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Notation
D> =9 9%, for a multi-index o € NV,
Vu = (0u,...,0nu).
A =3%N,0%

S(R™)  Schwartz space; i.e., the set of all real- or complex -valued C* functions
on R such that for every nonegative interger m and every multi-index «,

Pm.a(u) = sup (1 + |x|2)%]Dau(x)] < 00.
rER?

S(R™) is a Fréchet space when equipped with the seminorms py, 4.

S'(R™)  space of tempered distributions on R™; i.e.,the topological dual of S(R").
S'(R™) is a subspace of C§°(R™).

LP(R)  Banach space of measurable functions u : R — R or (u : R — C) such
that ||ul|r» < oo, with

Huum{(f i Ju(@)dz) " i (p < o)

esssupg |u(z)| if (p = o0).

< o0) Banach space of elements v € S'(R™) such that
€ LP(R™). = H*P(R") is equipped with the norm

or = | F (1 + [€]%) 20| o

[l
Hs(Rn) — HS,Z(Rn)
H*"(R") (s € R,1 < p < 0o) homogeneous version of the Sobolev space H*?(R™)

By (R") (s € R,1 < p < oo) Banach space of elements v € §'(R") such that
[ul|ps,, < oo with

Wl — 171 e+ 3 (R @IIF (@) 1)) i (g < o0)
H H D,q Hf (77 )H _'_{Suijl(ngHF ( )HLP) lf (q:oo)

where F~1(¢;u) is the j* dyadic block of the Littlewood-Paley decompo-
sition of u.

B (R") (s €R,1<p,q < oc) homogeneous version of the Sobolev space By  (R™).

Xsp (s,b € R) Fourier restriction space corresponding to the Schrédinger
equation of elements u € S’(R?) such that

o = (T + E)A(T, )l 12,

where (-) = (1+]- [?)=.

iii



A< B for any positive A and B means A < C'B with constant C.
A~B A< Band BS A

A< B A <c¢B with small constant c.

v



Chapter 1

Introduction

In this paper we study the Cauchy problem of nonlinear Schrodinger equations
with initial data in Sobolev space

iy + Au + MuP~lu =0, (1.1)
u(0,t) = ¢(z) € H*(R"), (1.2)

where u is a complex valued function with A € C and p > 1. There are many
problems concerning the short time and the long time behaviour of solutions of
nonlinear Schrodinger equations. We are particularly interested in two problems
such as the unconditional well-posedness and the global well-posedness under H*
norm.

First, we briefly recall the definition of well-posedness in H* that we use here:

Definition 1.0.1. For any initial data ¢ € H?, there exists a positive time T =
T(||ug|| =) depending on the norm of initial data such that (1.1)-(1.2) has a strong
unique solution u in X C C([-T,T)],H®), where X is a Banach spaces and the
solution map from H® to C([=T,T), H®) continuously depends on the initial data.
If T can be chosen arbitrarily large, we say that (1.1)-(1.2) is globally well-posed.
If we can take X = C([-T,T), H®), then we say that (1.1)-(1.2) is unconditionally
well-posed.

One may show that existence and uniqueness result by fixed point method via
the following equation

t
ult) = Ut~ [ Ut = o)l us)ds.
0
where U(?) is a free Schrédinger evolution operator. It is known that the solution

of (1.1)-(1.2) satisfies the conservation of mass

u()||2@ny = l|uol| L2

and the conservation of energy

+1

Now we discuss the unconditional well-posedness of nonlinear Schrodinger
equation with power nonlinearity.

| c
B(u(t) = 5 / Vultde + —— [ uprtide.
Rn p Rn



Unconditionally well-posed

Kato [28] introduces the concept of unconditional well-posedness of nonlinear
Schrodinger equation. He explains that the well-posedness problem needs the
auxiliary condition which is related to Strichartz estimates to ensure uniqueness
with two examples. First we start with the definition of admissible pair.

Let (¢q,7) be an admissible pair such that

When2§r§%(2§r§ooifn:1,2§r<ooifn:2).
Let us consider the equations (1.1)-(1.2) in the following two cases.

(i) Problem (A)

Assume p < 1+, There exists a unique solution v € C([0,7), H(RY))N
L9((0,T), L"(R™)), for some T > 0, where (¢, r) is an admissible pair.

(ii) Problem (B)

Assume p <1+ +. There exists a unique solution u € C([0,T], L*(RY)) N
L1((0,T), L"(R™)), for some T" > 0, where (¢, ) is an admissible pair.

In problem (A), auxiliary space L4((0,7"), L"(R™)) can be removed, it is bonus
as Kato points out, which may or may not appear in theorem. Hence we say that
problem (A) is unconditional well-posedness. But in problem (B), auxiliary space
L9((0,T), L"(R™)) is essential part of the well-posedness because we might not
prove the uniqueness without auxiliary conditions. Hence we say that, problem
(B) is conditional well-posedness in L*(RY) with L((0,7"), L"(R™)). In this case
there are infinitely many auxiliary spaces but they are consistent. The uncondi-
tional uniqueness is a concept of uniqueness which does not depend on how to
construct the solution.

Our another interesting is the global well-posedness of nonlinear Schrodinger
equations when the regularity is below H*!.

Globally well-posed below H!

It is known that the global well-posedness in H*(RY) for s > 1, is obtained
via the laws of conservation of mass and energy. These two laws lead to L2
and H' regularities, respectively and the both norms stay bounded for all time.
The question then arises whether (1.1)-(1.2) is globally well-posed or not when
regularity is below H!. In that direction, two methods have been developed our
understanding recent years, namely Fourier truncation method of Bourgain and
method of almost conserved quantities or I-method of J. Colliander, M. Keel,
G. Staffilani, H. Takaoka and T. Tao. They both proceed by choosing a large



frequency N which depend on time and dividing a solution into two parts of lower
and higher frequencies than N.
Let us consider for the particular case

1
v + §Av = P, (t,r) € R x R? (1.3)
with the conservation of energy
B(v) = / Lol + L poptids (1.4)
R2 2 P + 1 '

where p = 3 or 5. It is also known that this nonlinear Schrodinger equation enjoys
the scaling symmetry

t
v(t,x) — )\_2/(7’_1)11(?, ;), vo(z) > A™H P Dy (

3

To explain the I-method, we start with the definition of Fourier multiplier
operator

Tu(€) = m(€)o(€)

where m(§) is an arbitrary real valued multiplier which is the identity on the low
frequencies and like as a fractional integral operator of order 1 — s on the high
frequencies. Then we see that

@l < el S N2 [lo(®)]] e

We set u = Iv by applying I to (1.3), then u solves the equation
1
1y + §Au = I(vf~tv), » € R* ¢t >0. (1.5)
Hence we have

E(u) = —2Re / Tor(| Lo~ Tv — I(|o]~'v))da.

R2

Then it can be shown that there exists o > 0 such that
E(Iv(t)) — E(Iv(0)) S N7,

for all ¢ € [0, 1] which is controlled by bilinear or multi-linear estimates and usual
Strichartz estimates under X, ; spaces setting.

Here we divide the proof into three main parts such as low-low, high-low and
high-high frequency interaction. In low-low case, E(Iu) is conserved because the
operator [ is the same as the identity. In high-high case, we get the small error in
TH!. The most difficult case is high-low frequencies interaction. Hence we have
to improve some estimates (for instance, the refinement of bilinear Strichartz
estimate, see Chapter 6) to get a good decay which needs to match the error of
high-high case.



For instance, when p = 3, n = 2, J. Colliander, M. Keel, G. Staffilani, H.
Takaoka, and T. Tao [11] show

E(Iv(t)) < E(Iv(0)) + N2+,

By using time iteration and scaling, global well-posedness for H® with s >‘$ is
shown.

In this subject, we shall mainly concentrate on the derivative nonlinear Schrodinger
equation (DNLS) in one dimension

10+ Ot = 60, (Jul?u),
uw(0,2) = wup(z),

where u(t, ) is a complex valued function and § = +1 or —1. It is not necessary to
distinguish the defocusing and the focusing because we consider the suffuciently
small initial data.

In Chapter 2, we give the function spaces, several applications such as a gauge
transformation on both periodic and non-periodic cases, paraproduct method,
the functions with 27w A-periodic and several properties for rescaled functions. In
Chapter 3, we are concerned with the Fourier restriction spaces. In Chapter 4,
we discuss the Hartree type nonlinear Schrodinger equation

10w + Au 4+ M|z| 7 * |ul*)u = 0, (t,z) €[0,T) x R", (1.6)
uw(0,2) =y, (1.7)

where A € R and 7'>0. Let 0 <y <min(4,n). We show that (1.6)-(1.7) is uncon-
ditionally well-posed in C([0,T]; H*(R™)) when n > 3, 0 <s < 5 and v <2s + 2.
In Chapter 5, we study the derivative nonlinear Schrodiger equation as an un-
conditional well-posedness in energy space. In Chapter 6 we examine the global
well-posedness of the derivative nonlinear Schrodinger equation for H* with % <
s < 1.



Chapter 2

Preliminary

2.1 Basic function spaces and fundamental prop-
erties

In this section we present some well-known spaces and their properties.
Let C*°(= C*°(R™, C)) be the linear space of infinitely differentiable functions
equipped with the topology induced by the semi-norms;

Pma(f) = S;l@(l +[2%) % Dg f(2)]

is finite for all m and o = (o, ..., a,) and D is the differential operator

o 1 olal f
Tl 99t Owon
where || =a; + -+ a, > 0and m € N U{0}.

A C* function is of class S(R") if f and all its partial derivatives are rapidly
decreasing. Any functions in C3°(R™) belong to S(R™), it is a larger class of
functions. We also know that S(R") is a Frechet space and closed under dif-
ferentiation. Moreover, S(R") is closed under translations and multiplication by
complex potentials e™<.

Let 8'(R™) denote the set of all tempered distributions, the topological dual
of S(R™). We set f(g) = (f,g) for f € S'(R"), g € S(R").

Let T and T" be the linear operators from S(R™) to S(R"™) such that the
adjoint identity

[@ung@s = [ v@rya
for ¢, g € S(R™). We define
(Tf,g) = (f,T'g) for any f € S".

Here we note that in Hilbert space theory the above identity requires complex
conjugates while in distribution theory we do not take complex conjugates even
if the function is a complex valued function.

5



Let f € S(R"), we define
Fi(©) = [ e fla)ds, €€ R
then F-: S(R") — S(R™) is an isomorphism with inverse

F ) = [ e

/ffgdac:/f]:gdx
holds.

The Plancherel formula is a simple consequence of this identity. We take
f(z) = Fg(z). We have f(z) = [ g(£)e™*dé = F~'g(x) then Ff(x) = FF 'g=
g(z). Hence the identity becomes

/ l9(x)|*da = / | Fg(z)|?dz.

Now it is turn to define the Fourier transformation

and the identity

F:SR") — SR, (Ff,q)=(f,Fg)

If f is any integrable function, we could define the Fourier transform of f directly.

2.1.1 Sobolev and Besov spaces on R”

To introduce Sobolev spaces and Besov spaces we need some special systems of
functions contained in S(R™). Let ¢ € S(R™) be a real bump function with

(1 i <,
<Z>(x)—{0 if |z > 2,

where 0 < ¢(z) < land > oo _ ¢(27%) =1, ££0.
Let ¢, ¥ € S(R™) be define by

Fou(€) = o(27%¢),
F) = (1= 6(27%)f(©).

with k£ € Z. Let f € S'(R"), s € R. We shall denote two operators J°* and I°*,
both from S’'(R"™) to S'(R™) are defined by

Tf o= FHEFI) AFTf.d) = (Ff(6)°0)
rf o= FHEPF, (FIf6) = (FF,[€1°0), 0 ¢ supp F f
where (-) = (14 -]?)"/2. The operators J~* and I~* are called the Bessel and

Riesz potential of order s respectively. Then we give some simple properties of
operators J° and I°.



Lemma 2.1.1. Let f € S'(R"), 1 < p < 00, s € R. Assume that ¢ f € LP(R™),
then there exist a consant C > 0 such that

1750k = flle < C(n, )2 ||og * fllpo@n) (k> 1),
[ * flle < C(n,s)2%| ¢k * fllro@n (all k)

and if ¥ x f € LP(R™)
179 % flloe < Cn, s)lleh* fllze@ny.-

Definition 2.1.2. Let s € R, 1 < p,q < co. We define the (generalized) Sobolev
space H(R™) and the Besov space B, (R™) by

Hy = {f:feSR"),[[flluymn <o},
By, = {f:feS®R"),[fllps,®) <o}

endowed with the norms

g = N llen),
= 1
flls;, = 119 Flzogn + Q2" 6r* fllzoen)?)s
k=1

Hp(R") and B, (R") are norm linear spaces with norm || - ||z and || - |
respectively. Moreover, they are complete and therefore Banach spaces.

s
Bp,q

We denote that A; — A, is continuous embedding , i.e there is a constant C
such that

[flla, < Cllfllay, VS € Ay

Remark 2.1.3 (Dilation of Hj(R") and Bj (R")). Let s >nmax(0, ; —1). Let
f() = f(A), A > 0. Then there exist a constant C > 0 which does not depend
on X and f such that

IFO) s < CA™7 max (1, A)*[| fllzzs ).
IfF s, < CA77 max (1, A)°]|fls;,@n
for all f € H;(Rn> and f € B;q(Rn) respectively.

Theorem 2.1.4. If s; < sy and 1 < p,q < oo we have

H2(R") — H(R")
By (R") — By, (R").

Moreover, S(R") is dense in Hy(R") and B, (R") respectively.

7



Theorem 2.1.5 (Sobolev’s embedding for H:(R")). Let 1 < p < p; < o0, and
s1, 89 € R.
H;(R") — H;'(R")

if s — % =51 — pﬂl. In particular, if 1 <p < oo, and 0 < s < % then we have

pn

H3(R") — L5 (R™).

Ifp>1and s> then Hy(R") — L*(R").

Theorem 2.1.6 (Sobolev’s embedding for By ). Let 1 <p <p; < o0,1 < ¢ <
q < o0, and s, 81 € R.
By (R*) — By, (R")

p1,q1

ifs—3=s1—

Remark 2.1.7. Next we give some relation between Hj(R") and B; (R").
(i) If 1 < p <2, then B, (R") — H3(R") — B ,(R").
(ii) If 2 < p < oo, then B, ,(R") — H3(R") — B5 (R").

(i4i) In particular B ,(R") = H3(R") = H*(R").

Remark 2.1.8. Let so <s<sy. There exists a constant C > 0 such that

Iy < CU Mg ey + 151
/] < CUlAN ,@m + 171

for f € HY(R") and f € Byl (R") respectively.

q

H;O (Rn) ) 9

B;, B, (Rn))

Theorem 2.1.9. J7 is an isomorphism between Hy(R") and H;~7(R"), By (R™)
and By ?(R") respectively.

Corollary 2.1.10 (Duality). Let s € R. If 1 < p,q < o0, we have
(H;)/ — }[I;s7
(Bpa) = By
1,1 11
where;—kg—l andq—l—q, =1.

We have a several interpolations corresponding to the indices s, p, q.

8



Theorem 2.1.11 (Interpolation). Let 0<f<1. Assume sg,8,51 € R, 0 <
Do, P, P1, 90,9, 1 < 0o are satisfy the following formulas

s = (1—=20)sg+0sy,
1 1-0 0

— — + —,

p Po P1

1 B 1-86 0

q qo q1

Then, we have
(B2 o Bt e = B,

P0,90° 7T P1,91 p,q’

(Hso Hsl)[g] — H;

po?’

2.1.2 The Homogeneous Sobolev and Besov spaces

We now introduce the homogeneous Sobolev spaces H;(R”) and the homogeneous

Besov spaces B;vq(R"). The function ¢y is defined as a previous subsection.
Let s e R, 1 <p < oo. Forall feS'(R"), we define

g = || 3 F 0l Forn )
k=—o00 Lp(Rn)
if the series > po  F Y|&|*Fr * f) converges in &' to an LP function. We

note that H*(R") is a semi-normed space and || f|| ;.zny = 0 if and only if f is a
p H (R™)

polynomial.

Next, s € R and 1 < p,q < co. For all f € §'(R™), We write

By (R = < > (2%l = f||LP(R"))q> :

k=—o00

I.f]

When the norm || f|| B, ey 18 finite, we call B;yq(R”) is a homogeneous Besov

space. We again note that B; o(R") is a semi-normed space and || f| 55 o) =0
) p,q

if and only if supp f = {0}, i.e. if and only if f is a polynomial.
Furthermore, for 0 <s <1 and ¢ < oo, one defines

q 1
< dt | *
By o) ™ {/ (t sup || f(- —y) - f(')HLp(R”)) 7}
’ 0 lyl<t

and when ¢ = oo

1.f]

1B @y ~supt™sup [|f(- =) = f()llo@n).-
t>0 ly|<t

Several results of HJ(R") and B; (R") carry to the homogeneous spaces
H;(R”), B;Q(R”). For instance,



Theorem 2.1.12. If 51 <s3 and 1 < p,q < oo we have
AR o HRY)
By (RY) = By (RY).

Moreover S(R™) is dense in H;(R") and B;q(R”) respectively.

Theorem 2.1.13. J? is an isomorphism between H;(R") and H;*"(R"), B;”q(R")
and By 7 (R").
Corollary 2.1.14 (Duality). Let s € R. If 1 < p,q < oo, we have

(HyRY) = Hy"(R),

(Byo(R")) = B, (R"),

p;

1, 1 _ 1,1
where;—i-;—landq—i-q/—l.

2.1.3 Strichartz’s estimates

In this section we present the Strichartz’s estimates which are useful to study the

nonlinear Schrédinger equation in the fractional order Sobolev spaces H*(R™).

The estimates are introduced by Strichartz [36] as a Fourier restriction theorem.
Let consider the nonlinear Schrodinger equation

iug + Au = F(u)

u(0,z) = wup(x)

satisfy the solution u(t) = U(t)uy when F(u) = 0.
itA

It is known that the free Schrodinger evolution operator U(t) = e
tary over L? but not stable on L? spaces. We now start with dispersive inequality.

1S a uni-

Proposition 2.1.15. If p € [2,00] and t # 0, then U(t) maps from L" (R")
continuous to LP(R™);

_n(i_1
1T (t)uo | Loy < (4mlt)) ™™ 275 ug | ot ) (2.1)

for all ug € LP' (R™).

This decay estimate is useful for the long time theory of nonlinear Schrodinger
equations, when the dimension n is large and the initial data uy has good inte-
grability properties. But in many situations, the initial data is assumed in L?
based Sobolev spaces such as H(R™). For that direction, Strichartz estimates are
introduced by combining the dispersive estimates with some duality arguments.

We continue with the notion of admissible pair.

10



Definition 2.1.16. We say that the exponent pair (q,r) is admissible if

where
2<r<

N
2<r<oifN=1 2<r<o0tfN=2).
2

Proposition 2.1.17 (Strichartz’s estimates). If n > 1, s € R, (p,q) and (p,q)
are admissible and %—I—% =1, 7%—1—? =1, then we have the homogeneous Strichartz
estimate

U ()uol| a(Lrymniry < C(n, q,7)|uol| 2 (mn), (2.2)

the dual homogeneous Strichartz estimate

t
|[v@rea] < cod g 23)
0 L2(Rn)
and the inhomogeneous Strichartz estimate
t
|[ vt 9ras < Conand Il gy 2
0 LiLy(Rn+1)

or all test function ug, F on R™, R"™! respectively, for all t > 0.
Y

We notice that Strichartz’s estimates fail in a bounded domain 2 C R™.

2.2 Paraproduct method

In this section, we study the product of two functions with paraproduct method.
This method is easier to estimate when the derivatives are involved because they
identify which of the factor is high frequency and which is low frequency.

We begin with the definition of Fourier multipliers. It is an important concept
of paraproduct method. For k, k; € Z, we define the Fourier multipliers

Poef(€) = FHoRTOFO),
PO = F1-02Of©)
Pf(€) = FH{(o(27%) — 027" f(©)},
where the smooth function ¢y, is defined in Subsection 2.1.1. Hence P<y, Py, Py

are smoothed out projections to the region |£] < 2% |£] > 2%, |¢| ~ 2% respectively.
By the Littlewood-Paley decomposition, we have

f=> P
k

11



In addition we shall use

Pepf =Y Puf; Paf =D Puf; =) Pulf

k1<k k1>k k1
for all f € &' with dyadic numbers 2%t

We write the LP norm by using the Littlewood-Paley inequality

1Sl oy ~ (Z |Pk:f|2) ,

+=0 Le(R™)

where 1 < p < co. Similarly, by Plancherel theorem, we have

Hs(Rn) ™ (Z 22ksl|Pkf||%2(R“)>

k>0

[N

1f1

and

1
2
1 s ®ny ~ [ P<o fllz2(rm) + (Z 2%5”Pkf”%2a&”)> :

k>0

We often use the Bernstein inequalities for R™ with s > 0. It is useful to
estimate when the frequency is localized. Applying the Bernstein inequality on
the low and median frequency to improve low Lebesgue integrability to high
Lebesgue integrability is the best . It can be seen in Chapter 4 (Lemma 4.2.1
and Lemma 4.2.3).

Lemma 2.2.1. Assume s > 0, 1 < p < g < 00. Then the following inequalities
hold:

(i) [|Pocfllrz@ny S Cp,s,1)2 |||V [* Porf || 12wy
(i) | P<k|VI*fllz@wny S C(0, 5,1)2% || P<r f1l 12 (rn)
(iii) || Pe|V[= fll iz ny S Cp, 5,1)25 || Pof || 12 ey
(i) |Peiflageny S C(p,q,m)2™ ™0 | Perf o),

nk(l_1
(0) |1Pof oy S Cp, g, n)2" 5™ | Pof|| o).

Lemma 2.2.2. For all 1 < p < 00, the following inequality holds

(Z Pkfﬁ)é < (Z fﬁ)é

k>0 k>0

LP(Rm) LP(Rm)

12



This lemma is useful when we want the projection P<j and Py to throw away.
See [42] (Lecture notes 3).

Proposition 2.2.3. If s > 0, then we have

[ f9llmsmny < C(s,n)|lf]
forall f,g € Hy(R") N L>(R"). In particular, if s > =, we see that Hy space is
closed under multiplication, 1.e.

1f9ll iz )y < C(s,m)]|f] Hj(R™) (2.6)

Proof. Fix p = 2. The case where s = 0 is trivial. For s > 0. By Littlewood-Paley
decomposition, we write

@)1 gl oo ®ny + 1 | s ey 191l oo ) (2.5)

H3(®)||9]

3
1 fgllms@ny ~ (| P<o(f )| L2 () + (Z Q%SHPk(fg)H%Q(Rn)) : (2.7)

k>0

We consider

Pi(fg)= Y Be((Puf)(Pwg)) (2.8)
K k' €z
It is clear that Py f has Fourier support in 2¢~1 < [¢] < 2¥*! and P g has

Fourier support in 2F 1 < [¢] < 2¥ +! so that P.((Pw f)(Pyg) has Fourier
support in the sum of these two annuli. This sum needs to intersect the annulus
2k=1 < |¢] < 21 If k' <k — 5 then the sum vanishes unless k& — 3 <k <k + 3.
Similarly if & < k —5 then the sum vanishes unless k—3 <k’ <k+3. If k' >k—5
then the sum vanishes unless k¥ — 3 <k” <k’ + 3, then

Pi(fg) = Pul(P<i—sf) (Pi-s<<k+39) + ((Pros<<iysf)(P<k—s59))

+ ((Pe-s<<kis0)(Pes<<ers)) + | D (Puf)(Pyrg) |-

Kk >k+5
Ik |<3

The first term of (2.7) is clear for s > % because

1P<o(f9) |2y S NF9llc2@my S M F 2@ llgll o @ny S 11| zzs ey ll ] Hs(Rn)(, |
2.9
by Holder and Sobolev embedding. For the second term of (2.7), we first consider

the low-high frequency interaction

N

(Z 12" P[(Pes—sf)(Pr-s<-<ks3 9)] ‘2> (2.10)
k>0 L&)

1
2

S (Z |2 (Pek—s ) (Pa-sz.<hrs 9>}2>

k>0 L2(&")

13



by Lemma 2.2.2.
If |Peg—sf(z)] < M(f), (2.10) is bounded by

|9l e

M () zow ey (Z 2% (Pi-s< <kt 9)\2> S /]

k>0 12

where M (f)(x) is the Hardy-Littlewood maximal operator with the ball B cen-
tered at x and the radius r, that is

M@ =sp g [ 1wy

Hence we have to show |P<;_5f(x)| < M(f). We start with

Pasl @] = ol [ 001+ g

- | / F)2" D F@5( — )y
/ F@I2*( + 28z — y)) 1"y

nk d nkeo—100n;j d
2 /B(wk)lf(yﬂ v+ 22 / |/ (y)Idy

J>0 B($,27k+j)

S Mf(z)+) 2927 M () S Mf(x).

§>0

AN

AN

The proof of high-low and low-low frequencies interaction are same as above. We
remain to consider the high-high interaction;

DUIZFRC Y (Pef)(Peg))l : (2.11)

k>0 K k" >k+5
Ik —k" <3 L2(R?)

Let ¥ =k +a, k" =k +b. (2.11) becomes

D 2P Y (Pera)(Prsag)) : (2.12)

k>0 a,b>5
|a—b|<3 L2(R")

It is difficult to handle both high-high frequencies interaction simultaneously,
hence we use the triangle inequality to isolate the contribution of individual a

14



and b, then

la—b/<3
k>0

Z a,b>5 H (Z |25kpk((Pk+af) (Pk—&-bg))‘Q)

L2(R")
S D)0 IMEOQ 12 (Pars 9)17)2 2y

a,b>5 k>0
la—b|<3

S D IM el Q12 (Pess 9)P)2 [l 22y

a,b>5 k>0
la—bl<3

if [Pryaf(2)] S M(f).
We can estimate that

O R (P 92 = O 2722t (B, g)P)2

k>0 k>0

< 27 (Z |2 (P g)IZ)

k>0

N

Then (2.12) becomes

D12 Y (Pera)(Prisg) S D 27 e llgl e

k>0 a,b>5 a,b>5
la—b|<3 L2(Rn) la—b[<3

The proof is completed. O

t= m Then there exists a constant C' > 0 such that for all f,g € H;’(R”)

Proposition 2.2.4. [35] Let s > 0, 1 <p < o0, s < % and ; — % < 5. Let

1/ 9lliz; ey < ClIS]

H;(Rn)||g| H3 (R (2.13)

2.3 Gauge transformation

In this section we discuss the gauge transformation for non periodic and periodic
cases. It is known that for the Schrodinger equation with power nonlinearity,
the nonlinearity is controlled by LP — L% (Strichartz’s estimate) estimate but
the derivative nonlinear Schrodinger equations (DNLS) has loss of derivative in
nonlinearity. It seems unlikely that LP — L9 estimate is helpful as in the power
nonlinearity case. To overcome this difficulty N. Hayashi and T. Ozawa [24], [25]
introduce for non-periodic and S. Herr [26] adjusts for periodic case to derive
from the derivative nonlinearity to some new nonlinearity. It is one way to avoid
the loss of derivative in the nonlinearity among the several ways.

15



2.3.1 Non-periodic case

Definition 2.3.1. Let G be the nonlinear map from L*(R) to L*(R) by
Gf(x) = e VWP £ (1),

The inverse transform of f is given by
G~ f(x) = &7 1O ),

Proposition 2.3.2. The gauge transformation is a bi-continuous operator from
H' to H'.

Proof. For any f,g € H' and 0 < # < 1. By mean value theorem

Gf(x) = Gglw) = e =lWR(f(2) — g(x))

yi ( [ latwras- [ !f(y)\zdy) 9(2)

a e (00 [ 1rwpas+ -0 [ty ) as

Taking L? norm on both sides and applying the Holder inequality, we have

CIf = gllzz + IF1* = 1gPllzellgll 22

1Gf = Ggll> <
< COlf =gl + IF1I7> + llgllZ2)-

Again we consider the derivative of gauge transform,

10:(Gf =G99l < Cloe(f = 9)llzz + 1f — gllr2
< {0292 + 1fll2 + lgllzz + (1 fllze + llgllz2)"}-

Then we get
1Gf = Gallm < CIIf — gl

Similarly, we can prove the inverse of gauge transformation. O]

2.3.2 Periodic case

We now discuss the gauge transformation for the periodic setting which is ad-
justed by S. Herr [26]. Before we give definition, we start with some proposition.

Proposition 2.3.3. Let T'>0, s > 0. Then the following translations are con-
tinuous.

T:Rx C([-T,T], H*(T)) — C([-T,T], H*(T)), 7(h,u)(t, ) = u(t, z + ht).

Proof. See [26]. O
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Proposition 2.3.4. Let v € C([-T,T],L*(T)), define pu(u) = 5=[u(0 )HLQ(T
Then, for any s > 0, the following translations are homeomorphisms.

TR x C([-T,7),H*(T)) — C([-T,T), H*(T)),u — 7(F2u(u), u).

Definition 2.3.5. Let f(x) be a 27- periodic function. We define the gauge
transformation such that G(f) : L*(T) — L*(T) by

G(f)(x) = e f(x) (2.14)
where J(u)(x) := 2= [Z7 7 Ju(y)? — & ||ul|2.dydd .

We have seen that Jf(z) is a 2r periodic function since |f(y)|* — 5=/ f(¢)||32
is zero mean value function. Hence G f(z) is also 27 periodic function.

Proposition 2.3.6. [26] For s > 0, r >0 and there exists ¢ >0 such that

u,v € By = {u e C([=T,T], H*(T))| sup [u(®)llzzs(my < 7}
t<T
the map G is locally Lipschitz from H*(T) to H*(T), i.e.,
1G(u)(t) = G(@) Dl a5 (xy < Nult) = v(®lasr), ¢ € [=T,7T] (2.15)

The inverse map '
GH(f) =D f(x)
and G also satisfies (2.15) on B,., hence G is bi-Lipschitz on bounded subsets.

Proof. First, we consider the plus sign

??‘
H

. . , =1 . 1
(D) — @) = i Z P N (iJ(g)Ft7. (2.16)

k=1

<.
Il
o

We fix for s > % Then we take the H*® norm on both sides, left hand side becomes

00 k—1
1 e
A — Zk—z (c|lJ(f N (2.17)
k=1 7=0

(el (9l m

HS
We note that
=
Eliozly Z (cllJ(f
7=0

We note that ||| f|?|
ding. Then

T (el () m)" " < cecl?Dllustell(9)lle (2.18)

o S ellFP . < ellfIP 2. < ell I by Sobolev embed-

1Tz < WPl + 1172 < 11 (2.19)
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choosing € < 2s. Similarly

17(f) = (@)l s < (Il £
Then combining (2.16)-(2.20),

ws + gl = gll s (2.20)

H(e”(f) _ e”(g))hHHs < Cecllfll%,s+6|lg\\%s(

[fllas) + Nlgllasllf = gllasl|Bl|as. (2.21)

For s = 0, it can be proved that

(e — DR < ||V — e[ ||h] 12
< [JJ(f) = J(9)llz==P] 22
< 201 fllzz + Nlglle2) L f = glle2l|hll 22

Similarly, we can prove minus sign. O

2.4 Scaling and 27 \-periodic functions

In this section, we prepare for Chapter 6, for the proof of global well-posedness
in periodic setting. Let u(t,x) be a large spacial periodic on R x R/27\Z. We
recall that the Cauchy problem (1.1)-(1.2) is L? invariant under scaling (¢, ) —
A"12({5,%). Hence u(t, z) solve (1.1)-(1.2) on R x R/27\Z then

WMt z) = A 2u(—, 5)

>R

t
ﬁa
is a solution of (1.1)-(1.2).

We recall the Fourier transform of spacial periodic with a large period .
Define (d€), to be the renormalized measure on Z/\:

[a@@en =5 ¥ a©
€€/

(d€), is the counting measure when A\ = 1 and weakly converge to the Lebesgue
measure when A — oo.
For a 2w A-periodic function f, we define the Lebesgue measure of its function

1/p
1fllog = ( / . |f|de)

for 1 < p < oo (usual modification, if p = oo). The spatial Fourier transform is
defined as

F(I)(E) = / T, Ve € T

and the transformation is inverted by
fla) = [ =< i(e)iaeh.

18



When we consider 07, m € Z, we may doing Fourier inverse transform

o f(a) = [ e5(ie)" () de)
Moreover, the following properties hold for large period:
(1) [1fllzz = [f1lz2cagrns

(1) Jrjomnz f(@)g(x)dz = [ f(x)g(x)dz,

(iii) fg(&) = F\G() = [ F(€1)g(€ — &)(dEr)a.

2.5 Notes and references

In this chapter we present the well-known properties of function spaces and some
notion which can be found in several text books.

For Section 2.1, we refer to the text books of T. Cazenave [6] (Chapter 1-2),
J. Bergh -J. Lofstrom [1] (Chapter 6) , T. Runst - W. Sickel [35] (Chapter 2-
3) and R. Strichartz [37]. In Subsection 2.1.3, Strichartz estimate is introduced
by R. Strichartz [36] as a Fourier restriction theorem. The end point Strichartz
estimates are created by M. Keel and T. Tao [29]. The application of Strichartz
estimates can be seen in several papers, for instance T. Kato [28], J. Ginibre and
G. Velo [17], G. Furioli and E. Terraneo [14] etc. See also T. Tao [41] (Chapter
2, Section 2.3).

In Section 2.2, we present the paraproduct method which is based on T. Tao
[41] (Chapter A, Lemma A.8) and his Lecture notes (Math 254A (Time-frequency
analysis)), T. Runst and W. Sickel [35] (Chapter 4, Section 4.4.4, Theorem 1). In
Sectin 2.3 we discuss the gauge transformation for both periodic and non-periodic
cases and we refer to some papers such as N. Hayashi and T. Ozawa [24], [25],
[34] for non-periodic and S. Herr [26] for periodic. For Section 2.4 we consult the
papers of J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao [10], [12],
D. De Silva, Natasa Pavlovié, G. Staffilani and N. Tzirakis [13] and L. Molinet
33].
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Chapter 3

The Fourier restriction space

In this chapter, we define the two parameter family spaces which come from the
linear dispersive equations associated to the space time Fourier transform. We
study the some fundamental properties of Fourier restriction space with respect
to the Schrodinger equation of both periodic and non-periodic cases and it will
be applied in Chapter 5 and 6.

3.1 Definitions and fundamental properties

Let h(§) : R — R be a phase function corresponding to the dispersive linear
equation
Oyu = L, up(0, ) = ug

where L. = ih(A/i). U(t) denote the group of unitary opertor
FoU(t)uo(€) = e MO F ().

The space-time Fourier transform of solution u will be supported in the region
{(1,€); 7+ h(§) = 0}. We can localize the solution in time, assume that u(t,z) =
n(t)U(t)ug(x) where n € Cg° with 0 <n < 1. n(t) =1 on |t| < 1, n(t) = 0 on
|t| > 2. Then
Fu(r,§) = (T — h(§)) Fauo(§)-

We see that the Fourier transform of nu will be focus in the region of {(7,&); 7+
h(§) = O(1)}.
Example 3.1.1 (The free Schrodinger equation). Consider

Ou —1Au =0
with h(€) = ~€,n =1, h(€) = —|¢%n € N
Example 3.1.2 (The Airy equation). Consider

Oyu + 8271 =0

with h(€) = &,n = 1.
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Definition 3.1.3 (For R). Let h : R — R be a continuous function. Fors,b € R.
Let X 3(R xR) be the closure of the Schwartz functions S; (R x R™) under norm

lll gz = I4E)*(7 = (D@7, €) 22y

Definition 3.1.4 (For T). Let s,b € R. Let X;,(R x T) be the closure of the
Schwartz functions S; (R x T) with

Xs,b = {U - S,(R X T) : U(t,x + 27T) = U(t,l’), ||U|

under norm

Xs,b < +OO}

HUHX;fh(k) = [|{k)* (T — h(k»ba(ﬂ k)HLng(RxT)-

We call X;Zh(g) is Fourier restriction spaces, Bourgain spaces or dispersive
Sobolev spaces. For any time interval I, we define the restricted space X, (1 x T)
(Xsp(I x R)) by

[l

X, p(IXT) = inf{||1]|

X, »®xT) : UlrxT = u}.

Remark 3.1.5. When b = 0, the dispersion relation T h(§) is irrelevant,

X0 space represent L?HS. When h(£) = 0 (h(k) = 0), X;;h(g) space is simply
represented the product space HY @ HE.

Remark 3.1.6. There are some fundamental properties of the space X;;h(g).

(i) XST;h(&) = X, Xoo = LIL; (same norms),
(i1) ||ﬁ||X;:—h(—§) = ||u||X;§h<5) (complex conjugation),
(iii) (X;"9) = X757309 (duality),

() Xy by = Xogpy if S1 > 82, by > by (trivial embedding),

(V) (Xsyp1> Xsape)jo) = Xsp if 0 <0 <1, 5,51,52,0,b1,b2 € R (interpolation,).

Remark 3.1.7 (Sobolev embedding). We have the following well-known embed-
ding,

(i) if 2<p<oo, b>3— 2 ullppny < Cllu|

Xs b7

s25— g llullpprs < Cllu|

Xop < Cllullpmg,

Xsbr
(iii) if 1<p<2, b<i—1 ul

for some constant C' > 0.
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We consider the relation between X, norms and the Schrodinger evolution
operator U(t), t € R. Define H;j space under norm

1£ 11, = 1) () F (€, Tl 2z
Since
UM f(&T) = / ¢TI e HE £ T dardt
= fleT+8),
we see that
U=l = 1 MU )2z
= KT+ FE 2
= [fllx..-
Lemma 3.1.8. Let s € R. Let Y be a Banach space of on R x R™ with
e e flly S N1 fllrs ) (3.1)

for all f € H*(R"), 7 € R. Then we have

[ully < flullx, ,
for b> %
Proof. Set f = F;(e""%==y). We can write

u(t) = e my ()

= et / e Fy (e "0y (T)dr

= c / e T £ (1) dr.

Take Y norm, using (3.1) and the Minkowski inequality

lully < / 1F() sl

< (/ <¢>2b||f|%{;d7)é.

Consequently, we apply to Y = Cy(R, H?), then we get the embedding X, —

C(R, H?) for all b> % We use only b = % on both periodic and non-periodic case,

the other space is needed to ensure the embedding of C(R, H?).

O

22



Definition 3.1.9. We define the function space Yy, which is slightly smaller than
X1 and it is the closure of the Schwartz function space Si2(R x R) under the

s
norm

lully, , = I1€6)*(T + &%) ttll pa 2 (3-2)

For any time interval I, we define the restricted space Y;;,(I X T) (Y; (L X R))
by

lully, yrxm) == inf{||@ly, ,&xT) © U131 = u}.

Let Z,} be the space with Z, := Xs,% N Y; o under norm

lullz, = llullx,, +llully.o. (3.3)

Similarly, we define the restricted space of Z; for any time interval I such that

||| z,(rxTy := inf{|| @] z,®xT) : UlrxT = U}

Moreover, we have the embedding for any s € R

ullo s (my) < cllul|zs.

We note that X, space is an invariant under time localization.

Lemma 3.1.10. Let s,b € R, u € S(R x R). Let n(t) be a Schwartz function in
time. Then
In()ullx,, < C,b)|ullx,,-

Furthermore, —% <V <b< %, then

In(¢/T)ullx,,, < C(.b,0)T ™ |fullx, .-

’b/ p—

Proof. 1t is clear that

ln(t/T)ul

X,y = U0/ T)ulln,,
S @/ D) gy 1U(=t)ullm
S Tb_b/Hu| Xs,b'
[
We will often use the following well-known lemma; see [15], Lemma 4.2.
Lemma 3.1.11. Let 0 < a < b such that a + b > % Then
Jw=s =t Py 5 (s - ty2e (3.4
R

either a or b is less then %
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3.2 Linear estimates
Let u(t) = U(t)uo be the solution of free Schrodinger equation
Ot = 10,1,
for all ¢ € [0, 7]. We have the usual Strichartz estimate
1U()uoll Loy < clluollrz, (3.5)

where (g, r) is the admissible pair. It can be adopted by Bourgain space setting
as follows

lull g, < cllullx (3.6)

0,%4—5

for any € > 0. More precisely, we have ||u|[f~ < ||@]/z: and the right hand side of
(3.5) becomes

[UU(=t)uol|perz < [[F(U(=t)uo)llz1rz

_1_ ESION
= I{m27 ()2l — €,z
S HUHXO’%“'

Here we shall discuss the bilinear estimates in large periodic setting. The first
lemma is for L* Strichartz estimate which is improved by J. Bourgain [2]. See
also A. Griinrock [18] for alternative method.

Lemma 3.2.1 (Large periodic case). [18] If uy = uy(x,t) and ug = us(x,t) are
27\ periodic which frequencies are supported on {& : |&1] ~ N1} and {& 1 & ~
N} with Ny ~ Ny respectively, then

lwruell 22 S Nl llx vzl xo.,» (3.7)
where b > g.

Proof. We have
uny = (&) (n + &)’ (n, &)

X,,- By the Plancherel theorem, for A >1, it is sufficient

and [y, 223 =
to show that

UNIUNQdTl
2 / (i + &) —n+ (- &)%)

5162/)\ L%Lg
1
d 2
T1
S (TE)SGII}REZ/A Z / <Tl + €%>2b<7— — 71+ (f - 51)2>2b HUNI HL?L%HUNZHL%L%'

E1€EZL/N

24



We denote

S(r,§) = sup
(T,€)ERXZ/ A

dT1
2 / (m+&)*(r—n+E-&)H*

E1EL/N

and we have to show that S(7,¢&) < 1.
By Lemma 4.2 of [15], we see that

S(ré) S sup Y (r—&-(E-&))"

(1,£)ERXZ/ A €167/

By [18], let k = & — &, € = & + &, hence k+ & = 2§, k — £ = —2&. Then
S(7,&) becomes

S(r,§) S sup (4r +2(82 + k%)Y
(r&)ERXT/A o7

S osup Y (R r4g)tt
(1,6)ERXZ/A kEZ/2

We take 27 + &2 = a2, if |k — xo| <1 or |k + xo| < 1, the number of k is at most
4. On the other cases, by Cauchy-Schwarz inequality,

2

S(r,é) < 1+ Z (k — $0>2(1—4b) Z (k + x0>2(1—4b)

keZ/\ kEZ/ N
1
< 14 =

with b>%. O

[ SIS

Now it is turn to discuss the refinement of Strichartz estimate. It is very
useful to get a good decay in improvement of global well-posedness.

Proposition 3.2.2 (The refinement of Strichartz estimate). [13] Let ¢; and o
be 2w A-periodic functions which frequnecies are supported on {& : |&1| ~ N1} and
{& : |&| ~ No} with Ny > Ny respectively. Then

(&) (U 1)n(@) (Ux()e2)l 2z, S CA Ni)llenl ez [0zl 22 (3.8)
1 if Ny <1,
C(A.Ny) = { (3 + Lys if Ny > 1

Moreover, even if Ny ~ N, the estimate (3.8) holds when & and & have same
sign.
It is see that

lereallzz, S CON)[enllx, , lleellx, , - (3.9)
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Proof. Let 1 = 1) be a positive even Schwartz function. We rewrite the left hand
side of (3.8) by Plancherel,

H / / Br(€) P& — E)(ry — E)da(dE |2 -
E=61+E& Jr=m1+12 &

We estimate the 77 integration by

(3.10)

/ b(r — E)(r — E)dihy = (7 — € — )

with ¢ also Schwartz function. Substituting this into (3.10) and using Cauchy-
Schwarz, we get

I (=& - h [ 9tr - & - Do PISEP [ Iz,
S MH%HL%H%HL%

by integrating in 7 on ¢, using Fubini’s theorem over &, & and then Plancherel
with

M—| / U — &~ E)(d) e

We estimate M as follows:

N[

1
M < (Xsupﬂg#S)

where S = {& € }Z: |G| ~ Ny, |€ — &| ~ No, €2 = 26(6 — &) = 7+ O(1)} and

#S denote the number of elements of S. When N < 1, then #S < O(A) which
implies C'(A\, N7) < 1. When N >1 rename & = z. Then

1
S={z¢ XZ: |z| ~ N1, |€ — 2] ~ Ny, €2 — 22(€ — 2) =7+ O(1))}.
Let zy be an element of S, i.e

|20 ~ N1, [€ = 20| ~ Na; £ = 220(€ — 20) = 7+ O(1). (3.11)

We shall count the number of z's € %Z such that zy + z € S to obtain the upper
bound of #S5. Then

|20 + 2| ~ N, |20 + 2 = €] ~ Naj €2 = 2(20 + 2)° = 2(20 + 2)€ = 7+ O(1). (3.12)
We rewrite the left hand side of (3.12) as

€2 4222 + 272 + 427 — 2206 — 226 = 7 + O(1) 4 222 + 4207 — 23
by using (3.11). Since (3.10)-(3.11),
1zl =1[(Z+ 20+ &) — (20 = §| S N2 < N1 (3.13)
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On the other hand, by (3.8), we have |z, — g\ ~ Nj. Hence it is sufficient to count
z's € L7 satisfying (3.11) and such that 22 + 22(2 — §) =)(1) where 2, satisfies
(3.10). Then

2z 4220 - 5)) = O()
o) _  Z
‘ ’ y 2 €7
N, A
this implies
A
S<1+—.
#5144
Hence M < (& + 1)2. O
Remark 3.2.3. We interpolate between (3.7) and (3.8), then
lwrwsl|zzre S COL N llnllx, , lusllx, - (3.14)

Let us consider the inhomogeneous Schrédinger equation

i0yu + Oyt + F(u) = 0, (3.15)
u(0, ) = ug(x). (3.16)

Then the solution u(t) of (3.15)-(3.16) satisfy the Duhamel formula
t
mw:U@w—@/Uu—wamﬂ (3.17)
0

Lemma 3.2.4. Let ug € H*(R) for some s € R. Then for any Schwartz time
cut off function n(t) € S(R) we have

(U (uollx., S Cn,0)||uol

Proof. We have

lullx,, = [IU(=t)ull s, (3.18)

and X is stable with respect to time localisation then
In(O)U)uollx,, < Cn0)|U)uol x,, = C(n,b)||uol| - (3.19)
O

Next we consider that the convolution part of (3.17) is estimated by X, norm

(U * F)llx,, < ClFllx,

where % is convolution in time and it is equivalent to

ILE | s < C||F)
with the same constant C, and Xy, and H*"Y is the dual of Xp and H*b
respectively. The operator L is defined by

@m:[nmw

Hs/,b’
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Lemma 3.2.5. Let s € R and the following estimates are hold.

(1) IILFIIHt% S IIFIIH;% + Jirprsd TP E(T)dr,

(i) (U * F)|[x

S I1Fx

1 1
s, 5 5,77

@ (r - @) Pulr ganae )

where ﬁr(r, &) =x{|r—&&T > 1}]/5(7, £).

Proof. We first prove (i). There exists a positive constant C', we define

t o0 ez‘tT -1~
/ F(tdt' = C / " F(r)dr (3.20)
0 — o0 1T

and we split /' = F; + F_ where

Fir) = Fo(riT 2 1),
(r) = F(AT < D).

Then (3.20) becomes
t
sz/ F(hdt =1+ 1I1I+1II
0

where

I = P (By(r)in)™),
1T = —y¢p / By,

The first contribution is bounded by

EF( W)*EU (el 1dT)

We apply the Young inequality,

Mz 5 g [t o], | (/ f—(7>\r|’“—1d7)

since the support of 7, hence the first norm is estimated by 7%. The second norm
is bounded by

1

~ 2

[Tr-@lrttar s w410, (o)
B2\ Jirr<1

< THF),

o0

1], S D |[¢r

k=1

12

l\J\»—A

Y

2 L
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Combining them, the first contribution is bounded by

1] I -3 (3.21)

i S
When we apply the H 2 norm on I, we see that
i1,y = [[0F Fer s mE D]

< it s B an) | + |[dr = (0 Fumn)

12

By using the Young inequality,

N 1 = — N 15 —

[zl 2o |F (D)7~ 2z + [z llea | (7) 2 e (7)|7] 7| 22
S _1 1 441

(sup (|7[7H2)T72 + sup |7]27R)|F|, s

Ir|>T—1 Ir[=T—1

17l - (3.22)

111

AR A

N

We apply the H 2 norm on I1I and by using the Young inequality, we get
111,y S rly [ 17 B

< / 7|~ B (r)dr. (3.23)
|TIT>1
Combining Hz norm of I, IT and III, we get

LE , <IFIL. +/ 7|~ B(r)dr.
ILE] 1 S IFI - e
Fix ¢ and multiplying each by (£)?* and taking the L? norm over £&. We obtain

oot + { Jrer /| . |T|-1ﬁ<f>df>2d5}%. (3.24)

Substitute U(—t)f for f , then we get (ii). O

10U * F|

S IF]

.1
H>2

3.3 Notes and references

The Fourier restriction norm space of Schrodinger equation is introduced by J.
Bourgain [2], he also concern for KAV equation. T. Tao [41] (Chapter 2, Section
2.3) is mostly support for this chapter. The refinement of Strichartz estmate for
periodic Schrodinger equation is from the paper of D. De Silva, N. Pavlovié¢, G.
Staffilani and N. Tzirakis [13], and for the case of periodic KdV equation can be
found in the paper of J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T.
Tao [10]. We also refer to J. Ginibre, Y. Tsutsumi and G. Velo [15], A. Griinrock
[21] for this chapter.
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Chapter 4

Unconditional well-posedness of
Hartree NLS

4.1 Introduction

In this chapter we study the Hartree nonlinear Schrédinger equation

—~
e
—

i0u+ Au+ M|z * [ul)u = 0, (t,2) €[0,T) xR,
u(0,2) = wuy, (4.2)

where A € R and 7> 0. Let 0 <y <min(4,n) and s > 0.

Our aim is to prove the unconditional well-posedness in C([0, T; H*(R™)) for
0 < s < 5. The proof is based on the paraproduct method and the end point
Strichartz estimates.

The concept of unconditional well-posedness of Schrodinger equation is intro-
duced by T. Kato [28] and he proves for power nonlinearity by using Strichartz
estimates and Sobolev embedding. More precisely, we consider the following
equation,

0+ Au+ |u/*v = 0, (t,x)€[0,T) xR", (4.3)
u(0,z) = wo(z) € H*(R"), (4.4)

where a > 0. We first recall Kato’s result. Let s > 0. If the following cases
satisfy

(i) s >3,
(i) n>2,0<s<2%and o < min(2, 242),
(iii) n=1,0<s <5 and a < £32,

then (4.3) - (4.4) is unconditional well-posedness in C'([0,7"); H*(R™)). He proves
the solution of (4.3) - (4.4) is unique in L>((0,T); L*(R™)) N L>=((0,T); LP(R™)).
Then the result is followed by Sobolev embedding with H*(R™) C LP(R™). This
result was improved by G. Furioli and E. Terraneo [14] for low dimensional case.
They show that if the following cases satisfy
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n+2 2s

— and

(i)

(ii) 3<n<5,1<a<min{2 02 241

n—2s’ n—2s’ n—2s

(4.3) - (4.4) is unconditional well-posedness in C/([0, T'); H*(R")). They prove the

solution is unique in L>((0,7); B; o(R™)) for o < 0. Their proof is based on the

end point Strichartz estimate, the paraproduct technique and Sobolev embedding

H*(R™) C B"2(R”) We use the same idea as in [14] on Hartree nonlinearity.
Our main theorem is as follows:

Theorem 4.1.1. Letn >3, 0<s<2, y<2s+2 and u,v € C([0,T]; H*(R"))
be two solutions of (4.1)-(4.2) with the same initial data ug € H*(R™), Then the
solution is unique for all t € [0,T).

This chapter is organized as follows. Section 4.2 contain the proof of several
estimates, some are based on the paraproduct method with Besov spaces. In
Section 4.3 we give the uniqueness result of our main theorem.

4.2 Lemmas

In this section, we prepare for the argument of uniqueness theorem. We start
with the following lemma.

Lemma 4.2.1. Let u € H® with 0 < s < 5. There exist o, p such thats—%:

o — o and we assume that s + o > 0, a<0 and s > o > s —1. [fweB“2 then
the followmg estimates hold.

(i) 1wl g < Ml
t

(id) Jluw] g, < lul

_ n
7. Where t = AT

. 1 _ 1 n—2s
w||B;2 where = & + 5=

Proof. By Proposition 2.2.4, we see that (i) is clear. Now we prove (ii) by para-
product method. We may write the product of ww by Littlewood-Paley decom-

position,
Pr(uw) = Xy o 5. Pr((Prorw) (Brw)).

It says that Pyu has Fourier support in 25~ < |¢| < 28+! and P,»w has Fourier

support in k-1 < €| < 2K"+1 g0 that Py ((Pyu)(Pyw) has Fourier support in
the sum of these two annuli. This sum needs to intersect the annulus 21 <
€| < 281 If &’ < k —2 then the sum vanishes unless k — 1 <k” < k+ 1. Similarly
if £" <k — 2 then the sum vanishes unless k — 1 <k’ <k + 1. If ¥ >k — 2 then
the sum vanishes unless ¥ — 1 <k” <k’ + 1, then

Pk(uw) = Pk(PSk_Qquw) + Pk(PkUPSk_gw) (45)

+Pk Z Pk/quuw

k/,k">k+1
& k" | <2
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We consider the first term of (4.5). We take the L¢ norm on both sides and apply
Holder’s inequality,

| Pi(Pek—auPiw)lle S (| Pas—2ull 2| Pew|| o

n—2s

where % = % + 222 Product by 2% and then we take {* norm on both sides,
then

{2 Pe(Per—uPiw) ot S 1Pek-zull | 2o {2 || Powllze}ee  (4.6)
S lullgsllwls,

by Sobolev embedding. Similarly, we can prove the second term of (4.5), we have

[ Pr(Pek—awPyeu)||e S | P<g—aw]| o || Prull

2n_ ,
L n—2s

product by 2 and then we take the [?> norm on both sides, then

n—2s

{25 Pe(Peg—w.Prw)llzate S {25772 || Pagw] oo Y| Pt 2o, (4.7)
Here, 2/F=7l7 ¢ ' since o <0

{2F917297| Py _sw|| o }e S Z {27 Pywl o} S HgHBZﬂ‘

J<k—2

It follows that we get the desired estimate.
Finally, we consider the third term of (4.5) using the triangle inequality and
Bernstein inequality with % < % + % with p > 2, then

Pk E Pk:qu//w = Pk E Pk+aqu+bw
k’,k”>k+2 a,b>2
Ik =k |<1 La b=t Le
1 _mn-—2s
< > 2T P quPepyw|| 2
Lp+2
a,b>2
la—b[<1
ks
< Y 2% Peyaulle2 || Pesow] oo
a,b>2
la—b|<1

Product by 2* and then we apply the /2 norm on both sides, then

2kg Pk Z Pk/qu//w 5 2_Sa2_gb||u|

kK >k42
1
Ik k" |<1 ral 2

s w”f’;g2

ST R 7 P

for a ~ b. Then we get the desired estimate since s + o > 0.
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Next we have to prove the following lemma.

Lemma 4.2.2. We put 0 < v < min(4,n). Let 0 <0 < s. Let 2s <~ for (i)
and 2s —o < 7y for (ii). Ifu € H*(R™) and w € B"Q, then the following estimates
hold.

() Ml s JulPllgs, < Nl

y—s

(i) [l wull g,

< ||lwl| 2
< Nl

Proof. We first prove (i). Let u € H*, by Lemma 4.2.1’s (i) we have that u? €
H*w . We put f = |uf? and ), = P(27FE) — ¢(277FLE), then

= F el T (a7 DI 52

x|~ FHEF e F AN 52
[Ra(Cayp]

AN

by using Hardy-Littlewood inequality, we get the desired estimate. '
Now we prove (ii). By Lemma 4.2.1’s (i) we know that uw € Bf, with
%:%—i—";—js. We put g = uw, then

“+o00

Nl s gld = Y 2 HIF (a7 g HP g

v=2s¥o k=—o00

“+o00

= Y 22Ma|7 « F G F g}

L= 25+o‘
k=—o00

+oo
S Y 2 F e F

k=—00

= llgll, -

1
p

where % =

Littlewood inequality.

Finally, we are ready to prove the following main estimates.

Lemma 4.2.3. Let u,v € H* with 0 < s < % and 0 <y < min(4,n). There exist
o, p justifying s—4 = o—= and the following two conditions (a) s+o0 > 0,0 <0,
s>0>s—1, (b)) 3s—y<0<3s—7v+1, 0<% +2s5— such that if
w e BUQ, then the following estimates hold.

(0) (= fulPywll s, | S lwllpy llully,. where & = J+ 252 and
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_ Y—2s40 n—2s
7 n + 2n

(i6) (12l % wwll o, < ol el 0] where &
2
for ;75 < r < 2.
Proof. Tt is enough to prove (i). We put f = |z[77 * |[u[*>. By Lemma 4.2.2,
f € H°. . We may write the product of fw by Littlewood-Paley decomposition,
y—s

Py(fw) = Ek’,k”eZPk((Pk’f)(Pk”w))'

We consider that the Fourier support of f and w are same as u and w in Lemma
4.2.1 respectively, then

+P | ) PufPow

Kk Skt
K~k | <2

We first consider the first term of (4.8). We take the L™ norm on both sides and
apply Holder’s inequality,

| P (Pe—2f Pow)|| v S [[Pak-2f || 52 |1 Pew|| o

5
where 7% = %%—7_725 and 3s — v < 0 < 3s — v + 1 ensure that nQ—j:z <7 <2
Again, product by 2%° and then we take {> norm on both sides, then
{2 Pu(Per—afPew)ll e S 1Pek—afIl 52 (2 | Prwllie e (4.9)
< . .
S Wl ol
by Sobolev embedding. Similarly, we can consider the second term of (4.8), we
have

| Pe(Peg—2wPi f)|l S || P<p—ow]| Lo || Prf]]

product by 2% and then we take the {?> norm on both sides, then

n
L 7—2s"

(2| Pe(Peg—aw Pif)ll oy S {25772 Py gwl| oo b2 | Pef | —2,(4.10)
Here, 2/F=7l7 € [' since o <0

(2591727 Py swl| o ke S Y {277 Ppwle e S 91l 52 ,-

J<k=2

It follows that we get the desired estimate.
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Finally, we consider the third term of (4.8) using the triangle inequality and
Bernstein inequality with % < % + =2 since by assumption o < 7 +2s — 1, then

Pi| >, PufPrw = [P| X PerafPeow
;M a,b>2
Tk’k—;’]\c;rf ' et L
y=syy1l 1
< Z onk{(57)+5 ”’}||Pk+afpk+bw||L%
a,b>2
la—b|<1
< ) 2| Peaf Il o | Pesowl| o
a,b>2
la—bl<1
Product by 2* and then we apply the [? norm on both sides, then
27 5| S PufPew <22 fll e, [l
KK > k2 e
K=" |<1 o) 2
~ 27 fl gl
]
for a ~ b. Then we get the desired estimate since s + o > 0. O

4.3 Uniqueness Theorem

In this section, we consider the uniqueness of solution only, since the uniqueness
is a main part of unconditional well-posedness problem.

Proof of Theorem 4.1.1. Let u and v be the solutions of (4.1)-(4.2) with the
same initial data. By Duhamel formula, we have that

t
(u—0)(t) = /0 U(t = 8)[(|2[77* [u*)u = (Ja| 7" = [o]*)v](s)ds.
We put w = u — v. By using the Strichartz estimate, we see that
1™ fulPyw = (27 o) oll e,y S N2 el )wll e oz, )
el % @)oo rie,
el % wi)ol o rie,

where the pair (¢q,r) is admissible, and (q,¢’), (r,7’) are dual pairs. By Lemma
423,

Il Py = (il 5 [0l o,

S TanHLq(BgQ) (”U”Qoo(o,T;Hs) + 2||u||L°°(0,T;HS) U”Loo(o,T;Hs))
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where o = 25+7+2 < 400 for 7 < 2s + 2. Then, we conclude that

Ju — U|‘Lq(0,T;Bg2) ST Ju— UHLQ(O,T;B;{Q)'
Hence, we choose T' small enough so that u(t) = v(t) on [0,T). O

Remark 4.3.1. If s< 3, n > 3, the inequality
1F(w) = F)llpr < (Jullze + llullzo)llu = vl

holds if 6(p) + &(r) + 26(p) = ~, where §(p) = n(3 — %) and % + /% = 1. Since

the admissible values of p and r are 2 < r,p < %, the admissibe value of p are

2n
n+2—y

< p < oo. We want HS — LP, which requires v <2s+ 2.
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Chapter 5

Unconditional well-posedness of
DNLS

5.1 Introduction

In this chapter we consider the Cauchy problem of derivative nonlinear Schrodinger
equation:

10+ Oper = 60,(Jul*u) on (0,T) xR, T > 0, (5.1)
u(0,z) = wuo(x) € H'(R),

where u(t, x) is a complex valued function and § € R.

Our purpose is to prove the unconditional well-posedness in energy space.
The proof is based on gauge transformation and Fourier restriction method.

We prove the unconditional well-posedness in the following sense.

Theorem 5.1.1. Let ug € H'(R) and T > 0, assume that u and v are two
solutions of (5.1)-(5.2) in L>®(0,T; HY(R)) with the same initial data. Then
u(t) =wv(t), t €0,T].

One may show the existence and uniqueness result by fix pointed method via
the following equation

¢
u(t) = ey — ié/ e =909 |y |2y, ds.
0

It is known that in usual Schrédinger equation, nonlinearity is controlled by
LP — L9 type inequality but (5.1)-(5.2) has loss of derivative in nonlinearity. It is
unlikely to be used directly in the same way as usual Schrodinger equation. In
[24], [25], Hayashi and Ozawa proposed the gauge transformation to overcome this
difficulty. They use two gauge transformations to convert (5.1)-(5.2) to a system
equation without derivative in nonlinearity and then the local well-posedness of
(5.1)-(5.2) in H'(R) is shown.
Suppose u is a smooth solution to (5.1)-(5.2). Let
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A strighfoward calculation yields, (5.1)-(5.2) becomes

O + Opev = i0|0|?0pv + 8*|v[*v on (0,T) xR, T >0, € R (5.3)
v(0,7) = vo(z) € H. (5.4)

In the periodic case, M. Tsutsumi and I. Fukuda [43] proved that the solu-
tion of (5.1) - (5.2) is local existence in L>=(0,T; H*) N C(0,T; H*™'), s > 3/2
and it is also hold for non-periodic case. Their results was improved by N.
Hayashi, T. Ozawa [25] and they proved the uniqueness in C([0,7], H(R)) N
L ([0,T], HY>=(R)). Moreover, N. Hayashi [24] proved the uniqueness in C([0, T,
HY(R)) N L*2([0,T], H3(R)).

In the case of real line, H. Takaoka [39] uses the Fourier restriction method to
handle the transformed equation containing derivative nonlinearity and shows the
resulting problem is locally well-posed in H*(R) for s > % and ill-posedness for
5 < % in the sense that solution map is no longer uniformally continuous. More
precisely he showed the solution of (5.1)-(5.2) is unique in C([0,7"), H*(R)) N
L3(We) for s > 1.

we start the following observation. let

a(t):{ u(t) ift € (0,7),

0 otherwise.

We first see that if & € L>°(R; H'(R)) then we have @ € L*(R; H'(R)), which
means u € lej o- On the other hand, by taking the Fourier transform on both
sides of (5.1), we can see

(7 + &) Fv(r, &) = Fl(|al*a).) € L*(R?)
where v(t) = a(t),t € (0,T), i.e., v e X,

By using the interpolation between above two cases, we get the solution
u € Xil’ Hence, if the solution is unique in X 1, the problem (5.1)-(5.2) is
uncondzitQionally well-posed in H!.

The unconditional uniqueness is a concept of uniqueness which does not de-
pend on how to construct the solution. For example, we consider (5.1)-(5.2) with
zero Drichlet boundary condition on the ball Bg centered at the origin with ra-
dius R > 0. Let uy be a compactly supported function in H'(R). If |Jug|| 125y is

small, we have a global solution up € L®(R; H}(Bg)) such that

lu(®)lz2Br) = lluollL2(BR)

and
E(u(t)) < E(uo)

where E(u(t)) = [|0sul[72(g,) — 31m [, utud,udz. Indeed, because we have by
the Gagliardo-Nirenberg inequality,

’Im / waud,udr
Bgr

< CllullZa s 1l sy
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there exists a solution u € L™(R, Hj(Bg)) when |ug||12(p,) is sufficiently small.
Then the passage to the limit as R — oo leads to a solution in L*(R; H!(R)).
In this case, the proof of existence does not imply that a such solution is in the
auxiliary spaces.

The plan of this chapter is composed as follows. In Section 5.2, we derived
the estimates of nonlinear terms on Bourgain space. In Section 5.3 we prove that
the solution which comes from gauge transfotmation is unique in X7, and the

solution of (5.1)-(5.2) is unique in L>(0,T; H').

272

5.2 Nonlinear Estimates

In this section we derive the nonlinear estimates in the framework of L* based
Bourgain space. Let f be a nonnegative function such that

filmn &) = (n+E)3(E)3[a(m, &),
fa(ms, &) = (75— E2)3(&s)2 (73, &)

where i=1,2 and 7,£ € R. Here the scales of time and space are different for the
Schrodinger equation. Let 7= X273, € = 32_,&;.
We consider [39],

0—01—02—03:2(§—§1>(§—§2)7 (5'5)

where 0; = 7, + £2,i = 1,2 and 03 = 73 — £2. So either of the following two cases
happens

=& <Tor[§—E&| <1, (5.6)
€ —&| >1and [§ —&| > 1. (5.7)

Lemma 5.2.1. When | —&| <1 or|{ —&| <1 then
e
(€3 (&3 (&)
When |€ =& | >1 and | —&] > 1
(1) 1&] < 1€1/2 and |€2] < [€]/2,

(it) €] << [&l and [§] << [&],
then

&al < [l + 16 ] + 16| < c(l&r] + 1€2)

If either [&1] < |&] or €] < |&1| we then conclude

(€)3 (&) c_ ¢
(€1)7(E)2 (&) (E — E1)F(E — )7 — (€1)2(&)7
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Proof. In the region | —&| > 1 and | —&| > 1.

We first assume |&1] < [€]/2 and [&] < [€]/2. Since [§] < |§ — & + [,
6] < 16 — &l + |6al, IE] < clé — &2 — &J%. Tn addition, if [€] < [€//2, since
6] < 16— &l + 16 — &l + €] we get [&] < el — &1]2[€ — &2, We conclude that

(€)% (E3) c

1 1 1 1 1 S 1 1 (5'8)
(E1)2(&)2(&)3(E — &) (E— &)z~ (&)3(&)?
On the other hand |¢] << [&] and || << |&]|, we have the identity
1 B & B l
(-4 (E-&)& &
We can show that
1 €] 1
E-al = E-alal
R L
€= GG (6 ]2
1 < c
€ =&V = &2
Similarly, we can show that
1 < c
€ —&f1/? T |&[V2
Since
&3] <[]+ 6] + |€a] < e(l&a] + [E2])
and if either |&] < |&] or |&] < |&] we then conclude
1 1 <§1>§<£3> 1 1 S lc 1 (59)
(€1)2(&2)2(&3)2(E — &1)2 (€ — &)z (1) (& >5
]

Lemma 5.2.2. Let u(t) be the support on {t;|t| < T} with 0 < T <1 and there
exists ¢, € > 0. Then the following estimate holds.

lur wa Bpislx, | < eTflunllx

1 (5.10)

luallx, , llusll<

11
2°2

l\.’)\»—‘
l\‘:h—t

1
2

W
to
w\»—t

Proof. Consider

w1120, U3||X1 ,

|y f (s

dpndps

) fl(Tl,51)f2(72752)f3(73,f3)
(o)1, (o)

m\»—-

2
L7e
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where du = drd€.
Case 1: In the region | — & | <1 or [£ — &] < 1, we have,

<1§>%<§> - <1 (5.11)
(€1)2(&2)2(&3)2
Then
f1 T1, 51)f2(72,§2)f3( 3753)
st = ||/ v et L

= c|[(o)7F ({0 il = () izl % (&) el )|, - (5:12)
7€
By Plancherel theorem,

1
luusdeillx, |, < c|[(P) A1, D2

)
l\.')

t,x

- HHf’Zngui (5.13)

XO,—

Nl

where P = i0; + 0. Then we apply the Lf}z dual Strichartz estimate and Holder
inequality,

1
3 2
X

1
< CHH;;D;W

-1 Ly,
1
S CH?:l D%'LLZ
Lt,z
1
< c||Dg?ui||XO o (5.14)
'8
We conclude that
[uy ug Optis]|x, , < CT€||U1||X uallx, | [lus|lx (5.15)

11
2°2

NI

1
5

w3
m

M\»—l
w\»—A

Next, we consider the region | — &;| > 1 and | — &| > 1 and we divided
four subcases according to the one of ¢’s is the largest.

Subcase 1. ({(o) > max{(01), (02), (03)})

By Plancherel theorem, lemma 5.2.1 and Holder inequality,

|10, u3HX1 ., < H/ 3 fi 715,51)<J; <>727§2>J2?:7(;31’§3)du1dﬂ2
1 i=1\03%)2

N
to

L2,

= C

UﬂthEng’

t,x

IN

1
cllunlly, lluallpy [IDZus| s, (5.16)
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This estimate follows after applying the Sobolev embedding at both space and
time for ui,us as well as L* Strichartz estimate for us. We use again Sobolev
embedding, we get

luruadatis|lx, , < CH?:1T6HU1'\|X%% (5.17)
Subcase 2. ({(o1) > max{(0), (02), (03)}) By lemma 5.2.1, we have
H'Lbﬂ,tgax’ljgH)(l N S H/ f1 Tlagl)f2<7—27§2>f31(7—37€31) /1/1 d,u2
2 Ré (§1)2(§2)2(0)2(02)2(03)2 2,
= c[to)F (o) il = fia] + (6a)’ yug\)H (5.18)

By Plancherel theorem and Sobolev embedding in time,
1 1 1 1 1
{(P)~2((P)2urus Ditis) 2, < cl[{P)2uaue D us|x, i’

< C|[(P)ruyus DI

2 L7
1 1
< P Rurllyp s llusll oy 1D 5111 . (5.19)
Applying Sobolev embedding again,
1 1
P2 ulliz g < cl{P)2ullx,

= CHul”X3 19 (520)
82

A

We obtain the required estimate.
Subcase 3. ((02) > max{(o), (o1), (03)}). The proof is same as subcase 2.
Finally, Subcase 4. ({o3) > max{(0), (01), (02)})
By lemma 5.2.1, we have

~ f1(71, &) fa (72, &) f3(73 53)
Ouiisllx, . < (73:88) 1, d
||l uqus U3||X§,7§ C/ <€1>2<€2>2<0>< o >§ 2 "
= Hu1u2}"*1f3HX0,_%, (5.21)

Applying the dual of Strichartz estimate and Holder inequality, we get

I\U1U2F‘1f3|!L§ < clluallpy Mluallzs 17 fsllz,
T

< TI ||wil| x

X1 (5.22)

]

Lemma 5.2.3. There exists ¢,é > 0 such that for T € (0,1), then the following
estimate holds.

{ @ ( [t R 5>|df)2ds}é < e TETI, fudx

where each w;(t),j =1,2,3 has support in (0,T).

, (5.23)

1
’2

(ST
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Proof. We consider in the following two cases.
Case (1). In the region [ — & | < 1or [ —&| < 1.

(o (firmacomyaf = | . [ Sosmes

2,1
(5.24)

Applying Schwartz estimate in time, (5.24) is bounded by
cl{@) ez (o) 7 (€002 au] * (€o) P ] * (&) 2 ) Il .2 (5.25)

where % <p< %, by case 1 of lemma 3.1, we obtain the required estimate.
Case(2). In the region of | — & | > 1 or | — &| > 1. We note that [26],

(=& > celn =) (- &) (n — ) - 6) 7P - &) (5.20)
We can estimate multipliers as the previous lemma,
GHS _ :
T (63 (€ — E)1730(€ — &)130 T (£1)3(&)3(€)3 (&)~

Next, we consider the four subcases according to the one of ¢’s is the largest.
Subcase 1. ({(o) > max{{(01), (02), (03)})
Hence (5.24) can be estimated by

J1(71,61) foT2, §2) f3(73, &3)
H/ /R4 (€1)2 ()3 (6)2 (&) (01)3 +5<02>%+5(a3>%+5dul dpra

L3,LL
(5.27)
where § < 1. Fix ¢ and applying Young inequality for variable 7, (5.27) is
6
bounded by
1 fi s
(&)L || | dade| . (528)
/R2 (€7 (o)™ (€)% (3) 2™ Lt L2
¢
Since Cauchy Schwarz inequality
f (5 )6 < H<Uz>777 fl(iz_)E
<O' L O-i> L2
(5.28) is bounded by
_%4_35 H2 ) _% fl(SZ) —%4—35 f3(€3) 529
H<§> L‘é z:1<§l> <Ui>6_€ 2 <§3> <O‘3>6_€ 2[4 ( )
¢
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We use again Young inequality for &, (5.29) is bounded by

fi(&)

<0i>676

M2, |[(&) 2 (5.30)

12

Applying Holder inequality and ¢ is chosen sufficiently small, (5.30) is bounded
by
fi(&)

(0i)°¢

_1_, 1 L (5_¢) n
I 16~ HL;1 < AT (&) 2 (o3) 27 )UiHLi5

Li,g

< el fJullx,
2°2
Similarly we can prove for o]s which is the largest of o;, i # j, where 1 <
1,7 < 3 by using Cauchy-Schwarz inequality for 7. The desired estimates are
followed as (5.17), (5.19), (5.20) and (5.22).
O

Remark 5.2.4. The prove of nonlinearity estimates are same as [26] and [39].

Lemma 5.2.5. Let s € R, there exists ¢, é > 0 such that for T € (0,1) then the
following estimate holds.

[ravry < ¢ T [l

X 1 (5.31)
53

I
S,

NI

where each u;(t),i =1,....,5 has support in (0,T).
Proof. Let & = Z?Zl & then (£) < 2?21@-). We can see simply

ol =€ Tl
$,— 3 0,—2
Then
5
[{Dx)* H?:WiHXO < O (DL willp=rintinl x|
) i=1 T2
5
< o) [1DrwlT ] g
t,x

=1
5

< CZ 1Dy, Uz’”L;{IHZ:L#kHUk||L§,m
=1

< eI il

X 1
S’j

where we used the duality of Strichartz’s estimate and the Holder inequality. [J
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5.3 Uniqueness Theorem

Since the uniqueness of solution is a main part of the unconditional well-posedness,
we consider the uniqueness only.

Theorem 5.3.1. We assume that vg € H'(R), there exists T such that 0 < T <
1. Setv = G(u). Let v,0 € XT', be two solutions of (5.3)-(5.4) with the same
272

initial data in H'. Then there exists a unique solution in X1 , for allt € (0,T).
272

Proof. For any vy € H' and let M > 0 with ||vg||zn < M and there exists T such
that 0 < T < 1, we want to prove that the transformation

v(t) = 1)U (t)vo(t) + ipp(t) /0 U(t — 5)(i6|v[*0pv + 6%|v|*v)ds

is a contraction. Let v,0 € X7, be two solutions of (5.3)-(22)with the same
272
initial data. Let

brit) = (U E)(2)
it (1) / Ut — )(i603()[520, + 65 (s)[ 3] *5)ds

Assume ||v]|xr | = HwTﬁHX;l < M. Then for all t € (0,7) with 0 < T < 1,

applying lemma (2.1), (3.1), (232) and (3.3), we get

l(t) = dro(t)llxr | < CT(M? + MY)|o(t) — vro(t) | xr .

3% 14
choose T' < ——L— is sufficiently small, then
2C(M24+M*4)¢
1 -
lo(®) = $ro()llxy | < 5l = vrollxy
2°2
Hence v(t) = ¢70(t), we conclude that v(t) = o(¢t) for all t € [0, 7). O

Proof of Theorem 5.1.1. Let ug € H*. We define vy = G(ug) € H!, since the

gauge transformation is continuous. Let vén) € C* with v(()n) — vg in H.

We define

up(t,z) = G (v )(t z),
u(t ) = G u)(t ).
We have
lunllzgez2) = llvallpge(z2)- (5.32)

We can see that
awu” = (85027”(1‘) + |Un|2Un<x)) eiiff‘” |y"|2dy.
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Then
100ttnl| Lo (12) < cllOvvnlliger2) + cllvnllzse 12)-
By Gagliardo -Nirenberg’s inequality,
10zttn | Lo (r2) < €llOxvnll ey + cllduvnllgewayllval oo 22)

then
100tnl Lo (22) < (14 [[0nll700 (2 10| ge (a2 (5.33)

for all v, € H'. Similarly,

= tmllzgeqry = G (vn) = G (vm)llge(a2)
< C(M)l[on = vmll Lo ).

We conclude that there exists a unique solution in L*®(0,T; H'(R)) such that
U, — uwin L>(0,T; H'(R)), then we obtain the unique solution of (5.1)-(5.2). [
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Chapter 6

Global well-posedness of DNNLS

6.1 Intorduction

In this chapter, we discuss the derivative nonlinear Schrodinger equation with
periodic boundary condition:

10+ Ot = 60, (Jul?u), (6.1)
u(0,2) = wup(z), (6.2)

where u(t,z) is a complex valued function of (¢f,2) € R x T, and é6=+1 or —1.
For simplicity, throughout this chapter, we assume 6 = 1, because it makes no
difference between the cases 6 = 1 and 6 = —1 in the results of this paper.

Our aim is to prove the global well-posedness of (6.1)-(6.2) in H*(T) for s > 3
with small data in L2. We use the method of almost conserved energy or I-method
which was introduced by J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T.
Tao and the refinement of bilinear estimate.

We improve global well-posedness result in the following sense.

Theorem 6.1.1. The initial value problem (6.1)-(6.2) is globally well-posed for
initial data ug € H*(T), s > % if [Juol|L2(my < V2.

We use the gauge transformation on (6.1) - (6.2), the new nonlinearities still
contain derivative like u*%,. We then apply the Fourier restriction method to
handle the transformed equation containing derivative nonlinearity as H. Takaoka
[39].

Suppose u is a smooth solution to (6.1) - (6.2). Let

w(t) = G(u(t, )

and G(u)(x) = e7Wy(x) where

1 2w T 1
H@@) = 5= [ [ P = oo uldyas
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for all time t. The strightforward calculation yields, (6.1)-(6.2) becomes
10w — Oppw — 2(w)0pw = —w?Opid + %|w|4w —ip(w)|w]Pw + ip(w)w  (6.3)

where

1 [ B 1 1
—/O 2Im (O, ww)(t,0) — §|w| (t,0)d0 + —5 lw(0)]| 72 )

b)) = 5 =

and pu(w) = [Jw(t)]| 2.
The linear term 24(w)0d,w is cancelled by transformation

v(t,x) == w(t,z —2ut) with p = ||lw(0)|| 2.
Then

10 — Opgv = —0?0,0 + %|U|4U —ip(v)|v]Pv + i (v)v (6.4)
v(0,2) = wvo(x) (6.5)

We then rewrite the equation (6.4) as follows:

Vp = Upp — (vvw — —/ 2Im vvxdﬁ) v(z,t) (6.6)

(| |4——/ |v4d9> (. 1)
—i(/o [v]2d0) (|v|2 - %/0 0] d@) v(z,t)

v(0,z) = wvo(x). (6.7)

We note that the global well-posedness of (6.1)-(6.2) in H® is equivalent to that
of (6.6)-(6.7) according to the properties of gauge transformation.

We shall write notation as &;; = & — &; for i and j are even and odd integers
but in some cases &;; = & + & for both i and j are even or odd. For instance,
§123 = &1 — &2 + &3, §a3a = §2 — &3 + &4, sometime we may write §;_; = & — §;. We
also use if m(&) is a function defined on frequency space, we write m(§;) = m;,
m(&;) = m(&§ — &) = my; for i and j are even and odd respectively.

We organized the sections as follows. In Seciton 6.2 and 6.3, we define gauge
transformation, conservation of energy, operator I and construct differential equa-
tions associated with the I-method, which is called the [-system. In Section 6.4
we prove local well-posedness by [-syatem for s> % In Section 6.5 we present a
main proof of global well-posedness for s > %

48



6.2 Almost conserved energy

In this section we begin with the conservation of energy but we do not here
observe the potential term which is not going to make any trouble.

Definition 6.2.1. /8] - [9] If v € HY(T), the energy E(v) is defined by

2 1 2T
E(v) = / 0,v0,vdf — §]m / [v|*v0,0df. (6.8)
0 0

Now we give the lemma that the energy E(v) is strong enough to control by
H'.

Lemma 6.2.2. Let f be a smooth and 27- periodic function. Assume f(t) €
HY(T) such that || f(t)||r2¢ry <9, 0 is sufficiently small. Then we have

102 f (Dl z2m) < CO)E(f)2. (6.9)

Proof. Let us define _
g(x) = ez’ f(x)
where J(f)(z) = & 0% I3 (1F )12 = £ f1I22) dydf . Tt is easily seen that ||g]|r2 =

1 fllz2 <6 |
Since 0, f(z) = e 2/ (8,9— (|g|> — 1)g) where pu = = 0% lg|?df, the energy

(6.8) becomes
. _ 1 0 _
B = 109l —1 [ Ballal = g = 5m [ loPa@.a-+ 5(laF - pa)6.10)

_ 1 1 _
> 10:9]172 — I(l9]* = 1)l 211029 2 — §||9His(||8xg|!m + §||(|9|2 — wgllz2)

Let h = |g|*> — u be a zero mean value function. By translation z — z + £ such
that g(§) = 0 for some & € [0,2n], we have h(z) = f0x+£ B (y)dy and h(z) =
erg h'(y)dy. Applying Holder inequality, we obtain

1Pl zeoery < 1B e < llggller < llgllz2llg'l 2
Similarly,
1(gl* = gl zaery < llgllz gl = pllz= < Nlgllz2llg'lle-
By Gaglirado-Nirenberg inequality and (6.10) becomes
2 Sy Loy
B() = 1029132 (1~ SNl — lglte)
Thank to the small data ||g||z2 < J, we get
18296l 2y < Cllgllz2) E(F)2. (6.11)
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On the other hand, we may show that

102 fl2ery < 1 T(f)egll2ery + 1029 22 (6.12)
< (9> = wW)gllrzcr) + 1029 2
<

(1 + lgll22) 10zl 2cry
Combining (6.11) and (6.12), we obtain (6.9). O

We give the definition of multiplier operator Z which is the identity on low
frequencies and like as a fractional integral operator of order 1 — s on high fre-
quencies. We then construct differential equation via (6.6) - (6.7). We also study
modefied energies introduced in [8] - [9] giving the name as generation of modefied
energies.

Let m(§) be an arbitrary real valued 1- multiplier and defined by

1 if |£] <N,

O ={ (g wig o (0:19)

Define the multiplier operator Z : H® — H' such that IA'U(g) = m(§)0(€). Then
we see that

e S vl S N o (t)]

lo(®)]

By Plancherel, we may rewrite the equation (6.8) by A notation

Hs-

E(v) == =Ay(&&o5v) + }l/\4(§13; v).

Here we note that E(v) could not be directly controlled the H' norm like as
Lemma 6.2.2. Hence we define the substitute energy which have a very slow
increment in time (in term of N) such that

Ex(v) :== E(Iv).

This energy make sense even if v is only in H*. Let m(§) be a symmetric multi-
plier. Let I be the multiplier operator associated with m(£)?. We define

E'(v) := E(Iv).
If m(§) is the multiplier in (6.13), then
E'(v) = Ex(v).

We then define the E'(v) is a first generation of family of modified energy such
that

EY(v) := —Ag(mi&ymas, v(t)) + 3A4((§1 + &3)myimamsmy, v(t)). (6.14)
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Proposition 6.2.3. Let v be a solution of (6.6) - (6.7) and let M, be a n-
multiplier of order n > 2. Then

%An(Mn;v(t)) — i (an My o (1) (6.15)
+ilnio <Z(—1)jX]2(Mn)§j+1¢(§j = &1); U@))
—icAnio (Z(_l)j—lX?(Mn);v(t)>

Fidnia <Z(—1)j‘1X§‘(Mn);v(t))

J=1

where o, = ¥ (=1)771€2 and the characteristic function

wo={y 570 (6.16)

Proof. Fix n = 2. We consider only nonlinear term containing derivative which
play main role.

d, , o
£|v| = Ul + Dy

= —i(VUz — VVz) — (V0 — L / Im v, vdz)|v|*
2 T
(0~ 5 Almﬁxvdx)|v|2 (6.17)
+L/4Imvxvdx|v|2
2 Jr

We take Fourier coefficient in spatial variable of (6.17), the first term is cancelled.
We may write by symmetry

V00 — %/Thnvﬁd@v = /&_§2+£3_E40 ip(E12)p(E12)E15(61)0(E2) D (&)
+i&10(& o(£1)0 (&)

and we consider the last term of right hand side of (6.17) as a constant.
Hence we get

%/J@(f)’? = —i /51_52%3_540(&1 — &) p(&12)(&14)0(€1)0(£2)0(E3)0(&s),

implies
d

S ha(Liv) = —ip(62) p(€10) Aa (&1 — &2)30)-

o1



On the other hand,

d (£ NFTE
dt 51—52:0m(&)m(52)“(51)“(52>

— i [ 6 @m(E) w06 () TE

§1—827#0,§1 6470

Using A notation with /-system and appropriate summetry,

%Ag(l; Iv) = ip(&12)0(&14) A (Ma2zmas — mimagaés; v) (6.18)

We also omit [ [v|*dz and [ [v|*dz as constants for the other nonlinear terms.
In the rest of this paper we shall drop v(¢) from A notation. O

Applying proposition 6.2.3, differentating (6.14) with respect to time, using
the identity & — & + & — ...+ (=1)"71&, = 0, we have

iAz(mlflmQ&) = —iNa(mi&ima&e(&] — &3))

dt
—i90(512)<ﬂ(§14)A4(m1§1m234§234§3 - m4§4m123§123§2)sym
—icA4(m123§123m4£4 - m1§1m2345234)sym
+iA6(m12345§12345m6§6 - m1§1m23456§23456)sym
= —i90(512)¢(514)/\4(m%fff3 - mififz)sym

+ZCA4(m%€% - migz)sym - ZAG(m%§% - m?sfg)sym

Note that in this derivative, A is zero because the factor 2 — &5 = 0 over the set

&1 —&=0.
Next, we differentiate the contribution of A4, by using proposition (6.2.3)

d 1.
£A4(§13,24m1m2m3m4) = _gZA4(a4m1m2m3m4£13724)sym

—iMg(p(&12)0(Ea3)Mimamamuse€13—o456s
_90(612)90(616)777'1m2m345m6€1345726£4)sym
+iCA6(m123m4m5m6€1235—46 - m1m2m3m456§13—2456)sym
—iAg(M12345M6M7M8E12357 68

_mlm2m3m45678513—245678)sym>
where ay = & — & + & — &}. To cancel the first Ay terms of %A, and %A, we

choose - -
(mi&i&s — m4§4§2)sym

Oy

m1m2m3m4§13_24 = -
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with ay # 0. We may define the second generation of modified energy

B (0(0)) = —Aalméumae) + Sha(Mi(6, &.6,60)  (6.19)

where 2492 242 242 242
mi&i&s — my&y8s + m3§38 — mi&iée
G- +& &

In low frequency case, |&1], &2, [€5], |€4] < 1, each of m; is 1. we have

(& + &) (&8s — &)
2(& — &)(& — &)
(G S)6 )6 — &)
2(6 — &)(& — &)

= %(51 + &3)

over the set & — & + &3 — & = 0 and the second modified energy still satisfies
(6.14). Now we differentiate the second modified energy with respect to time by
using proposition 6.2.3 and (6.19), we get

d Ny
EE( v(t)) = ichy(ou(€r, &, E5,6))

+ile[Mg(&1, €2, s &6) + M (61,62, -, &6) — 06(61, €2, -+, E6)]
—iAg(Ms(&1, &2, -, &8))-

M4(€17 527 537 54) = -

My(&1,62,83,86) =

where
Un<€17£27 s 7§n) = (m%£% - m§£§ +.oo= (_1)n71m121§73>7n = 47 67
My(Er, o, s € Z Aol (Ee — E0) MiEater Ea: E0r 1)
+S0(§e - ff)90<§f - ga)Mﬁl(gw gbcd’ geu gf)fc
(& — &)p(&a — &) Ma(&as &b, Ecdes Er)Ea
—HO(fa - fb)@(fb - SC)Mll(gaa gbv 507 ngf)fe)y
Mg (&1, 6, -, & ZA6 (Ma(Eaber Ear Eer E5) — Ma(Ear Eveds Eer §7) + Ma(Ear b, Ecaer Ef)
_M4(§a7 gba §c’ gdef))
and

M8(€17€27 "'768) = ZAS(MZL(gabcdea gfafgvgh) - M4(€a7€bcdef7€g>€h))

— My (Eas Ebs Ecdefgy §n) + Ma(Eas Eps Ecs Edefgn)
Wherez Z{ac} {135},2** Z{ac ,93={1,3,5,7} .

{b,d,f}={2,4,6} {b,d,f,h}={2,4,6,8}
We make a summary of above consideration as follows:
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Proposition 6.2.4. Let v be a H' global solution to (6.6). Then

E3(v(T +0) — Ex(v(T))) = / : [Ay(og;v(t)) + Ag(Mg; v(t)) + Ag(Msg; v(t))]dt

T

forany T € R, § >0 and Mg = M} + My — 0. Furthermore, if |&| < N, for all
7, then the multiplier My, Mg and Mg vanish.

Then we show the lemma that the second modified energy E% is still strong
enough to control by H*.

Lemma 6.2.5. Assume that v satisfies ||[v(t)]|2 < V2m and |[Tv(t)||g < € .
Then
10 L0][2ry S EX(v).

Proof. We have

1
E12V<U) = —Az(m1£1m2§2)+§A4(§13,42m1m2m3m4)

+éA4(M4(517 £2, &3, 54) - 513_42m1m2m3m4).
In Lemma 6.2.2, we proved that
102 10|72y S B (v)
for || 1v||p2(ry < V27, Hence it is enough to show that
|Au(Ma(&1, 62,3, E4) — Eas—apmamamamy)| < O(N~) 10|51 )

for some a > 0.

By a Littlewood-Paley decomposition, we may restrict the frequency of u; is
as |§| ~ N; with dyadically and assume that Ny > Ny > N3 > N;. We also
assume that each of u; is nonnegative.

When Ny > N, by equation (6.21) (see next section) we may write

A(Ma(er, 660, 60) S | / (Vo) N €1 G057
§1—&2+E3—64=0

/ (N)Tuy (No) Tug (N3) 2~ Tug(Na)2~Tuy
§1—82+E€3—8§4=0 <N2><N4>17m(N4)2

IS

Since m(N4)<N4>1/2 is nondecreasing and L? for uy, us, L* for us,us by Holder
and Sobolev embedding, we obtain

As(M(€r, € 6, €0)] S || Tu®)]| 2 (6.20)

~y Nl,
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Next, we consider the second contribution

|A4(€13—24m1m2m3m4))’ = 2/ 513mlalm2@_2m3ﬁ3m4a_4
&1 Ezfr‘is _ =0
< N1N2]U1]_UQ]U3E
~ &1—82+83—€4=0 Ny
1
S NHIU(t)||ipHIu(t)Hioo

1
S Il

where we use again Holder and Sobolev embedding.

6.3 Multiplier estimate.

In this section, we prove M, multilinear estimate. Our destination is to get the
same estimate as [8] and it is a main point in our proof. we often use the following
elementary tool.

Lemma 6.3.1. (Double mean-value theorem) Let a be a smooth function of real
variable £. Then

a6 +n+X) —al€+n) —al€+A) +a©)] < la” (0)]n]|A
where (6] ~ |¢] and max([n, |A]) < [¢].
Lemma 6.3.2. Let

migEs — miE + miliE — migis

My(&1, 82,83, 84) = @ — )6 — &) (6.21)
where m; = m(&;) is even and R valued and is defined as (6.13). Then
|M4(£17§27§3a §4)| S m(Nmax)2Nmax- (622)

Proof. Let M{(&1, 82,83, 84) = mi&TEs — m3E386s + m3E581 — migi&s.
We define f(&) = m(€)%¢2. Consider in the set & — & + & — & = 0, we have

My(&1,62,83,84) = &[f(&1) — f(&) — (&) + f(&3)] 4 (63 — &) (f (&) — f(&3))

[
+(6 = &)(f(&) — f(&2)
= &lf(&) — f(& — &) — (& — &) + f(§1-12-14)]
+(& — &) (f(&) — f(&a — &r2)
+(6 = &) (f(&3) — f(&3 = &n))-
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Applying DMVT on the first term and mean value theorem (MVT) on remaining
terms. Then

M} (&1, 6,8, )| < &I (€&l €] + 1/ (6012l 161a] + |f/(§3)||§12“§(14| )
6.23

Since we have (m(€)%¢2)" ~ m(€)?, then
‘M4(€17 527 537 64)' é m(Nmax)szax'

Lemma 6.3.3. We also consider in the following cases
Case (i). Assume that 5|&| > |&, [&4]; then
|M4(£17£27£37£4)| < m( mag:) N37 . (624)
Case (ii). Assume that |&| ~ |&] > N > |&s, [€4]; then
|(m3€d)'| 1]

|My(&1, &, &5, &) + [m3&| <

where (§ — &)(§1 — &) # 0.

Proof. Case (i). In the region $|&| > |&l, |€4] we then see that [&] < [& —
&), 161 — &4| and |&3] ~ |&1]. We often use m(€) is an even function.
[M3(61.62,&, 60| = [&(mI& — m3&5) + &a(ms&s — ma&d) + La(m3&s — mid)|
[Ea[m(€1)°€7 — m(&1 — €24)* (&1 — &24)7]|

+HlEa[m(&s)%E5 — m(& — £a1)*(&s — €10)”]|

+H|&a[m(&)°65 — m(& — 1) (& — &12)7)

[al|(mED) (€2 + Eal + [€al[(M3E3) [1€1 — &
+&al|(m3E) 1|61 — &

|&s| [mil&]? +m3l&|& — &l + m3l&|& — &)

IA

IN

IN

since (m(€)2€2)" ~ m(€)%¢, we obtain
|M4(£17§27£37€4))| S |£3|<m% + mg) S |€3| m%
Case(ii). In the region |& | ~ || > N > |&], [€4], then we see that
m(&)? =m(&)” = 1.
Since, we have |&| < [ — &4], we may rewrite
_ o (mig - mi)&G —m3& (& — &)
My(§1,82,83,84) = € — &G
(6 — &) + &6 - &)
(& —&)& ’
using MVT on the first term and the last term is very small, then
|(mie)] ||
131

we obtain case (ii). O

+

|My(&1, &2, 85, &)| + m3&s| < + 1&3]
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6.4 Local estimates

In this section, we study the local estimates of (6.1) - (6.2) which have already
known from [26] for all s > 1.
Let f; be a nonnegative function such that

filri, &) = (1 + (= 1)'€) 2 (&) 2|7, €)|.
Let 7y = X2 75, & = 23, (—1)"71&. We consider ([2], [30] and [39])

Sy (7 + (=1)°€) = 2(6 — &)(61 — &)

—_—

We use the operator J® = J7 in space variable, which is defined by J*f &) =
(€)*f(&) and we will use the same notation in time as J* = J;.
We recall the transformed equation of (6.6) - (6.7) that

Vv — i, = N(v), (6.26)
v(0,2) = wvy(x), (6.27)

where

- 2T
Nw) = — <vvx - i/ 2Im vvxde) v(t, x)
2m Jq

1 2m
: 4 L 4
+i <|v\ 472/0 |v| d@) v(t, x)
- 2 ) ) 1 2T )
—z(/o |v|*d6) (\v\ - %/0 ] d@) v(t, x).

In Lemma 7.1, we shall estimate the expression of Proposition 6.2.4. In that
case, it is not enough to use the spatial norms such as ||{v||y1, hence we shall
use the space-time norms such as ||Iv||z. For that purpose we prove the local
existence of solution in time. Before we start local existence theorem, we set

u := Iv. Then (6.26) - (6.27) become

U — Uy = Z(N(v)), (6.28)

u(0,z) = wup(z), (6.29)

Theorem 6.4.1. Let v be a global solution of (6.26) - (6.27). Assume that for
some 0 > 0, |[Tvo||mr(ry < 0. Then, there exist two positive constants T and C

such that
[TVl 2, (~1.11xT) < C,

where C' is indepentent of N appearing in the definition of I.

Theorem 6.4.1 is a consequence of the following two lemmas. The first lemma
is for the estimates of homogeneous and inhomogeneous problem. See [2], [15],
26].
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Lemma 6.4.2. Let s € R. Let ug € H*(T). Then

XU )uollz, S lluollmn)

t
IIX(t)/ U(t = s)I(N(v))dslz, S TTN(W)llx, , + TN @)y -
0 2
where x € C§°((—2,2)) with x =1 in [—1,1] and supp f C {(t, z)||t| < 2}.
In next lemma, we prove the multilinear estimates as follows.

Lemma 6.4.3. Let v be the Schwartz function with spatial periodic. There exists
¢ > 0 such that for T € (0,1], then

. 3
HI (vl_axvzvg - %(Jm / vl_axUQde)v3<x)) ST, . (6.30)
T i=1 ’

X177

N

Proof. We take the Fourier transform on the left hand side of (6.30) to have
V10, U903 — L(Im /vlaxUQdQ)vg(x)
2 T

- /£4£1£2+§3 E0(&J0(&)D(&3) + i&v(€)D(61)D(&).

§1784,847€3

Assume that each of ¢; is nonnegative. We have to show two main parts such
that

3
5T€’Humiuxlé (6.31)

1 (fxl [ |52|@<slfv<sg>@<53>>

§17€4,847E€3 X

1,—

[N

and
11 (F g€ ||

We first prove (6.31). We can write the left hand side of (6.31) as

w\»—A

3
ST] I1villx, , - (6.32)
=1

H<§4><T4 +E) 2Rl (fxl Llslmsg @@(&fv(@)ﬁ(@))
§17€4,647€3

L2L2

P (E12) (€10 (€0) (T2 + €37 Fm(E4) €] (€1 o (£2)0(E3)

L2L2

by definition of operator I and [, denote the integration over the measure (7, +
To+ 73+ 74)0(&§1 — & + & — &4). Applying the Plancherel and duality, we have to
show that

/ (512) (§14) m(Es)(Ea) || TTL,
(ra+ €32 Tos, m(&)(&) (mi + (—1)ig2)z
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where all of f; are real and nonnegative functions .

Case(1). If
migEel
[T m(&)(&) ~

?

we need to show that

/ [T, fi(m,&)
Ara+ E)IIIL (1 + (—1)i€2)z

We apply the Cauchy Schwarz inequality for left hand side of (6.34), then

4

STII e e - (6.34)

i=1

Hf  filmi, &)

A+ &2 [T (i + (—1)i€?)
H?:1fz‘(7'z‘7§i)

(ra + €)M, (13 + (—1)i€2)=

3

= [1fallz,nz 1ra + €072 [ [{€)m(€)B(E) 2,12,

=1

< [1fallzz, 2z

T4y

2 72
LT4L§4

We use the L* dual Strichartz estimate to obtain

3

H<T4+£i>7%H<£i>m<£i)@(£i)”L$4Lg4 = (Jelv))(JoTv2) (JeTvs)lx,
=1

< CH(Jx[/lll)(JxI’Ug)(Jxlvg)”L% 4
< CH3 1HJ IUZHL4L4

We finally use the L? Strichartz estimate and Sobolev embedding in time to get
the desired estimate,

| oTlliges < CllTvllx, , < OT7|[Tvllx, -
'8 2

Case (2). We may assume that

m(&a)(€a)| ol
[T m(&)(&)

for [&1 — &| > 1, |& — &4] > 1. We note that [2], [30] and [39]

max;_1234|Ti + (—1)°&| > &1 — &|& — &) (6.35)

>1

on the set 7 + 7+ 713+ 74 = 0. We consider the following four subcases according
to the one of (7; 4+ (—1)'€?)'s is the largest. Case(a) if max;—1 934(7; + (—1)'¢?) =
(14 + &) and case (b) if max,;—1 23 4(m + (=1)'67) = (17 + (=1)’&;) for some
j=1,2,3.
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We divide two regions such that |&] < 21&] < |&] and [&5] < 3]&| < &) In
both cases we see that the inequality (See [8]-[9]),

m(€a)(€a)'* <1
[T m(&) (&) ="~

for all € ..., & such that & — & + & — & = 0, since m(§)(€) is increasing in [¢|
and m(£)(¢) = 1. Hence it is enough to show that

(6.36)

(€4)°(E2)0(&12)p(E12) - el < - . 637
[@rw@ﬂﬁﬂ@wn+hnﬁﬁ11”“&)N;U”@% (6:37)

Subcase(i). In the region [&;] < 1[&] < |&.

We may assume that |§; — &4 < [ — &| on the set & — & + & — &4 = 0.
Since |&4] < |& — &, we have || < 1[& — & < 5|& — &|. We observe that with
s=1+e

2 ’

(€4)°|E2| < &8 - £2)' 7+ (&)™)
(&)5(62)% (&) — (€1)%(6s)*
26 — &) (& — &)2

(€1)%(&s)*
On the other hand, we assume |§; — &4] > |§1 — &, then

(€4)°[62] (€a)°((&1 — &) + (&)
(E1)5 (&) (&) ™ (€1)5(&2)%(&3)°
(€4)° (&1 — &2) (€4)°(61)

S +
™€) ()(a)s (1)t () (Es)®
— B+C.

< = A.

A

In case B, it is clear that
(€ —&) _ (6—6)2 (& &)
(1)*(&a)* — (&1)%(&2)° '

Now we consider the region C', we divide in two subregion such that C' = C + Cy
where C for | —&| > lio|§1| and Cj for |& —&| < %|§1| When [&; =& > %|€1|,

B<

(6 - &) _ (G- &)HE — &)
C .
= <£1>8<§2>5 = <§1>s<§2>5
We next consider the region [& —&| < 5|&i|. In this case we see [&1] ~ [€a] < [&]
and so that e 1
Cy = 47 \St < <
T Er@rar S~
since s > %
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Subcase(ii). &3] < 3]&| < |&]. We used the same idea as subcase (i).

Now it is turn to prove the following cases.

Case (a). We first consider in the case of max;—1234(7i +(—1)'€?) = (14 +&3).
We apply the multiplier estimates of case (i) except Cy, hence we have to show
that

/ Hf;l fi(Ti, &)
« (€1)*(€a) Iy (73 + (—1)%€7) 2
We apply Holder inequality, the left hand side of (6.38) becomes

4
ST T il e (6.38)
=1

/ [T, fi(7:. &) 1

w (1) (&) T (13 + (—1)i67)>
‘ﬁ; ( f2(T27§2)1>

L3LE <7-2 + 5’22>5

| Fia fallrare

L8L8

LiLg

4
STl ere.
i=1

by Sobolev embedding for f; and f,, L* Strichartz estimate for f, and finally we
use again the Sobolev embedding in time, we get the desired estimate.

Case (b). Now we consider the case of max;—; 234(7;+(—1)"¢?) = (Tﬁ—(—l)if?)
for some j = 1,2,3. We use case (i) except the region Cy. For j = 1, hence we
need to show that

/ Hle fi(Ti> fi)
DG+ )3 (e — )2+ D)

4
<7 H [ fill 2L (6.39)

=1

N[

By Cauchy Schwarz inequality, we have that

/ I, 1fi<Tia€i) : :

A& (&) + &) (m — )2 (13 + £3)2
H?Zl fi(Ti> fi)

(€1)*(€a)* (i + €2 (r — E)2 (15 + €3)

< I fallzzz2

2 2
2,12,
Now we need to prove that

H H?:1 fi(Ti,&)
(€1 (&) (u+ &) (r — )3 (15 + €3)

3
<1 Tlrwdlx,, - (640)
=1

N

L212
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We can rewrite the left hand side of (6.40) as

A

(77T Ton) (TeTva) (" Tus)x, < (T " T o) (JoeTw2) (™ Tos) | -1z

1
S 02 IUlHLng HJzIU2HL§L;{,
||y~ Tvs| s rs

/
S TlHullx, , [ Tvellx, , [Hvsllx,

~

by Sobolev embedding in time for the first inequality and the second is used by
Holder’s inequality with p > %. We fix p = 2 to get the best estimate what we
desired. We note that the proof of multilinear estimate (6.37) for Cy region is the
same as case (1). Now it is turn to prove (6.32), it is enough to prove that

1T (FHIelo€u© @M |y, , S T° H |vilx, ;- (6.41)

=1

We can rewrite the left hand side of (6.41) as

/ (€)*m(&) f1(11,8) fo(T2, &) f3(13,6)
in=0 m(€)H€)* [Ty (mi + (~1)¢2)s+

/ fi(r1,€) (72, ) f5(73,§) (6.42)
. 1 °
siin=o [hio(m + (=1)€2)s*
since m(& > 1. By Young’s inequality in time, (6.42) is bounded by
f1 71, fa(72,§) f3(73,¢€) (6.43)
p§ (T2 + €25 || g |[ (s + €257 || ¢ .

Then we use the Hélder’s inequality for two of vis in Lg and other in Lg.
Then (6.43) is bounded by

fl 7_17

€2 3+

f2(7—27 5)
(1o — €2)3*

f3(7375)
(15— €2)3*

6
L5

7'1 Loo

6

L5
T2 LgC

6

L3 2
T3 LE

We get the desired estimate by using the space time Sobolev embedding.

Lemma 6.4.4. Let v be the Schwartz function with spatial periodic. There exists
¢ > 0 such that for T € (0,1], then

HI (’01%1}3 - %(Im/m%dﬁ)vg(x))
T

3
§T€/H||]vi||xlé, (6.44)
i=1

Y1,-1
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Proof. We apply the same idea of Lemma 6.4.3, hence we need to prove two main
parts as follows.

(Em(E)e(&)e(&a)l&l T, filri, &)
Ara+ EN I m&) (&) (i + (—1)ig2)z

3
<7 T Itullx,, (6.45)
=1

172
LT4L€4

where all of f; are real and nonnegative functions and f* denote the integration
over the measure (13 + 7o + 73 + 74)0(§ — & + &3 — &4) and

11(F el (T 2s@ ) lIv - < T [ 1wl , - (6.46)

i=1
Now we prove (6.45). Case(1). If

migENe]

[T m&)e) =

by using Cauchy Schwarz inequality in the left hand side of (6.45), then

2-1-) [Tio) film, &)
et o | g T+ e

=1

2 2
L2 12,

The claim is the same as case (1) of Lemma 6.4.3, we obtain desired estimate.
Case (2) We may assume that

m(&a)(Ea)|Ea|
[T, m(&)(&)

for [€1—&] > 1, [& — & > 1. We divide two regions such that [£;] < 1[&] < |&
and [&;] < 1[&] < &) In both case we see that,

m(Eg)(Ea)' <1
[T m(&) (&)~

for all £ ..., & such that § — & + & — & = 0, since m(§)(€) is increasing in ||
and m(£)(¢) = 1. Hence it is enough to show that

>1

<§4>S<f2>90(§12 514
A+ &) TTL (&) (i + )z Hfl mir&i)

3
<7 [zl -
=1 ?

(6.47)

Lr g,
We note by [26] that,

(i + €3 > clm — %(m + &) (m — E)°(6, — &)273(& — €)77%,  (6.48)

where ¢ is sufficiently small. We may estimate the Fourier multipliers as Lemma
6.4.3. We divide the following two regions such that (i) |&] < 1[&] < [&] and

(i) [&1] < 1[&] < )&

63



We first recall the the multiplier estimate of Lemma 6.4.3

(€4)° (&) c Aa -GG -g):
(Ta + &) (&) (&a)s ™ <T4 + §4><fl>s &3)° (T4 +&3)
— L 1D (6.49)

Here it is enough to consider only case max;—; 234(7; + (—1)7€?) = (14 + &) and
the other cases can be controlled as (6.39).

Now we consider the region [£3] < %|§4| < [&1| on the set & — &+ &3 — &4 = 0.
We have |4] < 2]& — &, then

[€allér — &a| < 2161 — &l — &ul.
If |&5] < |& — &, then

o] < [& — &l + 6] < 26 — &l
We conclude that [§p]|€] < 4[§1 — &2l — 4| We see that (6.48) becomes

3
(4 +€&)7 > H Ti+ ()2 (gg) 27,

Then
1

[ < 1 1 .
T (i (1)) ) (€) ()
If |&3] > 1€ — &4, then |&| < 2|&5]. Thus we obtain

(€4)°(E2) < 1 < 1
(Ta+ €615 (62 (&) ™ (T +E0)(E) > ~ (Ta +&5)

This case and Iy can be controlled as case (1). We need to show (6.47) for I
region,

H§:1 fz‘(Tu fz')
&) (&) (&) (&) T T (s + (—1)igd) e+

3
<7 T v, -
=1 2

L2,
(6.50)
Fix £ and we apply Young’s inequality for time, then
3 3
/ H fi(Tiagi)Q — H fz Tz,fz)Q o (6.51)
Z?:l 7i=0 ;—1 <Ti + (_1)1@ > 2 i=1 5 > LY
By Cauchy Schwarz inequality

f(7.8) 15 f(7.€)

il <|r+€5)7272 1z 3 (6.52)
<T+§>2 LT <7—+§2>2 L?



By (6.51) and (6.52), left hand side of (6.50) becomes

Tl &)

g —sg 5 2—‘,—355 %+35 L\ Z. .
S A 1 | e el

1 54

3
B Ut fi(Ti, &)
< 3130 4 5 5 2+39
S 1€ Izz, {[€€1) " (€s)"(&2) E ot (1)) ne
t ey
fi(73,&) Ja(72,&2)

<1l

i=1,3

Y

> 3
L2,L¢

(r— e (72 + €3)2 ()2

by using Holder and Young inequality. Next we prove that
‘ filTi,&)

2 13
L2,

< ||<$z~>_5||Lg4||<T¢+(—1)i$§>_gfi(n,&)HLgiLz

3
L2, L3

(5 + (—1)ig2) 2 (&)*

—

43) (i + (=1)'€2)2 3 Toi(mi, &)l 12

S
< T6'||]v,~||XL%, (6.53)

we get the desired estimate. Similary, one can show that

1 (7 {1for(€)02(8)33(6)}) vy S Tg/H?:JIIMIXL%-
O

Lemma 6.4.5. Let v be the Schwartz function with spatial periodic. There exists
¢ > 0 such that for T € (0,1], then

|t = [ 1oy

Fix n = 2, taking Fourier transform, we have

Ful (0172 — /Em@)vz)] = /g_g o (&1 — &2)01(&1, 1) 02(Ea, T2)03(E3, T3).-

ST, , (6.54)

X, _1nY1,1
)

where n = 2, 4.

By Plancherel and duality, it is enough to show that

(512)<£4> (0 ITi, film &)
AT+ &) TI ml&) (&) (m + (—1)€d)?

where all of f; are real and nonnegative functions and |, denote the integration
over the measure §(7; + 7o + 73 + 74)0(& — & + &3 — &4). We first assume that

m(£4)(€a)|S2] 1
[T m(&)(&) ~
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In this case we use Cauchy Schwarz inequality on the left hand side of (6.55),
then

Pl&ra) (Ea)m(&) 1., fi(7:, &)
T+ £33 Hl L& €N (T + (—1)i2) 2

T4+ & _§fi T3y &i
< Wllos e [T T SR
o (mt (=) 12 12
T47Ey
Thus we can show that
3
fi Ti7§i
H ( ‘)2 T (Tmfz)
=1 <Ti + (_]‘>’L§l>2 b'e L?L§

T2

The desired estimate follow by Holder inequality, L* Strichartz estimate and
Sobolev embedding in time.

Next we may assume that % > 1. Here we know that

mENEN
H?:1 m(&) (&)~

for two region such that || < 3|&| < |&| and [&5] < £1&| < [&]. Hence it is
enough to show that

/ @(€12)<€4>S Hz 1fz(7_z;€z
T+ )2 [T (&) (i + (—1)i¢2)z

By undoing the duality we can write

(0152—/01@2)03
T

We consider two cases. We first assume |3 = max;—; 23 |&], then

(U1@2—/U152)03
T

On the other hand, if |£3’ S max;—1.23 |£z|7 then

(U1@2—/U152)U3
T

by using the fractional Leibnitz rule, Hélder and L* dual Strichartz estimate.
Similarly, we can prove that

' {0y — /T oT2)us)

We may prove for n = 4, if we use more Sobolev estimates. O

< H||fz||L2

ST o lx

vzl x

t\’:\»—‘
l\')

3
8

31
82

X

5,—

[

< lvillxs 5 llvellxs 5 llvsllx

33 33 5.3
8’8 8’8 '8

X, 1

)

< lvrllxey g llvallx, 5 llvsllxy 5
8’8 ’8 ’8

oo

X _1
S,—j

ST ol .
Y1,1 b3
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It is now turn to prove Theorem 6.4.1.

Proof of Theorem 6.4.1. Fix T > 0, to be chosen later. Let Ivy € H!, there
exists a constant # > 0 such that ||[Ivy||g1 < 6. Consider the set B = {Iv € Z; :
|1 1v||z, <2C8} for some constant C' > 0. We have

H(Io)(#) = XU (#) o + ix /0 U(t — )TN (v))(s)ds.

We assume that ||xIv||z, =~ ||Iv||z, (~71)xT). We then apply Lemmas 6.4.2, 6.4.3,
6.4.4 and 6.4.5 to have

IHUI Nz (-rrixry < ClHwollzr ey + CT (L + [ 10l| 2y =m0 1, e -

We choose T' small enough so that 7' < (8C30(1 4 208)3)~'/¢. We note that T
depend only on |[Tvg||z:. This completes the proof of Theorem 6.4.1. O

6.5 Estimates of \,,,n =4,6,8.

In this section, we compute the following main estimates.

Lemma 6.5.1. Let v; = v;(z,t) be the 2w \-periodic function with A< N for any
0 come from local theory, then

)
/ An(Mn(é.lagQ:"'?Sn)) 5 N_l_)\_1+||]1)||%17 (656)
0

where n = 4,6, 8.

Lemma 6.5.2. [8) We consider the following multiplier terms

Mé(fav T 756) = {‘P(fcfd)Mﬁl(gau §b7 £cdea £f>£d - 90<€dfe)M4(€a> fln fa fdef)fe}syma

Mﬁ//(fap Tt ;gf) - {M4(£ab07£d;€e7£f> — M4(£a; £b7£cagdef>}sym
and
o6(E1,- -+ &) = miEY —miEs + ... — mg&

then the following inequalities are hold:
(i) If |&] = N, then |Mg(&1, &2, .., &6)| < mM(Nimaz)* Ny
(i) 1f |&] < N, then |Mg(&1,&a,--,86)| < NipaeN3,

(iii) | Mg" (&1, 6)] < Nunaem?(Nomaz) -

where Mg = M + o¢ and {1,--- ,6} ={a,---, f}.
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Proof. The proof of (i) follows from (6.22). For the proof of case (ii), we shall
consider two cases and assume that Ny > --- > Ng. .
Case (1). Ny ~ N,. Then

o6(&1, -+ &) S m(N1)>NiNig + m(N3)> N3
SJ m(Nl)ZNlNg.

Apply (6.22) to estimate M, then

|M4(€abca§d7§e7§f)§g| SJ m(N1)2N1N3 (657)

for every a,...,g € 1,--- ,6 and g # 1,2. Thus,

Z My(&a21, &as e §5)&2 + Ma(&as €210, Ee, §1) 61

(a,e)={3,5}
(d,f)={4,6}

+ Z M4(§a, §126 e, ff)fl + M4(§a, &b, §12¢5 ff)&

(a,c)={3,5}
(d,f)={4,6}

+ Z My (&as Eps S12es E7) €2 + Ma(Eas &b es S127) 6

(a,c)={3,5}
(d,f)={4.6}
4
+ Z M4(§a2ca§d>€l7£f)£2 +M4(§a7§2a§c7§dlf)£1 = ij
(a,e)={3,5} =1
(d,f)={4,6}

The function My in ¥?_; are strictly smaller than % and by (6.22) then
Y3 I; < NiNs.
We use (6.24) and the symmetry of My, then
Iy < NiNs.

Case(2). N1 ~ N3. We need some cancellation between the large terms coming
from o4(&1, ..., &) and the large terms of the sum of the My. From (6.57), then

Wy(6r, o &) = —mdet+migh

_% Z M4<£a7€b1d,€3,£f) +M4<€a7€ba€37£d1f)

(b,d,f)={2,4,6}

_% Z M4<£a,£b,§1,€d3f) +M4<€a7€b3d7£17€f)>

(b,d,f)={2,4,6}
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We use (6.25) and the symmetry of My,

Wy(6r, 1) = —g(miEh + mig)

&1 §b1d +&hy)

(b,d,f)={2.,4,6}

&3 Z m3 fd?,f + &fsq)
b, f)={2

( that) = 7476}

= ——(mig} + m3g;)

"’i Z m3(&ha + &hy) ) + O(N1N3)

(b,d,f)={2,4,6}

1
"’5 Z m3 (s + Eisa)
(bdof)={2,4,6}

= —5m3 Z (Eha +Ehp) (& —Elpy)
(b.d,f)={2.4,6}

1
_ﬁm% Z (533f + Eiaa) (6 — Eza) + O(N1N3)
(b,d,f)={2,4,6}

We obtain .
Me(&,- - ,8&) S N1 Ns.

Finally, M, is consequence of (6.22). O
In our proof, we work with the Littlewood-Paley decomposition. We may
restrict the frequency of 0; is as |¢;| ~ N; according to the dyadic decomposition

and assume that Ny > Ny--- > N;, i= 4, 6, 8. When all frequencies are smaller
than N, the multiplier M;, 7 = 4,6, 8 vanish over the integral of A;.

Lemma 6.5.3. Let v; = v;(t,z) be the 2w A-periodic function with A< N for any
0 come from the local theory, then

)
| aagen ,gn»\ < NA S, (6.58)
0

Proof. 1t is enough to consider the following three cases.
Case (1) Ny > N > N;. By Lemma 6.5.2 we can rewrite the left hand side
of (6.58)

/ m Nl Nlm NQ NQH 1/02

/ / N1[U1NQIU2]U3H 4[1}1
m(Ny)
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Since m(N;) ~ (N;)*"1N'=% with j = 3,4, the above estimate is bounded by

5
N2(Sl)/ / T2 (N3 Tvg (N3) '~ (Ny) '~ TousTg
0

Using the Holder’s inequality, L° for Tvy, Ive, Ivs, [v, and L'° for vs and vg. Then

5
/A6(Mé(§17“',§6))’ S NPTy T Tvill g s jms al T v o1
0

X sz:5,6 ||’Uk ||L%0L7100 .

We then apply the Strichartz estimate for L® and Sobolev embedding for L.
We get the estimate

5
/ Ao(Mg(&r, -+ 756))’ S NI (1]l x, i
i ,

Case(2). N3 > N > N,. By Lemma (6.5.2), the left hand side of (6.58)
becomes

' [0 [ Num(v vy

By the fact that m(N3) ~ (N3)*"IN'=% and Holder’s inequality, we have

é
< N*T! / /'f?(t)lelezI_nglSIU3H?=4W
0

N=H|[JTvy J Tog|| 2210 () T Togvall 1212 izs 6| i || oo 12
Since Ny + N3 ~ Ns, applying (3.14) for vyv3 and vyvy, we get

1 I
NS 4 ) T Tulx, , 1 Tvsllx, (1T Toallx  lloallx,  Tizs sllvill sge ee
A N2 ’2 2 2 2

Since A < Ny we see that
F RS e e e A P T P e
X lvallx, , Mimsslvillx, 4 -

Furthermore, since vs and vg are of low frequency and (7 — &%) < N, we obtain

5
/ Ne(Mg(&r, -+ 756))’ S N717A71+A0+H?:1HIU1'HX1 X
0 '2

Case (3). Ny ~ Ny > N > N3. By Lemma 6.5.2, the left hand side of (6.58)
becomes

//n(t)Aﬁ(Mé(&, R 756))‘ < //n(t) | Ny Tvy Tva N3v3UsvsTg| -

As in the proof of case (1), we prove that

é
[ [ a0 o) < N,
0 |
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Now we are ready to show the estimate of Ag(Mg ).

Lemma 6.5.4. Let v; = v;(t, x) be the 2w A-periodic function with A< N for any
0 come from the local theory, then

/ Ae(M. (6 ,g6>>\5N—1—A—1+||fv||%l. (6.59)

Proof. We can rewrite the left hand side of (6.59) as

/6 ( (51’ , ' / / N1[U1]U2]U3Hl 4U; .
0

In case(1) N3 > N > Nj.
Since m(N3) ~ (N3)* "' N'~* then

0
[ A0y 6 )| S NI 0Tl
0

S NN, el

5 5 °
12°12

|

In case(2) Ny > N > Nj.
By Hoélder’s inequality,

5
/A6(M6<€17"';§6)>‘ ,S N71H1U1U3”L?,xHn(t)IU2v4”LfL§Hi=5,6“UiHLfOLgO~
0

Then desired estimate follows by (3.14) and Sobolev embedding,

4
/ Aﬁ(Mg(fl"" 766))‘ < )\0+N 1— A~ 1+H[UHX R
0

lO

O
Lemma 6.5.5. We consider the Mg multiplier
Mg (&1, &s) = { Ma(&r2345, §65 €7, §s) — Ma(&, 2, €3, Saser8) sym
then
[ Ms (&1, 1) < Ninaa® (Noaz)-
Proof. This lemma is a consequence of Lemma 6.21. ]

Lemma 6.5.6. Let v; = v;(t, z) be the 2w \-periodic function with A< N for any
0 come from the local theory, then

)
/ As(My(Er,- -+ &) S NTA 1w, (6.60)
0
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Proof. 1t is enough to consider two cases, case (1) N3 > N; case (2) N3 < N.
When all frequencies are smaller than N, we observe that Mg vanishes over the
Ag integral.

In case(1) N3 > N > N,.

By Lemma 6.5.5, we can rewrite the left hand side of (6.60) as

NiTv TvgTvsII8 v,
/ A8 (51 ) 7 / / ‘ 1 U2 U3 i=1Yi .
0

since m(N3) ~ (N3)*"IN'=¢ then
S /\0+N_2H?:1||J]Ui|’L§LgH§:4||Uj||L§0L§0

1)
/ A8(€17“' a§8)
0

In case(2). No > N > Nj.
By Lemma 6.5.5, and the Holder’s inequality,

1)
/ AS(gla"' a§8)
0

Then desired estimate follows by (3.14) and Sobolev embedding,

1)
/ A8(£17"' a§8)
0

~ 9 °

S NEn el ,

S N7 Tvwsl gz [Hv2vall 2 2 T s [l oil e e

< NN
2

]
Lemma 6.5.7. Assume that
04(£1,62,63,84) = m%f? - m%& + m§€§ - miﬁ-
We prove the following cases
(i) 1&l, 1621, |€] = 1> |€al,
(i) [&1], €] > 1> (&), &4
then
|04(§17§27£37§4)| 5 mr2nax|€1||€3|‘
Proof. 1f |&;] < 1 for (i=1,2,3,4), we may easily seen that o4 is vanish.
(i). By DMVT, we obtain
04(€1, 60,65, &)] < mi|& — &l& — &
S m?nax|£maX|2'
(iii). We may assume |§; — &| < 2|&3] by symmetry and MVT
04(&1. &2, 85, 80)] < milé — &||&] + (& — &) (& + &)
S Mia [61]1€3] + &1 [€].
U]
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Lemma 6.5.8. Let v; = v;(t,z) be the 2w A-periodic function with A< N for any
0 come from the local theory, then

é
/ A4(O’4<€1,"' ,54)) SN_I_)\_I—’—HI’U”%l. (661)
0

Proof. Tt is enough to consider two cases, case(l) N3 > N; case (2) N3 < N.
When all frequencies are smaller than N, we observe that o4 vanishes over the A4
integral.

Case (1). N3 > N > N;. By Lemma 6.5.7, we may rewrite the left hand side
of (6.61) as

)
/A4<U4(£17£27€3>€4))‘ S N1[’U1N2[U21)3’U4
0
SN 1H77 () N1 TviN3Tvs|| 22 || NaTvavsl| 212
a1 1
S N 1+(X+E)1 Mizi 2| villx, y [[Ls]lx,  Jvallx,
< >\0+N_1)\_1+H[UH§(11,
2

by Holder’s inequality and the L* Strichartz estimate, we get the desired estimate.
Case(2). Ny ~ Ny > N > Nj. By Lemma 6.5.7, we may rewrite the left hand
side of (6.61) as

) )
A4(04(517§2,§3,§4))‘ N /N1[U1[U2N3U3@_4 :
0 0

We apply (3.14), Holder and Strichartz estimate, then

2

)
/ A4(a4(§1,§2,53,54))' S NNl
0

Now we are in a position to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. Let ug € H® with 1 <s<1. Let uy(t,z) = X" 2u(t/\?, z/)),
where A > 1. By Plancherel,

1-s

N
10: Lur(0) [ 2 < =5 lw(0)]

Hs-

We choose A ~ N5 for L 5 <s <1 which implies A < N. Then we see that
[Tux(0)[[ar S 1,

~

since the initial data is in H?®.
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We use Proposition 6.2.4 to have

EX(t) S EX(0) + /6[A4(M4) + Ao(Ms) + As(Ms)]dt.

By Lemma 6.5.1, we have that
B (1) S EX(0) + NTUATH ([ Tollz, + (1Toll, + [17vl1Z,).
Now we apply Theorem 6.4.1 to obtain
E%(t) S E%(0) + N7 (0% + 6 + 6%),

for any t € (0,1). We may assume 6 > 1 without loss of generality. By iteration,
we can prove for all ¢ € [0, 77,

E%(t) S Ex(0) + N7'7oATHT68.

Here we can choose the size of time T such that TN~'"A7'* < 1 and take
N = N(T) that for ¢ € [0, N*TA7],
NY A > 2T

1—

T < N1+>\—1+ ~ Nl—( SS)+ — 00

asN—>oo,ifs>%.
Hence the proof is completed for global well-posedness with s > % O
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6.6 Notes and references

Equation (6.1)-(6.2) describe the long wavelength dynamics of dispersive Alfvén
waves propagating along an ambient magnetic field and satisfies the infinitely
many conservation laws [38]. It is known that the global well-posedness in H*
regularity is obtained via the laws of conservation of mass and energy. In the
real line case, N. Hayashi and T. Ozawa [24], [25], [34] prove the global well-
posedness in H' assuming the smallness condition |[ug|[72z) < 27 . This result
was improved by H. Takaoka [40]. He proves the global well-posedness in H*® for
5> % and the argument is based on the Fourier truncation method of J. Bourgain
2], estimating separately high and low frequencies of initial data.

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao [8] improve the
global result for H*, (s> %) which satisfies the small initial data in L? with I-
method. In [9], the same authors modify the energies in almost conservation laws
and extend the order of dispersive derivative operator (0; —i0,,), then the global
result for H*, (s> %) except the end point is obtained. In their proof, a bilinear
refinement of Strichartz estimate is a central tool and they use the space X,
with b > %.

In the case of periodic, S. Herr [26] adjusts the gauge transformation for pe-
riodic setting and proves the same local well-posedness result as H. Takaoka [39].
He uses only the L* Strichartz estimate because of the absence of local smoothing
and he also shows a global well-posedness in H*(s > 1) via conservation laws.

The crucial differences between the periodic and non-periodic cases are the
condition of gauge transformation and the dispersive properties of solution. Due
to gauge transform with periodic setting the transformed equation has new non-
linear terms which do not appear in the real line case. In the periodic case, one of
difficulties is how to handle these new nonlinear terms of transformed equations.
We use the structure of the equation to cancel some additional terms out, when
we consider the differential equations associated with the almost conservation
laws. See section 6.3.

As the absent of local smoothing (a sense of weak dispersive properties) in
periodic setting, when we consider the local well-posedness of DNLS, the L*
Strichartz estimate with the loss of € > 0 derivative is only available to contral
derivative in nonlinear terms. In the case of global well-posedness, we found
again the difficulty that the order of dispersive derivative (0; — i0,,) could not
extended to get a good decay like a real line case. To get over this we consider
how to handle the interaction between two functions with frequency of the same
order. See section 3.3.

We use the same idea of the proof of local estimate as in [23], [26] and [39].
The proof of Lemma 6.2.2 is used the same idea as Lemma 3.6 in [9]. In the
statement of Proposition 6.2.3, we use the same notation as in [8]-[9]. Lemma
6.2.4 is Lemma 3.8 in [8]. The M, multilinear estimates of Lemma 6.3.2 and 6.3.3
are Lemma 4.1 and 4.2, Mg multilinear estimates of Lemma 6.5.2 is Lemma 6.4
in [8].

It is known that when u solves the initial value problem (6.1)-(6.2), ux(t,z) =
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Azu(\2t, Az), for all A > 0, is also a solution. We have | D3ux(0)[| 22 = A*[| Djuol| 22,
hence the critial regularity for the scaling argument is L? but it is still open. We
see that low regularity problem is easy to extend from local to global in time
by using conservation laws. When one work the Cauchy problem under scaling
invariant regularities, example below L? and H!, the almost conserved quantities
is essential to extend a local to global theory. Here we notice that conservation

laws are based on L? space, hence they do not yield in general LP based norms
for global.
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