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Abstract
In this paper we define the notion of ampleness for two-sided tilting complexes over finite

dimensional algebras and prove its basic properties.
We call a finite dimensional k-algebra A of finite global dimension Fano if (A∗[−d])−1 is

ample for some d ≥ 0. For example geometric algebras in the sense of Bondal-Polishchuk are
Fano. We give a characterization of representation type of a quiver from a noncommutative
algebro-geometric view point, that is, a finite acyclic quiver has finite representation type if
and only if its path algebra is fractional Calabi-Yau, and a finite acyclic quiver has infinite
representation type if and only if its path algebra is Fano.

0 Introduction

Let X be a nonsingular projective variety over a field k and let ωX be its canonical bundle. Then the
functor SX := −⊗L

X ωX [dim X] : Db(coh X) −→ Db(coh X) is the Serre functor ,i.e., HomX(G ·,F ·)∗

is functorially isomorphic to HomX(F ·, SX(G ·)) for F ·,G · ∈ Db(coh X). By this fact, from a non-
commutative (or categorical) algebro-geometric view point, one thinks of a triangulated category
T as the derived category of coherent sheaves of some ”space” X and of the Serre functor ST of
T (if exists) as the derived tensor product of ” dimX”-shifted ”canonical bundle” ωX . From this
view point, the notion of Calabi-Yau algebra ( and Calabi-Yau category ) is defined and studied
extensively by many researchers.

In this paper we introduce the notion of ampleness for two-sided tilting complexes over finite
dimensional k-algebras. Let A be a finite dimensional k-algebra of finite global dimension.

Definition 0.1 (Definition 2.6). A two-sided tilting complex σ over A is called very ample if Hi(σ) = 0
for i ≥ 1 and σn is pure for n À 0. σ is called ample if σn is pure for n À 0.

In Section 2, we justify this definition by using the theory of noncommutative projective schemes
due to Artin-Zhang [AZ] and Polishchuk [Po]. In the theory of noncommutative projective schemes ,
for a graded coherent ring R over k we attach an imaginary geometric object projR =

(
cohproj R, R, (1)

)
.

An abelian category cohproj R is considered as the category of coherent sheaves on projR. (See Sec-
tion 1.) In Section 2 we show that the following facts hold. If σ is a very ample tilting complex over
A, then the tensor algebra T := TA(H0(σ)) of H0(σ) over A is a graded connected coherent ring over
A and there is a t-structure Dσ defined by σ in Perf A and its heart Hσ is equivalent to cohproj T .
Moreover the following Theorem holds.

Theorem 0.2 (Theorem 2.8). Let A be a finite dimensional k-algebra of finite global dimension and
let σ be a very ample two-sided tilting complex. Then there is a natural equivalence of triangulated
categories

Db (mod-A)
∼−→ Db (cohproj T ) .

where T := TA(H0(σ)) is the tensor algebra of H0(σ) over A.
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In [Be] Beilinson showed that Pn is derived equivalent to a finite dimensional k-algebra. This
result has been generalized to other varieties. The above Theorem gives a partial converse.

A finite dimensional k-algebra A of finite global dimension is called Fano if (A∗[−d])−1 is ample
for some d ≥ 0.

We give a characterization of representation type of a quiver from noncommutative algebro-
geometric view point, that is, a finite acyclic quiver has finite representation type if and only if its
path algebra is fractional Calabi-Yau, and a finite acyclic quiver has infinite representation type if
and only if its path algebra is Fano.

In [Le] and [GL], geometric notions are introduced to study certain class of algebras. This paper
develop a formal aspect of these works.

This paper is generalization of [Mi].
We organize the present paper as follows: in Section 1 we introduce some definitions and results

on noncommutative projective schemes :in Section 2 we give the definition of ampleness of two-sided
tilting complexes and prove its basic property : in Section 3 we show that some finite dimensional
algebra studied before has ample or anti-ample ”canonical bundle”.

Notation and convention. Throughout this paper k denotes a field. If there would be no
confusion, we denote by the same symbol T a two-sided tilting complex T and the functor − ⊗L

A T
induced by T . For a ring A we denote by Mod-A (resp. mod-A ) the abelian category of right
A-modules (resp. the abelian category of finite right A-modules). For a k-vector space M , we denote
by M∗ its k-dual vector space.

Acknowledgment. The author is grateful to I. Mori for his great help and comment. The
author thank H. Asashiba, O. Iyama, and A. Takahashi for their comments and useful discussions
on this paper. The author thank Y. Kimura for suggestive discussions.

1 Preliminaries on Noncommutative Projective Schemes

This section is a summary of the paper [Po] by A. Polishchuk. Although connected Z-algebras are
treated in [Po], we treat connected N-graded algebras over some finite dimensional k-algebra A. One
can see that the argument in [Po] is applied to our case.

Let k be a field and let R = R0 ⊕ R1 ⊕ R2 ⊕ · · · be a graded coherent ring over k. We assume
that the degree zero part R0 of R is a finite dimensional algebra over k. Gr R (resp. coh R) denotes
the category of graded right R-modules (resp. finitely presented graded right R-modules). Tor R
(resp. tor R) denote the full subcategory of torsion modules (resp. modules finite dimensional over
k). Note that TorR and tor R are dense subcategories of Gr R and coh R respectively, hence the
quotient categories QGr R = Gr R/ Tor R and cohproj R = coh R/ tor R are abelian categories.

For a graded right R-module M = ⊕n∈ZMn, we denote by M(1) the 1-degree shift of M . i.e.,
M(1)n = Mn+1. The degree shift operator (1) : cohR −→ coh R induces the autoequivalence (1)
on cohproj R. We denote by R the image in cohproj R of the regular module RR. The (coherent)
noncommutative projective scheme proj R associated to R is the triple (cohproj R, R, (1)). The
autoequivalence (1) is called the canonical polarization on proj R.

In noncommutative projective geometry, one thinks of cohprojR as the category of coherent
sheaves on a noncommutative projective scheme projR associated to a graded ring R ([AZ, Po]).

Let us consider a triple (C,O, s) consisting of a k-linear abelian category C such that dimk(F ,G) <
∞ for any F ,G ∈ C, an object O ∈ C and an autoequivalence s on C. For F ∈ C, we define

Γ∗(F) =
⊕
n≥0

HomC(O,F(n)),
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where F(n) := snF , and we set
R = Γ∗(C,O, s) = Γ∗(O).

Multiplication is defined as follows: If x ∈ HomC(O,F(l)), b ∈ HomC(O,O(m)) and a ∈
HomC(O,O(n)), then

x · a = sn(x) ◦ a and a · b = sm(a) ◦ b.

With this law of composition, Γ∗(F) becomes a graded right module over the graded algebra R over
k.

Definition 1.1 ([AZ, Section 4.2],[Po, Section 2]). Let (C,O, s) be a triple as above. Then the pair
(O, s) is called ample if the following conditions hold:

(1) For every object F ∈ C, there are positive integers l1, . . . , lp and an epimorphism ⊕p
i=1O(−li) −→

F .

(2) For every epimorphism f : F −→ G, there exists an integer n0 such that for every n ≥ n0 the
induced map HomC(O,F(n)) −→ HomC(O,G(n)) is surjective.

Let π : Gr R −→ QGr R be the quotient functor. Set Γ∗ = π ◦ Γ∗.

Theorem 1.2 ([Po, Theorem 2.4]). Let (C,O, s) be a triple as above. If (O, s) is ample, then
the graded ring R = Γ∗(C,O, s) is coherent, Γ∗(F) is finitely presented R-module for F ∈ C and
the functor Γ∗ : C −→ cohproj R induces an equivalence of triples between (C,O, s) and proj R =
(cohproj R, R, (1)), i.e.,

Γ∗ : C ∼−→ cohproj R is an equivalence of categories,

Γ∗(O) ∼= R, and Γ∗ ◦ s = (1) ◦ Γ∗.

2 t-structures defined by two-sided tilting complexes

Let X be a projective variety over k and L be an ample line bundle on X. Let (D≥0, D≤0) be the
standard t-structure in Db(coh X) ,i.e., D≥0 (resp. D≤0) is the full subcategory of Db(coh X) with
objects F · such that Hi(F ·) = 0 for i < 0 (resp. i > 0) . By Serre’s vanishing theorem [Har,
Propsition III.5.3], a complex F ∈ Db(coh X) belongs to D≥0 (resp. D≤0) if and only if F satisfies
the following condition:

R Hom·(OX ,F · ⊗L Ln) ∈ D≥0(k-vect) for n À 0

(resp. R Hom·(OX ,F · ⊗L Ln) ∈ D≤0(k-vect). for n À 0)

Reversing this observation, to formulate ampleness in the study of derived categories, we define
the following.

Definition 2.1. Let A be a k-algebra and let σ be a two-sided tilting complex over A. The full
subcategory Dσ,≥0 (resp. Dσ,≤0) of Db (mod-A) consists of objects M · which satisfy

σnM ∈ D≥0(Mod-A) for n À 0

(resp. σnM ∈ D≤0(Mod-A) for n À 0).

We define Dσ := (Dσ,≥0, Dσ,≤0).

Since σnM ' R Hom(A, σnM), we think of A as the ”structure sheaf” in Definition 2.1.
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Theorem 2.2. Let A be a right Noetherian k-algebra of finite global dimension and let σ be a two-
sided tilting complex over A. If Hi(σ) = 0 for i ≥ 1, then Dσ is a t-structure in Db (mod-A).

To prove Theorem 2.2 we need the following Lemma.

Lemma 2.3. Let f : L −→ M be a morphism in D−(Mod-A ⊗k Bop) and N ∈ D−(Mod-C ⊗k Aop)
for k-algebras A,B,C. If Hi(f) = 0 for any i ∈ Z, then Hi(f ⊗L

A 1N) = 0 for any i ∈ Z.

The above Lemma is easily proved by the following Lemma taken from [Y, Lemma 2.1]. (See also
[ML, Theorem XII. 12.2].)

Lemma 2.4. Let M ∈ D−(Mod-A ⊗k Bop) and N ∈ D−(Mod-C ⊗k Aop) for k-algebras A,B,C.
Then there is a convergent Künneth spectral sequence

Ep,q
2 =

⊕
i+j=q

Hp
(
Hi (M) ⊗L

A Hj (N)
)

=⇒ Hp+q(M ⊗L
A N)

in Mod-C ⊗k Bop which is functorial in M · and N ·. If i0 ≥ sup{i | Hi (M) 6= 0} and j0 ≥ sup{j |
Hj (N) 6= 0}, then Hi0 (M) ⊗A Hj0 (N) ' Hi0+j0

(
M ⊗L

A N
)
.

The latter part of this Lemma will be used in the sequel.

Proof of Theorem 2.2. The only nontrivial part is the following statement:
For any M ∈ Db (mod-A) there is an exact triangle

M ′ −→ M −→ M ′′ [1]−−→

in Db (mod-A) such that M ′ ∈ Dσ,≤0 and M ′′ ∈ Dσ,≥1.
Let (D≤0, D≥0) be a standard t-structure in D(Mod-A) and let τ≤0 and τ≥1 be standard truncation

functors. Let N ∈ Db (mod-A). Applying σ to the canonical morphism τ≤0N −→ N , we get the
morphism σ (τ≤0N) −→ σ(N). Since σ is the derived tensor − ⊗L

A σ of the complex σ such that
Hi(σ) = 0 for i ≥ 1, σ (τ≤0 (N)) ∈ D≤0. Therefore we get a morphism σ (τ≤0 (N)) −→ τ≤0 (σ(N)).
Setting N = σn(M) for n ≥ 0, we get a morphism σ (τ≤0 (σnM)) −→ τ≤0 (σn+1M). Applying
σ−(n+1) to this morphism, we get a morphism φn : σ−n (τ≤0 (σnM)) −→ σ−(n+1) (τ≤0 (σn+1M)). Set
τσ,n
≤0 := σ−nτ≤0σ

n and τσ,n
≥1 := σ−nτ≥1σ

n. Applying σ−n to the exact triangle

(1) τ≤0 (σnM) −→ σnM −→ τ≥1 (σnM)
[1]−−→,

we get the following exact triangle

(2) τσ,n
≤0 M

αn−→ M
βn−→ τσ,n

≥1 (M)
[1]−−→ .

We have the following commutative diagram:

τσ,n
≤0 M

αn //

φn

��

M
βn //

=

��

τσ,n
≥1 M

[1]−−→

ψn

��

τσ,n+1
≤0 M

αn+1 // M
βn+1 // τσ,n+1

≥1 M
[1]−−→

where ψn is induced morphism.
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Let us consider the following cohomology long exact sequence of (2):

· · · → Hi−1(τσ,n
≥1 M)

∂i−1

−−→ Hi(τσ,n
≤0 M)

Hi(αn)−−−−→ Hi(M) → · · ·

where ∂i−1 is the connecting morphism. Let δ : τ≥1σ
nM −→ τ≤0σ

nM [1] be the morphism obtained
by rotating the exact triangle (1). Then Hi(δ) = 0 for any i ∈ Z. Since ∂i−1 ' Hi−1(δ ⊗L

A 1σ−n),
∂i−1 = 0 by Lemma 2.3. Therefore Hi(αn) is injective. Hence Hi(φn) is injective. We have the
following system of injections

· · · ↪→ Hi(τσ,n
≤0 M) ↪→ Hi(τσ,n+1

≤0 M) ↪→ · · · Hi(M).

Since Hi(M) = 0 except for finitely many i and Hi(M) is Noethrian for each i, there is a positive
integer n0 such that Hi(φn) is isomorphism for n ≥ n0 and i ∈ Z. Therefore φn and ψn is quasi-
isomorphism for n ≥ n0. Thus if we set M ′ := τσ,n0

≤0 M and M ′′ := τσ,n0

≥1 M , then M ′ ∈ Dρ,≤0 and
M ′′ ∈ Dρ,≥1. This complete the proof of the Theorem.

Let A be a finite dimensional k-algebra of finite global dimension and σ be a two-sided tilting
complex over A such that Hi(σ) = 0 for i ≥ 1. Then by Theorem 2.2, Dσ is t-structure in Db (mod-A).
Let Hσ be the heart of the t-structure Dσ. Then σ acts on Hσ. Furthermore assume that σn is pure in
standard t-structure for each n À 0. Then A ∈ Hσ and the triple (Hσ, A, σ) satisfies the conditions
in Section 1.

Lemma 2.5. With the assumptions above the pair (A, σ) is ample in the sense of Definition 1.1 on
the triple (Hσ, A, σ).

Proof. We check the conditions (1) and (2) of Definition 1.1.
First note that the cokernel of the morphism f : M −→ N in the abelian category Hσ is

τσ
≥0(Cone(f)), where τσ

≥0 : Db (mod-A) −→ Dσ,≥0 is the truncation functor of the t-structure Dσ (See
[GM, IV.4]). So f is an epimorphism in Hσ if and only if Cone(f) ∈ Dσ,≤−1.

(1) Let M ∈ Hσ and let n ≥ 0 be an integer such that σnM is pure. Let P be a bounded complex
of finite projective right A-modules which represents σnM . We may assume that P i = 0 for i ≥ 1
and P 0 ∼= A⊕p for some p ∈ N. An isomorphism A⊕p ∼→ P 0 induces a morphism φ : A⊕p −→ σnM .
Let C be a cone of φ. Then C ∈ D≤−1 and we have the following exact triangle

σ−nA⊕p σ−nφ−−−→ M −→ σ−nC
[1]−−→ .

Since σ−nC ∈ Dσ,≤−1, σ−nφ is an epimorphism in Hσ.
(2) Let

M
f−→ N −→ L

[1]−−→
be an exact triangle such that M,N ∈ Hσ and L ∈ Dσ,≤−1. Take an integer n0 such that
Hom(A, σnL·) ∼= H0(σnL·) = 0 for each n ≥ n0. Then the induced morphism Hom(A, σnM) −→
Hom(A, σnN) is surjective in Mod-A for each n ≥ n0.

Definition 2.6. Let A be a finite dimensional k-algebra and let σ be a two-sided tilting complex over
A. σ is called extremely ample if σn is pure for n ≥ 0. σ is called very ample if Hi(σ) = 0 for i ≥ 1
and σn is pure for n À 0. σ is called ample if σn is pure for n À 0.

Let σ be a very ample two-sided tilting complex over a finite dimensional k-algebra A. Then
H0(σ)⊗An ' H0(σn) for n ≥ 0 by Lemma 2.4. Therefore the tensor algebra

TA(H0(σ)) =
⊕
n≥0

(
H0(σ)

)⊗An
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of H0(σ) over A is naturally isomorphic to the homogeneous coordinate ring

Γ∗(Hσ, A, σ) =
⊕
n≥0

Hom(A, σnA) ∼=
⊕
n≥0

H0(σn)

of the triple (Hσ, A, σ). By Theorem 1.2 we obtain the following Corollary.

Corollary 2.7. Let A be a finite dimensional k-algebra of finite global dimension and let σ be a very
ample two-sided tilting complex over A. Then the tensor algebra T := TA(H0(σ)) of H0(σ) over A
is a graded coherent ring and the triple (Hσ, A, σ) is equivalent to the triple

(
cohproj T, T , (1)

)
as

triple. In particular the abelian category Hσ is equivalent to the abelian category cohproj T .

In [Be] Beilinson showed that Pn is derived equivalent to a finite dimensional k-algebra. This
result has been generalized to other varieties. The next Theorem gives a partial converse.

Theorem 2.8. Let A be a finite dimensional k-algebra of finite global dimension and let σ be a very
ample two-sided tilting complex. Then there is a natural equivalence of triangulated categories

Db (mod-A)
∼−→ Db

(
cohproj TA(H0(σ))

)
.

Proof. We set T := TA(H0(σ)). Let PA be the full subcategory of mod-A consisting all finite projec-
tive A modules. We can extend the functor

PA −→ cohproj T, P 7→
⊕
i≥0

Hom
(
A,P ⊗A H0(σi)

)
to the functor γ : Kb(PA) −→ Kb(cohproj T ) between the homotopy category of complexes. Let
Φ : Kb(PA)

∼−→ Db (mod-A) be the natural equivalence and let π : Kb(cohproj T ) −→ Db(cohproj T )
be the natural quotient functor. Define LΓ∗ := π◦γ◦Φ−1. Then we obtain the following commutative
diagram.

(3) Db (mod-A)
LΓ∗ // Db(cohproj T )

Hρ
?�

iA

OO

∼
Γ∗

// cohproj T
?�

iT

OO

where iA, iΠ are inclusions. We prove that LΓ∗ is an equivalence.
By Lemma 2.5 and Theorem 1.2 the functor Γ∗ : Hσ −→ cohproj T is an equivalence. Therefore

LΓ∗ is essentially surjective. To complete the proof it suffices to show that LΓ∗ is fully faithful. Since
every complex M · ∈ Db (mod-A) is obtained from A by taking finite number of cones, shifts and
direct summand, the problem is reduced to the following lemma.

Lemma 2.9. The map

HomDb(mod-A)(A,A[i])
LΓ∗A,A[i]−−−−−→ HomDb(cohproj T )(LΓ∗(A),LΓ∗(A)[i])

is an isomorphism for every i ∈ Z.

Proof. For the case i = 0, the map LΓ∗A,A is equal to

HomDb(mod-A)(A,A) ∼= HomHσ(A,A) ∼= Homcohproj T (Γ∗(A), Γ∗(A))

∼= HomDb(cohproj T )(LΓ∗(A),LΓ∗(A))
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where the second isomorphism is induced by the equivalence Γ∗. Hence LΓ∗A,A is an isomorphism.
For the case i 6= 0, since LΓ∗(A) ∼= T , we have only to show that Exti

qcohT

(
T , T

)
= 0 for i ≥ 1.

First note that Exti
cohproj T

(
T , T

) ∼= limn→∞ Exti
coh T (T≥n(−n), T ) where T≥n := ⊕m≥nH0 (σ)⊗Am and

(−n) is the −n-graded degree shift operator (See [AZ]). Let n0 ≥ 0 be a positive integer such that
σm is pure for m ≥ n0. Then by Lemma 2.4 H0 (σ)⊗Am+n ' H0 (σ)⊗Am ⊗L

A σn for n ≥ n0 and m ≥ 0.
Thus T≥n ' T ⊗L

A σn for n ≥ n0. Therefore for n ≥ n0

R Homcoh T (T≥n(−n), T ) ' R Homcoh T

(
T ⊗L

A σn(−n), T
)
' R Homcoh T

(
T, σ−n ⊗L

A T (n)
)

' σ−n ⊗L
A σn ' A.

This complete the proof of the Lemma , which also complete the proof of Theorem 2.8.

Lemma 2.10. Let A be a finite dimensional k-algebra of finite global dimension and let σ be a very
ample two-sided tilting complex over A. Then Dσ = Dσn

for n ∈ N.

Definition 2.11. Let A be a finite dimensional k-algebra of finite global dimension and let σ be an
ample two-sided tilting complex over A. We define Dσ := Dσn

and Hσ := Hσn
where n is a natural

number such that σn is very ample. By the above Lemma, this is well-defined.

Proposition 2.12. Let A be a finite dimensional k-algebra of finite global dimension and let σ be
an ample two-sided tilting complex. Then the following conditions are equivalent.

(1) the inverse σ−1 is ample.
(2) the t-structure Dσ is equal to the standard t-structure DA.
(3) σn ∈ Pic A for n À 0.

Lemma 2.13. If M ∈ Hσ, then Hi(M) = 0 for i < 0 and i > max{pd (Aσn) | n ≥ 0} where pd (Aσn)
is the projective dimension of σn as a left A-module.

Proof. We prove that Hi(M) = 0 for i > max{pd σn | n ≥ 0}. The case when i < 0 can be proved
in the same way. Set d := max{pd (Aσn) | n ≥ 0}. Let τ≤d and τ≥d+1 be the standard truncation
functors of Db(mod-A). We have the following exact triangle:

(4) σn (τ≤dM) −→ σnM −→ σn (τ≥d+1M)
[1]−−→

for each n ≥ 0. Let n be a positive integer such that σnM and σn are pure. Since d = max{pd (Aσn) |
n ≥ 0}, Hi (σn (τ≥d+1M)) = 0 for i ≤ 0. For i ≥ 1, we consider the following part of the cohomology
long exact sequence

Hi (σnM) = 0 −→ Hi (σn (τ≥d+1M))
∂i

−−→ Hi+1 (σn (τ≤dM))

of the exact triangle (4). Applying the same argument in the proof of Theorem 2.2, we conclude that
the connecting morphism ∂i = 0 and Hi (σn (τ≥d+1M)) = 0 for i ≥ 1. Therefore σn (τ≥d+1M) = 0
and hence τ≥d+1M = 0. This completes the proof.

Let P = (C,O) be a pair consisting of a k-linear abelian category C and an object O ∈ C. In
[AZ, Sction 7] the cohomology group of F ∈ C is defined to be Hi (P ,F) := Exti

C (O,F). for i ≥ 0.
The cohomological dimension of the pair P is defined to be

cd (P) := max{i | Hi(P ,F) 6= 0 for F ∈ C}.

By definition cohomology groups and cohomological dimension of a triple (C,O, s) in Section 1 are
that of the pair (C,O).

Let A be a finite dimensional k-algebra of finite global dimension and let σ be a very ample tilting
complex over A. Set T = TA

(
H0(σ)

)
. We consider the triple proj T =

(
cohproj T, T , (1)

)
.
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Corollary 2.14. cd (proj T ) = max{pd (Aσn) | n ≥ 0}.

Proof. Let F ∈ cohproj T and let M ∈ Hσ be an object of Db(mod-A) which corresponds to F under
the equivalence of Theorem 2.8. Then Hi (proj T,F) ∼= Hom(A,M [i]) ∼= Hi(M) where the right hand
side is the i-th cohomology group of the complex M of right A-modules. Therefore by Lemma 2.13
Hi (proj T,F) = 0 for i < 0, max{pd σn | n ≥ 0} < i. Hence cd (proj T ) ≤ max{pd σn | n ≥ 0}. It is
clear that σ−nA ∈ Hσ. If pd (Aσn) = d, then Hd (σ−nA) 6= 0. Therefore cd (proj T ) = max{pd σn |
n ≥ 0}.

The global dimension of cohprojT is bounded by gl. dim A from above.

Proposition 2.15. gl. dim (cohproj T ) ≤ gl. dim A.

Proof. Let F ,G ∈ cohproj T and let M, N ∈ Hσ be an object of Db(mod-A) which corresponds to
F ,G under the equivalence of Theorem 2.8. Let n À 0 be a positive integer such that σnM and σnN
are pure. Then Exti

cohproj T (F ,G) ∼= Exti
mod-A (σnM,σnN) = 0 for i > gl. dim A.

Remark 2.16. In general gl. dim (cohproj T ) < gl. dim A. See Section 3.3.

3 Fano algebras and algebras with ample canonical bundle

3.1 definition and basic properties

Let A be a finite dimensional k-algebra of finite global dimension. The k-dual A∗ has the natural
A-bimodule structure. It is known that − ⊗L

A A∗ : Db(mod-A) −→ Db(mod-A) is the Serre functor
([Hap, I.4.6]). For a nonsingular projective variety X over k, the [dim X]-shifted derived tensor
− ⊗L

X ωX [dim X] of the canonical bundle ωX is the Serre functor of Db (coh X). From a view point
of noncommutative algebraic geometry A∗ is thought as ”shifted canonical bundle”. For example, if
(A∗)m ' [n] for some positive integers m,n, then A is called fractional Calabi-Yau of CY dimension
n

m
, which is apparently named after analogy to the property of the derived category of a Calabi-Yau

variety.

Definition 3.1. Let A be a finite dimensional k-algebra of finite global dimension, let d be a non-
negative integer, and set ω := (A∗[−d]). A is said to be a Fano algebra of Fano dimension d if the
two-sided tilting complex ω−1 is ample.

Remark 3.2. It is not known that in general finite dimensional k-algebras of finite global dimension
have ample A∗[−d] for some d. Therefore we don’t use the term ”algebra of general type”.

Remark 3.3. (1) Let A be a finite dimensional k-algebra of finite global dimension. If for some
positive integer d, Exti(A∗, A) = 0, i 6= d, then gl. dim A = d. Therefore if ω−1

A = (A∗[−d])−1 is
extremely ample, then the global dimension of A is equal to d. In general global dimension of a Fano
algebra is not equal to its Fano dimension. (See Section3.3.)

(2) By the standard argument we can prove that if ω := A∗[−d] is ample (resp. anti-ample )
then gl. dimHω = d (resp. gl. dimHω−1

= d).

Lemma 3.4. Let A be a finite dimensional k-algebra of finite global dimension. If A is fractional
Calabi-Yau then A is not Fano. Conversely if A is Fano then A is not fractional Calabi-Yau.

Proof. We prove that a fractionally Calabi-Yau algebra is not Fano. We set ω := A∗[−d] for some
d ≥ 0. Let m,n be integers such that (A∗)m ' [n]. Then ω−m ' [dm− n]. If dm− n 6= 0, then ω−lm

is not pure for l > 0. If dm − n = 0 then ω−(lm−1) ' ω = A∗[−d] is not pure for l > 0. In any case
ω−1 is not ample.
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Example 3.5 (Geometric algebras). Let T be an algebraic k-linear triangulated category such that
dimk Hom(E, F ) < ∞ for E, F ∈ T and E• := (E0, E1, . . . , Ed) be a full geometric collection in
T (See [BP, ELO] for the definition and the properties below of a geometric collection). The en-
domorphism algebra A := End

(
⊕d

i=0Ei

)
is called a geometric algebra in [BP]. Then A is a finite

dimensional k-algebra of global dimension d and (A∗[−d])−n is pure for n ≥ 0. Therefore the geomet-
ric algebra A is a Fano algebra. By Corollary 2.7, The tensor algebra TA(ρ) is coherent. Therefore
the Z-algebra A associated to geometric collection E• is coherent. In particular, the homogeneous
coordinate ring Am,V of noncommutative Grassmanian NGr(m,V ) ([ELO]) is coherent.

3.2 A noncommutative algebro-geometric characterization of represen-
tation type of a quiver

Let Q be a finite acyclic quiver, i.e., a quiver with finitely many vertexes and finitely many arrows
without loops and oriented cycles. Then the path algebra A = kQ of Q is a finite dimensional
k-algebra of global dimension 1. Note that ω−1

Q = (A∗[−1])−1 is the inverse of the Auslander-Reiten

translation. Therefor if the quiver Q has infinite representation type, then ω−n
Q is pure for any n ≥ 0

by [Hap, II.4.7]. Therefore the anti-canonical bundle ω−1
Q is extremely ample.

Theorem 3.6. Let Q be a finite acyclic quiver of infinite representation type. Then the path algebra
kQ of Q is a Fano algebra of Fano dimension 1.

If a finite acyclic quiver Q has finite representation type, then its path algebra kQ is fractional
Calabi-Yau. (This fact has been known by specialists. See [MY] for the precise CY dimension of these
algebras.) By Lemma 3.4 and Theorem 3.6 we obtain the following characterization of representation
type of a quiver from a noncommutative algebro-geometric view point.

Corollary 3.7. A finite acyclic quiver has finite representation type if and only if its path algebra
is fractional Calabi-Yau, and a finite acyclic quiver has infinite representation type if and only if its
path algebra is Fano.

By Theorem 2.8 and Theorem 3.6 we obtain the following corollary.

Corollary 3.8. Let Q be a finite acyclic quiver of infinite representation type. Then there is a
natural equivalence of triangulated categories

Db(mod-kQ)
∼−→ Db(cohproj Π(Q))

where Π(Q) is the preprojective algebra of Q.

Remark 3.9. The above equivalence is essentially proved in [Le].

Remark 3.10. Set T ′ = {N ∈ mod-A | Hom(A, ω−n
Q N) = 0 for n À 0} and F ′ = {N ∈ mod-A |

Ext−1(A,ω−n
Q N) = 0 for n À 0}. Then we can prove that (T ′,F ′) is a torsion pair on mod-A. From

this torsion pair we can define a t-structure in Db(mod-A) by setting

D′≥0 :={M · ∈ D≥0(mod-A) | H0(M ·) ∈ F ′}
D′≤0 :={M · ∈ D≤1(mod-A) | H1(M ·) ∈ T ′}.

(See [HRS, Proposition I.2.1]). However, this is not a new t-structure. It can be proved that

(D′≥0, D′≤0) = Dω−1
Q .
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Remark 3.11. Let Q be a finite acyclic quiver. By Happel’s theorem ([Hap, Theorem.II.4.9]), there
is a natural equivalence of triangulated categories

Db(mod-kQ)
∼−→ grmod-T (Q)

where T (Q) := kQ ⊕ (kQ)∗ is a trivial extension algebra and grmod-T (Q) is the stable category
of finite graded T (Q) modules. In the case Q has infinite representation type, compositing above
equivalence and the equivalence of corollary 3.8, we obtain the equivalence of triangulated categories

Db(cohproj Π(Q)) ' grmod-T (Q).

It seems that this equivalence asserts that Π(Q) and T (Q) are Koszul dual to each other over kQ. In
the classical theory of Koszul algebras, graded algebras over a semi-simple algebra are treated. But
path algebras are not semi-simple in general. The related theory will be developed in [MT].

3.3 canonical algebras

The concept of a weighted projective line was given by Geigle and Lewnzing [GL] to treat geometri-
cally canonical algebras.

Let p = (p0, . . . , pn) be the n + 1-tuple of positive integers, called a weight sequence. Denote by
L(p) the rank one abelian group on generators ~x0, . . . , ~xn with relations p0~x0 = · · · = pn~xn. The
element ~c = p0~x0 = · · · = pn~xn is called the canonical element of L(p) and the element ~ω = (n−1)~c−∑n

i=0 ~xi is called the dualizing element of L(p). L(p) is an ordered group with L(p)+ =
∑n

i=0 N~xi as
its set of positive elements.

Let X = X(p, λ) be a weighted projective line of type p = (p0, . . . , pn) and λ = (λ2, . . . , λn) where
λ is a sequence of pairwise distinct elements of k×, normalized such that λ2 = 1.

The abelian category coh X of coherent sheaves on X has global dimension 1.
For each ~x ∈ L(p) we can attach a line bundle OX(~x). This correspondence is additive ,i.e., there

are a natural isomorphisms OX(~x + ~y) ∼= OX(~x) ⊗X OX(~y) and OX(0) ∼= OX.
• (Serre duality) The functor −⊗L

X OX(~ω)[1] is the Serre functor of Db(coh X).
• (Serre vanishing) Let ~x ∈ L(p)+. For F ∈ coh X,

Hi (X,F ⊗X OX(n~x)) = Exti
coh X (OX,F ⊗X OX(n~x)) = 0

for i > 0 and n À 0.
The endomorphism algebra Λ = End(T ) of T :=

⊕
0≤~x≤~c O(~x) is isomorphic to a canonical algebra

in the sense of Ringel [R]. It is given by the quiver

~x0
x0 // 2~x0

// · · · // (p0 − 1)~x0

��>
>>

>>
>>

>>
>>

>>
>>

~x1
x1 // 2~x1

// · · · // (p1 − 1)~x1

''NNNNNNNNNN

0

;;xxxxxxxx

DD














##FF
FF

FF
FF

...
...

... ~c

~xn
xn // 2~xn

// · · · // (pn − 1)~xn

77pppppppppp

with relations xpi

i − xp1

1 + λxp0

0 , i = 2, . . . , n. The global dimension of the canonical algebra Λ is
bounded by 2 from above. Moreover T is a tilting sheaf on X, i.e., T induces a natural equivalence
of triangulated categories

(5) Db(coh X) ' Db(mod-Λ)
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The genus gX of a weighted projective line X is by definition gX = 1 + 1
2

(
(n − 1) −

∑n
i=0

p
pi

)
. If

gX < 1 (gX = 1 resp. gX > 1), then X is called of domestic (tubular resp. wild) type. Note that if
gX < 1 (gX = 1 resp. gX > 1), then ~ω < 0 (~ω = 0 resp. ~ω > 0).

Set ωΛ := Λ∗[−1]. Let F ,G ∈ Db (coh X) and let M, N ∈ Hσ be an object of Db(mod-Λ) which
corresponds to F ,G under the equivalence (5). Then by the uniqueness of Serre functor there is a
natural isomorphism

HomDb(coh X)

(
F ,G ⊗L

X OX(n~ω)
) ∼= HomDb(mod-Λ)

(
M, N ⊗L

Λ ωn
Λ

)
for n ∈ Z.

In the domestic case, by Serre vanishing theorem we can prove that the canonical algebra Λ is a
Fano algebra of Fano dimension 1. The triple (Hω−1

Λ , Λ, ω−1
Λ ) is equivalent to (coh X, T,−⊗L

X O(−~ω))
under the equivalence (5) as a triple.

In the wild case, the canonical bundle ωΛ = Λ∗[−1] is ample. The triple (HωΛ , Λ, ωΛ) is equivalent
to (coh X, T,− ⊗L

X O(~ω)) under the equivalence (5) as a triple. In general the global dimension
gl. dim Λ of a canonical algebra Λ is equal to 2. In both case, equal sign is not true in the inequality
of Proposition 2.15.
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