
THE JOHNSON FILTRATION OF THE MCCOOL STABILIZER

SUBGROUP OF THE AUTOMORPHISM GROUP OF A FREE

GROUP

Takao Satoh1

Graduate School of Sciences, Department of Mathematics, Osaka University

1-16 Machikaneyama, Toyonaka-city, Osaka 560-0043, Japan

Abstract. Let Fn be a free group of rank n with basis x1, x2, . . . , xn. We denote
the subgroup of the automorphism group of a free group consisting of automorphisms
which fix each of x2, . . . , xn by Sn. In this paper, we call Sn the McCool subgroup.
Let ISn be a subgroup of Sn consisting of automorphisms which induce the identity
on the abelianization of the free group. The main purpose of the paper is to show
the Johnson filtration of the automorphism group of a free group restricted to ISn

coincides with its lower central series. Then, we study the second integral homology
group of ISn through the second and third Johnson homomorphisms of Sn.

1. Introduction

For n ≥ 2, let Fn be a free group of rank n with basis x1, x2, . . . , xn, and Fn = Γn(1),
Γn(2), . . . its lower central series. We denote by AutFn the group of automorphisms
of Fn. For each k ≥ 0, let An(k) be the group of automorphisms of Fn which induce
the identity on the quotient group Fn/Γn(k + 1). The group An(1) is called the IA-
automorpshim group and also denoted by IAn. Then we have a descending filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·

of AutFn, called the Johnson filtration of AutFn. The Johnson filtration of AutFn
was originally introduced in 1963 with a remarkable pioneer work by Andreadakis [1]
who showed that An(1), An(2), . . . is a descending central series of An(1), and that
for each k ≥ 1 the graded quotient grk(An) := An(k)/An(k + 1) is a free abelian
group of finite rank. In general, to determine the structure of grk(An) plays important
roles on the study of the algebraic structure of AutFn. For 1 ≤ k ≤ 3, the rank of
grk(An) is determined. Andreadakis [1] computed the rank of gr1(An). Moreover, by
an independent works of Cohen-Pakianathan [5, 6]，Farb [7] and Kawazumi [13], it is
known that gr1(An) is isomorphic to the abelianization of IAn. For k = 2 and 3, the
rank of grk(An) is determined by Pettet [24] and Satoh [26] respectively. For k ≥ 4,
however, it seems that there are few results for the structure of grk(An).

In this paper, we consider certain subgroups of AutFn and restrict the Johnson
filtration to them. Let Sn be the subgroup of AutFn consisting of automorphisms
which fix each of x2, . . . , xn. We call Sn the McCool stabilizer subgroup of AutFn. Let
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ISn a subgroup of Sn consisting of automorphisms which which induce the identity on
the abelianization of Fn. The groups Sn and ISn were first studied by McCool. He
[16] gave a finite presentation of Sn, and showed that ISn is not finitely presentable.
Furthermore, he [16] also gave an infinite presentation of ISn. Set Sn(k) := An(k) ∩ Sn
for each k ≥ 0. Then Sn(0) = Sn and Sn(1) = ISn. We call a descending central
filtration

Sn = Sn(0) ⊃ Sn(1) ⊃ Sn(2) ⊃ · · ·

the Johnson filtration of Sn. Set grk(Sn) := Sn(k)/Sn(k + 1). The first purpose of the
paper is to determine the structure of grk(Sn).

In order to study grk(Sn), we consider the Johnson homomorphisms of Sn. Let
H be the abelianization of Fn and H∗ = HomZ(H,Z) the dual group of H . Let
Ln =

⊕

k≥1Ln(k) be the free graded Lie algebra generated by H and rn(k) the rank of
Ln(k) as a free abelian group. Then for each k ≥ 1, a GL(n,Z)-equivariant injective
homomorphim

τk : grk(An) → H∗⊗Z Ln(k + 1)

is defined. (For definition, see Subsection 2.4.) This is called the k-th Johnson ho-
momorphism of AutFn. Historically, the study of the Johnson homomorphisms was
begun in 1980 by D. Johnson [11]. He studied the Johnson homomorphism of a map-
ping class group of a closed oriented surface, and determined the abelianization of the
Torelli group. (See [12].) There is a broad range of remarkable results for the Johnson
homomorphisms of a mapping class group. (For example, see [8] and [19].) We denote
by τSk the restriction of the Johnson homomorphism τk to grk(Sn) ⊂ grk(An), and call
it the Johnson homomorphism of Sn. Then we completely determine the image of τSk .

Theorem 1. (= Theorem 3.1 and Corllary 3.2.) For each k ≥ 1, the image of τSk is
isomorphic to Ln−1(k + 1) ⊕ Ln−1(k), and hence

rankZ(grk(Sn)) = rn−1(k + 1) + rn−1(k).

In the study of the Johnson filtration of AutFn, it would be also interesting to
determine whether An(1), An(2), . . . coincides with the lower central series A′

n(1),
A′
n(2), . . . of An(1) or not. Andreadakis [1] showed that A2(k) = A′

2(k) and A3(3) =
A′

3(3). From the results due to Cohen-Pakianathan [5, 6], Farb [7] and Kawazumi [13],
we have An(2) = A′

n(2) for n ≥ 3. Furthermore, Pettet [24] obtained that A′
n(3) has

finite index in An(3). Now it is conjectured by Andreadakis that An(k) = A′
n(k) for

any n ≥ 3 and k ≥ 3. In this paper, we show that the Johnson filtration Sn(1), Sn(2),
. . . coincides with the lower central series of S ′

n(1), S ′
n(2), . . . of ISn. Namely,

Theorem 2. (= Theorem 3.2.) For each k ≥ 1, we have Sn(k) = S ′
n(k).

By a work of McCool [16], it is known that there is a surjective homomorpshim from
ISn to a free group W of rank n−1. (See Subsection 2.5.) This homomorphism induces
surjective homomorphisms between the k-th terms of the lower central series of them
for each k ≥ 1. For k ≥ 2, since the k-th term of the lower central series of a free group
of rank ≥ 2 is a free group of infinite rank, we see that H1(Sn(k),Z) contains a free
abelian group of infinite rank. In particular, we obtain
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Theorem 3. (= Theorem 3.3.) For each k ≥ 2, H1(Sn(k),Q) is infinitly generated as
a Q-vector space.

Next, we consider the integral second homology and cohomology groups of ISn. In
general, since no presentation of IAn is obtained, it is difficult to study the second
homology of IAn. Bestvina-Bux-Margalit [3] showed that H2(IA3,Z) is not finitely
generated. By a recent work of Pettet [24], the image of the cup product of the first
cohomology groups of IAn in the second cohomology is determined. However, it is
not known whether H2(IAn,Z) is finitely generated or not for n ≥ 4. On the other
hand, McCool [16] showed that ISn is finitely generated by automorphisms K1i for
2 ≤ i ≤ n and K1ij for 2 ≤ j < i ≤ n, (For details, see Subsection 2.2.), but is not
finitely presentable. Hence, it seems that the structure of the second homology group
of ISn are not so simple. In this paper, we study non-trivial second homology classes
of ISn which can be detected using the second and third Johnson homomorphisms. In
particular, we show

Theorem 4. (= Theorem 4.1.) H2(ISn,Z) contains a free abelian group of rank

1

24
n(n− 1)(n− 2)(n2 + 6n− 15).

To show this, we study the structure of the second homology group of ISn using
combinatorical group theory. Let F be a free group generated by K1i and K1jk. The
rank of F is m := n(n − 1)/2. Let ϕ : F → ISn a natural surjection and R the kernel
of ϕ. Then considering the homological five-term exact sequence of a group extension

1 → R → F
ϕ
−→ ISn → 1,

we see H1(R,Z)ISn
∼= H2(ISn,Z). (For example, see theorem 8.1 in [10] for the five-term

exact sequence of a group extension.) For the lower central series ΓF (1) ⊃ ΓF (k) ⊃ · · ·
of F , set Rk := R ∩ ΓF (k) and Rk := R/Rk. Then we have a surjective homorphism

ψk : H1(R,Z)ISn
→ H1(Rk+1,Z)ISn

.

Our strategy is to detect non-trivial second homology classes of ISn through ψk by
studying the structure of the target of ψk. In particular, we determine the structure of
H1(Rk+1,Z)ISn

for k = 2 and 3. (See Subsection 4.2.)

On the other hand, by a cohomological argument similar to above, we also have
H1(R,Z)ISn ∼= H2(ISn,Z) and an injective homomorphism

ψk : H1(Rk+1,Z)ISn → H1(R,Z)ISn.

Hence we can consider H1(Rk+1,Z)ISn as a subgroup of H2(ISn,Z). In Subsection 4.3,
we show H1(R3,Z)ISn = H1(R3,Z) and

Theorem 5. (= Lemma 4.1 and Proposition 4.2.) For n ≥ 3,

(1) H1(R3,Z) ∼= Z⊕(n−1)(n−2)(n−3)(3n+4)/24.
(2) H1(R3,Z) is the image of the cup product

∪ : Λ2H1(ISn,Z) → H2(ISn,Z).
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In Section 2, we recall the definition and some properties of the IA-automorphism
group, the Johnson homomorphisms and the McCool stabilizer subgroup of the auto-
morphism group of a free group. In Section 3, we determine the image of the Johnson
homomorphism of ISn and show that the Johnson filtration of ISn is its lower central
series. In Section 4, we study the second homology and cohomology of ISn.
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2. Preliminaries

In this section, we recall the definition and some properties of the IA-automorphism
group, the Johnson homomorphisms and the McCool stabilizer subgroup of the auto-
morphism group of a free group.

2.1. Notation.

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G.

• The abelianization of G is denoted by Gab.
• The group automorphism group AutG of G acts on G from the right. For any
σ ∈ AutG and x ∈ G, the action of σ on x is denoted by xσ.

• For an element g ∈ G, we also denote the coset class of g by g ∈ G/N without
no confusion.

• For elements x and y of G, the commutator bracket [x, y] of x and y is defined
to be [x, y] := xyx−1y−1.

2.2. IA-automorphism group.

For n ≥ 2, let Fn be a free group of rank n with basis x1, . . . , xn. We denote the
abelianization of Fn by H , and its dual group by H∗ := HomZ(H,Z). Let ρ : AutFn →
AutH be the natural homomorphism induced from the abelianization of Fn. In this
paper we identifies AutH with the general linear group GL(n,Z) by fixing the basis of
H as a free abelian group induced from the basis x1, . . . , xn of Fn. The kernel IAn of
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ρ is called the IA-automorphism group of Fn. It is well known due to Nielsen [21] that
IA2 coincides with the inner automorphsim group InnF2 of F2. Namely, IA2 is a free
group of rank 2. However, IAn for n ≥ 3 is much larger than the inner automorphism
group InnFn. Indeed, Magnus [15] showed that for any n ≥ 3, IAn is finitely generated
by automorphisms

Kij :

{

xi 7→ xj
−1xixj ,

xt 7→ xt, (t 6= i)

for distinct i, j ∈ {1, 2, . . . , n} and

Kijk :

{

xi 7→ xixjxkxj
−1xk

−1,

xt 7→ xt, (t 6= i)

for distinct i, j, k ∈ {1, 2, . . . , n} such that j > k.

For any n ≥ 3, although a generating set of IAn is well known as above, any pre-
sentation of IAn is still not known. For n = 3, Krstić and McCool [14] showed that
IA3 is not finitely presentable. For n ≥ 4, it is also not known whether IAn is finitely
presentable or not. Recently, Cohen-Pakianathan [5, 6]，Farb [7] and Kawazumi [13]
independently showed

(1) IAab
n

∼= H∗ ⊗Z Λ2H

as a GL(n,Z)-module.

2.3. Free Lie algebra.

In this subsection we recall the definition and some properties of the free Lie algebra,
which are required to define and study the Johnson homomorphisms of AutFn. Let
Γn(1) ⊃ Γn(2) ⊃ · · · be the lower central series of a free group Fn defined by the rule

Γn(1) := Fn, Γn(k) := [Γn(k − 1), Fn], k ≥ 2.

We denote by Ln(k) := Γn(k)/Γn(k + 1) the graded quotient of the lower central series
of Fn, and by Ln :=

⊕

k≥1Ln(k) the associated graded sum. Since the group AutFn
naturally acts on Ln(k) for each k ≥ 1, and since IAn acts on it trivially, the action
of GL(n,Z) on each Ln(k) is well-defined. Furthermore, the graded sum Ln naturally
has a graded Lie algebra structure induced from the commutator bracket on Fn, and
called the free Lie algebra generated by H . (See [25] for basic material concerning
free Lie algebra.) It is classically well known due to Witt [27] that each Ln(k) is a
GL(n,Z)-equivariant free abelian group of rank

(2) rn(k) :=
1

k

∑

d|k

µ(d)n
k
d

where µ is the Möbius function. For example, the GL(n,Z)-module structure of Ln(k)
for 1 ≤ k ≤ 3 is given by

Ln(1) = H, Ln(2) = Λ2H,

Ln(3) = (H ⊗Z Λ2H)
/

〈x⊗ y ∧ z + y ⊗ z ∧ x+ z ⊗ x ∧ y | x, y, z ∈ H〉.

It is well known that Hall [9] gave a basis of the free abelian group Ln(k) with basic
commutators. The basic commutators have both weight and ordering. They are defined
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inductively as follows: First, the basic commutators of weight 1 are x1, . . . , xn and the
ordering is x1 < . . . < xn. Now assume we have defined the basic commutators together
with their ordering for all weights less than k. Then the basic commutators of weight
k are the elements of the form c = [c1, c2] where c1, c2 are the basic commutators of
weight k1, k2 such that

• k = k1 + k2,
• c1 > c2,
• If c1 = [c3, c4], then c4 ≤ c2.

Furthermore, we define the ordering satisfying:

• Any basic commutators of weight k is greater than those of lower weight,
• Two basic commutators of weight k are ordered lexicographically.

For example, [xi, xj ] for i > j, and [[xi, xj ], xk] for i > j ≤ k are basic commutators
of weight 2 and 3 respectively. Hall [9] showed that the set of basic commutators of
weight k forms a basis of Ln(k) as a free abelian group. In this paper, we fix this basis
of Ln(k), and call it the Hall’s basis.

Next, we consider an embeddings of the free Lie algebra into the tensor algebra.
Let T (H) be the tensor algebra of H over Z. Then T (H) is the universal envelopping
algebra of the free Lie algebra Ln, and the natural map ι : Ln → T (H) defined by

[X, Y ] 7→ X ⊗ Y − Y ⊗X

for X, Y ∈ Ln is an injective graded Lie algebra homomorphism. We denote by ιk
be the homomorphism of degree k part of ι, and consider Ln(k) as a submodule H⊗k

through ιk.

Finally, we consider a Lie subalgebra of Ln generated by x2, . . . , xn. Let F ′ be a
subgroup of Fn generated by x2, x3, . . . , xn. The group F ′ is a free group of rank
n − 1. We denote the lower central series of F ′ by Γ′(1),Γ′(2), · · · , and denote its
graded quotient by L′(l) := Γ′(l)/Γ′(l + 1) for each l ≥ 1. Then L′(l) ∼= Ln−1(l) as an
abelian group. The restriction of a natural inclusion map F ′ →֒ Fn to Γ′(k) induces a
homomorphism αk : L′(k) → Ln(k). Since the set of all basic commutators of weight k
among the components x2, x3, . . . , xn, which is a basis of L′(k), is embedded into the set
of the basic commutators of weight k in Ln(k) by αk, the homomorphism αk is injective.
In this paper, we identify L′(k) with αk(L

′(k)). In particular, L′(k) is considered as a
direct summand of Ln(k) as an abelian group.

Here we remark Γn(k) ∩ F
′ = Γ′(k) for each k ≥ 1. To prove this, it suffices to show

Γn(k) ∩ F ′ ⊂ Γ′(k). Suppose x ∈ Γn(k) ∩ F ′ and x /∈ Γ′(k). Then there exists some
l ∈ {1, 2, . . . , k − 1} such that x ∈ Γ′(l) and x /∈ Γ′(l + 1). On the other hand, since
x ∈ Γn(k), x = 0 in L′(l) ⊂ Ln(l). Hence x ∈ Γ′(l + 1). This is a contradiction.

2.4. Johnson homomorphisms.

In this subsection, we recall the definition and some properties of the Johnson ho-
momorphisms. To begin with, we consider a descending filtration of AutFn called
the Johnosn filtration. For k ≥ 0, the action of AutFn on each nilpotent quotient
Fn/Γn(k + 1) induces a homomorphism

ρk : AutFn → Aut(Fn/Γn(k + 1)).
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The map ρ0 is trivial, and ρ1 = ρ. We denote the kernel of ρk by An(k). Then the
groups An(k) define a descending central filtration

AutFn = An(0) ⊃ An(1) ⊃ An(2) ⊃ · · ·

of AutFn, with An(1) = IAn. We call it the Johnson filtration of AutFn. For each
k ≥ 1, the group AutFn acts on An(k) by conjugation, and it naturally induces an action
of GL(n,Z) on grk(An) := An(k)/An(k+1). The graded sum gr(An) :=

⊕

k≥1 grk(An)
has a graded Lie algebra structure induced from the commutator bracket on IAn.

To study the GL(n,Z)-module structure of each graded quotient grk(An), we define
the Johnson homomorphisms of AutFn. For each k ≥ 1, define a homomorphism
An(k) → HomZ(H,Ln(k + 1)) by

σ 7→ (x 7→ x−1xσ), x ∈ H.

Then the kernel of this homomorphism is just An(k+ 1). Hence it induces an injective
homomorphism

τk : grk(An) →֒ HomZ(H,Ln(k + 1)).

The homomorphsim τk is called the k-th Johnson homomorphism of AutG. It is easily
seen that each τk is GL(n,Z)-equivariant homomorphism. Since each Johnson homo-
morphism τk is injective, to determine the cokernel of τk is an important problem on
the study of the structure of grk(An) as a GL(n,Z)-module.

Andreadakis [1] showed that the first Johnson homomorphism τ1 is surjective by
computing the image of the generators of IAn above. It is well known that τ1 is nothing
but the abelianization of IAn by Cohen-Pakianathan [5, 6]，Farb [7] and Kawazumi
[13]. Recently, Pettet [24] determined the cokernel of τ2,Q, and in our previous paper
[26], we determined those of τ2 and τ3,Q. For k ≥ 4, however, the GL(n,Z)-module
structure of the cokernel of τk is not determined.

2.5. McCool stabilizer subgroup.

Here we consider the McCool stabilizer subgroup. Let Sn be the subgroup of AutFn
consisting of automorphisms which fix each of x2, . . . , xn. We call Sn the McCool
stabilizer subgroup. We denote the intersection of Sn with IAn by ISn. McCool [16]
showed that ISn is finitely generated but not finitely presentable. He [16] also gave an
inifinite presentation of ISn.

For any i ∈ {2, . . . , n}, let vi be the automorphism of Fn which send x1 to x1xi and
fix the other generators xt. The subgroup V of AutFn generated by all vi is a free
group of rank n− 1. The subgroup W of IAn generated by all K1i is also a free group
of rank n− 1. Then McCool [16] showed that ISn is a semidirect product of [V, V ] by
W . Namely, we have a split group extension

(3) 1 → [V, V ] → ISn → W → 1.

Furthermore, he [16] showed that [V, V ] is the normal closure of {K1ij | i > j} in ISn, and
ISn is generated by K1i and K1ij . Thus, considering a homomorphism ISn →֒ IAn →
IAab ∼= H∗ ⊗Z Λ2H , we see that H1(ISn,Z) is a free abelian group of rank n(n − 1)/2
with basis {K1i, K1jk | 2 ≤ i, j, k ≤ n, j > k}. In the following, we fix this basis and its
dual basis {K∗

1i, K
∗
1jk} of H1(ISn,Z).
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In this paper, we mainly consider the Johnson filtration of AutFn restricted to Sn.
Namely, set Sn(k) := An(k) ∩ Sn for each k ≥ 0. Then Sn(0) = Sn and Sn(1) = ISn.
We call a descending central filtration

Sn = Sn(0) ⊃ Sn(1) ⊃ Sn(2) ⊃ · · ·

the Johnson filtration of Sn. Set grk(Sn) := Sn(k)/Sn(k + 1). We denote by τSk the
restriction of the Johnson homomorphism τk to grk(Sn) ⊂ grk(An), and call it Johnson
homomorphism of Sn.

Let S ′
n(1) ⊃ S ′

n(2) ⊃ · · · be the lower central series of ISn = Sn(1), and set grk(S ′
n) :=

S ′
n(k)/S

′
n(k + 1). Then we obtain a homomorphism νk : grk(S ′

n) → grk(Sn) induced
from the inclusion S ′

n(k) →֒ Sn(k) for each k ≥ 1.

3. The Johnson filtration of ISn

In the following, we always assume n ≥ 3. In this section, we determine the image
of the Johnson homomorphism τSk , and show that the Johnson filtaration Sn(1) ⊃
Sn(2) ⊃ · · · coincides with the lower central series of ISn. Let Tk be a Z-submudule of
H∗ ⊗Z Ln(k + 1) consisting of all elements type of x∗1 ⊗ A where A ∈ L′(k + 1). Let
Ek be a Z-submodule of H∗ ⊗Z Ln(k+ 1) consisting of all elements type of x∗1 ⊗ [B, x1]
where B ∈ L′(k).

Lemma 3.1. For any k ≥ 1, as an abelian groups, we have isomorphisms

(1) Tk ∼= L′(k + 1),
(2) Ek ∼= L′(k).

Furthermore, the sum Tk + Ek in H∗ ⊗Z Ln(k + 1) is a direct sum.

Proof. The part (1) is trivial. For the part (2), let fk : L′(k) → Ek be a homo-
morphism defined by fk(B) := x∗1 ⊗ [B, x1] for any B ∈ L′(k). We construct the
inverse of fk as follows. First, using a contraction map, we define a homomorphisms
µk : H∗⊗ZH

⊗(k+1) → H⊗k by

x∗i ⊗ xj1 ⊗ · · · ⊗ xjk+1
7→ −x∗i (xj1) · xj2 ⊗ · · · ⊗ xjk+1

,

and
Φk := µk ◦ (idH∗ ⊗ ιk+1

n ) : H∗⊗ZLn(k + 1) → H⊗k.

We denote the restriction of Φk to Ek by gk. Then identifying L′(k) with its image of

an injective homomorphism L′(k)
αk−→ Ln(k)

ιk−→ H⊗k, we obtain a homomorphism

(4) gk : Ek → L′(k).

It is easily seen that gk is the inverse homomorphism of fk. This shows the part of (2).

Finally, we show that the sum Tk + Ek in H∗ ⊗Z Ln(k + 1) is a direct sum. Let
γ ∈ Tk ∩ Ek. Since γ ∈ Tk, Φk(γ) = 0. Hence gk(γ) = 0. Since gk is injective, we have
γ = 0. This completes the proof of Lemma 3.1. �

For any a ∈ F ′, let va be an automorphism of Fn which maps x1 to x1a and fix
the other generators xt. Then a map ψV : F ′ → V defined by ψV (a) := va is an
isomorphism. Similarly, For any b ∈ F ′, let wb be an automorphism of Fn which maps
x1 to b−1x1b and fix the other generators xt. Then a map ψW : F ′ → W defined by
ψW (b) := wb is also an isomorphism.
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Lemma 3.2. For each k ≥ 1, we have:

(1) For any b ∈ Γ′(k), wb ∈ S ′
n(k).

(2) For any a ∈ Γ′(k + 1), va ∈ S ′
n(k).

Proof. The part (1) is immediately follows from the restriction of ψW to Γ′(k). For
the part (2), it suffices to show the lemma in the case where a is a simple (k + 1)-fold
commutator

[a1, . . . , ak+1] := [[· · · [[a1, a2], a3], . . .], an] ∈ Γ′(k + 1)

for any ai ∈ F ′ since such commutators generate Γ′(k+1) and ψV is a homomorphism.
We use the induction on k ≥ 1. Suppose k = 1. For any a ∈ Γ′(2), considering the
isomorphism ψV , we obtain va ∈ [V, V ] ⊂ ISn = S ′

n(1). Assume k ≥ 2. By the inductive
hypothesis, there exists some va′ ∈ S ′

n(k − 1) for a′ := [a1, . . . , ak]. From the part (1),
we see wak+1

∈ S ′
n(1). Then we obtain va = [w−1

ak+1
, v−1
a′ ] ∈ S ′

n(k). This completes the
proof of Lemma 3.2. �

Theorem 3.1. For each k ≥ 1, the image of τSk is Tk ⊕Ek in H∗ ⊗Z Ln(k + 1).

Proof. Let denote the image of τSk by Im(τSk ). First, we show Im(τSk ) ⊂ Tk ⊕Ek. For
any σ ∈ Sn(k), by the split extension (3), there are v ∈ [V, V ] and w ∈ W such that
σ = vw. Set xv1 := x1x and xw1 := y−1x1y where x, y ∈ F ′. Then x−1

1 xσ1 = [x−1
1 , y−1]x ∈

Γn(k + 1). Here we show y ∈ Γ′(k). If y /∈ Γ′(k), there is some l ∈ {1, . . . , k − 1} such
that y ∈ Γ′(l) and y /∈ Γ′(l + 1). Then σ ∈ Sn(l) since [x−1

1 , y−1] and [x−1
1 , y−1]x are in

Γn(l + 1). Thus, in H∗ ⊗Z Ln(l + 1),

0 = τSl (σ) = x∗1 ⊗ x−1
1 xσ1 = x∗1 ⊗ ([x−1

1 , y−1]x) = x∗1 ⊗ [x1, y] + x∗1 ⊗ x.

Since x∗1⊗[x1, y] ∈ El and x∗1⊗x ∈ Tl, we have x∗1⊗[x1, y] = x∗1⊗x = 0 inH∗⊗ZLn(l+1)
by Lemma 3.1. In particular, considering the isomorphism gl : El → L′(l) defined in
(4), we obtain y = 0 ∈ L′(l). Hence y ∈ Γ′(l + 1). This is a contradiction. Therefore
we conclude y ∈ Γ′(k) and x ∈ Γ′(k + 1), and hence Im(τSk ) ⊂ Tk ⊕ Ek.

Next we show Im(τSk ) ⊃ Tk ⊕ Ek. For any element x∗1 ⊗ A ∈ Tk, let a ∈ Γ′(k + 1)
represent A. Then va ∈ S ′

n(k) by Lemma 3.2, and τSk (va) = x∗1 ⊗ A. Similarly, for any
element x∗1 ⊗ [B, x1] ∈ Ek, let b ∈ Γ′(k) represent B. Then wb ∈ S ′

n(k) by Lemma 3.2,
and τSk (w−1

b ) = x∗1 ⊗ [B, x1]. This completes the proof of Theorem 3.1. �

As a corollary, since L′(k) ∼= Ln−1(k) as an abelian group, we have

Corollary 3.1. For each k ≥ 1, rankZ(Im(τSk )) = rn−1(k + 1) + rn−1(k).

Furthermore, observing the latter part of the proof of Theorem 3.1 we see that τSk ◦νk :
grk(S ′

n) → Tk ⊕ Ek is surjective. Since τSk is injective, we have

Corollary 3.2. For each k ≥ 1, the natural homomorphism νk : grk(S ′
n) → grk(Sn) is

surjective.

Next we show that each νk is injective. Then we obtain Sn(k) = S ′
n(k) for each k ≥ 1

by an inductive argument. Here we introduce generators of S ′
n(k).

Lemma 3.3. For each k ≥ 1, S ′
n(k) is generated by automorphisms

(G1) va ∈ [V, V ] for a ∈ Γ′(k + 1),
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(G2) wb ∈W for b ∈ Γ′(k).

Proof. We prove the lemma by the induction on k ≥ 1. For k = 1, it is clear from
(3). Suppose that k ≥ 2. Then S ′

n(k) is generated by elements [σ, τ ] for any generators
σ ∈ S ′

n(l) and τ ∈ S ′
n(m) such that l + m = k. By the inductive hypothesis, we may

assume that σ and τ are automorphisms of type (G1) or type (G2). If (σ, τ) = (va, va′)
then [σ, τ ] = v[a′−1,a−1]. Similarly, if (σ, τ) = (va, wb) or (wb, va) then [σ, τ ] = v[b−1,a−1]

or v[a−1,b−1] respectively. Finally, if (σ, τ) = (wb, wb′) then [σ, τ ] = w[b′−1,b−1]. This
completes the proof of Lemma 3.3. �

Proposition 3.1. For each k ≥ 1, grk(S ′
n) is a free group of rank rn−1(k+1)+rn−1(k).

Proof. It suffices to show that grk(S ′
n) is generated by rn−1(k+1)+ rn−1(k) elements

since there is a surjective homomorphism νk from grk(S ′
n) to a free abelian group of

rank rn−1(k + 1) + rn−1(k).

Let c1, . . . , cp ∈ Γ′(k + 1) be the basic commutators of weight k + 1 among the
component x2, . . . , xn such that c1 < · · · < cj . Choose an automorphism vci ∈ S ′

n(k)
for each i, and fix it. Similarly, let d1, . . . , dq be the basic commutators of weight k
among the component x2, . . . , xn such that d1 < · · · < dq. Choose an automorphisms
wdj

∈ S ′
n(k) for each j, and fix. We show vci, 1 ≤ i ≤ p and wdj

, 1 ≤ j ≤ q generate

grk(S ′
n). By Lemma 3.3, we have the generators va and wb of S ′

n(k). For any va, we can
write

a = ce11 · · · cep

p a
′

for some ei ∈ Z and a′ ∈ Γ′(k + 2) since {c1, . . . , cp} is a basis of L′(k + 1). Using
Lemma 3.2, we see

vav
−e1
c1

· · · v−ep

cp = va′ ∈ S ′
n(k + 1).

This shows that va = ve1c1 · · · v
ep
cp ∈ grk(S ′

n). Similarly, for any wb, we can write

b = df11 · · · dfq

q b
′

for some fj ∈ Z and b′ ∈ Γ′(k + 1). Using Lemma 3.2, we see

wbw
−f1
d1

· · ·w
−fq

dq
= wb′ ∈ S ′

n(k + 1).

This shows that wb = wf1d1 · · ·w
fq

dq
∈ grk(S ′

n). Therefore we conclude that vci, 1 ≤ i ≤ p

and wdj
, 1 ≤ j ≤ q generate grk(S ′

n). This completes the proof of Proposition 3.1. �

From this proposition, we see that each νk is injective, and hence is an isomorphism.
Then we obtain:

Theorem 3.2. For each k ≥ 1, we have Sn(k) = S ′
n(k).

Proof. We prove the theorem by induction on k. By definition, we have Sn(1) = S ′
n(1).

Suppose k ≥ 2. By the inductive hypothesis, we have Sn(k−1) = S ′
n(k−1), and hence

grk−1(Sn) = S ′
n(k − 1)/Sn(k). Then, since νk−1 : grk−1(S ′

n) → S ′
n(k − 1)/Sn(k) is an

isomorphism, we obtain Sn(k) = S ′
n(k). This completes the proof of Theorem 3.2. �

In general, for each k ≥ 2, to determine whether H1(An(k),Z) is finitely generated
or not is difficult problem. On the other hand, we see H1(Sn(k),Z) is not finitely
generated. Moreover we obtain:
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Theorem 3.3. For each k ≥ 2, H1(Sn(k),Q) is infinitly generated as a Q-vector space.

Proof. Let ISn → W be the surjective homomorphism defined in (3). By restricting
it to S ′

n(k), we obtain a surjective homomorphism S ′
n(k) → W (k) where W (k) means

the k-th subgroup of the lower central series of the free group W . Since W (k) is a free
group of infinite rank for k ≥ 2, its abelianization is a free abelian group of infinite
rank. This shows that H1(Sn(k),Z) contains a free abelian group of infinite rank. This
completes the proof of Therem 3.3. �

4. Second (co)homology of ISn

In [16], McCool showed that ISn is not finitely presentable. Hence, the structure of
the integral second homology group of ISn is not so simple. In this section, we study
non-trivial second homology and cohomology classes of ISn which can be detected using
the second and third Johnson homomorphisms. To begin with, we consider a free group
generated by K1i and K1jk, and study its subgroup consisting of relators among the
generators K1i and K1jk. In Subsection 4.3, we consider the second cohomology group.

4.1. Minimal presentation of ISn.

Let F be a free group on {K1i, K1jk | 1 ≤ i, j, k ≤ n − 1, k < j}. The rank of F is
m := n(n− 1)/2. Let ϕ : F → ISn be a natural surjection and R the kernel of ϕ. Then
we have a minimal presentation of ISn

(5) 1 → R → F
ϕ
−→ ISn → 1.

The word “minimal”means that the number of generators is minimal among any pre-
sentation of ISn. Since the abelianization of ISn is a free abelian group with basis
{K1i, K1jk | 1 ≤ i, j, k ≤ n− 1, k < j}, the induced homomorphism

ϕ∗ : H1(F,Z) → H1(ISn,Z)

is an isomorphism. Hence considering the homological five-term exact sequence

0 = H2(F,Z) → H2(ISn,Z) → H1(R,Z)ISn
→ H1(F,Z) → H1(ISn,Z) → 0.

of (5), we obtain an isomorphism

H2(ISn,Z) ∼= H1(R,Z)ISn
.

(For example, see theorem 8.1 in [10] for the five-term exact sequence of a group ex-
tension.) In order to detect non-trivial elements of H1(R,Z)ISn

, we consider the graded
quotients of a descending filtration of R induced from the lower central series of F . Let
F = ΓF (1) ⊃ ΓF (k) ⊃ · · · be the lower central series of F . Set LF (k) = ΓF (k)/ΓF (k+1)
for each k ≥ 1. Then LF (k) is a free abelian group of rank rm(k). We define a linear
ordering among the generators of F such that

• K1i > Kij if i > j,
• K1ij > K1kl if (i, j) > (k, l),
• K1ij > K1k for any i, j and k,

and fix this ordering. Here (i, j) > (k, l) denotes the lexicographic ordering defined by

(i, j) > (k, l) ⇐⇒ i > k, or i = k and j > l.

We use this ordering to define the Hall’s basis of LF (k) later.
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Let R1 ⊃ R2 ⊃ · · · be a descending filtration of R defined by Rk := R ∩ ΓF (k) for
each k ≥ 1. Then Rk = R for 1 ≤ k ≤ 2. For each k ≥ 1, let

ϕk : LF (k) → grk(S ′
n)

be a homomorphism induced from the natural projection ϕ : F → ISn. Observing
Rk/Rk+1

∼= (Rk ΓF (k + 1))/ΓF (k + 1), we have an exact sequence

(6) 0 → Rk/Rk+1
ǫk−→ LF (k)

ϕk−→ grk(S ′
n) → 0.

Since the Johnson homomorphism τk is injective, the module Rk/Rk+1 is also charac-
terized as the kernel of the composite map τk ◦ ϕk. In this sequence, all three groups
are free abelian groups. For 1 ≤ k ≤ 3, their ranks are given as follows:

k rm(k) rankZ(grk(S ′
n))

1 n(n− 1)/2 n(n− 1)/2

2 n(n2 − 1)(n− 2)/8 (n− 1)(n− 2)(2n+ 3)/6

3 n(n2 − 1)(n− 2)(n2 − n + 2)/24 n(n− 1)(n− 2)(3n+ 1)/12

k rankZ(Rk/Rk+1)

1 0

2 (n− 1)(n− 2)(n− 3)(3n+ 4)/24

3 n2(n− 1)(n− 2)(n2 − 5)/24

Set Rk := R/Rk. Consider the right action of F on R, defined by

r · x := x−1rx, r ∈ R, x ∈ F.

Then the natural projection R→ Rk+1 induces a surjective homomorphism

ψk : H1(R,Z)ISn
→ H1(Rk+1,Z)ISn

.

Our strategy is to detect non-trivial second homology classes of ISn by studying the
structure of each H1(Rk+1,Z)ISn

. In the paper, we especially consider the case where
k = 2 and 3.

4.2. The structure of (R3)ISn
and (R4)ISn

.

Let us consider the case where k = 2. With the notation above, we seeH1(R3,Z)ISn
=

H1(R3,Z) = R3 since ISn acts on R3 trivially. First, we give a basis of R3. In the
following, we often identify R3 with RΓF (3)/ΓF (3) ⊂ LF (2) by the second isomorphism
theorem in group theory. Let B be a subset of LF (2) consisting of

Rijk := [K1ij , K1k] + [K1jk, K1i] − [K1ik, K1j ]

for i > j > k, and

Sijkl := [K1ij , K1kl]

for (i, j) > (k, l). Then we have:

Lemma 4.1. The set B is a basis of R3 as a free abelian group.
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Proof. It is easily seen that τS2 ◦ ϕ2(Rijk) = 0 and τS2 ◦ ϕ2(Sijkl) = 0. Since τS2 :
gr2(S ′

n) → H∗ ⊗Z Ln(3) is injective, we see Rijk, Sijkl ∈ R/R3 = ker(ϕ2). Let M
be a Z-submodule of LF (2) generated by B. We show the quotient module LF (2)/M
is a free abelian group of rank (n − 1)(n − 2)(2n + 3)/6. Since there is a surjective
homomorphism LF (2)/M → LF (2)/R3

∼= Z⊕(n−1)(n−2)(2n+3)/6, we can write LF (2)/M ∼=
Z⊕r ⊕ (torsion part) for some r ≥ (n− 1)(n− 2)(2n+ 3)/6.

Recall that the Hall’s basis of LF (2) is given by

• [K1i, Kij] if i > j,
• [K1ij, K1kl] if (i, j) > (k, l),
• [K1ij, K1k] for any i, j and k such that i > j.

These elements also generate LF (2)/M . On the other hand, in LF (2)/M , we can reduce
the generators [K1ij , K1kl] by Sijkl. Furthermore, we can also reduce the generators
[K1ij , K1k] for i > j > k by Rijk remaining the generators [K1ij , K1k] for i > j ≤ k.
Consequently, LF (2)/M is generated by [K1i, K1j] for i > j, and [K1ij , K1k] for i > j ≤
k. The number of such elements is just (n−1)(n−2)(2n+3)/6. Hence we see LF (2)/M
is a free abelian group of rank (n− 1)(n− 2)(2n+ 3)/6. Therefore we obtain M = R3.
Finally, it is easily seen that the order of the set B is just (n−1)(n−2)(n−3)(3n+4)/24.
Hence B is a basis of R3. This completes the proof of Lemma 4.1. �

Next, we consider the case where k = 3, namely, the structure of H1(R4,Z)ISn
. We

show that H1(R4,Z)ISn
is a direct sum of R3 and R3/([F,R]R4), and give a set of

generators of R3/([F,R]R4). Considering the long exact sequence of an exact sequence

0 → R3/R4 → R4 → R3 → 0

of ISn-modules, we obtain

(7) H1(ISn, R3)
δ
−→ (R3/R4)ISn

−→ (R4)ISn
−→ (R3)ISn

→ 0.

(For example, see proposition 6.1 in [4] for the long exact sequence.) Since (R3/R4)ISn
=

R3/R4, and since (R3)ISn
= R3 is a free abelian group, we have

(R4)ISn
∼= R3 ⊕ Coker(δ)

as an abelian group. Then,

Lemma 4.2. Coker(δ) = R3/([F,R]R4).

Proof. First, we characterize the image of δ using a bilinear map

[ , ] : LF (2) ⊗ LF (1) → LF (3), x⊗ y 7→ [x, y]

induced from the commutator bracket in F . Restricting [ , ] to R3 ⊗LF (1), we obtain

[ , ]R : R3 ⊗ LF (1) → R3/R4.

By the definition of the connecting homomorphism δ, we have Im(δ) = Im([ , ]R). This
completes of the proof of the Lemma 4.2. �

Now, we study the structure of the abelian group R3/([F,R]R4). To begin with, we
consider a basis of R3/R4. Let C be a subset of LF (3) consisting of

(i) [[K1i, K1j ], K1ij] for i > j,
(ii) [[K1i, K1j ], K1kl] + [[K1k, K1l], K1ij] for (i, j) > (k, l),
(iii) [Rijk, K1l] for i > j > k ≤ l,
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(iv) [[K1ij , K1k], K1lm] for any i, j, k, l and m,
(v) [[K1ij , K1kl], K1mp] for (i, j) > (k, l) ≤ (m, p)

where all indeces are elements of {2, 3, . . . , n}.

Lemma 4.3. The set C is a basis of R3/R4 as a free abelian group.

Proof. It is easily seen that C ⊂ R3/R4. Let N be a Z-submodule of LF (3) generated
by C. We show the quotient module LF (3)/N is a free abelian group of rank n(n−1)(n−
2)(3n+1)/12. Since there is a surjective homomorphism LF (3)/N → LF (3)/(R3/R4) ∼=
Z⊕n(n−1)(n−2)(3n+1)/12, we can write LF (3)/N ∼= Z⊕r ⊕ (torsion part) for some r ≥
n(n− 1)(n− 2)(3n+ 1)/12.

Recall that the Hall’s basis of LF (3) is given by

(i)’ [[K1i, K1j ], K1k] for i > j ≤ k,
(ii)’ [[K1i, K1j ], K1kl] for i > j,
(iii)’ [[K1ij , K1k], K1l] for k ≤ l,
(iv)’ [[K1ij , K1k], K1lm] for any i, j, k, l and m,
(v)’ [[K1ij , K1kl], K1mp] for (i, j) > (k, l) ≤ (m, p).

These elements also generate LF (3)/N . We reduce these generators of LF (3)/N using
C. First, from (iv) and (v), we can reduce the generators (iv)’ and (v)’ . Next we
consider (iii)’. If j > k, using (iii), we have

[[K1ij , K1k], K1l] = −[[K1jk, K1i], K1l] + [[K1ik, K1j ], K1l] ∈ LF (3)/N.

Furthermore, if i > l, using the Jacobi’s identity, we have

[[K1jk, K1i], K1l] = [[K1i, K1l], K1jk] − [[K1jk, K1l], K1i].

Similarly, if j > l,

[[K1ik, K1j], K1l] = [[K1j , K1l], K1ik] − [[K1ik, K1l], K1j].

This shows that each generator (iii)’ is written as a sum of the generators (iii)’ for
i > j ≤ k ≤ l and (ii)’. Finally, from (i) and (ii), we can reduce the generators (ii)’ for
(i, j) ≤ (k, l) by remaining (ii)’ for (i, j) > (k, l). Therefore, LF (3)/N is generated by
[[K1i, K1j], K1k] for i > j ≤ k, [[K1i, K1j ], K1kl] for (i, j) > (k, l) and [[K1ij , K1k], K1l]
for i > j ≤ k ≤ l. The number of such elements is just n(n − 1)(n − 2)(3n + 1)/12.
Hence we see LF (3)/N is a free abelian group of rank n(n − 1)(n − 2)(3n + 1)/12.
Therefore we have N = R3/R4. It is easily seen that the order of the set C is just
n2(n− 1)(n− 2)(n2 − 5)/24. Hence C is a basis of R3/R4 This completes the proof of
Lemma 4.3. �

Next we consider R3/([F,R]R4). Let C1 be a subset of R3/R4 consisting of

[[K1i, K1j ], K1ij]

for i > j,

[[K1i, K1j ], K1kl] + [[K1k, K1l], K1ij]

for (i, j) > (k, l),

[[K1tp, K1r], K1sq], [[K1tp, K1s], K1rq], [[K1tq, K1s], K1rp],

[[K1sp, K1t], K1rq], [[K1sq, K1t], K1rp]
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for 2 ≤ p < q < r < s < t ≤ n,

[[K1sp, K1q], K1rp], [[K1sp, K1q], K1rq], [[K1sq, K1q], K1rp],

[[K1sq, K1r], K1sp], [[K1sq, K1r], K1qp], [[K1sq, K1r], K1rp],

[[K1sp, K1r], K1rq], [[K1sp, K1r], K1qp], [[K1rq, K1s], K1rp],

[[K1sq, K1s], K1rp], [[K1sp, K1s], K1rq], [[K1rp, K1s], K1qp]

for 2 ≤ p < q < r < s ≤ n,

[[K1rp, K1p], K1qp], [[K1rp, K1q], K1qp], [[K1rp, K1q], K1rp],

[[K1rq, K1q], K1qp], [[K1rq, K1q], K1rp], [[K1qp, K1r], K1qp],

[[K1rp, K1r], K1qp], [[K1rq, K1r], K1qp], [[K1rq, K1r], K1rp]

for 2 ≤ p < q < r ≤ n and

[[K1qp, K1p], K1qp], [[K1qp, K1q], K1qp]

for 2 ≤ p < q ≤ n. Let C2 be a subset of R3/R4 consisting of

[[K1tp, K1s], K1rq] − [[K1tq, K1s], K1rp] + [[K1tr, K1s], K1qp]

for 2 ≤ p < q < r < s < t ≤ n. Then we show:

Proposition 4.1. R3/([F,R]R4) ∼= Z⊕(n−1)(n−2)(n3+3n2−10n+12)/24 ⊕ (Z/2Z)⊕(n−1

5 ). Fur-
theremore, C1 is a basis of the free part, and C2 is a basis of the torsion part as a
Z/2Z-vector space.

Proof. From Lemma 4.1, ([F,R]R4)/R4 ⊂ R3/R4 is generated by

(8) [Rijk, K1l], [Rijk, K1lm], [Sijkl, K1m] and [Sijkl, K1mp].

Hence R3/([F,R]R4) has a presentation as an abelian group with generators (i), . . .
, (v) of C subject to relators (8). We reduce the generators and the relators of this
presentation using Tietze transformations.

First, we consider [Sijkl, K1mp]. If (k, l) > (m, p), by the Jacobi identity, we have

[Sijkl, K1mp] = −[Sklmp, K1ij ] + [Sijmp, K1kl].

Hence we can remove [Sijkl, K1mp] for (k, l) > (m, p) from the set of relators, and may
assume that (i, j) > (k, l) ≤ (m, p). Then using this relator, we can reduce the generator
(v).

Next we consider [Rijk, K1l]. Suppose l < k. By the Jacobi identity,

[Rijk, K1l] = − [[K1k, K1l], K1ij] + [[K1ij , K1l], K1k]

− [[K1i, K1l], K1jk] + [[K1jk, K1l], K1i]

+ [[K1j , K1l], K1ik] − [[K1ik, K1l], K1j],

and

= [Rjkl, K1i] + [Rijl, K1k] − [Rikl, K1j]

− ([[K1i, K1j], K1kl] + [[K1k, K1l], K1ij) − ([[K1i, K1l], K1jk] + [[K1j , K1k], K1il])

+ ([[K1i, K1k], K1jl] + [[K1j , K1l], K1ik]).
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Hence we remove the relator [Rijk, K1l] for l < k. Then using [Rijk, K1l] for k ≤ l, we
reduce the generator (iii).

Finally, we consider the generators [[K1ij , Kik], K1lm]. To begin with, using the relator
[Rijk, K1lm], we reduce the generator [[K1ij , K1k], K1lm] for j > k. From the Jacobi
identity, the relation [Sijkl, K1m] = 0 is equivalent to

[[K1ij , K1k], K1lm] = [[K1lm, K1k], K1ij ],

and to

(R1) If k ≥ j and k ≥ m,

[[K1ij , Kik], K1lm] = [[K1lm, K1k], K1ij ],

(R2) If j ≤ k < m,

[[K1ij , Kik], K1lm] = −[[K1mk, K1l], K1ij ] + [[K1lk, K1m], K1ij ],

(R3) If m ≤ k < j,

−[[K1jk, K1i], K1lm] + [[K1ik, K1j ], K1lm] = [[K1lm, K1k], K1ij ],

(R4) If k < j and k < m,

−[[K1jk, K1i], K1lm] + [[K1ik, K1j ], K1lm]

= −[[K1mk, K1l], K1ij ] + [[K1lk, K1m], K1ij].

By (R1), we reduce the generator [[K1ij , Kik], K1lm] for k ≥ j, k and (i, j) < (l,m).
Since the relation (R3) is obtained from (R2) by exchanging the role of j and m, we
remove the relation (R3). From (R2), we reduce the generator [[K1ij , Kik], K1lm] for
k < m. Then (R4) is rewritten as follows:

(R5) If k < m < l ≤ j < i,

−[[K1jk, K1i],K1lm] + [[K1ik, K1j], K1lm]

= [[K1jl, K1i], K1mk] − [[K1il, K1j ], K1mk] − [[K1jm, K1i], K1lk]

+ [[K1im, K1j], K1lk].

(R6) If k < m ≤ j ≤ l ≤ i or k < m ≤ j < i ≤ l,

−[[K1lm, K1i],K1jk] + [[K1ik, K1j ], K1lm]

= −[[K1ij , K1l], K1mk] − [[K1lk, K1i], K1jm] + [[K1im, K1j], K1lk].

(R7) If k < j ≤ m < l ≤ i or k < j ≤ m ≤ i ≤ l,

−[[K1lm, K1i], K1jk] − [[K1ik, K1l], K1mj ] + [[K1ik, K1m], K1lj]

= −[[K1ij , K1l], K1mk] + [[K1ij , K1m], K1lk].

(R8) If k < j < i ≤ m < l,

[[K1mi, K1l],K1jk] − [[K1li, K1m], K1jk] − [[K1mj , K1l], K1ik]

+ [[K1lj , K1m], K1ik] = −[[K1mk, K1l], K1ij ] + [[K1lk, K1m], K1ij].
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Since (R7) and (R8) are obtained from (R6) and (R5) respectively by exchanging the
role of indeces, we remove these relations.

Using (R5) and (R6), we reduce the generators [[K1ij , K1k], K1lm] for i > j ≤ k,
l > m ≤ k and (i, j) ≥ (l,m). Set I := {i, j, k, l,m}. We denote the order of the set I
by ♯I.

• Case I. ♯I = 5.

For p, q, r, s, t ∈ {2, 3, . . . , n} such that p < q < r < s < t, let {i, j, k, l,m} =
{p, q, r, s, t}. Then there are eight types of generators [[K1ij , K1k], K1lm]:

[[K1tp, K1r], K1sq], [[K1tq, K1r], K1sp],

[[K1tp, K1s], K1rq], [[K1tq, K1s], K1rp], [[K1tr, K1s], K1qp],

[[K1sp, K1t], K1rq], [[K1sq, K1t], K1rp], [[K1sr, K1t], K1qp].

On the other hand, if we rewrite (R5) and (R6) using p, q, r, s, t, we obtain the following
relations. For (R5), we have (i, j, k, l,m) = (t, s, p, r, q) and

−[[K1sp,K1t], K1rq] + [[K1tp, K1s], K1rq] = [[K1sr, K1t], K1qp]

− [[K1tr, K1s], K1qp] − [[K1sq, K1t], K1rp] + [[K1tq, K1s], K1rp].
(9)

For (R6), we have (i, j, k, l,m) = (t, r, p, s, q) or (s, r, p, t, q), and

−[[K1sq,K1t], K1rp] + [[K1tp, K1r], K1sq] = −[[K1tr , K1s], K1qp]

− [[K1sp, K1t], K1rq] + [[K1tq, K1r], K1sp]
(10)

or

−[[K1tq ,K1s], K1rp] + [[K1tq, K1r], K1sp] = −[[K1sr, K1t], K1qp]

− [[K1tp, K1s], K1rq] + [[K1tp, K1r], K1sq]
(11)

respectively. Then considering (9) + (10), we obtain

[[K1sp,K1t], K1rq] − [[K1sq, K1t], K1rp] + [[K1sr, K1t], K1qp]

= −[[K1tp, K1s], K1rq] + [[K1tq, K1s], K1rp] − [[K1tr, K1s], K1qp].
(12)

Similarly, considering (9) + (10) + (11), we obtain

(13) 2([[K1tp, K1s], K1rq] − [[K1tq, K1s], K1rp] + [[K1tr, K1s], K1qp]) = 0

Using Tietze transformation, we replace the relations (9), (10) and (11) by (10), (12)
and (13). Furthermore, by (10) and (12), we reduce the generator [[K1tq, K1r], K1sp]
and [[K1sr, K1t], K1qp]. Finally, we replace the generator [[K1tr, K1s], K1qp] by

[[K1tp, K1s], K1rq] − [[K1tq, K1s], K1rp] + [[K1tr, K1s], K1qp].

• Case II. ♯I = 4.
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For p, q, r, s ∈ {2, 3, . . . , n} such that p < q < r < s, let {i, j, k, l,m} = {p, q, r, s}.
Then there are fifteen types of generators [[K1ij , K1k], K1lm]:

[[K1sp, K1q], K1rp], [[K1sp, K1q], K1rq], [[K1sq, K1q], K1rp],

[[K1sq, K1r], K1sp], [[K1sq, K1r], K1qp], [[K1sq, K1r], K1rp],

[[K1sp, K1r], K1rq], [[K1sp, K1r], K1qp], [[K1sr, K1r], K1qp],

[[K1rq, K1s], K1rp], [[K1sq, K1s], K1rp], [[K1sp, K1s], K1rq],

[[K1rp, K1s], K1qp], [[K1rq, K1s], K1qp], [[K1sr, K1s], K1qp].

We rewrite (R5) and (R6) using p, q, r, s. For (R5), we have (i, j, k, l,m) = (s, r, p, r, q)
and

(14) [[K1sr, K1r], K1qp] = −[[K1sp, K1r], K1rq] + [[K1sq, K1r], K1rp].

For (R6), we consider the case where k < m ≤ j ≤ l ≤ i and k < m ≤ j < i ≤ l. Since
♯I = 4, only one equlity in each of inequlites holds. For k < m = j < l < i, we have
(i, j, k, l,m) = (s, q, p, r, q) and

[[K1rq, K1s], K1qp] = [[K1sp,K1q], K1rq] − [[K1sq, K1q], K1rp]

+ [[K1sq, K1r], K1qp].
(15)

For k < m < j = l < i and (i, j, k, l,m) = (s, r, p, r, q), we obtain a relaton equivalent
to (14). For k < m < j < l = i, we have (i, j, k, l,m) = (s, r, p, s, q) and

(16) [[K1sr, K1s], K1qp] = −[[K1sp, K1s], K1rq] + [[K1sq, K1s], K1rp].

For k < m = j < i < l and (i, j, k, l,m) = (r, q, p, s, q), we obtain a relaton equivalent
to (15). Then, by (14), (15) and (16), we reduce the generators [[K1sr, K1r], K1qp],
[[K1rq, K1s], K1qp] and [[K1sr, K1s], K1qp].

• Case III. ♯I = 3.

For p, q, r ∈ {2, 3, . . . , n} such that p < q < r, let {i, j, k, l,m} = {p, q, r}. There are
nine types of generators [[K1ij , K1k], K1lm]:

[[K1rp, K1p], K1qp], [[K1rp, K1q], K1qp], [[K1rp, K1q], K1rp],

[[K1rq, K1q], K1qp], [[K1rq, K1q], K1rp], [[K1qp, K1r], K1qp],

[[K1rp, K1r], K1qp], [[K1rq, K1r], K1qp], [[K1rq, K1r], K1rp].

We rewrite (R6) using p, q, r. Since ♯I = 3, there is no relation obtained from (R5). For
(R6), two equlities hold in the inequalities k < m ≤ j ≤ l ≤ i and k < m ≤ j < i ≤ l.
Then, from both cases, we obtain trivial relations.

• Case IV. ♯I = 2.

For p, q ∈ {2, 3, . . . , n} such that p < q, let {i, j, k, l,m} = {p, q}. There are two
types of generators [[K1ij , K1k], K1lm]:

[[K1qp, K1p], K1qp], [[K1qp, K1q], K1qp].

By an argument similar to that in Case III, we see that all relations obtained from (R6)
are trivial.
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From the argument above, we obtain a presentation of R3/([F,R]R4) as an abelian
group with generating set C1 and C2 subject to relations (13). Hence we have

R3/([F,R]R4) ∼= Z⊕(n−1)(n−2)(n3+3n2−10n+12)/24 ⊕ (Z/2Z)⊕(n−1

5 ).

This completes the proof of Proposition 4.1. �

Since there is a surjective homomorphism

H2(ISn,Z)
∼=
−→ H1(R,Z)ISn

ψ3

−→ H1(R4,Z)ISn

∼= R3 ⊕ R3/([F,R]R4),

observing the rank of the free part of the target, we have:

Theorem 4.1. H2(ISn,Z) contains a free abelian group of rank

1

24
n(n− 1)(n− 2)(n2 + 6n− 15).

Considering (Z/2Z)⊕(n−1

5 ) ⊂ R3/([F,R]R4), we can also detect other non-trivial el-
ments in H2(ISn,Z). However, it seems to be difficult problem to determine whether
these elements are torsion in H2(ISn,Z) or not.

4.3. H1(R3,Z) and cup products.

In this subsection, we consider the second cohomology of ISn. By an argument similar
to above, considering the cohomological five-term exact sequence

0 → H1(ISn,Z) → H1(F,Z) → H1(R,Z)ISn → H2(ISn,Z) → H2(F,Z) = 0.

of (5), we obtain

H2(ISn,Z) ∼= H1(R,Z)
ISn .

Furthermore, the natural projection R → Rk+1 induces an injective homomorphism

ψk : H1(Rk+1,Z)ISn → H1(R,Z)ISn.

Hence we can consider H1(Rk+1,Z)ISn as a subgroup of H2(ISn,Z). In particular, we
obtain

H1(R4,Z)ISn = HomZ((R4)ISn
,Z) ∼= HomZ((R3),Z) ⊕ HomZ(R3/([F,R]R4),Z),

⊂ H2(ISn,Z).

This shows

Corollary 4.1. H2(ISn,Z) contains a free abelian group of rank

1

24
n(n− 1)(n− 2)(n2 + 6n− 15).

Finally, we characterize H1(R3,Z) ⊂ H2(ISn,Z) using the cup product of the first
cohomology classes of ISn. Namely, we prove:

Proposition 4.2. The image of the cup product

∪ : Λ2H1(ISn,Z) → H2(ISn,Z)

is H1(R3,Z).
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Proof. First, considering the cohomological five-term exact sequence of

(17) 1 → S ′
n(2) → ISn

p
−→ ISab

n → 1,

we have

0 → H1(ISab
n ,Z) → H1(ISn,Z) → H1(S ′

n(2),Z)ISn → H2(ISab
n ,Z) → H2(ISn,Z).

Since H1(ISab
n ,Z) ∼= H1(ISn,Z), and H1(S ′

n(2),Z)ISn = H1(gr2(S ′
n),Z), we obtain an

exact sequence

0 → H1(gr2(S ′
n),Z) → H2(ISab

n ,Z) −→ H2(ISn,Z).

Since H1(ISn,Z) is free abelian group of finite rank, we have a natural isomorphism
H2(ISab

n ,Z) ∼= Λ2H1(ISn,Z). Then the image of p∗ : H2(ISab
n ,Z) −→ H2(ISn,Z) is

regarded as that of the cup product ∪ : Λ2H1(ISn,Z) → H2(ISn,Z).

On the other hand, we also consider a five-term exact sequence

0 → H1(gr2(S ′
n),Z) → H1(LF (2),Z) → H1(R3,Z)LF (2)

→ H2(gr2(S ′
n),Z) → H2(LF (2),Z)

of (6) for k = 2. Since LF (2) acts on R3 trivially, we have H1(R3,Z)LF (2) = H1(R3,Z).
Furthermore, since gr2(S ′

n) = gr2(Sn) is a free abelian group, the second homomorphism
H1(LF (2),Z) → H1(R3,Z) is surjective. Then we have a commutative diagram

0 −−−→ H1(gr2(S ′
n),Z)

tg
−−−→ H2(ISab

n ,Z)
p∗

−−−→ H2(ISn,Z)
∥

∥

∥





y

µ

0 −−−→ H1(gr2(S ′
n),Z)

ϕ∗

2−−−→ H1(LF (2),Z)
ǫ∗2−−−→ H1(R3,Z) −−−→ 0

where tg is the transgression and µ is a natural isomorphism. Hence we obtain Im(∪) =
Im(p∗) ∼= Im(ǫ∗2). This completes the proof of Proposition 4.2. �

Let {R∗
ijk, S

∗
ijkl} be the dual basis of H1(R3,Z) to B. Finally, we explicitly write

down each of R∗
ijk and S∗

ijkl as a cup product of some first cohomology classes of ISn.

Lemma 4.4. We have

R∗
ijk = K∗

1ij ∪K
∗
1k = K∗

1jk ∪K
∗
1i = −K∗

1ik ∪K
∗
1j

and
S∗
ijkl = K∗

1ij ∪K
∗
1kl

in H2(ISn,Z).

Proof. Consider the commutative diagram:

H2(ISab
n ,Z)

p∗

−−−→ H2(ISn,Z)




y

µ

x





H1(LF (2),Z)
ǫ∗2−−−→ H1(R3,Z)

By a basic argument, we see that ǫ∗2 ◦ µ(K∗
1ij ∪ K∗

1k) = ǫ∗2([K1ij , K1k]
∗) = R∗

ijk. Hence

we obtain R∗
ijk = K∗

1ij ∪K
∗
1k ∈ H1(R3,Z) ⊂ H2(ISn,Z). Similarly, the other equations

are obtained. �.
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