GAUGE THEORY ON INFINITE CONNECTED SUM AND MEAN
DIMENSION

MASAKI TSUKAMOTO

ABSTRACT. We study the geometry of infinite dimensional moduli spaces coming from
the Yang-Mills gauge theory over infinite connected sum spaces. We develop the tech-
nique of gluing infinitely many instantons, and apply it to the evaluation of the mean

dimension of the moduli spaces.

1. INTRODUCTION

Nonlinear analysis on non-compact manifolds is a challenging research field. We study
the infinite energy Yang-Mills gauge theory on certain non-compact 4-manifolds (infinite
connected sums of S%).

Let I" be a finitely generated infinite group with a finite generating set S. We suppose
that S does not contain the identity element. We consider the infinite connected sum
space (S4)FI5) by gluing the copies of S* “along the Cayley graph of (I', S)”. (Its precise
definition will be given in Section 2.) (S*)¥I') is a non-compact 4-manifold. T' natu-
rally acts on (S*)*1%). For example, if (I, S) = (Z,{1}), then (5*)*"% is conformally
equivalent to S3 x R.

Fix ¢ > 0. We want to study SU(2)-ASD connections A on (S*)*9) satisfying
|Fal;ec < c¢. (Here we consider “L>-norm condition” for simplicity of the explana-
tion. We will consider more general conditions later.) Since the base space (S*)*19) is
non-compact, such ASD connections can have infinite L?-energy, and their moduli space
M can be an infinite dimensional space. The moduli space M admits a natural I'-action.
The main subject of this paper is the evaluation of the “mean dimension” dim(M : T').
Mean dimension is a notion introduced by Gromov [8]. (See also Lindenstrauss-Weiss [10]
and Lindenstrauss [9].) Intuitively, the mean dimension dim(M : I') is given by

dim(M : T') = dim M/|T|.
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(We give the precise definition of mean dimension in Appendix B.) In particular, if M is
a finite dimensional space (in the usual sense), then dim(M : I') = 0. Hence the value of
dim(M : T') has an information about “infinite dimensional geometry” of M.

We study M by using the technique of “gluing an infinite number of instantons”.
Gluing instantons is a famous technique in the gauge theory. (Taubes [12], Donaldson [3],
etc.) In Tsukamoto [13], we studied the technique of gluing infinitely many instantons.
In the present paper we will develop this gluing technique more thoroughly and apply it
to the evaluation of the mean dimension dim(M : I'). The main body of the paper is
devoted to the detailed (rather technical) study of this infinite gluing construction.

The application of the gluing technique to the theory of mean dimension is suggested
by Gromov [8, p. 403, 3.6.6] in the context of (pseudo-)holomorphic curves. Gournay
[7] studies the application of the gluing technique of pseudo-holomorphic curves to the

problem of mean dimension.

2. GAUGE THEORY ON INFINITE CONNECTED SUM OF S*

2.1. Main results. Let I" be a finitely generated infinite group. Let S = {s1,--- 5/} C
I' be a finite generating set which does not contain the identity element. Here we don’t
suppose that S = S™'. Easy examples are (T, S) = (Z, {1}), (2% {(1,0),(0,1)}).

Let S* be the 4-sphere and x, and y, (s € S) be 2|S| distinct points in S*. We
will construct an infinite connected sum (S*)*%) by patching the copies of S* “along the
Cayley graph of (I',.S)”. The following construction is based on the “conformal connected
sum” described in Donaldson-Kronheimer [5, Section 7.2].

Since the standard metric on S* is conformally flat, S* has a Riemannian metric h
satisfying the following:

(i) h is conformally equivalent to the standard metric.
(ii) h is flat in some neighborhood of each z; and y, (s € 5).

Of course, h is not uniquely determined by these conditions. The important condition
is the first one. The second condition is just for simplicity. Let A be a positive (very
small) parameters. For z € S* and 7 > 0, we denote B(x,r) (resp. B(x,r)) as the open
(resp. closed) ball of radius r centered at x (with respect to the metric h). Set

U= 5%\ <|_| Bz, VA/2) U B(ys, \/X/2)> :

seS
For each s € S we choose an orientation-reversing linear isometry o : T,,,S* — T, S*.
For each v € T, let (53, h,) be the isometric copy of (S*, h). Let 2., and g, (s € S) be
the points on S corresponding to z, and y, on S*. SJ has the open set U, corresponding
to U in S*. We define the connected sum (S*)¥5) by

(S4)ﬁ(r,s) — (U U7> / ~,

yel
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where the identification ~ is given as follows; We identify the annulus region B(z. ., 2v/\)\
B(.,6,VA/2) in 52 with B(yys,s, 2VA) \ B(Yys.s, VA/2) in 52, by
B2, 2\/X) \ B(@ys, \/X/Z) 5 &~ 1€ B(Yyss, 2\/X> \ B(Yrs,s1 \/X/Q),

(1) def 2
= 1= \os(§)/|¢I"

Here ¢ and 7 are the normal coordinates centered at x,; and y, s, and we consider oy
as a map from T, S} to T, S5 by identifying T, S5 (resp. T, S5,) with T, S*
(resp. T,,8%). (SY)* 05 admits a natural left T-action as follows. For § € ' we define
§ : U, — Us, by sending p € U, to q € Us, corresponding to the same point in S*. This
is compatible with the above identification (1). This action is fixed point free, i.e., every
0 # 1 in I' has no fixed point.

We choose a [-invariant Riemannian metric g on (S%)*!%) as follows; Let w be a smooth
function in S* such that 0 < w < 1 all over S*, w = 1 in the complement of the balls
B(xs, V) and B(ys, VA) (s € S), and w = 0 on each B(x,,vV\/2) and B(ys, vV'A/2). Let
wy (v € T) be the copy of w defined in S3. We set

g = Z Wo ey,
~yel'
where h., is the Riemannian metric given before. Since the map n = Aos(£)/|€* in (1) is
conformal, ¢ is conformally equivalent to each h. over U,.

We want to study SU(2)-ASD connections over (S*)¥T5). Let ¢ > 0 be a positive
real number and d € (2,400] (d may be +00). Let E be a principal SU(2)-bundle over
(419 and A be an ASD connection on E. We want to study such a pair (E, A)
satisfying

(2) | Fallpaq, g < ¢ forallyel,

where the norm denotes the L%norm over the region U, defined by the metric g. Let
(E,A) and (E', A’) be two pairs of a principal SU(2)-bundle over (S*)¥™%) and an ASD
connection on it. They are called gauge equivalent if there exists a bundle isomorphism
u: F — E' satisfying u(A) = A’. We define M(c, d) as the space of the gauge equivalence
classes [E, A] of a principal SU(2)-bundle E over (S*)¥™*) and an ASD connection A on
E satisfying (2). This space admits a natural right I'-action: For [E, A] € M(c,d) and
v eI, we set

(3) [E, ALy = [y E,v"4],

where 7*E and v*A are the pull-backs of E and A by the map 7 : (S4)¥1»%) — (§4)5I%9),
Remark 2.1. Since (S*)¥™%) is a non-compact 4-manifold, all principal SU(2)-bundle
on it is isomorphic to the product bundle (S*)¥%) x SU(2). Therefore we can define
M(c, d) as the space of gauge equivalence classes of ASD connections on (S4)*1%) x SU(2)

satisfying (2). But the above formulation is more flexible.
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Remark 2.2. An ASD connection A satisfying the condition (2) is a Yang-Mills analogue
of “Brody curve” in the theory of entire holomorphic curves. (cf. Brody [2], Tsukamoto
(14, 15].) A holomorphic curve f : C — CP" is called a Brody curve if it satisfies
|df|(z) <1 (or |df|(z) < C for some positive constant C') for all z € C.

M(c, d) is equipped with the topology of C*-convergence on compact subsets. That is,
a sequence {[E,, An|}n>1 C M(c,d) converges to [E, A] € M(c,d) if for any compact set
K C (819 there exist ng(K) > 0 and bundle maps u, : E,|x — E|x (for n > ng(K))
such that u, (A,|x) converge to A|x in the C*-topology. This topology is metrizable.

From d > 2 and Uhlenbeck’s compactness result ([16, Theorem 1.5 (3.6)], [17]), the
moduli space M(c,d) becomes compact. But I think that this compactness is not so
obvious. In some cases (e.g. (I',S) = (Z,{1})) it directly follows from [17, Theorem E’|.
But the general case needs some clarification. So we will give its proof in Appendix A.

The group action M(c,d) xI' = M(c, d) defined in (3) is continuous. If I' is amenable,
then we can define the mean dimension dim(M(c,d) : I'). (See Gromov [8], Lindenstrauss-
Weiss [10], Lindenstrauss [9] and Appendix B.)

For ¢ > 0 and d > 2 we define Mg1(c,d) as the space of the gauge equivalence classes
of SU(2)-ASD connections [A] on S* satisfying

|Fallsqsin < e

We denote dim Mga(c,d) as the topological (covering) dimension of Mgi(c,d). For d €
(2,4+00] (d may be +00), we set

co(d) :=sup{c > 0| dim Mga(c,d) = 0},
=sup{c > 0| Mga(c,d) = {[the product connection]}}.

We have ¢o(d) > 0, and dim Mga(c,d) > 0 for any ¢ > ¢o(d). Our main results on the

#(T,5)

gauge theory over (S%) are the following. The first result concerns with the upper

bound on the mean dimension:

Theorem 2.3. (i) For any d € (2,+00] and 0 < ¢ < ¢y(d) there exists Ao(c,d) > 0 such
that if A < Xo(c,d) then M(c,d) is equal to the space of the gauge equivalence classes of
flat SU(2)-connections on (S*)*0%) . Hence if (S*)*T5) is simply connected, then M(c, d)
1s the one-point space.

(ii) Suppose I is amenable. Then for any 0 < ¢ < ¢ < 400 and d € (2,+00|, there ezists
Ai(c,¢,d) > 0 such that if A < A\i(c,¢,d) then

dim(M(c,d) : T') < 3|S| + dim Mga(c, d).
The next result is the lower bound on the mean dimension.

Theorem 2.4. Suppose I' is amenable. Let 0 < ¢ < ¢ < 400 and 2 < d < +oo (d
must be finite). If dim Mga(c,d) > 0, then there exists Xa(c,c,d) > 0 such that for any
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A S A2(Q> ) d)
dim(M(c,d) : T') > 3|S| + dim Mga(c, d).

Theorem 2.5. Suppose I' is amenable. For each d € (2,+00) there exists a countable set
A(d) C (co(d), +00) satisfying the following: For any c € (co(d), +00) \ A(d) there exists
As(c,d) > 0 such that if A < A3(c,d) then we have

dim(M(c,d) : T') = 3|S| + dim Mga(c, d).

We will prove Theorem 2.3 and 2.4 in Section 8 and 9. Here we prove Theorem 2.5,
assuming Theorem 2.3 and 2.4.

Proof of Theorem 2.5. Consider the following non-decreasing function
(4) (co(d), +00) — Z~g, ¢+ dim Mgs(c,d).

Let A(d) C (co(d),4+00) be the set of points where (4) is not continuous. A(d) is a
countable set. For any ¢ € (cy(d), +00) \ A(d), if we choose ¢ and ¢ (¢ < ¢ < ¢) sufficiently
close to ¢, then we have

dim Mga(c, d) = dim Mgi(c,d) = dim Mga(¢,d) > 0.
Using Theorem 2.3 and 2.4, we get
dim(M(c,d) : T') = 3|S| 4+ dim Mga(c, d),
for A < 1. O

2.2. Outline of the proofs of the main theorems. The proofs of the main theorems
(Theorem 2.3, 2.4) need lengthy technical arguments. So we want to describe the brief
outline of the proofs in this subsection.

For ¢ > 0 and d € (2, 400], we call § = (E,, A, py.s)yer,ses a (¢, d)-gluing data if the
following conditions are satisfied: Each E, (y € T') is a principal SU(2)-bundle over S3,
and A, is an ASD connection on E, satisfying ||F(A7)||L4(S§’hw) < ¢ pysis an SU(2)-

isomorphism from (E,),. , to (E,,) We can consider a natural equivalence relation

Yrs,s
in the set of (¢, d)-gluing data. For each (¢, d)-gluing data 6, we will construct a principal
SU(2)-bundle E(f) over (S*)*T5) and an ASD connection A(6) on it by using a “gluing
construction”.

The proof of Theorem 2.3 proceeds as follows; 0 < ¢ < ¢ < +00 and d € (2,400]. For
each [E, A] € M(c,d) we can find a (¢, d)-gluing data 0 satisfying [E, A] = [E(0), A(0)]
(A < 1). (This is the most difficult part of the proof.) If ¢ < ¢y(d), then we can (easily)
prove that A(6) is flat. This shows Theorem 2.3 (i). In general, we have

dim(M(e,d) : T') < dim(space of (¢, d)-gluing data : T'),

and the right-hand-side can be estimated as follows. (The following argument is not
rigorous.) Let 6 = (E,, Ay, py.s)yer.ses be a (¢, d)-gluing data. For each v € I, (E,, A,)
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has dim Mg (¢, d) parameters of deformation, and p, , has three parameters (for each s €
S). Therefore the number of “deformation parameters” of 6 is (dim Mga(c, d) + 3|S]|)|T|.
Hence we have

dim(space of (¢, d)-gluing data : I') = dim(space of (¢, d)-gluing data)/|T|,
~ dim Mg (¢, d) + 3|5].

From this we get Theorem 2.3 (ii).
On the other hand, if 0 < ¢ < ¢ < o0 and d € (2,+00) then we can prove that, for
each (¢, d)-gluing data 6, [E(0), A(6)] belongs to M(c,d). (The proof of this facts needs

d < 00.) Therefore we have
dim(M(c, d) : T') > dim(space of (¢, d)-gluing data : I).

Using (5), we get Theorem 2.4. The above argument does not explain the meaning of the
condition “dim Mgi(c,d) > 0" in the assumption in Theorem 2.4. This condition concerns
with the validity of the equation (5).

3. INFINITE GLUING CONSTRUCTION: PREPARATIONS

From this section we will develop a theory of “gluing infinitely many instantons” for
general closed 4-manifolds. Let X be a compact, oriented Riemannian 4-manifold with
prescribed 2|S|-points z; and ys (s € S). We suppose that the metric is flat in some
neighborhood of each z, and y,. Fix a real number p with 2 < p < 4 and define ¢ €
(4,400) by 1 —4/p = —4/q, i.e., L} — L4. (These p and ¢ are fixed throughout the
paper.)

3.1. Infinite connected sum. First we briefly describe a construction of an infinite
connected sum of X. This is essentially the same as in Section 2. But we need to
introduce one more extra parameter N > 0 for several technical reasons. Let A and N be
positive parameters. We choose them so that A < 1, N > 1 and NV < 1. We set (we

follow the notation of Donaldson-Kronheimer [5, Section 7.2])

X =X\ <|_| B(zs, VA/N) U B(ys, \/X/N)> :

seS

X" =X\ <|_| B(z, VA/2) U B(ys, \/X/2)> .

seS

X" corresponds to the region U in Section 2. We define annulus regions (z,) and Q(ys)
in X by Q(z,) i= Blae, NvVA) \ Blzs, VA/N) and Q(y,) = Blys, NvVA) \ Blys, VA/N).
For each s € S we choose an orientation-reversing isometry o, : 7, X — T;, X.

Let X, (v € I') be the copy of X with the points z., s and y, s (s € S) corresponding to
zs and y,. X, has the open sets X!, X, Q(z,s), Q(y,,s) corresponding to X', X", Q(x,),
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Q(y,) in X, respectively. We define X*1%) by

XHDS) . — (I_l X;) / ~,

yel’

where we identify Q(z, ) in X! with Q(y,s,) in X! by

def
(6) Qx45) 3 €~ 1 € Uy s) S 0= Aas(€) /1€
Here § and 7 are the normal coordinates centered at x, , and y.,, and we consider o, as

a map from 7, X,s as in Section 2. I' freely acts on Xt for g € T, we

Try,s

X’Y to Ty’ys,s
define g : X! — X/ by sending p € X! to ¢ € X corresponding to the same point in
X.

Let g, (v € I') be the Riemannian metric on X, which is the copy of the metric on X.
Let w be a smooth function in X satisfying 0 < w < 1, w = 1 in the complement of the

balls B(zs, vA) and B(ys, VA) (s € S), and w = 0 on each B(x,,vVA/2) and B(ys, V'A/2).
We define a metric on X#T9) by
9= wyg,

yer

where the weight function w, is the copy of w. We have

X9 = ) x = | ¥,

verl’ yel

and the Riemannian structure on X*19) is independent of N. Hence the above connected
sum construction is compatible with that in Section 2.

The Riemannian metric g is conformally equivalent to g, over X! (g = mZ2g,) and
satisfies

(7) 1§mV§N20nX;, 1§m7§230nX;'.
Moreover, on each neighborhood of z., ; and vy, s,
(8) N*/% <m, < N? (VA/N < [¢] < VA/NP),

where ¢ is the Euclidean coordinate (in X,) around z.,  or y., .
The important point for the later argument is the following (essentially the same things

are discussed in [5, pp. 293-294]): For a 1-form a and a 2-form § on X! we have
(9) |afidvoly = my~ ol dvoly ,  [¢[Fdvoly = m,~*|E[P dvoly,,
where dvol, denotes the volume form defined by g. Since 2 < p < 4 and ¢ > 4, (7) implies

) < ]1-4/q

o s gy < 1o gy < Nl gy oo, o g,y

< NP

2—4
1t < Winis o) < <8

€y s NEbioorrg < & 1l oy
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3.2. Gluing principal SU(2)-bundles. Let M be a set of (not necessarily all) gauge
equivalence classes of (F, A), where E is a principal SU(2)-bundle over X and A is an
ASD connection on E. We suppose that M can be decomposed as M = MyU M; (disjoint
union) satisfying the following conditions:

(a) My and M; are compact with respect to the topology of C*-convergence. (In partic-
ular, the number of the possible topological types of E is finite.)

(b) For all [E, A] € My, A is a regular connection. That is, the following two conditions
are satisfied: A is irreducible (i.e., if a gauge transformation g : £ — F satisfies g(A) = A,
then g = +1) and the operator dfj : Q'(adE) — QF(adE) is surjective. Here Q' is the
space of 1-forms and Q% is the space of self-dual forms. adF is the Lie algebra bundle
associated with E.

(c) If X satisfies by (X) = bT(X) =0 (e.g., X = §*, CP?), then
M, C {[X x SU(2), the product connection]}.

Otherwise we set M; = (). Therefore M, is the one-point space or empty.

Remark 3.1. Let F := X x SU(2) and A be the product connection. If b*(X) = 0,
then d : Q'(adE) — QF(adE) is surjective. But A is not irreducible. All constant gauge
transformations fix A. The condition b*(X) = b;(X) = 0 implies that [A] has no local
deformation as an ASD connection.

In our application to Theorem 2.3, we need to consider the product connection. The
condition (c) is added for this purpose. But if the reader does not want to consider

reducible connections, you should consider only the case M = Mj,.

Definition 3.2. A sequence (E,, A, pys)er,ses is called a gluing data (or M-gluing
data) if it satisfies the following:

(i) For all v € I, E, is a principal SU(2)-bundle over X, and A, is an ASD connection
on it which satisfies [E,, A,] € M. (Here we naturally identify X, with X.)

(i) pr,s : (By)ays = (Eys)y,.. (v €T, s € 5) is an SU(2)-isomorphism between the fibers
(Ey)z,. and (Eyy)y,, .. We call p = (pys)yerses “gluing parameter”.

We consider that two gluing data (Ei,, A1y, p1r.s)yer,ses and (Eay, Aoy, p2+,s)ver ses are
equivalent if there exist bundle isomorphisms g, : Ey, — Es, (y € I') satisfying ¢,(A4;,) =
Ay, and gyspi1y,s = P2y,s9, (in particular, £y, and Es, are isomorphic). We define GID as
the set of the equivalence classes of gluing data. (We sometimes use the notation “GID,;”
when we need to make the dependence on M explicit.) There exists a natural projection
GID — M" defined by (E,, A, py.s)ver.ses — (Eyy Ay)qer.

Let 0 = (E,, Ay, pys)verses be a gluing data. For x € X, in a small neighborhood of
Z..s, the fiber of E. over the point x can be identified with the fiber over ., ; by using the
parallel transport (defined by A,) along the radial line from z., s to . This trivialization

is usually called “exponential gauge” (or sometimes “radial gauge”); see [6, Chapter 9] or
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[5, Section 2.3.1]. Using these exponential gauges centered at x5 or y, s, we trivialize the
bundle E, over | | .o Q(y,s) UQ(yy,s). (2(2,,5) and Q(y,,s) are the annulus regions over
X,, defined in Section 3.1: Q(x,.) = By, NVA) \ B(x,4, VA/N).)

We have the identification
Q(z,5) = Q(yys,5) defined by (6), and the above exponential gauges give the bundle trivi-
alizations E,|o@, ) = Q(2y,5) X (By)e, . and Eysla,,.) = Qyyss) X (Eys)

Each p, , is an isomorphism between (E, ), , and (E.,),. . ..

yvs..- Lherefore

p~,s gives an identification map between E,|q(. ,) and E.|q
identification Q(z, ) = Q(yys,5) (see the diagram (11)).

y.s.s) COVering the base space

Ew‘ﬂ(x%s) R Q(:IJ%S) X (E’Y)x'y,s

(11) | [

exp. gauge
E’78|Q(y'ys,s) : Q<y73»s) X (E'YS)Z/'*/S,S

We define a principal SU(2) bundle E(#) over X*T5) by setting

E(0) = (I_lEﬂX;) / ~

yerl’

where we identify E,|ow, ) With E |aq,..) by (11).

3.3. Cut-off functions. We need to introduce several cut-off functions. We basically
follow the description of Donaldson-Kronheimer [5, Section 7.2]. First note that the
following fact. Since M is compact, there exists an uniform upper bound of |Fy| for all
[E, Al € M:

(12) |Fa| < constyy,

where constj; denotes a positive constant depending only on M.

Set b := 4NVX (< 1). Let ¢ be the cut-off function on X such that ¢ = 0 over
| lses B(ws,0/2) U B(ys,b/2) and ¢ = 1 over the complement of | |, .o B(zs,b) U B(ys, b)
and |diy| < 4/b. Let 1., be the copy of ¢ defined on X.,.

Let 8 = (E,, A, py.s)ver ses be a gluing data. As in Section 3.2, we trivialize the bundle
E, around z, ¢ and y, s by using the exponential gauges. Then we can define a connection
Al on E, by setting

(13) Al = A,

Here we consider A, as a connection matrix over each neighborhood of =, ; and y, s by
using the above trivialization. In the exponential gauge we have |A,(x)| < |z|sup |[Fy, | <
constys|z| (see Donaldson-Kronheimer [5, p. 54]). Therefore we have

(14)  JAL — Ay <conmsty - b, |[F*(A))| <consty, [F(A.)— F(A,)| < consty,
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where const; is a positive constant which only depends on M (and is independent of ~,

b, A, N). Then

HA’7 — AVHM(X%%) < constyy - b2, HF+(A’

4
’Y)HLP(XW,QW) < constyy - b7,

(15)

< constyy - b/P,

HF(A:/) - F<A7)HLP(X7,97)

Al and AL (s € S) coincide with each other over X! N X’ under the identification (11).
Hence there exists an unique (not necessarily ASD) connection A’(f) on E(6) compatible
with each A’ over X!.

Remark 3.3. If [E,, A,] € M, (ie., A, is gauge equivalent to the product connection),
then A = A,. Hence if [E,, A,] € M, for all v € ', then A'(f) is a flat connection on
E(6) (which might have a non-trivial holonomy).

Later (in Section 5.1) we will need the following {4 } also; Let 1)’ be the cut-off function
on X such that ¢ = 0 over | |,_¢ B(zs,b/4) U B(ys,b/4) and ¥ = 1 over the complement
of | |,eg B(ws,b/2) U B(ys,b/2) and [dy’| < 8/b. Let ¢, be the copy of ¢ defined on X,.

The following lemma is essentially the copy of [5, Lemma (7.2.10)]:

Lemma 3.4. There exists a positive number K satisfying the following: For any A\ and N
there exists a smooth function 8 = By defined in R* such that f(x) = 0 for |x| < VA/N,
B(x) =1 for |z| > VA/N°/® and

|dB] 4 < K(log N)~/%.

Proof. Note that the L*-norm of a 1-form is conformally invariant. So we can change the
description from the Euclidean R* to the cylinder S® x R by the coordinate transform
t = log |z| —log VX, VA/N < |z| < VA/N5/6 becomes —log N <t < —(5/6)log N. Then
the proof is easy. O

The condition supp(df) C {VA/N < |z| < v/A/N*6} will be used in Section 6.1 (cf.
(8)). Using the above Lemma 3.4, we define a cut-off function 5 on X by putting the
above (3, y around each z, and y,. That is, § is a function with 0 < 3 < 1 such that 8 =0
on | |,cq B(zs, VA/N)UB(ys, VA/N), 3 = 1 on the complement of | |,_q B(zs, VA/N?/%)U
B(ys, VA/N°/%) and

(16) [dB] 4 < K (log N) /1.

(Strictly speaking, the above constant K should be (2|S|)"/*K. But for simplicity we use
the abuse of notation.) Let 3, be the copy of 5 defined on X,.

We need to introduce one more cut-off. Let ’ be a smooth function on X such that
0< /<1, 8 =0on|]q B(zy, VA/2) U B(ys,VA/2), #/ = 1 on the complement of
| lies B(7s,2V/A) LU B(ys, 2V/A) (hence supp 8 C X”). We can choose 3’ so that the L*-
norm |df'| 4 is independent of A (and N). Since N > 1, we have vA/2 > v/ A/N%/% and
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hence
(17) B8 =4
Let 3! be the copy of 3 defined on X, (3, -8, = (). Moreover we choose 3’ so that these

/3, becomes a partition of unity on X HI.9).

(18) S -1
vyer

In particular we have 3 + 3 =1 over Q(z, ) = Q(Yys,s)-

3.4. Preliminary estimates. In this subsection we prepare several estimates. I think

that they are essentially well-known. Therefore we omit most of the proofs. If some

readers feel this subsection cumbersome, you should skip it and return to this subsection

when it is used.

3.4.1. Right inverse of dfi. Let [E,A] € M, and set Ay = (d})(d})* : QT (adE) —
QO (adE), where (d})* : QT (adE) — Q'(adF) is the formal adjoint of d}. From the

conditions (b) and (c) in the beginning of Section 3.2, there exists the inverse A" (see

also Remark 3.1). Set Py := (d})*- Ay : Q*(adE) — Q'(adE). P4 becomes a right
inverse of d{: dPs=1.

Remember that 2 < p < 4, ¢ >4 and 1—4/p = —4/q. We have the Sobolev embedding;:
LY(X) — L%(X). Since M is compact, there exists a positive constant const; depending
only on M (and independent of A) such that

(19) IPA€l0 < consta €l IdaPA©)], < constar €]
for any [E, A] € M and any ¢ € Qt(adE).
3.4.2. The cohomology HY. Let [E, A] € M and set

H) = ker(dy + d}; : Q' (adE) — (2° @ Q) (adE)).

(If [E, A] € My, then H} = 0.) There exists dy; > 0 such that for any o € H} with
|l Lo < 0ar we have & = (A, a) € Q' (adE) satisfying the following:

da =0, Fr(A+a)=0,
& = af,, < consta ez,
(We have a(A,0) =0.) Moreover
(20) lal ;o < constas - dra([A], [A+ @&]).
Here, for connections A; and A, on E, we define Li-distance dpq«([A1], [A2]) by

s (A [A]) == it 142 = g(AD -



12 MASAKI TSUKAMOTO

Lemma 3.5. There is ¢y, > 0 such that if an ASD connection B on E with [E,B] € M
satisfies dpa([A], [B]) < 0}, then there exists « € Hy with |af,;, < du satisfying [B] =
[A+al.
Lemma 3.6. If we choose dy; sufficiently small, then for any & € QT (adE) and o € H)
with | ;4 < O,

[PA(€) = Pata(§)l e < constar o] [€] o -

3.4.3. Auziliary estimates. For € > 0 let X, C X be the complement of the union of the
balls B(r,,¢) and B(ys,€) (s € S):

X=X\ (U B(x,, ) U Blys, e)) .

seS

Lemma 3.7. There is ey > 0 such that if e < ey then for any two [E;, A;] € M (1 =1,2)
we have the following:
(1) If Ey is isomorphic to Eo, then

dra([A1], [As]) < consty - dre([Arlx.], [A2]x.]),
where dra([A1]x.], [A2]x.]) is given by
dra([Arlx.] [Aelx.]) = inf Ay — g(Ad)] pox,y -

9:E1|x, —E2|x,

(2) If Ey is not isomorphic to E,, then
drq([Ay

x.], [Aa]x.]) > consty, > 0.

For [E, A] € M we denote I4 as the set of gauge transformations g : E — FE satisfying
g(A) = A. If [E, A] € My, then 14 = {£1}, and if [F, A] € M, then I, = SU(2) (the set
of constant gauge transformations).

Lemma 3.8. There is €, > 0 such that if ¢ < &), then we have the following: Let
[E,Al € M and g : E|x. — E|x. be a bundle map over X.. Then

min g — hleox,) < constar [daglpax,) -

3.4.4. Estimates about the exponential gauge. Let D C R* be a ball centered at the origin
in the Euclidean space R?, and E = D x SU(2) be a principal SU(2) bundle over D
with smooth (not necessarily ASD) connections A; and Ay. Let w; : E — D x Ej
(1 = 1,2) be the exponential gauges associated with A; centered at the origin. (FEj is the
fiber of £ at the origin.) We have 0u;/0r = w;A;, (r = |z|) and hence d(ujuy*)/0r =
ui(Ay, — Ay, )usy . Therefore

(21) ur () — uz(2)| < o] - [Ar — AZ”CO(B) :

Let B; := u;(A;) be the connection matrices in the exponential gauge (i = 1,2).
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Lemma 3.9.
| By — Ba| < 1 [[F(A1) = F(A2)|eo + %2 [ A1 = Azfco ([F'(A1)]co + | F(A2)]co)-
Proof. We have
By = / TF(Bi)ngr = / T w; F(4;),ou; ' dr,

where 7,6 denote the polar cooj"dinate. (Of cou(r)se, 6 has three components.) Hence

Big— Byg =

/oT{(Ul — uz) F (A1) puy '+ us(F(Ar)rg — F(Az)rp)ur + usF(As)rg(uy’ — uz ') }dr.
Then

I&—BﬂSAWM-WWN&N+WWMD+WMD—N&WM

2
,
<5 | A1 — Aslco (| F(AL)]co + | F(A2)] o) + 7 [ F(AL) — F(A2)]co -
]

Let A = A(t) be a family of connections on E depending smoothly on the parameter
t e (—1,1). Let u=u(t) : E — D x Ey be the exponential gauge of A about the origin,
and set B = B(t) = u(A). Suppose that there exists a family of sections w = w(t) of
adE such that u(t) = u(0)e®® and w(0) = 0. Let 1) and ¢ be smooth functions on D
satisfying 0 < ¢,% < 1. Set Ay = A;(t) := u ! (B) (we consider B as a connection
matrix), and Ay = Ay(t) := e?(A1(1)).

Lemma 3.10.
0A, 0A 0A
—= < (1 +r|do| + 3r? |F(A(0 ‘— +r||d (—) .
| | < (0 rldsl + 32 IO | 5| | +ra ()| |

Proof. We can assume that A(0) is already a connection matrix in the exponential gauge.
Then u(0) = 1, u(t) = e*® and B(0) = A(0). Let (r,6) be the polar coordinate. Set
A, = A.(t) .= (A(t),0/0r). We have A,(0) =0 and du/0r = uA,. Hence

o (| _ 04
or \ Ot

=u
-0 ot
Since u = 1 at the origin for all ¢, we have du/0t = 0 at the origin. Hence

ou 04
ot ot

t=0

(22) <r

t=0 t=011CO

We have
By :/ F(B),gdr :/ uF (A).outdr.
0 0
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Differentiating this equation and using the above (22), we get

0B 0A ( aA)
— — da | — .
8t at co 8t co
We have dyu = (A — B)u. Differentiating this (and using u(0) = 1), we get

L (00| (24 0B
Not )|, \oat  ot)|_,

We have A; = v (¢ B) = v 'du + yu~' Bu and A(0) = B(0). Then

(23) +r

< 1 [F(A(0))] o

t=0 t=0 t=0

ot o =dy (E) i + (v — 1)[A, Ou/0t]|1=0 + wﬁ )
0A OB
B R

We have w(0) = 0, Ow/0t|;—¢ = Ou/0Ot|;—¢ and A;(0) = ¢ B(0) = ¢ A(0). Some calculation
shows

04| du DA
ot tzo__dd)@ ot t:0+(1_¢> At |,_,
0B
+ (W +¢— 1)5 + (¥ — 1)(1 — ¢)[A, Ou/0t]|i—o.
t=0

We have |A(0)| <7 |F(A(0))]z0. Therefore

A, A A

Ol | < (14 rldg] + 37 |F(A0))]o) ]— . (—) |

ot |,y ot ] olleo Ot ) |iolleo

O

Moreover suppose that A = A(t) is a family of ASD connections. We have F*(A;) =
uw ' FY(¢B)u and F*(¢B) = (dy A B)" + (¢ — 1)(B A B)*. Using the inequalities (22)
and (23), we get (at t = 0)

0

I nky I nky
(A L)

(24) [FH(WB)| < (rldy] + 12 [Falleo) | Faleo
0

EFJF(wB

0

~—

I

0A
<) |5

0A
ot

~—

+
co

< (rldi] + 2932 | Fa ) ( [l

(G

In the following three sections we will develop the technique of gluing an infinite number

4. INFINITE GLUING: BASIC CONSTRUCTION

of ASD connections. Our approach is based on the method of Donaldson-Kronheimer [5,
Section 7.2]. We also use the ideas of Angenent [1] and Macri-Nolasco-Ricciardi [11] in the
construction of the right inverse of d},. A different approach using “alternating method”
in Donaldson [4] is developed in Tsukamoto [13]. Recall that 2 < p < 4, ¢ > 4 and

1—4/p=—4/q.
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4.1. Construction. Let 6 = (E,, A, pys)erses be a gluing data. That is, £, (y € I)
is a principal SU(2) bundle over X, and A, is an ASD connection on E, satisfying
[Ey,A,] € M. p:= (pys)yerses is a gluing parameter. We have constructed the principal
SU(2) bundle E = E(f) on X*™% . We want to construct an ASD connection on E by
gluing the given ASD connections A,.

Let a and ¢ be adE-valued 1-form and self-dual 2-form on X! respectively. We
define BL%-norm (bounded Li-norm) of o and BLP-norm of £ by

(25) lalpra == 'Sylélll? ||O‘||Lq(xg,g) €l s = ilél? ”§||LP(X,’Y’,Q) :

Let BLY? be the Banach space of all locally-L?, ad E-valued 1-forms whose B L?-norms are
finite, and BL? be the Banach space of all locally-LP, ad E-valued self-dual 2-forms whose
BLP-norms are finite. This type of function space is used in Macri-Nolasco-Ricciardi [11]
for the study of self-dual vortices. It is also used in Gournay [7] for the study of gluing
infinitely many pseudo-holomorphic curves. For ¢ € BLP we define an ad E-valued 1-form

Q) = Qu(&) b
(26) Q) = ByPa,(B,6),

vyel’
where P4 is the right inverse of dJAf7 defined in Section 3.4.1. The above infinite sum is a
locally finite sum, and Q(&) becomes locally-L}. Using (19) and (10), we have (note that

supp/3l, C X)

(27> HPAW(ﬁ’IYf)HLq(X;,g) < HPAW(ﬁ’/Yf)HLq(X’ 9v)

< consty ”g”LP(X,’Y’,gW) < consty, ||€”LP(X,’Y’,g) :

< constyy Hﬁ £HLP(X»Y 9v)’

Therefore

(28) 1Q(E)] pra < constar - |€]5Le -

Let A’ = A’(f) be the connection on X*I% defined in Section 3.3. We have

A3 Q(€) =) d, (8,Pa,(B:8)).

~yel
Since dj Pa, =1 and 8.3, = 3, (see (17)),
dJAf; (8, Pa,(858)) = (dBy A Pa,(BL8))" + ﬁ’ydl_;PAy (36),
= B+ (dBy A Pa, (B6)" + B, [(A) — Ay) A Pa, (B6)]™

{8} is a partition of unity (see (18)). So

(29)  dLQE) =&+ (B APA(B9))T+ ) B(A, — Ay) A Pa (BLE)]F

vyer yer
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From Hélder’s inequality (L* x L9 — LP) and (27)
(8, A Pa (B s+ AL = A AP B |
< constyy - (”dﬁ"/"L‘I(X,Y’g) + HA’Y - A;”sz(xmg)) ||§||Lp(xg,g) .

Note that the L*-norm of a 1-form is conformally invariant. So |dS, | 14(x,, ¢ a0d |4, — AL [ L%, 0)
y )

are equal to [d,[ x,.q,) and |4, — A and these are very small (see (15) and

7HLA‘(XW’Q'Y)’
(16)) for N > 1 and b = 4Nv/A < 1. Then we get

|45 Q) — €] 5, < constar(log N) >/ +6%) ¢ 5,
Thus
Lemma 4.1. Set R:= Ry :=d},Q —1: BL? — BLP. For any £ € BLP
[R(E)] 1 < constar((log N) ™+ 6%) [€] 1

Hence there exist positive constants Ng = No(M) and by = bo(M) such that if N > Ny and
b=4NVX < by then |R| < 1/2 and there exists (1 4+ R)~! = Y nso(—R)": BLP — BLP.
P:=Py:=Q(1+ R)™! gives a right inverse of dy,:

dy P(§) = ¢,
for any & € BLP. From (28), for any £ € BL?
(30) [P(&)pra < consta - [E)pLe -

We want to find an ASD connection of the form A’ + P(§) (¢ € BLP). Since P is a
right inverse of d7,, this is equivalent to solving the following equation for £ € BLP:
(31) §+ (P& APE))T =—F7(A).
From (7) we have vol(X”, g) < 8*vol(X”, g,) < 8*vol(X). From this and ¢ > 4, we have

52113 |P(€) ||L4(Xg,g) < const - [P(§)[ pra »
¢!

where this “const” is a positive constant depending only on vol(X). Then, using Holder’s
inequality (L* x LY — LP) and (27), we get

[(P(&) A P(6))T = (P(&) A P(E)) 5y < constar (&1 5o + 1621 510) 161 — &l 10 -
Then we use the following lemma (this is [5, p. 289, Lemma (7.2.23)])

Lemma 4.2. Let B be a Banach space and k be a positive constant. Let S : B — B be a
(not necessarily linear) map satisfying S(0) = 0 and |S(z) — S(y)| < k(|z|+|y]) |= — y|.
Then for any y € B with |y| < 1/(10k) there uniquely exists x € B with |z| < 1/(5k)
satisfying

z+5(x) =y
Moreover x satisfies |z < |y| + 2k |y|°.
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Proof. Set T'(x) :=y — S(x). It is easy to check that for || < 1/(5k) we have |T'(z)| <
1/(5k) and for |z;| < 1/(5k) (i = 1,2) we have |T(z1) — T(z2)| < (2/5) |x1 — x2|. Then
the contraction mapping principle implies that there uniquely exists x with |z < 1/(5k)
satisfying T'(z) = x. If 2 4+ S(z) = y and |z| < 1/(5k), then |z| < |y| + &k |z|* <
lyl + (1/5) ||. Hence || < (5/4) Jy|. Therefore

o =yl < k2] < (25k/16) |yl” < 2k Jy|”.

From (15) we have

< constyy - b/P,

|FT (A
Hence we can solve the equation (31) if b < 1.

>HBLP

Proposition 4.3. There are positive constants Ng = No(M), by = bo(M) ', Cy = C1(M)
such that if N > Ny and b = 4NV < by then there exists € = £(0) € BLP with
1€l 5» < Ch satisfying

FT(A'+P&)=0 and €|z, < consty -b"?.
Moreover this € is unique, i.e., if n € BLP with |n|z., < Cy satisfies F*(A'+ P(n)) =0

then n = €. From (30),
”P(ﬁ)”BLq < consty - pA/p.

We will denote A(f) := A’ + P(€).
Remark 4.4. We assume 2 < p < 4. But the above construction argument is still true

for p = 2. In particular, we have

||£HBL2 = sup ||£||L2(X”,g) S COHStM . b27
yer 7

1P prs = sup [P(€)|axy ) < constar b,
v

Remark 4.5. If [E,, A,] € M, for all y € T, then A’() is a flat connection (cf. Remark
3.3). In particular, F*(A’(#)) = 0. Hence we have £(f) = 0 and A(6) = A’(0).

4.2. Estimate on the curvature. We want to estimate the curvature of A = A(#).
From (15),

(32) IP(A) i < 5D F (A, o + constas 517
gl
For any ¢ € BLP we have

daQ(€) =Y dBy A Pa (BLE) + Byda, Pa, (B,€) + B,[(A, — Ay) A Pa (B,6)).

IThis is an abuse of notation; these Ny and by are not necessarily equal to the constants in Lemma
4.1.
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We can estimate this as in the previous subsection by using (19) and get:

HdA’Q(g)“BLP < constyy “5”31:;7 .
Since P = Q(1 + R)™*, we have
ldarP(&)] gp» < comsty ||(1+ R)™'¢|| 5., < consthy €]
We have A = A’ + P(§) and F(A) = F(A') +daP(§) + P(&) N P(€). Using €] 5., <

const b*P, we get
[F(A) e < IF(A) ppo + [dar P(E)] o + const [P(€) 50 < [F(A) ppo + constarh®?.

Using (32) we get the conclusion:
Proposition 4.6. The ASD connection A(0) satisfies

IF(A®)pro < S0 IF (A, o+ comsta -5
Y

5. INFINITE GLUING: INJECTIVITY PROBLEM

Section 5 and Section 6 are technical. Some readers should skip these sections and go to
Section 7, and return to them when the results in these sections are used. The main result
in Section 5 is Proposition 5.5, and the main result in Section 6 is Theorem 6.11. They
will be used later. Some arguments in Section 5.1, 6.2 and 6.3 (in particular, Corollary
6.8 and Lemma 6.10) will be also used later.

5.1. Variation. For each v € I', let 6 := (E,, A, pys)verses be a gluing data. Let
a, € Hj with [a, |, < du (see Section 3.4.2), and A, := A, +a, be the ASD connection
on E, given in Section 3.4.2. Set o := (v )er- Let vy, € (adE,), . (y €T, s € S) with
[vy,s| < Diam(SU(2)). Set pl , := py " and v 1= (Vy)yerses- We define

le] := sup leslrox, g0 Ivl:= Vesrllismsl-
Suppose [E., A,] € M and set 0 := (E., A P )verses. We want to compare A == A 6
vy Y Y Yo Pry,s/vel,
with A := A(6). First we will construct a gauge transformation h from E = E(f) to

E = E(0).
Let uy : E|B@,..5) — B(24,,b) x (E,)
be the exponential gauge of A, around z,, and y,, (v € I',s € §). We also denote @,

e, a0d uy 1 By o) — By, 0) X (£)y,,
as the exponential gauge of A, around ., and y,, (y € I',s € S). From (21) we have
|uy — @y| < constys - b|a| < 1. Hence there uniquely exists a section w., of adE., with
lwy| < const), - bla| < 1 over | |,.g B(%y,,b) U B(y,s,b) satisfying @, = u,e”. We
define a section 0, of adE, over | |,.q B(2,,s,b) U B(y,s,b) by setting

uytov, sou, on B(z,,,b) (s €5),

(33) 0y, =g
—u;t 0 (pye1 50 vy 0 pf Jou,  on By, b) (s €95).
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We define the gauge transformation h., : £, — E, by

e1=A)0 (=¥ on B(x,,,b) and B(y,.,b) (s € 5),

(34) h. =
’ 1 otherwise,

where 3 and ¢/ are the cut-off functions introduced in Section 3.3. (¢, satisfies |di| <
8/b, ¥l = 0 over | |, qB(7s,0/4) U B(ys,b/4) and ¢! = 1 over the complement of
| l,es B(s,b/2) U B(ys,b/2).) Since 8 + 3, = 1 and ¢/ = 0 over Q(z,) = QA(Yys.)
(remember: Q(z,,) = B(z,., NVA) \ B(z,., VA/N)), the diagram (35) becomes com-

mutative.

h
E’Y‘Q(ﬂ3%3) —’Y> E7|Q($'y,s)

(35) ﬂ;slopfyysoﬂ,yl J{u;slopmsouv

hoys
E’VS‘Q(ZJ'YS,S) E73|Q(y’7373)

Therefore {h,} compatibly define the gauge transformation h = hy o : E — E.
Set P:= Py and P, :=ho Pjoh™" : BLP — BLY. We set A’ := A’(f) (see Section
3.3) and

(36) A, = h(A’) (this is a connection on E).
Lemma 5.1. For any & € BL?,
[Po.a(§) = P(&)] o < constar(laf] + o) [€] g -
Proof. The proof is just a confirmation of the definitions. We have
Poa = Qualdy, Qua),

where

Qual€) =D hy - B,P; (8,h56),

yel

=3 (b = 1)8,Pa (B1(€)) + B, Pa (B0 = 1)) + B, P3 (86))

vyel

(37)

By using the definition (34) and Lemma 3.6, we get
|Qv.a(€) = Q(E) pra < constar(led] + o) €]l 5o -
In a similar way (cf. (29)),
|k, Qo) (©) — (@2 @) < constus(la] + [0]) IE] sz -

Then we get the above conclusion. 0

Set €, o = h(£(0)) € BLP(Q*(adE)). We have |€, | 5, < consty - b*/? (see Proposi-
tion 4.3).
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Lemma 5.2.
[€v.0 = €l gy < comstay - 617 - (Jad] + 6 o).
Proof. We have (see (31) and Proposition 4.3)
fva T (Pvalbva) N Poalboa))” = —F1(AyL), €+ (P APE)" =—F"(A)
By using (21), Lemma 3.9 and A, = 1 in the support of F'* (flif) (cf. Section 3.3), we have
HFJ”(A’WI) — F+(A/)HBLP < constyy - b7 || .

From Proposition 4.3, Remark 4.4, Lemma 5.1 and Holder’s inequality BL*x BLY — BLP,
H(Pv,a(gv,a> A Pv,a(fv,a))+ - (P(f) A P<€)>+H3Lp ’

< constar - b [€v.a — &l e + consta - BT (] + |v]).
Hence
|€v.0 — &l 5rp < comstag - U |€p.q — €l pp + constay - 67 (|er| + 0% |v])

Since b < 1, we get the desired estimate. 0
Corollary 5.3.
[Po.a(€oa) = P(€)l gy, < constar - 67 (Ja] + [v])).

Set Ay = P(£)|Xg € Ql /y/(&dE,y) and d,y = P§(€§>|X’/{ = hgl(Pv,(x(gv,a)”Xfy’ S Qﬁq(adEy)
for each v € I'. We have A[x» = A) + a, and A|X4/ = /1’7 + Q..
Lemma 5.4.

sup a, — d’Y”L‘I(X”ygw) < constyy - b4/p(”a” + [v]).
~er v

Proof.

d7 — 0y = <h7_1 - I)Pv,a(s'v,a)hy + P’v,a(gv,a)(hv - 1) + (P'u,a(sv,a) - P(ﬁ))

From Proposition 4.3 and Corollary 5.3, we get the above estimate. 0

5.2. Injectivity problem. The purpose of this subsection is to prove the following.

Proposition 5.5. There exists Ny = No(M) and by = bo(M) such that if N > Ny
and b = ANV < by then the following holds: Let 0 = (Ey, Ay, pys)yerses and 0" =
(Fy, By, 0l  )ver,ses be two gluing data. Then A(0) is gauge equivalent to A(0') if and
only if [0] = [¢] in GID.

Proof. The “if” part is a direct consequence of the definitions. So we will give the proof
of the “only if” part. We set A; := A(f) and A, := A(#'). Suppose there is a gauge
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transformation g : E(0) — E(0#') satistying g(A;) = Ay. We define X, (v € I') as the
complement of the b-balls B(x.4,b) and B(y,,b) in X.:

X=X, \ (U B(2.4,b) U B(yy., b)) .

ses
By the definitions of the cut-off functions in Section 3.3, we have A} = A, and B = B,

over X, ;. From Proposition 4.3, we have
4
|Ay = A1||Lq(xmb,g7) By — A ||Lq(X'y,b,g'y) < constyy - b7
Since A; is gauge equivalent to A,
qu([A7|me]7 [B’Y‘Xw,bb < consty; - b4/p < 1.

From Lemma 3.7 (2), this implies (for b < 1) E, = F, for all v € I Moreover, from
Lemma 3.7 (1), Lemma 3.5 and the inequality (20), there exists o, € H}j  with [a, [, <
constyy - b*/P for each v € T such that B, is gauge equivalent to flw = A, + a,. We can
suppose B, = 1217 without loss of generality.

pqy,s and pl o are SU(2)-isomorphisms between (E.)., , and (E.s),.., (v € I';s € 5).
Take v, , € (adE),,, such that ol = p, e and |vy | = d(pys, 0, ;) (< Diam(SU(2))).
Set o := (vy)yer and v := (Vy5)yer ses as in Section 5.1. From the assumption, there are
gauge transformations g, of £, over X such that

(38) 9(A +a,) = Al +a, over X,

where a,, and @, are the element of (2} g(adEV) satisfying A(0) = A’ +a, and A(¢') = fl’ﬁ—
a, over X as in Section 5.1. Moreover g, satisfy the following compatibility condition:
(39) Plrs© Gy = Gys © Prs OVer QTys) = Qyys,s).

Let I, be the isotropy group of A,. From Lemma 3.8, we have

min ||g’}’ - thO(X’/{) S COHStM HdAlyg'Y”

hela, LI(X!,gy)

Using the action of H'\/EF I, on the gluing data, we can assume that

~

(40) lgy — 1||c0(xg) < consty HdAfyg'y”Lq(X,’y’,gn,) '

From (38),

HdA’wg"Y”Lq(Xg) < HAIW - A,V

Lq(Xi/) + 2 ”g’Y - 1”CO(X,’Y/) HG’YHL‘Z(X,’Y’) + ”&'Y — a'Y“Lq(X,’Y’) .

!/

Using Lemma 3.9, we get HA’7 - 1217

e < constys - [y ] oy )- From Proposition 4.3

and Lemma 5.4, we get |aypq(xm < consty - b/P < 1 and |a, — Q|| o xcy < comsty -
s vy
b*?(|e| + |v|). Therefore (using (40))

(41) l9 = Ueogxry < constar Jae] + constas - b7 ]
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On the other hand, from (38), g,(A,) — A, = (&, — a,) + (1 — g,)a, + g,a, (1 — g5 ") over
X, p where AL = A, and fl’w = A,. Hence (using (20) and Lemma 3.7 (1))
lay || < constar-dra([Ay[x, ], [A4x, ,]) < consty (”CLV - &’Y”Lq(xg) + g, — 1”c0(xg;) ”av”Lq(XW)>
Using (41), Proposition 4.3 and Lemma 5.4,
lee] < comstas - 57 (x| + [w]).
Since b < 1, we get
(42) |ee| < constyy - b7 v .
Substituting this into (41), we get gy — 1]co(xs) < constyy - b7 ||
v
From the compatibility condition (39), ol ;= py,s = (gys = 1)py,s9y +py.s(g5 " —1). Hence
1055 = Prvsl < 19y — 1||c0(Xg) + g, - 1||c0(Xg) < comsty - b7 o]

Then

|v] < const - sup |pl, , — py,s| < constyy - b7 v .
v,8

Since b < 1, we get |v| = 0. This implies p’ = p and (using (42)) || = 0. Therefore
B,=A,=A,. O

6. INFINITE GLUING: SURJECTIVITY PROBLEM

In this section we will study a “surjectivity problem”. We basically follow the argument
of Donaldson-Kronheimer [5, Section 7.2.4, 7.2.5]. But our case is more involved because
we cannot use the usual index-theorem argument. (This difficulty is suggested in [5, p.
298].)

6.1. Linearized problem. Let 6 = (E,, A,, p,s)verses be a gluing data. We denote [
as the set of v € T satisfying [E,, A,] € M. If My =0, then I = (. Set E := E(f) and
A’ = A'(0). We define V and H by

V= {v = (vy,s) erses € H (adE)s, | [v] == sup |vys| < oo},
vel,seS 78
43) !
H :={a = (ay)yer € HHAW‘ || := sup ”a'YHL‘Z(X,Y’g,y) < oo}
g

yel’
Note that Hj =0 for [E,, A,] € M;. For v € V and a € H, we define j;(v) and ja(cv)
in Q'(adE) by
(44) i) = o
where A7 , denotes a connection on E defined as in (36).
pPv,s is a SU(2)-isomorphism between the fibers (E,),. . and (E,),.,,. In this sub-
section, we identify the fibers (E,),, , and (E,),, . by the given p, . Let v = (vy,6)4.s

0 /

AQv,O’ jQ(a) = E tZOAO,tou

t=0
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where v, € (adE,),,, = (adE,)y,... We often consider v,, as a section of adF,
(or adEﬂ,s) over Q(x, ) (or Q(y,ss)) by using the exponential gauge of A, (or A,,):
Elo@,) = Uwys) X (Ey)e,, (o Eylow,.) = QUYyss) X (Eys)y...).- Then the above

Jj1(v) is expressed by

. da (Blvys) = dB, @ vy over (x5

(#5) h(w) = el = e, (@20)
—da (By0ys-1,5) = —dB, @ V-1, over Q(y, ),

and we have supp(ji(v)) C U, supp(dB) C U, ,(©z,,s) UQ(y,,5)). From this we easily
deduce that d,j;(v) = 0.

Lemma 6.1.

— Z 8o, < constyy - b7 || .

vyel

BL4

In particular, |j2(cv)| ga < consty |af. Moreover
|dhja(ax)| 5, < comsty - b7? | .

Proof. We have js(a) = a, over X, \ |, (B(2ys,0) U B(yy,5,0)). Using Lemma 3.10, we
have

Ga(@)ly, < constar je]  over ( J(B(zy,,) U B(yy.s,b)).

S

Therefore we get the first inequality. We have d},j2(a) = 0 over X, \ U,(B(z,s,b) U
B(Yys,b)), where FT(Ag ) = 0. Since d,j2(a) = 8F+(A67ta)/8t‘t:0 and h, =1 in the
support of F7(Ajf,,), the estimate (24) gives

|dfyja(@)] < consty Jae|  over | J(B(,,5,0) U B(ys.5,b)).
v,S

Therefore ||}, ja(cx < constyy - b7 | ]. O

Mz

Fix z € X \ {x,,vs|s € S}. We take b = 4Nv/X > 0 so small that the balls of radius b
around x5 and y (s € S) don’t contain z. Let z, (7 € I') be the point in X, corresponding
to z. We define Q(adE), as the set of x € Q(adFE) satisfying x(z,) =0 for all y € I (i.e.,
[E,, A,] € My). Here we consider z, € X!/ ¢ X*I'9),

Lemma 6.2. For any x € Q°(adE)y, v €V and oo € H,
IXlco + vl + || < constar [darx + ji(v) + j2(@)| 5L -

Proof. For each v € I' we define a section x, of adE, over X' by

—X"’Z U'ys"’z U’ys—ls
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We have dar X, = darx + j1(v) over X7 and x5 — Xy = vy,s over X7 N X7, We have
Ixlco + [v] < (4]S] 4 3) sup, ”X’Y"CO(X;’)' If v € I, then x,(z,) = 0. If v ¢ I, then A, is
irreducible. Therefore

"XW”(:O(Xg) + ”O"yHLq(XW) < consty HdAng + &'YHLq(X’/Y/’g,ﬁ )

< consty |dax + 1 (v) + j2(@)| pLo + constar [y = ja (@) Lagxy g -
By using the argument in the proof of Lemma 6.1, we get

lae, — jQ(a)HLq(Xg,ygw) < constyy - b7 || .
Since b < 1, we get the above conclusion. O

Let x € Q%adE) and £ € QF(adE) be smooth (not necessarily compact supported)
0-form and self-dual form valued in adE over X* %) and let v € V and o« € H. We
define the norm |(x, v, e, §)| 5, by

(46) [0, @, ), = ldarx +1(v) + Ja2(@)l gro + 1€l o -

Lemma 6.2 shows that this becomes a norm. (Of course, its value might be infinity.) We
define the Banach space Bj as the completion of the space of (x,v, e, &) € QY(adE)y @
V& HoQ (adE) of [(x,v, e, )| 5, < oo in the norm || 5 :

By :={(x,v,a,¢) € QadE)y &V & H @ Q*(adE)| |(x, v, o, )] p, < o0},

where the overline means the completion in the norm |-| 5 . Let w € Q'(adE) be a smooth
1-form valued in adE over X*%). We define the norm |w, by setting

(47) HW”B2 = |wlpr. + de‘,wHBm -

We define the Banach space By as the completion of the space of w € Q'(adE) of |w|, <

oo in the norm ||, :

By i= {w € N (adE)| [w],, < oo}

Let P = Py : BL? — BLY be the map defined in Lemma 4.1. P is a right inverse of d},.
We define a linear map T : By — By by

(48) T(x,v,0,&) :=dax + j1(v) + ja(ax) + P(E).

Proposition 6.3. T is a bounded linear operator. Moreover there exists a positive con-
stant K depending only on M such that for any (x,v, o, &) € By

”(X?’va aaf)"Bl S K “T(Xv v, a7§)”B2 '
Proof. Set w :=T(x, v, a,§). We have (using d,j;(v) = 0)

dhw = [FL,x] + d}ja(e) + €.
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Form Lemma 6.1 and 6.2, T" is bounded. From this equation (remember |F'(A')| 5., <
const 5bY/P)
€150 < Il + comstar - 577 (Ix[co + lex]),
< [wlp, + constay - b7 ldarx + j1(v) + j2(@)| g
= |wlg, + constar - 57 |w — P(€)l 50 »

< (1+ consty - b7) [wl 5, + constas - b7 €] 5, -

Since b < 1, we get ||z, < 2 |w|p, and

ldarx + ji(v) +j2(a)||BLP = |w — P(f)”BLP < constyy ||W||32 .

O

This result shows that 7' is an embedding. Indeed we want to prove that T is an
isomorphism. Donaldson-Kronheimer [5, Section 7.2.5] proves a similar result by using
the index theorem. But we cannot use the index theorem and must prove it by a direct
analysis.

Let w € By and set w' := w — Pdj,w. We have d},w’ = 0 and |o'| 5, < consty |w] g, -
Consider 3,0’ on X, for each v € T'. We have d}j {3,w' — P,d} (3,w')} =0 where P, =
(d},)*(d4, (d} )*)~" is the right inverse of d} . Then there uniquely exist x, € Q°(adE,)
and o, € H) such that

da, Xy + oy = By’ — Pvdjgv (Byw),
and x,(2y) = 0ify € I. (If y € I, then H) =0 and a, = 0.) Since djy,w’ = 0,
(49) PvngW (B,w') = Py(dBy A') T+ P[(A, - Aly) A (Byw)]T

A difficulty comes from the term P,(d3, Aw')". The term P,[(A, — A’) A (B,w)]* can be
easily estimated:

|25 0CAy = AD A B o, ) S comstar Ay = Ao 18,0 oy,

< constyy - P N*8/4 lwl, -

(50)

Here we have used (10) and (15). If we choose ¥> N2~#7 < 1, then this is a good estimate.

But a similar estimation gives

P.(d3, Ao < consty - N27¥9 |w| 5 .
Y ol Ba

)+ HLQ(X’WH'Y)

Since N > 1 and 2 — 8/¢ > 0, this is not a small term. We will come back to this point
later. We have (z,(z,) =0 for vy € I')

(51)  Ixyleo + ||a7||Lq(X%gA/) < consty [|da, X~ + aVHLq(XWW) < consty, - N278/4 ], -
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Set x := >, Blxy € Q°(adE)o. Then we have the following equation (using 3,3, = 3.):
dax =2 45 93+ 2 Fres

(52)
=uw'+ Z >X7] B P [(Ay — AL A (67W,)]+) - Zﬁ&ﬂ(dﬁw AT

From (51),

(53) 14, = 450y < 14 — A [Xaleo < constay - DN o],

e

Py [(A, — ALY A wVw,)VHLq(Xg,g) < constyy ||A, — A/va H@,wHLq(X%,gW) ,

(54)
< constyy - P N28/4 |lwl g, -
Hence
(55)
ST (B, — A x] = BLPI(A, — A A B])| < consta - 0HVINTS o
v BL4

< constyy - DN? lwl g, -
The estimation of the term (3 P, (dB3, Aw')* needs the following lemma:
Lemma 6.4. Let 0 < < 1, and f be a LP-function in R* satisfying
suppf € {a| VA/N < Jz] < VA/N'),

F(2) ::/R fy)

sl —yl?

where N > 1. Set

Then we have

1/q
(/ i \F(x)\qu) < const - N~4171/P(1-9) 1 f 1 o sy -

Here remember that 2 <p <4, q¢>4 and 1 —4/p = —4/q.

Proof. Using a scale change, we suppose A = 1 without loss of generality. If |z| > 1/2 and
ly] < N7 then (using N > 1 and —1+6 < 0) |z —y| > |z| — N~ > |2|/2. Then
1/|z —y|® < 23/|x]3. Hence for |z] > 1/2

23
< — dy.
D<o [ Il
Using g > 4, we get

> d
/|$|21/2|F($)\qdm§23q/ r3q7’3 (/ |f(y |dy) < const (/ | f(y ]dy) '
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1/q
([ r@pdr) < const [ 1y
|| >1/2 R4

< const [ f]1»(gsy (vol (suppf))' 77,
< const - N~41=9)(1=1/p) ”f”Lp(R‘l) .

We use this lemma for § = 1/6.

Lemma 6.5.
| Py (dBy Ao’

)+HL¢1(X,’Y’,g,Y) < consty - N™1/2 |wlg, ,

27

Proof. Set o := (df, Aw')" and 6 = 1/6. There exists 79 > 0 (independent of A and N)
such that the metric g, is flat over the balls By = B(z,5,70) and B, = B(y,s,70) (s € 5).
We assume 79 > b = 4NV, Set B := |J(B, U B.). We define the annulus region
A, and A, by A, = B(2y.4, VA/N'")\ B(2,, VA/N) and A, := By, VA/N*)\
B(yy.s, VA/N), and set A := [J(A, U A%). Remember that suppo C supp(d3,) C A by

Lemma 3.4.
P,o can be expressed by using the Green kernel:

Po(z) = /A G(x,y)o(y)dvol(y),

where the volume form dvol(y) = dvoly_ (y) is defined by using the metric g,. The Green

kernel G(x,y) has a singularity of degree 3 along the diagonal (cf. Donaldson [4, p. 310]):

|G (@, y)| < consty/d(z,y)”,

where d(z,y) is the distance on X, defined by g,.

/ |P70|qdvolz/
X

X/\B
The first term can be easily estimated:

q
/ | P,o|?dvol < constM/ dvol(x) (/ \a(y)|dvol(y)) :
X!\B X A

a/p
< constyy - (volA)e0=1/7) (/ \J(y)|pdvol(y)) :
A

| P,o|?dvol + / | P,o|?dvol.

" "
2 BNX

a/p
< constyy - (AZN—H1=0)ya(1=1/p) (/ \J(y)\pdvol(y)) .
A

From Lemma 6.4,

1/q 1/p
/ | Pyo|?dvol < constyy - NH1-90=1/p) (/ la(y)]pdvol(y)) .
BNXY A
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Hence
”PVUHLQ(X,’Y/,g,Y) < constyy - N~HIZ00=1/P) ”O—HLP(XLWgV) :
From (10),
19 oy < 108, 0 16 o gy < cONStar - N2 [, ) < comstas - N2~ o],

We have 1 —4/p = —-4/q,2 <p <4 and 6 = 1/6. Then 2 —8/q —4(1 —9)(1 — 1/p)
46(1 —1/p) — 4/p < —1/2. Therefore we get the above conclusion. O

From the above Lemma, we get

< consty, - N7Y2 |wl, -

Z BL P (dBy A W)

BL4

From the equation (52) and the estimate (55), we get

(56) < consty (DN? + N~Y2) |wlg, -

BL4

dax =Y 8,0 3, + Y o~
vy vy

Let W, = B(24.4,2VA\) \ B(2,.6,VA/2) C X, be the “neck” region (y € T, s € 9).
Since df, = —df3, over W, ;, the term — Zw dB, @ X~ can be expressed by

=Y dB @ Xy =Y dBL @ (=Xy + Xos) .-
Y 7S

We have da, x, = Byw' — Pwdjw (Byw') — ay. Since (B, =1 over the neck W, ;, we have
darxy =w = Pydy (Byw') — oy +[AL — Ay x| on W
Therefore on the neck W, ,

dA’(Xv - Xvs)
= —Pvdl (Byw') — ay + [Alw — Ay xa + vadls (Bysw') + a5 — [A{ys — Ay Xys-
As in (54) and Lemma 6.5,

(57)

’ P'Ydjv () La(Wy,s,9) < consty - (N7V2 + B2N275/1) |l s, -
From (53),
H [Ay = AL x4 HLq(X;’ 9) < constyy - b TN lwlg, -

From (51) and an (elliptic) estimate HaVHLOO(X%gW) < constyy HaVHLq(X%gW),

1/q

”a”/ ||LQ(W«,,S,g) S (COIlSt ’ /\2) ”OZ'VHLOO(X'Y:QV) ’

< constay - A1 a5,y < constar - AN,

In the same way, we get the estimates of the other terms in the right-hand-side of (57).
Then
ldar(xy — st)HLq(W%S’g) < consty - (N7V2 4 bN? 4+ AY1N?) lwl g, -
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Let vy, € (adE,),,, = (adE,),,,, be the mean value of x,, — x over the neck W, ;.

Ty,s

Using the Sobolev embedding L < C%'~%/9 (Holder space), we get
Ixvs =Xy = vysleo, ) < const - N2 d (s = Xos)l o, )
< constyy - AVZTHUNTZ L DN + NIN?) |w]p, -
Set v := (Vy5)45 € V.
(58)

> dB, @ xy + i (v)
-

)

Z dﬂ,/y ® (U%s - Xvs + X‘/)|W%S

778

BL4 BL4

1
< consty, - ﬁ(\/x>4/q>\l/2—2/q(N—l + N2 + )\2/!1]\]2) ||W”B2 :
< consty (N2 4 bN? 4 A\/IN?) lwl s, -

Set a := (a), € H. From (51), || = sup o], < consta - N*7¥|w], . Using Lemma
6.1, we get (b =4NVN)

j2(er) — Z 3oy

vel

< constyy - b7 |a| < constyy - B IN?8/4 lwlp,

BLa
< constyy - \YIN? |lwl g, -

Using this and (58) in the estimate (56), we get
ldarx + j1(v) + ja(a) — '] gpe < constar - (N2 4 DN? + AYIN?) lwl s, -

We have d, (dax + ji(v) + ja(a) — ') = [F5,, x]+d}j2 (). Using |FJ,
b7, (51) and Lemma 6.1, we get

I[F x] + d}jg(a)HBLp < constyy - BHP N84 |wl p, + constyy - bP

BLP < consty-

< constyy - \YIN? |lwl s, -
Thus we conclude that
ldarx + j1(w) + dale) — |5, < constay - (N2 4+ BN 4 N/IN?) ] .

We define a bounded linear operator 7" : By — B; by T'(w) := (x,v,a,djw). Re-
member w' = w — Pdj,w. The above shows |TT"(w) — w|p, < consty - (N2 + bN? +
MIN2) |w| 5, Therefore if we choose A and N appropriately, then (T'7")~" exists and
T'(TT')~! becomes a right inverse of T In particular, T' becomes surjective and hence
isomorphic (see Proposition 6.3). Then we get the following.

Proposition 6.6. There are Ny > 0 and \g(N) > 0 such that if N > Ny and X\ < A\o(N)
then T : By — By (given in (48)) is an isomorphism and satisfies
”(X? v, «, 5)"31 S K ”T(Xv v, &, g)”BQ )

where K 1s a positive constant depending only on M.
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6.2. Some continuities. Let’s recall our situation. I' is a finitely generated group and
S is its finite generating set which does not contain the identity element e. The group I'
can be considered as a metric space endowed with the (left-invariant) word distance by
S: For v,y €T,
ds(v,7) =min{n > 0[ Iy, -+, % € SUS iy 1y =7}
For a subset 2 C I" and an integer d > 0, we set
By(Q) = {7 €T3 € Q:ds(y,7) < d}.
We define a open set X C X by
Xo:=]J X
veEQ

Let 0; = (Eiy, Aiy, Piy.s)verses (i = 1,2) be two gluing data, i.e., E;, is a principal
SU(2)-bundle over X, and A;, is an ASD connection on E;, satisfying [E;,, A;,] € M.
Pivs © (Eiy)ae,. = (Biys)y,.. 15 an SU(2)-isomorphism. For each ¢ = 1,2, we have the
operator P; : BLP(QT(adE;)) — BLI(Q'(adE;)) which is a right inverse of d;, by Lemma
4.1. Let Q C T be a finite set. We want to compare the operators P; and P, over Xg.
Suppose that there is an integer d > 0 such that Ey., = Es,, Ay, = Ay, for v € By(Q2) and

P1y.s = Pavy.s for 7 € By(2) and s € S with ys € By(2). Then we can naturally consider
that E, = E, and A} = A over Xp,(q).

Lemma 6.7. Let § € BLY (i = 1,2). We denote £i|XBd(Q) as the restriction of & to
Xp, ) (and we extend it to X*T5) by zero). Then for each ~y €

"Pl(fl) - P2(§2)”Lq(X,’Y’,g) < constyy Hflle(Q) - £2|Bd(9)HBLp—i_COHStM'Q_d(”él ||BLP+||£2“BLP)7

where consty, are positive constants depending only on M. (Especially they are indepen-
dent of Q) and the integer d > 0.) In particular, if £1|XBd(Q) = €2|XBd(Q> then

[P1(&1) = Pa(€2)l pax, gy < cOmstag - 271 g Lo + 1€l 10 )-
Proof.
Pi(&) = Qi(1+ R)7'¢,
= Qi1 = R+ R} — -+ (=D)"'RIHG + (- 1)'QiR{ (L + R))'&.

From the definitions of the operators Q and R in Section 4, we have Q; RFE; = Q,-Rf(fAXBd(Q))
and QQRS(@\XBd(Q)) = QlR’f(§2|XBd(Q)) over Xq for k < d — 1. (These follows from the
fact that @; and R; have “one-step propagation”.) Therefore for v € Q

[P1(&1) = Pa(€2)l pa(xrr, gy < comstas |€11Bute) = &l Bue) || proreonstar-2~ (1] gL+ 1€l 510)-
Here we have used |R;| < 1/2 (see Lemma 4.1). O

The following will be used in Section 7.
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Corollary 6.8. For any € > 0, there exists d = d(M,e) > 0 satisfying the following: Let
Q CT be a finite subset. If By, = By, A1, = Aoy for all v € By(Q) and p1s = pay,s for
all v € B4(R2) and s € S with vs € By(52), then for any v € Q

[ A1) = A(O2)] Lo(xrg) < &
Proof. &; = &(6;) satisfies (i = 1, 2)
&+ (Bi(&) N Pi(&)" = —FT(A)).

Let m and dy be (large) positive integers which will be fixed later. Set d := mdy and
suppose that 6; = 0y over By(2). Since we have A = Al over B4(2), we have

& — & = (Pa(&) A Pa(&)" — (Pi(&) A Pi(&)Y,
= ((P2(&2) — P1(&1)) A Pa(&2))" + (Pi(&1) A ((P2(&2) — Pi(€1)))7,
over By(Q). For k=1,2,---  m, we set

(59)

ak = Sup H€1 - €2HL X .
VE Bk, (€2) P59

From Remark 4.4, Lemma 6.7 and (59), we have

ap < constys - 0> sup | Py(&2) — Pi(&1)] paxn ) < consta - b2 (g1 + P27 %),
Y€ Bgdg () K

where const,; is independent of k£ and €. Since b > 0 is sufficiently small, we have
ar <2 tagy +27%,

Hence a; < 27 *q,, +2%FL We have a,, < [€1] 5.0+ €2] 5, < constpb*? < 1. Hence

aq S 2—m+1 + 2—d0+1'
We have Ay — Ay = Pi(&1) — P2(&2) over By(2), and for any v € 2 (using Lemma 6.7)

|P1(&1) — Pg(fg)”l/q(X’%w < consty(a; + b7 - 27%).

We choose m and d sufficiently large. Then for v € T’

||P1(€1) - P2(£2)||L4(X;',g) <E&.
O

Let [0,] = [(Enys Anys Prvy.s)verses] € GID (n = 1,2,3,---) be the sequence of the
equivalence classes of gluing data. Since M is compact, if we take a subsequence, this
sequence (pointwisely) converges to a gluing data [0] = [(E,, Ay, pr.s)er,ses] in the fol-
lowing sense (cf. Section 7). For each 7y € I' there exists ng(y) > 0 and a sequence of
gauge transformations g, : E,, — E, (n > ng(7)) such that g,,(A,,) converges to A,
(in the C*-topology) and gms,o,msg,jv1 converges to p., s as n — oo.

For each v € I' we can assume that, for n > ng(v), En, = E,, Ayy = A, + Gy, and
Prry.s = Prs€’m (s € S) where oy, € H}H and vy, € (adE),, . (See Section 3.4.2 and
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5.1). Moreover we have lim,,_,« |y |, = 0 and lim,, o |vpq,s| = 0. Therefore the bundle
map hy, : By, = E, — E., given in (34) can be defined for n > ny(7y). Here ny(7) is an
appropriate large number with ny(y) > ng(7), no(ys™) (s € S). For each n > 1 there
exist a (possibly empty) finite subset 2, C I" (each ~ € ,, satisfies n > ny(y)) such that
we can define a bundle map h,, : E,|x, — FE|x,, by gluing these h,,. We can take these
Q, sothat ; CQy C Q3 C -+ and |J,o; 2 =T

Let &, € BLP(QT(adE,)) (n=1,2,- -T) and suppose sup,, [£,| gz, < 00. For each finite
subset 2 C I', LP(Xq) is a reflexive Banach space. Hence if we take a subsequence of
{&,}, there exists £ € BLP(Q" (adE)) with €] g, < sup,, |&n] 5» such that, for any finite
subset Q C I', h,(&,)]q weakly converges to {|q in LP(Xq).

Lemma 6.9. In the above situation, h,(Py,(&,))|x, weakly converges to Pp(§)|x,, in
L1(Xgq) as n — oo for any finite subset Q C T.

Proof. Take ¢ > 0 and n € (L9(Xg))* = LY (Xq) (1/¢+1/¢ =1). Let d > 0 be a large
integer which will be fixed later. Set &, := &,|p, ) = Ixp o) - & and & =&, — £, where
Ly, o) 18 the characteristic function of Xp,(q). We also define ¢ := £|p,(q) and " := {=¢.
hn(&),) weakly converges to £ in LP(Xp,)). Then P(h,(&),)) weakly converges to P({')
in BLY. Set P}, :=hy, 0 P,oh,": LP(Xp,), Q" (adE)) — BL". (P, := P,,.) We have
(60) ha(Pa(&n)) = (By(hn&) — P(ha&y)) + P(ha&y) + ha(Pa(&7))-

From Lemma 6.7, [, (P (€))L < constoy -2 |6l pge and [P sy < constioar

27 €l g < consta s - 277 sup, [l -
The term (P (h,&)) — P(h,€))) can be evaluated by using Lemma 5.1 and 6.7 as follows.

Define (for n > 0) a gluing data 0, = (EAm,AAm,A,én%S)WeF,SEs by (Em,flm,ﬁm,s) =
(Ernryy Aneys Prys) Tor (7,8) € Bap1(2) x S and (Eny, Any, Pro.s) = (Ey, Ay, py.s) otherwise.
Lemma 6.7 gives (P, := h, 0 P; oh,!)
AUTARY AT
Lemma 5.1 gives (n > 1)
Pl (h,€)) — P(h,é,
| 2hag) = Py
Therefore for n € (L9(Xq))*

[(Pa(Pa(&n)) = P(€).m)] < (P(hag;,) — P(€'),m)] + consto,ar - [n] 27" sup |&nl g1 »

+eonstany - o] sup  {dpe([Any], [A)]) £ [ony.s = pysl} sup [6ml 5o
YEB34+1(Q2),s€S m

< const .9 .
g < COmstaar 27 [l

< constyy - sup {qu([An’y]v [A’Y]) + |pn'y,s - p’y,8|} ”€n "BLP
a Y€Ba+1(82),5€S

We choose d > 0 so that consto s - |7 274 sup,, [€all 51, < €/3. We can choose n; > 0 so
that for n > ny

constaps il 5w {dsa([Awsls [A]) + [ouns — pral} -5up Wl < /3.
YEBg1+1(2),5€S m
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Since P(h,&,) weakly converges to P(¢') in BL?, we can choose ng so that for n > ng

(P (hn&p) — P(€),m)| < /3.

Therefore for n > max(ny, ns)

[(hn(Pa(8n)) = P(E),m)| < e.

Thus lim,, o (hn(Pn(&n)),n) = (P(£),n). This means that h,,(P,(&,))]q weakly converges
to P(é)‘g in Lq<XQ) O

6.3. Proof of Surjectivity. Let (F, A;) and (Es, As) be two pairs of a principal SU(2)-
bundle over X and an ASD connection on it. We define the L?-distance between their
gauge equivalence classes by (recall ¢ > 4)

dra([Er, A, [E2, Ao]) := inf Ay — (A1) acx)
g:E1—FE9

where ¢ runs over bundle isomorphisms between E; and F,. If E; and F, are not iso-
morphic, then we set dpq¢([E1, A1), [E2, As]) := 0o. Recall that M denotes a set of gauge
equivalence classes of (E, A) satisfying the conditions (a), (b), (c¢) in the beginning of
Section 3.2. Let £ C M be a subset such that there exists 6 > 0 satisfying Bs(L£) C M.
Here Bs(L£) C M means that if a pair (E, A) of a principal SU(2)-bundle E over X and
an ASD connection A on E satisfies dr«([E, A], [F, B]) < ¢ for some [F,B] € L then
[E, Al € M. We define GID(£) C GID by

GID(L) :={[(Ey, Ay, py,s)verses| € GID| [E,, A,] € L for all v € '}
Let B be the set of all gauge equivalence classes of (F, B) where F' is a principal SU(2)-

bundle over X*T%) and B is a connection on it. By using the cut-off construction in
Section 3.3, we have the map:
J: GID — B, [0~ [E(6),A'(0)]
For [F;, B;] € B (i = 1,2), we define their BL4-distance by
dpra([Fy, Bil; [Fy, Bo]) :=  inf By —g(B1)|ppa -

g:F1—F
(This may be +00.) For v > 0 we define a subset U(L,v) C B by
U(L,v) = {[F, B] € Bl dpp«([F, B], J(GID(L))) < v, |

Here dpp«([F, B], J(GID(L))) < v means that there exists a gluing data [f#] € GID(L)
such that dpr«([F, B, [E(6), A'(#)]) < v. The following lemma will be used in Section 8.
(This is essentially given in Donaldson-Kronheimer [5, Lemma (7.2.43)].)

F;“”BLP < 1/3/2}.

Lemma 6.10. There exists by = by(M,v) and /' = v'(v) such that if b= Nv/X < by and
|[F, B] € B satisfies for all v € T’

inf d q Flxu, Blxul|, |El|xn A nl) < / F+ < 3/2
[E},Iéll}eﬁ L ([ |Xq,a |X,Y]7[ |X7a |X,Y]) v, H BHBLP v,
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then we have [F, B] € U(L,v)

Proof. There are [E,, A,] € M (v € T') and bundle maps g, : F|x» — E,|x» such that

/

19+(B) = Ayl gy g) < V"

From (14) we get

< constyy - pita/a,

4,

- A/V H Li(XY,9)
Hence

lg-(B) — A/vHLq(X;',g) < V' + constyy - b9,

For each v € I' and s € S, we set h,, = gvsg;1 . B, — E, over the “neck” W, , :=
XINXZ, Then Hh%s(/ﬁ,) - AQ’SHLQ(W%S’g) < 2(V'+consty,-b'T47) =: . In the exponential
gauges of A, around z, 5 and y, , the connection matrix A7 = 0 over the necks. Therefore,
in these gauges, [dhy,s| oy, ., < € Using the Sobolev embedding L{ — CO1=4/4 we get

|h775<x> o h%s(y” < const - |z — y|1*4/q7

for any x,y € W, ;. (The above “const” does not depend on \.) Since the right-hand-side

is sufficiently small, there is p,, : (Ey)q,, — (Eys) such that h, s = p, e and u,

Yys,s
satisfies

(61) Hdu%s”Lq(W%&g) < const-e, |uy| < const - N2,

Set 6 := (Ey, Ay, Pry.s)v.s-

We define k., : E,| Xy — E.| xy as follows; k, is equal to e(1=8)urs around the points
Z, and equal to e~ (17881 (Uys = pvsfgsu%fl’sp;sl,l ,) around the points v, ,. k,
is equal to 1 outside the “neck” regions. We set g, := k,g, : F|x» — E|xr. These
compatibly (i.e. g,s = py,sJy) define g : ' — E(0). We have g,(B) — A’ = k,(g,(B) —
Al) + ky(AL) — AL From (61) we have HkW(A/v> - A’WHLQ(W%S’g) < const - . (Note that
|dBl, @ u,s| < const - A2/9¢ and hence Hdﬁ; & Uy < const - €.) Therefore we
have

HL(I(W%s’g)

|§(B) — A'(6) 5 < const - <.
O

Recall that £ C M satisfies Bs(L) C M where Bs(L) is the d-neighborhood of £ with
respect to the L4-distance.

Theorem 6.11. There are vy(§) > 0, No > 0 and A\g(N, v, ) > 0 satisfying the following:
If v < 1p(8), N > Ny and X\ < X\(N,v,0) then for any [F,B] € U(L,v) there exist
0] € GID and £ € BLP(Q1(E(0))) satisfying

[F.B] = [E,A'(0) + Po(€)], €l ppp < 3072
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In particular if [F, B] € U(L,v) and B is an ASD connection, then there exists [0] € GID
satisfying [F, B] = [E(0), A(0)] (see Proposition 4.3 and the statement of the uniqueness
of & there).

We will prove this theorem by using the continuity method developed in Donaldson-
Kronheimer [5, Section 7.2.4, 7.2.5].

Let [F,B] € U(L,v). There is [F,B'] € J(GID(L)) satisfying B = B’ + b with
|b] g0 < v. Fort € [0,1] we set B, := B’ +tb. For small v > 0 and b = 4NV > 0,
all B, are contained in U(L,v); In fact, when t = 0, |F(Bo)|gp = |FT(B)|g <
constyy - b < 132, For t € (0,1], F¥(B,) = tF*(B) + (1 — t)F*(B') + (t* = t)(b A b)*.

[E By < tNET By + A=) [FF(B)] 50
< t- %% 4+ consty - (1 — ) (WP + %) < P2,
Hence [F, B] € U(L,v).

Let ¢ > 0 be a small number which will be fixed later. Let S C [0,1] be the set
of t € [0,1] such that there exist a gluing data 6;, & € BLP(QT(E(6;))) and a gauge
transformation u,; : F' — E(6;) satisfying

(62) ut(By) = A(0:) + P, (&), &l prr <&

We have 0 € S. From this equation, we have u;(F*(By)) = FT(A'(6;)) + & + (Pp,& A
Py,&)". Hence

||€t”BLP < “F+(Bt)||BLp + “F+(A,(9t))“BLp + constyy - ||€t||QBLp7

< %2 4 const), - b¥P + constyy - € |& ILs-

2
)HBLP + const - (t — tz) “b"BLq )

We choose € > 0 so that consty; - & < 1/2. Then
1l g < 2(V3/2 + Constj/lbél/p).

We choose v and b sufficiently small so that 2(*2 +const),b*/?) < 3032 < ¢/2. Therefore
we get

(63) |6l o < 3072 < e/2.

In particular, from the open condition || z;, < €, we have deduced the closed condition
[&el pre < €/2.

Now we will prove that S is a closed set in [0,1]. Let ¢, € S (n = 1,2,3,--) be
a sequence converging to t € [0,1]. Set 0, = 0, = (Eny, Ay, Proyos)yerses- We have
un(By,) = Al + P,(&,) with |&,] 51 < €/2. From the argument before Lemma 6.9, using
some gauge transformations, we can suppose that 6, converges to 8 = (E., Ay, py s)ver ses
as follows; There is ng(y) > 0 for each v € I" such that E,, = E,, A,y = Ay + &y (0 €
H}H), Prry,s = Pys€’m7 for n > ng(y), and a,,, and v, s converge to 0 as n — oco. Moreover
there exist £ € BLP(Q(adE)), an exhausting sequence 3 C 2y C Q3 C --- C I’ and
bundle maps h, : E,|x, — FE|x, such that h,({,)|x, weakly converges to {|x, in
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LP(Xq) for any finite subset @ C I'. From |&,|5., < /2, we have |{] 5., < €/2. Set
Gn := hy ou, (over Xq ). Then

Gn(Brn) = ho(AL) + h, (P (&) over Xq,.

For any finite subset €2 C I, the right-hand-side of this equation weakly converges to
A'(0)+ Pp(§) in LY(Xq) (Lemma 6.9). On the other hand, if we take a subsequence, there
exists a bundle map ¢ defined over X*(5) such that g, weakly converges to g in L{(Xg)
for each finite subset 2 C I'. Then we get

9(Bi) = A'(0) + Po(€),  [€lprr <c/2<e.

This shows ¢t € S. Thus S is a closed set in [0, 1].

Next we will prove that S is open in [0,1]. Suppose that the equation (62) holds at
some t € [0,1]. Then A" = A’(6,) satisfies dprq([A’], [B’]) < v+ const - . Therefore if we
choose b, € and v small enough, then 6, = (E,, A,, py.s)yer ses satisfies

(64) 36/2([Ew A)]) € M,

for every v € T'. (Recall that Bs(L£) C M.)
Consider the following map:

G:Bi— DBy, (x,v,0,n) e (AL o+ Poa(n+&)) —w(B),

where By and By denote the Banach spaces defined in Section 6.1. Of course, we consider
only very small (x,v,e,n) € By. A, and P, is the connection and the operator
defined in Section 5.1. Aj, = A" = A’(0;) and Pyo = Pp,. We have G(0) = 0. If we prove
that the derivative of G at the origin (dG)y : By — Bs is isomorphic, then the inverse
mapping theorem and (64) implies that ¢ € S is an inner point. (dG)o : By — By is given
by
(dG)o(x, v, @) = T(x, v, @, 1) + [P(&); x] + 0o Poo(&r) + 0aPo.a(&1);

where T'(x, v, a,n) = dax + j1(v) + jo2(a) + P(n) is the operator given in (48) and P =
K|T(x,v,c,n)|g,- Therefore if we prove |T' — (dG)o| < K", then (dG)o is an isomor-
phism.

Poo = Py, Proposition 6.6 shows that T' is an isomorphism satisfying |(x, v, a,n)|p, <

We have [[P(€), Xl sz < constar-1&lzs Ixlen < constas e [(x,, @ 1)l 5, from Lemma
6.2 and (46). We have di,[P (&), x] = [&, x] — [P(&) A darx]". Hence

Hd+/[P(§t)7 X]”BLp < ”X”co ||§t||BLp + “P<§t)||BLq HdA’X”BL4 :

We have |dax|pra < |dax + j1(v) + j2(0)] gra + [71(0) | gpa + [J2(@)] gpa- Recall the
equation (45) (ji(v) = df, ® v, over Q(z,,)) and the fact that Hdﬁg”m

independent of the parameters A and N (because of the conformal invariance of the L*-

is a constant

norms of 1-forms; see the argument before (17)). Hence (using Lemma 6.2)

(65) 71(0) ] pa < const o] < constar [(x, v, @, )], -
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From Lemima 6.1, [ (e0) |5 < const-|ja(e)] 5y, < constas-fer] < constar|(x, v, 1)l 5,
Hence || [P(6), x| 5, < constar - €[ (x.v.an)lp,. Thus [[P&). x]ls, < consty -

€ ”(X7 v, &, 77) ”Bl'
By using an argument similar to that in Lemma 5.1, we have

100 Po0(€) o + 100 Fo.a(&)l pre < constar - (o] + ) < constar - [(x, v, e, 0)] g, -

Differentiating the equation d;, Py.o(&) = & with respect to v, we have dj,0, Py o(&) =
—(j1(v) A P(&))". Using the above (65), we have

400 Poo (60| 5o < 11 (W) s 1P(E)l i < comstar - & | (x, v, e, ), -

Similarly
|0 Po.a(&)| 5y < comstay - e |af < consty - & |(x, v, e, n)|, -
Therefore
100 Po.0(&) 5, + 0aFo,a(&)] 5, < constar - € |(x, v, e, n)|p, -
Thus

H(dG)0<Xa v, &, 77) - T(X? v, o, 77)”32 < consty - € ”(X? v, o, 77)”B1 :

Hence if we choose € small enough, then (dG)o is an isomorphism. This shows that S is
open in [0,1]. S is a non-empty open closed set in [0,1]. Thus S = [0,1]. In particular
we have 1 € S. This proves Theorem 6.11.

7. ESTIMATION OF THE MEAN DIMENSION

As in the previous sections, M denotes a set of equivalence classes of (E, A) (F is a
principal SU(2)-bundle over X and A is an ASD connection on it) which satisfies the
conditions (a), (b), (c¢) in the beginning of Section 3.2. GID = GID,, is the set of the
equivalence classes of M-gluing data defined in Definition 3.2. GID is endowed with the
topology of “point-wise convergence” as follows. A sequence [0,] = [Epy, Any, Pry,s)ver ses
in GID (n > 1) converges to [0] = [E,, Ay, py,s]yer ses if the following condition is satisfied.
For any finite subset {2 C I', there exist n¢(€2) > 0 and bundle isomorphisms g, : E,, —
E, for n > ny(2) and v € Q such that g,,(A,,) converges to A, (as n — o0o) in the C*-
topology for all v € €, and that gmspm,sggv1  (By)a,, — (Eys)y,.., converges to p,, for
any (v, s) with v,vs € €. This topology is metrizable and compact (because we suppose
that M is compact). I' continuously acts on GID by (this is a right action)

[E’w A’ya p'y,s}'yel‘,ses cg = [Eg% Ag’ya pg’y,s]’yEF,s€.5'7

where we naturally consider that (Ey,, Ay,) is a data defined on X, and that pg, s is

a map from (Eg, )., , to (Eyy),,... A distance on GID is given as follows: For n > 1,

Ty,s
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0] = [E,, Ay, pyslyer ses and [0'] = [F,, Bwply,s]vel“,ses in GID, we define 6, ([0], [¢']) by

By —F,(vyeB
gLy y(v€Bn) ~EBy ~SEBn

0 ([0],[6]) := inf <Z lg,(A,) — B, HLOO(X) + Z |gvsp%sg;1 - P/%s’> )

where B,, is the n-ball (with respect to the word distance) centered at the origin in I' and
g (v € B,) runs over bundle isomorphisms between £, and F,. If E, is not isomorphic
to F, for some vy € B, then we set §,,([0], [¢]) := +00. We define a distance d([0], [¢']) by

m o N~ L (6], 10])

n>1

We define the space M(GID) = M(GIDy;) by

M(GID) := {[E(0), A(0)]| [0] € GID}.
M(GID) is endowed with the topology of C*°-convergence on compact subsets in X*1"%).

This topology is metrizable. I' continuously acts on M(GID) by (3). The map
GID — M(GID), [6] — [E(0), A(9)],

is ['-equivariant.

Lemma 7.1. The above map GID — M(GID) is a I'-homeomorphism.

Proof. Proposition 5.5 shows that the map is bijective. Since GID is compact, it is enough
to prove that the map is continuous.

Let ¢ > 0 and 2 C T be a finite subset. Let 6; = (E1,, A1y, P1y.s)ver,ses and Oy =
(Eay, Aoy, P2y.s)ver,ses be two gluing data. Let d = d(M, €) be the positive constant given
by Corollary 6.8. Suppose that Fy, = Ey, for v € Bg1(Q2) and that |Ay, — As, |,
and |p1y.s — p2ys| (v € Ba(2),s € 5) are sufficiently small. We define another gluing
data 0 := (E., AL, p. J)rerses by (B, AL pl ) = (B, Aiy, p1y) for v € By(2) and
(B, AL pl ) = (Bay, Azy, pays) for v € T\ By(£2). From Corollary 6.8, we have (for
v € Q)

| A(01) — A(Ql)”m(xg,g) <é&.

On the other hand, for all v € I' and s € S we have Ey, = E/, HAZ’Y —
and |pay,s — p,| < 1. Therefore (using the arguments in Section 5.1)

AZY HLQ(Xg’,g) <1

dpra([A(02)], [A()]) < e.
Thus there exists a bundle map g from E(6;) to E(fy) over Q such that for all v € Q
||g(A<01)) - A(QQ)“Lq(X’/\;’g) < 2e.

This shows that GID — M(GID) is continuous. O
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In the rest of this section we assume that I'" is amenable. Let ©; C €y C Q3 C --- be
an amenable sequence in I'. This sequence satisfies (for any r > 0)

(66) | B:(S0)[/[€0] = 1 (n — o0),

where B,.(£2,) is the r-neighborhood of €2,,. For each 2,, we define the distance dg, ([6], [0])
on GID by

da, ([0], [0']) == maxd([0].g, [6'].9).

gEQ,

Proposition 7.2.
dim(M(GID) : T') < 3|S| + dim M,

where dim M denotes the (topological) covering dimension of M.

Proof. From Lemma 7.1, it is enough to prove that
dim(GID : I") < 3|S| 4 dim M.

Fix any € > 0. Take ng = ng(e) > 0 satisfying

For any finite set 2 C I', we define B_1(2) as the set of v € Q satisfying vs € Q for all
s € S. We define a finite dimensional compact metrizable space GID|q by

GID|g := {((E’WA'Y)’YEQ’ (p%S)vqu(Q),seS) | [EvaAv] €M, pys: (Ev)xs - (E'VS)ys}/ ~,

where the equivalence relation ~ is defined as follows. 6 = ((Ew A)veq, (Pr.s)e B,l(Q),seS)

is equivalent to ' = ((F,, B,)eq, (p;78)76371(9)7865) if there exist g, : £, — F, (v € Q)

such that g,(A,) = B, for all v € Q and o} (g, = g,spy,s for all (v,5) € B_1(€2,) X S.
There is a natural projection GID — GID|q. Consider the following projection map:

GID|q — M.
The topological dimension of each fiber of this map is < 3|€||S|. Hence
dim GID| < Q] dim M + 3|Q|[S].
For each €2, in the amenable sequence, consider the following map
p: GID — GID|g, (a,)-

If p([0]) = p([¢']), then we have
do, ([0), [0']) <e.

Therefore (see Appendix B)
Widim. (GID, dq,) < dim (GID| 5, (.)) < | Buy(Q)|(dim M + 3|S]).
Using (66), we get
Widim.(GID : T') = lim Widim.(GID, dg,,)/|$2,| < dim M + 3|S].

n—oo



40 MASAKI TSUKAMOTO

This holds for any € > 0. Thus we get the above result. 0

Let [E, A] € M. We call this point a regular point of M if [E, A] € M, and there
is > 0 such that, for any ASD connection B on E satisfying dr.([A], [B]) < 0, the
pair [E, B] is contained in M,. Remember that for any [E, A] € My the connection A is
irreducible (see (b) in the beginning of Section 3.2) and then its isotropy group is {£1}.

Proposition 7.3. Let [E, A] be a regular point of M, then we have
dim(M(GID) : T') > 3|S| + dim H}.

Proof. We will prove dim(GID : T') > 3|S| + dim H). There is a compact neighborhood
K of the origin in H} such that, for all « € K, [E, A+ a] € My and the map K > o
[E, A+ a] € M, is injective. Here A + & is the ASD connection introduced in Section
3.4.2. Let Homgy)(E,,, Ey,) be the space of SU(2)-isomorphisms between the fibers
E,, and E,, (s € S). Let L, C Homgy(o)(Es,, Ey,) be a compact set such that L, is
homeomorphic to a three dimensional ball and that, for any u,v € L, we have u # —uv.

Then we have a natural I'-equivariant continuous map

T
(K % HLS> — GID.

SES

From the conditions of K and L, this map is injective. Therefore

r
dim(GID : T') > dim (K X HL) :T'| =dim (K X HL) = dim H} + 3|5

seS seS

O

8. PROOF OF THEOREM 2.3

In this and the next sections we set X := S* with the metric h satisfying the conditions
(i), (ii) in the beginning of Section 2.1. Let 0 < ¢ < € < 400 and d € (2,+00]. As
in Section 2.1 we define M = Mg4(¢, d) as the space of the gauge equivalence classes of
(E, A) where F is a principal SU(2)-bundle over S* and A is an ASD connection on it
satistying [ Fapasap) < ¢ We set My = {[S* x SU(2), the product connection]} and
My := M\ M.

If Ais an ASD connection on (S*,h), then A is also ASD with respect to the standard
metric on S* because h is conformally equivalent to the standard one. Therefore all non-
flat ASD connections on (S*, h) are regular. In particular, M = M, U M, satisfies the
conditions (a), (b), (c) in the beginning of Section 3.2. We consider the gluing data space
GID = GIDy, for this M = Mga(¢,d).
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Recall that M(c,d) is the space of [E, A] where E is a principal SU(2)-bundle over
(S4)*I9) and A is an ASD connection on it satisfying (2):

”FA”Ld(Xg,g) <c¢ forallyel.
(Here X' = U, in the notation of Section 2.1.)
Proposition 8.1. There are Ny(c,¢,d) > 0 and Ao(c,¢,d, N) > 0 such that if N >
No(e,¢,d) and A < \o(c,¢,d, N) then
M(c,d) € M(GID),
i.e., for any [E, A] € M(c,d) there exists [0] € GID satisfying [E, A] = [E(0), A(6)].
We need some preliminary results for the proof of this proposition. Our argument is

based on Donaldson-Kronheimer [5, Section 7.3]. The following proposition is given in [5,
Proposition 7.3.3], and we omit the proof.

Proposition 8.2. Let T > 0 and k > 0. Consider (=T, T) x S with the usual product
metric. There are positive constants n and C = C(k) (n is independent of T and k, and
C s independent of T) such that if an ASD connection A on (—=T,T) x S* satisfies

PG = [ PGPl <o
—T,T)x

then
[F(A)] < CeXD | F(A)] .,
for all (t,0) € (=T,T) x S® with |t| <T — k.

Using the stereographic projection, we can translate this proposition to a result on the

Euclidean space:

Corollary 8.3. Let 0 > 0 and A\ > 0 with /o < V/A/2. Set k:=0.9 and
Q= {z eRY ko <|z| <k 'o}.

There exist n > 0 and C > 0 (independent of o and \) such that if an ASD connection A
on ) satisfies

|F(A) = / IF(A)Pdvol < 1,
then c
FA) < SIFA] (VA2 < i <o)

Moreover A can be represented by the connection matrix satisfying

Ul ypayl, W2l <o),

()

4] <

Proof. See Donaldson-Kronheimer [5, p. 314]. O
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Lemma 8.4. For any v > 0 there is Ao > 0 such that if A < Ao then all [E, B] € M(c,d)

satisfies

inf  dpe(|B|xv], [A]lxr ll .
[A]ezg;(c,d) La([Blxy], [Alxy]) <v forally €

Note that [A] runs over Mga(c,d) (not M = Mgs(C,d)).

Proof. We can prove this lemma by using the argument in [5, Section 7.3.4]. For e > 0
we set (cf. Section 3.4.3)

X, = 5%\ (U B(x,,¢) U B(ys,a)> .
ses

Suppose the above statement is false. Then there are v > 0 and a decreasing sequence

A1 > Ay > Ag > -+ — 0 and ASD connections B,, on X, /, (0 is a small positive constant

chosen below) satisfying

(67) ”F(Bn)”Ld(Xm/Q,g) <¢
(63) it (Bl ) Al ) 2

Let ' (z5) and 2 (ys) (s € S) be the annulus regions (in X) around x4 and y, of inner
radius = kA, /o and outer radius = 0. Since d > 2, we can choose o > 0 so small that all
B, and [A] € Mgi(c,d) have curvatures of L>-norm < n over each {0 (z,) and €, (y,). (n
is a positive constant given in Corollary 8.3.)

From (67) and d > 2, the Uhlenbeck compactness implies that (if we choose a subse-
quence) there exists [A] € Mg1(c,d) such that [B,] converges to [A] in the C*°-topology
over compact subsets in X \ {zs,ys| s € S}.

On the other hand, from Corollary 8.3, B,, and A can be represented over € (z5) and

2 (ys) by the connection matrices satisfying
|B,| < const - ||, |A| <const-|z] (v A/2<|z| <o),

where “const” is a positive constant independent of \,. This estimate and the C*-

convergence mentioned above imply

qu([Bn‘Xm/QL [A‘Xm/z]) - O
This contradicts (68). O
Proof of Proposition 8.1. Set L := Mga(c,d) €@ M = Mga(¢,d). For any v > 0, Lemma
6.10 and Lemma 8.4 implies (for appropriate N and \) M(c,d) C U(L,v). Then, from

Theorem 6.11, for any [E, A] € M(c,d) there exists [0] € GID,, satisfying [E, A] =
[E(6), A(0)]. [



GAUGE THEORY AND MEAN DIMENSION 43

Proof of Theorem 2.3. (i) Take ¢ such that 0 < ¢ < ¢ < ¢y(d). Then M := Mga(¢,d) = M,
i.e., M consists only of the product connection. Then all A(#) ([0] € GID,,) become flat
connections. (See Remark 4.5.) Since we have M(c,d) C M(GIDy,) (for appropriate N
and ), M(c,d) is equal to the moduli space of flat SU(2)-connections.

(ii) Fix N = Ny(c, ¢, d) (the constant in Proposition 8.1). Using Propositions 7.2 and 8.1,
we get (A < 1)

dim(M(e,d) : T') < dim(M(GID) : T') < 3|S| + dim Mg (¢, d).

9. PROOF OF THEOREM 2.4

In this section we suppose X = S* and d € (2,+00). Let 0 < ¢ < ¢ < 400 and
set ¢ == (c+¢)/2 (¢ < ¢ < ¢). We also suppose that dim Mga(c,d) > 0. Then there
exists [Ey, Ag] € Mga(c,d) such that Ay is a regular ASD connection and dim H) >
dim Mga(c,d). [Ey, Ao] becomes a regular point of M’ := Mgai(c/,d). (See Proposition
7.3.)

Proposition 9.1. There is by(c,c,d) > 0 such that if b= ANV < by(c, ¢, d) then
M(GID ) € M(e,d),
i.e., for any [0] € GIDyp we have
||F(A(9))||Ld(X%g) <c forallvyeT.

Proof. We use an argument similar to that in the proof of Lemma 8.4. Set € := (¢—¢)/2 =
(¢ — ¢)/4. Suppose the above statement is false. Then there are parameters A, and
N, > No(M'") (n=1,2,3,---) (No(M’) is the constant given by Proposition 4.3) satisfying
by = 4N/, — 0, and M’'-gluing data 6,, = (E,, An, Prry.s)ver.ses such that for some
Yo €T

HF(A(n)(en))”Ld(xgn,g) > G

where A™ = AM(9,) is A(6,) for the parameters A\ = A, and N = N,. Using the
[-equivariance, we can assume that v, = e (the identity element of I'). Taking a subse-
quence, we can also assume that E,. = E,,. (=: E) for m > n > 1 and A, converges to
A € M’ (an ASD connection on ) in the C*-topology. Since b,, — 0, A™ converges to A
up to gauge equivalence in the C*-topology over compact subsets in X, \{zcs, Yes| s € S}

We have a uniform upper-bound on HF(A(”)) HBLP by Proposition 4.6. Then, from p > 2
and Corollary 8.3, there exists ¢ > 0 such that in the Euclidean coordinates around z. s
and y., we have |[F(A™)|(z) < const, for v/A,/2 < |z| < o (for all n). Hence for a
sufficiently small ¢/ < o we have (recall: ¢ = (¢ — ¢)/2)

/ |F(AM)]? < &,
Van/2 <|z|<o’
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(Here we have used d < 4+00.) |F(A™)| uniformly converges to |F(A)| over X, . (Xeo
is the complement of the balls B(z.,0’) and B(yes,0’) in X, = S2.) Hence for n > 1

[P |y, < e

Therefore for n > 1
HF(A(TL))HLUZ(XQ,g) <d+e+te=c

This contradicts the assumption. 0
Proof of Theorem 2.4. Using Propositions 7.3 and 9.1, we get (A < 1)

dim(M(c,d) : T') > dim(M(GIDyp) : T) > 3|S| + dim H) > 3|S| + dim Mgi(c, d).

APPENDIX A. PROOF OF THE COMPACTNESS OF M/(c,d)

The purpose of this appendix is to prove the following proposition:

Proposition A.1. Let d > 2. Let X be a connected, oriented (possibly non-compact)
Riemannian 4-manifold without boundary, and E be a principal SU(2)-bundle over X.
Let { A, }n>1 be a sequence of ASD connections on E such that for any compact set K C X
we have

sup | F'(Ap)| oy < 00

n>1
Then there exist a subsequence (we also denote it by {A,}n>1), a sequence of gauge trans-
formations g, : E — E and an ASD connection A on E such that g,(A,) converges to A
in the C*°-topology over every compact set in X.

This proposition follows from Donaldson-Kronheimer [5, Proposision (4.4.9)]. But,
unfortunately, I think that the proof of [5, Proposision (4.4.9)] contains a gap. I think
that the proof of [5, Lemma (4.4.5)] is not correct (cf. [17, the footnote in p. 5]). The
proof given below essentially uses the fact that the gauge group is SU(2), and I don’t know
whether the same result holds for more general gauge group. In Section 2, we introduce
the moduli space M(c,d) and state that this space is compact in the topology defined
there. This compactness easily follows from the above proposition.

If X is a compact manifold, then the above statement is certainly well-known (see [17,

Theorem EJ). So we assume that X is non-compact below.

Lemma A.2. Let Y C X be a compact submanifold with boundary in X satisfying
HYX,Y;Z) = 0. Let g be a gauge transformation of E over Y. (Strictly speaking,
we suppose that g is defined smoothly over a neighborhood of Y.) Then g can be extended
to a gauge transformation of E defined over X.
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Proof. In this proof, we use the fact that the gauge group is SU(2). Since X is non-
compact, F is isomorphic to the product bundle X x SU(2). Hence g can be identified
with the map from Y to SU(2). SU(2) = S? is 2-connected and 73(SU(2)) = Z. So the
obstruction on the extension of g to X is contained in H*(X,Y;Z). But this is 0. Hence
g can be extended over X. 0

From the second countability of X, there exists a sequence of compact submanifolds
with boundary Y} (k > 1) such that

ieveV;e -, X=[J%

k>1

Lemma A.3. We can choose the above sequence so that HY(X,Yy; Z) = 0 for all k > 1.

Proof. Let X \ int(Yy) = X; U Xo U --- U Xn be the decomposition into the sum of the
connected components. N is less than or equal to the number of the connected components

of 9Y},. Each X, is a (possibly non-compact) submanifold in X with non-empty boundary
(0Y, = 0X; U---U0Xy). We have (by the excision theorem)

N
HYX, Y3 Z) = | [ B (X0, 0X,;: Z).
n=1
If X,, is non-compact, then we get H*(X,,,0X,;Z) = 0. Hence if we can arrange Y} so
that all X,, becomes non-compact, then we get H*(X,Y);Z) = 0. This can be easily
achieved as follows: Suppose that Xy, Xy, ---, X,, are compact and that X,, 1, X,,10,
.-+, Xn are non-compact. Then we set Y, ==Y, UX; UXoU---UX,,. Y/ also becomes a
compact submanifold in X, and X \ int(Y)) = X;41 U Xppq2 U+ -+ U Xy, Since each X,
(n > m + 1) is non-compact, we get H*(X,Y/;Z) = 0. O

We suppose that the sequence Y} satisfies H*(X,Y;Z) = 0.

Proof of Proposition A.1. Using a collar neighborhood of dY}, we can construct a open
set Ux D Yy (in X) which is diffeomorphic to Yy Ugy, 0Yx x [0,1). We can arrange them
so that Uy C Uy C Us C - --. Using [17, Thoerem E’] for these Uy and a diagonal process,
we get a subsequence (we also denote it by {A,}) satisfying the following: For each k > 1
there exist a sequence of gauge transformations ggk) on U, and an ASD connection A®*)
defined over U} such that g,(lk)(An) converges to A®) (n — oo) in the C>-topology over
compact subsets in Uy.

For each k > 1, A®*D is gauge equivalent to A%®) over U,. Hence there exists a gauge
transformation hj; defined over Uy satisfying hk(A(k“)) = A® on U,. Using Lemma
A2, we have a gauge transformation hj defined over X which is equal to hy over a
neighborhood of Y. We have hf(A*+1D) = A®) over a neighborhood of Y;. We define an
ASD connection A over X by setting A := A®M over Y; and A := k| ohyo---oh)_,(AW)
over Yy (k > 2). This definition is well-defined.
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For each k > 1, by applying Lemma A.2 to the sequence {hfj ohbo---oh}_;o gq(f)}@h

we get a sequence of gauge transformations {u%k)}nzl defined over X such that u'” =

hyohho---ohj ;o g% over Yj. Then u%k)(An) converges to A (n — o00) in the C*-

topology over Y. In particular, there exists n, > 1 satisfying
— k)
4= (A vy, < Lk

(Here |-|cr(y,) 1s a C*-norm over Yj defined by using a fixed connection on E.) We can
choose the above ny so that ny <ny <ng < ---. Then uf{?(Ank) converges to A (k — o0)

in the C*-topology over every compact set in X. O

APPENDIX B. REVIEW OF MEAN DIMENSION

We review the definitions and basic properties of mean dimension. For the detail, see
Gromov [8], Lindenstrauss-Weiss [10] and Lindenstrauss [9].

Let (X,d) be a compact metric space and € > 0. Let Y be a topological space and
f: X — Y a continuous map. We call f an e-embedding if we have Diamf~!(y) < ¢ for
any y € Y. For example, consider [0, 1] x [0, ] with the standard Euclidean distance, and
let f:1]0,1] x [0,e] — [0,1] be the natural projection. Then f is an e-embedding.

We define Widim.(X,d) as the minimum integer n > 0 such that there exist an n-
dimensional polyhedron P and an e-embedding f : X — P. For example, we have
Widim, ([0, 1] x [0, ], the Euclidean distance) = 1 for € < 1. The following is one of the
most basic examples (see Gromov [8, p. 332]). For its proof, see Lindenstrauss-Weiss [10,
Lemma 3.2] or Tsukamoto [14, Example 4.1].

Example B.1. Consider [0, 1] with the ¢>°-distance du,(,y) = max; |z; —y;|. Fore < 1
we have

Widim, ([0, 1], dy) = N.

Let I' be a finitely generated infinite group with a finite generating set S. I' is equipped
with the word distance: for v, € I, we define d(,7’) as the minimum integer n > 0
such that there exist v, - ,7, in S U S~ satisfying y=19 =1 - - - Y.

For a finite subset ) C " and r > 0, we define the r-boundary 9,2 C I' as the set of
v € I such that the r-ball B(v,r) around v has non-empty intersection with both {2 and
[\ Q. Let Q; C Qs C Q3 C -+ be asequence of finite subsets in I". We call this sequence
an amenable sequence if for any r > 0 we have [0,82,|/|2,| — 0 as n goes to co. We call
[' an amenable group if it has an amenable sequence. In this appendix we assume that I’
is an amenable group with an amenable sequence €}y C 29 C €23 C ---. For example, Z
is an amenable group with the amenable sequence Q,, := {0,1,--- ,n}.

Suppose that I' continuously (not necessarily isometrically) acts on X. (We suppose
that the action is a right-action.) For a finite subset 2 C I we define the distance dg(-, -)
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by setting

do(z,y) :=supd(z.v,y.7),
YEQ

for z,y € X. For € > 0 we define Widim.(X : I') by

Widim. (X : T) == lim Widim.(X, dg, )/|%]-

n—oo

This limit always exists, and it is independent of the choice of amenable sequences. (see
Gromov [8, pp. 336-338] and Lindenstrauss-Weiss [10, Appendix]). We define the mean
dimension dim(X : I') by

dim(X : T') i= lim Widim. (X : ).
(This might be infinity.) The value of dim(X : I') is a topological invariant. That is, if
two distances d and d’ on X defines the same topology, then we have dim((X,d) : I') =

dim((X,d’) : I'). The following is the most basic result. (See Gromov [8, p. 340] and
Lindenstrauss-Weiss [10, Proposition 3.1, 3.3].)

Example B.2. Let K be a compact metric space and set X := K. I" acts on X by the
shift action: for x = (2,),er € X and g € I' we set
.9 = (Yy)rers Yy = Tgy.
Then we have
dim(X : I') < dim K,

where dim K denotes the topological covering dimension of K. Moreover if K is a finite

polyhedron, then we have

dim(X : I') = dim K.

Proof. Set N := dim K and we suppose DiamK = 1 for simplicity. Let w : ' — R<q be a
positive function satisfying w(e) =1 (e is the identity element of I') and . w(y) = 2.
We define the distance d(z,y) (z,y € X) by setting

d(z,y) == Z w(y)d(xy, yy).

vel’

For € > 0, let » > 0 be a positive number such that the sum of w(y) over v € I\ B(e, r)
is less than . Then for any €2,,, the natural projection

©: X — KQnUarQn
satisfies Diam (¢~ (y), dq, ) < € for any y € K99 Therefore
Widim,. (X, dg, ) < N|Q, U 0,0,|.

Since lim,, o0 [©2,U0,82,|/|$2,| = 1, we have Widim.(X : I') < N. Hence dim(X : I') < N.
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Next we suppose K is a polyhedron. Then there exists a topological embedding
[0, 1]Y — K. So we can assume K = [0, 1]" with the ¢>-distance. There exists a distance

non-decreasing continuous map from ([0, 1]Vl dyc) to (X, dg,). Then for e < 1

Widim, (X, dg,, ) > Widim, ([0, 1]V dpe) = N|Q,,|.

Here we have used the result of Example B.1. Hence we get Widim.(X : I') > N for
e < 1. Thus dim(X : I') = N. O

1]
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