
ON THE FOURTH JOHNSON HOMOMORPHISM OF THE
AUTOMORPHISM GROUP OF A FREE GROUP

Takao Satoh1

Graduate School of Sciences, Department of Mathematics, Kyoto University,
Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto city 606-8502, Japan

Abstract. In this paper we consider the Johnson homomorphism of the automor-
phism group of a free group with respect to the lower central series of the IA-
automorphism group of a free group. In particular, we determine the ratoinal cokernel
of the fourth Johnson homomorphism, and show that there appears a new obsturus-
tion for the surjectivity of the Johnson homomorphism. Furthermore we characterize
this obstruction using trace maps.

1. Introduction

Let Fn be a free group of rank n ≥ 2, and AutFn the automorphism group of Fn. Let
denote ρ : AutFn → AutH the natural homomorphism induced from the abelianization
H of Fn. The kernel of ρ is called the IA-automorphism group of Fn, denoted by IAn.
The IA-automorphism group IAn reflects many richness and complexity of the structure
of AutFn, and plays important roles on various studies of AutFn.

Although the study of the IA-automorphism group has a long history since its finitely
many generators were obtained by Magnus [12] in 1935, the combinatorial group struc-
ture of IAn is still quite complicated. For instance, any presentation for IAn is not
known in general. Nielsen [18] showed that IA2 coincides with the inner automorphsim
group, hence, is a free group of rank 2. For n ≥ 3, however, IAn is much larger than
the inner automorphism group InnFn. Krstić and McCool [11] showed that IA3 is not
finitely presentable. For n ≥ 4, it is not known whether IAn is finitely presentable or
not.

The purpose of our research is to clarlify the group structure of IAn. In particular, we
are interested in to determine the graded quotients of the Johnson filtration of AutFn.
The Johnson filtration is a dcending central series

IAn = An(1) ⊃ An(2) ⊃ · · ·
consisting of normal subgroups of AutFn, which first term is IAn. Then the Johnson
homomorphisms

τk : grk(An)→ H∗ ⊗Z Ln(k + 1)

are defined on each graded quotient of the Johnson filtration. In particular, they are
GL(n,Z)-equivariant injective homomorphisms. (For detail, see Subsection 2.4.) The
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study of the Johnson homomorphisms was originally begun in 1980 by D. Johnson [8]
who determined the abelianization of the Torelli subgroup of a mapping class group of
a surface in [9]. Now, the theory of the Johnson homomorphisms has been developed
by many authors, and there is a broad range of results for it. (For example, see [7], [10]
and [16].)

Through the images of the Johnson homomorphisms, we can study IAn using infin-
itely many pieces of a free abelian group of finite rank. They are regarded as one by
one approximations of IAn, and to clarify the structure of them plays an important
role in the study of IAn. In this paper, in particular, we are interested in the irre-
ducible decomposition of the cokernel of τk,Q = τk ⊗ idQ as a GL(n,Z)-module. Now,
for 1 ≤ k ≤ 3, the cokernel of τk,Q is completely determined. (See [1], [21] and [23] for
k = 1, 2 and 3 respectively.) In general, however it is quite hard problem to solve. One
reason for it is that we can not obtain an explicit generating system of each grk(An)
easily.

To avoid this difficulty, we consider the lower central seriesA′n(1) = IAn, A′n(2), . . . of
IAn. Since the Johnson filtration is central, A′n(k) ⊂ An(k) for k ≥ 1. It is conjectured
that A′n(k) = An(k) for each k ≥ 1 by Andreadakis who showed A′2(k) = A2(k) for
each k ≥ 1 and A′3(3) = A3(3) in [1]. Now, we have A′n(2) = An(2) due to Cohen-
Pakianathan [2, 3], Farb [4] and Kawazumi [10]. (See (1) below.) Furthermore A′n(3)
has at most finite index in An(3) due to Pettet [21].

For each k ≥ 1, set grk(A′n) := A′n(k)/A′n(k + 1). Since IAn is finitely generated as
above, each grk(A′n) is also fintely generated as an abelian group. Then we can also
define the Johnson homomorphisms

τ ′k : grk(A′n)→ H∗ ⊗Z Ln(k + 1)

by an argument similar to that in the definition of τk. Since grk(A′n) is fintely generated,
it is easier to study the cokernel of τ ′k than that of τk. Furthermore, It is also important
to determine Coker(τ ′k) from the view point of the study of the difference between the
Johnson filtration and the lower central series of IAn. In this paper, as a consective
result of our research [23], we determine the rational cokernel of the fourth Johnson
homomorphism τ ′4,Q := τ ′4 ⊗ idQ.

Theorem 1. (= Theorem 4.1.) For any n ≥ 6,

Coker(τ ′4,Q) = S4HQ ⊕H [2,12]
Q ⊕H [2,2]

Q .

In the right hand side of the equation above, the first term S4HQ is called the Morita
obstruction for the surjectivity of the Johnson homomorphism, which can be detected
by the Morita trace Tr[k]. (See Section 4.) The second term is an obstruction which can
be detected by the trace map Tr[2,12] constructed in our previous paper [23]. The finial
term is an obstruction of new type. In this paper, we construct a GL(n,Z)-equivariant

homomorphism Tr[2,2] which detect H
[2,2]
Q , and call it a trace map for H

[2,2]
Q . This part

is the main purpose of the paper. From Theorem 1, we obtain a lower bound on the
rank of the fourth graded quotient of the Johnson filtration of AutFn.

Corollary 1. (= Corollary 4.1.) For n ≥ 6,

rankZ(gr4(An)) ≥ 1

5
n2(n4 − 1)− 1

4
n(n+ 1)(n2 − n+ 2).
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Here we brief our strategy to show Theorem 1. First, we give an upper bound of
the cokernel of τ ′4,Q. Using an explicit generating system of Coker(τ ′4,Q), and reducing

some elements of it, we see that Coker(τ ′4,Q) is generated by r := n(n+ 1)(n2−n+ 2)/4

elements. Here r is the dimension of S4HQ⊕H [2,12]
Q ⊕H [2,2]

Q as a Q-vector space. Then,

we show that there does exist S4HQ, H
[2,12]
Q and H

[2,2]
Q in Coker(τ ′4,Q) by detecting them

with the trace maps.

This paper consists of five sections. In Section 2, we recall the definition and some
properties of the IA-automorphism group and the Johnson homomorphisms of the au-
tomorphism group of a free group. In Section 3, we discuss generators of Coker(τ ′4,Q).
In Section 4, we define the trace maps, and study some properties of them. Then we
show Theorem 1.
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2. Preliminaries

In this section, after fixing notation and conventions, we recall the the IA-automorphism
group and the Johnson homomorphisms the automorphism group of a free group.

2.1. Notation and Conventions.

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G.

• The abelianization of G is denoted by Gab.
• The automorphism group AutG of G acts on G from the right. For any σ ∈

AutG and x ∈ G, the action of σ on x is denoted by xσ.
• For an element g ∈ G, we also denote the coset class of g by g ∈ G/N if there

is no confusion.
• For any Z-module M , we denote M⊗ZQ by the symbol obtained by attaching a

subscript Q to M , like MQ or MQ. Similarly, for any Z-linear map f : A→ B,
the induced Q-linear map AQ → BQ is denoted by fQ or fQ.
• For elements x and y of G, the commutator bracket [x, y] of x and y is defined

to be [x, y] := xyx−1y−1.
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2.2. IA-automorphism group.

For n ≥ 2, let Fn be a free group of rank n with basis x1, . . . , xn. We denote the
abelianization of Fn by H, and its dual group by H∗ := HomZ(H,Z). Let ρ : AutFn →
AutH be the natural homomorphism induced from the abelianization of Fn. It is
easily seen that ρ is surjective. In this paper we identifies AutH with the general
linear group GL(n,Z) by fixing the basis of H as a free abelian group induced from the
basis x1, . . . , xn of Fn. The kernel IAn of ρ is called the IA-automorphism group of Fn.
Magnus [12] showed that for any n ≥ 3, IAn is finitely generated by automorphisms

Kij :

{
xi 7→ xj

−1xixj,

xt 7→ xt, (t 6= i)

for distinct i, j ∈ {1, 2, . . . , n} and

Kijk :

{
xi 7→ xixjxkxj

−1xk
−1,

xt 7→ xt, (t 6= i)

for distinct i, j, k ∈ {1, 2, . . . , n} such that j > k.

Recently, Cohen-Pakianathan [2, 3], Farb [4] and Kawazumi [10] independently showed
that the the abelianization of IAn is a free abelian group, and the Magnus generators
above induce a basis of it. More precisely, they showed

(1) IAab
n
∼= H∗ ⊗Z Λ2H

as a GL(n,Z)-module. Krstić and McCool [11] showed that IA3 is not finitely pre-
sentable. For n ≥ 4, however, it is still not known whether IAn is finitely presentable
or not.

2.3. Associated Lie algebra of a group.

In this subsection we recall the associated Lie algebra of a group G. In particular,
we use the case where G = Fn and IAn.

Let G be a group, and ΓG(k) the k-th term of the lower central series of G defined
by

ΓG(1) := G, ΓG(k) := [ΓG(k − 1), G], k ≥ 2.

For each k ≥ 1, set LG(k) := ΓG(k)/ΓG(k + 1) and

LG :=
⊕

k≥1

LG(k).

Then LG has a graded Lie algebra structure induced from the commutator bracket on
G. We call LG the associated Lie algebra of a group G.

For any g1, . . . , gk ∈ G, a commutator of weight k among the components g1, . . . , gk
of the type

[[· · · [[g1, g2], g3], · · · ], gk]
with all of its brackets to the left of all the elements occuring is called a simple k-fold
commutator, denoted by [g1, g2, · · · , gk]. Then we have
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Lemma 2.1. If a group G is generated by g1, . . . , gn, then for each k ≥ 1, LG(k) is
generated by (the coset classes of) the simple k-fold commutators

[gi1 , gi2 , . . . , gik ], ij ∈ {1, . . . , n}.
For a proof, see [14] for example.

If G is a free group Fn of rank n, for simplicity, we write Γn(k), Ln(k) and Ln for
ΓG(k), LG(k) and LG respectively. The Lie algebra Ln is called the free Lie algebra
generated by H. Since the group AutFn naturally acts on Ln(k) for each k ≥ 1, and
since IAn acts on it trivially, the action of GL(n,Z) on each Ln(k) is well-defined.

Let T (H) be the tensor algebra of H over Z. Then the algebra T (H) is the universal
envelopping algebra of the free Lie algebra Ln, and the natural map Ln → T (H) defined
by

[X, Y ] 7→ X ⊗ Y − Y ⊗X
for X, Y ∈ Ln is an injective homomorphism between the graded Lie algebras. Hence
we also regard Ln(k) as a submodule of H⊗k for each k ≥ 1. (See [22] for basic material
concerning free Lie algebra.)

2.4. Johnson homomorphisms.

In this subsection, we recall the Johnson homomorphisms. To begin with, we consider
a descending filtration of AutFn called the Johnosn filtration. For k ≥ 0, the action of
AutFn on each nilpotent quotient Fn/Γn(k + 1) of Fn induces a homomorphism

ρk : AutFn → Aut(Fn/Γn(k + 1)).

We denote the kernel of ρk by An(k). Then the groups An(k) define a descending
central filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·
of AutFn, with An(1) = IAn. It is called the Johnson filtration of AutFn. For each
k ≥ 1, the group AutFn acts onAn(k) by conjugation, and it naturally induces an action
of GL(n,Z) on grk(An) := An(k)/An(k+ 1). The graded sum gr(An) :=

⊕
k≥1 grk(An)

has a graded Lie algebra structure induced from the commutator bracket on IAn.

The graded quotients grk(An) are considered as one by one approximations of IAn,
and they have many important information of IAn. In order to study the GL(n,Z)-
module structure of grk(An), we define the Johnson homomorphisms of AutFn as fol-
lows. For each k ≥ 1, define a homomorphism τ̃k : An(k) → HomZ(H,Ln(k + 1))
by

σ 7→ (x 7→ x−1xσ), x ∈ H.
Then the kernel of τ̃k is just An(k + 1). Hence it induces an injective homomorphism

τk : grk(An) ↪→ HomZ(H,Ln(k + 1)) = H∗ ⊗Z Ln(k + 1).

The homomorphsim τk is called the k-th Johnson homomorphism of AutFn. It is easily
seen that each τk is GL(n,Z)-equivariant homomorphism. For the Magnus generators
of IAn, their images by τ1 are given by

(2) τ1(Kij) = x∗i ⊗ [xi, xj], τ1(Kijl) = x∗i ⊗ [xj, xl].
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Let Der (Ln) be the graded Lie algebra of derivations of Ln. The degree k part of
Der (Ln) is considered as H∗⊗ZLn(k + 1), and we identify them in this paper. Then
the sum of the Johnson homomorphisms

τ :=
⊕

k≥1

τk : gr(An)→ Der (Ln)

is a graded Lie algebra homomorphism. In fact, if we denote by ∂ξ the element of
Der (Ln) corresponding to an element ξ ∈ H∗⊗ZLn, and write the action of ∂ξ on
X ∈ Ln as X∂ξ then we have

τk+l([σ, σ
′]) = τk(σ)∂τl(σ

′) − τl(σ′)∂τk(σ).

for any σ ∈ An(k) and σ′ ∈ An(l).

In addition to the Johnson filtration, we consider the lower central seriesA′n(1) = IAn,
A′n(2), . . . of IAn. Since the Johnson filtration is central, A′n(k) ⊂ An(k) for each k ≥ 1.
It is conjectured that A′n(k) = An(k) for each k ≥ 1 by Andreadakis as mentioned
above. Now, we have A′n(2) = An(2) due to Cohen-Pakianathan [2, 3], Farb [4] and
Kawazumi [10], and A′n(3) has at most finite index in An(3) due to Pettet [21]. For
each k ≥ 1, set grk(A′n) := A′n(k)/A′n(k + 1). Similarly to grk(An), GL(n,Z) naturally
acts on grk(A′n). Moreover, since IAn is finitely generated by the Magnus generators
Kij and Kijl, each grk(A′n) is also fintely generated by the simple k-fold commutators
among the components Kij and Kijl by Lemma 2.1.

A restriction of τ̃k to A′n(k) induces a GL(n,Z)-equivariant homomorphism

τ ′k : grk(A′n)→ H∗ ⊗Z Ln(k + 1),

and the sum

τ ′ :=
⊕

k≥1

τ ′k : gr(A′n)→ Der (Ln)

is also a graded Lie algebra homomorphism. Furthermore, we have

τ ′k+l([σ, σ
′]) = τ ′k(σ)∂σ

′ − τ ′l (σ′)∂σ.
for any σ ∈ A′n(k) and σ′ ∈ A′n(l). Using this formula recursively, we can easily
compute τk(σ) for any σ ∈ A′n(k) from (2). We should remark that in general, it is
not known whether τ ′k is injective or not. In this paper, we study the rational Johnson
homomorphisms τ ′k,Q = τ ′k ⊗ idQ, and give an irreducible decomposition of Coker(τ ′4,Q)
as a GL(n,Z)-module.

3. Generators of Coker(τ ′4,Q)

In this section, we give a generating system of Coker(τ ′4,Q) consists of r := n(n +

1)(n2 − n + 2)/4 elements. Here r is the dimension of S4HQ ⊕ H
[2,12]
Q ⊕ H

[2,2]
Q as a

Q-vector space. First, we consider a generating system of Coker(τ ′k) for general k ≥ 2
and n ≥ k+ 2. Then, in Proposition 3.1, we consider Coker(τ ′4,Q) = Coker(τ ′4)⊗Z Q for
n ≥ 6 and k = 4.

To begin with, using Lemma 2.1, we see that

(3) E := {x∗i ⊗ [xi1 , xi2 , . . . , xik+1
] | 1 ≤ i, il ≤ n}
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generates H∗ ⊗Z Ln(k+ 1), and hence E also generates Coker(τ ′k). In the following, we
reduce the elements of E keeping it beeing a generating system of Coker(τ ′k). To do
this, we prepare some lemmas.

Lemma 3.1. For n ≥ 3 and k ≥ 1, if il 6= i for 1 ≤ l ≤ k + 1,

x∗i ⊗ [xi1 , xi2 , . . . , xik+1
] = 0 ∈ Coker(τ ′k).

Proof. We show the lemma by induction on k. For k = 1, we have τ ′1(Kii1i2) =
x∗i ⊗ [xi1 , xi2 ]. Assume k ≥ 2. By the inductive hypothesis, there exists a certain
σ ∈ A′n(k − 1) such that

τ ′k−1(σ) = x∗i ⊗ [xi1 , xi2 , . . . , xik ].

On the other hand, we have τ1(Kiik+1
) = x∗i ⊗ [xi, xik+1

]. Then

τ ′k([Kiik+1
, σ]) = x∗i ⊗ [xi1 , xi2 , . . . , xik+1

].

This completes the proof of Lemma 3.1. �
Let F be a subset of E consisting of elements x∗i ⊗ [xi1 , xi2 , . . . , xik+1

] such that there
exists a certain m ∈ {1, 2, . . . , k + 1} such that im = i and il 6= i for l 6= m.

Lemma 3.2. For n ≥ k + 1, Coker(τ ′k) is generated by F.

Proof. Take any x∗i ⊗ [xi1 , xi2 , . . . , xik+1
] ∈ E such that il1 = il2 = i for l1, l2 such that

l1 6= l2. Since n ≥ k + 1, there exists a certain j ∈ {1, 2, . . . , n} such that j 6= i, il for
1 ≤ 1 ≤ k + 1. Set

σ :=

{
Kijik+1

, i 6= ik+1,

K−1
ij , i = ik+1.

Then

τ ′1(σ) = x∗i ⊗ [xj, xik+1
].

On the other hand, from Lemma 3.1, there exists a certain σ′ ∈ A′n(k − 1) such that

τ ′k−1(σ′) = x∗j ⊗ [xi1 , xi2 , . . . , xik ].

Then, using the Jacobi identity, we obtain

τ ′k([σ, σ
′]) = x∗i ⊗ [xi1 , xi2 , . . . , xik+1

]

−
k∑

l=1

δiilx
∗
j ⊗ [xi1 , . . . , xil−1

, [xj, xik+1
], xil+1

, . . . , xk],

= x∗i ⊗ [xi1 , xi2 , . . . , xik+1
]

−
k∑

l=1

δiil

(
x∗j ⊗ [xi1 , . . . , xil−1

, xj, xik+1
, xil+1

, . . . , xk]

− x∗j ⊗ [xi1 , . . . , xil−1
, xik+1

, xj, xil+1
, . . . , xk]

)
.

This completes the proof of Lemma 3.2. �
Lemma 3.3. For n ≥ 3 and k ≥ 2, if il 6= i for 1 ≤ l ≤ k,

x∗i ⊗ [xi1 , xi2 , . . . , xik , xi] = 0 ∈ Coker(τ ′k).
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Proof. We show the lemma by induction on k. For k = 2, we have

τ ′2([Kii1 , Kii2 ]) = x∗i ⊗ [xi, xi2 , xi1 ]− x∗i ⊗ [xi, xi1 , xi2 ] = x∗i ⊗ [xi1 , xi2 , xi].

Assume k ≥ 3. By the inductive hypothesis, there exists a certain σ ∈ A′n(k − 1) such
that

τ ′k−1(σ) = x∗i ⊗ [xi1 , xi2 , . . . , xik−1
, xi].

On the other hand, we have τ ′1(Kiik) = x∗i ⊗ [i, ik]. Then

τ ′k([Kiik , σ]) = x∗i ⊗ [xi1 , xi2 , . . . , xik−1
, xi, xik ]− x∗i ⊗ [xi1 , xi2 , . . . , xik−1

, [xi, xik ]],

= x∗i ⊗ [xi1 , xi2 , . . . , xik , xi].

This completes the proof of Lemma 3.3. �
In general for any x∗i ⊗ [xi1 , xi2 , . . . , xik , xik+1

], we may assume i1 6= i2. Then from the
lemmas above, we see that for n ≥ k + 1,

F′ := {x∗i ⊗ [xi1 , xi2 , . . . , xik , xik+1
] ∈ F | i2, ik+1 6= i}

generates Coker(τ ′k).

Lemma 3.4. For n ≥ k+ 2, if i 6= i2, . . . , ik+1, then for any j ∈ {1, 2, . . . , n} such that
j 6= il, i,

x∗i ⊗ [xi, xi2 , . . . , xik+1
] = x∗j ⊗ [xj, xik+1

, xi2 , . . . , xik ] ∈ Coker(τ ′k).

Proof. From Lemma 3.1, there exists a certain σ′ ∈ A′n(k − 1) such that

τ ′k−1(σ′) = x∗j ⊗ [xi, xi2 , . . . , xik ].

Then, we obtain,

τ ′k([Kijik+1
, σ′]) = x∗i ⊗ [xi, xi2 , . . . , xik+1

]− x∗j ⊗ [xj, xik+1
, xi2 , . . . , xik ].

This completes the proof of Lemma 3.4. �
Lemma 3.5. For n ≥ k + 1, if i 6= i2, . . . , ik+1, then

x∗i ⊗ [xi, xi2 , . . . , xik+1
] = x∗i ⊗ [xi, xi3 , . . . , xik+1

, xi2 ] ∈ Coker(τ ′k).

Proof. Since n ≥ k + 1, there exists a certain j ∈ {1, 2, . . . , n} such that j 6= i, il for
3 ≤ l ≤ k + 1. From Lemma 3.4, there exists a certain σ ∈ A′n(k − 1) such that

τ ′k−1(σ) = x∗i ⊗ [xi, xi3 , . . . , xik+1
]− x∗j ⊗ [xj, xik+1

, xi3 , . . . , xik ].

Then we have

τ ′k([σ,Kii2 ]) = x∗i ⊗ [xi, xi2 , . . . , xik+1
]− x∗i ⊗ [xi, xi3 , . . . , xik+1

, xi2 ]

− δi2,jx∗i ⊗ [xj, xik+1
, xi3 , . . . , xik , xi],

= x∗i ⊗ [xi, xi2 , . . . , xik+1
]− x∗i ⊗ [xi, xi3 , . . . , xik+1

, xi2 ]

in Coker(τ ′k). This completes the proof of Lemma 3.5. �
Lemma 3.6. For n ≥ k + 2, if i 6= i1, i2, i4, . . . , ik+1, then for any j ∈ {1, 2, . . . , n}
such that j 6= il, i,

x∗i⊗[xi1 , xi2 , xi, xi4 , . . . , xik+1
]

= x∗j ⊗ [xj, xi4 , . . . , xik+1
, xi2 , xi1 ]− x∗j ⊗ [xj, xi4 , . . . , xik+1

, xi1 , xi2 ] ∈ Coker(τ ′k).
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Proof. From Lemma 3.1, there exist certain σ, σ′ ∈ A′n(k − 1) such that

τ ′k−2(σ) = x∗i ⊗ [xj, xi4 , . . . , xik+1
],

τ ′2(σ′) = x∗j ⊗ [xi1 , xi2 , xi].

Then, using the Jacobi identity, we have

τ ′k([σ, σ
′]) = x∗i ⊗ [xi1 , xi2 , xi, xi4 , . . . , xik+1

]− x∗j ⊗ [[xi1 , xi2 ], [xj, xi4 , . . . , xik+1
]],

= x∗i ⊗ [xi1 , xi2 , xi, xi4 , . . . , xik+1
]

− x∗j ⊗ [xj, xi4 , . . . , xik+1
, xi2 , xi1 ] + x∗j ⊗ [xj, xi4 , . . . , xik+1

, xi1 , xi2 ].

This completes the proof of Lemma 3.6. �

Lemma 3.7. For n ≥ k + 2, if i 6= i1, i2, . . . , ik−1, ik+1, then for any j ∈ {1, 2, . . . , n}
such that j 6= il, i,

x∗i ⊗ [xi1 , xi2 , . . . , xik−1
, xi, xik+1

]

= x∗j ⊗ [xi1 , xi2 , . . . , xik−1
, xj, xik+1

] ∈ Coker(τ ′k).

Proof. From Lemma 3.1, there exists a certain σ′ ∈ A′n(k − 1) such that

τ ′k−1(σ′) = x∗j ⊗ [xi1 , xi2 , . . . , xik−1
, xi].

Then, we obtain

τ ′k([Kijik+1
, σ′]) = x∗i ⊗ [xi1 , xi2 , . . . , xik−1

, xi, xik+1
]− x∗j ⊗ [xi1 , xi2 , . . . , xik−1

, [xj, xik+1
]],

= x∗i ⊗ [xi1 , xi2 , . . . , xik−1
, xi, xik+1

]

− x∗j ⊗ [xi1 , xi2 , . . . , xik−1
, xj, xik+1

] + x∗j ⊗ [xi1 , xi2 , . . . , xik−1
, xik+1

, xj].

From Lemma 3.3, we obtain Lemma 3.7. �
Next, we consider the case where k = 3 and 4.

Lemma 3.8. For n ≥ 3, if i 6= i1, i2, i4, then

x∗i ⊗ [xi1 , xi2 , xi, xi4 ] = x∗i ⊗ [xi, xi4 , xi2 , xi1 ]− x∗i ⊗ [xi, xi4 , xi1 , xi2 ] ∈ Coker(τ ′3).

Proof. From Lemma 3.3, there exists a certain σ ∈ A′n(2) such that

τ ′2(σ) = x∗i ⊗ [xi1 , xi2 , xi].

Then, we obtain

τ ′3([Kii4 , σ]) = x∗i ⊗ [xi1 , xi2 , xi, xi4 ]− x∗i ⊗ [xi1 , xi2 , [xi, xi4 ]],

= x∗i ⊗ [xi1 , xi2 , xi, xi4 ] + x∗i ⊗ [xi, xi4 , [xi1 , xi2 ]],

= x∗i ⊗ [xi1 , xi2 , xi, xi4 ]− x∗i ⊗ [xi, xi4 , xi2 , xi1 ] + x∗i ⊗ [xi, xi4 , xi1 , xi2 ].

This completes the proof of Lemma 3.8. �

Lemma 3.9. For n ≥ 4, if i 6= i1, i2, i4, then

(1) x∗i ⊗ [xi1 , xi2 , xi, xi4 ]− x∗i ⊗ [xi2 , xi4 , xi, xi1 ] = 0 ∈ Coker(τ ′3),
(2) x∗i ⊗ [xi1 , xi2 , xi, xi4 ] + x∗i ⊗ [xi1 , xi4 , xi, xi2 ] = 0 ∈ Coker(τ ′3).
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Proof. For the part (1), from Lemma 3.8, we have

x∗i ⊗ [xi1 , xi2 , xi, xi4 ] = x∗i ⊗ [xi, xi4 , xi2 , xi1 ]− x∗i ⊗ [xi, xi4 , xi1 , xi2 ],

x∗i ⊗ [xi2 , xi4 , xi, xi1 ] = x∗i ⊗ [xi, xi1 , xi4 , xi2 ]− x∗i ⊗ [xi, xi1 , xi2 , xi4 ]

in Coker(τ ′3). From Lemma 3.5, we obtain the part (1). Similarly, we obtain the part
(2). �
Lemma 3.10. If n ≥ 6, i3 6= i5 and i 6= i1, i2, i3, i5,

x∗i⊗[xi1 , xi2 , xi3 , xi, xi5 ]

= x∗i ⊗ [xi3 , xi5 , xi, xi1 , xi2 ]− x∗i ⊗ [xi3 , xi5 , xi, xi2 , xi1 ] ∈ Coker(τ ′4).

Proof. Since n ≥ 6, there exists a certain j such that j 6= il, i. From Lemma 3.9,
there exists some σ ∈ A′n(3) such that

τ ′3(σ) = x∗i ⊗ [xj, xi3 , xi, xi5 ]− x∗i ⊗ [xi3 , xi5 , xi, xj].

Then,

τ ′4([σ,Kji1i2 ]) = x∗i ⊗ [xi1 , xi2 , xi3 , xi, xi5 ]− x∗i ⊗ [xi3 , xi5 , xi, [xi1 , xi2 ]],

= x∗i ⊗ [xi1 , xi2 , xi3 , xi, xi5 ]

+ x∗i ⊗ [xi3 , xi5 , xi, xi2 , xi1 ]− x∗i ⊗ [xi3 , xi5 , xi, xi1 , xi2 ].

This completes the proof of Lemma 3.10. �
Using the Lemmas above, we show the main proposition of this section.

Proposition 3.1. For n ≥ 6, Coker(τ ′4,Q) is generated by r elements.

Proof. To begin with, we recall that F′ generates Coker(τ ′4,Q). First, from Lemma
3.5, if i 6= i2, . . . , i5, then

x∗i ⊗ [xi,xi2 , xi3 , xi4 , xi5 ] = x∗i ⊗ [xi, xi3 , xi4 , xi5 , xi2 ]

= x∗i ⊗ [xi, xi4 , xi5 , xi2 , xi3 ] = x∗i ⊗ [xi, xi5 , xi2 , xi3 , xi4 ].

Furtheremore, from Lemma 3.4, these elements do not depend on the choice of i such
that i 6= il. Hence we can set

s(i2, i3, i4, i5) := x∗i ⊗ [xi, xi2 , xi3 , xi4 , xi5 ] ∈ Coker(τ ′4,Q).

Similarly, from Lemma 3.7, if i 6= i1, i2, i3, i5, we can set

t(i1, i2, i3, i5) := x∗i ⊗ [xi1 , xi2 , xi3 , xi, xi5 ] ∈ Coker(τ ′4,Q),

and from Lemma 3.6, if i 6= i1, i2, i4, i5, we can set

u(i1, i2, i4, i5) := x∗i ⊗ [xi1 , xi2 , xi, xi4 , xi5 ],

= s(i4, i5, i2, i1)− s(i4, i5, i1, i2) ∈ Coker(τ ′4,Q).

Then we have

t(i1, i2, i3, i5) = −t(i2, i1, i3, i5),(4)

t(i1, i2, i3, i5) = t(i3, i5, i1, i2),(5)

t(i1, i2, i3, i5)− t(i1, i3, i2, i5) + t(i1, i5, i2, i3) = 0.(6)
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The equation (4) is trivial. Since from Lemma 3.10,

t(i1, i2, i3, i5) = u(i3, i5, i1, i2)− u(i3, i5, i2, i1)

= s(i1, i2, i5, i3)− s(i1, i2, i3, i5)− s(i2, i1, i5, i3) + s(i2, i1, i3, i5),

t(i3, i5, i1, i2) = u(i1, i2, i3, i5)− u(i1, i2, i5, i3),

= s(i3, i5, i2, i1)− s(i3, i5, i1, i2)− s(i5, i3, i2, i1) + s(i5, i3, i1, i2),

we obtain (5), and similarly (6). In particular, from (4) and (5),

(7) t(i1, i2, i3, i5) = −t(i1, i2, i5, i3)

and t(i1, i2, i3, i3) = 0 ∈ Coker(τ ′4,Q). Using these relatons we see that any t(i1, i2, i3, i5)
is contained in the subvector space V of Coker(τ ′4,Q) generated by

{t(i1, i2, i3, i5) | i1 < i2 ≤ i5, i1 ≤ i3 < i5}
which consists of n2(n2 − 1)/12 elements. In fact, for any t(i1, i2, i3, i5), using (4) and
(5), we may assume i1 ≤ i2, i3, i5. If i3 = i or i5 = i, using (5) if necessary, we obtain
t(i1, i2, i3, i5) ∈ V . If i3, i5 6= i, using (6) if necessary, we see that t(i1, i2, i3, i5) is written
as a linear combination of t(j1, j2, j3, j5) for j1 < j2 ≤ j3, j5. Then using (7), we obtain
t(i1, i2, i3, i5) ∈ V .

Next we consider the quotient vector space V := Coker(τ ′4,Q)/V . We write
.
= for

the equality in V to distinguish from that in Coker(τ ′4,Q). The quotient space V is

generated by s(i2, i3, i4, i5)s and u(i1, i2, i4, i5)s. In V , we have

u(i1, i2, i4, i5)
.
= −u(i2, i1, i4, i5),(8)

u(i1, i2, i4, i5)
.
= u(i1, i2, i5, i4),(9)

u(i1, i2, i4, i5) + u(i1, i4, i5, i2) + u(i1, i5, i2, i4)
.
= 0.(10)

The equation (8) is trivial, and (9) follows from Lemma 3.10. Similar to (6), we obtain
(10). From (9) and (10), if we set i2 = i4,

(11) 2u(i1, i2, i2, i5)
.
= −u(i1, i5, i2, i2),

and if we set i2 = i4 = i5,

(12) u(i1, i2, i2, i2)
.
= 0

respectively. Using these relatons we see that any u(i1, i2, i4, i5) is contained in the
subvector space W of V generated by

{u(i1, i2, i4, i5) | i1 > i2 > i4 ≤ i5}
which consists of n(n + 1)(n − 1)(n− 2)/8 elements. In fact, for any u(i1, i2, i4, i5) we
may assume i1 > i2 by using (8). If i2 > i4 or i2 > i5, then u(i1, i2, i4, i5) ∈ W by (9).
Assume i4, i5 ≥ i2. If i4 = i2 or i5 = i2, using (11), (12) and (8) if necessary, we see
u(i1, i2, i4, i5) ∈ W . If i4, i5 6= i2, using (10), (8) and (9), we also see u(i1, i2, i4, i5) ∈ W .

Finally, we consider the quotient vector space W := V /W . We write $ for the
equality in W to distinguish from that in V . The quotient space W is generated by
s(i2, i3, i4, i5)s. In W , we have

s(i2, i3, i4, i5) $ s(i2, i3, i5, i4)
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from Lemma 3.6. This shows that for any element γ of the symmetric group S4 of
degree 4,

s(iγ(1), iγ(2), iγ(3), iγ(4)) $ s(i1, i2, i3, i4).

Hence W is generated by

{s(i1, i2, i3, i4) | i1 ≤ i2 ≤ i3 ≤ i4}
which consists of n(n+ 1)(n+ 2)(n+ 3)/24 elements.

Therefore we conclude that Coker(τ ′4,Q) is generated by r elements. This completes
the proof of Proposition 3.1. �

This proposition shows that r is an upper bound of the dimension of Coker(τ ′4,Q) as
a Q-vector space. In the next section, we show that it is just r.

4. Trace maps

In this section we consider to detect the irreducible GL(n,Z)-module S4HQ, H
[2,12]
Q

and H
[2,2]
Q in Coker(τ ′4,Q). To do this we construct GL(n,Z)-homomorphisms called

trace maps. Here we use some basic facts of the representation theory of GL(n,Z).
The reader is referred to, for example, Fulton-Harris [6] and Fulton [5].

To begin with, for k ≥ 1 and 1 ≤ l ≤ k + 1, let ϕkl : H∗⊗ZH
⊗(k+1) → H⊗k be the

contraction defined by

x∗i ⊗ xj1 ⊗ · · · ⊗ xjk+1
7→ x∗i (xjl) · xj1 ⊗ · · · ⊗ xjl−1

⊗ xjl+1
⊗ · · · ⊗ xjk+1

.

For the natural embedding ιk+1 : Ln(k+1)→ H⊗(k+1), we obtain a GL(n,Z)-equivariant
homomorphism

Φk
l = ϕkl ◦ (idH∗ ⊗ ιk+1) : H∗⊗ZLn(k + 1)→ H⊗k.

We also call the map Φk
l contraction. We often write Φl for Φk

l for simplicity.

Next, we consdier the trace maps. For each k ≥ 1, and any partition λ of k, we denote
by Hλ the Schur-Weyl module of H corresponding to the partition λ of k. For example,
the modules H [k] and H [1k] are the symmetric product SkH and the exterior product
ΛkH respectively. Let fλ : H⊗k → Hλ be a natural projection. Using the contractions
Φk
l and the projections fλ, we obtain a GL(n,Z)-equivariant homomorphism from the

target of the Johnson homomorphisms to the Schur-Weyl module Hλ.

The most important homomorphism is

Tr[k] = f[k] ◦ Φk
1 : H∗⊗ZLn(k + 1)→ SkH,

called the Morita trace, where f[k] : H⊗k → SkH is a natural projection defiend by

f[k](xi1 ⊗ · · · ⊗ xik) = xi1 · · · xik .
The Morita trace was introduced with remarkable pioneer works by Shigeyuki Morita
who showed that Tr[k] is surjective and vanishes on the image of the Johnson homo-
morphism τk for n ≥ 3 and k ≥ 2. This shows that SkHQ appears in the irreducible
decomposition of Coker(τk,Q) and Coker(τ ′k,Q) as a GL(n,Z)-module.

Second, we consider

Tr[2,1k−2] := (idH ⊗ f[1k−1]) ◦ Φk
2 : H∗⊗ZLn(k + 1)→ H⊗ZΛk−1H,
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called the trace map for H
[2,1k−2]
Q , where f[1k] : H⊗k → ΛkH is a natural projection

defiend by
f[1k](xi1 ⊗ · · · ⊗ xik) = xi1 ∧ · · · ∧ xik .

Let I be the GL(n,Z)-submodule of H⊗ZΛk−1H defined by

I = 〈x⊗ z1 ∧ · · · ∧ zk−2 ∧ y + y ⊗ z1 ∧ · · · ∧ zk−2 ∧ x | x, y, zt ∈ H〉.
In our previous paper [23], we showed that Im (TrQ

[2,1k−1]
) = IQ and Tr[2,1k−2] vanishes on

τ ′k for any even k ≥ 4 and n ≥ k+ 1. Now, using Pieri’s formula (See [6], for example.),

we have HQ⊗ZΛk−1HQ
∼= H

[2,1k−2]
Q ⊕ ΛkHQ. For even k, since IQ is contained in the

kernel of a natural map HQ⊗ZΛk−1HQ → ΛkHQ defined by

x⊗ y1 ∧ · · · ∧ yk−1 7→ x ∧ y1 ∧ · · · ∧ yk−1,

we obtain IQ ∼= H
[2,1k−2]
Q . This shows that H

[2,1k−2]
Q appears in the irreducible decompo-

sition of Coker(τ ′k,Q) as a GL(n,Z)-module for any even k ≥ 4 and n ≥ k + 1.

Next we consider to detect H
[2,2]
Q in Coker(τ ′4,Q). To begin with, we remark that H [2,2]

is a free abelian group of rank n2(n2 − 1)/12. In this paper we identify H [2,2] with a
quotient of Λ2H ⊗ Λ2H by the submodule generated by

• (v ∧ w)⊗ (x ∧ y)− (x ∧ y)⊗ (v ∧ w),
• (v ∧ w)⊗ (x ∧ y)− (x ∧ w)⊗ (v ∧ y)− (v ∧ x)⊗ (w ∧ y)

for any v, w, x, y ∈ H. (For details, see [5].) In H [2,2], we write (a ∧ b) · (c ∧ d) for the
coset class of (a ∧ b)⊗ (c ∧ d) for simplicity. Then a basis of H [2,2] is given by

{(i1 ∧ i2) · (i3 ∧ i5) | i1 < i2 ≤ i5, i1 ≤ i3 < i5}.

For i = 1, 2, let fi : H⊗4 → H [2,2] be a projection defined by

fi(a⊗ b⊗ c⊗ d) =

{
(a ∧ c) · (b ∧ d), i = 1,

(a ∧ d) · (b ∧ c), i = 2.

Then set
Tr[2,2] := f1 ◦ Φ4

1 − 2(f2 ◦ Φ4
1) : H∗ ⊗Z H

⊗5 → H [2,2].

We call it the trace map for H [2,2].

Proposition 4.1. For n ≥ 3, TrQ
[2,2] is surjective.

Proof. For any i, i1, i2, i3, i5, we have

TrQ
[2,2](i

∗ ⊗ [i1, i2, i3, i, i5]) = −6(i1 ∧ i2) · (i3 ∧ i5).

In general, this element is non-trivial in H
[2,2]
Q . Since H

[2,2]
Q is a irreducible GL(n,Z)-

module, we see Im(TrQ
[2,2]) = H

[2,2]
Q . �

To show that TrQ
[2,2] vanishes on the image of τ ′4,Q, we need to prepare generators of

Im(τ ′4,Q). First, we consider generators of Im(τ ′3,Q). Let C be a subset of H∗ ⊗Z Ln(4)
consisting of

(C1): x∗i ⊗ [xi1 , xi2 , xi3 , xi4 ],
(C2): x∗i ⊗ [xi1 , xi2 , xi3 , xi],
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(C3): x∗i ⊗ [xi, xi2 , xi3 , xi4 ]− x∗j ⊗ [xj, xi3 , xi4 , xi2 ],
(C4): x∗i ⊗ [xi, xi2 , xi3 , xi4 ]− x∗i ⊗ [xi, xi3 , xi4 , xi2 ],
(C5): x∗i ⊗ [xi1 , xi2 , xi, xi4 ]− x∗j ⊗ [xj, xi4 , xi2 , xi1 ] + x∗j ⊗ [xj, xi4 , xi1 , xi2 ],
(C6): x∗i ⊗ [xi1 , xi2 , xi, xi]− x∗j ⊗ [xj, xi, xi2 , xi1 ] + x∗j ⊗ [xj, xi, xi1 , xi2 ],
(C7): x∗i ⊗ [xi, xi2 , xi, xi4 ]− 2x∗j ⊗ [xj, xi4 , xi2 , xi] + x∗j ⊗ [xj, xi4 , xi, xi2 ],
(C8): x∗i ⊗ [xi, xi2 , xi3 , xi]− x∗j ⊗ [xj, xi, xi2 , xi3 ],
(C9): x∗i ⊗ [xi, xi2 , xi, xi]− 2x∗j ⊗ [xj, xi, xi2 , xi] + x∗j ⊗ [xj, xi, xi, xi2 ]

where i 6= il and j 6= i, il in each of elements above.

Lemma 4.1. For n ≥ 5, Im(τ ′3,Q) is generated by C.

Proof. First we show (C1), . . . , (C9) belong to Im(τ ′3,Q). From Lemmas 3.1, 3.3,
3.4 and 3.5, we obtain (C1), (C2), (C3), (C4) ∈ Im(τ ′3,Q) respectively. Furthermore,
using an argument similar to that in Lemma 3.6, we obtain (C5), (C6), (C7), (C8),
(C9) ∈ Im(τ ′3,Q). The details are left to the reader as exercises.

Next we consider the quotient space D of H∗Q ⊗Z LQ
n (4) by a subspace generated

by (C1), . . . , (C9). From (C1), (C2), (C5), . . . , (C9), D is generated by {x∗i ⊗
[xi, xi1 , xi2 , xi3 ] | il 6= i}. Using (C4), if i 6= i2, i3, i4, then

x∗i ⊗ [xi, xi2 , xi3 , xi4 ] = x∗i ⊗ [xi, xi3 , xi4 , xi2 ] = x∗i ⊗ [xi, xi4 , xi2 , xi3 ].

Furtheremore, from (C3), these elements do not depend on the choice of i such that
i 6= il. Hence we can set

s(i2, i3, i4) := x∗i ⊗ [xi, xi2 , xi3 , xi4 ] ∈ D.

Then it is easily seen that D is generated by

{s(j1, j2, j3) | j1 < j2, j3} ∪ {s(j1, j1, j2) | j1 ≤ j2}
which consists of n(n2 + 2)/3 elements. On the other hand, by our previous result, the
dimension of Coker(τ ′3,Q) as a Q-vector space is just n(n2 +2)/3. (See [23].) This shows
that D = Im(τ ′3,Q). �

Since τ ′Q :=
⊕

k≥1 τ
′
k,Q is a graded Lie algebra homomorphism, from Lemma 4.1 and

(2), we see that Im(τ ′4,Q) is generated by

D := {[f, x∗p ⊗ [xp, xq]], [f, x∗p ⊗ [xq, xr]] | f ∈ C, p 6= q 6= r 6= p}
where the bracket of the outeside in the elements above means the Lie bracket of the
derivation algebra Der(Ln).

Proposition 4.2. For n ≥ 6, TrQ
[2,2] vanishes on Im(τ ′4,Q).

Proof. It suffices to show that TrQ
[2,2] vanishes on D. We show this by direct com-

putation. Since there are too much computation, we give a few examples of them
here.

Step I.
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First we show TrQ
[2,2]([f, x

∗
p⊗ [xp, xq]]) = 0 and TrQ

[2,2]([f, x
∗
p⊗ [xq, xr]]) = 0 for f = (C1),

. . . , (C5). Then using these results, we show the other cases. To begin with, observe

[(C1), x∗p ⊗ [xq, xr]] =δpi1i
∗ ⊗ [xq, xr, xi2 , xi3 , xi4 ] + δpi2x

∗
i ⊗ [xi1 , [xq, xr], xi3 , xi4 ]

+ δpi3x
∗
i ⊗ [xi1 , xi2 , [xq, xr], xi4 ] + δpi4x

∗
i ⊗ [xi1 , xi2 , xi3 , [xq, xr]]

− δqix∗p ⊗ [xi1 , xi2 , xi3 , xi4 , xr] + δrix
∗
p ⊗ [xi1 , xi2 , xi3 , xi4 , xq].

Then we have

TrQ
[2,2]([(C1), x∗p ⊗ [xq, xr]])

= δpi1δqi((xr ∧ xi2) · (xi3 ∧ xi4)− (xr ∧ xi4) · (xi2 ∧ xi3))

+ δpi1δri(−(xq ∧ xi2) · (xi3 ∧ xi4) + (xq ∧ xi4) · (xi2 ∧ xi3))

+ δpi2δqi(−(xr ∧ xi1) · (xi3 ∧ xi4) + (xr ∧ xi4) · (xi1 ∧ xi3))

+ δpi2δri((xq ∧ xi1) · (xi3 ∧ xi4)− (xq ∧ xi4) · (xi1 ∧ xi3))

+ δpi3δqi(3(xi1 ∧ xi2) · (xr ∧ xi4)) + δpi3δri(−3(xi1 ∧ xi2) · (xq ∧ xi4))

+ δpi4δqi(−6(xi1 ∧ xi2) · (xi3 ∧ xr)) + δpi4δri(6(xi1 ∧ xi2) · (xi3 ∧ xq))

+ δqiδpi1(−(xi2 ∧ xi3) · (xi4 ∧ xr) + (xi2 ∧ xr) · (xi3 ∧ xi4))

+ δqiδpi2((xi1 ∧ xi3) · (xi4 ∧ xr)− (xi1 ∧ xr) · (xi3 ∧ xi4))

+ δqiδpi3(3(xi1 ∧ xi2) · (xi4 ∧ xr)) + δqiδpi4(6(xi1 ∧ xi2) · (xi3 ∧ xr))

+ δriδpi1((xi2 ∧ xi3) · (xi4 ∧ xq)− (xi2 ∧ xq) · (xi3 ∧ xi4))

+ δriδpi2(−(xi1 ∧ xi3) · (xi4 ∧ xq) + (xi1 ∧ xq) · (xi3 ∧ xi4))

+ δriδpi3(−3(xi1 ∧ xi2) · (xi4 ∧ xq)) + δriδpi4(−6(xi1 ∧ xi2) · (xi3 ∧ xq))
=0.

On the other hand, we have

[(C3), x∗p ⊗ [xp, xq]] =δpii
∗ ⊗ [xi, xq, xi2 , xi3 , xi4 ] + δpi2x

∗
i ⊗ [xi, [xi2 , xq], xi3 , xi4 ]

+ δpi3x
∗
i ⊗ [xi, xi2 , [xi3 , xq], xi4 ] + δpi4x

∗
i ⊗ [xi, xi2 , xi3 , [xi4 , xq]]

− δpjj∗ ⊗ [xj, xq, xi3 , xi4 , xi2 ]− δpi3x∗j ⊗ [xj, [xi3 , xq], xi4 , xi2 ]

− δpi4x∗j ⊗ [xj, xi3 , [xi4 , xq], xi2 ]− δpi2x∗j ⊗ [xj, xi3 , xi4 , [xi2 , xq]]

− δpix∗i ⊗ [xi, xi2 , xi3 , xi4 , xq] + δqix
∗
p ⊗ [xi, xi2 , xi3 , xi4 , xp]

+ δpjx
∗
j ⊗ [xj, xi3 , xi4 , xi2 , xq]− δqjx∗p ⊗ [xj, xi3 , xi4 , xi2 , xp]
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and

TrQ
[2,2]([(C3), x∗p ⊗ [xp, xq]])

= δpi((xq ∧ xi2) · (xi3 ∧ xi4)− (xq ∧ xi4) · (xi2 ∧ xi3))

+ δpi2(3(xi2 ∧ xq) · (xi3 ∧ xi4))

+ δpi2δqi((xi2 ∧ xi) · (xi3 ∧ xi4)− (xi2 ∧ xi4) · (xi ∧ xi3))

+ δpi3(−3(xi2 ∧ xi4) · (xi3 ∧ xq)) + δpi3δqi(−3(xi ∧ xi2) · (xi3 ∧ xi4))

+ δpi4(3(xi2 ∧ xi3) · (xi4 ∧ xq)) + δpi4δqi(6(xi ∧ xi2) · (xi3 ∧ xi4))

− δpj((xq ∧ xi3) · (xi4 ∧ xi2)− (xq ∧ xi2) · (xi3 ∧ xi4))

− δpi3(3(xi3 ∧ xq) · (xi4 ∧ xi2))

− δpi3δqi((xi3 ∧ xj) · (xi4 ∧ xi2)− (xi3 ∧ xi2) · (xj ∧ xi4))

− δpi4(−3(xi3 ∧ xi2) · (xi4 ∧ xq))− δpi4δqi(−3(xj ∧ xi3) · (xi4 ∧ xi2))

− δpi2(3(xi3 ∧ xi4) · (xi2 ∧ xq))− δpi2δqi(6(xj ∧ xi3) · (xi4 ∧ xi2))

− δpi((xi2 ∧ xi3) · (xi4 ∧ xq)− (xi2 ∧ xq) · (xi3 ∧ xi4))

+ δqiδpi2(−(xi ∧ xi3) · (xi4 ∧ xi2) + (xi ∧ xi2) · (xi3 ∧ xi4))

+ δqiδpi3(−3(xi ∧ xi2) · (xi4 ∧ xi3)) + δqiδpi4(−6(xi ∧ xi2) · (xi3 ∧ xi4))

+ δpj((xi3 ∧ xi4) · (xi2 ∧ xq)− (xi3 ∧ xq) · (xi4 ∧ xi2))

− δqjδpi3(−(xj ∧ xi4) · (xi2 ∧ xi3) + (xj ∧ xi3) · (xi4 ∧ xi2))

− δqjδpi4(−3(xj ∧ xi3) · (xi2 ∧ xi4))− δqjδpi2(−6(xj ∧ xi3) · (xi4 ∧ xi2)),

= 0.

By an argument similar to the above, we can show TrQ
[2,2]([f, x

∗
p ⊗ [xp, xq]]) = 0 and

TrQ
[2,2]([f, x

∗
p ⊗ [xq, xr]]) = 0 for f = (C1), . . . , (C5). The calcilations are left to the

reader as exercises.

Step II.

Next, we consider (C6)

x∗i ⊗ [xi1 , xi2 , xi, xi]− x∗j ⊗ [xj, xi, xi2 , xi1 ] + x∗j ⊗ [xj, xi, xi1 , xi2 ],

and [(C6), x∗p ⊗ [xp, xq]]. To begin with, observe

[x∗i⊗[xi1 , xi2 , xi, xi], x
∗
p ⊗ [xp, xq]]

= δpi1x
∗
i ⊗ [[xp, xq], xi2 , xi, xi] + δpi2x

∗
i ⊗ [xi1 , [xp, xq], xi, xi]

+ δpi(x
∗
i ⊗ [xi1 , xi2 , [xp, xq], xi] + x∗i ⊗ [xi1 , xi2 , xi, [xp, xq]])

− δpix∗p ⊗ [[xi1 , xi2 , xi, xi], xq]− δqix∗p ⊗ [xp, [xi1 , xi2 , xi, xi]]).
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Since n ≥ 6, there exist j such that j 6= i, i1, i2, p, q. Then

Φ1([x∗i ⊗ [xi1 , xi2 , xi, xi], x
∗
p ⊗ [xp, xq]])

= δpi1
(
Φ1(x∗i ⊗ [[xp, xq], xi2 , xj, xi])

∣∣
j=i

+ Φ1(x∗i ⊗ [[xp, xq], xi2 , xi, xj])
∣∣
j=i

− δqiΦ1(x∗i ⊗ [[xp, xi], xi2 , xj, xj])
∣∣
j=i

)

+ δpi2
(
Φ1(x∗i ⊗ [xi1 , [xp, xq], xj, xi])

∣∣
j=i

+ Φ1(x∗i ⊗ [xi1 , [xp, xq], xi, xj])
∣∣
j=i

− δqiΦ1(x∗i ⊗ [xi1 , [xp, xi], xj, xj])
∣∣
j=i

)

+ δpi
(
Φ1(x∗i ⊗ [xi1 , xi2 , [xi, xq], xj])

∣∣
j=i

+ Φ1(x∗i ⊗ [xi1 , xi2 , [xj, xq], xi])
∣∣
j=i

+ Φ1(x∗i ⊗ [xi1 , xi2 , xj, [xi, xq]])
∣∣
j=i

+ Φ1(x∗i ⊗ [xi1 , xi2 , xi, [xj, xq]])
∣∣
j=i

)

− δpi
(
Φ1(x∗i ⊗ [[xi1 , xi2 , xi, xj], xq])

∣∣
j=i

+ Φ1(x∗i ⊗ [[xi1 , xi2 , xj, xi], xq])
∣∣
j=i

)

− δqi
(
Φ1(x∗p ⊗ [xp, [xi1 , xi2 , xi, xj]])

∣∣
j=i

+ Φ1(x∗p ⊗ [xp, [xi1 , xi2 , xj, xi]])
∣∣
j=i

− δpi1Φ1(x∗p ⊗ [xp, [xi1 , xi2 , xj, xj]])
∣∣
j=i

− δpi2Φ1(x∗p ⊗ [xp, [xi1 , xi2 , xj, xj]])
∣∣
j=i

)

where v|j=i means an element obtained from v by rewritting xj as xi whenever xj
appears. It is easily seen that the element above is equal to

Φ1([x∗i ⊗ [xi1 , xi2 , xj, xi], x
∗
p ⊗ [xp, xq]])

∣∣
j=i

+ Φ1([x∗i ⊗ [xi1 , xi2 , xi, xj], x
∗
p ⊗ [xp, xq]])

∣∣
j=i

+ δpiΦ1([x∗i ⊗ [xi1 , xi2 , xj, xi], x
∗
j ⊗ [xj, xq]])

∣∣
j=i

+ δpiΦ1([x∗i ⊗ [xi1 , xi2 , xi, xj], x
∗
j ⊗ [xj, xq]])

∣∣
j=i

− δqiδpi1Φ1([x∗i ⊗ [xi1 , xi2 , xj, xj], x
∗
i1
⊗ [xj, xi]])

∣∣
j=i

− δqiδpi2Φ1([x∗i ⊗ [xi1 , xi2 , xj, xj], x
∗
i2
⊗ [xj, xi]])

∣∣
j=i
.

Hence, using the results obtained in Step I, we see

TrQ
[2,2]([x

∗
i ⊗ [xi1 , xi2 , xi, xi], x

∗
p ⊗ [xp, xq]])

=TrQ
[2,2]([x

∗
j ⊗ [xj, xi, xi2 , xi1 ], x∗p ⊗ [xp, xq]])

− TrQ
[2,2]([x

∗
j ⊗ [xj, xi, xi1 , xi2 ], x∗p ⊗ [xp, xq]]).

This shows

TrQ
[2,2]([(C6), x∗p ⊗ [xp, xq]] = 0.

By an argument similar to that in the above, we can show the other cases. The calcu-
lations are left to the reader as exercises. �

From Propositions 3.1 and 4.2, we obtain

Theorem 4.1. For any n ≥ 6,

Coker(τ ′4,Q) = S4HQ ⊕H [2,12]
Q ⊕H [2,2]

Q .

Finally, we give a lower bound on the rank of the fourth graded quotient of the
Johnson filtration of AutFn.
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Corollary 4.1. For n ≥ 6,

rankZ(gr4(An)) ≥ 1

5
n2(n4 − 1)− 1

4
n(n+ 1)(n2 − n+ 2).

Proof. In general, since A′n(k) ⊂ An(k) for any k ≥ 1, it follows from

rankZ(gr4(An)) = rankZ(Im(τ4)) ≥ rankZ(Im(τ ′4))

= dimQ(Im(τ ′4,Q))

= dimQ(H∗Q ⊗Z LQ
n (5))− dimQ(Coker(τ ′4,Q)).

This completes the proof of Corollary 4.1. �
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