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Abstract

The set of homotopy classes of self maps of a compact, connected Lie group G is a
group by the pointwise multiplication which we denote by H(G), and it is known to be
nilpotent. Oshima [9] conjectured if G is simple, then H(G) is nilpotent of class > rankG.
We show this is true for PU(p) which is the first high rank example.

1 Introduction and statement of the result

We will denote the class of a nilpotent group K by nil/ and normalize it so that K is abelian
if and only if nilK = 1.

For based spaces X, Y, let [X,Y] denote the set of based homotopy classes of based maps
from X to Y. When Y is group-like, [X,Y] has the natural group structure given by the
pointwise multiplication. It is classical that if Y is connected and catX < oo, then the group
[X, Y] is nilpotent of class < catX [10], where catX stands for the Lusternik-Schnirelmann
category of X normalized as cat(x) = 0.

For a group-like space X, we denote the group [X, X] by H(X) and call it the self homotopy
group of X. Let G be a compact, connected Lie group. Then, as noted above, the group H(G)
is nilpotent of class < catG and thus we have an invariant nilH(G) for H(G). Oshima and
the second author [7] showed that, for most of compact, connected Lie groups G, H(G) is not
abelian, that is, nilH(G) > 2. Then we address here the problem how far from being abelian
H(G) is, that is, how big nilH(G) is. In [9], Oshima conjectured:

Conjecture 1. If G is a compact, connected, simple Lie group, then nilH(G) > rankG.

This conjecture is false if we do not assume G is simple [9]. In some cases of rank < 3, the
above conjecture is known to be true (see [1]). However, if the rank of G is greater than 3,
there have not been any example of G making this conjecture true. In fact, as is shown in [4]
the projective unitary group PU(n) is the only one example of G having nilH(G) > 6 so far.

More precisely, it is shown in [4] that
nilH(PU(p)) > p — 2 = rankPU(p) — 1
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for any odd prime p. The aim of this note is to improve this inequality by one to satisfy

Oshima’s conjecture as:

Theorem 1. For any prime p, nilH(PU(p)) > rankPU(p).

2 Proof of Theorem 1

When p = 2, Theorem 1 is trivial and then we will assume the prime p is odd. We will implicitly

use the naturality
(X, Y] = [X, Y] = [Xp), Yip)]

for a finite dimensional suspension X, where —, denotes the p-localization in the sense of
Bousfield and Kan [3]. We will identify continuous maps with their homotopy classes. Since
PU(p) = PSU(p), we will also identify PU(p) with PSU(p).

We first collect facts on SU(p) which we will use. Let ¢, denote a generator of o1 (SU(p))
Z for 2 < k < p. Define a map p : [[1_, S — SU(p) by u(za,...,z,) = ex(xs) - €p(,)

~

for (za,...,2p) € [[1_yS*~'. Then the classical result of Serre [11] shows that we have a
homotopy equivalence:
p
F(p) - H *SV(Q;C)_1 = SU(P) )
k=2

We will denote the composition of u(’p% and the i-th projection [[}_, 5(25)’1 — S(Qg)’ by A It is

shown by Bott [2] that the order of the Samelson product (e, €;) is divisible by (i(iﬂ —L)!

DG In

particular, (€, €;) () is nontrivial for 2 <4 < p. Recall that we have, for i > 2,

Z/p k=2p-3

1
0 O<k<4dp—6and k#2p—3 (1)

7T2i—1+k(5(2;)_1) = {

in which 7r2i+2p,4(5(2;)_ ') is generated by %%~%a; for a generator a; of ng(S?p)). Then it follows
that, for 2 <1 < p,

A2i41 0 (€, €i) (p) 7 0 (2)

Let L be the lens space S?P~!/(Z/p) and let 7 : SU(p) — PU(p) and p : S?*~! — L be the

projections.

Proposition 1. There is a map € : Ly — PU(p)y) satisfying the homotopy commutative
diagram:

2p—1 p(p)
S(;f) — SUP) )

p(P)l lﬂ'(p)

L) ——PU(p)(p



Proof. We denote the projections SU(p) — SU(p)/SU(p—1) = S~ and PU(p) — PU(p)/SU(p—
1) = L by k and & respectively. Then we have kK o™ = p o k. Recall that the cohomology of
SU(p) and PU(p) are given by

H*(SU<p>> = A('T37 L5y ... 7'r2P*1)7 |$J| = j

and
H*(PU(p)) = Z/ply]/ (y5) @ AMyr, 3, -, Y2p-3), |y;l = J

so that 7 (ya;_1) = x9;—1 for 2 <i < p — 1. Consider maps

p—1
= i) X [ [ w21 - SUD) Gy — S5 x [[ K (Zyy. 26 — 1)
= k=2
and
p—1
0 = Fg) x [ [ van-1: PUD) ) — Ly % HK oy 2k — 1),
k=2

Then we have (p X 1)(,) 060 = o, and thus since 6 is a 2p-equivalence and &, : 7;(PU(p)) —
71(L) is an isomorphism, 6 is a 2p—equivalence. Note that L is of dimension 2p — 1. Then by
the J.H.C. Whitehead theorem there is a map € : L,y — PU(p)(,), unique up to homotopy, so

that Roe =1, . Thus we have f o eo Pp) = 6o T(p) © €(p) Which implies € o p,) = 7y 0 €y

(»)
and therefore we have established the proposition. O

Remark 1. It should be mentioned here that Hamanaka and the authors [4] have obtained
the above map € by decomposing PU(p),). Harper [5] also constructed a map L, — PU(p)
and one can verify that Harper’s map satisfies the above homotopy commutative diagram by

examining the homotopy groups. Both of the above works are generalized in [6].

Note that there is a map 4 : PU(p) A SU(p) — SU(p) such that 5 o (r A1) = ~ for the
reduced commutator map 7 : SU(p) A SU(p) — SU(p). Let Ly be the Moore space S*~1 U, e?*
for 1 <k <p-—1and S? ! for k = p. Then in particular L; is the 2-skeleton of L.

Lemma 1. Let g, : L, — S be the pinch map. Then, for 2 <i <p—1, we have
Ai1 09 © (€, A €) ) = ailqu A Ls2im1) ), @i € Z.
Proof. Recall from [8] there is a homotopy equivalence
XLy 2= Vi Bl ).

Then there are maps f : 25)“1 — (Lp A S*7 1) for 1 < k < p such that

(,O A 1521'71)([,) = \/£:2fk. (3)
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Since p is a p-fold covering, we have f, = p.

Consider the exact sequence

T234+2k—1 (S%Ll) ﬂ 772i+2k—1<S2i+1)

I, [Lk A 521 17521+1] N 7T2i+2k72(521+1) ﬁ) 772@'+2k72(521+1>

induced from the cofibre sequence S2¢~1 2 §2—1 _, 1, % g2k P, G2k Then by (1) we have:

Zyy k=1
[Ly A SPH5%H ) 2 <0 2<k<p-1
Zlp k=p

in which [L; A §%71 S%H1] ) is generated by (g1 A 1gzi-1)(). Hence it follows that
Ais1 © ’?(p) o (6 AN Ei(p)) = ai(ql VAN 152i—1)(p) V a;E%_%q
for a;,a} € Z(,) and 2 < i < p — 1. Thus by (2), Proposition 1 and (3) we obtain
07 Aig1 0 {6 €i)p) = i1 09) © (€A €ip) © (P A Lg2int) )
= ai(ql VAN 1521'71)(1,) ofiV pa;EQiillOél
= CLi(ql VAN 1S2i*1)(p) e} fl-

It follows from (1) that (q1 A Ls2i-1)() 0 fi = aX* %y for a € Z/p and thus a; € Z(j,. Therefore

the proof is completed. O]

We will use the same notation for the cohomology of SU(p) and PU(p) as in Proposition 1.
Then by Lemma 1 and the J.H.C. Whitehead theorem we obtain:

Corollary 1. Let I be the ideal H*(PU(p))? ® H*(SU(p)) + H*(PU(p)) @ H*(SU(p))? in
H*(PU(p) ASU(p)). Then we have

V*(29541) = biya @ w951 mod [

for b, € (Z/p)*.

Proof of Theorem 1. Put 4o =50 (1 AJ)o---0o(LA---ALAY). It follows from Corollary 1

p—3
that
Ypo(Top1) = Y2 @ -+ @ yp RT3 (4)

p—2
Let ¥ : PU(p) A PU(p) — PU(p) be the reduced commutator map. Then there is a map
5 : PU(p) APU(p) — SU(p) such that moy =~ and ¥ = o (1 Ax). Thus in particular we have

Yp—20 (LA ANLAT) =y (5)
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Define a map ¢ : PU(p) — SU(p) by ¢(|A]) = A*A for A € SU(p). Then we have ¢*(x3) = 2y3
and hence by (4) and (5)

(Ap—20 (LA~ ANLATO0@) 0o A)(x9p-1) = (Jp—20 (LA -~ ALA @) 0 A)*(x2p_1)
=25 "y # 0.

This implies that 4, 20 (LA--- A1 A7o¢)oA is essential.

Consider the exact sequence
[PU(p), Z/p] — [PU(p),SU(p)] = H(PU(n))

induced from the covering Z/p — SU(p) = PU(p). Then for [PU(p), Z/p] = * we obtain m, is
injective and thus mo 4, 90 (L A--- A1 AmTo¢)o A is essential. This is equivalent to that the

commutator [1,[1---[1,m0¢]---]] in H(PU(p)) is nontrivial and therefore the proof of Theorem
N—_——
p—2
1 is completed. O
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