φ0(x− c∞t))|t=sds− 1

2

∫ t

0
∇|∇Φ0(x− c∞s)|2ds

= ∇Φ0(t− c∞x)−
∫ t

0
((∇Φ0(x− c∞s)− c∞) · ∇)∇Φ0(x− c∞s)ds.
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The first term of the right hand side is bounded and the difference of the
first term and ∇φε belongs to (L

n
γ+1

+∩L∞) as shown in (2.4.6). The second
term is a “good tail” term belonging to Lr for r ∈ [n/(n − 1),∞]. Recall
that n/(γ + 1) > n/(n− 1) by assumption on γ.

Remark 2.4.5. If Φ0 ≡ 0 then we have the uniform bound of ‖φε‖Lp and
‖∇φε‖Lq for p ∈ (n/γ,∞] and q ∈ (n/(γ + 1),∞].

Remark 2.4.6. The decay property of φε is different from in the case of
local nonlinearities: The solution (aε

l , φ
ε
l ) to (2.3.1) satisfies φε

l − Φ0 ∈
C([0, T ]; W s,1) (Theorem 2.3.1).

Remark 2.4.7. In the Schrödinger-Poisson case, the corresponding result fol-
lows by letting γ = n− 2.

Proof. The proof is based on the classical energy method. We set a partial
energy

Epart(t) := ‖aε‖2
Hs + ‖∇vε‖2

Hs .

Estimates similar to (2.2.7) and (2.2.8) give

d

dt
‖∇vε‖2

Hs 6 C(‖∇vε‖L∞ ‖∇vε‖2
Hs +

∥∥∇2(|x|−γ ∗ |aε|2)∥∥
Hs ‖∇vε‖Hs).

We apply above Lemma 2.4.1 with k = 2. Then,
∥∥∇2(|x|−γ ∗ |aε|2)∥∥

Hs 6 C(
∥∥|aε|2∥∥

L1 +
∥∥|aε|2∥∥

Hs)

6 C(‖aε‖L2 + ‖aε‖L∞) ‖aε‖Hs .

Therefore, we end up with

d

dt
‖∇vε‖2

Hs 6 C(‖∇vε‖L∞ + ‖aε‖L2 + ‖aε‖L∞)(‖aε‖2
Hs + ‖∇vε‖2

Hs).

Together with (2.4.4), this implies the desired (partial) energy estimate

d

dt
Epart(t) 6 C(Epart(t))

3
2 .

This estimate is partial in such a sense that we do not obtain any information
about the boundedness of vε itself.

First integration and decay properties of vε

Let us add the bound of vε. By Lemma 2.2.1, there exists a function F ε(t)
of time only such that vε + F ε(t) belongs to C([0, T ]; L2n/(n−2)). It also
follows from this lemma that F ε(0) is uniquely determined as a constant
such that ∇Φ0 + F ε(0) ∈ L2n/(n−2). Therefore, F ε(0) is independent of ε.
Let us denote c∞ := F ε(0). We now use the Sobolev embedding and Lemma
2.2.1: For n > 3 and σ > n/2, if f → 0 as |x| → ∞ then

‖f‖L∞ 6 C ‖∇f‖Hσ−1 .
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This yields the uniform L∞-bounds ‖vε + F ε(t)‖L∞([0,T ]×Rn) < ∞. Since
F ε(t) is a time function, we also have ‖vε‖L∞([0,T ]×Rn) < ∞ for each fixed
ε. Therefore, we obtain the (full) energy estimate

d

dt
E(t) 6 C(E(t))

3
2 ,

where E(t) := ‖aε‖2
Hs +‖vε‖2

L∞+‖∇vε‖2
Hs . From this estimate, we obtain a

solution (aε, vε) ∈ C([0, T ];Hs×Xs+1) of (2.4.3). For the detail of the proof
of this part, see [5, 15]. Note that, at this step, we do not now whether vε is
bounded in L∞(Rn) uniformly in ε or not, and so that the existence time T
may depend on ε. Applying the Hölder and the Hardy-Littlewood-Sobolev
inequalities to the second equation of (2.4.3), we have

∂tv
ε = −(vε · ∇)vε − λ∇(|x|−γ ∗ |aε|2) ∈ L

max(2, n
γ+1

+)
. (2.4.8)

In particular, this implies (F ε)′ ≡ 0. Recall that F ε(0) is independent of ε. It
turns out that F ε(t) = c∞ as long as vε exists. Therefore, we can choose the
existence time T independently of ε. We also have vε−∇Φ0 ∈ L

max(2, n
γ+1

+)

from (2.4.8).

Second integration and construction of φε

Now, we shall define φε. As mentioned in Section 2.2.2, the main step is to
show the uniqueness of the solution of (2.4.3). Let (aε

i , v
ε
i ) ∈ C([0, T ]; Hs ×

Xs+1) be two solutions to (2.4.3) with vi − ∇Φ0 ∈ L
max(2, n

γ+1
+). Then,

denoting dε
a = aε

1 − aε
2 and dε

v = vε
1 − vε

2, we find




∂td
ε
a + (dε

v · ∇)aε
1 + (vε

2 · ∇)dε
a +

1
2
dε

a∇ · vε
1 +

1
2
aε

2∇ · dε
v = i

ε

2
∆dε

a,

∂td
ε
v + (dε

v · ∇)vε
1 + (vε

2 · ∇)dε
v + λ∇(|x|−γ ∗ (dε

aa
ε
1 + aε

2d
ε
a) = 0,

(dε
a(0, x), dε

v(0, x)) = (0, 0).

We now define Ed,part(t) := ‖dε
a‖2

L2 + ‖∇dε
v‖2

L2 . Since

d

dt
Ed,part(t) 6 C(Ed,part(t))

3
2

by the same calculation as in Epart(t), we see aε
1 − aε

2 = ∇(vε
1 − vε

2) = 0.
Moreover, by assumption, we have vε

1 − vε
2 = (vε

1 − ∇Φ0) − (vε
2 − ∇Φ0) ∈

L
max(2, n

γ+1
+). In particular, vε

1 − vε
2 → 0 as |x| → ∞. Thus, a1 = a2 and

v1 = v2 holds, and hence the solution is unique. Once the uniqueness of the
solution of (2.4.3) is deduced, we can use direct definition

φε(t, x) = Φ0(x)−
∫ t

0

(
1
2
|vε(s, x)|2 + λ(|x|−γ ∗ |aε|2)(s, x)

)
ds ∈ C([0, T ]; C3).
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Asymptotic behavior of φε

Let us prove (2.4.6). A computation show

∂t(vε(t, x + c∞t)) = (∂tv
ε)(t, x + c∞t) + ((c∞ · ∇)vε)(t, x + c∞t)

= −[
((vε − c∞) · ∇)vε + λ∇(|x|−γ ∗ |aε|)](t, x + c∞t).

Since vε − c∞ → 0 as |x| → ∞, ‖vε − c∞‖Lp 6 C ‖∇vε‖Hs is uniformly
bounded for p ∈ [2n/(n− 2),∞]. Then, by the Hölder inequality,

((vε − c∞) · ∇)vε ∈ Lq(Rn)

holds for q ∈ [n/(n − 1),∞]. Moreover, by the Sobolev and the Hardy-
Littlewood-Sobolev inequalities,

∇(|x|−γ ∗ |aε|) ∈ Lr(Rn)

for r ∈ (n/(γ + 1),∞]. Therefore,

vε(t, x + c∞t)−∇Φ0(x) =
∫ t

0
(∂t(vε(t, x + c∞t)))|t=sds ∈ Lr(Rn)

for r ∈ (n/(γ + 1),∞]. Hence (2.4.6). We finally prove (2.4.7). By the
definition of φε,

φε(t, x)− Φ0(x) +
1
2

∫ t

0
|∇Φ0(x− c∞s)|2ds

=
∫ t

0

1
2
((∇Φ0(x− c∞s)− vε(s, x)) · ∇Φ0(x− c∞s))ds

+
∫ t

0

1
2
(vε(s, x) · (∇Φ0(x− c∞s)− vε(s, x)))ds

−
∫ t

0
λ(|x|−γ ∗ |aε|2)(s, x)ds.

By the L∞ bound of vε and the asymptotics (2.4.6), the first two terms
of the right hand side belong to Lr for r ∈ (n/(γ + 1),∞]. On the other
hand, by the Hardy-Littlewood-Sobolev inequality, the last term is in Lr′

for r′ ∈ (n/γ,∞], which completes the proof.

2.4.3 Justification of WKB approximation

Theorem 2.4.8. Let n > 3 and λ ∈ R. Let γ be a positive number with
n/2 − 2 < γ 6 n − 2. Let k be a positive integer and let s > n/2 + 2k + 3
be a real number. Assume that Φ0 ∈ C2k+5 with ∇2Φ0 ∈ Hs, and that Aε

0

writes

Aε
0 =

k∑

j=0

εjAj + o(εk) in Hs
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for ε ∈ [0, 1]. Then, the unique solution (aε, φε) of (2.4.2) has the following
expansion:





aε =
k∑

j=0

εjaj + o(εk) in C([0, T ]; Hs−2k−2),

φε =
k∑

j=0

εjφj + o(εk) in C([0, T ]; L
n
γ
+ ∩ L∞).

∇φε =
k∑

j=0

εj∇φj + o(εk) in C([0, T ]; Xs−2k−1 ∩ L
n

γ+1
+).

Moreover, φ0 has the same asymptotic behavior as φε given in Theorem
2.4.2.

Remark 2.4.9. As in Theorem 2.4.2, φε and φ0 do not necessarily goes to
zero as |x| tends to infinity, while their distance satisfies φε−φ0 ∈ L

n
γ
+∩L∞

and ∇φε −∇φ0 ∈ L
n

γ+1
+ ∩ L∞.

Proof. We proceeds along in the similar way as in the proof of Theorem
2.3.3 ( or as outlined in Section 2.2.3). Let (aε, vε) = (aε,∇φε) be a solution
to (2.4.3) given in the proof of Theorem 2.4.2. We first prove the expansion





aε =
k∑

j=0

εjaj + o(εk) in C([0, T ]; Hs−2k−2),

vε =
k∑

j=0

εjvj + o(εk) in C([0, T ]; Xs−2k−1 ∩ L
n

γ+1
+).

(2.4.9)

Since A0 = Aε
0|ε=0 exists, we obtain (a0, v0) = (aε, vε)|ε=0 which solves





∂ta0 + (v0 · ∇)a0 +
1
2
a0∇ · v0 = 0,

∂tv0 + (v0 · ∇)v0 + λ∇(|x|−γ ∗ |a0|2) = 0,

(a0(0, x), v0(0, x)) = (A0,∇Φ0).

(2.4.10)

The zeroth order

Introduce (ãε
0, ṽ

ε
0) = (aε − a0, v

ε − v0). This solves the system




∂tã
ε
0 + (ṽε

0 · ∇)aε + (v0 · ∇)ãε
0 +

1
2
ãε

0∇ · vε +
1
2
a0∇ · ṽε

0 = i
ε

2
∆ãε

0 + i
ε

2
∆a0,

∂tṽ
ε
0 + (ṽε

0 · ∇)vε + (v0 · ∇)ṽε
0 +∇(|x|−γ ∗ (ãε

0a
ε + a0ãε

0)) = 0,
(ãε

0(0, x), ṽε
0(0, x)) = (Aε

0 −A0, 0).
(2.4.11)
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Mimicking the energy estimate for (aε, vε), we obtain

d

dt
Ẽ0(t) 6 C(Ẽ0(t))

3
2 + Cε ‖∆a0‖Hs (Ẽ0(t))

1
2

6 C1(Ẽ0(t))
3
2 + C2ε,

where Ẽ0(t) := ‖ãε
0‖2

Hs + ‖ṽε
0‖2

L
n

γ+1+ + ‖ṽε
0‖2

L∞ + ‖∇ṽε
0‖2

Hs and Ci depends
on ‖a0‖Hs+2 , ‖v0‖Xs+2 , ‖aε‖Hs+1 , and ‖vε‖Xs+2 . Note that by using the fact
that ṽε

0|t=0 ≡ 0, we can add the term ‖ṽε
0‖2

L
n

γ+1+ to the energy. This yields

sup
t∈[0,T ]

Ẽ0(t) 6 Ẽ0(0)eC1T + ε
C2

C1
(eC1T − 1) → 0

as ε → 0, which ensures (2.4.9) for k = 0.

The first order

We put (bε
1, w

ε
1) := (ãε

0/ε, ṽε
0/ε) and E1(t) := ‖bε

1‖2
Hs + ‖wε

1‖2
L∞ + ‖∇wε

1‖2
Hs .

Since E1(t) = Ẽ0(t)/ε and it is bounded at t = 0 uniformly in ε, we see
that supt∈[0,T ] E1(t) is uniformly bounded. Therefore, we obtain (bε

1, w
ε
1) ∈

C([0, T ]; Hs×Xs+1 ∩Ln/(γ+1)+) as a unique solution of a system similar to
(2.4.11), provided a0 ∈ Hs+2. Since A1 = bε

1|t=0,ε=0 exists by assumption,
we can define (a1, v1) := (bε

1, w
ε
1)|ε=0, which solves





∂ta1 + (v1 · ∇)a0 + (v0 · ∇)a1 +
1
2
a1∇ · v0 +

1
2
a0∇ · v1 = i

1
2
∆a0,

∂tv1 + (v1 · ∇)v0 + (v0 · ∇)v1 + Re∇(|x|−γ ∗ (a1a0 + a0a1)) = 0,

(a1(0, x), v1(0, x)) = (A1, 0).
(2.4.12)

Let us estimate (ãε
1, ṽ

ε
1) := (bε

1−a1, w
ε
1− v1). From (2.4.11) and (2.4.12), we

see that




∂tã
ε
1 + (ṽε

1 · ∇)aε + (v1 · ∇)ãε
0 + (v0 · ∇)ãε

1

+
1
2
ãε

1∇ · vε +
1
2
a1∇ · ṽε

0 +
1
2
a0∇ · ṽε

1 = i
ε

2
∆ãε

1 + i
ε

2
∆a1,

∂tṽ
ε
1 + (ṽε

1 · ∇)vε + (v1 · ∇)ṽε
0 + (v0 · ∇)ṽε

1

+∇(|x|−γ ∗ (ãε
1a

ε + a1ãε
0 + a0ãε

1)) = 0,

(ãε
1(0, x), ṽε

1(0, x)) =
(

Aε
0 −A0 − εA1

ε
, 0

)
.

(2.4.13)

We use the energy method to obtain

d

dt
Ẽ1(t) 6 C(Ẽ1(t))

3
2 + Cε ‖∆a1‖Hs (Ẽ1(t))

1
2

6 C1(Ẽ1(t))
3
2 + C2ε,

45



where Ẽ1(t) := ‖ãε
1‖2

Hs + ‖ṽε
1‖2

L
n

γ+1+ + ‖ṽε
1‖2

L∞ + ‖∇ṽε
1‖2

Hs and Ci depends
on ‖a1‖Hs+2 . This yields

sup
t∈[0,T ]

Ẽ1(t) 6 Ẽ1(0)eC1T + ε
C2

C1
(eC1T − 1) → 0

as ε → 0, which gives (2.4.9) for k = 1. Higher order estimate is similar, so
we left the detail. The strategy is the induction argument as in the proof of
Theorem 2.3.3. We only remark that the system for (aj , vj) (j > 1) is given
as





∂taj +
∑

i1+i2=j

(
1
2
(vi1 · ∇)ai2 + ai1∇ · vi2

)
− i

2
∆aj−1 = 0,

∂tvj +
∑

i1+i2=j

(
(vi1 · ∇)vi2 + λ∇(|x|−γ ∗ (ai1ai2))

)
= 0,

(aj(0, x), vj(0, x)) = (Aj(x), 0).

Expansion of φε

We finally prove the expansion of φε. Since φε is given by the formula

φε = Φ0 −
∫ t

0

(
1
2
|vε|2 + λ(|x|−γ ∗ |aε|2)

)
ds.

Now, we plug the expansion (2.4.9) to this. Then, this concludes

φε =
k∑

j=0

εjφj + o(εk) in L∞([0, T ]× Rn),

where

φ0(t) = Φ0 −
∫ t

0

(
1
2
|v0|2 + λ(|x|−γ ∗ |a0|2)

)
ds (2.4.14)

and, for j > 1,

φj(t) = −
∫ t

0

∑

i1+i2=j

(
1
2
vi1 · vi2 + λ(|x|−γ ∗ (ai1ai2))

)
ds. (2.4.15)

Notice that (a0, φ0) = (aε, φε)|ε=0 and so the asymptotic behavior of φ0 is the
same as for φε given in Theorem 2.4.2. Furthermore, φj ∈ C([0, T ]; Ln/γ+ ∩
L∞) for j > 1 by the Sobolev and the Hardy-Littlewood-Sobolev inequali-
ties.

Remark 2.4.10. The integrand of the second time integral in the right hand
side of (2.4.15) is the explicit formula of N (j), introduced in Section 2.2.3:

N (j) =
∑

i1+i2=j

λ(|x|−γ ∗ (ai1ai2))
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2.5 Example 3: Local and nonlocal nonlinearity

We next consider the presence of both the local and the nonlocal nonlinear-
ities. We consider the following model, the nonlinear Schrödinger equation
with local and nonlocal nonlinearity,

iε∂tu
ε+

ε2

2
∆uε = f(|uε|2)+λ(|x|−γ∗|uε|2)uε; uε(0, x) = Aε

0(x) exp(iΦ0(x)/ε),

(L-NL)
where f is supposed to be essentially cubic: f : R+ → R+ satisfies f ∈
C∞(R+), f ′ > 0, and f(0) = 0. Writing uε = aεeiφε/ε, we find the system





∂ta
ε + (vε · ∇)aε +

1
2
aε∇ · vε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + f(|aε|2) + λ(|x|−γ ∗ |aε|2) = 0,

(aε(0, x), φε(0, x)) = (Aε
0, Φ0),

(2.5.1)

2.5.1 Cancellation versus smoothing

The difficulty of obtaining WKB approximation lies in obtaining energy es-
timate for the system for (aε,∇φε) (Section 2.2). As we seen in Section 2.3,
if the nonlinearity is of local type then we obtain the energy estimate by de-
riving the cancellation of bad terms. On the other hand, if the nonlinearity
is of nonlocal type then we use the smoothing property of nonlinearity (Sec-
tion 2.4). In this section, we shall observe what happens with the existence
of both local and nonlocal nonlinearities. Let us introduce vε := ∇φε and
consider





∂ta
ε + (vε · ∇)aε +

1
2
aε∇ · vε = i

ε

2
∆aε,

∂tv
ε + (vε · ∇)vε +∇f(|aε|2) + λ∇(|x|−γ ∗ |aε|2) = 0,

(aε(0, x), φε(0, x)) = (Aε
0,Φ0),

(2.5.2)

If we use the energy E(t) := ‖aε‖2
Hs + ‖vε‖Hs , then the difficulty is the

following two points (see Section 2.2.1):

1. The estimate of d
dt ‖aε‖2

Hs requires the bound of (s+1)-time derivative
of vε.

2. The estimate of d
dt ‖vε‖2

Hs requires the bound of (s+1)-time derivative
of the nonlinearityf(|aε|2) + λ(|x|−γ ∗ |aε|2).

It might be necessary to produce the cancellation by the local nonlinearity
∇f(|aε|2) which solves the above two problem simultaneously. Otherwise, it
would be difficult to handle the bad term coming from the local nonlinearity
f(|aε|2), although we can accept the (s + 2)-time derivative of (|x|−γ ∗ |aε|)
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by the smoothing property of the nonlocal nonlinearity. Once the cancella-
tion occurs, we do not need any longer to estimate (s + 2)-time derivative
of (|x|−γ ∗ |aε|) by gaining two-time derivative. This causes the change of
admissible range of γ. Thus, the nonlocal nonlinearity is almost a pertur-
bation, however we can see the influence of the nonlocal nonlinearity in the
tail estimate of φε.

2.5.2 Existence result

Theorem 2.5.1. Let n > 2 and s > n/2 + 2. Let f ∈ C∞(R+ : R+) with
f(0) = 0 and f ′ > 0. Let λ ∈ R and let γ be a positive number with n/2−1 <
γ 6 n− 1. Assume that Φ0 ∈ Xs+1 and Aε

0 is uniformly bounded in Hs for
ε ∈ [0, 1]. Then, there exist T > 0 independent of ε ∈ [0, 1] and s > n/2+2,
and uε = aεeiφε/ε solution to (L-NL) on [0, T ] for ε ∈ (0, 1]. Moreover,
(aε, φε) ∈ C([0, T ]; Hs × Xs+1) is the unique solution to (2.5.1). Both aε

and ∇φε are bonded in C([0, T ]; Hs) uniformly in ε ∈ [0, 1]. Furthermore,
φε − Φ0 is bounded in C([0, T ];Ln/γ+ ∩ L∞) uniformly in ε ∈ [0, 1].

Proof. We first show the existence of a unique solution to (2.5.2). Now, set
the energy as

E(t) := ‖aε‖2
Hs +

〈
1

4f ′(|aε|2)Λ
svε, Λsvε

〉

L2

,

where s > n/2 + 1 and Λ = (1−∆)1/2. Take a constant C0 so that E(0) 6
(C0)1/2. As long as ‖aε‖Hs 6 2C0, we obtain

d

dt
E(t) 6 C(E(t))

3
2 + C(E(t))2 +

∣∣∣∣
〈

λ

4f ′(|aε|2)Λ
s∇(|x|−γ ∗ |aε|2),Λsvε

〉∣∣∣∣ .

Estimates are the same as in the proof of Theorem 2.3.1. Lemma 2.4.1 with
k = 1 implies that

∥∥∇(|x|−γ ∗ |aε|2)∥∥
Hs 6 C(‖aε‖L∞ ‖aε‖Hs + ‖aε‖2

L2)

if n/2− 1 < γ 6 n− 1, and so that the third term of the right hand side is
bounded by

(‖aε‖L∞ + ‖aε‖L2) ‖aε‖Hs ‖vε‖Hs 6 C(E(t))
3
2

for such γ. Therefore, by Gronwall’s lemma, there exists a time T > 0
depending only on E(0) such that

sup
t∈[0,T ]

E(t) 6 4E(0) 6 (2C0)
1
2 .

This yields ‖aε‖Hs 6 2C0. Along the standard method, we see that the
solution (aε, vε) ∈ C([0, T ];Hs ×Hs) of (2.5.2) exists.

48



Uniqueness and construction of φε

We next show the uniqueness of (aε, vε). Let (aε
1, v

ε
1) and (aε

2, v
ε
2) be two

solutions of (2.3.2) bounded in C([0, T ]; Hs)2. Then, denoting (dε
a, d

ε
v) =

(aε
1 − aε

2, v
ε
1 − vε

2), we have




∂td
ε
a + (dε

v · ∇)aε
1 + (vε

2 · ∇)dε
a +

1
2
dε

a∇ · vε
1 +

1
2
aε

2∇ · dε
v = i

ε

2
∆dε

a,

∂td
ε
v + (dε

v · ∇)vε
1 + (vε

2 · ∇)dε
v + 2f ′(|aε

2|2) Re(dε
a∇aε

1 + aε
2∇dε

a)

+(dε
aa

ε
1 + aε

2d
ε
a)

∫ 1

0
f ′′(|aε

2|2 + θ(|aε
1|2 − |aε

2|2))dθ∇|aε
1|2

+λ∇(|x|−γ ∗ (dε
aa

ε
1 + aε

2d
ε
a)) = 0,

(dε
a(0, x), dε

v(0, x)) = (0, 0).

We estimate

Ed(t) := ‖dε
a‖2

Ls +
〈

1
4f ′(|aε

2|2)
dε

v, d
ε
v

〉

L2

.

As in the proof of Theorem 2.3.1, we estimate

d

dt
Ed(t) 6 C(‖ai‖Hs , ‖ai‖Hs)Ed(t)

+
∣∣∣∣
〈

λ

4f ′(|aε|2)∇(|x|−γ ∗ (dε
aa

ε
1 + aε

2d
ε
a)), d

ε
v

〉∣∣∣∣ .

By the use of the Hardy-Littlewood-Sobolev inequality and the Hölder in-
equality, the second term in the right hand side is bounded by

C
∥∥∇(|x|−γ ∗ (dε

aa
ε
1 + aε

2d
ε
a))

∥∥
L2 ‖dε

v‖L2

6 C
(
‖aε

1‖
L

n
n−(γ+1)

+ ‖aε
2‖

L
n

n−(γ+1)

)
‖dε

a‖L2 ‖dε
v‖L2

for n/2−1 < γ 6 n−1, where we read n
n−(γ+1) = ∞ if γ = n−1. Therefore,

we infer from Gronwall’s lemma that

Ed(t) 6 CEd(0) = 0

as long as (ai, vi) exists. Hence, the uniqueness holds. Then, using the
argument in Section 2.2.2, we can determine φε directly by

φε = Φ0−
∫ t

0

(
1
2
|vε(s)|2 + f(|aε(s)|2) + λ(|x|−γ ∗ |aε|2)

)
ds ∈ C([0, T ]; Xs+1).

One can easily check that |vε|2 ∈ L1 ∩ L∞ and f(|aε(s)|2) ∈ L1 ∩ L∞, and
from the Hardy-Littlewood-Sobolev inequality and the Sobolev inequality
that (|x|−γ ∗ |aε|2) ∈ Ln/γ+ ∩ L∞. Therefore,

φε(t)− Φ0 ∈ C([0, T ]; L
n
γ
+ ∩ L∞).
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2.5.3 Justification of WKB estimate

Theorem 2.5.2. Let n > 2. Let f satisfy the same assumption as in
Theorem 2.5.1. Suppose that Let k > 1 be an integer and s > n/2 + 2k + 4
be a real number. Assume that Φ0 ∈ Xs+1 and that Aε

0 writes

Aε
0 =

k∑

j=0

εjAj + o(εk) in Hs

for ε ∈ [0, 1]. Then, the unique solution (aε, φε) of (2.5.1) has the following
expansion:





aε =
k∑

j=0

εjaj + o(εk) in C([0, T ]; Hs−2k−2),

φε =
k∑

j=0

εjφj + o(εk) in C([0, T ]; L
n
γ
+ ∩Xs−2k−1).

(2.5.3)

We note that the expansion of φε never holds in C([0, T ];W s−2k−1,1).
This part is different from (CNLS) case, and due to the presence of the
nonlocal nonlinearity. The proof is similar to that for Theorem 2.3.3. We
hence omit the details.
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Chapter 3

Analysis of Classical
trajectories

3.1 Introduction

In previous Chapter 2, we consider the solution to the semiclassical nonlinear
Schrödinger equation

iε∂tu
ε +

ε2

2
∆uε = N(|uε|)uε, uε(0, x) = Aε

0(x) exp(iΦ0(x)/ε). (3.1.1)

and give an approximate solution of phase-amplitude form

uε(t, x) ∼ ei
φ0(t,x)

ε (b0(t, x) + εb1(t, x) + εb2(t, x) + · · · ) (3.1.2)

for small time. Our next problem is whether we can extend this approxi-
mation for large time or not. In general, there exists a critical time tc < ∞
such that the approximation (3.1.2) breaks down at t = tc. This is due to
the fact that φ0 makes singularity in finite time and so that the right hand
side of (3.1.2) is not defined globally in time. A set of singular point of φ0

is called caustic set. At the caustic, the approximation of the form (3.1.2)
ceases to be valid. The analysis of the asymptotic behavior of the solution
near and after the caustic is one of the most interesting problem of semiclas-
sical analysis. In this chapter, we investigate with the model case when φ0

exists globally in time (global existence, GE ) and when φ0 breaks down in
finite time with the formulation of singularity (finite-time breakdown, FB).
More explicitly, we consider the compressible Euler-Poisson equations as the
model case: 




ρt + div(ρv) = 0,
vt + v · ∇v + λ∇VP = 0,

−∆VP = ρ− b,

(ρ, v)(0, x) = (ρ0, v0)(x), ρ0 > 0,

(EPb)
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where (t, x) ∈ R+×Rn, λ is given physical constant, and b is the background
or impurity. We assume b is a nonnegative constant.

In this chapter, we assume that the unknowns have radial symmetry and
concentrate on the multi-dimensional isotropic model:





rn−1ρt + ∂r(rn−1ρv) = 0,

vt + v∂rv + λ∂rVP = 0,

− ∂r(rn−1∂rVP) = rn−1(ρ− b),
(ρ, v)(0, r) = (ρ0, v0)(r), ρ0 > 0

(rEPb)

for (t, r) ∈ R+ ×R+ with initial data Here, r > 0 denotes the distance from
the origin. Now, the unknowns are ρ = ρ(t, r) and v = v(t, r). VP = VP(t, r)
is defined by

VP(t, r) = VP(t, r0) +
∫ r

r0

1
rn−1
1

(∫ r1

0
rn−1
2 (ρ(t, r2)− b)dr2

)
dr1.

We suppose suitable boundary condition such as VP(t,∞) = 0.
The Euler-Poisson equations arise in many physical problems such as

fluid mechanics, plasma physics, gaseous stars, quantum gravity and semi-
conductors, etc. There is a large amount of literature available on the global
behavior of Euler-Poisson and related problem, from local existence in the
small Hs-neighborhood of a steady state [27, 51, 53] to global existence of
weak solution with geometrical symmetry [19]. For the two-carrier types in
one dimension, see [71]. The relaxation limit for the weak entropy solution,
consult [54] for isentropic case, and [39] for isothermal case. The global
existence for some large class of initial data near a steady state is obtained
by Guo [35] assuming the flow is irrotational.

For isotropic model, the finite time blowup for three dimensional case
with the attractive force, pressure, and compactly supported mass density is
obtained in [52], and the blowup for the repulsive case in the similar settings
is deduced in [63] (see also [24, 64]). In [25], the global existence/finite-time
breakdown of the strong solution is studied from the view point of critical
threshold. They give a complete criterion in one-dimensional case without
spatial symmetry and with spatial symmetry in one and four dimension. A
sufficient condition for finite-time breakdown without spatial symmetry is
obtained in [17, 18], and the complete description of the critical threshold
phenomenon for the two-dimensional restricted Euler-Poisson equations is
given in [47]. In [67], the similar issue is treated with pressure term.

In this chapter, applying the method in [25], we discuss the necessary
and sufficient conditions for the global existence of the solution to the Euler-
Poisson equations with spatial symmetry (rEPb) in multi-dimensional case.
One of the main result is Theorem 3.3.14, which is used in Chapter 4. The
results are too much to state them all here, we only quote them.
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The b = 0 case The necessary and sufficient conditions for the global ex-
istence are given in Theorem 3.3.1 for attractive (λ < 0) case, and in
Theorems 3.3.2, 3.3.3, 3.3.7, and 3.3.12 for repulsive (λ > 0) case.

The b > 0 case The necessary and sufficient conditions for the global ex-
istence are given in Theorems 3.4.1, 3.4.2, and 3.4.3 for attractive
(λ < 0) case, and in Theorems 3.4.4, 3.4.5, and 3.4.7 for repulsive
(λ > 0) case.

Section 3.5 is devoted to the study of the limit b → 0. This limit reveals the
feature of two dimensional case.

3.1.1 Semiclassical analysis and Euler equation

As we seen in Section 2.1.2, there is at least two approach to obtain a WKB
approximation (3.1.2) of the solution to (3.1.1). Let us now recall briefly.

First is to apply the Madelung transform uε(t, x) =
√

ρε(t, x)ei
Sε(t,x)

ε and
work with the quantum Euler equation





∂tρ
ε + div(ρε∇Sε) = 0,

∂t∇Sε + (∇Sε · ∇)∇Sε +∇N(
√

ρε) = ε2∇
(

∆
√

ρε

√
ρε

)
,

(ρε(0, x),∇Sε(0, x)) = (|Aε
0|2,∇(Φ0 + ε arg Aε

0)).
(3.1.3)

The second is employing the modified Madelung transform uε = aεei φε

ε and
considering the system





∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + N(|aε|) = 0,

(aε(0, x), φε(0, x)) = (Aε
0, Φ0).

(3.1.4)

Either way we take, we encounter the compressible Euler equation: Set
(ρ1, v1) := (ρε,∇Sε)|ε=0 and (ρ2, v2) := (|aε|,∇φε)|ε=0. Then, one sees that
both (ρ1, v1) and (ρ2, v2) solve, at least formally, the system





∂tρ + div(ρv) = 0,
∂tv + (v · ∇)v +∇N(

√
ρ) = 0,

(ρ(0, x), v(0, x)) = (|A0|2,∇Φ0).

(3.1.5)

In Theorems 2.1.1, 2.1.2, 2.1.3, and 2.1.4, we actually justify the WKB type
approximation

uε = ei
φ0
ε (β0 + εβ1 + · · ·+ εk−1βk−1 + o(εk−1)) (3.1.6)
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of the solutions to (CNLS), (SP), (H), and (L-NL), respectively, by analyzing
the system (3.1.4)1. Let us give some examples of (3.1.5):

• If (3.1.1) has the defocusing nonlinearity of power type, that is, if
N(y) = yp−1 then (3.1.1) is the power-type nonlinear Schrödinger
equation

iε∂tu
ε +

ε2

2
∆uε = |uε|p−1uε (NLS)

and (3.1.5) becomes the compressible Euler equation with pressure:




∂tρ + div(ρv) = 0,

∂tv + (v · ∇)v +∇(ρ
p
2 ) = 0,

(ρ(0, x), v(0, x)) = (|A0|2,∇Φ0).

(3.1.7)

We justify the small time WKB approximation of the solution in Sec-
tion 2.3 for the cubic case p = 3.

• If (3.1.1) is the Schrödinger-Poisson system

iε∂tu
ε +

ε2

2
∆uε = λVP uε, −∆VP = |uε|2, (SP)

then (3.1.5) becomes the compressible Euler-Poisson equations:




∂tρ + div(ρv) = 0,

∂tv + (v · ∇)v + λ∇VP = 0,

−∆VP = ρ,

(ρ(0, x), v(0, x)) = (|A0|2,∇Φ0).

(EP)

We justify small time WKB approximation in Section 2.4. In this chap-
ter, we consider this equations in the presence of background (EPb).

• If the nonlinearity of (3.1.1) is the sum of above two nonlinearities like

iε∂tu
ε +

ε2

2
∆uε = λVP uε + |uε|p−1uε, ∆VP = |uε|2 (LNL)

(3.1.5) becomes the compressible Euler-Poisson equations with pres-
sure:





∂tρ + div(ρv) = 0,

∂tv + (v · ∇)v + λ∇VP +∇(ρ
p
2 ) = 0,

∆VP = ρ,

(ρ(0, x), v(0, x)) = (|A0|2,∇Φ0).

(3.1.8)

1 In the approximation solution (3.1.6), the main amplitude β0 is not a0 = limε→0 aε

but a0e
iφ1 , where (aε, φε) is a solution to (3.1.4) and φ1 is ε1-order term of φε (see Section

2.2.4). However, |a0|2 = |a0e
iφ1 |2 = |β0|2 and so both (|a0|2,∇φ0) and (|β0|2,∇φ0) solve

(3.1.5), where φ0 = limε→0 φε.
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In Section 2.5, the WKB approximation of the solution to this equation
is deduced.

3.1.2 Classical trajectory

Let us introduce the notion of classical trajectory.

Linear case

We first briefly recall the linear case N ≡ 0. Substitution of uε = aεeiφ0/ε

to (3.1.1) suggests that φ0 = φeik, where φeik solves the eikonal equation:

∂tφeik +
1
2
|∇φeik|2 = 0, φeik(0, x) = Φ0(x). (3.1.9)

The term “eikonal” comes from the theory of geometric optics: The solution
to this equation determines the set where light is propagated. We remark
that the equation (3.1.9) is regarded as a Hamilton-Jacobi system. One can
solve this equation by a characteristic curve X = X(t, y) : R × Rn → Rn

defined by and ordinal differential equation

d

dt
Xeik(t, y) = ∇φeik(t,Xeik(t, y)), Xeik(0, y) = y.

Xeik(t, y) is called classical trajectory, or ray. With this notation, (3.1.9)
is simply d2

dt2
Xeik(t, y) = 0. Therefore, in the linear case (without external

potential), the classical trajectory Xeik is a straight line

Xeik(t, y) = y + t∇Φ0(y).

For more detail, see [13, Section1.3] and references therein.

Nonlinear case

Now we turn to the nonlinear equation (3.1.1). We now consider general
nonlinearity. As shown in Chapter 2, the principal phase φ0 of WKB ap-
proximation (3.1.6) solves the system





∂ta0 + (∇φ0 · ∇)a0 +
1
2
a0∆φ0 = 0,

∂tφ0 +
1
2
|∇φ0|2 + N(|a0|) = 0,

(a0(0, x), φ0(0, x)) = (A0, Φ0)

(3.1.10)

whose second equation is the eikonal equation (3.1.9) with nonlinear inter-
action term. We now suppose that the solution φ0 exists with a certain
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regularity and that the characteristic curve X(t, y) can be defined by an
ordinal differential equation

d

dt
X(t, y) = ∇φ0(t,X(t, y)), X(0, y) = 0. (3.1.11)

Although the system (3.1.10) is not always regarded as a Hamilton-Jacobi
system, let us call X(t, y) as classical trajectory in this article, by an analogy
of the linear case. Unlike Xeik, the classical trajectory X defined from
(3.1.11) is not always a straight line even without the presence of external
force. This is because d2

dt2
X(t, y) = N(|a0|)(t,X(t, y)) is not zero in general.

This reflects the fact that there are interactions, represented by the nonlinear
term N , which bends the classical trajectory. When we consider (rEPb), the
use of classical trajectory works extremely well, and the equation can be
reduced to an ordinal differential equation of classical trajectory. Remark
that the analysis of the classical trajectories does not always yield a good
analysis of φ0. This strongly depends of the nonlinearity and the geometry
of considering space. Nevertheless, the classical trajectory X has a general
property: This traces the flow of the “mass”. We conclude this section with
this property.

Proposition 3.1.1. Let (a0, φ0) be a smooth solution of (3.1.10) on [0, T ]
and X be a classical trajectory on [0, T ] defined by (3.1.11). Let Ω be a
bounded set in Rn and define a set Ωt := {X(t, y) ∈ Rn|y ∈ Ω} for t ∈ [0, T ].
Then, for ρ(t, x) = |a0(t, x)|2, we have

∫

Ωt

ρ(t, x)dx =
∫

Ω
ρ(0, x)dx

for all t ∈ [0, T ].

Proof. Let X(t, y) be the classical trajectory. Then, by the change of vari-
able x = X(t, y), we have

∫

Ωt

ρ(t, x)dx =
∫

Ω
ρ(t,X(t, y))

(
det(∇2φ0)

)
(t,X(t, y))dy,

where ∇2φ0 is the n×n matrix (∂i∂jφ0)i,j . The time derivative of the right
hand side is equal to

∫

Ω
(∂tρ +∇φ0 · ∇ρ)(t,X(t, y))

(
det(∇2φ0)

)
(t,X(t, y))dy

+
∫

Ω
ρ(t,X(t, y))

d

dt

[(
det(∇2φ0)

)
(t,X(t, y))

]
dy. (3.1.12)

We now claim
d

dt

[(
det(∇2φ0)

)
(t,X(t, y))

]
= (∆φ0)(t,X(t, y))

(
det(∇2φ0)

)
(t,X(t, y)).

(3.1.13)
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If this is true, then, plugging to (3.1.12), we deduce from the first equation
of (3.1.10) that

∫

Ω
(∂tρ +∇φ0 · ∇ρ + ρ∆φ0)(t,X(t, y))

(
det(∇2φ0)

)
(t,X(t, y))dy = 0,

which shows the proposition. Hence, it suffices to prove (3.1.13). By the
relation d

dt∂jXi =
∑n

k=1 ∂kvi(t,X)∂jXk, we have

d

dt

[(
det(∇2φ0)

)
(t,X(t, y))

]

=
d

dt

∑

σ∈Sn

signσ
n∏

i=1

∂iXσ(i)(t,X)

=
∑

σ∈Sn

signσ
n∑

j=1

(
n∑

k=1

∂kvσ(j)(t,X)∂jXk

)
n∏

i=1,i6=j

∂iXσ(i)(t,X)

=
∑

σ∈Sn

signσ
n∑

j=1




n∑

k=1,k 6=σ(j)

∂kvσ(j)(t, X)∂jXk




n∏

i=1,i6=j

∂iXσ(i)(t,X)

+
(
∆φ0 det(∇2φ0)

)
(t, X),

where σ is a permutation and Sn denotes the symmetric group. Let us now
prove that the first term of the right hand side is zero. For fixed σ ∈ Sn, j,
and k 6= σ(j), we can choose σ′ ∈ Sn so that

σ′(j) = k, σ′(σ−1(k)) = σ(j), σ′(i) = σ(i) [1, n] 3 ∀i 6= j, σ−1(k).

Then, it holds that signσ′ = − signσ. We put j′ = σ−1(k) and k′ =
k. Note that ((σ′)′, (j′)′, (k′)′) = (σ, j, k) and so that the correspondence
(σ, j, k) 7→ (σ′, j′, k′) is a bijection on {(σ, j, k) ∈ Sn×[1, n]×[1, n]||k 6= σ(j)}.
Furthermore, one verifies that

signσ∂kvσ(j)∂jXk

n∏

i=1,i6=j

∂iXσ(i)+signσ′∂k′vσ′(j′)∂j′Xk′

n∏

i′=1,i′ 6=j′
∂i′Xσ′(i′) = 0

Hence, we obtain (3.1.13).

3.2 Preliminary results

The method of characteristic curve (the use of classical trajectory introduced
in Section 3.1.2) does not necessarily give a good analysis of compressible
Euler equations. However, in the radial Euler-Poisson case, there is an
amazing transform which reduces the system to an ODE of the classical
trajectory X. Let us first describe this reduction of (rEPb) which is intro-
duced in [25] (Section 3.2.1). Then, Section 3.2.2 is devoted to the study
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of local existence of classical solution to (rEPb) by the analysis of classical
trajectories. The criterion of global existence/finite-time breakdown is also
translated in words of classical trajectory (Section 3.2.3). We introduce the
notion of pointwise condition for finite-time breakdown in Definition 3.2.8,
which is introduced in [59].

3.2.1 Reduction of Euler-Poisson equations to an ODE of
classical trajectories

Let us recall the radial Euler-Poisson equations:

rn−1ρt + ∂r(rn−1ρv) = 0, (3.2.1)
vt + v∂rv + λ∂rVP = 0, (3.2.2)

− ∂r(rn−1∂rVP) = rn−1(ρ− b) (3.2.3)
(ρ, v)(0, r) = (ρ0, v0)(r), ρ0 > 0. (3.2.4)

Note that (3.2.1)–(3.2.4) is equal to (rEPb). Let X be a classical trajectory
defined by

d

dt
X(t, R) = v(t,X(t, R)), X(0, R) = R.

We also introduce the “mass”

m(t, r) :=
∫ r

0
ρ(t, s)sn−1ds.

Then, an integration of (3.2.1) yields

∂tm + v∂rm = 0, (3.2.5)

which is written as
d

dt
m(t,X(t, R)) = 0. (3.2.6)

Note that (3.2.5) implies that the mass is conserved along the characteristic
curve. This property holds for general nonlinearity without symmetry (see
Proposition 3.1.1). Integrating (3.2.3) and combining with (3.2.2), we also
have

d2

dt2
X(t, R) =

d

dt
v(t,X(t, R)) =

λm(t,X(t, R))
(X(t, R))n−1

− λ

n
bX(t, R). (3.2.7)

Thus, it turns out that the system (3.2.1)–(3.2.4) is reduce to an ODE for
X:

X ′′(t, R) =
λm0(R)

X(t, R)n−1
− λ

n
bX(t, R), X ′(0, R) = v0(R), X(0, R) = R,

(3.2.8)
where m0 is the “initial mass” m0(R) =

∫ R
0 ρ0(s)sn−1ds. This reduction is

the key for our analysis in this chapter.
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We also introduce the integral form of this equation. Multiply both sides
by X ′ to obtain

(X ′(t, R))2 = v0(R)2+
2λm0(R)

(n− 2)Rn−2
+

λ

n
bR2− 2λm0(R)

(n− 2)X(t, R)n−2
−λ

n
bX(t, R)2

(3.2.9)
if n > 3 and

(X ′(t, R))2 = v0(R)2 +
λ

2
b(R2 −X(t, R)2) + 2λm0(R) log

X(t, R)
R

(3.2.10)

if n = 2. They are also useful.

3.2.2 Local existence of classical solution

In this section, we shall show the local existence of classical solution to
(rEPb) by using the classical trajectories. The strategy is the following:
We first show the existence of classical trajectory X which solves the ODE
(3.2.8) (Proposition 3.2.1). Then, the solution of (rEPb) is defined from X
by an explicit formula (Proposition 3.2.3).

Local existence of classical trajectory

Let us begin with the local existence of X. We regard X(t, R) as a function
R+ × R+ → R. For a nonnegative integer k, we define

Dk :=

{
C([0,∞)) if k = 0,

C([0,∞)) ∩ Ck((0,∞)) if k > 0.
(3.2.11)

For nonnegative integers k1, k2 and intervals I1, I2, we define

Ck1,k2(I1 × I2) = {f(t, x) : I1 × I2 → R|∂a
t ∂b

xf ∈ C(I1 × I2),
∀a ∈ [0, k1], ∀b ∈ [0, k2]}.

Proposition 3.2.1 (Existence of solution of (3.2.8)). Suppose that n > 1,
λ ∈ R, and b > 0. Let k be a nonnegative integer and assume ρ0 ∈ Dk and
v0 ∈ Dk+1 with v0(0) = 0. Then, m0 ∈ Dk+1 holds, and for any R > 0
there exists t(R) > 0 such that X(t, R) is uniquely defined from the ODE
(3.2.8) in an interval [0, t(R)). Moreover, if there exists T > 0 such that
X(t, R) > 0 holds for all (t, R) ∈ [0, T )× (0,∞), then we have

X ∈ C2,k+1([0, T )× (0,∞)) ∩ C∞,k+1((0, T )× (0,∞)).

This proposition follows by applying a general theory of ordinal differ-
ential equations for each fixed R. We omit the detail.
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Local existence of the solution to (rEPb)

Let us turn to the local existence of the classical solution to (rEPb). We
introduce the indicator function

Γ(t, R) := exp
(∫ t

0
∂ru(s,X(s,R))ds

)
. (3.2.12)

The interpretation of Γ(t, R) will be clear from the following lemma and
Proposition 3.2.6, below.

Lemma 3.2.2. Consider the Euler-Poisson equations (rEPb). Let X be the
classical trajectory, then

Γ(t, R) = ∂RX(t, R).

Moreover, the solution of (rEPb) is given by

v(t, X(t, R)) =
d

dt
X(t, R), (3.2.13)

ρ(t, X(t, R)) =
Rn−1ρ0(R)
Xn−1Γ(t, R)

, (3.2.14)

∂rv(t,X(t,X)) =
∂tΓ(t, R)
Γ(t, R)

. (3.2.15)

Even if it is possible to determine a function X which solves the ODE
(3.2.8) for large time, we can define the solution to the Euler-Poisson equa-
tions (rEPb) by Lemma 3.2.2 as long as X and Γ = ∂RX are positive.

Proposition 3.2.3 (Local existence of the solution of (rEPb)). Suppose that
n > 1, λ ∈ R, and b > 0. Let k be a nonnegative integer and assume ρ0 ∈ Dk

and v0 ∈ Dk+1 with v0(0) = 0. Let X be the solution of (3.2.8) given by
Proposition 3.2.1. Define Γ by (3.2.12). If X(t, R) > 0 and Γ(t, R) > 0 hold
for all R > 0 and t ∈ [0, T ) and if lim infR→0 Γ(t, R) > 0 for t ∈ [0, T ), then
X(t, 0) = 0 for t ∈ [0, T ) and (rEPb) has a unique solution

ρ ∈ C2([0, T ), Dk) ∩ C∞((0, T ), Dk),

v ∈ C1([0, T ), Dk+1) ∩ C∞((0, T ), Dk+1).

Remark 3.2.4. In above proposition, if s = 0 then ρ is not spatially differ-
entiable. In that case, we use the mass m instead of ρ and consider the
modified equations (3.2.5) and (3.2.2)–(3.2.4) instead of (rEPb).

Proof. We first show X(t, 0) = 0 for t ∈ [0, T ). Since (3.2.8) can be solved
explicitly, one easily checks this if n = 1. Let us consider n > 2. By
lim infR→0 Γ(t, R) > 0, we have R 6 CX(t, R) for small R. Plugging this to
(3.2.9) and (3.2.10), we deduce from m0(R) = O(Rn) as R → 0 that

lim
R→0

(
X ′(t, R)2 +

λb

n
X2(t, R)

)
= 0.
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If λ > 0 then, it immediately follows that X ′(t, 0) = X(t, 0) = 0 for t ∈
[0, T ). On the other hand, if λ < 0 then we have

|X(t, 0)|′ 6 |X ′(t, 0)| =
√
|λ|b
n
|X(t, 0)|

and so |X(t, 0)| 6 |X(0, 0)|et
√
|λ|b/n = 0. Hence, X(t, 0) = 0 for t ∈ [0, T ).

It gives the continuities of X, X ′, and X ′′ (and higher time derivatives)
around R = 0:

X ∈ C2,0([0, T )× [0,∞)) ∩ C2,k+1([0, T )× (0,∞))

∩ C∞,0((0, T )× [0,∞)) ∩ C∞,k+1((0, T )× (0,∞)).

Then, the existence part is an immediate consequence of Lemma 3.2.2.
We prove the uniqueness. It suffices to show in the case k = 0. Let

(ρi, vi) (i = 1, 2) be two solutions to (3.2.5) and (3.2.2)–(3.2.4) which satisfy

ρi ∈ C2([0, T ), D0),

vi ∈ C1([0, T ), D1).

Now, solving d
dtXi(t, R) = vi(t,X(t, R)), we can define the classical trajec-

tories X1 and X2, and the indicator functions Γ1 and Γ2. Then, we have

Xi ∈ C2([0, T ), D1), Γi ∈ C2([0, T ), C((0,∞))).

Since two solutions exist until t < T , for all R > 0 and δ > 0 there exist
positive constants c1 = c1(R, δ) and c2 = c2(R, δ) such that

Xi(t, R) > c1 > 0 and Γi(t, R) > c2 > 0, ∀t ∈ [0, T − δ].

Recall that both X1 and X2 solve

X ′′(t, R) =
λm0(R)

X(t, R)n−1
− λb

n
X(t, R), X ′(0, R) = v0(R), X(0, R) = R

We fix R > 0 and δ > 0. Using the fact that
∣∣∣∣

1
X1(t, R)n−1

− 1
X2(t, R)n−1

∣∣∣∣ 6 n− 1
cn
1

|X1(t, R)−X2(t, R)|

for all t ∈ [0, T − δ], and applying Gronwall’s lemma to




X(t, R) = R +
∫ t

0
X ′(τ)dτ,

X ′(t, R) = v0(R) +
∫ t

0

(
λm0(R)

X(τ, R)n−1
− λb

n
X(τ, R)

)
dτ,
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we deduce that X ′
1(t, R) = X ′

2(t, R) and X1(t, R) = X2(t, R) hold for t ∈
[0, T − δ]. Since R > 0 is arbitrary, we also have X1(t, 0) = X2(t, 0) for all
t ∈ [0, T − δ] by continuity. Thus, we see that X1(t, R) = X2(t, R) for all
R > 0 and t ∈ [0, T ) since δ > 0 is also arbitrary. Applying Lemma 3.2.2,
we conclude that ρ1 = ρ2 and v1 = v2.

So far, we obtain the unique solution to (rEPb). We finally confirm that
this solution solves the original equation in the distribution sense.

Proposition 3.2.5. Suppose n > 1, λ ∈ R, and b > 0. Assume ρ0 ∈ D0

and v0 ∈ D1 with v0(0) = 0. Let (ρ, v) be a solution to (rEPb) given in
Proposition 3.2.3. Then, r(t, x) := ρ(t, |x|) and v(t, x) = (x/|x|)v(t, |x|)
solve the Euler-Poisson equations

rt + div(rv) = 0,
vt + v · ∇v + λ∇VP = 0,

−∆VP = r− b.

in the distribution sense.

Proof. Suppose that the solution of (rEPb) exists for t < T . Since (m, v)
solves (3.2.5) and (3.2.2)–(3.2.4) in the classical sense, and since moreover
it is continuous at x = 0 with v(0) = 0, the pair (r,v) solves the (EPb) in
the distribution sense.

3.2.3 Pointwise condition for finite-time breakdown

Let us proceed to the discussion on global existence. By means of Lemma
3.2.2, it is clear that the existence of tc > 0 such that Γ(tc, R) = 0 implies
the finite-time breakdown of the solution.

Proposition 3.2.6. The smooth solution to the radial Euler-Poisson equa-
tions (3.2.1)–(3.2.4) is global if and only if Γ(t, R) is positive for all t > 0 and
R > 0. On the other hand, the smooth solution to the Euler-Poisson equa-
tions breaks down at t = tc if and only if the following equivalent condition
is met for some R = Rc:

1.
∫ tc
0 ∂rv(τ,X(τ, Rc))dτ = −∞;

2. Γ(tc, Rc) = 0;

3. ∂RX(tc, Rc) = 0.

The next elementary lemma suggests that the existence of t0 > 0 such
that X(t0, R0) = 0 holds for some R0 > 0 also leads to the same situation.
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Lemma 3.2.7. Let X be a characteristic curve. If X(t0, R1) = X(t0, R2) for
some t0 > 0 and 0 6 R1 < R2, then there exist t ∈ [0, t0] and R ∈ [R1, R2]
such that Γ(t, R) = 0. In particular, if X(t0, R0) = 0 for some t0 > 0 and
R0 > 0, then there exist t 6 t0 and R 6 R0 such that Γ(t, R) = 0.

By Proposition 3.2.6, to ensure the existence of the global regular solu-
tion, it suffices to start with the initial data for which

X(t, R) > 0, ∀R > 0 and Γ(t, R) > 0, ∀R > 0

hold for all t > 0. Now, we introduce the notion of pointwise condition for
finite-time breakdown.

Definition 3.2.8. For fixed R > 0, we call a necessary and sufficient con-
dition for the existence of tc ∈ (0,∞) such that X(tc, R) = 0 or Γ(tc, R) = 0
hold as a pointwise condition for finite-time breakdown. In the case of R = 0,
we regard a necessary and sufficient condition for the existence of tc ∈ (0,∞)
such that Γ(tc, 0) = 0 as a pointwise condition for finite-time breakdown. We
denote PCFB, for short.

With this notion, Propositions 3.2.6 is reduced as follows:

Proposition 3.2.9. The local solution to the radial Euler-Poisson equations
(3.2.1)–(3.2.4) given in Proposition 3.2.3 breaks down in finite time if and
only if there exist some R > 0 such that the PCFB is met.

3.3 Global existence of classical solutions to ra-
dial Euler-Poisson equations 1: without back-
ground

In this section, we give a necessary and sufficient condition for global existence/finite-
time breakdown of the classical solution to the radial Euler-Poisson equation
without background:





rn−1ρt + ∂r(rn−1ρv) = 0,

vt + v∂rv + λ∂rVP = 0,

− ∂r(rn−1∂rVP) = rn−1ρ,

(ρ, v)(0, r) = (ρ0, v0)(r), ρ0 > 0

(rEP0)

for (t, r) ∈ R+ × R+, which is a radial model of




ρt + div(ρv) = 0,
vt + v · ∇v + λ∇VP = 0,

−∆VP = ρ,

(ρ, v)(0, x) = (ρ0, v0)(x), ρ0 > 0.

(EP0)
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As seen in the previous section, the problem boils down to the analysis of
the classical trajectory X(t, R) which satisfies

X ′′(t, R) =
λm0(R)

X(t, R)n−1
, X ′(0, R) = v0(R), X(0, R) = R. (3.3.1)

It turns out that, for n > 3, the use of the quantities

A(r) :=
λm0(r)
(n− 2)

, C(r) := v0(r)2 +
A(r)
rn−2

(3.3.2)

makes the description of the condition clearer. We also note that the (3.2.9)
is written as

(X ′(t, R))2 = C(R)− A(R)
X(t, R)n−1

. (3.3.3)

For n = 2, we use another quantity

A(r) := 2λm0(r), C(r) := v0(r)2 −A(r) log r (3.3.4)

which enables us to translate (3.2.10) into

(X ′(t, R))2 = C(R) +A(R)(log X(t, R)). (3.3.5)

3.3.1 Attractive case

Let us begin with the attractive case λ < 0. In this case, A(R) 6 0.

Theorem 3.3.1. Suppose λ < 0, n > 1, ρ0 ∈ D0, and v0 ∈ D1 with
v0(0) = 0.

1. If n = 1 or 2 then the solution to (rEP0) is global if and only if
ρ0(r) = 0, v0(r) > 0, and ∂rv0(r) > 0 holds for all r > 0. In particular,
if ρ0 6≡ 0 then the solution breaks down in finite time.

2. If n > 3 then the solution is global if and only if

v0(r) > 0, C(r) > 0, and ∂rC(r) > 0

hold for all r > 0.

Let k be a nonnegative integer. If ρ0 ∈ Dk and v0 ∈ Dk+1 satisfy the condi-
tion for global existence, then the corresponding solution of (rEP0) satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1),

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EP0) in the distribution sense.
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Proof. Step 1.

We begin with the one-dimensional case. If ρ0 is not identically zero, then
we can choose R0 so that m0(R0) > 0. Twice integration of (3.3.1) yields
X(t, R0) = R0 + v0(R0)t− (|λ|m0(R0)/2)t2. Therefore, we can find t0 such
that X(t0, R0) = 0, which leads to the finite-time breakdown of the solution.
On the other hand, if ρ0 ≡ 0 then X(t, R) = R + v0(R)t and Γ(t, R) =
1 + v′0(R)t. Hence, the solution is global if and only if v0(R) > 0 and
v′0(R) > 0 holds for all R > 0..

Step 2.

We next treat the two-dimensional case. If ρ0 is not identically zero, then
we can choose R0 so that m0(R0) > 0. Recall that X solves

(X ′(t, R0))2 = v0(R0)2 − 2|λ|m0(R0) log
(

X(t, R0)
R0

)
. (3.2.10)

Since the left hand side is nonnegative, we obtain the upper bound of X:

X(t, R0) 6 R0 exp
(

v0(R0)2

2|λ|m0(R0)

)
=: Xub > 0.

Plugging this to (3.3.1), we see that

X ′′(t, R0) 6 −|λ|m0(R0)
Xub

< 0.

Therefore, there exists t0 such that X(t0, R0) = 0. In the case where ρ ≡
0, by the same argument as in the one-dimensional case, we see that the
solution is global if and only if v0(R) > 0 and v′0(R) > 0 hold for all R > 0.

Step 3.

Let us proceed to n > 3 case. Let A and C be as in (3.3.2). We first note that
v0 > 0 is necessary for global existence. Indeed, if v0(R0) < 0 for some R0 >
0, then X ′′(t, R0) 6 0 follows from (3.3.1) and so X ′(t, R) 6 X ′(0, R) =
v0(R) < 0 for t > 0. Hence, there exists t0 such that X(t0, R0) = 0. We next
show that C > 0 is also necessary for global existence. Assume that there
exists R0 such that C(R0) < 0. In this case, A(R0) < −Rn−2

0 v0(R0)2 6 0
by definition of C. Then, from (3.3.3), we have

0 6 (X ′(t, R0))2 = −|C(R0)|+ |A(R0)|
X(t, R0)n−2

.

This yields an upper bound of X:

X(t, R0) 6
∣∣∣∣
C(R0)
A(R0)

∣∣∣∣
1

n−2

.
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Then, the same argument as in the two-dimensional case shows the existence
of t0 such that X(t0, R0) = 0. Therefore, C > 0 is necessary for global
existence.

In the followings, we suppose v0 > 0 and C > 0 are satisfied. Under this
restriction, we show that the solution is global if and only if ∂rC(R) > 0
holds for all R > 0. Namely, what to show is that

∂rC(R) > 0 ⇐⇒ Γ(t, R) > 0, ∀t > 0 (3.3.6)

under the assumption C(R) > 0 and v0(R) > 0. We first consider the case
v0(R) > 0. Then, C(R) > 0 or A(R) < 0 holds. Moreover, X(t, R) →∞ as
t → ∞ since X ′′(t, R) > 0 and so X ′(t, R) > X ′(0, R) = v0(R) > 0 for all
t > 0. In this case, by (3.3.3)

X ′(t, R) =

√
C(R)− A(R)

X(t, R)n−2
> 0,

and so ∫ X(t,R)

R

dy√
C(R)−A(R)y−(n−2)

= t.

Differentiate with respect to R to obtain

Γ(t, R)
X ′(t, R)

− 1
v0(R)

− 1
2

∫ X(t,R)

R

∂rC(R)− ∂rA(R)y−(n−2)

(
C(R)−A(R)y−(n−2)

)3/2
dy = 0.

We put

B(t, R) :=
Γ(t, R)
X ′(t, R)

=
1

v0(R)
+

1
2

∫ X(t,R)

R

∂rC(R)− ∂rA(R)y−(n−2)

(
C(R)−A(R)y−(n−2)

)3/2
dy.

Two quantity B and Γ have the same sign. Notice that

∂rA(R) =
2λ

n− 2
ρ0(R)Rn−1 6 0

and the denominator in the last integral is always positive. Therefore, if
∂rC(R) > 0 then the above integral is positive, and so B(t, R) stays positive
for all t > 0. On the other hand, if ∂rC(R) < 0 then the integral in
B(t, R) tends to −∞ as t →∞. This is because, choosing X0 so large that
−|∂rC(R)|+ |∂rA(R)|X−(n−2)

0 < −|∂rC(R)|/2, we have
∫ X(t,R)

X0

−|∂rC(R)|+ |∂rA(R)|y−(n−2)

(
C(R) + |A(R)|y−(n−2)

)3/2
dy < −

∫ X(t,R)

X0

|∂rC(R)|y3(n−2)/2

2|A(R)|3/2
dy

if A(R) < 0 and
∫ X(t,R)

X0

−|∂rC(R)|+ |∂rA(R)|y−(n−2)

(
C(R) + |A(R)|y−(n−2)

)3/2
dy < −

∫ X(t,R)

X0

|∂rC(R)|
2C(R)3/2

dy
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if C(R) > 0. The right hand sides of both inequalities tend to −∞ as t →∞
(X(t, R) → ∞). Therefore, we can choose tc such that Γ(tc, R) = 0. We
finally discuss the case where v0(R) = 0. In this case, since C(R) > 0,
we have C(R) = 0 and so A(R) = 0 (m0(R) = 0) by the definition of
C. It implies that ρ(r) = 0 for all r 6 R and so that, for all r 6 R,
X ′(t, r) ≡ 0 and X(t, r) ≡ r. Hence, by continuity of Γ, one verifies that
Γ(t, R) = limr↑R ∂RX(t, r) = 1 > 0 for all t > 0. Note that ∂rC(R) = 0
since ρ(R) = 0. Thus, (3.3.6) is justified.

3.3.2 Repulsive case 1: n = 1

Theorem 3.3.2 (Critical thresholds in 1D case [25]). Suppose n = 1, λ > 0,
ρ0 ∈ D0, and v0 ∈ D1 with v0(0) = 0. Then, the classical solution to (rEP0)
is global if and only if

v0(R) > −
√

2λRm0(R) and v′0(R) > −
√

2λρ0(R), ∀R > 0, (3.3.7)

where, in both inequalities, we allow the case where the both sides equal zero.
Let k be a nonnegative integer. If ρ0 ∈ Dk and v0 ∈ Dk+1 satisfy v0(0) = 0
and (3.3.7) then the corresponding solution of (rEP0) satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EP0) in the distribution sense.

Proof. Integrating (3.3.1) twice, we immediately obtain

X(t, R) = R + v0(R)t +
λm0(R)

2
t2

and so
Γ(t, R) = 1 + v′0(R)t +

λρ0(R)
2

t2.

The solution is global if and only if these two values stay positive for all
positive time. X(t, R) > 0 holds for all t > 0 if and only if v0(R) > 0 or
v0(R)2 − |λ|Rm0(R)/2 < 0, and X(t, R) > 0 holds for all t > 0 if and only
if v′0(R) > 0 or (v′0(R))2− λρ0(R)/2 < 0. Therefore, the solution is global if
and only if

v0(R) > −
√

2λRm0(R), and v′0(R) > −
√

2λρ0(R)

holds for all R > 0. Moreover, it is easy to check that the case v0(R) =
m0(R) = 0 and the case v′0(R) = ρ(R) = 0 is also admissible.
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3.3.3 Repulsive case 2: n > 3

We first consider the special case n = 4.

Theorem 3.3.3 (Critical thresholds in 4D case [25]). Suppose n = 4, λ > 0,
ρ0 ∈ D0, and v0 ∈ D1 with v0(0) = 0. Let C(r) be defined in (3.3.2). The
classical solution to (rEP0) is global if and only if both of the following
conditions hold for all R > 0:

1. v0(R) > 0 or
∫ R
0 ρ0(s)s3ds > 0;

2. ∂rC(R) > 0 and v0(R) + Rv′0(R) > −
√

2R∂rC(R);

where, in the last inequality, we allow the case where the both sides equal
zero. Let k be a nonnegative integer. If ρ0 ∈ Dk and v0 ∈ Dk+1 satisfy the
above condition then the corresponding solution of (rEP0) satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Ds),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EP0) in the distribution sense.

In the general n > 3 case, things are not so simple. We rely on Proposi-
tion 3.2.6. Then, our task is to determine the PCFB introduced in Definition
3.2.8. Now let us give a complete description.

Definition 3.3.4 (PCFB for v0 > 0). Suppose λ > 0 and n > 3. The PCFB
under v0(R) > 0 is that either one of following three conditions holds:

1. ∂rC(R) < 0;

2. ∂rC(R) = 0 and

1
v0(R)

− ∂rA(R)
2

∫ ∞

R

y−(n−2)

(C(R)−A(R)y−(n−2))3/2
dy < 0;

3. 0 < ∂rC(R) < ∂rA(R)R−(n−2) and

1
v0(R)

+
1
2

∫ (
∂rA(R)
∂rC(R)

)
1

n−2

R

∂rC(R)− ∂rA(R)y−(n−2)

(C(R)−A(R)y−(n−2))3/2
dy 6 0.

Definition 3.3.5 (PCFB for v0 = 0). Suppose λ > 0 and n > 3. The PCFB
under v0(R) = 0 is that either one of following three conditions holds:

1. ∂rC(R) < 0;

2. ∂rC(R) = 0 and
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(a) n = 3;

(b) n = 4 and v′0(R)R < 0;

(c) n > 5 and v′0(R)R < − (n−2)
√

C(R)

2 (1− In),

where In is a constant given by

In :=
∫ ∞

1

(
(1− y−2)−

1
n−2 − 1

)
dy < 1;

3. ∂rC(R) > 0 and

(a) n = 3 and

v′0R 6 − 3
4

√
C + R∂rC

+
√

C

2

(
1− R∂rC

2C

)
log

(√
C +

√
C + R∂rC√

R∂rC

)
;

(b) n = 4 and v′0R 6 −√2R∂rC;

(c) n > 5 and

v′0R 6 − (n− 2)
1
2 (R∂rC)

3
2

4C

(
1 +

(n− 2)C
R∂rC

) n
2(n−2)

− (n− 2)C
1
2

2

(
1− R∂rC

2C

)

×
[(

1 +
R∂rC

(n− 2)C

) 1
2

−
∫ ∞
“
1+ R∂rC

(n−2)C

” 1
2

(
(1− y−2)−

1
n−2 − 1

)
dy

]
.

Here, we omit R variable in C, ∂rC, and v′0, for simplicity.

Definition 3.3.6 (PCFB for v0 < 0). Suppose λ > 0 and n > 3. The PCFB
under v0(R) < 0 is that A(R) = 0 or either one of following five conditions
holds:

1. ∂rC(R) < 0;

2. ∂rC(R) = 0 and

1
|v0(R)| −

1
2

∫ ∞

R

∂rA(R)y−(n−2)

(C(R)−A(R)y−(n−2))3/2
dy < 2∂rt∗(R);

3. 0 < ∂rC(R) 6 ∂rA(R)R−(n−2) and

1
|v0(R)| +

1
2

∫ (
∂rA(R)
∂rC(R)

)
1

n−2

R

∂rC(R)− ∂rA(R)y−(n−2)

(C(R)−A(R)y−(n−2))3/2
dy 6 2∂rt∗(R);
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4. ∂rA(R)R−(n−2) < ∂rC(R) < ∂rA(R)(R−(n−2) + v0(R)2/A(R)) and

1
|v0(R)|+

1
2

∫ (
∂rA(R)
∂rC(R)

)
1

n−2

R

∂rC(R)− ∂rA(R)y−(n−2)

(C(R)−A(R)y−(n−2))3/2
dy 6 max(0, 2∂rt∗(R));

5. ∂rA(R)(R−(n−2) + v0(R)2/A(R)) 6 ∂rC(R),

where

t∗(R) :=
(
A(R)C(R)−

n
2

) 1
n−2

∫ R
“

A(R)
C(R)

”− 1
n−2

1

dz√
1− z−(n−2)

.

Theorem 3.3.7. Suppose λ > 0, n > 3, ρ0 ∈ D0, and v0 ∈ D1 with
v0(0) = 0. Then, the classical solution of (rEP0) breaks down in finite
time if and only if there exists R such that the one of the PCFB given in
Definitions 3.3.4, 3.3.5, and 3.3.6 is met. On the other hand, the classical
solution is global if and only if, for all r > 0, the PCFB does not hold.
Moreover, if ρ0 ∈ Dk and v0 ∈ Dk+1 (k > 0) satisfy the condition for global
existence, then the corresponding solution satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

Furthermore, it is unique in C2([0,∞), D0)×C1([0,∞), D1) and also solves
(EP0) in the distribution sense.

Proof. Case 1: v0 > 0.

We first note that, by (3.3.1) and the assumption λ < 0, X ′′(t, R) > 0 holds
as long as X(t, R) > 0. Since X ′(0, R) = v0(R) > 0, we have X ′(t, R) > 0, at
least for small time t ∈ [0, T0]. Note that X ′(t, R) > 0 for t ∈ [0, T0] implies
that, for t ∈ [0, T0], X(t, R) > X(0, R) = R > 0 and so X ′′(t, R) > 0. Then,
it means that X ′ is also increasing for t ∈ [0, T0]. Thus, we can choose T0

arbitrarily large, that is, X ′(t, R) > 0 for all t > 0. Then, for all t > 0, it
follows from (3.3.3) that

∫ X(t,R)

R

dy√
C(R)−A(R)y−(n−2)

= t.

This identity tells us that X(t, R) → ∞ as t → ∞ (This also follows from
the fact that X ′(t, R) > X ′(0, R) = v0(R) > 0). For simplicity, we omit the
R variable in the followings. Differentiate with respect to R to obtain

Γ(t)√
C −AX(t)−(n−2)

− 1
v0
− 1

2

∫ X(t)

R

∂rC − ∂rAy−(n−2)

(
C −Ay−(n−2)

)3/2
dy = 0.
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We put

B(t) :=
Γ(t)√

C −AX−(n−2)
=

1
v0

+
1
2

∫ X(t)

R

∂rC − ∂rAy−(n−2)

(
C −Ay−(n−2)

)3/2
dy.

Assume ∂rC(R) < 0. Then, since X(t) →∞ as t →∞,

d

dt
B(t) =

∂rC − ∂rAX(t)−(n−2)

2
(
C −AX(t)−(n−2)

)3/2
X ′(t) <

∂rC

2C3/2
v0 < 0

holds for sufficiently large t. Hence, we have B(t) → −∞ as t → ∞, and
so there always exists a time t0 > 0 such that B(t0) 6 0. We see that
∂rC(R) < 0 is a sufficient condition for finite-time breakdown.

Next we assume ∂rC(R) = 0. Then, B(t) is monotone decreasing because

d

dt
B(t) = − ∂rAX(t)−(n−2)

2
(
C −AX(t)−(n−2)

)3/2
X ′(t) 6 0.

Therefore, there exists a time t0 > 0 such that B(t0) 6 0 if and only if
limt→∞B(t) < 0 (including the case limt→∞B(t) = −∞). This condition is
equivalent to

1
v0
− 1

2

∫ ∞

R

∂rAy−(n−2)

(
C −Ay−(n−2)

)3/2
dy < 0.

We finally assume ∂rC(R) > 0. We first consider the case (∂rA
∂rC )

1
n−2 > R.

Then, B(t) takes it minimum at a time t = t1 > 0 such that

X(t1, R) =
(

∂rA

∂rC

) 1
n−2

> R

because d
dtB(t) is as above and t1 is the time such that d

dtB(t1) = 0. There-
fore, there exists a time t0 such that B(t0) 6 0 if and only if

B(t1) =
1
v0

+
1
2

∫ ( ∂rA
∂rC

)
1

n−2

R

∂rC − ∂rAy−(n−2)

(C −Ay−(n−2))3/2
dy 6 0.

We finally consider the case (∂rA
∂rC )

1
n−2 6 R. However, in this case, B is

monotone increasing. Therefore, B > B(0) = 1/v0 > 0 for all t > 0.

Case 2: v0 = 0.

First note that we have, at least in a small time interval, X(t, R) > 0 because
X(0, R) = R > 0. Since X ′′(t, R) > 0 holds as long as X(t, R) > 0 by (3.3.1),
we can find a time t0 > 0 such that X ′(t0, R) > X ′(0, R) = v0(R) = 0. Note
that t0 can be chosen arbitrarily small. Then, repeating the argument as in
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the previous case, we see that, X ′(t, R) > X ′(t0, R) > 0 for all t > t0, which
shows X ′(t, R) > 0 for all t > 0 and X(t, R) → ∞ as t → ∞. Moreover,
X(t, R) ∼ C(R)1/2t for sufficiently large t since X ′(t, R) → C(R)1/2 as
t → ∞. It reveals that if ∂rC(R) < 0 then the characteristic curves must
cross and so the solution breaks down in finite time by Lemma 3.2.7.

We now suppose ∂rC(R) > 0. We omit R variable in the followings.
Since X ′(t) > 0 for all t > 0, an integration of (3.3.3) gives

∫ X(t)

R

dy√
C −Ay−(n−2)

= t.

By a change of variable z = y/R, the left hand side is equal to

∫ X(t)/R

1

Rdz√
C −AR−(n−2)z−(n−2)

.

We temporally assume that v0 > 0 and take the limit v0 ↓ 0 later. This
computation is justified, for example, by replacing v0 by X ′(εR, R) > 0
with small ε > 0 and taking the limit ε ↓ 0. Differentiation with respect R
yields

0 =
R∂R(X(t)/R)√
C −AX(t)−(n−2)

+
∫ X(t)/R

1

dz√
C −AR−(n−2)z−(n−2)

−R

∫ X(t)/R

1

∂rC − (∂rAR−(n−2) − (n− 2)AR−(n−1))z−(n−2)

2
(
C −AR−(n−2)z−(n−2)

)3/2
dz.

For simplicity, we omit t variable in X and ∂RX for a while because the
following computations do not include any differentiation. An elementary

72



calculation shows

0 =
∂RX√

C −AX−(n−2)
− X

R
√

C −AX−(n−2)
+

∫ X/R

1

dz√
C −AR−(n−2)z−(n−2)

(3.3.8)

− R∂rC

2C

∫ X/R

1

C −AR−(n−2)z−(n−2)

(
C −AR−(n−2)z−(n−2)

)3/2
dz

− R∂rC

2C

∫ X/R

1

AR−(n−2)z−(n−2)

(
C −AR−(n−2)z−(n−2)

)3/2
dz

+
∫ X/R

1

R(∂rAR−(n−2) − (n− 2)AR−(n−1))z−(n−2)

2
(
C −AR−(n−2)z−(n−2)

)3/2
dz

=
∂RX√

C −AX−(n−2)
− X

R
√

C −AX−(n−2)
+

∫ X/R

1

dz√
C −AR−(n−2)z−(n−2)

− R∂rC

2C

∫ X/R

1

dz
(
C −AR−(n−2)z−(n−2)

)1/2

+
(−∂rCAR + C∂rAR− (n− 2)AC)

2CRn−2

∫ X/R

1

z−(n−2)

(
C −AR−(n−2)z−(n−2)

)3/2
dz

Now, it also holds that

−∂rCAR + C∂rAR− (n− 2)AC

2CRn−2
=

(
− v′0A

CRn−3
+

∂rAR− (n− 2)A
2CRn−2

v0

)
v0.

Now, let us show that

lim
v0↓0

v0

∫ X/R

1

z−(n−2)

(
C −AR−(n−2)z−(n−2)

)3/2
dz =

2
AR−(n−2)(n− 2)

. (3.3.9)

Fix a small ε > 0. Then, we have

lim
v0↓0

v0

∫ X/R

1+ε

z−(n−2)

(
C −AR−(n−2)z−(n−2)

)3/2
dz = 0,

since the integral is uniformly bounded with respect to v0. Moreover,

v0

∫ 1+ε

1

z−(n−2)

(
C −AR−(n−2)z−(n−2)

)3/2
dz

6 2v0(1 + ε)
AR−(n−2)(n− 2)

∫ 1+ε

1

AR−(n−2)(n− 2)z−(n−1)

2
(
C −AR−(n−2)z−(n−2)

)3/2
dz

6 2v0(1 + ε)
AR−(n−2)(n− 2)

[(
C −AR−(n−2)

)− 1
2 −

(
C −AR−(n−2)(1 + ε)−(n−2)

)− 1
2

]

→ 2(1 + ε)
AR−(n−2)(n− 2)
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as v0 → 0. Similarly,

v0

∫ 1+ε

1

z−(n−2)

(
C −AR−(n−2)z−(n−2)

)3/2
dz

> 2v0

AR−(n−2)(n− 2)

∫ 1+ε

1

AR−(n−2)(n− 2)z−(n−1)

2
(
C −AR−(n−2)z−(n−2)

)3/2
dz

→ 2
AR−(n−2)(n− 2)

as v0 → 0. Since ε > 0 is arbitrary, we obtain (3.3.9). Then, taking the
limit v0 ↓ 0 in (3.3.8),

0 =
∂RX

C1/2
√

1− (R/X)n−2
− X

RC1/2
√

1− (R/X)n−2
+

∫ X/R

1

dz

C1/2
√

1− z−(n−2)

− R∂rC

2C3/2

∫ X/R

1

dz√
1− z−(n−2)

− 2v′0R
(n− 2)C

Thus, we have

∂RX(t)√
1− (R/X(t))n−2

=
X(t)

R
√

1− (R/X(t))n−2
−

∫ X(t)/R

1

dz√
1− z−(n−2)

+
R∂rC

2C

∫ X(t)/R

1

dz√
1− z−(n−2)

+
2v′0R

(n− 2)C1/2
.

We denote this by B(t).

Case 2-a.

We first assume that ∂rC(R) = 0. We put

G(s) :=
s√

1− s−(n−2)
−

∫ s

1

dz√
1− z−(n−2)

An elementary calculation shows, for s > 1,

G′(s) = − (n− 2)s−(n−2)

2(1− s−(n−2))3/2
< 0,

and so G is monotone decreasing. Moreover, considering the inverse map of
z 7→ (1− z−(n−2))−1/2, we have
∫ s

1

dz√
1− z−(n−2)

=
s− 1√

1− s−(n−2)
+

∫ ∞

(1−s−(n−2))−
1
2

(
(1− y−2)−

1
n−2 − 1

)
dy.
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Therefore,

G(s) =
1√

1− s−(n−2)
−

∫ ∞

(1−s−(n−2))−
1
2

(
(1− y−2)−

1
n−2 − 1

)
dy.

One verifies that if n = 3 then lims→∞ G(s) = −∞. We now put, for n > 4,

In :=
∫ ∞

1

(
(1− y−2)−

1
n−2 − 1

)
dy.

For any m > l > 4 and y ∈ (1,∞), it holds that (1 − y−2)−
1

m−2 < (1 −
y−2)−

1
l−2 . This leads to Im < Il for m > l > 4. If n = 4 then

I4 = lim
N→∞

∫ N

1

(
(1− y−2)−

1
2 − 1

)
dy

= lim
N→∞

(
(N2 − 1)

1
2 − (N − 1)

)
= 1.

Thus, we obtain

lim
s→∞G(s) =





−∞ if n = 3,

0 if n = 4,

1− In > 0 if n > 5.

Since

B(t) = G(X(t)/R)− 2v′0R
(n− 2)C1/2

,

we conclude that there exists t0 ∈ [0,∞) such that Γ(t0) 6 0 if and only if

1. n = 3;

2. n = 4 and v′0R < 0;

3. n > 5 and v′0R < − (n−2)
√

C
2 (1− In).

Case 2-b.

We assume that ∂rC(R) > 0. We write B(t) = H(X(t)/R). Then, it holds
that

d

ds
H(s) = − (n− 2)s−(n−2)

2(1− s−(n−2))3/2
+

R∂rC

2C(1− s−(n−2))1/2
.

Therefore, the minimum of H, hence of B, is

H
((

1 +
(n− 2)C

R∂rC

) 1
n−2

)
.
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The solution breaks down in finite time if and only if this value is less than
or equal to zero. This gives the condition

v′0R 6 −
√

(n− 2)R∂rC

2

(
1 +

(n− 2)C
R∂rC

) n
2(n−2)

− n− 2
2

C
1
2

(
R∂rC

2C
− 1

)∫ “
1+

(n−2)C
R∂rC

” 1
n−2

1

dz√
1− z−(n−2)

.

Using the identity

∫ “
1+

(n−2)C
R∂rC

” 1
n−2

1

dz√
1− z−(n−2)

=

((
1 +

(n− 2)C
R∂rC

) 1
n−2

− 1

) (
1 +

R∂rC

(n− 2)C

) 1
2

+
∫ ∞
“
1+ R∂rC

(n−2)C

” 1
2

(
(1− y−2)−

1
n−2 − 1

)
dy,

we obtain the equivalent condition

v′0R 6 − (n− 2)
1
2 (R∂rC)

3
2

4C

(
1 +

(n− 2)C
R∂rC

) n
2(n−2)

− (n− 2)C
1
2

2

(
1− R∂rC

2C

)

×
[(

1 +
R∂rC

(n− 2)C

) 1
2

−
∫ ∞
“
1+ R∂rC

(n−2)C

” 1
2

(
(1− y−2)−

1
n−2 − 1

)
dy

]
.

In particular, if n = 3 or 4, then the above integral is computable, and we
have more explicit condition

v′0R 6 −3
4

√
C + R∂rC +

√
C

2

(
1− R∂rC

2C

)
log

(√
C +

√
C + R∂rC√

R∂rC

)

if n = 3 and
v′0R 6 −

√
2R∂rC

if n = 4.

Case 3: v0 < 0.

We first note that if A(R) = 0, then X ′(t, R) ≡ v0(R) < 0. Therefore, the
solution breaks down no latter than t = R/|v0(R)| by Lemma 3.2.7. Hence,
we assume A(R) > 0. Then, since X ′(0, R) = v0(R) < 0, we deduce from
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(3.3.3) that X ′(t, R) = −
√

C −AX(t)−(n−2) as long as X ′(t, R) 6 0. Take

t∗ =
∫ R

(A
C )

1
n−2

dy√
C −Ay−(n−2)

=
(
AC−n

2

) 1
n−2

∫ R(A
C )−

1
n−2

1

dz√
1− z−(n−2)

.

We see that, for all t ∈ [0, t∗), X(t, R) > X(t∗, R) = (A(R)/C(R))1/(n−2) >
0 and X ′(t, R) < X ′(t∗, R) = 0. Since X ′′(t∗, R) > 0 by (3.3.1), repeating
the same argument as in the previous two cases, we have X ′(t, R) > 0 for
all t > t∗ and so

X ′(t, R) =

{
−

√
C(R)−A(R)X(t, R)−(n−2), for t 6 t∗,√

C(R)−A(R)X(t, R)−(n−2), for t > t∗.

We also obtain X(t, R) → ∞ as t → ∞. In the followings, we omit R
variable. For sufficient large t, X(t) ∼ C1/2t holds since X ′(t) → C1/2

as t → ∞. It implies that if ∂rC(R) < 0 then the characteristic curves
must cross and so the solution breaks down in finite time by Lemma 3.2.7.
Differentiation of X(t∗, R) = (A/C)1/(n−2) with respect to R gives

(∂rt∗)X ′(t∗, R) + ∂RX(t∗, R) = ∂r

(
A

C

) 1
n−2

.

Using the fact that X ′(t∗) = 0, we obtain

∂RX(t∗, R) = ∂r

(
A

C

) 1
n−2

.

Hence, if ∂r(A/C)1/(n−2) 6 0 then the solution breaks down no latter than
t∗.

Thus, we assume ∂rC(R) > 0 and (∂r(A/C)(R))1/(n−2) > 0 in the fol-
lowings. Notice that the latter condition is equivalent to the following two
conditions:

∂rC < ∂rA(R−(n−2) + v2
0/A),

(
A

C

) 1
n−2

<

(
∂rA

∂rC

) 1
n−2

.

Step 1. We determine the condition that solution can be extended to
time t = t∗. For t 6 t∗, we have

∫ R

X(t)

dy√
C −Ay−(n−2)

= t.
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Differentiation with respect to R yields

1√
C −AR−(n−2)

− Γ(t)√
C −AX(t)−(n−2)

− 1
2

∫ R

X(t)

∂rC − ∂rAy−(n−2)

(C −Ay−(n−2))3/2
dy = 0.

For 0 6 t < t∗, it holds that

0 <
√

C −AX(t)−(n−2) 6
√

C −AR−(n−2) = |v0|

Therefore, Γ(t) has the same sign as

B1(t) :=
Γ(t)√

C −AX−(n−2)
=

1
|v0| −

1
2

∫ R

X(t)

∂rC − ∂rAy−(n−2)

(C −Ay−(n−2))3/2
dy.

Taking time derivative, one verifies that B1 takes it minimum at t = t1 ∈
[0, t∗) such that

X(t1, R) = min

(
R,

(
∂rA

∂rC

) 1
n−2

)
.

Note that (A/C)1/(n−2) < X(t1) by assumption, and that (∂rA/∂rC)1/(n−2) <
R is equivalent to ∂rC > ∂rAR−(n−2). Since we have already known that
Γ(0) = 1 > 0, the solution can be extended to the time t = t∗ UNLESS
∂rC > ∂rAR−(n−2) and

B1(t1) =
1
|v0| −

1
2

∫ R

“
∂rA
∂rC

” 1
n−2

∂rC − ∂rAy−(n−2)

(C −Ay−(n−2))3/2
dy 6 0

is satisfied. Notice that this condition is a sufficient condition for finite-time
breakdown.

Step 2. We consider the condition that the solution can be extended
from the time t = t∗ to t = ∞. For simplicity, we suppose that solutions are
extended to time t = t∗ (we keep assuming 0 6 ∂rC < ∂rA(R−(n−2) + v2

0/A)
holds). Recall that, for t > t∗, X ′(t) =

√
C −AX(t)−(n−2) > 0. As in the

case v0 = 0, this inequality with X ′′(t) > 0 gives X(t) ∼ C1/2t → ∞ as
t →∞.

We define t∗∗ as the time that t∗∗ > t∗ and X(t∗∗) = R. Then, we have

t∗∗ − t∗ =
∫ R

(A
C )

1
n−2

dy√
C −Ay−(n−2)

= t∗.

Therefore, t∗∗ = 2t∗ and

∫ X(t)

R

dy√
C −Ay−(n−2)

= t− 2t∗
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for all t > t∗. As in the previous step, we set

B2(t) :=
Γ(t)√

C −AX(t)−(n−2)
=

1
|v0|+

1
2

∫ X(t)

R

∂rC − ∂rAy−(n−2)

(C −Ay−(n−2))3/2
dy−2∂rt∗.

B2(t) and Γ(t) has the same sign for t > t∗. We also note that B2(t) → ∞
as t ↓ t∗ because Γ(t∗) > 0 and

√
C −AX(t)−(n−2) → 0 as t ↓ t∗. It holds

that
d

dt
B2(t) =

∂rC − ∂rAX(t)−(n−2)

2(C −AX(t)−(n−2))3/2
X ′(t).

1. If ∂rC(R) = 0 then B2 is monotone decreasing because d
dtB2(t) 6 0.

Therefore, solution can be extended to t = ∞ if and only if

lim
t→∞B2(t) =

1
|v0| −

1
2

∫ ∞

R

∂rAy−(n−2)

(C −Ay−(n−2))3/2
dy − 2∂rt∗ > 0.

2. If ∂rC(R) > 0 then B2 takes it minimum at t = t2 such that X(t2) =
(∂rA/∂rC)1/(n−2). Therefore, solution can be extended to t = ∞ if
and only if

B2(t2) =
1
|v0| +

1
2

∫ “
∂rA
∂rC

” 1
n−2

R

∂rC − ∂rAy−(n−2)

(C −Ay−(n−2))3/2
dy − 2∂rt∗ > 0.

A remark

Before proceeding to the two-dimensional case, let us see that Theorem 3.3.7
gives the same criterion as in Theorem 3.3.3 if n = 4.

Corollary 3.3.8. If n = 4, the PCFB given in Definitions 3.3.4, 3.3.5, and
3.3.6 is reduced to the following condition:

1. A(R) = 0 and v0(R) < 0.

2. ∂rC(R) < 0;

3. ∂rC(R) = 0 and v0(R) + v′0(R)R < 0;

4. ∂rC(R) > 0 and v0(R) + v′0(R)R 6 −
√

2R∂rC(R).
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Proof. Before the proof, we prepare some elementary computations. We
note that

∫ q
∂rA
∂rC

R

∂rC − ∂rAy−2

(C −Ay−2)3/2
dy

=
∂rC

C

∫ q
∂rA
∂rC

R

y

(Cy2 −A)1/2
dy +

A∂rC − C∂rA

C

∫ q
∂rA
∂rC

R

y

(Cy2 −A)3/2
dy

=
∂rC

C2

[(
C

∂rA

∂rC
−A

) 1
2

− (CR2 −A)
1
2

]

+
A∂rC − C∂rA

C2

[
(CR2 −A)−

1
2 −

(
C

∂rA

∂rC
−A

)− 1
2

]

=
2(∂rC)

1
2

C2
(C∂rA−A∂rC)

1
2 − |v0|R

C2
∂rC − C∂rA−A∂rC

C2|v0|R ,

and that

1
|v0| −

|v0|R
2C2

∂rC − C∂rA−A∂rC

2C2|v0|R
=

(
1
|v0| +

v2
0R

2 + A

2C2|v0|R ∂rC − ∂rA

2C|v0|R
)
− |v0|R

C2
∂rC

=
2CR + R2∂rC − ∂rA

2C|v0|R − |v0|R
C2

∂rC

= (sign v0)
(

v0 + Rv′0
C

− v0R

C2
∂rC

)

= (sign v0)∂r

(
v0R

C

)
,

where we have used v2
0R

2 + A = CR2 and

2CR + R2∂rC − ∂rA

=
(

2v2
0R +

2λm0

R

)
+

(
2v0v

′
0R

2 + ∂rA− 2λm0

R

)
− ∂rA

= 2v0R(v0 + Rv′0).

It also holds that

t∗ =
√

AC−2

∫ R(A
C )−

1
2

1

dz√
1− z−2

=
√

AC−2

∫ R2(C
A )

1

dz

2
√

z − 1

=
√

AC−2

√
R2C

A
− 1 =

|v0|R
C

.
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From Definitions 3.3.4, 3.3.5, and 3.3.6, we see that ∂rC < 0 is the
sufficient condition for blow-up. Moreover, the PCFB in the case ∂rC = 0
is

(∂rC)
1
2

C2
(C∂rA−A∂rC)

1
2 + ∂r

(
v0R

C

)
=

v0 + Rv′0
C

< 0

if v0 > 0,
Rv′0 < 0

if v0 = 0, and

(∂rC)
1
2

C2
(C∂rA−A∂rC)

1
2 − ∂r

(
v0R

C

)
+ 2∂r

(
v0R

C

)
=

v0 + Rv′0
C

< 0

if v0 < 0. Hence, the PCFB can be summarized as v0 + Rv′0 < 0.
Let us proceed to the case ∂rC > 0. If v0 > 0 then Definition 3.3.4

implies that the PCFB is ∂rC < ∂rAR−2 ⇔ v0 + Rv′0 < C/v0 and

(∂rC)
1
2

C2
(C∂rA−A∂rC)

1
2 + ∂r

(
v0R

C

)
6 0. (3.3.10)

We put α = v0 +Rv′0, β = v0R∂rC/C > 0, and γ = ∂rC(C∂rA−A∂rC)/C2.
Note that, by assumption, we have 0 < A/C < R2 < ∂rA/∂rC, which
implies γ > 0. Then, (3.3.10) can be written as α 6 β − √

γ. We make
this condition clearer. An elementary computation shows that δ := γ +
2αβ − β2 = 2R∂rC > 0, and that δ − 2αβ = R∂rC(−∂rC+∂rAR−2)

C > 0. The
latter one means β2 < γ. Thus, the inequality α 6 β −√γ < 0 is reduced
to α 6 −

√
γ + 2αβ − β2 = −

√
δ, that is, v0 + Rv′0 6 −√2R∂rC. This

condition is stronger than ∂rC < ∂rAR−2 ⇔ v0 + Rv′0 < C/v0.
If ∂rC > 0 and v0 = 0, then it immediately follows from Definition 3.3.5

that α 6 −
√

δ is the PCFB.
We next consider the case ∂rC > 0 and v0 < 0. Definition 3.3.6 gives

the PCFB. If ∂rC 6 ∂rAR−2, then the condition is

(∂rC)
1
2

C2
(C∂rA−A∂rC)

1
2 − ∂r

(
v0R

C

)
+ 2∂r

(
v0R

C

)
6 0.

We keep the above notations α, β, γ, and δ. Then, this is written as α 6
β−√γ. Note that the right hand side is negative. By the same argument as
above, it is also written as α 6 −

√
δ. If ∂rAR−2 < ∂rC 6 ∂rA(R−2 +v2

0/A),
then the condition is

(∂rC)
1
2

C2
(C∂rA−A∂rC)

1
2 6

∣∣∣∣∂r

(
v0R

C

)∣∣∣∣ ,

which is written as
√

γ 6 |α − β|. Note that ∂rC < ∂rA(R−2 + v2
0/A) =

C∂rA/A is equivalent to γ > 0. By assumption, we also have β < 0 and
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γ − β2 = δ− 2αβ < 0. We now show that α > β leads the contradiction. In
this case,

√
γ 6 |α − β| is equivalent to α > β +

√
γ. However, this is also

written as

0 <
√

γ 6 |α− β| = α− β ⇐⇒ α2 > γ + 2αβ − β2 = δ > 0

⇐⇒ α >
√

δ or α 6 −
√

δ.

The last inequalities cannot be iquivalent to α > β +
√

γ since
√

δ > 0 and
β +

√
γ < 0. This is the contradiction. Hence, β > α. Then,

√
γ 6 |α−β| =

β − α corresponds to α 6 −
√

δ.
We finally treat the case ∂rC > ∂rA(R−2 + v2

0/A). We prove this con-
dition is stronger than α 6 −

√
δ. An elementary computation show that

∂rC > ∂rA(R−2 + v2
0/A) implies

α 6 C

v0
+

v0R∂rA

2A
< 0.

Moreover, introducing the function P (t) = ∂rCt2 + 2αt + 2R, we see that

δ − α2

∂rC
= min

t
P (t) 6 P

(
−v0R

C

)
= ∂rC

(
−v0R

C

)2

+ 2α

(
−v0R

C

)
+ 2R

=
1

C2

[(
2v0v

′
0 +

∂rA

R2
− 2A

R3

)
v2
0R

2

− 2(v0 + Rv′0)v0R

(
v2
0 +

A

R2

)
+ 2R

(
v2
0 +

A

R2

)2
]

=
1

C2

(
v2
0∂rA− 2v0v

′
0A +

2A2

R3

)

=
A

C2

(
∂rA

(
R−2 +

v2
0

A

)
− ∂rC

)
6 0.

3.3.4 Repulsive case 3: n = 2

We finally consider the two-dimensional case. Though we can calculate the
characteristic curve in an implicit way ([25]), we use the argument similar
to the previous n > 3 case. Let us recall the ODE which we analyze:

X ′′(t, R) =
λm0(R)
X(t, R)

, X ′(0, R) = v0(R), X(0, R) = R. (3.3.1)

and its integral form

(X ′(t, R))2 = C(R) +A(R)(log X(t, R)). (3.3.5)

Let us first describe the PCFBs with A and C introduced as

A(r) := 2λm0(r), C(r) := v0(r)2 −A(r) log r (3.3.4)
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Definition 3.3.9 (PCFB for v0 > 0). Suppose λ > 0 and n = 2. The PCFB
under v0(R) > 0 is that

v′0(R) <
A(R)

2Rv0(R)

(⇔ exp(−∂rC(R)/∂rA(R)) > R) and either one of following conditions hold:

1. ρ0(R) = 0 (∂rA(R) = 0);

2. ∂rA(R) > 0 and

1
v0(R)

+
1
2

∫ exp
“
− ∂rC(R)

∂rA(R)

”

R

∂rC(R) + ∂rA(R) log y

(C(R) +A(R) log y)3/2
dy 6 0.

Definition 3.3.10 (PCFB for v0 = 0). Suppose λ > 0 and n = 2. The
PCFB under v0(R) = 0 is that A(R) > 0 and either one of following condi-
tions hold:

1. ρ0(R) = 0 (∂rA(R) = 0);

2. ∂rA(R) > 0 and

Rv′0(R) 6−
√
A(R)R∂rA(R)

2
e

A(R)
R∂rA(R)

+
2A(R)−R∂rA(R)

4

∫ e
A(R)

R∂rA(R)

1

dz√
log z

.

Definition 3.3.11 (PCFB for v0 < 0). Suppose λ > 0 and n = 2. The
PCFB under v0(R) < 0 is that A(R) = 0 or either one of following condi-
tions holds (we omit all R variables, for simplicity):

1. ρ0 = 0 (∂rA = 0);

2. ∂rA > 0 and

(a) ∂r(v2
0) > A/R + (∂rA) log(ReA/C);

(b) A/R 6 ∂r(v2
0) < A/R + (∂rA) log(ReA/C) and

1
|v0| +

1
2

∫ exp
“
− ∂rC

∂rA
”

R

∂rC + ∂rA log y

(C +A log y)3/2
dy 6 max(0, 2∂rt∗);

(c) ∂r(v2
0) < A/R and

1
|v0| +

1
2

∫ exp
“
− ∂rC

∂rA
”

R

∂rC + ∂rA log y

(C +A log y)3/2
dy 6 2∂rt∗,
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where

t∗ = t∗(R) :=
R

A(R)1/2ev0(R)2/A(R)

∫ ev0(R)2/A(R)

1

dz√
log z

.

Theorem 3.3.12. Suppose λ > 0, n = 2, and ρ0 ∈ D0, and v0 ∈ D1 with
v0(0) = 0. Then, the classical solution of (rEP0) breaks down in finite time
if and only if there exists R such that one of the PCFB given in Definitions
3.3.9, 3.3.10, and 3.3.11 is met. On the other hand, the classical solution
is global if and only if, for all r > 0, the PCFB does not hold. Moreover, if
ρ0 ∈ Dk and v0 ∈ Dk+1 (k > 0) satisfy the condition for global existence,
then the corresponding solution satisfies

ρ ∈ C2([0,∞), Ds) ∩ C∞((0,∞), Ds),

v ∈ C1([0,∞), Ds+1) ∩ C∞((0,∞), Ds+1).

Furthermore, it is unique in C2([0,∞), D0)×C1([0,∞), D1) and also solves
(EP0) in the distribution sense.

Proof. Case 1: v0 > 0.

We first note that X ′(t, R) > v0(R) > 0, ∀t > 0 follows from the same
argument as in the Case 1 of the proof of Theorem 3.3.7. Then, X(t, R) →∞
as t →∞, and, by (3.3.5),

∫ X(t,R)

R

dy√
v0(R)2 +A(R) log(y/R)

= t.

for all t > 0. For simplicity, we omit the R variable in the followings.
Differentiate this with respect to R to get

Γ(t)
X ′(t)

− 1
v0
− 1

2

∫ X(t)

R

2v0v
′
0 −A/R + ∂rA log(y/R)
(v2

0 +A log(y/R))3/2
dy = 0.

We put

B(t) :=
Γ(t)
X ′(t)

=
1
v0

+
1
2

∫ X(t)

R

2v0v
′
0 −A/R + ∂rA log(y/R)
(v2

0 +A log(y/R))3/2
dy.

Since X ′(t) > 0 for all t > 0, B(t) and Γ(t) has the same sign. Since ∂rA > 0
by definition, the right hand side is positive for all time if 2v0v

′
0−A/R > 0.

Now, we suppose 2v0v
′
0 − A/R < 0. Recall that X(t) → ∞ as t → ∞ and

that A and v0 are independent of time. If ∂rA = 0 then one sees that there
exist t0 > 0 such that

∫ X(t0)

R

dy

(v2
0 +A log(y/R))3/2

=
2

v0|2v0v′0 −A/R|
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since
∫ X(t)
R (v2

0 + A log(y/R))−3/2dy → ∞ as t → ∞. This implies Γ(t0) =
B(t0) = 0, which lead to finite-time breakdown. Let us proceed to the case
∂rA > 0. An elementary computation shows that the minimum of B is
B

(
e−

∂rC
∂rA

)
. Therefore, under the assumption v0v

′
0−A/R < 0 and ∂rA > 0,

there exists a time t0 such that Γ(t0) 6 0 if and only if

1
v0

+
1
2

∫ exp
“
− ∂rC

∂rA
”

R

∂rC + ∂rA log y

(C +A log y)3/2
dy 6 0.

Case 2: v0 = 0.

Let us begin with pointing out that the exactly same argument as in the
Case 2 of the proof of Theorem 3.3.7 shows that X ′(t, R) > 0 for all t > 0
and X(t, R) → ∞ as t → ∞. We omit R variable in the followings. Let
us temporarily suppose that v0 > 0 and let v0 → 0 later. Integration of
(3.2.10) gives ∫ X(t)

R

dy√
v2
0 +A log(y/R)

= t.

By a change of variable z = y/R, the left hand side is equal to
∫ X(t)/R

1

Rdz√
v2
0 +A log z

.

Hence, differentiation with respect R yields

0 =
R∂R(X(t)/R)√

v2
0 +A log(X(t)/R)

+
∫ X(t)/R

1

dz√
v2
0 +A log z

−R

∫ X(t)/R

1

∂rv
2
0 + ∂rA log z

2
(
v2
0 +A log z

)3/2
dz.

For a while, we omit also t variable. An elementary calculation shows

0 =
∂RX√

v2
0 +A log(X/R)

− X

R
√

v2
0 +A log(X/R)

+
∫ X/R

1

dz√
v2
0 +A log z

− R∂rA
2A

∫ X/R

1

dz√
v2
0 +A log z

+
Rv2

0∂rA
2A

∫ X/R

1

dz
(
v2
0 +A log z

)3/2

−Rv0v
′
0

∫ X/R

1

dz
(
v2
0 +A log z

)3/2
. (3.3.11)

We now show that

lim
v0↓0

v0

∫ X/R

1

dz
(
v2
0 +A log z

)3/2
=

2
A . (3.3.12)
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Fix a small ε > 0. Then, we have

lim
v0↓0

v0

∫ X/R

1+ε

dz
(
v2
0 +A log z

)3/2
= 0,

since the integral is uniformly bounded with respect to v0. Moreover,

v0

∫ 1+ε

1

dz
(
v2
0 +A log z

)3/2

6 2v0(1 + ε)
A

∫ 1+ε

1

A
2z(v2

0 +A log z)3/2
dz

6 2v0(1 + ε)
A

[
1
v0
− (

v2
0 +A log(1 + ε)

)− 1
2

]
→ 2(1 + ε)

A
as v0 → 0. Similarly,

v0

∫ 1+ε

1

dz
(
v2
0 +A log z

)3/2
> 2v0

A
∫ 1+ε

1

A
2z(v2

0 +A log z)3/2
dz → 2

A

as v0 → 0. It proves (3.3.12) since ε > 0 is arbitrary. Taking the limit v0 ↓ 0
in (3.3.11),

0 =
∂RX

A1/2
√

log(X/R)
− X/R

A1/2
√

log(X/R)
+

1
A1/2

∫ X/R

1

dz√
log z

− R∂rA
2A3/2

∫ X/R

1

dz√
log z

− 2Rv′0
A .

Thus, we have

B(t) :=
∂RX(t)√

log(X(t)/R)
=

X(t)/R√
log(X(t)/R)

−
∫ X(t)/R

1

dz√
log z

+
R∂rA
2A

∫ X(t)/R

1

dz√
log z

+
2Rv′0
A1/2

Case 2-a.

We first assume that ∂rA = 0. Put

G(s) :=
s√
log s

−
∫ s

1

dz√
log z

An elementary calculation shows G′(s) = −(1/2)(log s)−3/2 < 0 for s > 1,
and so G is monotone decreasing. We also see that G′ is not integrable, and
so that lims→∞G(s) = −∞. Since

B(t) = G(X(t)/R) +
2Rv′0
A1/2

,

we conclude that there always exists t0 ∈ (0,∞) such that Γ(t0) = 0.
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Case 2-b.

We next assume that ∂rA > 0. Write B(t) =: H(X(t)/R). Then, it holds
that

d

ds
H(s) = − 1

2(log s)3/2
+

R∂rA
2A(log s)1/2

.

Therefore, the minimum of H, hence of B, is H(e
A

R∂rA ). The solution breaks
down in finite time if and only if this value is less than or equal to zero. This
leads to the condition

v′0R 6 −
√

R∂rA
2

e
A

R∂rA +
(√

A− R∂rA
2
√A

) ∫ q
A

R∂rA

0
ex2

dx.

Case 3: v0 < 0.

If A(R) = 0, then X ′(t, R) = v0(R) < 0 for all t > 0. Therefore, we
deduce from Lemma 3.2.7 that the solution breaks down no latter than t =
R/|v0(R)|. Hence, we assume A(R) > 0. Then, since X ′(0, R) = v0(R) < 0,
X ′(t) = −

√
v0(R)2 +A(R) log(X(t, R)/R) as long as X ′(t, R) 6 0. Put

t∗ =
∫ R

Re−v2
0/A

dy√
v2
0 +A log(y/R)

=
R

A1/2ev2
0/A

∫ ev2
0/A

1

dz√
log z

.

Then, one sees that, for t ∈ [0, t∗), X(t, R) > X(t∗, R) = Re−v2
0/A > 0 and

X ′(t, R) < X ′(t∗, R) = 0. Since X ′′(t∗, R) > 0, the same argument as in the
Case 3 of the proof of Theorem 3.3.7 shows that X ′(t, R) > 0 for all t > t∗
and so that

X ′(t, R) =

{
−

√
v0(R)2 +A(R) log(X(t, R)/R), for t 6 t∗,√

v0(R)2 +A(R) log(X(t, R)/R), for t > t∗.

X(t, R) → ∞ as t →∞ is also deduced. We omit R variable in the follow-
ings. Differentiation of the identity X(t∗, R) = Re−v2

0/A with respect to R
gives

∂RX(t∗) = e−v2
0/A

(
1−R∂r

(
v2
0

A
))

.

Hence, if R∂r(v2
0/A) > 1 then the solution breaks down no latter than t = t∗.

Thus, we assume R∂r(v2
0/A) < 1 in the followings. This is equivalent to

∂rv
2
0 < A/R + (v2

0/A)∂rA and to −C/A < −∂rC/∂rA.
Step 1. We first consider the condition that solution can be extended

to time t = t∗. For t 6 t∗, we have
∫ R

X(t)

dy√C +A log y
= t.
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Differentiation with respect to R yields

1√C +A log R
− Γ(t)√

C +A log X(t)
− 1

2

∫ R

X(t)

∂rC + ∂rA log y

(C +A log y)3/2
dy = 0.

For 0 6 t < t∗,

0 <
√
C +A log X(t) 6

√
C +A log R = |v0|

holds. Therefore, Γ(t) has the same sign as

B1(t) :=
Γ(t)√

C +A log X(t)
=

1
|v0| −

1
2

∫ R

X(t)

∂rC + ∂rA log y

(C +A log y)3/2
dy.

Taking time derivative, one verifies that B1 takes it minimum at t = t1 ∈
[0, t∗) such that

X(t1) = min
(

R, exp
(
− ∂rC

∂rA
))

.

Here, note that X(t∗) = exp(−C/A) < X(t1) by assumption. Also note that

exp
(
− ∂rC

∂rA
)

= R exp
(
−∂rv

2
0 −A/R

∂rA
)

.

Since we have already known that Γ(0) = 1 > 0, the solution can be extended
to the time t = t∗ UNLESS ∂rv

2
0 > A/R and

B1(t1) =
1
|v0| −

1
2

∫ R

exp
“
− ∂rC

∂rA
”

∂rC + ∂rA log y

(C +A log y)3/2
dy 6 0

is satisfied. Notice that this condition is a sufficient condition for finite-time
breakdown.

Step 2. We next consider the condition that the solution can be ex-
tended from the time t = t∗ to t = ∞. For simplicity, we suppose that
solutions are extended to time t = t∗ (we keep assuming ∂rv

2
0 < A/R +

(v2
0/A)∂rA holds). Recall that, for t > t∗, X ′(t) =

√
C +A log X(t) > 0.

We define t∗∗ as a time such that t∗∗ > t∗ and X(T∗∗) = R. Then, we
have

t∗∗ − t∗ =
∫ R

Re−v2
0/A

dy√C +A log y
= t∗,

and so t∗∗ = 2t∗. Thus,

∫ X(t)

R

dy√C +A log y
= t− 2t∗
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for all t > t∗. As in the previous step, we set

B2(t) :=
Γ(t)√

C +A log X(t)
=

1
|v0| +

1
2

∫ X(t)

R

∂rC + ∂rA log y

(C +A log y)3/2
dy − 2∂rt∗

=
1
|v0| +

1
2

∫ X(t)

R

∂rv
2
0 − (A/R) + ∂rA log(y/R)

(C +A log y)3/2
dy − 2∂rt∗

B2(t) and Γ(t) has the same sign for t > t∗. We also note that B2 →∞ as
t ↓ t∗ because Γ(t∗) > 0 and

√C +A log X → 0 as t ↓ t∗. It holds that

d

dt
B2(t) =

∂rv
2
0 − (A/R) + ∂rA log(X(t)/R)

(C +A log X(t))3/2
X ′(t).

If ∂rA(R) = 0 then B2 is monotone decreasing by assumption ∂rv
2
0−A/R <

0. Moreover, d
dtB2(t) is uniformly bounded by (∂rv

2
0− (A/R))/|v0| < 0 from

above, and so there exists time t2 such that B2(t2) = 0. Therefore, now we
suppose ∂rA(R) > 0.

B2 takes it minimum at t = t2 such that X(t2) = exp(−∂rC/∂rA).
Therefore, the solution can be extended to t = ∞ if and only if

B2(t2) =
1
|v0| +

1
2

∫ exp
“
− ∂rC

∂rA
”

R

∂rC + ∂rA log y

(C +A log y)3/2
dy − 2∂rt∗ > 0.

3.3.5 Applications

Example 3.3.13. In the following cases, (rEP0) has a unique global solution,
and the solution solves (EP0) in the distribution sense.

1. n = 1, λ > 0, and

ρ0(r) = e−r, v0(r) =

√
λ

er + e1/r
sin r.

2. n = 2, λ > 0, and

ρ0(r) =
1

1 + r2
, v0(r) =

√
λr.

Theorem 3.3.14. Let λ < 0 or n > 3. Suppose ρ0 ∈ D0∩L1((0,∞), rn−1dr)
is not identically zero and v0 ∈ D1 satisfies v0(0) = 0 and v0 → 0 as r →∞.
Then, the solution of (rEP0) is global if and only if λ < 0 and n > 3, and
the initial data is of particular form

v0(r) =

√
2|λ|

(n− 2)rn−2

∫ r

0
ρ0(s)sn−1ds.
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Suppose λ < 0 and n > 3. If ρ0 ∈ Dk ∩ L1((0,∞), rn−1dr) for k > 0 and if
v0 is as above, then v0 ∈ Dk+1 and the corresponding solution is

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

given explicitly by

ρ(t,X(t, R)) = ρ0(R)
(

1 +
nv0(R)

2R
t

)−1 (
1 +

2|λ|Rρ0(R)
(n− 2)v0(R)

t

)−1

,

v(t,X(t, R)) = v0(R)
(

1 +
nv0(R)

2R
t

)1− 2
n

,

where X(t, R) = R(1+nv0(R)
2R t)2/n. Furthermore, it is unique in C2([0,∞), D0)×

C1([0,∞), D1) and also solves (EP0) in the distribution sense.

Proof. In the case where n = 1, 2 and λ < 0, we deduce from Theorem 3.3.1
that the solution breaks down in finite time because ρ0 is nontrivial. Let
n > 3, then the assumptions ρ0 ∈ L1((0,∞), rn−1dr) and v0 → 0 as r →∞
lead to C(R) → 0 as R →∞, where

C(R) = v0(R)2 − 2λm0(R)
(n− 2)Rn−2

.

Since C(0) = 0 by assumption, we see from Theorems 3.3.1 and 3.3.7 that
the solution is global only if C ≡ 0. In the case λ > 0, C ≡ 0 implies ρ0 ≡ 0,
which is excluded by assumption. In the case λ < 0, the solution is global if
we take the positive root v0(R) =

√
2|λ|

(n−2)Rn−2

∫ R
0 ρ0(s)sn−1ds. In this case,

C ≡ 0 and so X satisfies the equation

X ′(t, R) =

√
2|λ|m0(R)

(n− 2)X(t, R)n−2
, X(0, R) = R.

By separation of variables, we obtain

X(t, R) =

(
R

n
2 +

n

2

√
2|λ|m0(R)

n− 2
t

) 2
n

= R

(
1 +

nv0(R)
2R

) 2
n

.

Then, Lemma 3.2.2 gives the solution to (rEP0).

Remark 3.3.15. In this theory, the case λ > 0, n = 1 and the case λ > 0,
n = 2 are excluded. If λ > 0 and n = 2 then it is not clear whether or not
the assumption of Theory 3.3.14 leads to nonexistence of global solution,
but following another non-existence result holds. On the other hand, the
case where λ > 0 and n = 1 must be excluded since the first example in
Example 3.3.13 is a counter example. This example also suggests that the
following different version also fails if n = 1.
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Theorem 3.3.16. Let λ > 0 and n > 2. Suppose ρ0 ∈ D0 is not identically
zero and v0 ∈ D1 satisfies v0(0) = 0. Suppose, in addition, that there exists
a sequence {rj}j>1 with rj → ∞ as j → ∞ such that v0(rj) = 0 for all
j > 1, lim supj→∞ rjv

′
0(rj) < ∞, and rn

j ρ0(rj) → 0 as j → ∞. Then, the
solution of (rEP0) breaks down in finite time.

Proof. In the n > 3 case, v0(rj) = 0 leads to

∂rC(rj) =
2λ(rn

j ρ0(rj)− (n− 2)
∫ rj

0 ρ0(s)sn−1ds)

(n− 2)rn−1
j

Since ρ0 is nontrivial,
∫ rj

0 ρ0(s)sn−1ds > 0 for large j. Moreover, rn
j ρ0(rj) →

0 as j →∞ by assumption. Hence, we conclude that ∂rC(rj) < 0 for large
j, which is a sufficient condition for finite-time breakdown.

Let us proceed to the two dimensional case. We now show that, if j is
sufficiently large, then the PCFB (given in Definition 3.3.10) is satisfied at
R = rj and so the solution breaks down in finite time. Since ρ0 is nontrivial,
we can suppose A(rj) = 2λ

∫ rj

0 ρ0(s)sds > 0. The case ρ0(rj) = 0 is trivial
and so we now suppose ∂rA(rj) > 0. It suffices to prove that the inequality

rjv
′
0(rj) 6 −

√A(rj)rj∂rA(rj)
2

e
A(rj)

rj∂rA(rj)

+
2A(rj)− rj∂rA(rj)

4

∫ e

A(rj)

rj∂rA(rj)

1

dz√
log z

. (3.3.13)

is true for some j. Since the left hand side is upper bounded for large j, by
assumption, it suffices to show that the right hand side is arbitrarily large
for large j. Notice that the right hand side of (3.3.13) can be written as
(A(rj)/2)f(A(rj)/rj∂rA(rj)), where

f(x) = − 1√
x

ex +
∫ ex

1

dz√
log z

− 1
2x

∫ ex

1

dz√
log z

.

Since f(1/2) = −√2e and f ′(x) = (2x2)−1
∫ ex

1 (log z)−1/2dz > (2x5/2)−1(ex−
1), we see that f(x) → ∞ as x → ∞. By assumption, A(rj)/rj∂rA(rj) =∫ rj

0 ρ0(s)sds/rjρ0(rj) →∞ as j →∞. Thus, the right hand side of (3.3.13)
goes to infinity as j →∞.

Corollary 3.3.17. Suppose n > 1, ρ0 ≡ ρc > 0 is a constant, and v0 ≡ 0.
Then, the solution of (rEP0) is global if and only if λ > 0. If λ > 0 then the
corresponding solution satisfies

ρ ∈ C2([0,∞), D∞) ∩ C∞((0,∞), D∞),

v ∈ C1([0,∞), D∞) ∩ C∞((0,∞), D∞).

Furthermore, it is unique in C2([0,∞), D0)×C1([0,∞), D1) and also solves
(EP0) in the distribution sense.
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Proof. We first consider negative λ case. Since ρ0 is not zero, solution breaks
down if n = 1, 2. In the case n > 3, we have C(R) < 0 for all R > 0, which
immediately leads to finite time breakdown.

Let us show that the solution is global if λ > 0. The one-dimensional
case is obvious from Theorem 3.3.2. In the two-dimensional case, we apply
Theorem 3.3.12. The PCFB is given by Definition 3.3.10 for all R > 0
because v0 ≡ 0. Notice that A(R) = λρcR

2 > 0 and ∂rA(R) = 2λρcR > 0
for all R > 0. Therefore, in the end, we see that the solution breaks down
if and only if there exists R0 > 0 such that

R0v
′
0(R0) 6−

√
A(R0)R0∂rA(R0)

2
e

A(R0)
R0∂rA(R0)

+
2A(R0)−R0∂rA(R0)

4

∫ e
A(R0)

R0∂rA(R0)

1

dz√
log z

.

However, the left hand side is zero, and the second term of the right hand
side is also zero by the relation 2A(R)−R∂rA(R) ≡ 0. Since the first term
in the right side is negative, such R0 does not exist and so the solution to
(rEP0) is global.

We proceed to the case n > 3. The proof is the same as in two-
dimensional case. Notice that ∂rC(R) = 4λρcR/n(n − 2) > 0 and so that
the PCFB is given in Definition 3.3.5. In the case n = 4, it is obvious that
there does not exist R0 such that v′0(R0)R0 6 −

√
2R0∂rC(R0). In the cases

n = 3 and n > 5, by using the fact that C(R) = 2λρcR
2/n(n − 2) and so

R∂rC/2C ≡ 1, we verify nonexistence of R0 for which the PCFB holds.

3.4 Global existence of classical solutions to ra-
dial Euler-Poisson equations 2: existence of
constant background

In this section, we consider the effect from the presence of background con-
stant. Our equation is the following:




rn−1ρt + ∂r(rn−1ρv) = 0,

vt + v∂rv + λ∂rVP = 0,

− ∂r(rn−1∂rVP) = rn−1(ρ− b),
(ρ, v)(0, r) = (ρ0, v0)(r), ρ0 > 0

(rEPb)

with b > 0 for (t, r) ∈ R+ × R+, which is a radial model of




ρt + div(ρv) = 0,
vt + v · ∇v + λ∇VP = 0,

−∆VP = ρ− b,

(ρ, v)(0, x) = (ρ0, v0)(x), ρ0 > 0.

(EPb)
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We analyze the classical trajectory which solves

X ′′(t, R) = G(X(t, R)), X ′(0, R) = v0(R), X(0, R) = R, (3.4.1)

where
G(x) :=

λm0

xn−1
− λb

n
x.

If n > 2 then the function G(x) is monotone increasing for λ < 0 and
monotone decreasing for λ > 0. In particular, if b > 0 then G(x) has only
one zero point

x = XD(R) :=
(

nm0(R)
b

)1/n

.

Multiply the both side of (3.4.1) by X ′ to obtain

(X ′(t, R))2 = D(R)− F (X(t, R)), D(R) := v0(R)2 + F (R) (3.4.2)

if n > 3, where

F (x) = FR(x) :=
A(R)
xn−2

+ Bx2, A(R) :=
2λm0(R)

n− 2
, B :=

λb

n
. (3.4.3)

Similarly, if n = 2 then (3.4.2) holds with

F (x) = FR(x) := −A(R) log x + Bx2, A(R) := 2λm0(R). (3.4.4)

The function F defined (3.4.3) or (3.4.4) satisfies F ′ = −2G. In particular,
at x = XD, F takes its minimum if λ > 0. and takes its maximum if λ < 0.
We denote them by Fmin and Fmax, respectively.

3.4.1 Attractive case 1: n = 1.

We first consider the case λ < 0.

Theorem 3.4.1. Suppose n = 1, λ < 0, b > 0, ρ0 ∈ D0, and v0 ∈ D1 with
v0(0) = 0. Then, the classical solution of (rEPb) is global if and only if

v0(R) >
√
|λ|

(
m0(R)√

b
−
√

bR

)
, v′0(R) >

√
|λ|

(
ρ0(R)√

b
−
√

b

)

holds for all R > 0. Let k be a nonnegative integer. If ρ0 ∈ Dk and
v0 ∈ Dk+1 satisfy the condition for global existence then the corresponding
solution of (rEPb) satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EPb) in the distribution sense.
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Proof. Since (3.4.1) is solved explicitly:

X(t, R) =
m0(R)

b
+

(
R− m0(R)

b

)
cosh

√
|λ|bt +

v0(R)√
λb

sinh
√
|λ|bt.

We have

Γ(t, R) =
ρ0(R)

b
+

(
1− ρ0(R)

b

)
cosh

√
|λ|bt +

v′0(R)√
λb

sinh
√
|λ|bt.

Fix R > 0. Since X(t, R) and Γ(t, R) are positive at t = 0, they stay positive
for all t > 0 if and only if

(
R− m0(R)

b

)
+

v0(R)√
|λ|b > 0,

(
1− ρ0(R)

b

)
+

v′0(R)√
|λ|b > 0,

respectively. Similarly, lim infR→0 Γ(t, R) > 0 for all t > 0 if and only if
lim infR→0 v′0(R) > −

√
|λ|b. Hence, the theorem.

3.4.2 Attractive case 2: n > 3.

Theorem 3.4.2. Suppose n > 3, λ < 0, b > 0, ρ0 ∈ D0, and v0 ∈ D1 with
v0(0) = 0. The classical solution to (rEPb) is global in time if and only if
the one of the following four conditions is satisfied for each R > 0:

1. m0(R) = 0, v0(R) > −R|B|, and v′0(R) > −|B|;
2. m0(R) > 0, v0(R)2 > Fmax − F (R), v0(R) > 0, and

∂rD(R) > −2v0(R)−1 − ∂rA(R)
∫∞
R y−(n−2)(D(R)− F (y))−3/2dy∫∞

R (D(R)− F (y))−3/2dy
;

3. m0(R) > 0, v0(R)2 = Fmax − F (R), and either

(a) R < XD(R), v0(R) > 0, and ∂rD(R) > −∂rA(R)XD(R)−(n−2),

(b) R = XD(R),

(c) R > XD(R) and either

i. v0(R) < 0 and ∂rD(R) 6 −∂rA(R)XD(R)−(n−2),
ii. v0(R) > 0 and

∂rD(R) < −2v0(R)−1 − ∂rA(R)
∫∞
R y−(n−2)(D(R)− F (y))−3/2dy∫∞

R (D(R)− F (y))−3/2dy
;

4. m0(R) > 0, v0(R)2 < Fmax − F (R), R > XD(R), and either
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(a) v0(R) > 0 and

∂rD(R) < −2v0(R)−1 − ∂rA(R)
∫∞
R y−(n−2)(D(R)− F (y))−3/2dy∫∞

R (D(R)− F (y))−3/2dy
,

(b) v0(R) = 0 and

v′0 > − G(R)
R

√
|B|−G(R)

(
R∂rA(R)− nA(R)

2R

)∫ ∞

R

R−(n−2) − y−(n−2)

(F (R)− F (y))3/2
dy,

(c) v0(R) < 0, ∂rD(R)− ∂rA(R)ξ−(n−2)
2 6 0, and

1
|v0| +

1
2

∫ ∞

R

∂rD(R)− ∂rA(R)y−(n−2)

(F (ξ2)− F (y))3/2
− 2∂rt∗ > 0,

where ξ2 is the root of F (ξ) = F (R) + v0(R)2 bigger than XD(R)
and

t∗ :=
∫ ξ2

R

dy√
F (ξ2)− F (y)

.

Let k be a nonnegative integer. If ρ0 ∈ Dk and v0 ∈ Dk+1 satisfy the condi-
tion for global existence then the corresponding solution of (rEPb) satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EPb) in the distribution sense.

Proof. We first consider the special case m0(R) = 0. In this case, A(R) = 0
and so (3.4.1) becomes X ′′(t, R) = BX(t, R). Therefore, we obtain

X(t, R) =
R + v0(R)/|B|

2
e|B|t +

R− v0(R)/|B|
2

e−|B|t,

Γ(t, R) =
1 + v′0(R)/|B|

2
e|B|t +

1− v′0(R)/|B|
2

e−|B|t.

Now, the situation is the same as in the one dimensional case, and so one
easily verifies that they stay positive for all positive time if and only if
R + v0(R)/|B| > 0 and 1 + v′0(R)/|B| > 0 hold.

Case 1: v0(R)2 > Fmax − F (R).

We first note that v0(R)2 > 0 and (X ′(t, R))2 = D(R) − F (X(t, R)) >
D(R)−Fmax = v0(R)2 +F (R)−Fmax > 0 hold. In particular, by continuity,
X ′(t, R) does not change its sign. If v0(R) < 0 then we have X ′(t, R) 6
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−
√

D(R)− Fmax < 0, which leads to X 6 0 for large t and so to the finite-
time breakdown. If v0(R) > 0 then X ′(t, R) >

√
D(R)− Fmax > 0 holds

and so X(t, R) →∞ as t →∞. By a differentiation of the equality

∫ X

R
(D(R)− F (y))−1/2dy = t

with respect to R, we obtain

Γ(t, R)
X ′(t, R)

− 1
v0(R)

− 1
2

∫ X(t,R)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy = 0.

We put

B(t) :=
Γ(t, R)
X ′(t, R)

=
1

v0(R)
+

1
2

∫ X(t,R)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy.

Since X ′ > 0, B and Γ have the same sign. If ∂rD(R) > 0 then B(t)
stays positive for all time because ∂rA 6 0 by definition. Now, we suppose
∂rD < 0. An elementary calculation shows that there exists t0 such that B
is monotone increasing for t < t0 and monotone decreasing for t > t0. Since
B(0) > 0, B stays positive for all time if and only if

lim
t→∞B(t) =

1
v0(R)

+
1
2

∫ ∞

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy > 0, (3.4.5)

which implies the stated condition.

Case 2: v0(R)2 = Fmax − F (R).

In this case, (X ′(t, R))2 = D(R)−F (X(t, R)) = v0(R)2+F (R)−F (X(t, R)) =
Fmax − F (X(t, R)). Note that the right hand side is nonnegative and
O((X −XD)2) as X → XD.

We first consider the case R < XD(R). If v0(R) < 0 then, the finite-time
breakdown is straightforward as in the previous case, and so we omit the
detail. Let us assume v0(R) > 0. An integration gives, for R < XD(R),

∫ X(t,R)

R

dy√
Fmax − F (y)

= t.

The left hand side tends to infinity as X(t, R) ↑ XD(R) because the inte-
grand is order O((XD − y)−1). Hence, we see that X(t, R) → XD(R) as
t →∞. Differentiate the above identity to obtain

Γ(t, R)
X ′(t, R)

− 1
v0(R)

− 1
2

∫ X(t,R)

R

∂rD(R)− ∂rA(R)y−(n−2)

(Fmax − F (y))3/2
dy = 0.
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We put

B(t) :=
Γ(t, R)
X ′(t, R)

=
1

v0(R)
+

1
2

∫ X(t,R)

R

∂rD(R)− ∂rA(R)y−(n−2)

(Fmax − F (y))3/2
dy.

Since X ′ > 0, B and Γ have the same sign. Here, ∂rD(R)− ∂rA(R)y−(n−2)

is nonincreasing (recall ∂rA 6 0), and so B stays positive for all time if

∂rD(R)− ∂rA(R)
XD(R)n−2

> 0.

On the other hand, if this condition fails then B(t) → −∞ as t →∞.
We next consider R = XD(R). In this case, v0(R)2 = Fmax−F (XD(R)) =

0 and so X ′(t, R) = Fmax − F (X(t, R)). Since holds X ′ = X ′′ = 0 at
X = XD, we have X(t, R) ≡ R.

Let us proceed to the third case R > XD(R). Note that v0(R)2 > 0 and
so v0(R) 6= 0. Let us first suppose v0(R) > 0. By the differentiation of

∫ X(t,R)

R
(D(R)− F (y))−1/2dy = t

with respect to R, we obtain

Γ(t, R)
X ′(t, R)

− 1
v0(R)

− 1
2

∫ X(t,R)

R

∂rD(R)− ∂rA(R)y−(n−2)

(Fmax − F (y))3/2
dy = 0.

Recall that D(R) = Fmax holds in this case. An analysis of the sign of B(t) :=
Γ(t, R)/X ′(t, R) gives the condition as in the case v0(R)2 > Fmax − F (R)
and v0(R) > 0, and so we left the detail. We consider v0(R) < 0. As in the
case R < XD(R) and v0(R) > 0, one verifies X(t, R) ↓ XD(R) as t → ∞.
The differentiation of

∫ R

X(t,R)
(D(R)− F (y))−1/2dy = t

with respect to R yields

Γ(t, R)
|X ′(t, R)| =

1
|v0(R)| −

1
2

∫ R

X

∂rD(R)− ∂rA(R)y−(n−2)

(Fmax − F (y))3/2
dy.

We put G(t) := Γ(t, R)/|X ′(t, R)|. Note that ∂rD − ∂rAy−(n−2) is nonin-
creasing in y and X(t, R) ↓ XD(R) as t →∞. If ∂rD(R)+∂rA(R)XD(R)−(n−2) 6
0 stays positive for all time. On the other hand, if this value is positive then
limt→∞B(t) = −∞ since (F (y)− Fmin)−3/2 is not integrable in (XD, R].
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Case 3: v0(R)2 < Fmax − F (R).

We first show that R < XD(R) leads to the finite-time breakdown. Since
D(R) − F (R) = v2

0 > 0 and D − F (XD) < 0 by assumption, there exists
ξ1 ∈ [R, XD) such that D−F (ξ1) = 0. Then, D−F (X) = (X ′)2 > 0 provides
the upper bound of X; X 6 ξ1 < XD. Recall that G is monotone increasing
and that XD is the only zero point of G. Hence, we have X ′′(t, R) =
G(X(t, R)) 6 G(ξ1) < 0. Integration twice gives X(t, R) 6 R + v0(R)t +
(G(ξ1)/2)t2, which implies X 6 0 for large t.

Now, let us suppose R > XD(R). In this case, one sees that X(t, R) →∞
as t → ∞. Since D(t, R) − F (R) = v2

0 > 0 and D − F (XD) < 0 by
assumption, there exists ξ2 ∈ (XD, R] such that D − F (ξ2) = 0.

Case 3-a: v0(R) > 0.

If v0 > 0 then a differentiation of
∫ X

R

dy√
D − F (y)

= t (3.4.6)

with respect to R gives

Γ(t, R)
X ′(t, R)

=
1

v0(R)
+

1
2

∫ X(t,R)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
.

As in the previous cases, we obtain the stated condition.

Case 3-b: v0(R) = 0.

We next consider the case v0(R) = 0. We would like to perform the similar
analysis with differentiation of (3.4.6) with respect to R, as above. The
point is that we must first differentiate before letting v0(R) = 0 in (3.4.6) in
order to obtain correct identities. For this purpose, we temporary assume
v0(R) > 0. Then, we change the variable in (3.4.6);

t =
∫ X(t,R)

R

dy√
D(R)− F (y)

=
∫ X(t,R)/R

1

Rdz√
D(R)− F (Rz)

.
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We differentiate with respect R to obtain

0 =
R∂R(X/R)√
D − F (X)

+
∫ X/R

1

dz√
D − F (Rz)

− R

2

∫ X/R

1

∂rD − 2zG(Rz)− ∂rA(Rz)−(n−2)

(D − F (Rz))3/2

=
Γ
X ′ −

X

RX ′ +
∫ X

R

dy

R
√

v2
0 − F (y) + F (R)

− 1
2

∫ X

R

∂rD − ∂rAy−(n−2) − 2(y/R)G(y)
(v2

0 − F (y) + F (R))3/2
dy,

where we omit all t and R variables for simplicity. Here, we shall take the
limit v0 ↓ 0 in this identity. However, F (R) − F (y) = O(y − R) as y → R

and so an integral
∫ X
R (v2

0 +F (y)−F (R))−3/2dy diverges as v0 ↓ 0. Here, we
employ the following limit identity;

lim
v0↓0

v0

∫ X

R
(v2

0 − F (y) + F (R))−3/2dy =
1

G(R)
.

An elementary calculation shows that

1
2

∫ X

R

∂rD − ∂rAy−(n−2) + 2(y/R)G(y)
(v2

0 − F (y) + F (R))3/2

=v′0

(
v0

∫ X

R
(v2

0 − F (y) + F (R))−3/2dy

)

+
(

∂rA

2
− (n− 2)A

2R

) ∫ X

R

R−(n−2) − y−(n−2)

(v2
0 − F (y) + F (R))3/2

dy

− B

R

∫ X

R

y2 −R2

(v2
0 − F (y) + F (R))3/2

dy

=v′0

(
v0

∫ X

R
(v2

0 − F (y) + F (R))−3/2dy

)

−
(

∂rA

2A
− n− 2

2R

)
v2
0

∫ X

R
(v2

0 − F (y) + F (R))−3/2dy

+
(

∂rA

2A
− n− 2

2R

)∫ X

R

dy√
v2
0 − F (y) + F (R)

+
(

∂rA

2A
− n

2R

)
B

∫ X

R

y2 −R2

(v2
0 − F (y) + F (R))3/2

dy,

where we have used the relation

R−(n−2) − y−(n−2) =
(v2

0 − F (y) + F (R))− v2
0 + B(y2 −R2)

A
.
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Combining these identities and taking the limit v0 → 0, we obtain

Γ
X ′ =

X

RX ′ +
v′0

G(R)
+

(
∂rA

2A
− n

2R

)∫ X

R

dy√
F (R)− F (y)

+
(

∂rA

2A
− n

2R

)
B

∫ X

R

y2 −R2

(F (R)− F (y))3/2
dy (3.4.7)

for t > 0. This manipulation is justified by considering X ′(εR, R) > 0 and
taking the limit ε ↓ 0. Note that the last integral is finite thanks to the
factor y2 − R2. We put B(t) := Γ(t, R)/X ′(t, R). Since X ′ > 0 for positive
time, B and Γ have the same sign for positive time. We have

B′(t) =
1
R
− XX ′′

R(X ′)2
+

(
∂rA

2A
− n

2R

)
+

(
∂rA

2A
− n

2R

)
B(X2 −R2)

(X ′)2

=
F (R)− F (X)−XG(X)

R(X ′)2
−

(
R∂rA

2A
− n

2

)
AX−(n−2) −AR−(n−2)

R(X ′)2

=
1

R(X ′)2

[
F (R)− R∂rA

2Xn−2
+

(
R∂rA

2A
− n

2

)
A

Rn−2

]

=
1

R(X ′)2

[
R∂rA

2

(
1

Rn−2
− 1

Xn−2

)
−RG(R)

]
< 0

for all t > 0 since R > XD, G(R) > G(XD) = 0, and ∂rA 6 0. Therefore, B
is positive for all time if and only if limt→∞ B(t) > 0, which is equivalent to

1
R

√
|B| +

v′0
G(R)

+
(

∂rA

2
− nA

2R

) ∫ ∞

R

R−(n−2) − y−(n−2)

(F (R)− F (y))3/2
dy > 0,

where we have used X ′(t, R)2/X(t.R)2 → −B > 0 as t →∞.

Case 3-c: v0(R) < 0.

We finally treat the case v0(R) < 0. Recall that X > ξ2 holds, where ξ2 is
the zero of D(R)−F (x) bigger than x = XD. Therefore, there exists a time
t∗ = t∗(R) ∈ (0,∞) such that X(t∗, R) = ξ2, X ′(t∗, R) = 0, and

X ′(t, R) =

{
−

√
D − F (X(t, R)) for t < t∗,√
D − F (X(t, R)) for t > t∗.

Moreover, t∗ is described by

t∗ =
∫ R

ξ2

dy√
D − F (y)

=
∫ R/ξ2

1

ξ2dz√
D − F (ξ2z)

.

Let us restrict our attention to the case t 6 t∗ and derive the condition for
the existence of solution in [0, t∗]. For t < t∗, we have X(t, R) > ξ2 and

∫ R

X(t,R)

dy√
D − F (y)

= t.
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Differentiation in R gives

1
|v0| −

Γ
|X ′| −

1
2

∫ R

X(t,R)

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy = 0.

We put B := Γ/|X ′|. Since ∂rD(R) − ∂rA(R)y−(n−2) is nonincreasing and∫ R
X(t,R)(D − F (y))−3/2dy tends to infinity as X(t, R) ↓ ξ2, B stays positive

for all t < t∗ if and only if

∂rD(R)− ∂rA(R)ξ−(n−2)
2 6 0.

Note that this condition is equivalent to ∂RX(t∗) > 0 and to ∂rξ2 > 0
because one deduces from the differentiation of identity X(t∗, R) = ξ2 that

∂rξ2 = X ′(t∗, R)∂rt∗ + ∂RX(t∗, R) = ∂RX(t∗, R),

and from the identities D − F (ξ2) = 0 and F ′ = −2G that

∂rξ2 = −∂rD − ∂rAξ
−(n−2)
2

2G(ξ2)

by assumption G(ξ2) > G(XD) = 0.
Now, let us find the condition that the solution which can be extended

up to time t = t∗ is global. For simplicity, we suppose that all solution can
be extended up to time t = t∗ since we have already known the condition
for existence of the solution in [0, t∗]. Let t∗∗ be a time bigger than t∗ such
that X(t∗∗, R) = R. Since for any t∗ < t0 < t∗∗, it holds that

∫ R

X(t0)

dy√
D − F (y)

= t∗∗ − t0.

letting t0 ↓ t∗, we obtain t∗∗ = 2t∗. Therefore, for all t > t∗ it holds that
∫ X

R

dy√
D − F (y)

= t− 2t∗.

Note that X ′(2t∗, R) = |v0| > 0. Thus, the same analysis as in the case
v0 > 0 tells us that Γ stays positive for all t > t∗ if and only if

1
|v0| +

1
2

∫ ∞

R

∂rD − ∂rAy−(n−2)

(D − F (y))3/2
− 2∂rt∗ > 0.
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3.4.3 Attractive case 3: n = 2.

We consider two-dimensional case. We recall that X solves (3.4.1) and
(3.4.2) with (3.4.4).

Theorem 3.4.3. Suppose n = 2, λ < 0, b > 0, ρ0 ∈ D0, and v0 ∈ D1 with
v0(0) = 0. The classical solution to (rEPb) is global in time if and only if
one the following four conditions is satisfied for each R > 0:

1. m0(R) = 0, v0(R) > −R|λ|b/2, and v′0(R) > −|λ|b/2;
2. m0(R) > 0, v0(R)2 > Fmax − F (R), v0(R) > 0, and

∂rD(R) > −2v0(R)−1 + ∂rA(R)
∫∞
R log y(D(R)− F (y))−3/2dy∫∞

R (D(R)− F (y))−3/2dy
;

3. m0(R) > 0, v0(R)2 = Fmax − F (R), and either

(a) R < XD(R), v0(R) > 0, and ∂rD(R) > ∂rA(R) log XD(R),

(b) R = XD(R),

(c) R > XD(R) and either

i. v0(R) < 0 and ∂rD(R) 6 ∂rA(R) log XD(R),
ii. v0(R) > 0 and

∂rD(R) < −2v0(R)−1 + ∂rA(R)
∫∞
R log y(D(R)− F (y))−3/2dy∫∞

R (D(R)− F (y))−3/2dy
;

4. m0(R) > 0, v0(R)2 < Fmax − F (R), R > XD(R). and either

(a) v0(R) > 0 and

∂rD(R) < −2v0(R)−1 + ∂rA(R)
∫∞
R log y(D(R)− F (y))−3/2dy∫∞

R (D(R)− F (y))−3/2dy
,

(b) v0(R) = 0 and

v′0 > − G(R)
R

√
|B|−G(R)

(
∂rA(R)

2
− A(R)

R

) ∫ ∞

R

log(y/R)
(F (R)− F (y))3/2

dy,

(c) v0(R) < 0, ∂rD(R) + ∂rA(R) log ξ2 6 0, and

1
|v0| +

1
2

∫ ∞

R

∂rD(R) + ∂rA(R) log y

(F (ξ2)− F (y))3/2
− 2∂rt∗ > 0,

where ξ2 is the root of F (ξ) = F (R) + v0(R)2 bigger than XD(R)
and

t∗ :=
∫ ξ2

R

dy√
F (ξ2)− F (y)

.
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Let k be a nonnegative integer. If ρ0 ∈ Dk and v0 ∈ Dk+1 satisfy the condi-
tion for global existence then the corresponding solution of (rEPb) satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EPb) in the distribution sense.

The proof is the exactly the same as Theorem 3.4.2. The only difference
is that F is defined by not (3.4.3) but (3.4.4). The F defined by (3.4.4) is
the same as the one defined by (3.4.3) in the following respect: F ′ = −2G;
it takes it maximum at x = XD if λ < 0.

3.4.4 Repulsive case 1: n = 1.

We consider the case λ > 0. In this case, the classical trajectory (and the
solution) becomes time-periodic.

Theorem 3.4.4 ([25]). Suppose n = 1, λ > 0, b > 0, ρ0 ∈ D0, and v0 ∈ D1

with v0(0) = 0. The classical solution of (rEPb) is global if and only if

|v0(R)| <
√

λ(2Rm0(R)− bR2), |v′0(R)| <
√

λ(2ρ0(R)− b)

holds for all R > 0. In particular, if ρ0(R0) 6 b/2 holds for some R0 > 0
then the solution breaks down in finite time.

Proof. Since (3.4.1) is solved explicitly:

X(t, R) =
m0(R)

b
+

(
R− m0(R)

b

)
cos

√
λbt +

v0(R)√
λb

sin
√

λbt.

We have

Γ(t, R) =
ρ0(R)

b
+

(
1− ρ0(R)

b

)
cos

√
λbt +

v′0(R)√
λb

sin
√

λbt.

Therefore,

min
t>0

X(t, R) =
m0(R)

b
−

√(
R− m0(R)

b

)2

+
v0(R)2

λb

min
t>0

Γ(t, R) =
ρ0(R)

b
−

√(
1− ρ0(R)

b

)2

+
v′0(R)2

λb
.

These values stay positive for all t > 0 if and only if

|v0(R)| <
√

λ(2Rm0(R)− bR2), |v′0(R)| <
√

λ(2ρ0 − b)
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holds. Let k be a nonnegative integer. If ρ0 ∈ Dk and v0 ∈ Dk+1 satisfy
the condition for global existence then the corresponding solution of (rEPb)
satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EPb) in the distribution sense.

3.4.5 Repulsive case 2: n > 3.

We proceed to the case n > 3.

Theorem 3.4.5. Suppose n > 3, λ > 0, b > 0, ρ0 ∈ D0, and v0 ∈ D1 with
v0(0) = 0. The solution to (rEPb) is global if and only if m0(R) > 0 for all
R > 0, the value

T∗ = T∗(R) :=
∫ ξ2

ξ1

dy√
D(R)− F (y)

is a universal constant for R ∈ {R ∈ R+|v0(R) 6= 0 or R 6= XD}, and the
following condition holds for all R ∈ {R ∈ R+|v0(R) 6= 0 or R 6= XD}:

ξ1 <

(
∂rA(R)
∂rD(R)

) 1
n−2

< ξ2

and either

• v0(R) 6= 0 and

1
|v0(R)|+

1
2

∫ “
∂rA(R)
∂rD(R)

”1/(n−2)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy > max(0,−2∂Rt1);

• v0(R) = 0 and

(
∂rA(R)
∂rD(R)

) 1
n−2 1

R

√
F (R)− F

(
( ∂rA(R)

∂rD(R))
1

n−2

) +
v′0

G(R)

+
(

∂rA(R)
2

− nA(R)
2R

)∫ “
∂rA(R)
∂rD(R)

”1/(n−2)

R

R−(n−2) − y−(n−2)

(F (R)− F (y))3/2
dy > 0,

where ξ1 and ξ2 are two roots of D(R)− F (ξ) = 0 with ξ1 < ξ2 and

t1 =
∫ ξ2

R

dy√
D(R)− F (y)

.
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Let k be a nonnegative integer. If ρ0 ∈ Dk and v0 ∈ Dk+1 satisfy the condi-
tion for global existence then the corresponding solution of (rEPb) satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EPb) in the distribution sense.

Remark 3.4.6. The time T∗ is the period: If X(t, R) exists with T∗ ∈ (0,∞)
then it satisfies X(t + T∗, R) = X(t, R). In four dimensional case, T∗ =
π/2

√
B since

T∗ =
∫ ξ2

ξ1

dy√
Aξ−2

1 + Bξ2
1 −Ay−2 −By2

=
1

2
√

B

∫ ξ2
2

ξ2
1

dz√
(z − ξ2

1)(ξ
2
2 − z)

=
1

2
√

B

∫ 1

0
t

1
2 (1− t)

1
2 dt =

π

2
√

B
.

Therefore, T∗ is independent of R.

Proof. We first consider the two special cases: First is the case where
m0(R) = 0. In this case, X ′′(t, R) = −BX(t, R) by (3.4.1), and so

X(t, R) = R cosBt +
v0(R)

B
sinBt.

Hence, X(t, R) = 0 holds in finite time, which is a sufficient condition for
finite-time breakdown (Lemma 3.2.7). Second is the case where v0(R) = 0
and XD(R) = R. In this case, by (3.4.2), we have

0 6 (X ′(t, R))2 = D(R)− F (X(t, R)) = F (XD)− F (X(t, R)) 6 0

since F (XD) = minx>0 F (x). Therefore, X ′(t, R) ≡ 0 and X(t, R) ≡ R. We
also have Γ(t, R) ≡ 1 > 0. Thus, this case is admissible.

In the followings, we assume that m0(R) > 0 for all R > 0, and
that either v0(R) 6= 0 or XD(R) 6= R holds. These conditions leads to
maxx>0(D(R)−F (x)) = v0(R)2 +F (R)−Fmin > 0. Recall that F ′ is mono-
tone increasing and that limx→0 F (x) = limx→∞ F (x) = ∞. Therefore,
there exist two roots ξ1 and ξ2 satisfying

D(R)− F (ξi) = 0, 0 < ξ1 < XD(R) < ξ2 < ∞.

We remark that X solves (3.4.2) and so X(t, R) satisfies 0 < ξ1 6 X(t, R) 6
ξ2 < ∞ for all t > 0.
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Step 1. We now claim that X(t, R) is periodic in time and the period
is given by

T∗ = 2
∫ ξ2

ξ1

dy√
D(R)− F (y)

. (3.4.8)

We first note that T∗ < ∞: Since F ′(ξi) = −2G(ξi) 6= 0, we see that
∣∣∣∣

ξi − y

D(R)− F (y)

∣∣∣∣ < ∞ as y → ξi

for i = 1, 2, and so that (3.4.8) is integrable. We first consider the case
v0(R) > 0. Because (X ′)2 = D(R) − F (X) > 0 as long as X ∈ (ξ1, ξ2),
X ′ =

√
D(R)− F (X) > 0 holds before X reaches to ξ2. Since

∫ X(t,R)

R

dy√
D(R)− F (y)

= t

holds for such time. The left hand side is integrable and so there exists a
time t1 < ∞ such that X(t1, R) = ξ2. Note that t1 is given by

t1 =
∫ ξ2

R

dy√
D(R)− F (y)

∈ (0, T∗/2),

where T∗ is given by (3.4.8). By (3.4.2) and (3.4.1), we see that X ′(t1, R) = 0
and X ′′(t1, R) < 0, respectively. Therefore, for a time such that 0 < t−t1 ¿
1, we have X ′(t, R) < 0. We put t2 = t1 + T∗/2 ∈ (T∗/2, T∗). Repeating the
above argument, one sees that X ′(t, R) = −

√
D(R)− F (X) < 0 and

∫ ξ2

X(t,R)

dy√
D(R)− F (y)

+ t1 = t (3.4.9)

hold for t ∈ (t1, t2), and that, at t = t2,

X(t2, R) = ξ1, X ′(t2, R) = 0, X ′′(t2, R) > 0.

Now, we remark that, letting X(t, R) = R in (3.4.9), we obtain X(2t1, R) =
R and X ′(2t1, R) = −v0(R). Similarly, for t ∈ (t2, t2 + T∗/2), we have

∫ X(t,R)

ξ1

dy√
D(R)− F (y)

+ t2 = t.

By the definitions of t1 and t2, we can rewrite this identity as
∫ X(t,R)

R

dy√
D(R)− F (y)

+ T∗ = t.

Therefore, we obtain X(T∗, R) = R. Then, (3.4.2) gives X ′(T∗, R) = v0(R).
By uniqueness of X (Proposition 3.2.1), we conclude that X(t + T∗, R) =
X(t, R).
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The case v0(R) < 0 can be handled in the same way. If v0(R) = 0 then
either R = ξ1 or R = ξ2 holds and so we obtain either

X(0, R) = ξ1, X ′(0, R) = 0, X ′′(0, R) > 0

or
X(0, R) = ξ2, X ′(0, R) = 0, X ′′(0, R) < 0.

Hence, we can show X(t + T∗, R) = X(t, R) also in the same way.
Step 2. We next prove that ∂RT∗ = 0 is a necessary condition for

global existence. We suppose v0(R) 6= 0. Let m be a positive integer. By
periodicity, we have

X(mT∗, R) = R, X ′(mT∗, R) = v0(R),
X (mT∗ + 2t1, R) = R, X ′ (mT∗ + 2t1, R) = −v0(R).

Hence, we obtain

1 = ∂R(X(mT∗, R)) = m(v0(R)∂RT∗) + Γ(mT∗, R).

Similarly,

1 = −m(v0(R)∂RT∗)− 2v0∂Rt1 + Γ (mT∗ + 2t1, R) .

Therefore, if ∂RT∗ 6= 0 then either Γ(mT∗, R) < 0 or Γ(mT∗ + 2t1, R) < 0
holds for large m. Even if v0(R) = 0, since X ′(ε,R) 6= 0 holds for any small
ε > 0, the above argument is applicable. Thus, ∂RT∗ = 0 is a necessary
condition for global existence.

Step 3. Under the restriction ∂RT∗ = 0, we derive the condition on
initial data which ensures Γ(t, R) > 0 for all t > 0. We first consider the
case v0(R) > 0. Let t1 be defined in (3.4.9). Differentiating the equalities
X(t1, R) = ξ2 and D(R)− F (ξ2) = 0, we see that

Γ(t1, R) = ∂Rξ2 = −∂rD(R)− ∂rAξ
−(n−2)
2

2G(ξ2)
.

Similarly, we obtain

Γ(t1 + T∗/2, R) = ∂Rξ1 = −∂rD(R)− ∂rAξ
−(n−2)
1

2G(ξ1)
.

These two values are positive if

ξ1 <

(
∂rA(R)
∂rD(R)

) 1
n−2

< ξ2. (3.4.10)
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This condition is necessary for global existence, so let us assume this. Let
t1 be as in (3.4.9). However t1 − T∗/2 < 0, by periodicity, we consider
t ∈ (t1 − T∗/2, t1). In this case, X ′(t, R) =

√
D(R)− F (X(t, R) > 0 and so

t =
∫ X(t,R)

R

dy√
D(R)− F (y)

.

Differentiate with respect to R to obtain

0 =
Γ(t, R)
X ′(t, R)

− 1
v0(R)

− 1
2

∫ X(t,R)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy.

Put B(t) = Γ(t, R)/X ′(t, R). An elementary calculation shows that B(t)
takes it minimum at t = t0 such that X(t0, R) = (∂rA(R)/∂rD(R))1/(n−2).
Since X ′ > 0, Γ stays for all t ∈ (t1 − T∗/2, t1) if and only if

B(t0) =
1

v0(R)
+

1
2

∫ “
∂rA(r)
∂rD(R)

”1/(n−2)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy > 0.

Let us proceed to the case t ∈ (t1, t1+T∗/2). Since X ′(t, R) = −
√

D(R)− F (y) <
0 and so

t− 2t1 =
∫ R

X(t,R)

dy√
D(R)− F (y)

,

we have

min
t∈(t1,t1+T∗/2)

Γ(t, R)
|X ′(t, R)| = 2∂Rt1 +

1
v0(R)

+
1
2

∫ “
∂rA(r)
∂rD(R)

”1/(n−2)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy

in the similar way. Hence, we obtain stated condition.
We next suppose v0(R) < 0. Mimicking the previous case, we deduce

from the identity

t =
∫ R

X(t,R)

dy√
D(R)− F (y)

, t ∈ (−t1, T∗/2− t1)

that Γ(t, R) > 0 holds for all t ∈ (−t1, T∗/2− t1) if and only if

1
|v0(R)| +

1
2

∫ “
∂rA(R)
∂rD(R)

”1/(n−2)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy > 0.

Furthermore, we see from

t− 2(T∗/2− t1) =
∫ X(t,R)

R

dy√
D(R)− F (y)

, t ∈ (T∗/2− t1, T∗ − t1)
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that Γ(t, R) > 0 holds for all t ∈ (T∗/2− t1, T∗ − t1) if and only if

2∂Rt1 +
1

|v0(R)| +
1
2

∫ “
∂rA(R)
∂rD(R)

”1/(n−2)

R

∂rD(R)− ∂rA(R)y−(n−2)

(D(R)− F (y))3/2
dy > 0.

We finally treat the case v0(R) = 0. In this case, either R = ξ1 or R = ξ2

holds. Suppose R = ξ1. For t ∈ (0, T∗/2), we have

t =
∫ X(t,R)

R

dy√
F (R)− F (y)

.

We set B(t) := Γ(t, R)/X ′(t, R). By the same calculation as in Case 3-b of
the proof of Theorem 3.4.2, we see that B(t) is given by (3.4.7). Therefore,

d

dt
B(t) =

1
R(X ′)2

[
R∂rA

2

(
1

Rn−2
− 1

Xn−2

)
−RG(R)

]
.

Since G(R) > 0 and ∂rA(R) > 0, we see that B takes it minimum at t = t0,
where t0 satisfies

X(t0, R) =
(

1
Rn−2

− 2G(R)
∂rA

)− 1
n−2

=
(

∂rA(R)
∂rD(R)

) 1
n−2

.

Therefore, Γ(t, R) > 0 holds for t ∈ (0, T∗/2) if and only if B(t0) > 0. For
t ∈ (T∗/2, T∗), it holds that

T∗ − t =
∫ X(t,R)

R

dy√
F (R)− F (y)

.

Since the left hand side is independent of R, we can repeat the same analysis.
We next suppose R = ξ2. In this case,

−t =
∫ X(t,R)

R

dy√
F (R)− F (y)

holds for t ∈ (0, T∗/2) and

t− T∗ =
∫ X(t,R)

R

dy√
F (R)− F (y)

holds for t ∈ (T∗/2, T∗). Therefore, the condition becomes the same form as
in the previous R = ξ1 case.
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3.4.6 Repulsive case 3: n = 2

Theorem 3.4.7. Suppose n = 2, λ > 0, b > 0, ρ0 ∈ D0, and v0 ∈ D1 with
v0(0) = 0. The solution to (rEPb) is global if and only if

T∗ = T∗(R) :=
∫ ξ2

ξ1

dy√
D(R)− F (y)

is independent of R ∈ {R ∈ R+|v0(R) 6= 0 or R 6= XD}, and the following
condition holds for all R ∈ {R ∈ R+|v0(R) 6= 0 or R 6= XD}:

ξ1 < exp
(
−∂rD(R)

∂rA(R)

)
< ξ2

and

• v0(R) 6= 0 and

1
|v0(R)|+

1
2

∫ “
∂rA(R)
∂rD(R)

”1/(n−2)

R

∂rD(R) + ∂rA(R) log y

(D(R)− F (y))3/2
dy > max(0,−2∂Rt1),

• v0(R) = 0 and

e
− ∂rD(R)

∂rA(R)

R

√
F (R)− F

(
e
− ∂rD(R)

∂rA(R)

) +
v′0

G(R)

+
(

∂rA(R)
2

− A(R)
R

) ∫ e
− ∂rA(R)

∂rD(R)

R

log(y/R)
(F (R)− F (y))3/2

dy > 0,

where ξ1 and ξ2 are two roots of D(R)− F (ξ) = 0 with ξ1 < ξ2 and

t1 =
∫ ξ2

R

dy√
D(R)− F (y)

.

Let k be a nonnegative integer. If ρ0 ∈ Dk and v0 ∈ Dk+1 satisfy the condi-
tion for global existence then the corresponding solution of (rEPb) satisfies

ρ ∈ C2([0,∞), Dk) ∩ C∞((0,∞), Dk),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1).

The solution is unique in C2([0,∞), D0) × C1([0,∞), D1) and also solves
(EPb) in the distribution sense.
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3.5 The zero background limit

At the end of this chapter, we observe the correspondence of the results in
Section 3.4 to the results in Section 3.3 in the zero background limit. More
precisely, we check whether or not the necessary and sufficient condition for
global existence of the classical solution to (rEPb) coincides with that for
the classical solution (rEP0) in the limit b ↓ 0. In the one-dimensional case
with v0(R) > 0, this limit is considered in [25]. This limit especially reveals
that the two-dimensional case is special.

3.5.1 Attractive case.

It turns out that, in the attractive case, the answer is yes.

Theorem 3.5.1. By letting b → 0, the conditions in Theorems 3.4.1, 3.4.2,
and 3.4.3 becomes the same as in Theorem 3.3.1.

One dimensional case.

In the one dimensional case, one necessary condition for global existence is
that

v0(R) >
√
|λ|

(
m0(R)√

b
−
√

bR

)

holds for all R > 0 (Theorem 3.4.1). If m0(R0) > 0 holds for some R0

then, for such R0, the right hand side tends to infinity as b ↓ 0 and hence
this condition breaks. On the other hand, once we have m0(R) ≡ 0, the
condition becomes

v0(R) > −
√
|λ|bR, v′0 > −

√
|λ|b,

which is identical with the condition in Theorem 3.3.1 in the limit b ↓ 0.

Two dimensional case.

The two dimensional case is special. The necessary and sufficient condition
for the global existence for b > 0 case given in Theorem 3.4.3 is very similar
to the condition for the n > 3 case established in Theorem 3.4.2. This is
due to the fact that the functions G(x) and F (x) appearing in (3.4.1) and
(3.4.2), respectively, have the similar shape in the n = 2 and the n > 3 cases.
However, as far as the limit equation (rEP0) is concerned, the situation is
quite different from the n > 3 case, and rather similar to the previous one
dimensional case. We deduce from Theorem 3.3.1 that if n = 2 then nonzero
initial density ρ0 never admit the global solution as in one dimensional case,
while it does in the n > 3 case as Theorem 3.3.14 suggests. The zero
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background limit b ↓ 0 clarifies this difference: We fix R > 0 and suppose
m0(R) > 0. Then, for n = 2, it holds that

lim
b↓0

max
x>0

F (x) = lim
b↓0

F (XD)

= lim
b↓0

(
−λm0(R) log

(
2m0(R)

b

)
+ λ

(
bm0(R)

2

) 1
2

)
= +∞,

while the same limit is

lim
b↓0

max
x>0

F (x) = lim
b↓0

F (XD)

= lim
b↓0

(
2λm0(R)

n−1
n b

n−2
n

(n− 2)n
1
n

+
λb

n−1
n m0(R)

1
n

n
n−1

n

)
= 0

if n > 3. Therefore, in Theorem 3.4.3, the cases 2 and 3 do not happen
for sufficiently small b. Moreover, since XD(R) = (nm0(R)/b)1/n → +∞ as
b ↓ 0 for n > 2, we have XD(R) > R for small b and so the conditions in
the case 4 is not fulfilled, neither. Hence, the only possibility for admitting
the global classical solution is that the condition in the case 1 is true for all
R > 0, that is, m0(R) ≡ 0 and

v0(R) > −R|λ|b
2

, v′0(R) > −|λ|b
2

holds for all R > 0. Hence, in the limit b ↓ 0, the condition is identical to
the one given by Theorem 3.3.1.

Three and higher dimensional cases.

As mentioned above, we have limb↓0 maxx>0 F (x) = 0 and XD(R) → 0 as
b ↓ 0. Therefore, in Theorem 3.4.2, the three cases 1, 2, and 3-(a) can
happen for sufficiently small b. The condition in the case 1 becomes

m0(R) = 0, v0(R) > 0, v′0(R) > 0

in the limit b ↓ 0. Similarly, one verifies that the condition in the case 2
tends to

m0(R) > 0, v0(R)2 > −F (R), v0(R) > 0, ∂rC(R) > 0,

and the condition in the case 3-(a) to

m0(R) > 0, v0(R)2 = −F (R), v0(R) > 0, ∂rC(R) > 0,

where C is defined in (3.3.2). Note that v0(R)2 + F (R) = C(R). Hence, we
conclude that the above three conditions can be unified into

v0(R) > 0, C(R) > 0, ∂rC(R) > 0,

which is the one in Theorem 3.3.1.
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3.5.2 Repulsive case

In the Repulsive case, the results given in Theorems 3.4.4, 3.4.5, and 3.4.7
are not the same as the result given in Theorems 3.3.2, 3.3.7, and 3.3.12,
respectively, in the zero background limit. This is closely related to the
periodicity of the solution.

We consider the simplest case n = 1. The higher dimensional case is
similar. If we let b ↓ 0, Theorem 3.4.4 suggests that the classical solution to
(rEP0) is global if and only if

|v0(R)| <
√

2λm0(R), |v′0(R)| <
√

2λρ0(R) (3.5.1)

holds for all R > 0. However, as Theorem 3.3.7 shows, the correct condition
is not (3.5.1) but

v0(R) > −
√

2λm0(R), v′0(R) > −
√

2λρ0(R). (3.5.2)

The question is the followings: What produces this difference, and what
happens if v0(R) >

√
2λm0(R) and/or v′0(R) >

√
2λρ0(R)?

We can answer all these questions by the periodicity. Let us assume that
m0(R) > 0 and v0(R) >

√
2λm0(R). For b > 0, we deduce from (3.4.1) that

X(t, R) = X(t, R; b) =
m0(R)

b
+

(
R− m0(R)

b

)
cos

√
λbt +

v0(R)√
λb

sin
√

λbt.

We consider t ∈ [0, 2π/
√

λb) because X is (2π/
√

λb)-periodic in time. We fix
b so small that 2m0(R)−bR > 0. Since v0(R) >

√
λ(2Rm0(R)− bR), we can

choose t0 so that X(t0, R; b) = 0. Therefore, the classical solution to (rEPb)
breaks down in finite time. However, we note that t0 ∈ (π/

√
λb, 2π/

√
λb).

This is because, for t ∈ [0, π/
√

λb], we have

X(t, R; b) > m0(R)
b

−
∣∣∣∣R− m0(R)

b

∣∣∣∣ = min
(

R,
2m0(R)

b
−R

)
> 0.

Hence, we can choose a finite time t0 < ∞ so that X(t0, R) = 0 for all
b > 0 but cannot in the limit case b = 0. As it were, such t0 goes “beyond
the infinity” as b ↓ 0. Thus, once we deduce the condition which ensures
X(t, R) > 0 Γ(t, R) > 0 for t ∈ [0, π/

√
λb], this is sufficient to claim that the

solution to the limit equation exists for all t ∈ R+. The condition (3.5.2)
corresponds to nothing but this limit condition.

On the other hand, the condition (3.5.2) is the condition for the existence
of classical solution to (rEP0) for all time t ∈ R including also the negative
time. Let b > 0 be sufficiently small. By periodicity of X, if m0(R) > 0
and v0(R) >

√
2λm0(R) then we have X(t0 − 2π/

√
λb,R; b) = 0. Now we

remark that limb→0(t0 − 2π/
√

λb) > −∞ follows from the fact that X(t, R)
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has at most two zero in the interval (−π/
√

λb, 0) for all b > 0, and that
these zeros tend to 2R/(v0(R)±

√
v0(R)2 − 2λRm0(R)) as b ↓ 0 because

lim
b↓0

X(t, R; b) = R

(
lim
b↓0

cos
√

λbt

)
+ v0(R)t

(
lim
b↓0

sin
√

λbt√
λbt

)

+ λm0(R)t2
(

lim
b↓0

1− cos
√

λbt

λbt2

)

= R + v0(R)t +
λm0(R)

2
t2.

Therefore, the limit solution breaks down in finite (negative) time. Similarly,
we have

lim
b↓0

Γ(t, R; b) =
(

lim
b↓0

cos
√

λbt

)
+ v′0(R)t

(
lim
b↓0

sin
√

λbt√
λbt

)

+ λρ0(R)t2
(

lim
b↓0

1− cos
√

λbt

λbt2

)

= 1 + v′0(R)t +
λρ0(R)

2
t2.

We see that if (3.5.1) is satisfied then X(t, R; 0) > 0 and Γ(t, R; 0) > 0 hold
for all t ∈ R.
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Chapter 4

Large time WKB analysis for
Schrödigner-Poisson system

4.1 Introduction and main result

In this chapter, we back to a phase-amplitude approximation of the semi-
classical nonlinear Schrödinger equation. We consider Schrödinger-Poisson
system 




iε∂tu
ε +

ε2

2
∆uε = λV ε

Puε,

−∆V ε
P = |uε|2, V ε

P → 0 as |x| → ∞,

uε(0, x) = Aε
0(x) exp(iΦ0(x)/ε),

(SP)

In Chapter 2, we justify the WKB approximation of the solution

uε = ei
φ0
ε (β0 + εβ1 + · · ·+ εkβk + o(εk)) (4.1.1)

in a time interval [0, T ] for a data in Sobolev space (Theorem 2.1.2). The aim
of this chapter is to show the asymptotics (4.1.1) for a large time interval.
In [46], this kind of result is established in one-dimension case. Now, we
generalize to the n > 3 case. This is done by a combination of the results
in Chapters 2 and 3. Let us describe the outline of proof. In Chapter 2,
the asymptotics (4.1.1) is established for small time. We apply the modified
Madelung transform uε = aεeiφε/ε and consider the system





∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + λV ε

P = 0,

−∆V ε
P = |aε|2, V ε

P → 0 as |x| → ∞,

(aε(0, x), φε(0, x)) = (Aε
0,Φ0).

(4.1.2)
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Then, we show the asymptotic expansion

aε = a0 +
k+1∑

j=1

εjaj + o(εk+1), φε = φ0 +
k+1∑

j=1

εjφj + o(εk+1),

which leads to the desired WKB approximate solution (4.1.1). Here we note
that (a0, φ0) is the solution to





∂ta0 + (∇φ0 · ∇)a0 +
1
2
a0∆φ0 = 0,

∂tφ0 +
1
2
|∇φ0|2 + λVP = 0,

−∆VP = |a0|2, VP → 0 as |x| → ∞,

(a0(0, x), φ0(0, x)) = (A0(x), Φ0(x)).

(4.1.3)

Then, we see that ρ = |a0|2 and v = ∇φ0 solve the Euler-Poisson equations:




ρt + div(ρv) = 0,
vt + v · ∇v + λ∇VP = 0,

−∆VP = ρ, VP → 0 as |x| → ∞,

(ρ, v)(0, x) = (|A0|2,∇Φ0)(x).

(4.1.4)

In Chapter 3, we derive the necessary and sufficient condition on the initial
data for global existence of a classical solution to (4.1.4) under the radial
symmetry (Theorems 3.3.1, 3.3.2, 3.3.7, and 3.3.12). In particular, Theorem
3.3.14 shows that there actually exists an example of initial data (|A0|2,∇Φ0)
for n > 3 and λ < 0 which admits a global solution of (4.1.4). For such initial
data, it turns out that the functions (aj , φj) in the expansion of (aε, φε) are
defined globally in time. Then, applying the analysis in Chapter 2, we can
conclude that (4.1.1) is extended to an arbitrarily large interval. The size
of the interval in which (4.1.1) is valid depends on the parameter ε, and
tends to infinity as ε → 0. Since the assumptions for the main theorem is
complicated, here we only state the theorem.

Theorem 4.1.1. Let Assumption 4.5.3 be satisfied. Let (aε, φε) be the so-
lution to (4.1.2) given by Theorem 4.4.2 and (a0, φ0) be the global solution
to (4.1.3) given by Theorem 4.2.1. Then, there exist

(aj , φj) ∈ C([0,∞);Hs−2j+3 × (Xs−2j+5 ∩ L
n

n−2
+))

(1 6 j 6 k) and constant Cs depending only on n and s such that, for any
T > 0, it holds that

uε = ei
φ0
ε (β0+εβ1+· · ·+εk−1βk−1+O(εk)) in L∞([0, T ]; Hs−2k+1) (4.1.5)

for ε 6 Cη(T )e−3Csη(T )T , where η: R+ → R+ is an increasing function
defined in (4.5.1).
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This chapter is organized as follows: In Section 4.2, we first construct
the solution (a0, φ0) of (4.1.3) time-globally by using Theorem 3.3.14. Then,
Section 4.3 is devoted to the study of the regularity of this global solution.
Namely, we investigate in which function space this solution lies. Then, it
turns out that the above global solution is out of reach of the framework in
Section 2.4. Hence, we choose the function space as something like Sobolev
space so that we can apply the analysis of Chapter 2, and make some mod-
ification in Section 4.4. In the end, we prove Theorem 4.1.1 in Section 4.5
by modifying the argument in [46].

4.2 Global existence of limit solution

We first construct the global (classical) solution of (4.1.3). Theorem 3.3.14
suggests that there is only one global solution (a0, φ0) of (4.1.3) under certain
restriction such as radial symmetry. We consider a radial version of the
equation:





∂ta + ∂rΦ∂ra +
a

2rn−1
∂r(rn−1∂rΦ) = 0, a|t=0(r) = A0(r);

∂tΦ +
1
2
(∂rΦ)2 + λVP = 0, Φ|t=0(r) = Φ0(r);

− ∂r(rn−1∂rVP) = rn−1|a|2, VP → 0 as r →∞,

(4.2.1)

where unknowns a and Φ are the function of (t, r) ∈ R1+1
+ , and take complex

value and real value, respectively. We have removed the index “0” from a0

and φ0, for simplicity. Through this Section 4.2 and next Section 4.3, we
use the bold style characters to denote the radial functions; a for a, A0 for
A0, Φ for φ, Φ0 for Φ0, etc. We use the function space Dk introduced in
(3.2.11). Let us introduce three more function spaces:

Dk
ρ := Dk ∩ L1((0,∞), rn−1dr),

Dk
a := Dk ∩ L2((0,∞), rn−1dr)

and

Dk
φ :=

{
C1([0,∞)) if k = 1,

C1([0,∞)) ∩ Ck((0,∞)) if k > 1.

The main result of this section is the following:

Theorem 4.2.1. Suppose λ < 0 or n > 3. Suppose A0 ∈ D1
a is not

identically zero and Φ0 ∈ D3
φ satisfies ∂rΦ0(0) = 0 and ∂rΦ0(r) → 0 as

r → ∞. Then, the solution of (4.2.1) is global if and only if λ < 0 and
n > 3, and the initial data is of particular form

Φ0(r) =
∫ r

0

√
2|λ|

(n− 2)sn−2

∫ s

0
|A0(σ)|2σn−1dσds + const. (4.2.2)
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Moreover, if A0 ∈ Dk
a for some m > 1 and Φ0 is given by (4.2.2), then

Φ0 ∈ Dk+2
φ holds and the corresponding global solution

a ∈ C2([0,∞), Dk
a) ∩ C∞((0,∞), Dk

a)

Φ ∈ C1([0,∞), Dk+2
φ ) ∩ C∞((0,∞), Dk+2

φ )

are given explicitly in terms of v0(r) = ∂rΦ0(r) as

a(t,X(t, R)) = A0(R)
(

1 +
nv0(R)

2R
t

)− 1
2
(

1 +
2|λ|R|A0(R)|2
(n− 2)v0(R)

t

)− 1
2

,

Φ(t,X(t, R)) = Φ0(R) +
t

2

(
v0(R)2 +

n− 2
2

∫ R

0

v0(r)2

r
dr

)
+ g(t),

where X(t, R) = R(1 + nv0(R)
2R t)2/n and g is a function of time given by

g(t) =



2λ

(n− 2)(n− 4)

∫ ∞

0

|A0(r)|2r2

v0(r)

[(
1 +

nv0(r)
2r

t

) 4
n
−1

− 1

]
dr, if n 6= 4,

− λ

∫ ∞

0

|A0(r)|2r2

v0(r)
log

(
1 +

2v0(r)
r

t

)
dr, if n = 4.

Furthermore, the solution is unique and (a, φ)(t, x) = (a,Φ)(t, |x|) solves
(4.1.3) in the distribution sense.

Remark 4.2.2. If n = 3 or 4, then the integral in (4.2.2) is not integrable
over (0,∞) and so Φ0,Φ 6∈ L∞.

The key is Theorem 3.3.14. Let us quote it. For the equation




rt + r−(n−1)∂r(rn−1rv) = 0, r(0, r) = |A0(r)|2;
vt + v∂rv + λ∂rVP = 0, v(0, r) = ∂rΦ0(r);

− r−(n−1)∂r(rn−1VP) = r, VP → 0 as r →∞,

(4.2.3)

we have showed the following theorem in Chap 3:

Theorem 4.2.3 (Theorem 3.3.14). Let λ < 0 or n > 3. Suppose A0 ∈ D0
a

is not identically zero and Φ0 ∈ D2
φ satisfies ∂rΦ0(0) = 0 and ∂rΦ0 → 0

as r → ∞. Then, the solution of (4.2.3) is global if and only if λ < 0 and
n > 3, and the initial data is of particular form

v0(r) := ∂rΦ0(r) =

√
2|λ|

(n− 2)rn−2

∫ r

0
|A0(s)|2sn−1ds.
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Suppose λ < 0 and n > 3. If A0 ∈ Dk
a for k > 0 and if v0 is as above, then

v0 ∈ Dk+1 and the corresponding solution is

r ∈ C2([0,∞), Dk
ρ) ∩ C∞((0,∞), Dk

ρ),

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1)

and given explicitly by

r(t,X(t, R)) = |A0(R)|2
(

1 +
nv0(R)

2R
t

)−1 (
1 +

2|λ|R|A0(R)|2
(n− 2)v0(R)

t

)−1

,

v(t,X(t, R)) = v0(R)
(

1 +
nv0(R)

2R
t

)1− 2
n

,

where X(t, R) = R(1+nv0(R)
2R t)2/n. Furthermore, it is unique in C2([0,∞), D0)×

C1([0,∞), D1) and (ρ(t, x), v(t, x)) = (r(t, |x|), (x/|x|)v(t, |x|))) solves (4.1.4)
in the distribution sense.

4.2.1 Auxiliary system

To prove Theorem 4.2.1, we introduce following auxiliary system:




∂ta + v∂ra +
a

2rn−1
∂r(rn−1v) = 0, a|t=0 = A0,

∂tv + v∂rv + λ∂rVP = 0, v|t=0 = ∂rΦ0,

− ∂r(rn−1∂rVP) = rn−1|a|2, VP → 0 as r →∞,

(4.2.4)

This is the radial version of the following system:




∂ta + v · ∇a +
1
2
a∇ · v = 0, a|t=0(x) = A0(x),

∂tv + v · ∇v + λ∇VP = 0, v|t=0(x) = ∇Φ0(x),

−∆VP = |a|2, VP → 0 as |x| → ∞.

(4.2.5)

Now we have the following lemma.

Lemma 4.2.4. Let A0 ∈ Dk
a and Φ0 ∈ Dk+2

φ for some k > 0. Then, the
following three statements are equivalent;

1. the system (4.2.1) has a unique solution (a,Φ) ∈ C([0, T ), Dk
a×Dk+2

φ )∩
C1((0, T ), Dk

a ×Dk+2
φ ) with initial data (a,Φ)|t=0 = (A0,Φ0);

2. the system (4.2.4) has a unique solution (a,v) ∈ C([0, T ), Dk
a×Dk+1)∩

C1((0, T ), Dk
a ×Dk+1) with initial data (a,v)|t=0 = (A0,v0 := ∂rΦ0);

3. the radial Euler-Poisson equations (4.2.3) has a unique solution (r,v) ∈
C([0, T ), Dk

ρ×Dk+1)∩C1((0, T ), Dk
ρ×Dk+1) with initial data (r,v)|t=0 =

(r0 := |A0|2,v0).
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Moreover, the maximal existence times of (a,Φ), of (a,v), and of (r,v) are
the same.

Remark 4.2.5. It seems that the information on the amplitude of A0 is lost
in Euler-Poisson equations (4.2.3). However, we can recover. This is due to
the fact that the classical trajectory, which is defined only by the modulus
of A0, propagates the information of the amplitude.

Proof. We first prove 2 ⇒ 1. Let (a,v) be a unique solution of (4.2.4). We
define

Φtmp(t, r) :=
∫ r

0
v(t, s)ds + Φ0(0).

Note that Φtmp ∈ C([0, T ), Dk+2
φ ) ∩ C1((0, T ), Dk+2

φ ) and Φtmp(0, r) =
Φ0(r). Integration of the second equation of (4.2.4) over [0, r] gives

∂tΦtmp(t, r) = −1
2
v(t, r)2 − λVP(t, r) +

1
2
v(t, 0)2 + λVP(t, 0).

Hence, Φ(t, r) = Φtmp(t, r) −
∫ t
0 (1

2v(s, 0)2 + λVP(s, 0))ds solves the second
equation of (4.2.1), so the pair (a,Φ) is the solution of (4.2.1). Let us proceed
to the uniqueness. Let (ã, Φ̃) ∈ C([0, T ), Dk

a×Dk+2
φ )∩C1((0, T ), Dk

a×Dk+2
φ )

be another solution of (4.2.1) with initial data (ã, Φ̃)|t=0 = (A0,Φ0). Then,
(ã, ∂rΦ̃) ∈ C([0, T ), Dk

a ×Dk+1)∩C1((0, T ), Dk
a ×Dk+1) solves (4.2.4) with

initial data (ã, ∂rΦ̃)|t=0 = (A0, ∂rΦ0). By the uniqueness of the solution to
(4.2.4), we see that (ã, ∂rΦ̃) = (a,v). Moreover, by definition of Φ,

Φ(t, x) =
∫ r

0
∂rΦ̃(t, s)ds + Φ0(0)−

∫ t

0

(
1
2
∂rΦ̃(s, 0)2 + λVP(s, 0)

)
ds

= Φ̃(t, r)− Φ̃(t, 0) + Φ̃(0, 0)−
∫ t

0

(
1
2
∂rΦ̃(s, 0)2 + λVP(s, 0)

)
ds

= Φ̃(t, r)−
∫ t

0

(
∂tΦ̃(s, 0) +

1
2
∂rΦ̃(s, 0)2 + VP(s, 0)

)
ds = Φ̃(t, r).

Hence, we see that the solution of (4.2.1) is unique. This also show that the
maximal existence time of (a,Φ) is larger than or equal to that of (a,v). A
similar argument shows 1 ⇒ 2 and the maximal existence time of (a,v) is
larger than or equal to that of (a,Φ). We omit the details.

We next show 3 ⇒ 2. Suppose that (4.2.3) has a unique solution (r,v) ∈
C([0, T ), Dk

ρ ×Dk+1) ∩ C1((0, T ), Dk
ρ ×Dk+1) with initial data (r,v)|t=0 =

(r0,v0). We define a ∈ C([0, T ), Dk
a) ∩ C1((0, T ), Dk

a) by

a(t, X(t, R)) := A0(R) exp
(∫ t

0
∂rv(τ, X(τ, r))dτ

)
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with a classical trajectory X defined by

d

dt
X(t, R) = v(t,X(t, R)), X(0, R) = 0.

Then, one sees that the pair (a,v) is a solution of (4.2.4) and that |a|2 = r.
We prove the uniqueness of (4.2.4). Let (ã, ṽ) ∈ C([0, T ), Dk

a × Dk+1) ∩
C1((0, T ), Dk

a ×Dk+1) be another solution of (4.2.4). Then, (r̃ := |ã|2, ṽ) ∈
C([0, T ), Dk

ρ ×Dk+1)∩C1((0, T ), Dk
a×Dk+1) solves (4.2.3) with initial data

(r̃, ṽ)|t=0 = (r0,v0). Note that ã is given by

ã(t, X̃(t, R)) := A0(R) exp
(∫ t

0
∂rṽ(τ, X̃(τ, r))dτ

)

with a classical trajectory X̃ defined by

d

dt
X̃(t, R) = ṽ(t, X̃(t, R)), X̃(0, R) = 0,

Since (r̃, ṽ) = (r,v) by uniqueness, we see that X̃ = X and so ã = a holds.
Hence, the solution to (4.2.4) is unique. A similar argument shows 2 ⇒ 3
and the maximal existence time of (r,v) is larger than or equal to that of
(a,v). We omit the details.

As a byproduct, we have the following theorem:

Theorem 4.2.6. Suppose λ < 0 or n > 3. Suppose A0 ∈ D0
a is not

identically zero and v0 ∈ D1 satisfies v0(0) = 0 and v0 → 0 as r → ∞.
Then, the solution of (4.2.4) is global if and only if λ < 0 and n > 3, and
the initial data is of particular form

v0(r) =

√
2|λ|

(n− 2)rn−2

∫ r

0
|A0(s)|2sn−1ds.

Moreover, if A0 ∈ Dk
a for some k > 0, then the above v0 belongs to Dk+1

with v0(r) = O(r) as r → 0 and v0(r) = O(r1−n/2) as r → ∞, and the
corresponding global solution

a ∈ C2([0,∞), Dk
a) ∩ C∞((0,∞), Dk

a)

v ∈ C1([0,∞), Dk+1) ∩ C∞((0,∞), Dk+1)

are given explicitly by

a(t,X(t, R)) = A0(R)
(

1 +
nv0(R)

2R
t

)− 1
2
(

1 +
2λR|A0(R)|2
(n− 2)v0(R)

t

)− 1
2

,

v(t,X(t, R)) = v0(R)
(

1 +
nv0(R)

2R
t

)1− 2
n

,

where X(t, R) = R(1+ nv0(R)
2R t)2/n. Furthermore, the solution is unique and

also solves (4.2.5) in the distribution sense.
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Proof. This is an immediate consequence of Theorem 4.2.3 and Lemma 4.2.4.
We note two points: Firstly, a is given explicitly by the classical trajectory
X and the indicator function Γ as

a(t,X(t, R)) := A0(R) exp
(∫ t

0
∂rv(τ, X(τ,R))dτ

)
=

A0(R)R
n−1

2

X(t, R)
n−1

2

√
Γ(t, R)

.

Secondly, the solution to (4.2.5) is given by

(a(t, x), v(t, x)) = (a(t, |x|), (x/|x|)v(t, |x|)).

This solves (4.2.5) for x 6= 0 and it is continuous at x = 0 for all time, and
so it solves (4.2.5) in the distribution sense.

4.2.2 Proof of the theorem

We now in a position to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. The result follows from Theorem 4.2.3 and Lemma
4.2.4. The solution is global if and only if Φ0(r) is such that

∂rΦ0(r) =

√
2λ

(n− 2)rn−2

∫ r

0
|a0(s)|2sn−1ds.

Note that, then, a(t, r) is given as in the proof of Theorem 4.2.6, and that
it solves (4.1.3) in the distribution sense because it solves (4.1.3) for x 6= 0
and it is continuous at x = 0. We conclude with the construction of Φ. As
in the former part of the proof of Lemma 4.2.4, Φ is given by

Φ(t, r) =
∫ r

0
v(t, s)ds + Φ0(0)−

∫ t

0

(
1
2
|v(s, 0)|2 + λΦ(s, 0)

)
ds.

Combining the explicit formulae of v(t,X(t, R)) and X(t, R) in Theorem
4.2.3 (or Theorem 4.2.6) and letting r = X(t, R), we see that the first term
of the right hand side equals to

∫ R

0
v(t, X(t, s))∂RX(t, s)ds

=
∫ R

0

(
v0(s)

(
1 +

nv0(s)
2s

t

)
+ v0(s)s∂s

(
v0(s)

s

)
t

)
ds,

=
∫ R

0

(
v0(s) +

t

2
s

2−n
2 ∂s(s

n−2
2 v0(s)2)

)
ds

= Φ0(R)−Φ0(0) +
t

2

(
v0(R)2 +

n− 2
2

∫ R

0

v0(s)2

s
ds

)
.
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Therefore,

Φ(t, X(t, R)) =
∫ R

0
v(t,X(t, r))∂RX(t, r)dr

+ Φ0(0)−
∫ t

0

(
1
2
|v(τ, 0)|2 + λVP(τ, 0)

)
dτ

= Φ0(R) +
t

2

(
v0(R)2 +

n− 2
2

∫ R

0

v0(r)2

r
dr

)
− λ

∫ t

0
VP(τ, 0)dτ.

Notice that v(t, 0) ≡ 0. We denote g(t) := −λ
∫ t
0 VP(τ, 0)dτ . Then, by the

boundary condition VP → 0 as r →∞, we have

VP(t, r) = −
∫ ∞

r

1
sn−1

∫ s

0
|a(t, σ)|2σn−1dσds

and so g(t) is equal to

λ

∫ t

0

∫ ∞

0

1
rn−1

∫ r

0
|a(τ, s)|2sn−1ds dr dτ

= − λ

n− 2

∫ t

0

∫ ∞

0
s|a(t, s)|2ds dτ = − λ

n− 2

∫ t

0

∫ ∞

0

|A0(r)|2rn−1

X(t, r)n−2
dr dτ

= − λ

n− 2

∫ ∞

0
|A0(r)|2r

(∫ t

0

(
1 +

nv0(r)
2r

τ

) 4
n
−2

dτ

)
dr

=





2λ

(n− 2)(n− 4)

∫ ∞

0

|A0(r)|2r2

v0(r)

[(
1 +

nv0(r)
2r

t

) 4
n
−1

− 1

]
dr, if n 6= 4,

− λ

∫ ∞

0

|A0(r)|2r2

v0(r)
log

(
1 +

2v0(r)
r

t

)
dr, if n = 4,

which completes the proof.

4.3 Regularity of limit solution

As performed in Chapter 2, to obtain the solution (aε, φε) of (4.1.2) and
its ε-power expansion, we introduce the velocity vε = ∇φε and analyze the
system 




∂ta
ε + (vε · ∇)aε +

1
2
aε∇ · vε = i

ε

2
∆aε,

∂tv
ε + (vε · ∇)vε + λ∇V ε

P = 0,

−∆V ε
P = |aε|2, V ε

P → 0 as |x| → ∞,

(aε(0, x), vε(0, x)) = (Aε
0,∇Φ0)

(4.3.1)

by regarding this as a symmetric hyperbolic system. We see in Theorem
4.2.6 that the limit radial system (4.2.4) of (4.3.1) has time-global solution

123



if the velocity is of particular form. Namely, we would like to choose the
initial data of (4.3.1) as

Aε
0(x) := A0(|x|), v0(x) :=

x

|x|v0(|x|) (4.3.2)

with A0(r) ∈ Dk
a and

v0(r) =

√
2|λ|

(n− 2)rn−2

∫ r

0
|A0(s)|2ds ∈ Dk+1.

4.3.1 Choice of the function space and regularity theorem

Let us consider (4.3.1) with the data (4.3.2). Then, it holds that Aε
0 ∈ L2

by assumption on A0. Since v0(r) = O(r) as r → 0 and v0(r) = O(r1−n
2 )

as r →∞, we see that

v0(x) ∈ Lp(R) for p ∈ (2∗,∞],

where r∗ = nr/(n− r) for r < n. Note that, no matter how fast A0 decays
at spatial infinity (such as A0 ∈ S or A0 ∈ C∞

0 ), the decay rate of v0(r) is
the same as long as A0 is nontrivial (and in D0

a). Similarly, we will see in
Proposition 4.3.4 that

∇v0(x) ∈ Lq(R) for q ∈ (2,∞].

Hence, ∇v0(= ∇2Φ0) never belongs to the Sobolev space Hs and so we
cannot apply Theorem 2.1.2. This lack of decay of v0 is one of the main
obstacle of this chapter.

Nevertheless, we can verify ∇2v0 ∈ L2. According to this fact, we intro-
duce the following function space.

Definition 4.3.1. For n > 3, s > n/2 + 1, p ∈ [1,∞], and q ∈ [1,∞], we
define a function space Y s

p,q(Rn) by

Y s
p,q(Rn) = C∞

0 (Rn)
‖·‖Y s

p,q(Rn) (4.3.3)

with norm

‖·‖Y s
p,q(Rn) := ‖·‖Lp(Rn) + ‖∇·‖Lq(Rn) +

∥∥∇2·∥∥
Hs−2(Rn)

. (4.3.4)

We denote Y s
p,q = Y s

p,q(Rn), for short.

For q < n, we use the notation q∗ = nq/(n − q). This space Y s
p,q is

a modification of the Zhidkov space Xs, which is defined, for s > n/2,
by Xs(Rn) := {f ∈ L∞(Rn)|∇f ∈ Hs−1(Rn)}. The Zhidkov space was
introduced in [74] (see, also [26]). Roughly speaking, the exponents p and q
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in Y s
p,q indicate the decay rates at spatial infinity of the function and of its

first derivative, respectively. Moreover, the Zhidkov space Xs corresponds
to Y s

∞,2 in a sense, if n > 3 (see, [62]). The difference is that all function in
Y s
∞,2 decays at spatial infinity. We also note that Y s

2,2 is the usual Sobolev
space Hs. We use the following notation:

Y ∞
p,q := ∩s>0Y

s
p,q, Y s

I,q := ∩p∈IY
s
p,q, Y s

p,I := ∩q∈IY
s
p,q,

where I is an an interval of R. These notations are sometimes used simul-
taneously, for example Y ∞

I1,I2
:= ∩s>0,p∈I1,q∈I2Y

s
p,q. Recall that all functions

in Y s
p,q decays at spatial infinity, by definition. Hence, if f ∈ Y s

p,q for some
s > n/2 + 1, p > 1, and q ∈ [1,∞), then ‖∇f‖L∞ 6

∥∥∇2f
∥∥

Hs−1 < ∞ by
Sobolev embedding and so it holds that Y s

p,q = Y s
p,[q,∞]. Similarly, we have

Y s
p,q = Y s

p,[q,∞]∪[2∗,∞], Y s
p,q ⊂ Y s

q∗,q if q < n.

We now state the main theorem of this section:

Theorem 4.3.2. Let λ < 0 and n > 3. Let s > n/2 + 1 and dse be
the minimum integer larger than or equal to s. Let A0 ∈ Cdse([0,∞)) be
nontrivial function satisfying

rj−dse∂j
rA0 ∈ L2((0,∞), rn−1dr) 1 6 j 6 dse ,

∂j
rA0 ∈ L2((0,∞), rn−1dr) 0 6 j 6 dse ,

∂j
rA0 = O(r−n/2) as r →∞ 0 6 j 6 dse ,

and that there exits k0 > dse − d(n− 1)/2e such that

(∂j
rA0)(0) = 0 for j ∈ [0, k0 − 1], (∂k0

r A0)(0) 6= 0.

Define Φ0 by (4.2.2). Let (a,Φ) be the unique global solution of (4.2.1) given
in Theorem 4.2.1. Then, (a, φ)(t, x) = (a,Φ)(t, |x|) is a global solution of
(4.1.3) satisfying a(t) ∈ Hs, ∇φ(t) ∈ Y s+1

(2∗,∞],(2,∞] for all t > 0. Moreover,
φ(t) ∈ L∞ for all t > 0 if and only if n > 5.

In the rest of this section, we prove this theorem: We confirm that
v0 ∈ Y s

(2∗,∞],(2,∞] holds for a good A0 (Section 4.3.3), and moreover the
corresponding global solution (a, v) of (4.2.5) given explicitly in Theorem
4.2.6 enjoys the same property for all t > 0 (Section 4.3.4).

4.3.2 Preliminary lemma

Before the proof of Theorem 4.3.2, we state a preliminary lemma. This is
the key tool for investigation of higher derivatives of φ. This reflects the
special form of v0.
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Lemma 4.3.3. Let n > 3 and λ < 0. Suppose A0 ∈ Cm([0,∞)) for large
m. Define

v0(r) =

√
2|λ|

(n− 2)rn−2

∫ r

0
|A0(s)|2sn−1ds.

Then, the following equality holds for k ∈ [1,m + 1]:

k∑

j=0

αj,kr
jv(j)

0 =
k∑

l=1

∑

m∈(N∪{0})l,|m|6k−l

βl,mi,k

(∏l
i=1 ρ

(mi)
0

)
r2l+|m|

v2l−1
0

, (4.3.5)

where ρ0 = |A0|2, g(m) denotes the m-th derivative of g with g(0) = g, and
α and β are real constants with αk,k = 1. Moreover, α0,k = 0 for k > 2.

Proof. By definition, v0 satisfies

n− 2
2

v0 + rv′0 =
|λ|

n− 2
ρ0r

2

v0
. (4.3.6)

This implies that (4.3.5) holds if k = 1. Suppose (4.3.5) is true for k = k0 <
m. Differentiate (4.3.5) with respect to R and multiply by R. Then, the left
hand side becomes

k0∑

j=0

αj,k0jr
jv(j)

0 +
k0+1∑

j=1

αj−1,k0r
jv(j)

0 ,

which can be expressed as
∑k0+1

j=0 αj,k0+1r
jv(j)

0 . Note that αk0+1,k0+1 =
αk0,k0 = 1 and α0,k0+1 = 0. Moreover, the same operation makes the right
hand side as

k0∑

l=1

∑

m∈(N∪{0})l,|m|6k0−l

βl,mi,k0

[∑l
j=1

(∏l
i=1 ρ

(mi+δij)
0

)
r2l+(|m|+1)

v2l−1
0

+ (2l + |m|)

(∏l
i=1 ρ

(mi)
0

)
r2l+|m|

v2l−1
0

+ (1− 2l)

(∏l
i=1 ρ

(mi)
0

)
r2l+|m|

v2l
0

(
−n− 2

2
v0 +

|λ|
n− 2

ρ0r
2

v0

) ]
,

where we have used (4.3.6). This can be written as

k0+1∑

l=1

∑

m∈(N∪{0})l,|m|6k0+1−l

βl,mi,k0+1

(∏l
i=1 ρ

(mi)
0

)
r2l+|m|

v2l−1
0

.

Hence, (4.3.5) holds by induction.
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4.3.3 Regularity at the initial time

Proposition 4.3.4. Let s > n/2 + 1 and dse denote the minimum integer
bigger than or equal to s. Assume A0 ∈ Cdse([0,∞)) is nontrivial and
satisfies

rj−dse∂j
rA0 ∈ L2((0,∞), rn−1dr) 1 6 j 6 dse ,

∂j
rA0 ∈ L2((0,∞), rn−1dr) 0 6 j 6 dse ,

∂j
rA0 = O(r−n/2) as r →∞ 0 6 j 6 dse .

Assume that there exits k0 > dse − d(n− 1)/2e such that

(∂k0
r A0)(0) 6= 0, (∂j

rA0)(0) = 0 for j ∈ [0, k0 − 1].

Let

v0(r) =

√
2λ

(n− 2)rn−2

∫ r

0
|A0(s)|2sn−1ds

and (Aε
0, v0) be defined as in (4.3.2). Then, Aε

0 ∈ Hs(Rn) and v0 ∈ Y s+1
(2∗,∞],(2,∞](R

n).
In particular, it holds that

v0(r) =





O
(
rk0+1

)
as r → 0,

O
(
r1−n/2

)
as r →∞,

(4.3.7)

and so that v0 ∈ Lp((0,∞), rn−1dr) for all p ∈ (2∗,∞]. Moreover,

∂rv0(r) =





O
(
rk0

)
as r → 0,

O
(
r−n/2

)
as r →∞,

(4.3.8)

and so ∂rv0 ∈ Lq((0,∞), rn−1dr) for all q ∈ (2,∞]. Furthermore, for all
k ∈ [2, dse+ 1], it holds that ∂k

r v0 ∈ L2((0,∞), rn−1dr) and that

∂k
r v0(r) =





O
(
rk0+1−k

)
as r → 0,

O
(
r−n/2

)
as r →∞.

(4.3.9)

Proof. We first note Aε
0 ∈ L2(Rn) follows from A0 ∈ L2((0,∞), rn−1dr).

Moreover, for k ∈ [1, dse], we have

∥∥∥∇kAε
0

∥∥∥
L2(Rn)

6 C
k∑

j=1

∥∥∥| · |j−k(∂j
rA0)(| · |)

∥∥∥
L2((0,∞),rn−1dr)

6 C
k∑

j=1

∥∥∥| · |j−dse(∂j
rA0)(| · |)

∥∥∥
L2((0,1),rn−1dr)

+ C

k∑

j=1

∥∥(∂j
rA0)(| · |)

∥∥
L2((1∞),rn−1dr)

< ∞.
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Therefore, A0 ∈ Hdse(Rn) ⊂ Hs(Rn). Let us prove that v0 ∈ Y s+1
(2∗,∞],(2,∞](R

n)
and (4.3.7)–(4.3.9) hold. The proof proceeds in three steps.

Step 1. We first show (4.3.7) and v0 ∈ Lp(Rn) for p ∈ (2∗,∞]. Since
|A0(r)|2 = O(r2k0) as r → 0 by assumption, v0(r) = O(rk0+1) as r → 0. On
the other hand, since A0 is nontrivial and in L2((0,∞), rn−1dr), there exist
two positive constants c and C such that

cr1−n
2 6 v0(r) 6 Cr1−n

2 (4.3.10)

for large r. Therefore, supr>0 v0(r) < ∞ and
∫ ∞

0
|v0(s)|psn−1ds < ∞

if p(1 − n/2) + n − 1 < −1, that is, if p > 2∗. Hence, (4.3.7) holds and
v0 ∈ Lp(Rn) for p ∈ (2∗,∞].

Step 2. We next show (4.3.8) and ∇v0 ∈ Lq(Rn) for q ∈ (2,∞]. Note
that

‖∇v0‖q
Lq(Rn) 6 C

1∑

j=0

∫ ∞

0

∣∣rj−1∂j
rv0(r)

∣∣q rn−1dr.

Since r−1v0(r) is O(rk0) as r → 0 and O(r−n/2) as r → ∞ by (4.3.7), we
have

∫∞
0 |s−1v0(s)|qsn−1ds < ∞ for q(−n/2)+n−1 < −1, that is, for q > 2.

It also holds that supr>0(v0(r)/r) < ∞. We now use (4.3.6) to obtain

v′0(r) = α
v0(r)

r
+ β

|A0(r)|2r
v0(r)

with suitable constants α and β. As shown above, the first term belongs
to Lq((0,∞), rn−1dr) for q ∈ (2,∞]. The second term in the right hand
side is O(rk0) as r → 0. Moreover, |A0(r)|2rn is bounded for large r by
assumption, and so the second term is O(r−n/2) as r →∞. Thus, v′0(r) has
the same decay order as v0(r)/r and so belongs to Lq((0,∞), rn−1dr) for
q ∈ (2,∞], which completes the proof of (4.3.8) and of ∇v0 ∈ Lq(Rn) for
q ∈ (2,∞].

Step 3. We finally show (4.3.9) and∇kv0 ∈ L2(Rn) for all k ∈ [2, dse+1].
An elementary computation shows that

∥∥∥∇kv0

∥∥∥
L2(Rn)

6 C
k∑

j=0

∥∥∥∥∥
∂j

rv0(r)
rk−j

∥∥∥∥∥
L2((0,∞),rn−1dr)

.

Hence, it suffices to show that

∂j
rv0 ∈ L2((1,∞), rn−1dr) for j ∈ [2, dse+ 1], (4.3.11)
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| · |j−dse−1∂j
rv0 ∈ L2((0, 1), rn−1dr) for j ∈ [0, dse+ 1], (4.3.12)

and

∂j
rv0(r) = O(rk0+1−j) as r → 0, (4.3.9a)

∂j
rv0(r) = O(r−n/2) as r →∞ (4.3.9b)

for all j ∈ [2, dse+ 1].
We now prove (4.3.11) and (4.3.9b) by induction. In the followings, we

denote |A0|2 by ρ0, for simplicity. It follows from (4.3.5) with k = 2 that

v′′0(r) = −α1,2
v′0(r)

r
+ β1

ρ0(r)
v0(r)

+ β2
ρ′0(r)r
v0(r)

+ β3
ρ0(r)2r2

v0(r)3

with suitable coefficients. It follows from (4.3.8) that v′0/r ∈ L2((1,∞), rn−1dr)
and v′0/r = O(r−n/2) as r →∞. By (4.3.10), we also have

∫ ∞

1

ρ0(r)2

v0(r)2
rn−1dr 6 C

∫ ∞

1
ρ0(r)2r2n−3dr

6 C sup
r>1

(ρ0(r)rn)
∫ ∞

1
ρ0(r)rn−1dr < ∞,

ρ0(r)
v0(r)

r
n
2 = O

(
ρ0(r)rn

r

)
= O(r−1) (r →∞),

∫ ∞

1

ρ′0(r)
2r2

v0(r)2
rn−1dr 6 C

∫ ∞

1
ρ′0(r)

2r2n−1dr

6 C sup
r>1

(|ρ′0(r)|rn)
∫ ∞

1
|ρ′0(r)|rn−1dr < ∞,

ρ′0(r)r
v0(r)

r
n
2 = O

(
ρ′0(r)r

n
)

= O(1) (r →∞),

and
∫ ∞

1

ρ0(r)4r4

v0(r)6
rn−1dr 6 C

∫ ∞

1
ρ0(r)4r4n−3dr

6 C(sup
r>1

(ρ0(r)rn))3
∫ ∞

1
ρ0(r)rn−1dr < ∞,

ρ0(r)2r2

v0(r)3
r

n
2 = O

(
(ρ0(r)rn)2

r

)
= O(r−1) (r →∞).

Therefore, v′′0 ∈ L2((1,∞), rn−1dr) and v′′0 = O(r−n/2) as r →∞.
We now take j0 ∈ [2, dse] and suppose for induction that v(j)

0 is in
L2((1,∞), rn−1dr) and v(j)

0 = O(r−n/2) as r → ∞ hold for all j ∈ [2, j0].

129



By (4.3.5) with k = j0 + 1, we have

v(j0+1)
0 (r) = −

j0∑

j=1

αj,j0+1
v(j)

0 (r)
rj0+1−j

+
j0+1∑

l=1

∑

m∈(N∪{0})l,|m|6j0+1−l

βl,mi,j0+1

(∏l
i=1 ρ

(mi)
0 (r)

)
r2l+|m|−j0−1

v0(r)2l−1
.

Notice that r−j0v′0 ∈ L2((1,∞), rn−1dr) and r−j0v′0 = O(r−n/2) as r → ∞
follow as in the previous j0 = 2 case. Similarly, since v(j)

0 ∈ L2((1,∞), rn−1dr)
and v(j)

0 = O(r−n/2) as r → ∞ hold for j ∈ [2, j0] by assumption of induc-
tion, v(j)

0 r−j0−1+j also belongs to L2((1,∞), rn−1dr) and is order O(r−n/2)
as r →∞ for j ∈ [2, j0]. Moreover, for all l ∈ [1, j0 + 1] and m ∈ (N ∪ {0})l

with |m| 6 j0 + 1− l, it holds that
(∏l

i=1 ρ
(mi)
0 (r)

)
r2l+|m|−j0−1

v0(r)2l−1
r

n
2 = O

((
l∏

i=1

ρ
(mi)
0 (r)rn

)
r|m|−j0

)
= O(1)

and that

∫ ∞

1

(∏l
i=1

(
ρ
(mi)
0 (r)

)2
)

r4l+2|m|−2j0−2

v0(r)4l−2
rn−1dr

6 C

∫ ∞

1

(
l∏

i=1

(
ρ
(mi)
0

)2
)

r2−2lr(2l−1)nrn−1dr

6 C

(∫ ∞

1
|ρ(m1)

0 |rn−1dr

)(
sup
r>1

(
|ρ(m1)

0 |rn
)) l∏

i=2

(
sup
r>1

(
|ρ(mi)

0 |rn
))2

< ∞,

where we have used (4.3.10). Hence, (4.3.11) and (4.3.9b) hold by induction.
Let us proceed to the proof of (4.3.12) and (4.3.9a). (4.3.9a) is equivalent

to

∂j
rv0(r)

rdse+1−j
= O(rk0−dse) as r → 0 for j ∈ [2, dse+ 1]. (4.3.13)

Recall that v0(r) = O(rk0+1) and v′0(r) = O(rk0) as r → 0, and so that
(4.3.13) is true for j = 0, 1. Then, by the assumption that k0 − dse >
−n/2, (4.3.12) immediately follows from (4.3.13). Hence, it suffices to prove
(4.3.13). Take j1 ∈ [1, dse] and suppose that (4.3.13) holds for all j ∈ [0, j1].
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Then, by (4.3.5) with k = j1 + 1, we have

v(j1+1)
0 (r)
rdse−j1

= −
j1∑

j=1

αj,j1+1
v(j)

0 (r)
rdse+1−j

+
j1+1∑

l=1

∑

m∈(N∪{0})l,|m|6j1+1−l

βl,mi,j1+1

(∏l
i=1 ρ

(mi)
0 (r)

)
r2l+|m|−dse−1

v0(r)2l−1
.

The first sum is O(rk0−dse) as r → 0 by assumption of induction. Recall
that ρ0(r) = O(r2k0) as r → 0. This implies rjρ

(j)
0 (r) = O(r2k0) as r → 0 for

all j > 0. By this fact, the second sum is also O(rk0−dse) as r → 0 because,
for each l ∈ [1, j1 + 1] and m ∈ (N ∪ {0})l with |m| 6 j1 + 1− l, we have
(∏l

i=1 ρ
(mi)
0 (r)

)
r2l+|m|−dse−1

v0(r)2l−1
=

(∏l
i=1 rmiρ

(mi)
0 (r)

)
r2l−dse−1

v0(r)2l−1
= O(rk0−dse)

as r → 0. Therefore, (4.3.13) holds by induction.

4.3.4 Persistence of the regularity

We next show that the (4.2.4) keeps the same regularity as the initial data
for all positive time, thanks to its explicit representation.

Proposition 4.3.5. Under the same assumption as in Proposition 4.3.4,
let (A(t, r),v(t, r)) be the global solution of (4.2.4) given by Theorem 4.2.6:

A(t,X(t, R)) = A0(R)
(

1 +
nv0(R)

2R
t

)− 1
2
(

1 +
2λ|A0(R)|2R
(n− 2)v0(R)

t

)− 1
2

,

v(t,X(t, R)) = v0(R)
(

1 +
nv0(R)

2R
t

)1− 2
n

with X(t, R) = R(1 + nv0(R)
2R t)2/n. Then, the corresponding global solution

a(t, x) = A(t, |x|), v(t, x) =
x

|x|v(t, |x|) (4.3.14)

of (4.2.5) belongs to the space Hs(Rn)× Y s+1
(2∗,∞],(2,∞](R

n) for all t > 0.

Proof. First of all, we put

F (R) :=
nv0(R)

2R
> 0, G(R) :=

2|λ||A0(R)|2R
(n− 2)v0(R)

= v′0(R) +
(n− 2)v0(R)

2R
> 0.
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Then, it simplifies the notations into

A(t,X(t, R)) = A0(R)(1 + F (R)t)−1/2(1 + G(R)t)−1/2,

v(t,X(t, R)) = v0(R)(1 + F (R)t)1−2/n,

X(t, R) = R(1 + F (R)t)2/n,

Γ(t, R) := ∂RX(t, R) = (1 + F (R)t)2/n−1(1 + G(R)t).

Moreover, (4.3.7)–(4.3.9) give

∂j
RF (R) = O(Rk0−j), ∂j

RG(R) = O(Rk0−j) (4.3.15)

as R → 0 for all j ∈ [0, dse+ 1]. We also have

∂j
RF (R) = O

(
R−n

2
−min(j,1)

)
∂j

RG(R) = O
(
R−n

2

)
(4.3.16)

as R →∞.
Step 1. We show a(t, ·) ∈ Hs(Rn). Let us claim that

(∂k
r A)(t,X(t, R)) =

∑

li>0,l1+l2+l36k

∑

mi∈(N∪{0})li ,
|m1|+|m2|=k−l1−l2−l3

Ck,li,m1,m2(∂
l3
r A0)(R)

(
1 + F (R)t

)− 1
2
+k(1− 2

n)−l1(1 + G(R)t
)− 1

2
−k−l2tl1+l2

l1∏

i1=1

∂
1+m1i1
r F (R)

l2∏

i2=1

∂
1+m2i2
r G(R), (4.3.17)

where we let
∏l1

i1=1 ∂
1+m1i1
r F (R) = 1 and |m1| = 0 if l1 = 0, the similar rule

is applied to the case l2 = 0. By definition of A, (4.3.17) is true if k = 0.
Then, differentiate with respect to r and multiply by Γ−1 to obtain

(∂rA)(t,X(t, R)) = ∂rA0(R)(1 + F (R)t)
1
2
− 2

n (1 + G(R)t)−
3
2

− 1
2
A0(R)(1 + F (R)t)−

1
2
− 2

n (1 + G(R)t)−
3
2 ∂rF (R)t

− 1
2
A0(R)(1 + F (R)t)

1
2
− 2

n (1 + G(R)t)−
5
2 ∂rG(R)t.

Repeating this operation, we obtain (4.3.17) by induction. Since A0(t,X(t, R))
is written as A0(R)Rn−1/X(t, R)n−1Γ(t, R), one verifies that the L2 norm
is conserved: ‖a(t)‖L2(Rn) = ‖a0‖L2(Rn). For k > 1, we have

∥∥∥∇ka(t)
∥∥∥

2

L2(Rn)
6 C

k∑

j=1

∫ ∞

0

∣∣∣∣∣
(∂j

rA)(t,X(t, R))
X(t, R)k−j

∣∣∣∣∣
2

X(t, R)n−1Γ(t, R)dR.

(4.3.18)
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Recall that F, G > 0 and supr>0(|F (r)|+ |G(r)|) < ∞. Hence, it suffices to
show that

∫ ∞

0

|∂l3
r A0(R)|2

R2k−2j−n+1

l1∏

i1=1

(∂
1+m1i1
r F )(R)2

l2∏

i2=1

(∂
1+m2i2
r G)(R)2dR < ∞ (4.3.19)

for each k ∈ [1, dse], j ∈ [1, k], li > 0 (i = 1, 2, 3) with l1 + l2 + l3 6 j, and
mi ∈ (N ∪ {0})li (i = 1, 2) with |m1|+ |m2| = j − l1 − l2 − l3. By (4.3.15),

|∂l3
r A0|2

r2k−2j−n+1

l1∏

i1=1

|∂1+m1i1
r F |2

l2∏

i2=1

|∂1+m2i2
r G|2 = O(r2k0−2dse+n−1)

as r → 0 and so this is integrable around r = 0 by the choice of k0. On the
other hand, (4.3.16) gives

sup
r>1

r−2k+2j
l1∏

i1=1

(∂
1+m1i1
r F )(r)2

l2∏

i2=1

(∂
1+m2i2
r G)(r)2 < ∞,

and so we conclude that (4.3.19) follows from the integrability property of
A0 (Proposition 4.3.4).

Step 2. We show v ∈ Y s+1
(2∗,∞].(2,∞](R

n). Since supr>0(|F (r)|+ |G(r)|) <

∞, we see that ‖v(t)‖Lp(Rn) 6 Ct ‖v(0)‖Lp(Rn) < ∞ for all t > 0 and p ∈
(2∗, I]. Similarly, we have

‖∇v(t)‖q
Lq(Rn) 6 C

∫ ∞

0

∣∣∣∣
v(t, X)

X

∣∣∣∣
q

Xn−1ΓdR + C

∫ ∞

0
|v′(t, X)|qXn−1ΓdR

6 Ct

∫ ∞

0
|v0(R)|qRn−q−1dR + Ct

∫ ∞

0
|v′0(R)|qRn−1dR

+ Ct

∫ ∞

0
|v0(R)|q|∂rF (R)|qRn−1dR.

By (4.3.7), (4.3.8), (4.3.15), and (4.3.16), one sees that the right hand side
is finite. Now, let us prove ∇kv ∈ L2(Rn) for k ∈ [2, dse+ 1]. Note that

∥∥∥∇kv
∥∥∥

2

L2(Rn)
6 C

k∑

j=0

∫ ∞

0

∣∣∣∣∣
∂j

rv(t,X(t, R))
X(t, R)k−j

∣∣∣∣∣
2

Xn−1(t, R)Γ(t, R)dR.

(4.3.20)
The same calculation as in (4.3.17) shows the following identity:

(∂k
r v)(t,X(t, R)) =

∑

li>0,l2<k,l1+l2+l36k

∑

mi∈(N∪{0})li ,|m1|+|m2|=k−l1−l2−l3

Ck,li,m1,m2(∂
l3
r v0)(R)(1 + F (R)t)(k+1)(1− 2

n)−l1(1 + G(R)t)−k−l2tl1+l2

l1∏

i1=1

∂
1+m1i1
r F (R)

l2∏

i2=1

∂
1+m2i2
r G(R). (4.3.21)
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Therefore, our task is to prove that

∫ ∞

0

|∂l3
r v0(R)|2

R2k−2j−n+1

l1∏

i1=1

(∂
1+m1i1
r F )(R)2

l2∏

i2=1

(∂
1+m2i2
r G)(R)2dR < ∞ (4.3.22)

for each k ∈ [2, dse], j ∈ [0, k], li > 0 (i = 1, 2, 3) with l2 < j and l1+l2+l3 6
j, and mi ∈ (N ∪ {0})li (i = 1, 2) with |m1| + |m2| = j − l1 − l2 − l3. We
divide

∫∞
0 =

∫ 1
0 +

∫∞
1 and denote the left hand side of (4.3.22) as I1 + I2.

By (4.3.7)–(4.3.9) and (4.3.15), the integrand of I1 is

O

(
(rk0+1−l3)2r−2k+2j+n−1

l1∏

i1=1

(rk0−1−m1i1 )2
l2∏

i2=1

(rk0−1−m2i2 )2
)

= O(r2k0−2(k−1)+n−1+2k0(l1+l2)) = O(r2k0−2dse+n−1)

as r → 0, and so this is integrable near r = 0 thanks to the choice of
k0. Hence, I1 < ∞. We finally show that I2 < ∞. Suppose l3 = 0
or 1. Then, it automatically holds that l1 + l2 > 1 because, otherwise
0 = |m1| + |m2| 6= j − l1 − l2 − l3 > 1. Then, by (4.3.7) and (4.3.16), we
deduce that the integrand of I2 is

O

(
(r1−n

2
−l3)2r−2k+2j+n−1

l1∏

i1=1

(r−
n
2
−1)2

l2∏

i2=1

(r−
n
2 )2

)

= O(r−n+1−2(k−j)−2(l1+l3)−n(l1+l2−1)) = O(r−n+1)

as r →∞. Hence, I2 < 0. We next suppose l3 > 2. In this case, we have

I2 6 sup
r>1

(
r−2(k−j)

l1∏

i1=1

(∂
1+m1i1
r F )(r)2

l2∏

i2=1

(∂
1+m2i2
r G)(r)2

)

×
∫ ∞

1
|∂l3

r v0(R)|2Rn−1dR < ∞.

by (4.3.16) and by (4.3.11) in the proof of Proposition 4.3.4.

4.4 Local existence with slowly decaying data

In previous Sections 4.2 and 4.3, we see that if λ < 0 and n > 3 then
there exists an example of global solution of (4.1.3). That solution can be
constructed so that

a(t) ∈ Hs(Rn), φ(t) ∈ C3(Rn), ∇φ(t) ∈ Y s+1
(2∗,∞],(2,∞], ∀t > 0
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for some s > n/2 + 1. Remark that ∇2φ 6∈ L2(Rn) and so that we cannot
apply Theorem 2.1.2. In this section, we adapt the results in Chapter 2 so
that the system





∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + λV ε

P = 0,

−∆V ε
P = |aε|2, V ε

P → 0 as |x| → ∞,

(aε(0, x), φε(0, x)) = (Aε
0,Φ0)

(4.1.2)

(and (4.1.3)) can be solved for such a initial data. For this purpose, we
prove that there exists a unique solution to (4.1.2) for an initial data satisfies
Aε

0 ∈ Hs+1(Rn), Φ0 ∈ C4, and ∇Φ0 ∈ Y s+2
p,q (s > n/2+1, p > 2∗, and q > 2).

We remove the radial symmetry and forget the specific definition of ∇Φ0.
We generalize nonlinearity and work with the Hartree type nonlinearity: We
replace (SP) by

iε∂tu
ε +

ε2

2
∆uε = λ(|x|−γ ∗ |uε|2)uε; uε(0, x) = Aε

0(x) exp(iΦ0(x)/ε)

(4.4.1)
and (4.1.2) by





∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + λ(|x|−γ ∗ |aε|2) = 0,

(aε(0, x), φε(0, x)) = (Aε
0, Φ0).

(4.4.2)

The case γ = n−2 corresponds to the Scrhrödinger-Poisson system because
the Newtonian potential is given by cn|x|−(n−2) for n > 3. This generaliza-
tion clarifies the required smoothing property of the nonlocal nonlinearities
slightly. We also assume that λ is not necessarily negative. The main result
of this section is Theorem 4.4.2 in Section 4.4.3

4.4.1 Lack of the decay of the phase function

In Section 2.4, we have establish the WKB approximation of the solution of
(4.4.1) (and (SP)) for a data (Aε

0, Φ0) such that Aε
0 ∈ Hs and ∇Φ0 ∈ Xs+1.

It is convenient to employ the velocity vε := ∇φε and consider the system




∂ta
ε + (vε · ∇)aε +

1
2
aε∇ · vε = i

ε

2
∆aε,

∂tv
ε + (vε · ∇)vε + λ∇(|x|−γ ∗ |aε|2) = 0,

(aε(0, x), vε(0, x)) = (Aε
0,∇Φ0)

(4.4.3)

because this system can be regarded as a symmetric hyperbolic system with
perturbation. We observe in Section 2.2 that the general strategy and the
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common problem in solving this system, and in Section 2.4.1 that the key
for treating the nonlocal nonlinearity is to derive the smoothing property
from the nonlinearity. The main step of the proof is to obtain a priori bound
by the energy method. For the proof of Theorems 2.1.3 and 2.1.2, we have
chosen the energy E(t) := ‖aε‖2

Hs + ‖∇v‖2
Hs . We select this energy by the

following respects:

1. When we estimate d
dt‖aε(t)‖2

Hs , we need to bound the s+1-time deriva-
tive of the vε, such as ‖∇vε‖Hs .

2. When we estimate d
dt‖∇vε‖2

Hs , we need to bound the s+2-time deriva-
tive of the nonlinear term. At this step, we can gain two-time deriva-
tive from the nonlocal nonlinearity by using Lemma 2.4.1, and bound
it with ‖aε(t)‖Hs .

However, we cannot go along this scenario any more because we are now
considering the data such that ∇vε 6∈ L2. According to the fact that ∇2vε ∈
L2, we modify the energy as

E(t) := ‖aε‖2
Hs+1 +

∥∥∇2vε
∥∥2

Hs + ‖∇vε‖2
Lq + ‖vε‖2

Lp (4.4.4)

and change the above strategy as follows:

1. When we estimate d
dt‖aε(t)‖2

Hs+1 , we bound it with not ‖∇vε‖Hs+1 but
‖∇2vε‖Hs .

2. We estimate d
dt‖∇2vε‖2

Hs by ‖aε‖Hs+1 with the two-time derivative
gain, as above.

3. Since p, q > 2, we cannot estimate ‖∇vε‖Lq and ‖vε‖Lp by the energy
method. Hence, we try to obtain this bound by using the equation.

4.4.2 Modified energy estimate

At this section we perform the energy estimate, along the strategy given in
the previous section. We would like to choose the energy defined by (4.4.4).
As a first step, we shall show the following proposition.

Proposition 4.4.1. Let n > 3 and λ ∈ R. Assume s > n/2 + 1 and γ > 0
satisfies n/2 − 2 < γ 6 n − 2. Also assume p ∈ (2∗,∞] and q ∈ (2,∞). If
(aε, vε) ∈ Hs+1 × Y s+2

p,q solves (4.4.3), then the “partial energy” Epart(t) :=
‖aε‖2

Hs+1 +
∥∥∇2vε

∥∥2

Hs satisfies

d

dt
Epart(t) 6 CEpart(t)

3
2 .
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Proof. We first estimate the Hs+1 norm of aε. As in Chapter 2, we use the
following convention for the scalar product in L2:

〈ϕ,ψ〉 :=
∫

Rn

ϕ(x)ψ(x)dx.

We use the notation Λ = (I −∆)1/2. We have

d

dt
‖aε‖2

Hs+1 = 2Re
〈
∂tΛs+1aε, Λs+1aε

〉
.

Let us bound the right hand side. The point is that we cannot use ‖∇vε‖L2

as a bound. By commuting Λs+1 with the equation for aε, we find:

∂tΛs+1aε + Λs+1(vε · ∇aε) +
1
2
Λs+1(aε∇ · vε)− i

ε

2
∆Λs+1aε = 0. (4.4.5)

The coupling of the second term and Λs+1aε is written as
〈
Λs+1(vε · ∇aε), Λs+1aε

〉
=

〈
vε · ∇Λs+1aε, Λs+1aε

〉

+
〈
[Λs+1, vε

δ ] · ∇aε, Λs+1aε
〉
.

We see from the integration by parts that

|Re
〈
vε · ∇Λs+1aε, Λs+1aε

〉 | 6 1
2
‖∇vε‖L∞ ‖aε‖2

Hs+1 . (4.4.6)

Moreover, the commutator estimate (Lemma A.2.2) with k = 2 shows that

|Re
〈
[Λs+1, vε

δ ] · ∇aε,Λs+1aε
〉 |

6 C(‖∇vε‖L∞ ‖∇aε‖Hs +
∥∥∇2vε

∥∥
Hs−1 ‖∇aε‖L∞) ‖aε‖Hs+1 . (4.4.7)

We estimate the third term of (4.4.5) by (A.2.2) as

|Re
〈
Λs+1(aε∇ · vε), Λs+1aε

〉 |
6 C(‖a‖Hs+1 ‖∇vε‖L∞ + ‖aε‖L∞

∥∥∇2vε
∥∥

Hs) ‖aε‖Hs+1 . (4.4.8)

Recall that this part is the bad term: This is the only term which contains
the (s + 2)-time derivative of vε. The last term vanishes as in (2.2.2):

Re
〈−i∆Λs+1a,Λs+1a

〉
= Re i ‖∇a‖2

Hs+1 = 0. (4.4.9)

Therefore, summarizing (4.4.5)–(4.4.9), we have

d

dt
‖aε‖2

Hs+1 6 C(‖a‖W 1,∞ + ‖∇vε‖L∞)(‖aε‖Hs+1 +
∥∥∇2vε

∥∥
Hs) ‖aε‖Hs+1 .

Recall that ∇vε ∈ Lq (q < ∞) and so ∇vε → 0 as |x| → ∞. Hence, by the
Sobolev embedding ‖∇vε‖L∞ 6 C

∥∥∇2vε
∥∥

Hs , we end up with

d

dt
‖a‖2

Hs+1 6 CEpart(t)
3
2 . (4.4.10)
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Let us proceed to the estimate of vε. We denote the operator Λs∇2 by
Q. From the equation for vε, we have

∂tQvε + Q(vε · ∇vε) + Q∇(|x|−γ ∗ |aε
δ|2) = 0 (4.4.11)

We consider the coupling of this equation and Qvε. The second term can
be written as

〈Q(vε · ∇vε), Qvε〉 = 〈vε · ∇Qvε, Qvε〉+
〈
[Λs∇, vε] · ∇2vε, Qvε

〉

+ 〈Λs∇(∇vε · ∇vε), Qvε〉 .
As the previous case, integration by parts shows

|Re 〈vε · ∇Qvε, Qvε〉 | 6 1
2
‖∇vε‖L∞

∥∥∇2vε
∥∥

Hs , (4.4.12)

and the commutator estimate with k = 1 also shows

|Re
〈
[Λs∇, vε

δ ] · ∇2vε, Qvε
〉 |

6 C(‖∇vε‖L∞
∥∥∇2vε

∥∥
Hs +

∥∥∇2vε
∥∥

Hs−1

∥∥∇2vε
∥∥

L∞)
∥∥∇2vε

∥∥
Hs . (4.4.13)

For the estimate of the Hartree nonlinearity, we use Lemma 2.4.1 with p = ∞
and k = 2 to obtain

∥∥λ∇3(|x|−γ ∗ |aε|2)∥∥
Hs 6 C

∥∥∇2(|x|−γ ∗ |aε|2)∥∥
Hs+1

6 C(‖aε‖L∞ ‖aε‖Hs+1 + ‖aε‖2
L2). (4.4.14)

Sum up (4.4.11)–(4.4.14) to have

d

dt

∥∥∇2vε
∥∥2

Hs 6 CEpart(t)
3
2 , (4.4.15)

which completes the proof.

4.4.3 Existence result

We now show our main result in this section.

Theorem 4.4.2. Let n > 3 and λ ∈ R. Let γ be a positive number with
n/2−2 < γ 6 n−2. Let s > n/2+1. Assume that Φ0 ∈ C4 with ∇Φ0 ∈ Y s+2

p,q

for p ∈ (2∗,∞] and q ∈ (2,∞) with p > q. Also assume that Aε
0 is uniformly

bounded in Hs+1 for ε ∈ [0, 1]. Then, there exist T > 0 independent of
ε ∈ [0, 1] and s > n/2 + 1, and (aε, φε) ∈ C([0, T ]; C2 ×C4) unique solution
to (4.4.2) on [0, T ] for ε ∈ [0, 1]. Moreover, aε is bounded in C([0, T ]; Hs+1)
uniformly in ε ∈ [0, 1]. Furthermore, φε is bounded in L∞([0, T ] × Rn)
uniformly in ε ∈ [0, 1] if n > 5. φε − Φ0 and ∇(φε − Φ0) are bounded in

C([0, T ]; (Lmax
“

p
2
, n
γ
+
”
∩L∞)(Rn)) and C([0, T ]; (Lmax

“
pq

p+q
n

γ+1
+
”
∩L∞)(Rn)),

respectively, uniformly in ε ∈ [0, 1].
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Remark 4.4.3. In above theorem, the case γ = n−2 is admissible. Therefore,
we immediately obtain the same results for (4.1.2).

Proof. As in the proof of Theorem 2.4.2, we first obtain the solution (aε, vε)
of (4.4.3) and then integrate vε to construct φε.

Local existence of the solution to (4.4.3).

Let us obtain the solution (aε, vε) ∈ C([0, T ];Hs+1×Y s+2
p,q ) for small T > 0.

The proof of this part proceeds along the classical energy method, and so
it suffices to establish a priori bound of the solution. We first deduce from
Proposition 4.4.1 that

d

dt
Epart(t) 6 CEpart(t)

3
2 ,

where Epart(t) = ‖aε‖2
Hs+1 + ‖∇2vε‖2

Hs . Therefore, by Gronwall’s lemma,
there exist T and C such that

sup
t∈[0,T ]

Epart(t) 6 C(Epart(0)). (4.4.16)

Next we estimate vε and ∇vε. Let E(t) be as in (4.4.4). By the second
equation of (4.4.3), we obtain

vε(t) = ∇Φ0 −
∫ t

0

(
(vε · ∇)vε + λ∇(|x|−γ ∗ |aε|2)) ds.

Therefore, we have

‖vε‖L∞([0,T ];Lp) 6 ‖∇Φ0‖Lp + T ‖vε‖L∞([0,T ];Lp) ‖∇vε‖L∞([0,T ]×Rn)

+ T |λ| ∥∥∇(|x|−γ ∗ |aε|2)∥∥
L∞([0,T ];Lp)

.

and

‖∇vε‖L∞([0,T ];Lq) 6
∥∥∇2Φ0

∥∥
Lq + T ‖∇vε‖L∞([0,T ];Lq) ‖∇vε‖L∞([0,T ]×Rn)

+ T ‖vε‖L∞([0,T ];Lp)

∥∥∇2vε
∥∥

L∞([0,T ];L
pq

p−q )

+ T |λ| ∥∥∇2(|x|−γ ∗ |aε|2)∥∥
L∞([0,T ];Lq)

.

We have Hs ↪→ L2 ∩ L∞ ↪→ L
pq

p−q since pq
p−q ∈ (2,∞] holds by assumption

p > q > 2. Moreover, we deduce from Lemma 2.4.1 that

∥∥∇(|x|−γ ∗ |aε|2)∥∥
Lp 6 C

∥∥∥|∇|1+n( 1
2
− 1

p
)(|x|−γ ∗ |aε|2)

∥∥∥
L2

6 C ‖aε‖2
Hs+1 ,

∥∥∇2(|x|−γ ∗ |aε|2)∥∥
Lq 6 C

∥∥∥|∇|2+n( 1
2
− 1

q
)(|x|−γ ∗ |aε|2)

∥∥∥
L2

6 C ‖aε‖2
Hs+1 ,
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provided n/p− 1 < γ 6 n− 2 and n/q− 2 < γ 6 n− 2, respectively. By the
assumptions p > 2∗ and q > 2, we see that

max
(

n

p
− 1,

n

q
− 2

)
<

n

2
− 2.

Hence, for so small T that TC(Epart(0)) < 1/3, we see from (4.4.16) that

‖vε‖L∞([0,T ];Lp)+‖∇vε‖L∞([0,T ];Lq) 6 3 ‖∇Φ0‖Lp+3
∥∥∇2Φ0

∥∥
Lq+C(Epart(0)).

(4.4.17)
Plugging (4.4.17) to (4.4.16), we obtain desired energy estimate: There exist
T and C such that

sup
t∈[0,T ]

E(t) 6 C(E(0)).

Hence, we obtain the solution (aε, vε) ∈ C([0, T ]; Hs+1 × Y s+2
p,q ).

Tail estimate of vε and the uniqueness

We next investigate the decay property of vε: By the Hölder inequality and
the Hardy-Littlewood-Sobolev inequality, we have

vε −∇Φ0 = −
∫ t

0

(
(vε · ∇)vε + λ∇(|x|−γ ∗ |aε|2)) ds ∈ L

max
“

pq
p+q

, n
γ+1

+
”
.

(4.4.18)
Let us proceed to the proof of the uniqueness of (4.4.3). Let (aε

1, v
ε
1) and

(aε
2, v

ε
2) be two solutions of (4.4.3) in C([0, T ]; Hs+1×Y s+2

p,q ) with (aε
i , v

ε
i )(0) =

(Aε
0,∇Φ0). Put dε

a = aε
1 − aε

2 and dε
v = vε

1 − vε
2. We remark that dε

a(0) ≡ 0
and dε

v(0) ≡ 0. Moreover, we see from the above estimate (4.4.18) that
dε

v = (vε
1−∇Φ0)− (vε

2−∇Φ0) and so dε
v → 0 as |x| → ∞. Now, we estimate

Ed(t) := ‖dε
a‖2

L2 + ‖∇dε
v‖2

L2 .

It is important to note that ∇vε
1 and ∇vε

2 do not necessarily belong to L2

by definition of Y s
p,q. Nevertheless, their difference dε

v does so because it is
identically zero and so belongs to L2 at the initial time. We shall follow this
part precisely. The system for (dε

a, d
ε
v) is rewritten as





∂td
ε
a + dε

v · ∇aε
1 + vε

2 · ∇dε
a +

1
2
dε

a · ∇vε
1 +

1
2
aε

2 · ∇dε
v = i

ε

2
∆dε

a,

∂td
ε
v + dε

v · ∇vε
1 + vε

2 · ∇dε
v + λ∇(|x|−γ ∗ (dε

aa
ε
1 + aε

2d
ε
a)) = 0.

(4.4.19)

Now estimate the L2 norm of dε
a. From the first equation in (4.4.19), it holds

that

d

dt
‖dε

a‖2
L2 = 2 Re 〈∂td

ε
a, d

ε
a〉

6 C |Re 〈dε
v · ∇aε

1, d
ε
a〉 |+ C|Re 〈vε

2 · ∇dε
a, d

ε
a〉 |+ C|Re 〈dε

a · ∇vε
1, d

ε
a〉 |

+ C|Re 〈aε
2 · ∇dε

v, d
ε
a〉 |+ |Re 〈i∆dε

a, d
ε
a〉 |.
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Now, Hölder’s inequality and integration by parts show that

|Re 〈aε
2 · ∇dε

v, d
ε
a〉 | 6 ‖aε

2‖L∞ ‖∇dε
v‖L2 ‖dε

a‖L2 ,

|Re 〈vε
2 · ∇dε

a, d
ε
a〉 |+ |Re 〈dε

a · ∇vε
1, d

ε
a〉 | 6 (‖∇vε

1‖L∞ + ‖∇vε
2‖L∞) ‖da‖2

L2 ,

Re 〈i∆dε
a, d

ε
a〉 = 0.

Another use of Hölder’s and Sobolev inequalities shows

| 〈dε
v · ∇aε

1, d
ε
a〉 | 6 ‖dε

v‖
L

2n
n−2

‖∇aε
1‖Ln ‖dε

a‖L2

6 C ‖∇aε
1‖H

n
2−1 ‖∇dε

v‖L2 ‖dε
a‖L2

Thus, we end up with the estimate

d

dt
‖dε

a‖2
L2 6 C

(
‖dε

a‖2
L2 + ‖∇dε

v‖2
L2

)
,

where the constant C depends only on ‖aε
1‖Hn/2 , ‖aε

2‖L∞ , and ‖∇vε
i ‖L∞

(i = 1, 2). Therefore, this can be written as

d

dt
‖dε

a‖2
L2 6 C(‖aε

i‖Hs+1 , ‖vε
i ‖Y s+2

p,q
)Ed(t). (4.4.20)

Similarly, for all 1 6 i, j 6 n, we have the estimates for ∂id
ε
v,j :

∣∣〈((∂id
ε
v) · ∇)vε

1,j , ∂id
ε
v,j

〉∣∣ 6 C
∥∥∇vε

1,j

∥∥
L∞ ‖∂id

ε
v‖2

L2 ,∣∣〈(dε
v · ∇)∂iv

ε
1,j , ∂id

ε
v,j

〉∣∣ 6 C
∥∥∇∂iv

ε
2,j

∥∥
Ln ‖dε

v‖
L

2n
n−2

∥∥∂id
ε
v,j

∥∥
L2 ,

∣∣〈((∂iv
ε
2) · ∇)dε

v,j , ∂id
ε
v,j

〉∣∣ 6 C ‖∂iv
ε
2‖L∞

∥∥∇dε
v,j

∥∥2

L2 ,
∣∣〈(vε

2 · ∇)∂id
ε
v,j , ∂id

ε
v,j

〉∣∣ 6 C ‖∇vε
1‖L∞

∥∥∂id
ε
v,j

∥∥2

L2 ,∣∣〈∂i∂j(|x|−γ ∗ (dε
aa

ε
1)), ∂id

ε
v,j

〉∣∣ 6 C(‖aε
1‖L∞ + ‖aε

1‖L2) ‖dε
a‖L2

∥∥∂id
ε
v,j

∥∥
L2 ,∣∣〈∂i∂j(|x|−γ ∗ (aε

2d
ε
a)), ∂id

ε
v,j

〉∣∣ 6 C(‖aε
2‖L∞ + ‖aε

2‖L2) ‖dε
a‖L2

∥∥∂id
ε
v,j

∥∥
L2 ,

where vε
1,j and dε

v,j denote the j-th components of vε
1 and dε

v, respectively.
Summing up over i and j, we obtain

d

dt
‖∇dε

v‖2
L2 6 C(‖aε

i‖Hs+1 , ‖vε
i ‖Y s+2

p,q
)Ed(t). (4.4.21)

Plugging (4.4.20) and (4.4.21), we obtain

d

dt
Ed(t) 6 C(‖aε

i‖Hs+1 , ‖vε
i ‖Y s+2

p,q
)Ed(t).

Hence, we conclude from Gronwall’s lemma that

Ed(t) 6 C(‖aε
i‖Hs+1 , ‖vε

i ‖Y s+2
p,q

)Ed(0) = 0

as long as the solutions (aε
i , v

ε
i ) exist. This implies that dε

a ≡ 0 and ∇dε
v ≡ 0.

In particular, there exists a function d = d(t) of time such that dε
v(t, x) =

d(t). Recall that dε
v(t, x) → 0 as |x| → ∞. As a result, d(t) ≡ 0 follows and

we finally obtain (aε
1, v

ε
1) = (aε

2, v
ε
2).
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Construction of φε.

Since we have obtained the uniqueness of the solution to (4.4.3), we can use
the direct definition introduced in Section 2.2.2: We define φε by

φε(t) = Φ0 −
∫ t

0

(
1
2
|vε|2 + λ(|x|−γ ∗ |aε|2)

)
ds

then (aε, φε) is a unique solution to (4.4.2). Though φε and Φ0 themselves
do not necessarily belong to any Lebesgue space, it follows from the Hölder
inequality and the Hardy-Littlewood-Sobolev inequality that

φε(t)− Φ0 = −
∫ t

0

(
1
2
|vε|2 + λ(|x|−γ ∗ |aε|2)

)
ds ∈ L

max
“

p
2
, n
γ
+
”
.

Moreover, it is bounded uniformly in ε ∈ [0, 1]. If n > 5 then, applying
Lemma 2.2.1 twice, we see that there exist constants c0 ∈ R and c1 ∈ Rn

such that

‖Φ0 − c0 − c1 · ‖
L

2n
n−4

6 C‖∇Φ0 − c1‖
L

2n
n−2

6 C
∥∥∇2Φ0

∥∥
L2 .

Since ∇Φ0 ∈ Lq (q < ∞), we see that ∇Φ0 → 0 as |x| → ∞, and so that
c1 = 0. By the Sobolev embedding, we also have

‖Φ0 − c0‖L∞ 6 C
∥∥∇2Φ0

∥∥
Hs ,

which shows Φ0 ∈ L∞ and so φε ∈ L∞.

Remark 4.4.4. There is another way to construct φε from vε which depends
on the characteristic curve method. As long as vε exists with ∇vε ∈ L∞, we
can define corresponding characteristic curve (classical trajecotry) uniquely.
Then, by an argument in [17] shows that irrotational property propagates
along the characteristic curve. Then, we can apply the first method in
Section 2.2.2 based on the Poincaré lemma. However, this method does not
give the uniqueness (of vε).

4.5 Large time WKB analysis

4.5.1 Main result

We now in a position to prove Theorem 4.1.1. Using all results in the
previous sections of this chapter, we shall justify the WKB approximation
(4.1.1) of the solution uε of (SP). The strategy of the proof is the same
as the general strategy observed in Section 2.2.3. Let us recall briefly: We
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consider the system




∂ta
ε + (∇φε · ∇)aε +

1
2
aε∆φε = i

ε

2
∆aε,

∂tφ
ε +

1
2
|∇φε|2 + λV ε

P = 0,

−∆V ε
P = |aε|2, V ε

P → 0 as |x| → ∞,

(aε(0, x), φε(0, x)) = (Aε
0,Φ0).

(4.1.2)

Our goal is to show an ε-power expansion of this solution

aε = a0 +
k∑

j=1

εjaj + o(εk), φε = φ0 +
k∑

j=1

εjφj + o(εk)

for large time. The difference is that we have already known that the zeroth
order term (a0, φ0) can be defined globally in time. Recall that (a0, φ0)
solves the system





∂ta0 + (∇φ0 · ∇)a0 +
1
2
a0∆φ0 = 0,

∂tφ0 +
1
2
|∇φ0|2 + λVP = 0,

−∆VP = |a0|2, VP → 0 as |x| → ∞,

(a0(0, x), φ0(0, x)) = (A0(x), Φ0(x)).

(4.1.3)

We have given a global solution to this system in Theorem 4.2.1 and observed
its regularity in Theorem 4.3.2. It will turn out that, for any fixed T > 0,
aε − a0 and φε − φ0 are finite for sufficiently small ε > 0 and tend to zero
as ε → 0. Thanks to this fact, we infer that the existence time of (aε, φε)
can be chosen arbitrarily large as long as ε is sufficiently small. We will
also verify that if (a0, φ0) is global in time, then it is true for all (aj , φj).
Then, the ε-power expansion of (aε, φε) is valid on an arbitrarily large time
interval if ε is enough small. For making the notation simpler, we write

λV ε
P = λ∆−1|aε|2 = λcn(|x|−(n−2) ∗ |aε|2)

and denote λcn again by λ, where cn is a positive constant. This changes
the second and the third lines of equations (4.1.2) into

∂tφ
ε +

1
2
|∇φε|2 + λ(|x|−(n−2) ∗ |aε|2) = 0.

Assumptions

We now clarify our assumptions. First of all, the initial data (Aε
0, Φ0) of

(4.1.2) should lie in the framework of Theorem 4.4.2:
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Assumption 4.5.1 (Assumption for local existence). Suppose n > 3 and
λ ∈ R. Let s > n/2 + 1. Assume that

• Φ0 ∈ C4 with ∇Φ0 ∈ Y s+2
p,q for p ∈ (2∗,∞] and q ∈ (2,∞) with p > q;

• Aε
0 is uniformly bounded in Hs+1 for ε ∈ [0, 1],

where Y s+2
p,q is defined by (4.3.3) and (4.3.4).

If this Assumption 4.5.1 is met, we can apply Theorem 4.4.2 and give a
unique local solution (aε, φε) ∈ C([0, T ]; Hs+1 × C4) of (4.1.2) with ∇φε ∈
C([0, T ]; Y s+2

p,q ). In order to apply Theorems 4.2.1 and 4.3.2, we further make
the following assumption on A0 := limε→0 Aε

0 and Φ0, which corresponds to
the initial data of the limit equation (4.1.3).

Assumption 4.5.2 (Assumption for global existence of the limit solution).
In addition to Assumption 4.5.1, we assume λ < 0 and that A0 := limε→0 Aε

0

exists in the Hs+1 sense. Assume that there exist functions A0: R+ → C and
Φ0: R+ → R such that A0(x) = A0(|x|) and Φ0(x) = Φ0(|x|), respectively,
and satisfy following properties:

• A0 ∈ Cds+3e([0,∞)) is nontrivial function satisfying

rj−dse∂j
rA0 ∈ L2((0,∞), rn−1dr) 1 6 j 6 ds + 3e ,

∂j
rA0 ∈ L2((0,∞), rn−1dr) 0 6 j 6 ds + 3e ,

∂j
rA0 = O(r−n/2) as r →∞ 0 6 j 6 ds + 3e ,

and that there exits k0 > ds + 3e − d(n− 1)/2e such that

(∂j
rA0)(0) = 0 for j ∈ [0, k0 − 1], (∂k0

r A0)(0) 6= 0,

where dse denotes the minimum integer larger than or equal to s.

• Φ0 is given from A0 by the formula

Φ0(r) =
∫ r

0

√
2|λ|

(n− 2)sn−2

∫ s

0
|A0(σ)|2σn−1dσds + const. (4.2.2)

One verifies that if this Assumption 4.5.2 is satisfied then Theorem 4.3.2
gives the global (radial) solution (a0, φ0) ∈ C([0,∞);Hs+3 × C6) of (4.1.3)
with ∇φ0 ∈ C([0, T ]; Y s+4

p,q ). Here we remark that the limit solution (a0, φ0)
is assumed to have more regularity than (aε, φε). This is because we rely
on the regularity of (a0, φ0) when we close an energy estimate of error term.
Furthermore, in order to justify the ε-power expansion of (aε, φε), we assume
that this expansion is already known at the initial time t = 0:
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Assumption 4.5.3 (Assumption for expansion). In addition to Assump-
tions 4.5.1 and 4.5.2, we assume that there exists a positive integer k such
that s satisfies s > n/2 + 2k + 1 and that Aε

0 is expanded as

Aε
0 = A0 +

k∑

j=1

εjAj + O(εk+1) in Hs+1.

Namely, we assume ε−(k+1)(Aε
0−

∑k
j=0 εjAj) is bounded in Hs+1 uniformly

in ε ∈ (0, 1].

Remark 4.5.4. The assumption on Φ0 in Assumption 4.5.1 is automatically
satisfied if Φ0 is given as in Assumption 4.5.2 (see Proposition 4.3.4).
Remark 4.5.5. In the above assumptions, A0 = limε→0 Aε

0 and Φ0 are as-
sumed to be radial. However, Aε

0 itself is not necessarily radial function.

Main theorem.

Before stating the result, we define

η(T ) := ‖a0‖L∞([0,T ];Hs+3) + ‖∇φ0‖L∞([0,T ];Y s+4
(2∗,∞],(2,∞]

) . (4.5.1)

It follows from Theorem 4.3.2 that η(T ) < ∞ for all T > 0. Under the
assumption 4.5.3, we have the following theorem:

Theorem 4.5.6. Let Assumption 4.5.3 be satisfied. Let (aε, φε) be the so-
lution to (4.1.2) given by Theorem 4.4.2 and (a0, φ0) be the global solution
to (4.1.3) given by Theorem 4.2.1. Then, there exist

(aj , φj) ∈ C([0,∞);Hs−2j+3 × Y s−2j+5
( n

n−2
,∞],( n

n−1
,∞])

(1 6 j 6 k) and constant Cs depending only on n and s such that, for any
T > 0, it holds that





aε = a0 +
k∑

j=1

εjaj + O(εk+1) in L∞([0, T ],Hs−2k+1(Rn)),

φε = φ0 +
k∑

j=1

εjφj + O(εm+1) in L∞([0, T ], Y s−2k+3
( n

n−2
,∞],( n

n−1
,∞](R

n))

for ε 6 Cη(T )e−3Csη(T )T , and so (4.1.5) holds.

Remark 4.5.7. We note that φε and φ0 themselves do not belong to the space
Y s+3

( n
n−2

,∞],( n
n−1

,∞](R
n).

Theorem 4.1.1 immediately follows from this theorem by the argument
in Section 2.2.4. In order to avoid the complexity, we separate the proof of
Theorem 4.5.6 into three steps, and prove them individually in the following
Sections 4.5.2–4.5.4.
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4.5.2 Proof the theorem – part 1: the zeroth order

In this section, we shall estimate the distance aε − a0 and φε − φ0 for large
time, where (aε, φε) is the solution to (4.1.2) given by Theorem 4.4.2 and
(a0, φ0) is the global solution to (4.1.3) given by Theorem 4.2.1.

Proposition 4.5.8. Let Assumption 4.5.3 be satisfied. Let (aε, φε) be the
solution to (4.1.2) given by Theorem 4.4.2 and (a0, φ0) be the global solution
to (4.1.3) given by Theorem 4.2.1. Let η be as in (4.5.1). Then, there exists
a constant Cs depending on n and s and Γ1 on Aε

0 such that

‖aε − a0‖L∞([0,T ],Hs+1) + ‖∇φε −∇φ0‖L∞([0,T ],Y s+2
( n

n−1 ,∞],[2,∞])
) 6 εΓ1e

Csη(T )T

(4.5.2)
holds for all 0 < ε 6 ε0(T ) 6 η(T )Ce−Csη(T )T . In particular, the existence
time T of (aε, φε) can be chosen so that ε ∼ η(T )e−Csη(T )T .

Proof. Denote vε = ∇φε and v0 = ∇φ0. We set (ãε
0, ṽ

ε
0) = (aε− a0, v

ε− v0).
Then, we deduce from (4.1.2) and (4.1.3) that (ãε

0, ṽ
ε
0) solves the equation





∂tã
ε
0 + ṽε

0 · ∇ãε
0 +

1
2
ãε

0 · ∇ṽε
0 + ṽε

0 · ∇a0 + v0 · ∇ãε
0

+
1
2
ãε

0 · ∇v0 +
1
2
a0 · ∇ṽε

0 = i
ε

2
∆ãε

0 + i
ε

2
∆a0,

∂tṽ
ε
0 + ṽε

0 · ∇ṽε
0 + λ∇(|x|−(n−2) ∗ |ãε

0|2) + ṽε
0 · ∇v0

+v0 · ∇ṽε
0 + 2λ∇(|x|−(n−2) ∗ (Re(ãε

0a0)) = 0.
(4.5.3)

The point is that we exclude all aε and vε by using aε = a0 + ãε
0 and

vε = v0 + ṽε
0, respectively. We set

Ẽ0(t) := ‖ãε
0‖Hs+1 + ‖ṽε

0‖Y s+2
( n

n−1 ,∞],[2,∞]
.

Since ṽε
0(0) = 0 and so we can repeat the energy estimate which we made

in the proof of 2.4.8 and obtain

d

dt
Ẽ0(t) 6 Cs(Ẽ0(t)2 + C0(t)Ẽ0(t) + εC0(t)), (4.5.4)

where Cs depends on n and s, and C0 on ‖a(t)‖Hs+3 +‖v(t)‖Y s+4
(2∗,∞],(2,∞]

. We

recall that η(T ) := supt∈[0,T ] C0(t) and η(T ) < ∞ for T < ∞. Therefore, to
prove the theorem, it suffices to show the estimate

sup
t∈[0,T ]

Ẽ0(t) 6 εΓ1e
Csη(T )T (4.5.2)

holds for ε 6 ε0(T ) 6 Cη(T )e−Csη(T )T . Once this is proven, then we have

sup
t∈[0,T ]

(
‖aε(t)‖Hs+1 + ‖vε(t)‖Y s+2

(2∗,∞],(2,∞]

)
6 η(T ) + sup

t∈[0,T ]
Ẽ0(t) < ∞
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for ε 6 ε0(T ), which implies the solution (aε, vε) exists until t = T . The
following Lemma 4.5.9 completes the proof.

Lemma 4.5.9. Let Ẽ0(t) be a nonnegative function depending on a parame-
ter ε and satisfying the inequality (4.5.4). Assume that lim supε→0 Ẽ0(0)/ε <
∞. Let η be a function such that C0(t) 6 η(T ) < ∞ for all 0 6 t 6 T < ∞.
Then, for any T > 0 there exist ε0 = ε0(T ) 6 Cη(T )e−Csη(T )T and a
constant Γ1 = Γ1(lim supε→0 Ẽ0(0)/ε) > 0 such that supt∈[0,T ] Ẽ0(t) 6
εΓ1e

Csη(T )T for ε 6 ε0.

Proof. We fix some T > 0 and analyze (4.5.4) for t ∈ [0, T ];

d

dt
Ẽ0(t) 6 Cs(εη(T ) + η(T )Ẽ0(t) + Ẽ0(t)2),

where we denote η(T ) by η for short. This gives the inequality for Z(t) =
Ẽ0(t)e−Cstη,

d

dt
Z(t) 6 Csηεe−Cstη + Cse

CstηZ(t)2, Z(0) = Ẽ0(0).

By assumption, there exist ε0,1 > 0 such that Ẽ0(0) < βε holds for some
β0 > 0 all ε 6 ε0,1. We set

δ0 :=
√

1 + β0 − 1
β0

, θ0 :=
δ0e

CsTη

2ε(eCsTη − 1)
.

Multiplying the above inequality by θ0
(1+θ0Z)2

, we obtain

θ0Z
′(t)

(1 + θ0Z(t))2
6 Csηθ0εe

−Cstη + Csθ
−1
0 eCstη.

Integration over [0, t] gives

1
1 + θ0Z(t)

> 1

1 + θ0Ẽ0(0)
− εθ0(1− e−Cstη)− η−1θ−1

0 (eCstη − 1). (4.5.5)

We now show that for small ε the right hand side is bounded by δ0/2 from
below. If ε 6 ε0,1 and T > T0 = T0(β), then it holds that

1

1 + θ0Ẽ0(0)
− δ0 > 1

1 + θ0εβ0
− δ0 =

eCsTη − 2 + 2δ0

(
√

1 + β0 + 1)eCsTη − 2

> 1
2(1 +

√
1 + β0)

=
δ0

2
. (4.5.6)

Moreover, the right hand side of (4.5.5) is monotone decreasing in t, and
δ0 − εθ0(1− e−CsTη)− η−1θ−1

0 (eCsTη − 1) > 0 is equivalent to

ε(1− e−CsTη)θ2
0 − δ0θ0 + η−1(eCsTη − 1) 6 0. (4.5.7)
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Since θ0 is the minimizer of the left hand side, we see that if ε 6 ε0,2 :=
δ2
0ηeCsTη/4(eCsTη − 1)2 then (4.5.7) holds. Plugging (4.5.6) and (4.5.7) to

(4.5.5), we obtain (1 + θ0Z(t))−1 > δ0/2, which implies

Z(t) 6 (1 + 2
√

1 + β0)θ−1
0 6 3

√
1 + β0θ

−1
0 .

We set ε0 = min(ε0,1, ε0,2). Notice that ε0,1 is independent of T , and ε0,2 ∼
(δ2

0/4)ηe−CsTη if T is large. Then, for all T > T0 = T0(β0) and ε 6 ε0 =
ε0(β, T ), we conclude that

sup
t∈[0,T ]

Ẽ0(t) 6
(

6(1 +
√

1 + β0)eCsη(T )T

δ0

)
ε =: εΓ1e

Csη(T )T ,

where Γ1 depends on β0, that is, on lim supε→0 Ẽ0(0)/ε.

4.5.3 Proof the theorem – part 2: the first order

In this section, we show the following two point: First is that (a1, φ1) is
defined globally in time as a limit ε → 0 of (ãε

0, φ̃
ε
0) (Proposition 4.5.10).

Second is the asymptotics

aε = a0 + εa1 + O(ε2), vε = v0 + εv1 + O(ε2)

for large time (Proposition 4.5.11). If the number k in Assumption 4.5.3 is
one, then Proposition 4.5.11 completes the proof of Theorem 4.5.6.

Proposition 4.5.10. Let Assumption 4.5.3 be satisfied. Then, there exists

(a1, φ1) ∈ C([0,∞),Hs+1 × Y s+3
( n

n−2
,∞],( n

n−1
,∞]).

Let E1(t) := ‖a1(t)‖Hs+1 + ‖∇φ1(t)‖Y s+2
( n

n−1 ,∞],[2,∞]
. Then, for any T > 0, we

have the following bound

sup
t∈[0,T ]

E1(t) 6 Γ1e
Csη(T )T =: η1(T ), (4.5.8)

where Γ1, Cs, and η are the same one as in Proposition 4.5.8. In particular,
(a1, φ1) is defined globally in time.

Proposition 4.5.11. Let Assumption 4.5.3 be satisfied. Let (aε, φε) be
the solution to (4.1.2) given by Theorem 4.4.2 and (a0, φ0) be the global
solution to (4.1.3) given by Theorem 4.2.1. Let (a1, φ1) be the limit defined
in Proposition 4.5.10. Let Cs be the same one as in Proposition 4.5.8. Let
η be as in (4.5.1). Then, there exists a constant Γ2 depending on Aε

0 such
that
‖aε − a0 − εa1‖L∞([0,T ],Hs−1) + ‖∇(φε − φ0 − εφ1)‖L∞([0,T ],Y s

( n
n−1 ,∞],[2,∞])

)

6 ε2Γ2η(T )−1e3Csη(T )T eεCsη1(T )T

(4.5.9)
holds for all 0 < ε 6 ε1(T ) 6 Ce−2Csη(T )T . In particular, the existence time
T of (aε, φε) can be chosen so that ε ∼ e−2Csη(T )T .
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Proofs.

Proof of Proposition 4.5.10. Fix T > 0. By (4.5.2), we infer that (aε−a0)/ε
and (∇φε − ∇φ0)/ε are uniformly bounded in the limit ε → 0. Therefore,
there exists a weak limit (a1, v1). This limit satisfies (4.5.8) by lower semi-
continuity of the weak limit. Since (ãε

0, ṽ
ε
0) solves (4.5.3), one sees that

(a1, v1) solves





∂ta1 + (v1 · ∇)a0 + (v0 · ∇)a1 +
1
2
a1∇ · v0 +

1
2
a0∇ · v1 =

i

2
∆a0,

∂tv1 + (v1 · ∇)v0 + (v0 · ∇)v1 + λ∇(|x|−(n−2) ∗ (2Re(a1a0)) = 0,

a1(0) = A1, v1(0) = 0.
(4.5.10)

We verify that the solution is unique by a standard energy method. We now
define φ1 by

φ1(t) = −
∫ t

0

(
v0 · v1 + 2λ(|x|−(n−2) ∗ (Re(a1a0)))

)
ds.

It is easy to see that (a1,∇φ1) solves (4.5.10). Hence, ∇φ1 = v1 by unique-
ness. The first term of the integrand belongs to L

n
2(n−1)

+∩L∞ and the second
term belongs to Lq for q ∈ (n/(n− 2),∞) by the Hardy-Littlewood-Sobolev
inequality. We also deduce from Lemma 2.4.1 that

∥∥∥(|x|−(n−2) ∗ (Re(a1a0))
∥∥∥

L∞
6 C

∥∥∥∇(|x|−(n−2) ∗ (Re(a1a0))
∥∥∥

H
n
2−1+

6 C(‖a1a0‖Hs+1 + ‖a1a0‖L1) < ∞.

Therefore, φ1 ∈ C([0,∞);L
n

n−2
+ ∩ L∞).

Proof of Proposition 4.5.11. We first put bε
1 = (ãε

0/ε − a1)/ε and wε
1 =

(ṽε
0/ε − v1)/ε, where v1 = ∇φ1. One verifies from (4.5.3) and (4.5.10) that

(bε
1, w

ε
1) solves





∂tb
ε
1 + ε2

(
wε

1 · ∇bε
1 +

1
2
bε
1∇ · wε

1

)
+ wε

1 · ∇(a0 + εa1)

+ (v0 + εv1) · ∇bε
1 +

1
2
bε
1∇ · (v0 + εv1) +

1
2
(a0 + εa1)∇ · wε

1

+ v1 · ∇a1 +
1
2
a1∇ · v1 = i

ε

2
∆bε

1 + i
1
2
∆a1,

∂tw
ε
1 + ε2

(
wε

1 · ∇wε
1 + λ∇(|x|−γ ∗ |bε

1|2)
)

+ wε
1 · ∇(v + εv1)

+ (v + εv1) · ∇wε
1 + 2λ∇(|x|−γ ∗ (Re(bε

1(a + εa1)))

+ v1 · ∇v1 + λ∇(|x|−γ ∗ |a1|2) = 0,

bε
1(0) =

Aε
0 −A0 − εA1

ε2
, wε

1(0) = 0.

(4.5.11)
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We now put Ẽ1(t) := ‖bε
1‖Hs−1 + ‖wε

1‖Y s
( n

n−1 ,∞],[2,∞]
. Mimicking the previous

arguments, we obtain

d

dt
Ẽ1(t) 6 Cs

(
ε2Ẽ1(t)2 + (η(t) + εη1(t))Ẽ1(t) + c1η1(t)2

)
, (4.5.12)

The constant Cs can be exactly the same as in (4.5.4) since the quadratic
and linear parts in the left hand sides of the first and the second equation
of (4.5.11) is the same as (4.5.3) up to multiplications by ε. If necessary, we
denote sups′∈(2/n+1,s] Cs′ again by Cs. c1 is an adjusting constant. Then,
the following Lemma completes the proof. This lemma is a modification of
Lemma 4.5.9.

Lemma 4.5.12. Let Ẽ1(t) be a function R+ → R+ depending on a param-
eter ε and satisfying (4.5.12) and lim supε→0 Ẽ1(0) < ∞. Let η(t) and η1(t)
be as in (4.5.1) and (4.5.8), respectively. Then, for large T > 0 there exists
ε1 = ε1(T ) ∼ ηe−2Csη(T )T such that if ε 6 ε1 then

sup
t∈[0,T ]

Ẽ1(t) 6 Γ2e
3Csη(T )T

η(T )
eεCsη1(T )T .

Proof. We fix T > 0 and analyze (4.5.12) for t ∈ [0, T ]. We write η = η(T )
and η1 = η1(T ), for short. Take ε1,1 > 0 and β1 > 0 so that Ẽ1(0) 6 β1 for
ε 6 ε1,1. Put Z1(t) = Ẽ1(t)e−Cst(η+εη1). Then, for t 6 T ,

d

dt
Z1(t) 6 Csη

2
1e
−Cst(η+εη1) + c1Csε

2eCst(η+εη1)Z1(t)2

with Z1(0) = Ẽ1(0). We set

δ1 :=
√

1 + β1 − 1
β1

, θ1 :=
δ1(η + εη1)eCsT (η+εη1)

2η2
1(eCsT (η+εη1) − 1)

.

Multiplying the above inequality by θ1
(1+θ1Z1)2

, we obtain

θ1Z
′
1

(1 + θ1Z1)2
6 Csθ1η

2
1e
−Cst(η+εη1) + c1Csθ

−1
1 ε2eCst(η+εη1).

Integration over [0, t] gives

1
1 + θ1Z1

> 1

1 + θ1Ẽ1(0)
− θ1

η2
1

η + εη1
(1− e−Cst(η+εη1))

− θ−1
1

c1ε
2

η + εη1
(eCst(η+εη1) − 1). (4.5.13)

150



We now show that for small ε and large T the right hand side is bounded
by δ1/2 from below. We first prove that

1

1 + θẼ1(0)
− δ1 > δ1

2
. (4.5.14)

Indeed, if ε 6 ε1,1 then we have

1

1 + θ1Ẽ1(0)
− δ1 =

(2− 2δ1 − β1δ
2
1Pε,T )eCsT (η+εη1) − 2(1− δ1)

(2 + β1δ1Pε,T )eCsT (η+εη1) − 2
,

where Pε,T := (η + εη1)/η2
1. Recall that η1 = Γ1e

CsTη. There exists T0

depending on Γ1 and Cs such that if T > T0 then Pε,T 6 1 for ε 6 1. We
suppose T > T0. Then,

1

1 + θ1Ẽ1(0)
− δ1 > eCsT (η+εη1) − 2(1− δ1)

(1 +
√

1 + β1)eCsT (η+εη1) − 2
> 1

2(1 +
√

1 + β1)
=

δ1

2

for T > T1 = ∃T1(Cs, β1), where we have used the relation 1−2δ1−β1δ
2
1 = 0.

We next consider the inequality

η2
1

η + εη1
(1− e−CsT (η+εη1))θ2

1− δ1θ1 +
c1ε

2

η + εη1
(eCsT (η+εη1)− 1) 6 0. (4.5.15)

Since θ1 is the minimizer of the left hand side, we see that if

ε 6 δ1(η + εη1)√
c1η1

√
eCsT (η+εη1)

(eCsT (η+εη1) − 1)2

then (4.5.15) holds. We assume ε 6 η/η1. Then, η + εη1 6 2η and so

δ1(η + εη1)√
c1η1

√
eCsT (η+εη1)

(eCsT (η+εη1) − 1)2
> δ1η√

c1η1

√
eCsT (η+εη1)

(eCsT (η+εη1))2
> δ1η√

c1η1eCsTη

We denote the most right hand side by ε1,2. Then, (4.5.15) holds if ε 6 ε1,2.
Note that, in this case, the ε 6 eta/η1 is automatically satisfied. The right
hand side of (4.5.13) is monotone decreasing in t. Hence, plugging (4.5.14)
and (4.5.15) to (4.5.13), we obtain (1 + θ1Z1(t))−1 > δ1/2 for t 6 T , which
implies

Z1(t) 6 3
√

1 + β1θ
−1
1

for t 6 T . We set ε1 = min(ε1,1, ε1,2). Notice that ε1,1 is independent of
T , and that if T is large then ε1,2 ∼ ηe−2CsTη by (4.5.8). Hence, for all
T > max(T0, T1) and ε 6 ε1 = ε1(β, T ), we conclude that

sup
t∈[0,T ]

Ẽ1(t) 6 3
√

1 + β1Γ2
1

δ1η
e3CsTηeεCsTη1 .

We set Γ2 := 3
√

1 + β1δ
−1
1 Γ2

1 to obtain the desired estimate.
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4.5.4 Proof the theorem – part 3: higher order

We finally consider the higher order expansion. Assume that the constant
k in Assumption 4.5.3 is bigger than one. It is because if k = 1 then the
proof is already finished with Proposition 4.5.11. The proof is based on the
induction argument. We make following notations and definitions: Our goal
is to show that the asymptotics





aε = a0 +
m∑

j=1

εjaj + O(εm+1) in L∞([0, T ],Hs−2m+1(Rn)),

φε = φ0 +
m∑

j=1

εjφj + O(εm+1) in L∞([0, T ], Y s−2m+3
( n

n−2
,∞],( n

n−1
,∞](R

n))

(4.5.16)
for m = k. We introduce the system




∂taj +
∑

i1+i2=j

∇φi1 · ∇ai2 +
∑

i1+i2=j

1
2
ai1∆φi2 − i

1
2
∆aj−1 = 0, aj(0) = Aj

∂tφj +
∑

i1+i2=j

1
2
∇φi · ∇φj + λ

∑

i1+i2=j

(|x|−(n−2) ∗ Re(ai1ai2)) = 0 φj(0) = 0.

(4.5.17)
We define the following function:

ηj(T ) :=
Γj

η(T )j−1
e(2j−1)Csη(T )T (4.5.18)

with η(T ) is an increasing function defined in (4.5.1), Cs is the same constant
as in (4.5.4) (and in (4.5.12)) depending on s and n, Γ1 and Γ2 are as in
Propositions (4.5.8) and (4.5.11), respectively, and Γj (j > 3) is a constant
depending only on Aε

0 to be chosen later. Note that

ηm(T ) À ηm−1(T ) À · · · À η1(T ) À η(T ) > 0

for large T . The following two propositions complete the proof by induction.

Proposition 4.5.13. Let Assumption 4.5.3 be satisfied for some k > 2.
Let (a0, φ0) be the global solution to (4.1.3) given in Theorem 4.3.2. Fix
k0 ∈ [1, k− 1]. Assume that (aj , φj) ∈ C([0,∞);Hs−2j+3×Y s−2j+5

( n
n−2

,∞],( n
n−1

,∞])

(1 6 j 6 k0) exist and all of them solve (4.5.17). We further assume that
there exists Γk0+1 such that

lim
ε→0

sup
t∈[0,T ]




∥∥∥∥∥
aε −∑k0

j=0 εjaj

εk0+1

∥∥∥∥∥
Hs−2k0+1

+

∥∥∥∥∥
∇(φε −∑k0

j=0 εjφj)
εk0+1

∥∥∥∥∥
Y

s−2k0+2

( n
n−1 ,∞],[2,∞])



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is bounded by ηk0+1(T ) defined in (4.5.18) for any fixed T > 0. Then, there
exists (ak0+1, φk0+1) ∈ C([0,∞);Hs−2k0+1 × Y s−2k0+3

( n
n−2

,∞],( n
n−1

,∞]) which solves

(4.5.17) and satisfies

sup
t∈[0,T ]

(
‖ak0+1‖Hs−2k0+1 + ‖∇φk0+1‖Y

s−2k0+2

( n
n−1 ,∞],[2,∞])

)
6 ηk0+1(T ).

Proposition 4.5.14. Let Assumption 4.5.3 be satisfied for some k > 2.
Let (a0, φ0) be a global solution to (4.1.3) given in Theorem 4.3.2. Fix k0 ∈
[1, k − 1]. Assume that, for all 1 6 j 6 k0 + 1, the solution (aj , φj) ∈
C([0,∞);Hs−2j+3 × (L

n
n−2

+ ∩ L∞)) of (4.5.17) exists and satisfies

sup
t∈[0,T ]

‖aj‖Hs−2j+3 + ‖∇φj‖Y s−2j+2

( n
n−1 ,∞],[2,∞])

6 ηj(T ).

Then, for any fixed T > 0,

sup
t∈[0,T ]




∥∥∥∥∥
aε −∑k0+1

j=0 εjaj

εk0+2

∥∥∥∥∥
Hs−2k0−1

+

∥∥∥∥∥
∇(φε −∑k0+1

j=0 εjφj)
εk0+2

∥∥∥∥∥
Y

s−2k0
( n

n−1 ,∞],[2,∞])




is bounded uniformly in ε ∈ (0, εk0+2]. In particular, the asymptotics (4.5.16)
holds with m = k0 +1 for ε ∈ (0, εk0+2]. εk0+2 can be chosen so that εk0+2 6
Cη(T )e−3Csη(T )T . Moreover, there exists a constant Γk0+2 depending only
on Aε

0 such that ηk0+2(T ) defined in (4.5.18) bounds

lim
ε→0

sup
t∈[0,T ]




∥∥∥∥∥
aε −∑k0+1

j=0 εjaj

εk0+2

∥∥∥∥∥
Hs−2k0−1

+

∥∥∥∥∥
∇(φε −∑k0+1

j=0 εjφj)
εk0+2

∥∥∥∥∥
Y

s−2k0
( n

n−1 ,∞],[2,∞])




for any fixed large T > 0.

Indeed, once these two propositions are shown, we immediately obtain
the theorem: Proposition 4.5.11 implies that the assumption of Proposition
4.5.13 is satisfied for k0 = 1. Then, by Proposition 4.5.13, the assumption
of Proposition 4.5.14 is met for k0 = 1, which ensures the assumption of
Proposition 4.5.13 for k0 = 2. After repeating this argument k−1 times, we
see that Proposition 4.5.14 holds for k0 = k − 1. Then, this gives (4.5.16)
with m = k.

Proofs

Before the proof, we introduce the notation. We write

bε
m =

aε −∑m
j=0 εjaj

εm+1
, wε

m =
∇φε −∑m

j=0 εj∇φj

εm+1
.
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An elementary computation shows that (bε
m, wε

m) satisfies

∂tb
ε
m + εm+1

(
wε

m · ∇bε
m +

1
2
bε
m∇ · wε

m

)

+
m∑

`=0

ε`

(
wε

m · ∇a` + v` · ∇bε
m +

1
2
bε
m∇ · v` +

1
2
a`∇ · vε

m

)

+
m−1∑

`=0

ε`
∑

i,j6m,i+j=m+1+`

(
vi · ∇aj +

1
2
ai∇ · vj

)
− i

1
2
∆am = i

ε

2
∆bε

m,

(4.5.19)

∂tw
ε
m + εm+1

(
wε

m · ∇wε
m + λ∇(|x|−(n−2) ∗ |bε

m|2)
)

+
m∑

`=0

ε`((wε
m · ∇v` + v` · ∇wε

m) + λ∇(|x|−(n−2) ∗ Re(a`bε
m))

+
m−1∑

`=0

ε`
∑

i,j6m,i+j=m+1+`

(
vi · ∇vj + λ∇(|x|−(n−2) ∗ Re(aiaj))

)
= 0,

(4.5.20)

and

bε
m(0) =

k−1−m∑

j=0

εjAj+m+1 + εk−mrε
k+1, wε

m(0) = 0 (4.5.21)

as long as (a0, v0) := (a0,∇φ0) and (aj , vj) := (aj ,∇φj) (1 6 j 6 m) solve
(4.1.3) and (4.5.17), respectively, where rε

k+1 is ε−k+1(Aε
0 −

∑k
j=0 εjAj). If

Assumption 4.5.3 is satisfied then rε
k+1 is bounded in Hs+1 as ε → 0.

Proof of Proposition 4.5.13. By assumption, (bε
k0

, wε
k0

) is uniformly bounded
in

L∞([0, T ),Hs−2k0+1 × (Hs−2k0+2 ∩ L
n

n−1
+))

in the limit ε → 0. Note that Y s−2k0+2
( n

n−1
,∞],[2,∞] = Hs−2k0+2 ∩ L

n
n−1

+ since

n/(n − 1) < 2 for n > 3. Therefore, extracting a subsequence, there exists
a weak limit, denoted by (ak0+1, vk0+1), in the same class. Moreover, we
obtain the bound

sup
t∈[0,T ]

(
‖ak0+1‖Hs−2k0+1 + ‖∇φk0+1‖Y

s−2k0+2

( n
n−1 ,∞],[2,∞]

)
6 ηk0+1(T ).
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by the lower semi-continuity of the weak limit. Since (bε
k0

, wε
k0

) solves
(4.5.19)–(4.5.21), we see that (ak0+1, vk0+1) solves




∂taj +
∑

i1+i2=j

vi1 · ∇ai2 +
∑

i1+i2=j

1
2
ai1∇ · vi2 − i

1
2
∆aj−1 = 0, aj(0) = Aj

∂tvj +∇
∑

i1+i2=j

1
2
vi · vj + λ∇

∑

i1+i2=j

(|x|−(n−2) ∗ Re(ai1ai2)) = 0 vj(0) = 0.

(4.5.22)
for j = k0 + 1. By the way, once we know (aj , vj) (j = [0, k0]), we can solve
this system directly by a standard argument and obtain unique solution
(ak0+1, vk0+1) in the same space. Therefore, the above weak limit is the
unique solution to (4.5.22). We now define φk0+1 by

φk0+1(t) = −
∫ t

0


 ∑

i1+i2=j

1
2
vi · vj + λ

∑

i1+i2=j

(|x|−(n−2) ∗ Re(ai1ai2))


 ds.

Then, ∇φk0+1 = vk0+1 holds by the uniqueness of (4.5.22). Hence, ∇φk0+1

is the unique solution to (4.5.17) for j = k0 + 1. By definition of φk0+1, we
see it decays at spatial infinity. Thus, Lemma 2.2.1 provides

‖φk0+1‖Y
s−2k0+3

( n
n−2 ,∞],( n

n−1 ,∞]

6 C ‖∇φk0+1‖Y
s−2k0+2

( n
n−1 ,∞],[2,∞].

T is arbitrary, and so we obtain the proposition.

Proof. By assumption, we can define (bε
k0+1, w

ε
k0+1) solving (4.5.19)–(4.5.21).

We will bound

Ẽk0+1(t) :=
∥∥bε

k0+1(t)
∥∥

Hs−2k0−1 +
∥∥wε

k0+1(t)
∥∥

Y
s−2k0
( n

n−1 ,∞],[2,∞]

.

Recall that the quadratic part and the linear part of (4.5.19)–(4.5.20) are
the same as (4.5.11). Hence, we deduce by the standard energy estimate
that, for any fixed T > 0,

d

dt
Ẽk0+1(t) 6 Cs(εk0+1Ẽk0+1(t)2 + µε

k0+1Ẽk0+1(t) + ck0+1ν
ε
k0+1) (4.5.23)

holds for all t ∈ [0, T ]. Here, we define

µε
k0+1 = µε

k0+1(T ) := η(T ) +
k0+1∑

j=1

εjηj(T )

which bounds the constant part

sup
t∈[0,T ]




∥∥∥∥∥
k0+1∑

`=0

ε`a`

∥∥∥∥∥
Hs−2k0+1

+ ‖v0‖Y
s−2k0+2

(2∗,∞],(2,∞]

+

∥∥∥∥∥
k0+1∑

`=1

ε`v`

∥∥∥∥∥
Y

s−2k0+2

( n
n−1 ,∞],[2,∞]



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and

νε
k0+1 = νε

k0+1(T ) := ηk0+1(T ) +
k0∑

`=0

ε`
k0+1∑

i=`+1

ηi(T )ηk0+2+`−i(T )

which is an upper bound of the linear terms

sup
t∈[0,T ]

(
1
2
‖∆ak0‖Hs−2k0−1 + C

k0∑

`=0

ε`
∑

i,j6k0+1,
i+j=k0+2+`(

‖vi‖Y
s−2k0+2

( n
n−1 ,∞],[2,∞]

‖vj‖Y
s−2k0+2

( n
n−1 ,∞],[2,∞]

+ ‖ai‖Hs−2k0+1 ‖aj‖Hs−2k0+1

))

up to an adjusting constant ck0+1.

Uniform bound of Ẽk0+1

We now show that supt∈[0,T ] Ẽk0+1(t) is uniformly bounded for small ε. We
keep fixing T > 0. By Assumption (4.5.3), we see that there exists a positive
constant βk0+1 depending only on Aε

0 such that Ẽk0+1(0) 6 βk0+1 holds for
ε ∈ (0, 1]. Set a function

Zk0+1(t) := Ẽk0+1(t) exp(−Csµ
ε
k0+1(T )t)

and two constants

δk0+1 := (1 +
√

1 + βk0+1)−1,

θm+1 :=
δµε

k0+1(T )

2ck0+1ν
ε
k0+1(T )(1− e

−Csµε
k0+1(T )T )

.

Then, multiplying the both sides of (4.5.23) by
θk0+1 exp(−Cstµε

k0+1)

(1+θk0+1Zk0+1(t))2
, we obtain

θk0+1Z
′
k0+1(t)

(1 + θk0+1Zk0+1(t))2
6 Csε

k0+2e
Cstµε

k0+1θ−1
k0+1+Csck0+1ν

ε
k0+1e

−Cstµε
k0+1θk0+1,

where we denote µε
k0+1(T ) and νε

k0+1(T ) by µε
k0+1 and µε

k0+1, respectively,
for short. Integration over [0, t] gives

1
1 + θk0+1Zk0+1(t)

> 1

1 + θk0+1Ẽk0+1(0)

− ck0+1ν
ε
k0+1

µε
k0+1

(1− e
−Cstµε

k0+1)θk0+1 − εk0+2

µε
k0+1

(eCstµε
k0+1 − 1)θ−1

k0+1. (4.5.24)

Let us show that the right hand side of (4.5.24) is bounded by δk0+1/2
from below. For simplicity, in the followings, we omit the index k0 + 1 and
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denote βk0+1, ck0+1, δk0+1, µε
k0+1, νε

k0+1, and θk0+1 by β, c, δ, µε, νε, and θ,
respectively. We also omit T variable in η(T ) and ηj(T ). By the fact that
ηj+1 À ηj for each j and large T and by definitions of µε and νε, if T is
large then cνε > µε holds for all ε ∈ [0, 1]. Then, replacing T with larger
one if necessary, we obtain

1

1 + θẼk0+1(0)
− δ > 1

1 + θβ
− δ =

eCsµεT − 1

eCsµεT (1 + µε

cνε
δβ
2 )− 1

− δ

> eCsµεT − 1

eCsµεT (1 + δβ
2 )− 1

− δ =
eCsµεT (2− 2δ − δ2β)− 2 + 2δ

eCsµεT (2 + δβ)− 2

> 2− 2δ − δ2β

2(2 + δβ)
=

1
2(2 + δβ)

=
1 +

√
1 + β

2(1 +
√

1 + β)2
=

δ

2
, (4.5.25)

where we have used the relation 1 − 2δ − δ2β = 0. Moreover, θ is the
minimizer of the quantity

cνε

µε
(1− e−CsµεT )θ2 − δθ +

εk0+2

µε
(eCsµεT − 1)

and so this quantity becomes less than or equal to zero if

ε 6
(

δ2(µε)2eCsµεT

cνε(eCsµεT − 1)2

) 1
k0+2

. (4.5.26)

We now replace this condition with stronger but clearer one. We first let ε
be so small that

ε 6 min
j∈[1,k0+1]

(
η

ηj

) 1
j

= min
j∈[1,k0+1]

η

Γ1/j
j e(2−1/j)Csη(T )T

. (4.5.27)

For such ε, we have µε 6 (k0 + 2)η and, by definition of ηj (4.5.18),

νε = ηk0+1 +
k0∑

`=0

ε`
k0+1∑

i=`+1

ηiηk0+2+`−i

6 ηk0+1 + Γ̃1
e(2k0+2)CsηT

ηk0
+

e(2k0+3)CsηT

ηk0+1

k0∑

`=1

Γ̃2η

(
ε

η
e(2−1/`)CsηT

)`

6 ηk0+1 + Γ̃1
e(2k0+2)CsηT

ηk0
+ Γ̃3

e(2k0+3)CsηT

ηk0

6 Γ̃4
e(2k0+3)CsηT

ηk0
,
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where Γ̃i is a constant depending on k0 and Γj (1 6 j 6 k0 + 1). Therefore,
the right hand side of (4.5.26) is bounded below by

(
δ2(µε)2eCsµεT

cνε(eCsµεT − 1)2

) 1
k0+2

>
(

δ2η2

cνεeCsµεT

) 1
k0+2

> Γ̃5

(
η2

(η−k0e(2k0+3)CsηT )e(k0+2)CsηT

) 1
k0+2

=Γ̃5
η

e
(3− 1

k0+2
)CsηT

> Γ̃5
η

e3CsηT
=: εk0+2,

where Γ̃5 depends on Γ̃4, β, and c. Then, the condition ε 6 εk0+2 ensures
(4.5.26) and so

δ − cνε

µε
(1− e−CsµεT )θ − εk0+2

µε
(eCsTµε − 1)θ−1 > 0. (4.5.28)

Note that εk0+2 is smaller than the right hand side of (4.5.27) and so that
ε 6 εk0+2 is stronger than (4.5.27). Furthermore, plugging (4.5.25) and
(4.5.28) to (4.5.24), we obtain

sup
t∈[0,T ]

Ẽk0+1(t) 6 3
√

1 + βθ−1eCsµεT 6 6c
√

1 + βνε

δµε
eCsµεT , (4.5.29)

which is the desired uniform bound. Indeed, the right hand side is bounded
by

6c
√

1 + βΓ̃4

δηk0+1
eCs(3k0+5)ηT

as long as ε 6 εk0+2. We finally confirm that the right hand side of (4.5.29)
tends to ηk0+2(T ) with a suitable constant. By definition, it holds that

lim
ε→0

µε lim
ε→0

µε
k0+1(T ) = η(T ),

lim
ε→0

νε = lim
ε→0

νε
k0+1(T ) = ηk0+1 +

k0+1∑

i=1

ηiηk0+2−i 6 Γ̂k0+2

η(T )k0
e(2k0+2)Csη(T )T ,

where Γ̂k0+2 depends on k0 and Γj (1 6 j 6 k0 + 1). Therefore, we end up
with the estimate

lim sup
ε→0

sup
t∈[0,T ]

em+1(t) 6 6
√

1 + β(Γ̂k0+2η(T )−k0e(2k0+2)Csg(T )T )
δη(T )

eCsη(T )T

=:
Γk0+2

η(T )k0+1
e(2k0+3)Csη(T )T = ηk0+2(T ),

which completes the proof.
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Appendix A

Tool box

A.1 Basic inequalities

A.1.1 The Hölder inequality

Lemma A.1.1 (The Young inequality). Let 1 < p, q < ∞ and p−1+q−1 = 1.
Then

ab 6 ap

p
+

bq

q

for all a, b > 0.

Proof. By convexity of ex,

ab = e
log ap

p
+ log bq

q 6 elog ap

p
+

elog bq

q
=

ap

p
+

bq

q
.

Lemma A.1.2 (The Hölder inequality). Let 1 6 p, q, r 6 ∞ satisfy p−1 =
q−1 + r−1. Then it holds for all f ∈ Lq(Rn) and g ∈ Lr(Rn) that

‖fg‖Lp(R) 6 ‖f‖Lq(R) ‖g‖Lr(R) .

Proof. If one of p, q, r is infinity then the result is trivial. So, we assume
p, q, r,< ∞. In the case p = 1, it follows from the Young inequality that

‖fg‖L1(R)

‖f‖Lq(R) ‖g‖Lr(R)

=
∫

Rn

∣∣∣∣∣
f

‖f‖Lq(R)

∣∣∣∣∣

∣∣∣∣∣
g

‖g‖Lr(R)

∣∣∣∣∣ dx

6 1
q ‖f‖q

Lq(R)

∫

Rn

|f |pdx +
1

r ‖g‖r
Lr(R)

∫

Rn

|g|rdx = 1.

If p > 1 then ‖fg‖Lp = ‖|fg|p‖1/p
L1 6 ‖|f |p‖1/p

Lq/p ‖|g|p‖1/p

Lr/p = ‖f‖Lq ‖g‖Lr .
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Corollary A.1.3. Let f be a complex-valued function on Rn. If f belongs
to both Lp(Rn) and Lq(Rn) (1 6 p < q 6 ∞), then f belongs to Lr(Rn) for
all r ∈ [p, q]. In particular,

‖f‖Lr(R) 6 ‖f‖θ
Lp(R) ‖f‖1−θ

Lq(R) ,

where θ ∈ [0, 1] is given by θ/p + (1− θ)/q = 1/r.

Proof. It is an immediately consequence of the Hölder inequality.

A.1.2 The Sobolev inequality

Lemma A.1.4 (The Sobolev inequality). Let 1 6 q 6 p < ∞ and α =
n(q−1 − p−1) > 0. Then, there exists a constant C > 0 such that

‖f‖Lp 6 C ‖|∇|αf‖Lq

holds, provided that the right hand side is finite. Moreover, if p > 1 and
s > n/p then there exists a constant C > 0 such that

‖f‖L∞ 6 C ‖f‖W s,p(Rn)

holds, provided the right hand side is finite.

For some more properties of Sobolev spaces we refer to [1, 7, 70].

A.1.3 The Hardy-Littlewood-Sobolev inequality

Lemma A.1.5 (The Hardy-Littlewood-Sobolev inequality). Let γ ∈ (0, n)
and 1 < p < q < ∞ satisfies

1
p

=
1
q
− n− γ

n
.

Then, there exists a constant C > 0 such that
∥∥|x|−γ ∗ f

∥∥
Lp 6 C ‖f‖Lq

holds, provided the right hand side is finite.

A.2 Tools for energy estimates

A.2.1 Gronwall’s lemma

Lemma A.2.1 (Gronwall’s lemma). Let g and h be continuous functions
on R. If f satisfies the inequality

f ′(t) 6 g(t)f(t) + h(t),

then it holds that

f(t) 6 e
R t
0 g(s)ds

(
f(0) +

∫ t

0
h(s)e−

R s
0 g(σ)dσ

)
.
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Proof. Multiply the both side by e−
R t
0 g(s)ds to obtain

d

dt
(fe−

R t
0 g(s)ds)(t) 6 h(t)e−

R t
0 g(s)ds

Integration over (0, t) gives

f(t)e−
R t
0 g(s)ds − f(0) 6

∫ t

0
h(s)e−

R s
0 g(σ)dσ.

Hence the Lemma.

The point is that f is bounded by f(0) and the coefficient functions g
and h. We mainly use this lemma to estimates the energy. By this lemma,
we can give the upper bound of the energy from its initial value.

A.2.2 Commutator estimate

We denote 1−∆ by Λ. The following lemma can be found [6, 40].

Lemma A.2.2 (Commutator estimate). Let s > 0 be a real number and
and k > 0 be an integer. There exists C > 0 such that

‖Λs(fg)− fΛsg‖L2 6 C(‖∇f‖L∞ ‖g‖Hs−1 + ‖∇kf‖Hs−k ‖g‖L∞).

Lemma A.2.3. Let s > 0 be a real number and and k > 0 be an integer.
There exists C > 0 such that

‖Λs(fg)‖L2 6 C(‖f‖Hs ‖g‖L∞ + ‖f‖L∞ ‖∇kg‖Hs−k), (A.2.1)

for all f ∈ Hs ∩ L∞ and g ∈ Ḣk ∩ Ḣs ∩ L∞, and that

‖Λs∇(fg)‖L2 6 C(‖∇f‖Hs ‖g‖L∞ + ‖f‖L∞ ‖∇g‖Hs), (A.2.2)

for all f, g ∈ Ḣ1 ∩ Ḣs ∩ L∞.

The next lemma is the estimate of a composite function.

Lemma A.2.4. Let I be closed interval of R. Take a nonnegative integer
m. Let s > −m be a real number and let σ be the smallest integer such
that σ 6 s. Take a complex-valued function F ∈ W σ+m+1,∞(I) and let v
be a valued in I and such that |∇|mv ∈ Hs. Then, there exists a constant
C = Cs,I such that

‖|∇|m(F (v))‖Hs 6 C(1 + ‖v‖L∞)σ+m
∥∥F ′∥∥

W σ+m,∞(I)
‖|∇|mv‖Hs

161



Bibliography

[1] R. A. Adams and J. J. F. Fournier, Sobolev spaces, second ed., Pure
and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic
Press, Amsterdam, 2003.

[2] T. Alazard and R. Carles, Loss of regularity for supercritical nonlinear
Schrödinger equations, Math. Ann., to appear.

[3] , Supercritical geometric optics for nonlinear Schrödinger equa-
tions, Arch. Ration. Mech. Anal., to appear.

[4] , WKB analysis for the Gross-Pitaevskii equation with non-
trivial boundary conditions at infinity, Ann. Inst. H. Poincare Anal.
Non Lineaire, to appear.

[5] , Semi-classical limit of Schrödinger–Poisson equations in space
dimension n > 3, J. Differential Equations 233 (2007), no. 1, 241–275.

[6] S. Benzoni-Gavage, R. Danchin, and S. Descombes, On the well-
posedness for the Euler-Korteweg model in several space dimensions,
Indiana Univ. Math. J. 56 (2007), no. 4, 1499–1579.
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