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Abstract. This short paper is an advertisement of the recent
big progress on injectivity, vanishing, and torsion-free theorems
introduced by Florin Ambro. These results will be indispensable
for the log minimal model program in the coming decade.

1. Introduction

In this short paper, we will discuss Ambro’s formulation of Kollár’s
injectivity, vanishing, and torsion-free theorems. These new results will
play important roles in the log minimal model program (LMMP, for
short) for log canonical pairs in the coming decade.

In 1980’s, the X-method initiated by Kawamata, sophisticated and
repeatedly used by many minimal modelers, for example, Reid, Shokurov,
and others, was the most important technique in the LMMP. It is and
will be a basic argument in the theory of higher dimensional algebraic
varieties.

Around 1990, Nadel introduced his multiplier ideal sheaves and proved
a vanishing theorem related to Nadel’s multiplier ideal sheaves. Now,
it is called Nadel’s vanishing theorem. We note that in the geomet-
ric situation the Nadel vanishing theroem is essentially the same as
the Kawamata–Viehweg vanishing theorem. This vanishing theorem
was used for geometric applications by, for example, Demailly, Tsuji,
Siu, and others. In particular, Siu invented very clever applications of
Nadel’s multiplier ideal sheaves and the Ohsawa–Takegoshi L2-extension
theorem. It led us to the proof of the flip theorem by Hacon and McK-
ernan based on Shokurov’s framework.

The main difference between the traditional X-method, which is a
clever application of the Kawamata–Viehweg vanishing theorem, and
the arguments based on the Nadel vanishing theorem is as follows. Let
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X be a variety and H a linear system on X. In the traditional X-
method, we take blow-ups of X and resolve the singularities of X and
H first. Then we apply the Kawamata–Viehweg vanishing theorem. In
the arguments based on the Nadel vanishing theorem, we construct a
multiplier ideal sheaf I corresponding to the singularities of X and H.
Then we use the Nadel vanishing theorem for the line bundles tensored
by I. Each method has its own advantage. We do not discuss the
details here. See, for example, [KM, Chapter 3] and [L, Part Three].

The theory of quasi-log varieties introduced in [A] also has its ad-
vantage to investigate linear systems on varieties. I think the results
obtained in [A] have a strong possibility that they will cause new de-
velopments in the LMMP. Unfortunately, his results are not popular
yet. They are not known even to experts. Therefore, I would like to
advertise the injectivity, vanishing, and torsion-free theorems in [A].
We only treat a special case of his results for simplicity. However, it
is sufficient for many applications in the LMMP. We will give a proof
of them on the assumption that the considered variety is smooth. The
reader can understand the main idea of the proof is not difficult. I hope
that this paper will motivate the reader to study these new techniques.
For a systematic and thorough treatment of this topic, see [F, Chapter
2].

Anyway, this paper is a gentle introduction to Chapter 2 in [F], which
is very technical and not so easy to read.

We summarize the contents of this paper. In Section 2, we will state
Ambro’s formulation of Kollár’s results in a simplified form. Section
3 is a short review of the Hodge theoretic aspect of the injectivity
theorem. In Section 4, we give a proof to the results in Section 2 on the
assumption that the considered variety is smooth. The reader will find
that we need no new ideas. In Section 5, we will explain applications of
our new vanishing theorem. The first one is the extension theorem from
lc centers. It is very strong and can not be reached by the Kawamata–
Viehweg–Nadel vanishing theorem. The final theorem is the Kodaira
vanishing theorem for log canonical pairs.

Notation. Let X be a normal variety and B an effective Q-divisor
such that KX + B is Q-Cartier. Then we can define the discrepancy
a(E,X,B) ∈ Q for any prime divisor E over X. If a(E,X,B) ≥ −1 for
any E, then (X,B) is called log canonical. We sometimes abbreviate
log canonical to lc. Assume that (X,B) is log canonical. If E is a
prime divisor over X such that a(E,X,B) = −1, then cX(E) is called
a log canonical center (lc center, for short) of (X,B), where cX(E) is
the closure of the image of E on X.
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Let r be a rational number. The integral part xry is the largest
integer ≤ r and the fractional part {r} is defined by r − xry. We
put prq = −x−ry and call it the round-up of r. For a Q-divisor
D =

∑r

i=1 diDi, where Di is a prime divisor for any i and Di 6= Dj

for i 6= j, we call D a boundary Q-divisor if 0 ≤ di ≤ 1 for any i.
We note that ∼Q denotes the Q-linear equivalence of Q-Cartier Q-
divisors. We put xDy =

∑
xdiyDi, pDq =

∑
pdiqDi, {D} =

∑
{di}Di,

D<1 =
∑

di<1 diDi, and D=1 =
∑

di=1Di.

We will work over C, the complex number field, throughout this
paper.

2. New theorems for simple normal crossing pairs

In this section, we state the vanishing and torsion-free theorems in
[A] in a simplified form without proofs. First, we fix the setting.

2.1 (Setting). Let Y be a simple normal crossing divisor on a smooth
varietyM and let D be a boundary Q-divisor onM such that Supp(D+
Y ) is simple normal crossing and that D and Y have no common ir-
reducible components. We put B = D|Y and consider the pair (Y,B).
Let ν : Y ν → Y be the normalization. We put KY ν +Θ = ν∗(KY +B).
A stratum of (Y,B) is an irreducible component of Y or the image of
some lc center of (Y ν ,Θ). When Y is smooth and B is a boundary
Q-divisor on Y such that SuppB is simple normal crossing, we put
M = Y × A1 and D = B × A1. Then (Y,B) ≃ (Y × {0}, B × {0})
satisfies the above conditions.

The following theorem is a special case of [A, Theorem 3.2].

Theorem 2.2. Let (Y,B) be as above. Let f : Y → X be a proper

morphism and L a Cartier divisor on Y .

(1) Assume that H ∼Q L − (KY + B) is f -semi-ample. Then every

non-zero local section of Rqf∗OY (L) contains in its support the f -image

of some strata of (Y,B).
(2) Let π : X → V be a proper morphism and assume that H ∼Q

f ∗H ′ for some π-ample Q-Cartier Q-divisor H ′ on X. Then, Rqf∗OY (L)
is π∗-acyclic, that is, Rpπ∗R

qf∗OY (L) = 0 for any p > 0.

This theorem is very powerful and will play crucial roles in the
LMMP for log canonical pairs. We will prove it on the assumption
that Y is smooth in Section 4.
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3. Hodge theoretic aspect

In this section, we will prove the following injectivity theorem. It
is essentially the same as [EV, 3.2. Theorem. c), 5.1. b)]. We use the
classical topology throughout this section.

Proposition 3.1 (Fundamental injectivity theorem). Let X be a pro-

jective smooth variety and S+B a boundary Q-divisor on X such that

the support of S +B is simple normal crossing and that xS +By = S.

Let L be a Cartier divisor on X and let D be an effective Cartier divisor

whose support is contained in SuppB. Assume that L ∼Q KX +S+B.

Then the natural homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the inclusion OX → OX(D), are injective for all

q.

Before we prove Proposition 3.1, let us recall some results on the
Hodge theory.

3.2. Let V be a smooth projective variety and Σ a simple normal
crossing divisor on V . Let ι : V \Σ → V be the natural open immersion.
Then ι!CV \Σ is quasi-isomorphic to the complex Ω•

V (log Σ)⊗OV (−Σ).
By this quasi-isomorphism, we can construct the following spectral
sequence

E
pq
1 = Hq(V,Ωp

V (log Σ) ⊗OV (−Σ)) ⇒ Hp+q
c (V \ Σ,C).

By the Serre duality, the right hand side Hq(V,Ωp
V (log Σ) ⊗OV (−Σ))

is dual to Hn−q(V,Ωn−p
V (log Σ)), where n = dimV . By the Poincaré

duality, Hp+q
c (V \ Σ,C) is dual to H2n−(p+q)(V \ Σ,C). Therefore,

dimHk
c (V \ Σ,C) =

∑

p+q=k

dimHq(V,Ωp
V (log Σ) ⊗OV (−Σ))

by Deligne (cf. [D, Corollaire (3.2.13) (ii)]). Thus, the above spectral
sequence degenerates at E1. We will use this E1-degeneration in the
proof of Proposition 3.1. By the above E1-degeneration, we obtain

Hk
c (V \ Σ,C) ≃

⊕

p+q=k

Hq(V,Ωp
V (log Σ) ⊗OV (−Σ)).

In particular, the natural inclusion ι!CV \Σ ⊂ OV (−Σ) induces surjec-
tions

Hp
c (V \ Σ,C) ≃ Hp(V, ι!CV \Σ) → Hp(V,OV (−Σ))

for any p.
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Proof of Proposition 3.1. We put L = OX(L−KX − S). Let ν be the
smallest positive integer such that νL ∼ ν(KX +S+B). In particular,
νB is an integral Weil divisor. We take the ν-fold cyclic cover π′ :
Y ′ = SpecX

⊕ν−1
i=0 L−i → X associated to the section νB ∈ |Lν |. More

precisely, let s ∈ H0(X,Lν) be a section whose zero divisor is νB. Then
the dual of s : OX → Lν defines a OX -algebra structure on

⊕ν−1
i=0 L−i.

Let Y → Y ′ be the normalization and π : Y → X the composition
morphism. For the details, see [EV, 3.5. Cyclic covers]. We can take a
finite cover ϕ : V → Y such that V is smooth, ϕ is a Kummer cover,
and T is a simple normal crossing divisor on V , where ψ = π ◦ ϕ and
T = ψ∗S, by Kawamata’s covering trick (cf. [EV, 3.17. Lemma]).

We can decompose ψ∗Ω
•
V (logT )⊗OV (−T ) and ψ∗(ι!CV \T ) into eigen

components. We have that

C
qis
−→ Ω•

X(log(S +B)) ⊗L−1(−S)

is a direct summand of

ψ∗(ι!CV \T )
qis
−→ ψ∗Ω

•
V (logT ) ⊗OV (−T ),

where qis means an quasi-isomorphism. The E1-degeneration of the
spectral sequence

E
pq
1 = Hq(V,Ωp

V (logT ) ⊗OV (−T ))

⇒ Hp+q(V,Ω•
V (log T ) ⊗OV (−T )) ≃ Hp+q(V, ι!CV \T )

implies the E1-degeneration of

E
pq
1 = Hq(X,Ωp

X(log(S +B)) ⊗ L−1(−S))

⇒ Hp+q(X,Ω•
X(log(S +B)) ⊗ L−1(−S)) ≃ Hp+q(X, C)

Therefore, the inclusion C ⊂ L−1(−S) induces surjections

Hp(X, C) → Hp(X,L−1(−S)).

We can check the following simple property by seeing the monodromy
action of the Galois group of ψ : V → X on C around SuppB.

Corollary 3.3 (cf. [KM, Corollary 2.54]). Let U ⊂ X be a connected

open set such that U ∩ SuppB 6= ∅. Then H0(U, C|U) = 0.

This property is utilized via the following fact. The proof is obvious.

Lemma 3.4 (cf. [KM, Lemma 2.55]). Let F be a sheaf of Abelian

groups on a topological space X and F1, F2 ⊂ F subsheaves. Let Z ⊂ X

be a closed subset. Assume that

(1) F2|X\Z = F |X\Z, and

(2) if U is connected, open and U ∩ Z 6= ∅, then H0(U, F1|U) = 0.
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Then F1 is a subsheaf of F2.

As a corollary, we obtain:

Corollary 3.5 (cf. [KM, Corollary 2.56]). Let M ⊂ L−1(−S) be a

subsheaf such that M |X\SuppB = L−1(−S)|X\SuppB. Then the injection

C → L−1(−S)

factors as

C →M → L−1(−S).

Therefore,

H i(X,M) → H i(X,L−1(−S))

is surjective for every i.

Proof. The first part is clear from Corollary 3.3 and Lemma 3.4. This
implies that we have maps

H i(X, C) → H i(X,M) → H i(X,L−1(−S)).

As we saw above, the composition is surjective. Hence so is the map
on the right. �

Therefore, Hq(X,L−1(−S−D)) → Hq(X,L−1(−S)) is surjective for
any q. By the Serre duality, we obtain

Hq(X,OX(KX) ⊗L(S)) → Hq(X,OX(KX) ⊗ L(S +D))

is injective for any q. This means that

Hq(X,OX(L)) → Hq(X,OX(L+D))

is injective for any q. �

4. New theorems for smooth varieties

In this section, we prove Theorem 2.2 on the assumption that Y
is a smooth projective variety and V is a point. First, we prove a
generalization of Kollár’s injectivity theorem (cf. [A, Theorem 3.1]). It
is an easy consequence of Proposition 3.1 and will produce the desired
torsion-free and vanishing theorems.

Theorem 4.1 (Injectivity theorem). Let X be a smooth projective va-

riety and S+B a boundary Q-divisor such that Supp(S+B) is simple

normal crossing and that xS + By = S. Let L be a Cartier divisor

on X and D an effective Cartier divisor that contains no lc centers of

(X,S +B). Assume the following conditions.

(i) L ∼Q KX + S +B +H,

(ii) H is a semi-ample Q-Cartier Q-divisor, and
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(iii) tH ∼Q D+D′ for some positive rational number t, where D′ is

an effective Q-Cartier Q-divisor that contains no lc centers of

(X,S +B).

Then the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the natural inclusion OX → OX(D), are injective

for all q.

Proof. We can take a resolution f : Y → X such that f is an isomor-
phism outside Supp(D + D′ + B), and that the union of the support
of f ∗(S + B + D + D′) and the exceptional locus of f has a simple
normal crossing support on Y . Let B′ be the strict transform of B on
Y . We write KY + S ′ + B′ = f ∗(KX + S + B) + E, where S ′ is the
strict transform of S, and E is f -exceptional. It is easy to see that
E+ = pEq ≥ 0. We put L′ = f ∗L + E+ and E− = E+ − E ≥ 0. We
note that E+ is Cartier and E− is Q-Cartier. Since f ∗H is semi-ample,
we can write f ∗H ∼Q aH

′, where 0 < a < 1 and H ′ is a general Cartier
divisor on Y . We put B′′ = B′ + E− + ε

t
f ∗(D + D′) + (1 − ε)aH ′ for

some 0 < ε ≪ 1. Then L′ ∼Q KY + S ′ + B′′. By the construction,
xB′′

y = 0, the support of S ′ +B′′ is simple normal crossing on Y , and
SuppB′′ ⊃ Suppf ∗D. So, Proposition 3.1 implies that the homomor-
phisms Hq(Y,OY (L′)) → Hq(Y,OY (L′ + f ∗D)) are injective for all q.
By Lemma 4.2 below, Rqf∗OY (L′) = 0 for any q > 0 and it is easy
to see that f∗OY (L′) ≃ OX(L). By the Leray spectral sequence, the
homomorphisms Hq(X,OX(L)) → Hq(X,OX(L+D)) are injective for
all q. �

Let us recall the following well-known easy lemma.

Lemma 4.2. Let V be a smooth projective variety and B a boundary Q-

divisor on V such that SuppB is simple normal crossing. Let f : V →
W be a projective birational morphism onto a variety W . Assume that

f is an isomorphism at the generic point of any lc center of (V,B) and

that D is a Cartier divisor on V such that D− (KV +B) is nef. Then

Rif∗OV (D) = 0 for any i > 0.

Proof. We use the induction on the number of irreducible components
of xBy and on the dimension of V . If xBy = 0, then the lemma follows
from the Kawamata–Viehweg vanishing theorem (cf. [KM, Corollary
2.68]). Therefore, we can assume that there is an irreducible divisor
S ⊂ xBy. We consider the following short exact sequence

0 → OV (D − S) → OV (D) → OS(D) → 0.
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By induction, we see that Rif∗OV (D−S) = 0 and Rif∗OS(D) = 0 for
any i > 0. Thus, we have Rif∗OV (D) = 0 for i > 0. �

The next theorem is the main result of this section (cf. [A, Theorem
3.2]).

Theorem 4.3 (Torsion-free and vanishing theorems). Let Y be a smooth

projective variety and S+B a boundary Q-divisor such that Supp(S+B)
is simple normal crossing and that xS + By = S. Let f : Y → X

be a projective morphism and L a Cartier divisor on Y such that

H ∼Q L− (KY + S +B) is f -semi-ample.

(i) Every non-zero local section of Rqf∗OY (L) contains in its sup-

port the f -image of some strata of (Y, S +B).
(ii) Assume that H ∼Q f ∗H ′ for some ample Q-Cartier Q-divisor

H ′ on X. Then Hp(X,Rqf∗OY (L)) = 0 for any p > 0 and

q ≥ 0.

Proof. We can assume that H is semi-ample by replacing L (resp. H)
with L+f ∗A′ (resp. H+f ∗A′), where A′ is a very ample Cartier divisor
on X. Assume that Rqf∗OY (L) has a local section whose support does
not contain the image of any (Y, S + B)-stratum. Then we can find a
very ample Cartier divisor A with the following properties.

(a) f ∗A contains no lc centers of (Y, S +B), and
(b) Rqf∗OY (L) → Rqf∗OY (L) ⊗OX(A) is not injective.

We can assume that H − f ∗A is semi-ample by replacing L (resp. H)
with L + f ∗A (resp. H + f ∗A). If necessary, we replace L (resp. H)
with L + f ∗A′′ (resp. H + f ∗A′′), where A′′ is a very ample Cartier
divisor on X. Then, we have

H0(X,Rqf∗OY (L)) ≃ Hq(Y,OY (L))

and

H0(X,Rqf∗OY (L) ⊗OX(A)) ≃ Hq(Y,OY (L+ f ∗A)).

We obtain that

H0(X,Rqf∗OY (L)) → H0(X,Rqf∗OY (L) ⊗OX(A))

is not injective by (b) if A′′ is sufficiently ample. So,

Hq(Y,OY (L)) → Hq(Y,OY (L+ f ∗A))

is not injective. It contradicts Theorem 4.1. We finish the proof of (i).
Let us go to the proof of (ii). We take a general member A ∈ |mH ′|,

where m is a sufficiently large and divisible integer, such that A′ = f ∗A
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and Rqf∗OY (L+A′) is Γ-acyclic for all q. By (i), we have the following
short exact sequences,

0 → Rqf∗OY (L) → Rqf∗OY (L+ A′) → Rqf∗OA′(L+ A′) → 0.

for any q. Note that Rqf∗OA′(L + A′) is Γ-acyclic by induction on
dimX and Rqf∗OY (L+A′) is also Γ-acyclic by the above assumption.
Thus, Epq

2 = 0 for p ≥ 2 in the following commutative diagram of
spectral sequences.

E
pq
2 = Hq(X,Rqf∗OY (L))

ϕpq

��

+3 Hp+q(Y,OY (L))

ϕp+q

��

E
pq

2 = Hp(X,Rqf∗OY (L+ A′)) +3 Hp+q(Y,OY (L+ A′))

We note that ϕ1+q is injective by Theorem 4.1. We have E
1q
2 →

H1+q(Y,OY (L)) is injective by the fact that Epq
2 = 0 for p ≥ 2. We

also have that E
1q

2 = 0 by the above assumption. Therefore, we obtain
E

1q
2 = 0 since the injection E1q

2 → H1+q(Y,OY (L+A′)) factors through

E
1q

2 . This implies that Hp(X,Rqf∗OY (L)) = 0 for any p > 0. �

5. Applications

In this final section, we give easy applications of our new vanishing
theorem. The next theorem is enough powerful and can not be obtained
by the classical approaches.

Theorem 5.1 (cf. [A, Theorem 4.4]). Let X be a normal projective va-

riety and B a boundary Q-divisor on X such that (X,B) is log canon-

ical. Let L be a Cartier divisor on X. Assume that L − (KX + B) is

ample. Let {Ci} be any set of lc centers of the pair (X,B). We put

W =
⋃
Ci with a reduced scheme structure. Then we have

H i(X, IW ⊗OX(L)) = 0

for any i > 0, where IW is the defining ideal sheaf of W on X. In

particular, the restriction map

H0(X,OX(L)) → H0(W,OW (L))

is surjective. Therefore, if (X,B) has a zero-dimensional lc center,

then the linear system |L| is not empty and the base locus of |L| contains

no zero-dimensional lc centers of (X,B).

Proof. Let f : Y → X be a resolution such that Suppf−1
∗ B ∪Exc(f) is

a simple normal crossing divisor. We can further assume that f−1(W )
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is a simple normal crossing divisor on Y . We can write

KY +BY = f ∗(KX +B).

Let T be the union of the irreducible components of B=1
Y that are

mapped into W by f . We consider the following short exact sequence

0 → OY (A− T ) → OY (A) → OT (A) → 0,

where A = p−(B<1
Y )q. Note that A is an effective f -exceptional divisor.

We obtain the following long exact sequence

0 → f∗OY (A− T ) → f∗OY (A) → f∗OT (A)

δ
→ R1f∗OY (A− T ) → · · · .

Since

A− T − (KY + {BY } +B=1
Y − T ) = −(KY +BY ) ∼Q −f ∗(KX +B),

any non-zero local section of R1f∗OY (A−T ) contains in its support the
f -image of some strata of (Y, {BY }+B=1

Y −T ) by Theorem 4.3 (i). On
the other hand, W = f(T ). Therefore, the connecting homomorphism
δ is a zero map. Thus, we have a short exact sequence

0 → f∗OY (A− T ) → OX → f∗OT (A) → 0.

So, we obtain f∗OT (A) ≃ OW and f∗OY (A − T ) ≃ IW , the defining
ideal sheaf of W . The isomorphism f∗OT (A) ≃ OW plays crucial roles
in the theory of quasi-log varieties. So, we proved it here. Since

f ∗L+ A− T − (KY + {BY } +B=1
Y − T ) ∼Q f

∗(L− (KX +B)),

we have

H i(X, IW ⊗OX(L)) ≃ H i(X, f∗OY (A− T ) ⊗OX(L)) = 0

for any i > 0 by Theorem 4.3 (ii). We finish the proof. �

We close this paper with the Kodaira vanishing theorem for log
canonical pairs. For a more general result containing the Kawamata–
Viehweg vanishing theorem, see [F, Theorem 2.48].

Theorem 5.2 (Kodaira vanishing theorem for lc pairs). Let X be a

normal projective variety and B a boundary Q-divisor on X such that

(X,B) is log canonical. Let L be a Q-Cartier Weil divisor on X such

that L− (KX +B) is ample. Then Hq(X,OX(L)) = 0 for any q > 0.

Proof. Let f : Y → X be a resolution of (X,B) such that KY =
f ∗(KX + B) +

∑
i aiEi with ai ≥ −1 for any i and that Supp

∑
Ei

is simple normal crossing. We can assume that
∑

iEi ∪ Suppf ∗L is
a simple normal crossing divisor on Y . We put E =

∑
i aiEi and

F =
∑

aj=−1(1 − bj)Ej , where bj = multEj
{f ∗L}. We note that A =
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L− (KX + B) is ample by the assumption. So, we have f ∗A = f ∗L−
f ∗(KX + B) = pf ∗L + E + Fq − (KY + F + {−(f ∗L + E + F )}).
We can easily check that f∗OY (pf ∗L + E + Fq) ≃ OX(L) and that
F + {−(f ∗L+E + F )} has a simple normal crossing support and is a
boundary Q-divisor on Y . By Theorem 4.3 (ii), we obtain that OX(L)
is Γ-acyclic. Thus, we have Hq(X,OX(L)) = 0 for any q > 0. �

The reader can find more advanced topics and many other applica-
tions in [F]. As we pointed out before, this paper is a gentle introduc-
tion to Chapter 2 in [F]. We recommend the reader to see [F].
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