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Abstract. We give a new proof to the base point free theorem
for log canonical pairs.
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1. Introduction

In this paper, we give a new proof to the base point free theorem for
log canonical pairs. The main theorem of this paper is as follows.

Theorem 1.1. Let X be a normal projective variety and B an effective

Q-divisor on X such that (X, B) is log canonical. Let L be a nef Cartier

divisor on X. Assume that aL − (KX + B) is ample for some a > 0.
Then the linear system |mL| is base point free for m ≫ 0, that is,

there is a positive integer m0 such that |mL| is base point free for any

m ≥ m0.

It is a very special case of [A, Theorem 5.1]. His proof depends on
the theory of quasi-log varieties. For the details of quasi-log varieties,
see [F1]. The proof given here does not need the theory of quasi-
log varieties. We just need the generalized Kollár’s torsion-free and
vanishing theorems. See Theorem 2.1 below.

We explain our proof more precisely. By Shokurov’s concentration
method and a generalized Kollár’s vanishing theorem, we obtain a cor-
rect generalization of Shokurov’s non-vanishing theorem for log canon-
ical pairs. By our non-vanishing theorem, we can create a new log
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canonical center, and apply the non-vanishing theorem again to this
new log canonical center. Then we obtain the base point free theo-
rem for log canonical pairs. The reader will find that our proof is very
similar to the original proof for klt pairs. In some sense, the proof
given in Section 3 is more natural than the original one. Anyway, we
do not have to discuss difficult vanishing and torsion-free theorems for
reducible varieties.

We will work over C, the complex number field, throughout this
paper.

Notation. Let X be a normal variety and B an effective Q-divisor
such that KX + B is Q-Cartier. Then we can define the discrepancy

a(E, X, B) ∈ Q for any prime divisor E over X. If a(E, X, B) ≥ −1
(resp. > −1) for any E, then (X, B) is called log canonical (resp. kawa-

mata log terminal). We sometimes abbreviate log canonical (resp. kawa-
mata log terminal) to lc (resp. klt).

Assume that (X, B) is log canonical. If E is a prime divisor over X

such that a(E, X, B) = −1, then cX(E) is called a log canonical center

(lc center, for short) of (X, B), where cX(E) is the closure of the image
of E on X.

Let (X, B) be a log canonical pair and M an effective Q-divisor on
X. The log canonical threshold of (X, B) with respect to M is defined
by

c = sup{t ∈ R | (X, B + cM) is log canonical}.

We can easily check that c is a rational number and that (X, B + cM)
is lc but not klt.

Let (X, B) be a log canonical pair. Then a stratum of (X, B) denotes
X itself or an lc center of (X, B).

Let Y be a smooth variety and T a simple normal crossing divisor
on Y . Then a stratum of T means an lc center of the pair (Y, T ).

Let r be a rational number. The integral part xry is the largest
integer ≤ r and the fractional part {r} is defined by r − xry. We
put prq = −x−ry and call it the round-up of r. For a Q-divisor
D =

∑r

i=1
diDi, where Di is a prime divisor for any i and Di 6= Dj

for i 6= j, we call D a boundary Q-divisor if 0 ≤ di ≤ 1 for any i.
We note that ∼Q denotes the Q-linear equivalence of Q-Cartier Q-
divisors. We put xDy =

∑
xdiyDi, pDq =

∑
pdiqDi, {D} =

∑
{di}Di,

D<1 =
∑

di<1
diDi, and D=1 =

∑
di=1

Di.
We write Bs|L| to denote the base locus of the linear system |L|.
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2. Preliminaries

In this section, we collect preliminary results for the reader’s conve-
nience. The next theorem is a very special case of [A, Theorem 3.2].

Theorem 2.1 (Torsion-freeness and vanishing theorem). Let Y be a

smooth projective variety and B a boundary Q-divisor such that SuppB

is simple normal crossing. Let f : Y → X be a projective morphism

and L a Cartier divisor on Y such that H ∼Q L− (KY +B) is f -semi-

ample.

(i) Every non-zero local section of Rqf∗OY (L) contains in its sup-

port the f -image of some strata of (Y, B).
(ii) Assume that H ∼Q f ∗H ′ for some ample Q-Cartier Q-divisor

H ′ on X. Then Hp(X, Rqf∗OY (L)) = 0 for any p > 0 and

q ≥ 0.

The proof of Theorem 2.1 is not difficult. For a short, easy, and
almost self-contained proof, see [F2]. As an application of Theorem
2.1, we prepare the following powerful vanishing theorem. It will play
basic roles for the study of log canonical pairs.

Theorem 2.2 (cf. [A, Theorem 4.4]). Let X be a normal projective va-

riety and B a boundary Q-divisor on X such that (X, B) is log canon-

ical. Let D be a Cartier divisor on X. Assume that D − (KX + B) is

ample. Let {Ci} be any set of lc centers of the pair (X, B). We put

W =
⋃

Ci with a reduced scheme structure. Then we have

H i(X, IW ⊗OX(D)) = 0, H i(X,OX(D)) = 0,

and

H i(W,OW (D)) = 0

for any i > 0, where IW is the defining ideal sheaf of W on X. In

particular, the restriction map

H0(X,OX(D)) → H0(W,OW (D))

is surjective.

Proof. Let f : Y → X be a resolution such that Suppf−1
∗

B ∪ Exc(f),
where Exc(f) is the exceptional locus of f , is a simple normal crossing
divisor. We can further assume that f−1(W ) is a simple normal crossing
divisor on Y . We can write

KY + BY = f ∗(KX + B).

Let T be the union of the irreducible components of B=1
Y that are

mapped into W by f . We consider the following short exact sequence

0 → OY (A − T ) → OY (A) → OT (A) → 0,
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where A = p−(B<1

Y )q. Note that A is an effective f -exceptional divisor.
We obtain the following long exact sequence

0 → f∗OY (A − T ) → f∗OY (A) → f∗OT (A)

δ
→ R1f∗OY (A − T ) → · · · .

Since

A − T − (KY + {BY } + B=1

Y − T ) = −(KY + BY ) ∼Q −f ∗(KX + B),

any non-zero local section of R1f∗OY (A−T ) contains in its support the
f -image of some strata of (Y, {BY }+B=1

Y −T ) by Theorem 2.1 (i). On
the other hand, W = f(T ). Therefore, the connecting homomorphism
δ is a zero map. Thus, we have a short exact sequence

0 → f∗OY (A − T ) → OX → f∗OT (A) → 0.

So, we obtain f∗OT (A) ≃ OW and f∗OY (A − T ) ≃ IW , the defining
ideal sheaf of W . The isomorphism f∗OT (A) ≃ OW plays crucial roles.
Thus we write it as a lemma.

Lemma 2.3. We have f∗OT (A) ≃ OW . It obviously implies that

f∗OT ≃ OW .

Since

f ∗D + A − T − (KY + {BY } + B=1

Y − T ) ∼Q f ∗(D − (KX + B)),

and

f ∗D + A − (KY + {BY } + B=1

Y ) ∼Q f ∗(D − (KX + B)),

we have

H i(X, IW ⊗OX(D)) ≃ H i(X, f∗OY (A − T ) ⊗OX(D)) = 0

and
H i(X,OX(D)) ≃ H i(X, f∗OY (A) ⊗OX(D)) = 0

for any i > 0 by Theorem 2.1 (ii). By the long exact sequence

· · · → H i(X,OX(D)) → H i(W,OW (D))

→ H i+1(X, IW ⊗OX(D)) → · · · ,

we have H i(W,OW (D)) = 0 for any i > 0. We finish the proof. �

As a corollary, we can easily check the following result (cf. [A, Propo-
sitions 4.7 and 4.8]).

Theorem 2.4. Let X be a normal projective variety and B an effective

Q-divisor such that (X, B) is log canonical. Then we have the following

properties.
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(1) (X, B) has at most finitely many lc centers.

(2) An intersection of two lc centers is a union of lc centers.

(3) Any union of lc centers of (X, B) is semi-normal.

(4) Let x ∈ X be a closed point such that (X, B) is lc but not klt at

x. Then there is a unique minimal lc center Wx passing through

x, and Wx is normal at x.

Proof. We use the notation in the proof of Theorem 2.2. (1) is obvious.
(3) is also obvious by Lemma 2.3 since T is a simple normal crossing
divisor. Let C1 and C2 be two lc centers of (X, B). We fix a closed
point P ∈ C1 ∩ C2. It is enough to find an lc center C such that
P ∈ C ⊂ C1 ∩ C2. We put W = C1 ∪ C2. By Lemma 2.3, we obtain
f∗OT ≃ OW . This means that f : T → W has connected fibers. We
note that T is a simple normal crossing divisor on Y . Thus, there exist
irreducible components T1 and T2 of T such that T1 ∩ T2 ∩ f−1(P ) 6= ∅
and that f(Ti) ⊂ Ci for i = 1, 2. Therefore, we can find an lc center
C with P ∈ C ⊂ C1 ∩ C2. We finish the proof of (2). Finally, we
will prove (4). The existence and the uniqueness of the minimal lc
center follow from (2). We take the unique minimal lc center W = Wx

passing through x. By Lemma 2.3, we have f∗OT ≃ OW . By shrinking
W around x, we can assume that every stratum of T dominates W .
Thus, f : T → W factors through the normalization W ν of W . Since
f∗OT ≃ OW , we obtain that W ν → W is an isomorphism. So, we
obtain (4). �

3. Proof of the main theorem

In this section, we prove Theorem 1.1. I think Proposition 3.1 is
a correct generalization of Shokurov’s non-vanishing theorem for log
canonical pairs.

Proposition 3.1 (Non-vanishing theorem). On the same assumption

as in Theorem 1.1, the base locus of the linear system |mL| contains

no lc centers of (X, B) for m ≫ 0.

First, we give a proof to Theorem 1.1 by using Proposition 3.1.

Proof of Theorem 1.1. If L is numerically trivial, then

h0(X,OX(±L)) = χ(X,OX(±L)) = χ(X,OX) = h0(X,OX) = 1

by the vanishing theorem (cf. Theorem 2.2). Thus, L is linearly trivial.
In this case, |mL| is free for any m ≫ 0. So, from now on, we can
assume that L is not numerically trivial.
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We assume that (X, B) is klt. Let x ∈ X be a general smooth point.
Then we can find an effective Q-divisor M on X such that

M ∼Q lL − (KX + B)

for some large integer l and that multxM > n = dim X. It is well
known as Shokurov’s concentration method. See, for example, [KM,
3.5 Step 2]. Let c be the log canonical threshold of (X, B) with respect
to M . By the construction, we have 0 < c < 1. Then

(a − ac + cl)L − (KX + B + cM) ∼Q (1 − c)(aL − (KX + B))

is ample. Therefore, by replacing B with B + cM , a with a − ac + cl,
we can assume that (X, B) is lc but not klt.

From now on, we assume that (X, B) is lc but not klt and that L is
not numerically trivial. By Proposition 3.1, we can take general mem-
bers D1, · · · , Dn+1 ∈ |pm1L| for some prime integer p and a positive
integer m1. Since D1, · · · , Dn+1 are general, (X, B + D1 + · · ·+ Dn+1)
is lc outside Bs|pm1L|. It is easy to see that (X, B + D), where
D = D1 + · · · + Dn+1, is not lc at the generic point of any irreducible
component of Bs|pm1L|. Let c be the log canonical threshold of (X, B)
with respect to D. Then (X, B + cD) is lc but not klt, and 0 < c < 1.
We note that

(c(n + 1)pm1 + a)L − (KX + B + cD) ∼Q aL − (KX + B)

is ample. By the construction, there exists an lc center of (X, B + cD)
contained in Bs|pm1L|. By Proposition 3.1, we can find m2 > m1 such
that Bs|pm2L| ( Bs|pm1L|. By the noetherian induction, there exists
mk such that Bs|pmkL| = ∅. Let p′ be a prime integer such that p′ 6= p.
Then, by the same argument, we can prove Bs|p′mk′L| = ∅ for some
positive integer mk′. So, there exists a positive number m0 such that
|mL| is free for any m ≥ m0. �

Let us go to the proof of Proposition 3.1.

Proof of Proposition 3.1. Let W be a minimal lc center of (X, B). If
L|W is numerically trivial, then we have

h0(W,OW (±L)) = χ(W,OW (±L)) = χ(W,OW ) = h0(W,OW ) = 1

by the vanishing theorem (see Theorem 2.2). Therefore, L|W is linearly
trivial. In particular, |mL|W | is free for any m > 0. On the other hand,

H0(X,OX(mL)) → H0(W,OW (mL))

is surjective for any m ≥ a by Theorem 2.2. Thus, Bs|mL| does not
contain W for any m ≥ a.
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Assume that L|W is not numerically trivial. Let x ∈ W be a general
smooth point. If l is a sufficiently large integer, then we can find an
effective Cartier divisor N on W such that N ∼ b(lL − (KX + B))
with multxN > b dim W for some positive integer b by Shokurov’s
concentration method. If b is sufficiently large and divisible, then IW ⊗
OX(b(lL− (KX +B))) is generated by global sections and H1(X, IW ⊗
OX(b(lL− (KX +B)))) = 0 since lL− (KX +B) is ample, where IW is
the defining ideal sheaf of W on X. By using the following short exact
sequence

0 → H0(X, IW ⊗OX(b(lL − (KX + B))))

→ H0(X,OX(b(lL − (KX + B))))

→ H0(W,OW (b(lL − (KX + B)))) → 0,

we can find an effective Q-divisor M on X with the following properties.

(i) M |W is an effective Q-divisor such that multxM |W > dim W .
(ii) M ∼Q lL − (KX + B) for some large positive integer l.
(iii) (X, B + M) is lc outside W .

We take the log canonical threshold c of (X, B) with respect to M .
Then (X, B + cM) is lc but not klt. By the above construction, we
have 0 < c < 1. By replacing (X, B) with (X, B + cM) as in the proof
of Theorem 1.1, we can find a smaller lc center W ′ of (X, B + cM)
contained in W . By repeating this process, we reach the situation
where L|W is numerically trivial.

Anyway, we proved that Bs|mL| contains no lc centers of (X, B) for
m ≫ 0. �
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