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Abstract

The set of homotopy classes of self maps of a compact, connected Lie group G is a
group by the pointwise multiplication which we denote by H(G), and it is known to be
nilpotent. Ōshima [9] conjectured if G is simple, then H(G) is nilpotent of class ≥ rankG.
We show this is true for PU(p) which is the first high rank example.

1 Introduction and statement of the result

We will denote the class of a nilpotent group K by nilK and normalize it so that K is abelian

if and only if nilK = 1.

For based spaces X,Y , let [X,Y ] denote the set of based homotopy classes of based maps

from X to Y . When Y is group-like, [X,Y ] has the natural group structure given by the

pointwise multiplication. It is classical that if Y is connected and catX < ∞, then the group

[X,Y ] is nilpotent of class ≤ catX [10], where catX stands for the Lusternik-Schnirelmann

category of X normalized as cat(∗) = 0.

For a group-like space X, we denote the group [X,X] by H(X) and call it the self homotopy

group of X. Let G be a compact, connected Lie group. Then, as noted above, the group H(G)

is nilpotent of class ≤ catG and thus we have an invariant nilH(G) for H(G). Ōshima and

the second author [7] showed that, for most of compact, connected Lie groups G, H(G) is not

abelian, that is, nilH(G) ≥ 2. Then we address here the problem how far from being abelian

H(G) is, that is, how big nilH(G) is. In [9], Ōshima conjectured:

Conjecture 1. If G is a compact, connected, simple Lie group, then nilH(G) ≥ rankG.

This conjecture is false if we do not assume G is simple [9]. In some cases of rank ≤ 3, the

above conjecture is known to be true (see [1]). However, if the rank of G is greater than 3,

there have not been any example of G making this conjecture true. In fact, as is shown in [4]

the projective unitary group PU(n) is the only one example of G having nilH(G) ≥ 6 so far.

More precisely, it is shown in [4] that

nilH(PU(p)) ≥ p − 2 = rankPU(p) − 1

1



for any odd prime p. The aim of this note is to improve this inequality by one to satisfy

Ōshima’s conjecture as:

Theorem 1. For any prime p, nilH(PU(p)) ≥ rankPU(p).

2 Proof of Theorem 1

When p = 2, Theorem 1 is trivial and then we will assume the prime p is odd. We will implicitly

use the naturality

[X,Y ](p)
∼= [X,Y(p)] ∼= [X(p), Y(p)]

for a finite dimensional suspension X, where −(p) denotes the p-localization in the sense of

Bousfield and Kan [3]. We will identify continuous maps with their homotopy classes. Since

PU(p) ∼= PSU(p), we will also identify PU(p) with PSU(p).

We first collect facts on SU(p) which we will use. Let εk denote a generator of π2k−1(SU(p)) ∼=
Z for 2 ≤ k ≤ p. Define a map µ :

∏p
k=2 S2k−1 → SU(p) by µ(x2, . . . , xp) = ε2(x2) · · · εp(xp)

for (x2, . . . , xp) ∈
∏p

k=2 S2k−1. Then the classical result of Serre [11] shows that we have a

homotopy equivalence:

µ(p) :

p∏
k=2

S2k−1
(p)

'→ SU(p)(p)

We will denote the composition of µ−1
(p) and the i-th projection

∏p
k=2 S2k−1

(p) → S2i−1
(p) by λi. It is

shown by Bott [2] that the order of the Samelson product 〈εi, εj〉 is divisible by (i+j−1)!
(i−1)!(j−1)!

. In

particular, 〈εp, εi〉(p) is nontrivial for 2 ≤ i ≤ p. Recall that we have, for i ≥ 2,

π2i−1+k(S
2i−1
(p) ) ∼=

{
Z/p k = 2p − 3

0 0 < k < 4p − 6 and k 6= 2p − 3
(1)

in which π2i+2p−4(S
2i−1
(p) ) is generated by Σ2i−4α1 for a generator α1 of π2p(S

3
(p)). Then it follows

that, for 2 ≤ i ≤ p,

λ2i+1 ◦ 〈εp, εi〉(p) 6= 0. (2)

Let L be the lens space S2p−1/(Z/p) and let π : SU(p) → PU(p) and ρ : S2p−1 → L be the

projections.

Proposition 1. There is a map ε : L(p) → PU(p)(p) satisfying the homotopy commutative

diagram:

S2p−1
(p)

εp(p) //

ρ(p)

²²

SU(p)(p)

π(p)

²²
L(p)

ε // PU(p)(p)
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Proof. We denote the projections SU(p) → SU(p)/SU(p−1) = S2p−1 and PU(p) → PU(p)/SU(p−
1) = L by κ and κ̄ respectively. Then we have κ̄ ◦ π = ρ ◦ κ. Recall that the cohomology of

SU(p) and PU(p) are given by

H∗(SU(p)) = Λ(x3, x5, . . . , x2p−1), |xj| = j.

and

H∗(PU(p)) = Z/p[y2]/(y
p
2) ⊗ Λ(y1, y3, . . . , y2p−3), |yj| = j

so that π∗(y2i−1) = x2i−1 for 2 ≤ i ≤ p − 1. Consider maps

θ = κ(p) ×
p−1∏
k=2

x2k−1 : SU(p)(p) → S2p−1
(p) ×

p−1∏
k=2

K(Z(p), 2k − 1)

and

θ̄ = κ̄(p) ×
p−1∏
k=2

y2k−1 : PU(p)(p) → L(p) ×
p−1∏
k=2

K(Z(p), 2k − 1).

Then we have (ρ× 1)(p) ◦ θ = θ̄ ◦π(p) and thus since θ is a 2p-equivalence and κ̄∗ : π1(PU(p)) →
π1(L) is an isomorphism, θ̄ is a 2p-equivalence. Note that L is of dimension 2p − 1. Then by

the J.H.C. Whitehead theorem there is a map ε : L(p) → PU(p)(p), unique up to homotopy, so

that κ̄ ◦ ε = 1L(p)
. Thus we have θ̄ ◦ ε ◦ ρ(p) = θ̄ ◦ π(p) ◦ ε(p) which implies ε ◦ ρ(p) = π(p) ◦ ε(p) ,

and therefore we have established the proposition.

Remark 1. It should be mentioned here that Hamanaka and the authors [4] have obtained

the above map ε by decomposing PU(p)(p). Harper [5] also constructed a map L(p) → PU(p)

and one can verify that Harper’s map satisfies the above homotopy commutative diagram by

examining the homotopy groups. Both of the above works are generalized in [6].

Note that there is a map γ̂ : PU(p) ∧ SU(p) → SU(p) such that γ̂ ◦ (π ∧ 1) = γ for the

reduced commutator map γ : SU(p)∧ SU(p) → SU(p). Let Lk be the Moore space S2k−1 ∪p e2k

for 1 ≤ k ≤ p − 1 and S2p−1 for k = p. Then in particular L1 is the 2-skeleton of L.

Lemma 1. Let qk : Lk → S2k be the pinch map. Then, for 2 ≤ i ≤ p − 1, we have

λi+1 ◦ γ̂(p) ◦ (ε|L1 ∧ εi)(p) = ai(q1 ∧ 1S2i−1)(p), ai ∈ Z×
(p).

Proof. Recall from [8] there is a homotopy equivalence

ΣL(p) ' ∨p
k=1ΣLk(p).

Then there are maps fk : S2p+2i−2
(p) → (Lk ∧ S2i−1)(p) for 1 ≤ k ≤ p such that

(ρ ∧ 1S2i−1)(p) = ∨p
k=2fk. (3)
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Since ρ is a p-fold covering, we have fp = p.

Consider the exact sequence

π2i+2k−1(S
2i+1)

×p−→ π2i+2k−1(S
2i+1)

q∗k→ [Lk ∧ S2i−1, S2i+1] → π2i+2k−2(S
2i+1)

×p−→ π2i+2k−2(S
2i+1)

induced from the cofibre sequence S2k−1 p→ S2k−1 → Lk
qk→ S2k p→ S2k. Then by (1) we have:

[Lk ∧ S2i−1, S2i+1](p)
∼=


Z(p) k = 1

0 2 ≤ k ≤ p − 1

Z/p k = p

in which [L1 ∧ S2i−1, S2i+1](p) is generated by (q1 ∧ 1S2i−1)(p). Hence it follows that

λi+1 ◦ γ̂(p) ◦ (ε ∧ εi(p)) = ai(q1 ∧ 1S2i−1)(p) ∨ a′
iΣ

2i−4α1

for ai, a
′
i ∈ Z(p) and 2 ≤ i ≤ p − 1. Thus by (2), Proposition 1 and (3) we obtain

0 6= λi+1 ◦ 〈εp, εi〉(p) = λi+1 ◦ γ̂(p) ◦ (ε ∧ εi(p)) ◦ (ρ ∧ 1S2i−1)(p)

= ai(q1 ∧ 1S2i−1)(p) ◦ f1 ∨ pa′
iΣ

2i−4α1

= ai(q1 ∧ 1S2i−1)(p) ◦ f1.

It follows from (1) that (q1∧1S2i−1)(p) ◦f1 = aΣ2i−4α1 for a ∈ Z/p and thus ai ∈ Z×
(p). Therefore

the proof is completed.

We will use the same notation for the cohomology of SU(p) and PU(p) as in Proposition 1.

Then by Lemma 1 and the J.H.C. Whitehead theorem we obtain:

Corollary 1. Let I be the ideal H̄∗(PU(p))2 ⊗ H̄∗(SU(p)) + H̄∗(PU(p)) ⊗ H̄∗(SU(p))2 in

H∗(PU(p) ∧ SU(p)). Then we have

γ̂∗(x2i+1) ≡ biy2 ⊗ x2i−1 mod I

for bi ∈ (Z/p)×.

Proof of Theorem 1. Put γ̂p−2 = γ̂ ◦ (1 ∧ γ̂) ◦ · · · ◦ (1 ∧ · · · ∧ 1︸ ︷︷ ︸
p−3

∧γ̂). It follows from Corollary 1

that

γ̂∗
p−2(x2p−1) = y2 ⊗ · · · ⊗ y2︸ ︷︷ ︸

p−2

⊗x3. (4)

Let γ̄ : PU(p) ∧ PU(p) → PU(p) be the reduced commutator map. Then there is a map

γ̃ : PU(p)∧PU(p) → SU(p) such that π ◦ γ̃ = γ and γ̂ = γ̃ ◦ (1∧π). Thus in particular we have

γ̃p−2 ◦ (1 ∧ · · · ∧ 1 ∧ π) = γ̂p−2. (5)
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Define a map φ : PU(p) → SU(p) by φ([A]) = A∗A for A ∈ SU(p). Then we have φ∗(x3) = 2y3

and hence by (4) and (5)

(γ̃p−2 ◦ (1 ∧ · · · ∧ 1 ∧ π ◦ φ) ◦ ∆)∗(x2p−1) = (γ̂p−2 ◦ (1 ∧ · · · ∧ 1 ∧ φ) ◦ ∆)∗(x2p−1)

= 2yp−2
2 y3 6= 0.

This implies that γ̃p−2 ◦ (1 ∧ · · · ∧ 1 ∧ π ◦ φ) ◦ ∆ is essential.

Consider the exact sequence

[PU(p),Z/p] → [PU(p), SU(p)]
π∗→ H(PU(n))

induced from the covering Z/p → SU(p)
π→ PU(p). Then for [PU(p),Z/p] = ∗ we obtain π∗ is

injective and thus π ◦ γ̄p−2 ◦ (1 ∧ · · · ∧ 1 ∧ π ◦ φ) ◦ ∆ is essential. This is equivalent to that the

commutator [1, [1 · · · [1︸ ︷︷ ︸
p−2

, π◦φ] · · · ]] in H(PU(p)) is nontrivial and therefore the proof of Theorem

1 is completed.
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