FIRST COHOMOLOGY GROUPS OF THE AUTOMORPHISM GROUP OF A FREE GROUP WITH COEFFICIENTS IN THE ABELIANIZATION OF THE IA-AUTOMORPHISM GROUP

TAKAO SATOH¹

Graduate School of Sciences, Department of Mathematics, Kyoto University, Kitasirakawaoiwake-cho, Sakyo-ku, Kyoto city 606-8502, Japan

ABSTRACT. We compute a twisted first cohomology group of the automorphism group of a free group with coefficients in the abelianization V of the IA-automorphism group of a free group. In particular, we show it is generated by two crossed homomorphisms constructed by the Magnus representation and the Magnus expansion due to Morita and Kawazumi respectively. Then we determine the first homology group of the automorphism group of a free group with coefficients in the dual group V^* of V.

1. INTRODUCTION

Let F_n be a free group of rank $n \geq 2$ with basis x_1, \ldots, x_n , and Aut F_n the automorphism group of F_n . The study of the (co)homology groups of Aut F_n has been developed for these twenty years by many authors with various kinds of methods. There are some remarkable results for the (co)homology groups of Aut F_n with trivial coefficients. For example, Gersten [6] showed $H_2(\operatorname{Aut} F_n, \mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$ for $n \geq 5$, and Hatcher and Vogtmann [7] showed $H_q(\operatorname{Aut} F_n, \mathbb{Q}) = 0$ for $n \geq 1$ and $1 \leq q \leq 6$, except for $H_4(\operatorname{Aut} F_4, \mathbb{Q}) = \mathbb{Q}$. Furthermore, recently Galatius [5] showed that the stable integral homology groups of Aut F_n are ismorphic to those of the symmetric group \mathfrak{S}_n of degree n. In particular, this shows that the stable rational homology groups of Aut F_n are trivial.

On the other hand, in contrast to the (co)homology groups with trivial cofficients, those with twisted cofficients are still far from well understood. Let H be the abelianization of F_n and $H^* := \text{Hom}_{\mathbf{Z}}(H, \mathbf{Z})$ the dual group of H. Then Aut F_n naturally acts on them. With respect to these cofficients, in our previous paper [20, 22], we compute the first and the rational second homology groups of Aut F_n . Hatcher and Wahl [8] showed that the stable homology groups of Aut F_n with coefficients in H are trivial using the stability of the homology groups of the mapping class groups of certain 3manifolds. There are, however, few computation for twisted (co)homology groups of Aut F_n other than the above. In our research we are interested in not only to compute twisted (co)homology groups of Aut F_n but also to find non-trivial twisted (co)homology classes of it.

²⁰⁰⁰ Mathematics Subject Classification. 20F28(Primary), 20J06(Secondly).

Key words and phrases. Automrophism group of a free group, Twisted homology group, IA-automorphism group.

¹e-address: takao@math.kyoto-u.ac.jp

Now, let ρ : Aut $F_n \to \operatorname{Aut} H$ be the natural homomorphism induced from the abelianization of F_n . The kernel of ρ is called the IA-automorphism group of F_n , denoted by IA_n. If we denote the abelianization of IA_n by V simply, Aut F_n naturally acts on V by the conjugation. Cohen-Pakianathan [2, 3], Farb [4] and Kawazumi [9] independently showed that V is isomorphic to $H^* \otimes_{\mathbb{Z}} \Lambda^2 H$ as a $\operatorname{GL}(n, \mathbb{Z})$ -module. In particular, it is known that this abelianization is induced from the first Johnson homomorphism τ_1 of Aut F_n .

By recent studies of twisted (co)homology groups of Aut F_n by Morita [14] and Kawazumi [9], we see that there are two intrinsic construction of crossed homomorphisms from Aut F_n into $V_L := V \otimes_{\mathbf{Z}} L$ for any principal ideal domain L. One is obtained from the Magnus representation of Aut F_n due to Morita [14], denoted by f_M , and the other is obtained from the Magnus expansion of F_n due to Kawazumi [9], denoted by f_K . (For details, see Section 3.) A construction of a crossed homomorphism with the Magnus representation introduced by Morita was originally appeared in his study of twisted first cohomology group of the mapping class group of a surface. Then, using his idea, we [20] showed that $H^1(\operatorname{Aut} F_n, H) \cong \mathbf{Z}$ is also generated by a crossed homomorphism obtained from the Magnus representation. On the other hand, it is known with a recent remarkable work by Kawazumi [9] that there is a crossed homomorphism τ_1^{θ} from Aut F_n into $H^{\otimes 2}$, called the first Johnson map induced by the Magnus expansion θ . Furthermore, he introduced a series of non-trivial cohomology classes h_p in $H^p(\operatorname{Aut} F_n, H^* \otimes_{\mathbf{Z}} H^{\otimes p+1})$ for any $p \geq 1$, and showed that h_1 is obtained from τ_1^{θ} .

In this paper, we determine the first stable homology group of Aut F_n with coefficients in $V^* := \text{Hom}_{\mathbf{Z}}(V, \mathbf{Z})$.

Theorem 1. (= Theorem 4.1.) For $n \ge 5$,

$$H_1(\operatorname{Aut} F_n, V^*) = \mathbf{Z}^{\oplus 2}.$$

In order to show this, we compute the first cohomology groups of Aut F_n with coefficients in $V_L := V \otimes_{\mathbf{Z}} L$ for any principal ideal domain L, and show

$$H^1(\operatorname{Aut} F_n, V_L) = L^{\oplus 2}$$

for $n \geq 5$ using the Nielsen's presentation for Aut F_n . In particular, we show that the crossed homomorphisms f_M and f_K generate $H^1(\operatorname{Aut} F_n, V_L)$. Furthermore, in Section 5, we see that the first Johnson homomorphism τ_1 does not extend to Aut F_n as a crossed homomorphism.

At the end of the paper, we consider some quotient groups of Aut F_n . In particular, we determine the twisted first homology groups of the outer automorphism group Out F_n as follows:

Theorem 2. (= Theorem 5.1.) For $n \ge 5$,

$$H_1(\operatorname{Out} F_n, V^*) \cong \begin{cases} \mathbf{Z}, & n : \operatorname{even}, \\ \mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z}, & n : \operatorname{odd}. \end{cases}$$

This paper consists of six sections. In Section 2, we fix some notation and convensions. Then we recall the Nielsen's finite presentation for the automorphism group of a free group. In Section 3, we construct two crossed homomorphisms f_M and f_K from Aut F_n into V_L for any principal ideal domain L. In Section 4, we directly compute the twisted first cohomology groups of Aut F_n using the Nielsen's presentation. Then, using the universal coefficients theorem, we determine the twisted first homology group. In Section 5, we compute the twisted first homology groups of the general linear group $GL(n, \mathbb{Z})$, the outer automorphism group $Out F_n$.

CONTENTS

1. Introduction	1
2. Preliminaries	3
2.1. Notation and conventions	3
2.2. Nielsen's Presentation	4
2.3. IA-automorphism group	5
3. Construction of crossed homomorphisms	6
3.1. Morita's construction	6
3.2. Kawazumi's construction	6
4. Computation of first (co)homology groups	7
5. Some quotient groups of $\operatorname{Aut} F_n$	17
5.1. General linear group	17
5.2. Outer automorphism group	18
6. Acknowledgments	18
References	19

2. Preliminaries

In this section, after fixing some notation and coneventions, we recall the Nielsen's finite presentation for the automorphism group of a free group which is used to compute the first cohomology groups of Aut F_n . Then we also recall the IA-automorphism group of a free group and its abelianization.

2.1. Notation and conventions.

Throughout the paper, we use the following notation and conventions. Let G be a group and N a normal subgroup of G.

- The abelianization of G is denoted by G^{ab} .
- The group $\operatorname{Aut} F_n$ of F_n acts on F_n from the right. For any $\sigma \in \operatorname{Aut} F_n$ and $x \in G$, the action of σ on x is denoted by x^{σ} .
- For an element $g \in G$, we also denote the coset class of g by $g \in G/N$ if there is no confusion.
- Let L be an arbitrary commutative ring. For any **Z**-module M, we denote $M \otimes_{\mathbf{Z}} L$ by the symbol obtained by attaching a subscript L to M, like M_L or M^L . Similarly, for any **Z**-linear map $f : A \to B$, the induced L-linear map $A_L \to B_L$ is denoted by f_L or f^L .
- For elements x and y of G, the commutator bracket [x, y] of x and y is defined to be $[x, y] := xyx^{-1}y^{-1}$.

• For a group G and a G-module M, we set

 $Cros(G, M) := \{ f : G \to M \mid f : crossed homomorphism \},\$

 $Prin(G, M) := \{g : G \to M \mid g : principal homomorphism\}.$

2.2. Nielsen's Presentation. For $n \ge 2$, let F_n be a free group of rank n with basis x_1, \ldots, x_n . Let P, Q, S and U be automorphisms of F_n defined as follows:

	x_1	x_2	x_3	•••	x_{n-1}	x_n
P	x_2	x_1	x_3	• • •	x_{n-1}	x_n
Q	x_2	x_3	x_4		x_n	x_1
S	x_1^{-1}	x_2	x_3		x_{n-1}	x_n
U	$x_1 x_2$	x_2	x_3	•••	x_{n-1}	x_n

In 1924, Nielsen [18] obtained a first finite presentation for $\operatorname{Aut} F_n$.

Theorem 2.1 (Nielsen [18]). For $n \ge 2$, Aut F_n is generated by P, Q, S and U subject to relators:

(N1): P^2 , Q^n , S^2 , (N2): $(QP)^{n-1}$, (N3): $(PSPU)^2$, (N4): $[P,Q^{-l}PQ^l]$, $2 \le l \le n/2$, (N5): $[S,Q^{-1}PQ]$, [S,QP], (N6): $(PS)^4$, (N7): $[U,Q^{-2}PQ^2]$, $[U,Q^{-2}UQ^2]$, $n \ge 3$, (N8): $[U,Q^{-2}SQ^2]$, [U,SUS], (N9): $[U,QPQ^{-1}PQ]$, $[U,PQ^{-1}SUSQP]$, (N10): $[U,PQ^{-1}PQPUPQ^{-1}PQP]$, (N11): $U^{-1}PUPSUSPS$, (N12): $(PQ^{-1}UQ)^2UQ^{-1}U^{-1}QU^{-1}$.

Let H be the abelianization of F_n , and $H^* := \text{Hom}_{\mathbf{Z}}(H, \mathbf{Z})$ the dual group of H. Let e_1, \ldots, e_n be the basis of H induced from x_1, \ldots, x_n , and e_1^*, \ldots, e_n^* its dual basis of H^* . Here we remark the actions of the generators P, Q, S and U on e_i 's and e_i^* 's. In this paper, any Aut F_n -module is considered as a left module. Hence the actions of P, Q, S and U on e_k 's and e_k^* 's are given by

$$P \cdot e_{k} = \begin{cases} e_{2}, \quad k = 1, \\ e_{1}, \quad k = 2, \\ e_{k}, \quad k \neq 1, 2, \end{cases} \qquad P \cdot e_{k}^{*} = \begin{cases} e_{2}^{*}, \quad k = 1, \\ e_{1}^{*}, \quad k = 2, \\ e_{1}^{*}, \quad k = 2, \\ e_{1}^{*}, \quad k = 2, \\ e_{k}^{*}, \quad k \neq 1, 2, \end{cases}$$
$$Q \cdot e_{k}^{*} = \begin{cases} e_{1}^{*}, \quad k = 1, \\ e_{k-1}^{*}, \quad k \neq 1, \\ e_{k-1}^{*}, \quad k \neq 1, \end{cases} \qquad Q \cdot e_{k}^{*} = \begin{cases} e_{1}^{*}, \quad k = 1, \\ e_{k-1}^{*}, \quad k \neq 1, \\ e_{k-1}^{*}, \quad k \neq 1, \end{cases}$$
$$S \cdot e_{k}^{*} = \begin{cases} -e_{1}^{*}, \quad k = 1, \\ e_{k}^{*}, \quad k \neq 1, \\ e_{k}^{*}, \quad k \neq 1, \end{cases}$$
$$U \cdot e_{k} = \begin{cases} e_{1}^{*} - e_{2}, \quad k = 1, \\ e_{k}, \quad k \neq 1, \end{cases}$$
$$U \cdot e_{k}^{*} = \begin{cases} e_{2}^{*} + e_{1}^{*}, \quad k = 2, \\ e_{k}^{*}, \quad k \neq 2. \end{cases}$$

2.3. IA-automorphism group.

Fixing the basis e_1, \ldots, e_n of H, we identify Aut H with $\operatorname{GL}(n, \mathbb{Z})$. Then, the kernel of the natural homomorphism $\rho : \operatorname{Aut} F_n \to \operatorname{GL}(n, \mathbb{Z})$ induced from the abelianization of F_n is called the IA-automorphism group of F_n , and denoted by IA_n. Magnus [11] showed that for any $n \geq 3$, IA_n is finitely generated by automorphisms

$$K_{ij} : \begin{cases} x_i & \mapsto x_j^{-1} x_i x_j, \\ x_t & \mapsto x_t, \end{cases} \quad (t \neq i)$$

for distinct $i, j \in \{1, 2, \dots, n\}$ and

$$K_{ijk} : \begin{cases} x_i & \mapsto x_i x_j x_k x_j^{-1} x_k^{-1}, \\ x_t & \mapsto x_t, \qquad (t \neq i) \end{cases}$$

for distinct $i, j, k \in \{1, 2, ..., n\}$ such that j > k.

Recently, Cohen-Pakianathan [2, 3], Farb [4] and Kawazumi [9] independently determined the abelianization of IA_n. More precisely, they showed

(1)
$$\mathrm{IA}_n^{\mathrm{ab}} \cong H^* \otimes_{\mathbf{Z}} \Lambda^2 H$$

as a $\operatorname{GL}(n, \mathbb{Z})$ -module. This abelianization is induced from the first Johnson homomorphism

$$\tau_1: \mathrm{IA}_n \to H^* \otimes_{\mathbf{Z}} \Lambda^2 H.$$

(For a basic material concerning the Johnson homomorphism, see [14] and [21] for example.) We identify IA_n^{ab} with $H^* \otimes_{\mathbf{Z}} \Lambda^2 H$ through τ_1 . Then, we verify that (the coset classes of) the Magnus generators

$$K_{ij} = e_i^* \otimes e_i \wedge e_j, \quad K_{ijk} = e_i^* \otimes e_j \wedge e_k$$

form a basis of $\mathrm{IA}^{\mathrm{ab}}_n$ as a free abelian group. In this paper, for simplicity, we write V for $\mathrm{IA}^{\mathrm{ab}}_n,$ and set

$$oldsymbol{e}^i_{j,k}:=e^*_i\otimes e_j\wedge e_k$$

for any i, j and k. Moreover, we use

$$I := \{ (i, j, k) \, | \, 1 \le i \le n, \quad 1 \le j < k \le n \}$$

as an index set of a basis of V.

Finally, we recall the inner automorphism group. For each $1 \le i \le n$, set

$$\iota_i := K_{1i} K_{2i} \cdot \cdot \cdot K_{ni} \in \mathrm{IA}_n,$$

and let $\operatorname{Inn} F_n$ be a subgroup of IA_n generated by ι_i for $1 \leq i \leq n$. Then the group Inn F_n , called the inner automorphism group of F_n , is also a free group with basis ι_1 , \ldots, ι_n . We remark that the inclusion $\operatorname{Inn} F_n \hookrightarrow \operatorname{IA}_n$ induces a $\operatorname{GL}(n, \mathbb{Z})$ -equivariant injective homomorphism

$$H = (\operatorname{Inn} F_n)^{\mathrm{ab}} \to \operatorname{IA}_n^{\mathrm{ab}} = H^* \otimes_{\mathbf{Z}} \Lambda^2 H.$$

3. Construction of crossed homomorphisms

In this section, for any principal ideal domain L, we introduce two crossed homomorphisms f_M and f_K from Aut F_n into V_L , due to Morita [14] and Kawazumi [9] respectively. We remark that in their papers, the action of Aut F_n on F_n is considered as the left one. Therefore, in the following, whenever we consider the left action of Aut F_n on F_n , we use $\sigma(x) := x^{\sigma^{-1}}$ for any $\sigma \in \text{Aut } F_n$ and $x \in F_n$.

3.1. Morita's construction. First we construct a crossed homomorphism f_M from Aut F_n into V using the Magnus representation of Aut F_n due to Morita [14]. Let

$$\frac{\partial}{\partial x_j}: \mathbf{Z}[F_n] \longrightarrow \mathbf{Z}[F_n]$$

be the Fox free derivations for $1 \leq j \leq n$. (For a basic material concerning with the Fox derivation, see [1] for example.) Let $\bar{}: \mathbf{Z}[F_n] \to \mathbf{Z}[F_n]$ be the antiautomorphism induced from the map $F_n \ni y \mapsto y^{-1} \in F_n$, and $\mathfrak{a}: \mathbf{Z}[F_n] \to \mathbf{Z}[H]$ the ring homomorphism induced from the abelianization $F_n \to H$. For any $A = (a_{ij}) \in \mathrm{GL}(n, \mathbf{Z}[F_n])$, let $A^{\mathfrak{a}}$ be the matrix $(a_{ij}^{\mathfrak{a}}) \in \mathrm{GL}(n, \mathbf{Z}[H])$. Then a map

$$r_M$$
: Aut $F_n \longrightarrow \operatorname{GL}(n, \mathbf{Z}[H])$

defined by

$$\sigma \mapsto \left(\frac{\overline{\partial \sigma(x_j)}}{\partial x_i}\right)^{\mathfrak{a}}$$

is called the Magnus representation of Aut F_n . We remark that r_M is not a homomorphism but a crossed homomorphism. Namely, r_M satisfies

$$r_M(\sigma \tau) = r_M(\sigma) \cdot r_M(\tau)^{\sigma *}$$

for any $\sigma, \tau \in \operatorname{Aut} F_n$ where $r_M(\tau)^{\sigma^*}$ denotes the matrix obtained from $r_M(\tau)$ by applying a ring homomorphism $\sigma_* : \mathbf{Z}[H] \to \mathbf{Z}[H]$ induced from σ on each entry.

Now, for any $\sigma \in \operatorname{Aut} F_n$, we write $\operatorname{sgn}(\sigma)$ for $\det \circ \rho(\sigma) \in \{\pm 1\}$. We define a map $f_M : \operatorname{Aut} F_n \longrightarrow \mathbf{Z}[H]$ by

$$\sigma \mapsto \operatorname{sgn}(\sigma) \operatorname{det}(r_M(\sigma)).$$

The map f_M is also crossed homomorphism. Furthermore, observing the images of the generators of Aut F_n , we verify that the image of f_M is contained in H. Then, composing f_M with a natural homomorphism $H \to V \to V_L$ induced from the inclusion Inn $F_n \hookrightarrow IA_n$, we obtain an element in Cros(Aut F_n, V_L), also denoted by f_M .

3.2. Kawazumi's construction. Next, we construct a crossed homomorphism f_K from Aut F_n into V_L using the Magnus expansion of F_n due to Kawazumi [9]. Let \widehat{T} be the complete tensor algebra generated by H. For any Magnus expansion $\theta : F_n \to \widehat{T}$, Kawazumi define a map

$$\tau_1^{\theta} : \operatorname{Aut} F_n \to H^* \otimes_{\mathbf{Z}} H^{\otimes 2}$$

called the first Johnson map induced by the Magnus expansion θ . The map τ_1^{θ} satisfies

$$\tau_1^{\theta}(\sigma)([x]) = \theta_2(x) - |\sigma|^{\otimes 2} \theta_2(\sigma^{-1}(x))$$

for any $x \in F_n$, where [x] denotes the coset class of x in H, $\theta_2(x)$ is the projection of $\theta(x)$ in $H^{\otimes 2}$, and $|\sigma|^{\otimes 2}$ denotes the automorphism of $H^{\otimes 2}$ induced by $\sigma \in \operatorname{Aut} F_n$. In particular, he showed that τ_1^{θ} is a crossed homomorphism, and τ_1^{θ} does not depend on

the choice of the Magnus expansion θ . Then, composing τ_1^{θ} with a natural projection $H^* \otimes_{\mathbf{Z}} H^{\otimes 2} \to H^* \otimes_{\mathbf{Z}} \Lambda^2 H \to V_L$ for any principal ideal domain L, we obtain a crossed homomorphism $f_K \in \operatorname{Cros}(\operatorname{Aut} F_n, V_L)$.

Observing the images of the Nielsen's generators, we have

$$f_M(\sigma) := \begin{cases} -(\boldsymbol{e}_{1,2}^2 + \boldsymbol{e}_{1,3}^3 + \dots + \boldsymbol{e}_{1,n}^n), & \sigma = S, \\ 0, & \sigma = P, Q, U \end{cases}$$

and

$$f_K(\sigma) := \begin{cases} -\boldsymbol{e}_{1,2}^1, & \sigma = U, \\ 0, & \sigma = P, Q, S. \end{cases}$$

Now, consider an element

$$oldsymbol{a} := \sum_{(i,j,k)\in I} a^i_{j,k} oldsymbol{e}^i_{j,k} \in V_L,$$

such that

$$a_{j,k}^{i} := \begin{cases} 0, & i \neq j, \ k \\ 1, & i = k, \\ -1, & i = j, \end{cases}$$

and let $f_{\boldsymbol{a}} \in Prin(\operatorname{Aut} F_n, V_L)$ be a principal homomorphism associated to \boldsymbol{a} . If we set $f_N := 2f_M - f_K - f_{\boldsymbol{a}}$, then f_N is a crossed homomorphism such that

$$f_N(\sigma) := \begin{cases} \boldsymbol{e}_{2,3}^3 + \boldsymbol{e}_{2,4}^4 + \dots + \boldsymbol{e}_{2,n}^n, & \sigma = U, \\ 0, & \sigma = P, Q, S. \end{cases}$$

We use f_M and f_N to determine the first cohomology group $H^1(\operatorname{Aut} F_n, V_L)$ in Section 4.

4. Computation of first (co)homology groups

Let L be an arbitrary principal ideal domain. We denote $V \otimes_{\mathbf{Z}} L$ by V_L . In this section, to begin with, we compute $H^1(\operatorname{Aut} F_n, V_L)$ for $n \geq 5$. Then, using the universal coefficients theorem, we determine $H_1(\operatorname{Aut} F_n, V^*)$ where $V^* := \operatorname{Hom}_{\mathbf{Z}}(V, \mathbf{Z})$ is the dual group of V.

In order to compute the first cohomology groups, we use the Nielsen's presentation for Aut F_n . Let F be a free group with basis P, Q, S and U, and $\varphi : F \to \text{Aut } F_n$ the natural projection. Then the kernel R of φ is a normal closure of the relators (N1), ..., (N12). Considering the five-term exact sequence of the Lyndon-Hochshild-Serre sepectral sequence of the group extension

$$1 \to R \to F \to \operatorname{Aut} F_n \to 1,$$

we obtain

$$0 \to H^1(\operatorname{Aut} F_n, V_L) \to H^1(F, V_L) \to H^1(R, V_L)$$

Observing this sequence at the cocycle level, we also obtain an exact sequence

$$0 \to \operatorname{Cros}(\operatorname{Aut} F_n, V_L) \to \operatorname{Cros}(F, V_L) \xrightarrow{\iota} \operatorname{Cros}(R, V_L)$$

where ι^* is a map induced from the inclusion $\iota : R \hookrightarrow F$. Hence we can consider $\operatorname{Cros}(\operatorname{Aut} F_n, V_L)$ as a subgroup consisting of elements of $\operatorname{Cros}(F, V_L)$ which are killed by ι^* . Using the relators of the Nielsen's presentation, we obtain

Proposition 4.1. For $n \geq 5$,

$$H^1(\operatorname{Aut} F_n, V_L) = L^{\oplus 2}.$$

Proof of Proposition 4.1. For any $\sigma \in F$ and crossed homomorphism $f \in \operatorname{Cros}(F, V_L)$, set

$$f(\sigma) := \sum_{(i,j,k)\in I} a^i_{j,k}(\sigma) \boldsymbol{e}^i_{j,k} \in V_L$$

for $a_{j,k}^i(\sigma) \in L$. Since F is a free group generated by P, Q, S and U, a crossed homomorphism f is completely determined by $a_{j,k}^i(\sigma)$ for $\sigma = P$, Q, S and U. More precisely, a map

$$\operatorname{Cros}(F, V_L) \to L^{\oplus 2n^2(n-1)}$$

defined by

$$f \mapsto \left(a_{j,k}^{i}(P), a_{j,k}^{i}(Q), a_{j,k}^{i}(S), a_{j,k}^{i}(U)\right)_{(i,j,k)\in \mathcal{S}}$$

is an isomorphism. Through this map, we identify $\operatorname{Cros}(F, V_L)$ with $L^{\oplus 2n^2(n-1)}$.

Let $f \in \operatorname{Cros}(\operatorname{Aut} F_n, V_L) \subset \operatorname{Cros}(F, V_L)$, Using $\iota^*(f) = 0$, and the relators of the Nielsen's presentation, we find some linear relations among $a_{j,k}^i(\sigma)$ for $\sigma = P, Q, S$ and U. Then we verify that such $f \in \operatorname{Cros}(\operatorname{Aut} F_n, V_L)$ is characterized by at most

(2)
$$a_{j,k}^{i}(Q), \quad 1 \leq i \leq n-1, \quad 1 \leq j < k \leq n,$$
$$a_{j,k}^{1}(U), \quad 1 \leq j < k \leq n,$$
$$a_{1,2}^{2}(S), \quad a_{2,3}^{3}(U).$$

Later, we see that these elements uniquely determines a crossed homomorphism from Aut F_n into V_L .

Let W be a quotient L-module of a free L-module spanned by $a_{j,k}^i(\sigma)$ for $\sigma = P, Q, S$ and U, and $(i, j, k) \in I$ by a submodule generated by all linear relations obtained from $\iota^*(f) = 0$. Then each of the coefficients of $e_{j,k}^i$ in $f(\sigma)$ is considered as an element in W. We denote by \overline{W} the quotient module of W by the submodule generated by all elements in (2). We use \doteq for the equality in \overline{W} . Furthermore, we also write $\boldsymbol{a} \doteq \boldsymbol{a}'$ if both of \boldsymbol{a} and \boldsymbol{a}' are in a submodule of V_L generated by $\tau f(\sigma)$ for $\sigma, \tau \in \operatorname{Aut} F_n$, and if each of the coefficients of $e_{j,k}^i$ in \boldsymbol{a} is equal to that in \boldsymbol{a}' in \overline{W} .

Step I.

From the relation $Q^n = 1$, we obtain

$$(1 + Q + Q^2 + \dots + Q^{n-1})f(Q) \doteq 0.$$

For any $1 \leq j < k \leq n$, observing the coefficient of $e_{j,k}^n$ in the equation above, we see

$$a_{j,k}^{n}(Q) + a_{j+1,k+1}^{1}(Q) + a_{j+2,k+2}^{2}(Q) \cdots + a_{j+n-k,n}^{n-k}(Q) - a_{1,j+n-k+1}^{n-k+1}(Q) - \cdots - a_{k-j,n}^{n-j}(Q) + a_{1,k-j+1}^{n-j+1}(Q) + \cdots + a_{j-1,k-1}^{n-1}(Q) \doteq 0,$$

and hence $a_{j,k}^n(Q) \doteq 0$.

Step II.

Next we consider some relations among $a_{j,k}^i(P)$. Observing the coefficients of $e_{j,k}^1$, $e_{1,k}^1$, $e_{1,2}^1$, $e_{2,k}^1$ and $e_{1,k}^i$ in an equation (P+1)f(P) = 0 induced from a relation $P^2 = 1$, we obtain

(3) $a_{j,k}^1(P) + a_{j,k}^2(P) \doteq 0, \quad 3 \le j < k \le n,$

(4)
$$a_{1,k}^1(P) + a_{2,k}^2(P) \doteq 0, \quad 3 \le k \le n,$$

(5)
$$a_{1,2}^1(P) - a_{1,2}^2(P) \doteq 0,$$

(6) $a_{2,k}^1(P) + a_{1,k}^2(P) \doteq 0, \quad 3 \le k \le n,$

(7)
$$a_{1,k}^i(P) + a_{2,k}^i(P) \doteq 0, \quad 3 \le i, k \le n$$

respectively. We use these relations later.

Step III.

Here we show $a_{j,k}^i(U) \doteq 0$ for any $(i, j, k) \in I$. First, Observing the coefficients of $e_{1,2}^1$ and $e_{2,k}^i$ for $3 \le i, k \le n$ in an equation

$$(SUS - 1)f(U) = (U - 1)f(SUS)$$

induced from a relation [U, SUS] = 1, we have

(8)
$$a_{1,2}^2(U) \doteq 0 \text{ and } a_{1,k}^i(U) \doteq 0$$

respectively.

For $3 \le l \le n-1$, we see

$$(Q^{-(l-1)}UQ^{l-1} - 1)f(U) = (U - 1)f(Q^{-(l-1)}UQ^{l-1})$$

from a relation $[U, Q^{-(l-1)}UQ^{l-1}] = 1$. Since $a_{j,k}^i(Q) \doteq 0$ for any i, j and k, we obtain

(9)
$$(Q^{-(l-1)}UQ^{l-1} - 1)f(U) \doteq (U-1)Q^{-(l-1)}f(U).$$

Similarly, from a relation $[U, Q^{-(l-1)}PQ^{l-1}] = 1$ for $3 \le l \le n-1$, we obtain

(10)
$$(Q^{-(l-1)}PQ^{l-1} - 1)f(U) \doteq (U-1)Q^{-(l-1)}f(P)$$

Observing the coefficients of $\boldsymbol{e}_{2,l}^{l+1}$ in (9), we see $a_{1,n+2-l}^2(U) \doteq 0$ for $3 \leq l \leq n-1$, and hence $a_{1,k}^2(U) \doteq 0$ for $3 \leq k \leq n-1$. Similarly, from the coefficients of $\boldsymbol{e}_{1,n-1}^2$ in (10) for l = n-1, we see $a_{1,n}^2(U) \doteq a_{1,n-1}^2(U) \doteq 0$.

Next, observing the coefficients of $e_{1,k}^1$ and $e_{2,k}^1$ for $3 \le k \le n$ in

$$(11) \qquad (PSPU+1)f(PSPU) = 0$$

induced from a relation $(PSPU)^2 = 1$, and using (4), we obtain

(12)
$$2a_{1,k}^1(U) - a_{2,k}^1(P) + a_{1,k}^2(P) + a_{2,k}^1(S) - a_{1,k}^2(U) \doteq 0,$$

(13)
$$a_{1,k}^1(U) - a_{2,k}^1(P) + a_{1,k}^2(P) + a_{2,k}^1(S) - a_{1,k}^2(U) - a_{2,k}^2(U) \doteq 0.$$

Then, considering (12) - (13), we have $a_{2,k}^2(U) \doteq -a_{1,k}^1(U) \doteq 0$ for $3 \le k \le n$.

From the coefficients of $e_{j,l+1}^2$ in (9), we see $a_{j,l}^2(U) \doteq 0$ for $3 \leq j < l \leq n-1$. Similarly, from $n \geq 5$ and the coefficients of $e_{l+1,n}^2$ in (9), we see $a_{l,n}^2(U) \doteq 0$ for $3 \leq l \leq n-2$. Then, from the coefficient of $e_{n-2,n}^2$ in (10) for l = n-2, we see $a_{n-1,n}^2(U) \doteq a_{n-2,n}^2(U) \doteq 0$. On the other hand, observing the coefficients of $\boldsymbol{e}_{1,2}^l$ in (9), we see $a_{1,2}^{l+1}(U) \doteq 0$ for $3 \le l \le n-1$. Then, from the coefficient of $\boldsymbol{e}_{1,2}^3$ in (10) for l = 3, we see $a_{1,2}^3(U) \doteq a_{1,2}^4(U) \doteq 0$.

Now, from the coefficients of $e_{j,k}^l$ in (10), we see $a_{j,k}^{l+1}(U) \doteq a_{j,k}^l(U)$ for $3 \le l \le n-1$ and $j, k \ne l+1$. This shows that

(14)
$$a_{j,k}^3(U) \doteq a_{j,k}^4(U) \doteq \cdots \doteq a_{j,k}^{j-1}(U), \quad 4 \le j < k \le n,$$

(15)
$$a_{j,k}^{j}(U) \doteq a_{j,k}^{j+1}(U) \doteq \dots \doteq a_{j,k}^{k-1}(U), \quad 3 \le j < k \le n,$$

(16)
$$a_{j,k}^k(U) \doteq a_{j,k}^{k+1}(U) \doteq \cdots \doteq a_{j,k}^n(U), \quad 3 \le j < k \le n.$$

On the other hand, from the coefficients of $e_{l,l+1}^l$, $e_{j,l+1}^l$, $e_{j,l}^l$, $e_{l,k}^l$ and $e_{l+1,k}^l$ in (10), we obtain

(17)
$$a_{l,l+1}^{l+1}(U) \doteq -a_{l,l+1}^{l}(U), \quad 3 \le l \le n-1,$$

(18)
$$a_{j,l}^{l+1}(U) \doteq a_{j,l+1}^{l}(U), \quad 3 \le j < l \le n-1,$$

(19)
$$a_{j,l+1}^{l+1}(U) \doteq a_{j,l}^{l}(U), \quad 4 \le j+1 < l \le n-1,$$

(20)
$$a_{l+1,k}^{l+1}(U) \doteq a_{l,k}^{l}(U), \quad 3 \le l < k-1 \le n-1$$

(21)
$$a_{l,k}^{l+1}(U) \doteq a_{l+1,k}^{l}(U), \quad 3 \le l < k-1 \le n-1$$

respectively. Hence for $4 \le j < k \le n$, we see

$$a_{j,k}^{j-1}(U) \stackrel{(21)}{\doteq} a_{j-1,k}^{j}(U) \stackrel{(15)}{\doteq} a_{j-1,k}^{j-1}(U) \stackrel{(20)}{\doteq} a_{j,k}^{j}(U),$$

and for $3 \le j < k \le n$, if $k \ne j + 1$,

$$a_{j,k}^{k-1}(U) \stackrel{(18)}{\doteq} a_{j,k-1}^k(U) \stackrel{(16)}{\doteq} a_{j,k-1}^{k-1}(U) \stackrel{(19)}{\doteq} a_{j,k}^k(U).$$

If k = j + 1, $a_{j,k}^{k-1}(U) \stackrel{(17)}{=} -a_{j,k}^k(U)$. Therefore it suffices to show $a_{j,k}^{i_0}(U) \doteq 0$ for some $1 \leq i_0 \leq n$ to show $a_{j,k}^i(U) \doteq 0$ for $3 \leq i \leq n$ and $3 \leq j < k \leq n$. Observing the coefficients of $\mathbf{e}_{j,k}^l$ in (9), we see $a_{j,k}^{l+1}(U) \doteq 0$ for $3 \leq l \leq n-1$ and $j, k \neq l+1$. If $n \geq 6$, or n = 5 and $(j, k) \neq (4, 5)$ then there exists some l such that $3 \leq l \leq n-1$ and $l+1 \neq j, k$. In this case, we can take $i_0 := l+1$. If n = 5 and (j, k) = (4, 5), we see $a_{4,5}^{(21)}(U) \doteq 0$ for $i_0 = 3$.

By the coefficients of $e_{2,k}^l$, $e_{2,l+1}^l$ and $e_{2,l+1}^3$ in (9),

(22)
$$a_{2,k}^{l+1}(U) \doteq a_{*,*}^1(U) \doteq 0, \quad 3 \le l \le n-1, \text{ and } k \ne l+1,$$

(23)
$$a_{2,l+1}^{l+1}(U) \doteq a_{2,l}^{l}(U) + a_{2,l}^{l+1}(U) + a_{2,*}^{1}(U) \doteq a_{2,l}^{l}(U), \quad 3 \le l \le n-1,$$

(24)
$$a_{2,l}^3(U) \doteq -a_{2,n+2-l}^{n+4-l}(U), \quad 4 \le l \le n-1$$

respectively. Hence, from (23), we see $a_{2,n}^n(U) \doteq a_{2,n-1}^{n-1}(U) \doteq \cdots \doteq a_{2,3}^3(U) \doteq 0$. From (22) and (24), we see $a_{2,l}^3(U) \doteq 0$ for $4 \le l \le n-1$.

Finally, we show $a_{2,n}^3(U) \doteq 0$. From a relation $[U, Q^{-(n-2)}PUP^{-1}Q^{(n-2)}] = 1$, we have

$$(Q^{-(n-2)}PUP^{-1}Q^{(n-2)} - 1)f(U)$$

$$\doteq (U-1)Q^{-(n-2)}(f(P) + Pf(U) - PUP^{-1}f(P)).$$

By the coefficients of $e_{2,n-1}^3$ in the equation above, we see $a_{2,n}^3(U) \doteq -a_{1,3}^5(U) \doteq 0$. Therefore we obtain $a_{i,k}^i(U) \doteq 0$ for any $(i, j, k) \in I$.

Step IV.

Here we show $a_{j,k}^i(P) \doteq 0$ for any $(i, j, k) \in I$. From Step II, it suffices to consider the case where $i \neq 2$. First, we show $a_{j,k}^1(P) \doteq 0$ for $1 \le j < k \le n$.

From a relation $(PQ^{-1}UQ)^2 = UQ^{-1}UQU^{-1}$ and the results above, we obtain $(1 + PQ^{-1}UQ)f(PQ^{-1}UQ) \doteq 0$, and hence

(25)
$$(1 + PQ^{-1}UQ)f(P) \doteq 0.$$

Observing the coefficients of $e_{2,3}^2$ and $e_{3,k}^2$ in (25), we have

$$\begin{aligned} a_{2,3}^2(P) + a_{1,3}^1(P) - a_{1,2}^1(P) &\doteq 0, \\ a_{3,k}^2(P) + a_{3,k}^1(P) - a_{2,k}^1(P) &\doteq 0, \quad 4 \leq k \leq n \end{aligned}$$

Using (4) and (3), we obtain $a_{1,2}^1(P) \doteq 0$ and $a_{2,k}^1(P) \doteq 0$ for $4 \leq k \leq n$. From a relation $[P, Q^{-(l-1)}UQ^{l-1}] = 1$ for $3 \leq l \leq n-1$, we have

(26)
$$(Q^{-(l-1)}UQ^{l-1} - 1)f(P) \doteq 0.$$

By the coefficients of $e_{2,4}^1$ in the equation above for l = 3, we see $a_{2,3}^1(P) \doteq 0$. Furthermore, from the coefficients of $e_{1,l+1}^1$ in (26), we see

$$a_{1,l}^1(P) \doteq 0, \quad 3 \le l \le n-1.$$

From a relation $(QP)^{n-1} = 1$, we obtain

$$(1 + QP + \dots + (QP)^{n-2})(f(Q) + Qf(P)) \doteq 0,$$

and hence

(27)

$$(1+QP+\dots+(QP)^{n-2})Qf(P)\doteq 0$$

By the coefficients of $e_{1,2}^1$ in (27), we see

$$a_{2,3}^2(P) + a_{2,4}^2(P) + \dots + a_{2,n}^2(P) - a_{1,2}^2(P) \doteq 0.$$

Then using (4) and (5), we obtain $a_{1,n}^1(P) \doteq 0$.

Now, we consider $a_{j,k}^1(P)$ for $3 \le j < k \le n$. From the coefficients of $e_{j,l+1}^1$ in (26), we obtain

(28)
$$a_{j,l}^1(P) \doteq a_{1,*}^{n+2-l}(U) - a_{1,*}^{n+3-l}(U) \stackrel{(8)}{\doteq} 0, \quad 3 \le j < l \le n-1.$$

On the other hand, from the coefficients of $e_{l+1,n}^1$ in (26), we see $a_{j,n}^1(P) \doteq 0$ for $3 \leq j \leq n-2$. Furthermore, observing the coefficient of $e_{n-1,n}^1$ in (27), we see

$$-a_{1,2}^2(P) + a_{1,3}^2(P) + a_{3,4}^2(P) + \dots + a_{n-2,n-1}^2(P) + a_{n-1,n}^2(P) \doteq 0,$$

and hence $a_{n-1,n}^1(P) \doteq -a_{n-1,n}^2(P) \doteq 0$. Therefore we have $a_{j,k}^1(P) \doteq a_{j,k}^2(P) \doteq 0$ for any $1 \le j < k \le n$.

Next, we show $a_{1,k}^i(P) \doteq 0$ for $3 \le i \le n$ and $2 \le k \le n$. Observing the coefficients of $e_{1,k}^l$, $e_{1,l+1}^l$ and $e_{1,l+1}^3$ in (26), we see

(29)
$$a_{1,k}^{l+1}(P) \doteq 0, \quad 3 \le l \le n-1, \quad 3 \le k \ne l+1,$$

(30)
$$a_{1,l+1}^{l+1}(P) \doteq a_{1,l}^{l}(P) - a_{1,l}^{l+1}(P) \stackrel{(29)}{\doteq} a_{1,l}^{l}(P), \quad 3 \le l \le n-1,$$

(31)
$$a_{1,l}^3(P) \doteq 0, \quad 3 \le l \le n-1$$

respectively. From these equations, it suffices to show that $a_{1,2}^3(P) \doteq a_{1,3}^3(P) \doteq 0$. By the coefficients of $e_{1,2}^3$ in (27), we see

$$a_{2,3}^4(P) + a_{2,6}^5(P) + \dots + a_{2,n-1}^n(P) + a_{2,n}^1(P) - a_{1,2}^3(P) \doteq 0,$$

and hence $a_{1,2}^3(P) \doteq 0$. On the other hand, by the coefficients of $e_{2,3}^1$ in (25), we see

$$a_{2,3}^{1}(P) + a_{1,3}^{2}(P) - a_{1,2}^{2}(P) - a_{1,2}^{3}(P) + a_{1,3}^{3}(P) \doteq 0,$$

and hence $a_{1,3}^3(P) \doteq 0$.

Finally, we show $a_{j,k}^i(P) \doteq 0$ for $3 \le i \le n$ and $3 \le j < k \le n$. Observing the coefficients of $e_{j,k}^l$, $e_{j,l+1}^l$ and $e_{l+1,k}^l$ in (26), we see

(32)
$$a_{j,k}^{l+1}(P) \doteq 0, \quad 3 \le l \le n-1, \ j, k \ne l+1,$$

(33)
$$a_{j,l+1}^{l+1}(P) - a_{j,l}^{l}(P) \doteq 0, \quad 3 \le l \le n-1, \ j < l$$

(34)
$$a_{l+1,k}^{l+1}(P) - a_{l,k}^{l}(P) \doteq 0, \quad 3 \le l \le n-1, \ l+1 < k$$

respectively. From (33) and (34), we have

$$a_{j,n}^{n}(P) \doteq a_{j,n-1}^{n-1}(P) \doteq \dots \doteq a_{j,j+1}^{j+1}(P)$$
$$\doteq -a_{j,j+1}^{j}(P) \doteq -a_{j-1,j+1}^{j-1}(P) \doteq \dots \doteq -a_{3,j+1}^{3}(P)$$

for $3 \leq j \leq n-1$. Hence it suffices to show $a_{j,k}^3(P) \doteq 0$ for $3 \leq j < k \leq n$. Then from the coefficients of $e_{j,l+1}^3$ in (26), we see $a_{j,l}^3(P) \doteq 0$ for $3 \leq j < l \leq n-1$. Furthermore, from the coefficients of $e_{l+1,n}^3$ in (26), we see $a_{l,n}^3(P) \doteq 0$ for $3 \leq l \leq n-2$. On the other hand, by the coefficients of $e_{n-1,n}^3$ in (27), we obtain

$$-a_{1,n}^4(P) + a_{1,3}^5(P) + \dots + a_{n-3,n-2}^n(P) + a_{n-2,n-1}^1(P) + a_{n-1,n}^3(P) \doteq 0,$$

and hence $a_{n-1,n}^3(P) \doteq 0$. Therefore we obtain $a_{j,k}^i(P) \doteq 0$ for any $(i, j, k) \in I$.

Step V.

Here we show $a_{j,k}^i(S) \doteq 0$ for any $(i, j, k) \in I$. First, observing the coefficients of $e_{j,k}^i$ for $2 \leq i \leq n$ and $2 \leq j < k \leq n$ in the equations (1+S)f(S) = 0 induced from a relation $S^2 = 1$ and

(35)
$$(1 + SU + SUSP)f(S) \doteq 0$$

induced from a relation $SUSPS = (UP)^{-2}$, we obtain $2a_{j,k}^i(S) \doteq 0$ and $3a_{j,k}^i(S) \doteq 0$ respectively. Hence $a_{j,k}^i(S) \doteq 0$ for $2 \le i \le n$ and $2 \le j < k \le n$. Similarly, observing the coefficients of $e_{1,2}^1$ in the two equation above, we also obtain $a_{1,2}^1(S) \doteq 0$. From the coefficients of $e_{1,k}^1$ in an equation

$$(36) \qquad \qquad (QP-1)f(S) \doteq 0$$

induced from [S, QP] = 1, we see

$$a_{1,k+1}^1(S) - a_{1,k}^1(S) \doteq 0, \quad 2 \le k \le n-1,$$

and hence $a_{1,n}^1(S) \doteq a_{1,n-1}^1(S) \doteq \cdots \doteq a_{1,2}^1(S) \doteq 0.$

Next, for $3 \le k \le n$, from the coefficients $e_{1,k}^1$ and $e_{1,k}^2$ in (35), we obtain

$$a_{2,k}^1(S) \doteq a_{1,k}^2(S), \quad 3 \le k \le n,$$

 $a_{1,k}^2(S) \doteq 0, \quad 3 \le k \le n$

respectively. From the coefficients $e_{1,k}^i$, $e_{j,k}^1$, we see

(37)
$$a_{1,k+1}^{i+1}(S) \doteq a_{1,k}^i(S), \quad 2 \le i, k \le n-1,$$

(38)
$$a_{1,2}^{i+1}(S) \doteq a_{1,n}^{i}(S), \quad 2 \le i \le n-1,$$

- (39) $a_{j+1,k+1}^1(S) \doteq a_{j,k}^1(S), \quad 2 \le j < k \le n-1,$
- (40) $a_{2,j+1}^1(S) \doteq -a_{j,n}^1(S), \quad 2 \le j \le n-1.$

Using (37) and (38), for any $2 \leq i, k \leq n-1$, we see $a_{1,k}^i(S) \doteq a_{1,*}^2(S) \doteq 0$. Similarly, we obtain $a_{j,k}^1(S) \doteq 0$ for any $2 \leq j < k \leq n-1$ from (39) and (40). Therefore we obtain $a_{j,k}^i(S) \doteq 0$ for any $(i, j, k) \in I$.

From the argument above, we verify that any $a_{j,k}^i(\sigma) \in W$ belongs to the submodule generated by (2). This shows that a map

$$\Phi: \operatorname{Cros}(\operatorname{Aut} F_n, V_L) \to L^{\oplus (n^3 - n^2 + 4)/2}$$

defined by

$$f \mapsto \left((a_{j,k}^i(Q))_{i \neq n, \ 1 \le j < k \le n}, \ (a_{j,k}^1(U))_{1 \le j < k \le n}, \ a_{1,2}^2(S), \ a_{2,3}^3(U) \right)$$

is injective. Let $W' = L^{\oplus (n^3 - n^2 + 4)/2}$ be the target of the map above. Then we consider $\operatorname{Cros}(\operatorname{Aut} F_n, V_L)$ as a submodule of W'.

Step VI. $W'/Prin(Aut F_n, V_L)$.

Here, we show that $W'/Prin(Aut F_n, V_L)$ is a free L-module of rank 2. For any element

$$\boldsymbol{a} := \sum_{(i,j,k)\in I} a^i_{j,k} \boldsymbol{e}^i_{j,k} \in V_L,$$

let $f_a: F \to V$ be the principal homomorphism associated to a. Namely, $f_a(\sigma) = \sigma \cdot a - a$ for any $\sigma \in \text{Aut } F_n$. Then we have

$$f_{a}(Q) = \sum_{i \neq n, 1 \le j < k \le n-1} (a_{j+1,k+1}^{i+1} - a_{j,k}^{i}) \boldsymbol{e}_{j,k}^{i} + \sum_{1 \le i,j \le n-1} (-a_{1,j+1}^{i+1} - a_{j,n}^{i}) \boldsymbol{e}_{j,n}^{i} + \sum_{1 \le j < k \le n} (a_{j+1,k+1}^{1} - a_{j,k}^{n}) \boldsymbol{e}_{j,k}^{n} + \sum_{1 \le j \le n-1} (-a_{1,j+1}^{1} - a_{j,n}^{n}) \boldsymbol{e}_{j,n}^{n}$$

and

$$\begin{split} f_{a}(U) &= a_{1,2}^{1} \boldsymbol{e}_{1,2}^{1} + \sum_{3 \leq k \leq n} a_{1,k}^{2} \boldsymbol{e}_{1,k}^{1} \\ &+ \sum_{3 \leq k \leq n} (a_{2,k}^{2} - a_{1,k}^{1} - a_{1,k}^{2}) \boldsymbol{e}_{2,k}^{1} + \sum_{3 \leq j < k \leq n} a_{j,k}^{2} \boldsymbol{e}_{j,k}^{1} \\ &+ \sum_{3 \leq k \leq n} -a_{1,k}^{2} \boldsymbol{e}_{2,k}^{2} + \sum_{3 \leq i,k \leq n} -a_{1,k}^{i} \boldsymbol{e}_{2,k}^{i}. \end{split}$$

In order to determine the *L*-module structure of $W'/Prin(\operatorname{Aut} F_n, V_L)$, it suffices to find the elementary divisors of a matrix:

where each $A^{p,q}$ is a block matrix defined by as follows. First, we consdier the case where $1 \le q \le n-1$. For $\sigma = P, Q, S$ and U, set

$$f_{\boldsymbol{a}}(\sigma) := \sum_{(i,j,k)\in I} a^i_{j,k}(\sigma) \boldsymbol{e}^i_{j,k} \in V_L.$$

Then, for any $1 \leq j_2 < k_2 \leq n$, we have

$$a_{j_2,k_2}^q(Q) = \sum_{(p,j_1,k_1)\in I} C_{(j_1,k_1),(j_2,k_2)}^{p,q} a_{j_1,k_1}^p$$

for some $C^{p,q}_{(j_1,k_1),\ (j_2,k_2)} \in L$. Then

where the rows are indexed by $a_{j,k}^q(Q)$ s according to the usual lexicographic order on the set $\{(j,k) \mid 1 \leq j < k \leq n\}$. Similarly, the columns are indexed by $a_{j,k}^p$ s. By an argument similar to the above, the block matrices $A^{p,n}$, $A^{p,n+1}$ and $A^{p,n+2}$ for $1 \leq p \leq n$ are defined from $a_{j,k}^1(U)$ s, $a_{1,2}^2(S)$ and $a_{2,3}^3(U)$ respectively. Set

$$A' := \begin{array}{cccc} a_{j,k}^{1}(Q) & a_{j,k}^{2}(Q) & \cdots & a_{j,k}^{n-1}(Q) & a_{j,k}^{1}(U) \\ a_{j,k}^{1}\begin{pmatrix} A^{1,1} & A^{1,2} & \cdots & A^{1,n-1} & A^{1,n} \\ A^{2,1} & A^{2,2} & \cdots & A^{2,n-1} & A^{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A^{n,1} & A^{n,2} & \cdots & A^{n,n-1} & A^{n,n} \end{pmatrix}$$

•

In the following, we obtain that all elementary divisors of A are equal to $1 \in L$ by showing that A' can be transformed into the identity matrix with only column basic transformations. Then we conclude $W'/Prin(\operatorname{Aut} F_n, V_L) \cong L^{\oplus 2}$.

As first transformation of A', we consider the $a_{j,k}^1(U)$ column of A'. Add the $a_{1,k}^1(U)$ column to $a_{2,k}^1(U)$ column for $3 \leq k \leq n$, and minus $a_{1,k}^1(Q)$ column from $a_{2,k}^1(U)$ column for $3 \leq k \leq n$. Then by minusing the $a_{1,2}^1(U)$ column from the $a_{2,n}^1$ column. we obtain

$$\begin{array}{cccc} a_{1,k}^{1}(U) & a_{2,k}^{1}(U) & a_{*,k}^{1}(U) \\ a_{1,k}^{1} & \begin{pmatrix} O & O & O \\ E & O & O \\ O & X & O \\ O & A^{2}_{2,k} \\ O & O & E \\ O & O & O \\ a_{*,k}^{2} & O & O \\ \end{pmatrix}$$

where

$$X = \begin{bmatrix} a_{2,3}^{1}(U) & a_{2,4}^{1}(U) & \cdots & a_{2,n-1}^{1}(U) & a_{2,n}^{1}(U) \\ a_{2,3}^{2} \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ -1 & 1 & & 0 \\ 0 & -1 & \ddots & & 0 \\ \vdots & & \ddots & 1 & 0 \\ \vdots & & \ddots & 1 & 0 \\ 0 & 0 & & -1 & 1 \end{pmatrix}$$

It is easily seen that X can be transformed into the identity matrix with the basic transformation with respect to the $a_{2,*}^1(U)$ column.

Next, we consider the $a_{j,k}^1(Q)$ and $a_{j,k}^2(Q)$ columns. Using the results above, we can transform the $a_{j,k}^1(Q)$ and $a_{j,k}^2(Q)$ columns into

respectively. For any $2 \le p \le n-2$, assume that the $a_{j,k}^p(Q)$ column has transformed into

$$a_{j,k}^{*} \begin{pmatrix} a_{j,k}^{p}(Q) \\ O \\ a_{j,k}^{p+1} \\ a_{j,k}^{*} \end{pmatrix}, \quad \begin{pmatrix} O \\ E \\ O \end{pmatrix},$$

Then we can easily transform the $a_{j,k}^{p+1}(Q)$ column into

$$\begin{array}{c} a_{j,k}^{p+1}(Q) \\ a_{j,k}^{p+2} \begin{pmatrix} O \\ E \\ a_{j,k}^{*} \end{pmatrix} \\ C \end{pmatrix} .$$

Therefore we conclude that A' can be transformed into the identity matrix with only column basic transformations, and hence all elementary divisors of A are equal to $1 \in L$.

Finally, considering the crossed homomorphisms f_M , $f_N \in \operatorname{Cros}(F, V_L)$ defined in Section 3, we see Φ is surjective, and hence

$$H^1(\operatorname{Aut} F_n, V_L) \cong L^{\oplus 2}.$$

This copmpletes the proof of Proposition 4.1. \Box

From Proposition 4.1, we see that the crossed homomorphisms f_M and f_K generate $H^1(\operatorname{Aut} F_n, V_L)$ for $n \geq 5$. Now, we compute the first homology group of $\operatorname{Aut} F_n$ with coefficients in the dual group $V^* := \operatorname{Hom}_{\mathbf{Z}}(V, \mathbf{Z})$ of V. To begin with, we prepare the following lemma.

Lemma 4.1. For $n \geq 2$,

$$H_0(\operatorname{Aut} F_n, V^*) = 0.$$

Proof of Lemma 4.1. We consider $H_0(\operatorname{Aut} F_n, V^*)$ as the abelian group of coinvarints of V^* by the action of Aut F_n . We write \equiv for the equality in $H_0(\operatorname{Aut} F_n, V^*)$. Let $\hat{e}_{j,k}^i$ be the dual basis of V^* with respect to the basis $e_{j,k}^i$ of V. Since

$$\hat{e}_{j,k}^{i} \equiv Q \cdot \hat{e}_{j,k}^{i} = \begin{cases} \hat{e}_{j-1,k-1}^{i-1}, & 2 \le i \le n, \ 2 \le j < k \le n, \\ -\hat{e}_{k-1,n}^{i-1}, & 2 \le i \le n, \ 1 = j < k \le n, \end{cases}$$

it suffices to show $\hat{e}_{j,k}^1 \equiv 0$ for any $1 \leq j < k \leq n$. This is obtained from

$$\hat{e}_{j,k}^{1} \equiv P \cdot \hat{e}_{j,k}^{1} = \hat{e}_{j,k}^{2} = \hat{e}_{j,k}^{1} - U \cdot \hat{e}_{j,k}^{1} \equiv 0, \quad 3 \le j < k \le n$$

$$\hat{e}_{2,k}^{1} \equiv P \cdot \hat{e}_{2,k}^{1} = \hat{e}_{1,k}^{2} = \hat{e}_{1,k}^{1} - U \cdot \hat{e}_{1,k}^{1} \equiv 0, \quad 3 \le k \le n,$$

$$\hat{e}_{1,2}^{1} \equiv P \cdot \hat{e}_{1,2}^{1} = -\hat{e}_{1,2}^{2} = U \cdot \hat{e}_{1,2}^{1} - \hat{e}_{1,2}^{1} \equiv 0,$$

$$\hat{e}_{1,k}^{1} \equiv (QP) \cdot \hat{e}_{1,k}^{1} = \hat{e}_{1,k+1}^{1}, \quad 2 \le k \le n-1.$$

This completes the proof of Lemma 4.1. \Box

Theorem 4.1. For $n \geq 5$,

$$H_1(\operatorname{Aut} F_n, V^*) \cong \mathbf{Z}^{\oplus 2}$$

Proof of Theorem 4.1. For any principal ideal domain L, considering the universal coefficients theorem, we obtain

 $0 \to \operatorname{Ext}^{1}_{\mathbf{Z}}(H_{0}(\operatorname{Aut} F_{n}, V^{*}), L) \to H^{1}(\operatorname{Aut} F_{n}, V_{L}) \to \operatorname{Hom}_{\mathbf{Z}}(H_{1}(\operatorname{Aut} F_{n}, V^{*}), L) \to 0.$

From Lemma 4.1,

(41)
$$\operatorname{Hom}_{\mathbf{Z}}(H_1(\operatorname{Aut} F_n, V^*), L) \cong H^1(\operatorname{Aut} F_n, V_L)$$

Since Aut F_n and V^* are finitely generated, the first homology group $H_1(\operatorname{Aut} F_n, V^*)$ is also finitely generated abelian group. Hence, we can set

$$H_1(\operatorname{Aut} F_n, V^*) \cong \mathbf{Z}^{\oplus m} \oplus \mathbf{Z}/p_1 \mathbf{Z} \oplus \cdots \oplus \mathbf{Z}/p_l \mathbf{Z}$$

for some integer $m \ge 0$ and prime numbers p_1, \dots, p_l . If we set $L = \mathbb{Z}$, from (41) and Proposition 4.1, we see m = 2. On the other hand, if we set $L = \mathbb{Z}/p\mathbb{Z}$ for any prime p, we see l = 0. This completes the proof of Theorem 4.1. \Box

5. Some quotient groups of $\operatorname{Aut} F_n$

In this section, we consider twisted first homology groups of some quotient groups of Aut F_n .

5.1. General linear group. Using the results for Aut F_n , we compute the first homology group of GL(n, Z) with coefficients in V^* . To begin with, we consider the restriction of the crossed homomorphisms f_M and f_K to IA_n . By an easy calculation, we have

(42)
$$f_M(K_{ij}) = -(\boldsymbol{e}_{1,j}^1 + \boldsymbol{e}_{2,j}^2 + \cdots + \boldsymbol{e}_{n,j}^n), \quad f_K(K_{ij}) = 2\boldsymbol{e}_{i,j}^i$$

for $1 \leq i \neq j \leq n$, and

(43)
$$f_M(K_{ijk}) = 0, \quad f_K(K_{ijk}) = 2\boldsymbol{e}_{j,k}^i$$

for $1 \leq j < k \leq n$ and $i \neq j$, k. We left the calculations to the reader as an excercise. Then we have

Proposition 5.1. For $n \geq 5$,

$$H^{1}(\mathrm{GL}(n, \mathbf{Z}), V_{L}) = \begin{cases} L, & L = \mathbf{Z} \text{ or } 1/2 \in L, \\ \mathbf{Z}/2\mathbf{Z}, & L = \mathbf{Z}/2^{l}\mathbf{Z}, \ l \ge 1. \end{cases}$$

Proof of Proposition 5.1. Considering the five-term exact sequence of

$$1 \to \mathrm{IA}_n \to \mathrm{Aut}\,F_n \to \mathrm{GL}(n, \mathbf{Z}) \to 1,$$

we have

$$0 \to H^1(\mathrm{GL}(n, \mathbf{Z}), V_L) \xrightarrow{\mu} H^1(\mathrm{Aut} \, F_n, V_L) \xrightarrow{\nu} H^1(\mathrm{IA}_n, V_L)^{\mathrm{GL}(n, \mathbf{Z})}.$$

From (42) and (43), if $L = \mathbf{Z}$ or L contains 1/2, $\nu(f_1)$ and $\nu(f_2)$ are linearly independent in $H^1(\mathrm{IA}_n, V_L)^{\mathrm{GL}(n, \mathbf{Z})}$. Hence, the kernel of μ is trivial. If $L = \mathbf{Z}/2^l \mathbf{Z}$, for $a, b \in \mathbf{Z}$, $af_M + bf_K \in \mathrm{Ker}(\nu) \iff 2^l | a \text{ and } 2^{l-1} | b$. This completes the proof of Proposition 5.1. \Box

From (42) and (43), we see that the first Johnson homomorphism τ_1 does not extend to Aut F_n as a crossed homomorphism. If not, suppose there exists a crossed homomorphism $f \in \operatorname{Cros}(\operatorname{Aut} F_n, V)$ such that $f \equiv \tau_1$ on IA_n. Then f is cohomologous to $af_M + bf_K$ for some $a, b \in \mathbb{Z}$ by Proposition 4.1. Observing the both images of them on K_{ijk} , we see that it is impossible.

By Proposition 5.1 and an argument similar to that in Theorem 4.1, we also obtain

Corollary 5.1. For $n \geq 5$,

$$H_1(\operatorname{GL}(n, \mathbf{Z}), V^*) \cong \mathbf{Z}/2\mathbf{Z}.$$

5.2. Outer automorphsim group. Here, we determine the first homology group of the outer automorphism group $\operatorname{Out} F_n := \operatorname{Aut} F_n / \operatorname{Inn} F_n$ of a free group with coefficients in V^* .

Proposition 5.2. For $n \ge 5$,

(1) If n is even,

$$H^1(\operatorname{Out} F_n, V_L) = L.$$

(2) If n is odd,

$$H^{1}(\operatorname{Out} F_{n}, V_{L}) = \begin{cases} L, & L = \mathbf{Z} \text{ or } 1/2 \in L, \\ L \oplus \mathbf{Z}/2\mathbf{Z}, & L = \mathbf{Z}/2^{l}\mathbf{Z}, \ l \geq 1. \end{cases}$$

Proof of Proposition 5.2. Considering the five-term exact sequence of

$$1 \to \operatorname{Inn} F_n \to \operatorname{Aut} F_n \to \operatorname{Out} F_n \to 1,$$

we have

$$0 \to H^1(\operatorname{Out} F_n, V_L) \to H^1(\operatorname{Aut} F_n, V_L) \xrightarrow{\alpha} H^1(\operatorname{Inn} F_n, V_L)^{\operatorname{Out} F_n}.$$

Observing

$$\alpha(f_M) = (n-1) \sum_{i=1}^n \iota_i^* \otimes (\boldsymbol{e}_{1,i}^1 + \boldsymbol{e}_{2,i}^2 + \cdots + \boldsymbol{e}_{n,i}^n),$$

$$\alpha(f_K) = 2 \sum_{i=1}^n \iota_i^* \otimes (\boldsymbol{e}_{1,i}^1 + \boldsymbol{e}_{2,i}^2 + \cdots + \boldsymbol{e}_{n,i}^n),$$

we obtain the required results. This completes the proof of Proposition 5.2. \Box

This induces

Theorem 5.1. For $n \geq 5$,

$$H_1(\operatorname{Out} F_n, V^*) \cong \begin{cases} \mathbf{Z}, & n : \operatorname{even}, \\ \mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z}, & n : \operatorname{odd}. \end{cases}$$

6. Acknowledgments

This research is supported by JSPS Research Fellowship for Young Scientists and Global COE program at Kyoto University.

References

- [1] J. S. Birman; Braids, Links, and Mapping Class Groups, Annals of Math. Studies 82 (1974).
- [2] F. Cohen and J. Pakianathan; On Automorphism Groups of Free Groups, and Their Nilpotent Quotients, preprint.
- [3] F. Cohen and J. Pakianathan; On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint.
- [4] B. Farb; Automorphisms of F_n which act trivially on homology, in preparation.
- [5] S. Galatius; Stable homology of automorphism groups of free groups, preprint, arXiv:math.AT/0610216v3.
- [6] S. M. Gersten; A presentation for the special automorphism group of a free group, J. Pure and Applied Algebra 33 (1984), 269-279.
- [7] A. Hatcher and K. Vogtmann; Rational homology of $Aut(F_n)$, Math. Res. Lett. 5 (1998), 759-780.
- [8] A. Hatcher and N. Wahl; Stabilization for the automorphisms of free groups with boundaries, Geometry and Topology, Vol. 9 (2005), 1295-1336.
- [9] N. Kawazumi; Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.
- [10] S. Krstić, J. McCool; The non-finite presentability in $IA(F_3)$ and $GL_2(\mathbb{Z}[t, t^{-1}])$, Invent. Math. 129 (1997), 595-606.
- [11] W. Magnus; Über *n*-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353-367.
- [12] J. McCool; Some remarks on IA automorphims of free groups, Can. J. Math. Vol. XL, no. 5 (1998), 1144-1155.
- [13] S. Morita; Families of Jacobian manifolds and characteristic classes of surface bundles I, Ann. Inst. Fourier 39 (1989), 777-810.
- [14] S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke Mathematical Journal 70 (1993), 699-726.
- [15] S. Morita; Structure of the mapping class groups of surfaces: a survey and a prospect, Geometry and Topology Monographs Vol. 2 (1999), 349-406.
- [16] S. Morita; Cohomological structure of the mapping classs group and beyond, preprint.
- [17] J. Nielsen; Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385-397.
- [18] J. Nielsen; Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), 169-209.
- [19] J. Nielsen; Untersuchungen zur Topologie der geschlossenen Zweiseitigen Fläschen, Acta Math. 50 (1927), 189-358.
- [20] T. Satoh; Twisted first homology group of the automorphism group of a free group, Journal of Pure and Applied Algebra, 204 (2006), 334-348.
- [21] T. Satoh; New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group, Journal of the London Mathematical Society, (2) 74 (2006) 341-360.
- [22] T. Satoh; Twisted second homology group of the automorphism group of a free group, Journal of Pure and Applied Algebra, 211 (2007), 547-565.

GRADUATE SCHOOL OF SCIENCES, DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KI-TASIRAKAWAOIWAKE CHO, SAKYO-KU, KYOTO CITY 606-8502, JAPAN

E-mail address: takao@math.kyoto-u.ac.jp