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1 Introduction

Samelson products have been studied extensively for the classical groups ([5], [9], [10]), but few

results are known for exceptional Lie groups. In [13], Ōshima determines the Samelson product

πn(G2) × π11(G2) → πn+11(G2)

for n = 3, 11. Let G(l) be the compact, simply connected, exceptional simple Lie group of rank

l, where l = 2, 4, 6, 7, 8. Define the set of integers N(l) and the prime r(l) as in the following

table.

l G(l) N(l) r(l)

2 G2 {2, 6} 7

4 F4 {2, 6, 8, 12} 13

6 E6 {2, 5, 6, 8, 9, 12} 13

7 E7 {2, 6, 8, 10, 12, 14, 18} 19

8 E8 {2, 8, 12, 14, 18, 20, 24, 30} 31

If p is a prime and p ≥ r(l), then G(l) is p-regular (see [14]), that is, there is a homotopy

equivalence ∏
j∈N(l)

S2j−1
(p)

'−→ G(l)(p),

where −(p) stands for the localization at the prime p in the sense of Bousfield and Kan [3]. For

k ∈ N(l) define ε2k−1 ∈ π2k−1(G(l)(p)) ∼= Z(p) by the composition

S2k−1 i−→
∏

j∈N(l)

S2j−1
(p)

'−→ G(l)(p),

where i is the canonical inclusion. The purpose of this paper is to show:
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Theorem 1.1. If k1, k2 ∈ N(l) satisfy k1+k2 = r(l)+1, then the Samelson product 〈ε2k1−1, ε2k2−1〉 6=
0 in π2r(l)(G(l)(r(l))).

Theorem 1.2. If k1 and k2 ∈ N(l) satisfy k1 + k2 = r(l) + 1, then the Samelson product

〈〈ε2k1−1, ε2k2−1〉, ε2r(l)−3〉 6= 0 in π4r(l)−3(G(l)(r(l))).

Corollary 1.1. The nilpotency class of the localized self homotopy group [G(l), G(l)]r(l) is

greater than or equal to 3.

In order to prove Theorem 1.1, we use the following lemma which will be proved in §3 and

§4. Let p be a prime greater than 5. Then we have

H∗(BG(l);Fp) = Fp[y2j; j ∈ N(l)], |y2j| = 2j. (1.1)

Lemma 1.1. Modulo (H̃∗(BG(l);Z/p))3, we have

P1y4 ≡


ξ1y4y60 + ξ2y16y48 + ξ3y24y40 + ξ4y28y36 (l, p) = (8, 31)

ξ1y4y36 + ξ2y12y28 + ξ3y16y24 + ξ4y
2
20 (l, p) = (7, 19)

ξ1y4y24 + ξ2y12y16 + ξ3y10y18 (l, p) = (6, 13)

ξ1y4y24 + ξ2y12y16 (l, p) = (4, 13)

for ξj ∈ (Z/p)×.

Proof of Theorem 1.1. The proof for l = 2 is done in [13]. Put l = 4, 6, 7. Then we follow the

proof of [8, Theorem 1.1]. Consider the map ε′2k : S2k → BG(l)(p) which is the adjoint of ε2k−1.

Suppose that the Whitehead product [ε′2k1
, ε′2k2

] = 0 for k1, k2 ∈ N(l) and k1 + k2 = p + 1 (p =

r(l)). Then we have a homotopy commutative diagram:

S2k1 ∨ S2k2

²²

ε′2k1
∨ε′2k2 // BG(l)(p)

S2k1 × S2k2
θ // BG(l)(p),

where the left vertical arrow is the inclusion. It is clear that P1θ∗(y4) = 0. On the other hand,

we have θ∗(P1y4) 6= 0. Then we obtain [ε′2k1
, ε′2k2

] 6= 0 and thus, by adjointness of Whitehead

products and Samelson products, we have established 〈ε2k1−1, ε2k2−1〉 6= 0.

Proof of Theorem 1.2. If p = r(l), G(l) is p-regular and then

π2p(G(l)(p)) ∼=
⊕

j∈N(l)

π2p(S
2j−1
(p) ) ∼= π2p(S

3
(p))
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for a dimensional reason (see [15]). If k1, k2 ∈ N(l) and k1 + k2 = p + 1, there is an integer

ξ′k1,k2
∈ Z×

(p) satisfying a homotopy commutative diagram

S2p
α1 //

〈ε2k1−1,ε2k2−1〉 ##HH
HH

HH
HH

H S3

ξ′k1,k2
ε3

²²
G(l)(p),

where α1 is a generator of the p-primary component of π2p(S
3) which is isomorphic to Z/p. In

particular, we have a homotopy commutative diagram:

S2p
α1 //

〈ε3,ε2p−1〉 ##GG
GG

GG
GG

G S3

ξ′2,p−1ε3
²²

G(l)(p)

Then there is a homotopy commutative diagram:

S2p ∧ S2p−3
α1∧1S2p−3 //

〈ε2k1−1,ε2k2−1〉∧ε2p−3

²²

S3 ∧ S2p−3

ξ′k1,k2
ε3∧ε2p−3

²²

S2p
α1 //

ξ′k1,k2
〈ε3,ε2p−3〉

²²

S3

ξ′k1,k2
ξ′2,p−1ε3

||yyyyyyyyyyyyy

G(l)(p) ∧ G(l)(p) G(l)(p) ∧ G(l)(p)
γ // G(l)(p),

where γ is the commutator map of G(l)(p). Since α1 ◦ (α1 ∧ 1S2p−3) 6= 0 in π4p+1(S
3
(p)) (see [14]

and [15]), we have established Theorem 1.2.

Proof of Corollary 1.1. Define θi ∈ [G(l)(p), G(l)(p)] for i ∈ N(l) by the composition

G(l)(p)
q−→ S2k1−1 ε2k1−1−−−→ G(l)(p),

where q is the projection. If l ≥ 4, there are k1, k2 ∈ N(l) satisfying k1 < k2 < p = r(l) and

k1 + k2 = p + 1. Then it follows from Theorem 1.2 that the commutator [[θk1 , θk2 ], θp−1] in

[G(l)(p), G(l)(p)] ∼= [G(l), G(l)](p) is nontrivial ([3]) and therefore the proof is completed.

2 W (E8)-invariant polynomials

Let p be a prime > 5. Then we have

H∗(BG(l);Z(p)) = Z(p)[ỹ2j; j ∈ N(l)], ρ(ỹi) = yi,

where ρ is the modulo p reduction and yi are as in (1.1). Let T be a maximal torus of G(l) and

let W (G(l)) be the Weyl group of G(l). Consider the fibre sequence:

G(l)/T → BT
λl−→ BG(l)
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Then λ∗
l (ỹ2j) is W (G(l))-invariant and the sequence {λ∗

l (ρ(ỹ2j)); j ∈ N(l)} is a regular sequence.

Let αi (i = 1, . . . , 8) be the simple roots E8. Then, as is well known, the dominant root α̃

of E8 is given by

α̃ = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8.

Recall that the completed Dynkin diagram of E8 is:

b b b b b b b s
b

α1 α3 α4 α5 α6 α7 α8 α̃

α2

Let ei be the dual of (0, . . . , 0,
i

1, 0, . . . , 0) ∈ R8 for i = 1, . . . , 8. Then we can put

α1 =
1

2
(e1 + e8) −

1

2
(e2 + e3 + e4 + e5 + e6 + e7)

α2 =e1 + e2

αi =ei−2 − ei−3 (3 ≤ i ≤ 8).

Hence we have α̃ = e7 + e8 (see [7]). Put t1 = −e1, t8 = −e8 and ti = ei for i = 2, . . . , 7. are

generator of H∗(BT ). Let ϕi and ϕ̃ be the reflections on the hyperplanes αi = 0 and α̃ = 0

respectively. Then it is well known that W (E8) is generated by ϕ1, . . . , ϕ8. Let W ′ be the

subgroup of W (E8) generated by ϕ2, . . . , ϕ8, ϕ̃. Namely, W ′ is the Weyl group of Ss(16) in E8

which is a compact connected simple Lie group of type D8. Put ϕ = ϕ1. Then it is straight

forward to check

ϕ(ti) = ti − 1
4
(t1 + · · · + t8) (2.1)

for i = 1, . . . , 8.

We can regard t1, . . . , t8 are a basis of H2(BT ;Z(p)). Define polynomials ci and pi by

8∏
i=1

(1 + ti) =
8∑

i=0

ci

and
8∏

i=1

(1 − t2i ) =
8∑

i=0

(−1)ipi

respectively. Then since W ′ is the Weyl group of Ss(16) in E8 as is noted above, we have

H∗(BT ;Z(p))
W ′

= Z(p)[p1, . . . , p7, c8].
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It follows from (2.1) that

8∑
i=0

ϕ(ci) =
8∏

i=1

(1 + ϕ(ti)) =
8∏

i=1

(1 − 1
4
c1 + ti) =

8∑
k=0

(1 − 1
4
c1)

8−kck

and then we obtain

ϕ(c1) = −c1, ϕ(c2) = c2 and ϕ(ci) ≡ ci − 1
4
(8 − k + 1)ci−1c1 mod (c2

1) (2.2)

for i = 3, . . . , 8. In particular, we have ϕ(p1) = p1 and the ideals (c1), (c
2
1, p1) = (c2

1, c2), (c
2
1, p

2
1) =

(c2
1, c

2
2) are W (E8)-invariant. Then it follows from (2.2) that

ϕ(pj) ≡ pj + hjc1 mod (c2
1)

for i = 2, . . . , 8, where

h2 = 3
2
c3, h3 = −1

2
(5c5 + c3c2), h4 = 1

2
(7c7 + 3c5c2 − c4c3),

h5 = −1
2
(5c7c2 − 3c6c3 + c5c4), h6 = −1

2
(5c8c3 − 3c7c4 + c6c5), h7 = 1

2
(3c8c5 − c7c6).

Summarizing, we have established:

Lemma 2.1. Modulo (c2
1), we have

ϕ(p4) ≡ p4 +
1

2
(c7c1 + 3c5c2c1 − c4c3c1), ϕ(p2

2) ≡ p2
2 + 6c4c3c1 + 3c3c

2
2c1,

ϕ(c8) ≡ c8 −
1

4
c7c1, ϕ(p3p1) ≡ p3 + 5c5c2c1 + c3c

2
2c1,

ϕ(p2p
2
1) ≡ p2 + 6c3c

2
2c1.

Corollary 2.1. If f ∈ H16(BT ;Z(p)) satisfies ϕ(f) ≡ f mod (c2
1), then there exist α, α′ ∈ Z(p)

such that

f = αf̃16 + α′p4
1,

where f̃16 = 120p4 + 10p2
2 + 1680c8 − 36p3p1 + p2p

2
1.

We also have established:

Lemma 2.2. Modulo (c2
1, c

2
2) = (c2

1, p
2
1), we have

ϕ(p0) ≡ p6 − 5
2
c8c3c1 + 3

2
c7c4c1 − 1

2
c6c5c1,

ϕ(p5p1) ≡ p5p1 − 3c6c3c2c1 + c5c4c2c1,

ϕ(p4p2) ≡ p4p2 + 3c8c3c1 + 7c7c4c1 + 3c6c3c2c1 + 3c5c4c2c1,−3c5c
2
3c1 + 1

2
c2
4c3c1,

ϕ(c8p2) ≡ c8p2 + 3
2
c8c3c1 − 1

2
c7c4c1,

ϕ(p2
3) ≡ p2

3 + 10c6c5c1 + 2c6c3c2c1 + 10c5c4c2c1 − 5c5c
2
3c1 − c3

3c2c1,

ϕ(p3p2p1) ≡ p3p2p1 + 6c6c3c2c1 + 10c5c4c2c1 − 3c3
3c2c1,

ϕ(p3
2) ≡ p3

3 + 18c2
4c3c1.
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Corollary 2.2. If f ∈ H24(BT ;Z(p)) satisfies ϕ(f) ≡ f mod (c2
1, p

2
1), there exists β ∈ Z(p)

such that f ≡ βf̃24 mod (p2
1), where

f̃24 = 60p6 − 5p5p1 − 5p4p2 + 110c8p2 + 3p2
3 − p3p2p1 + 5

36
p3

2.

Now we make a choice of generators of H∗(BE8;Z(p)) as follows:

Theorem 2.1. We can choose ỹ16 and ỹ24 such that λ∗
8(ỹ16) = f̃16 and λ∗

8(ỹ24) = f̃24 mod (p2
1).

Proof. First of all, we can choose ỹ4 such that λ∗
8(ỹ4) = p1. Then since ϕ(λ∗

8(ỹ16)) = λ∗
8(ỹ16), it

follows from Corollary 2.1 that we can choose ỹ16 such that λ∗
8(ỹ16) = αf̃16 for some α ∈ Z(p).

Suppose that (α, p) = p. Then {λ∗
8(ρ(ỹ4)), λ

∗
8(ρ(ỹ16))} is not a regular sequence and this is a

contradiction. Thus we obtain (α, p) = 1. The case of ỹ24 is quite similar.

3 Proof of Lemma 1.1 for l = 8

We abbreviate the modulo 31 reduction of ti, ci, pi by the same ti, ci, pi respectively. We write

the modulo 31 reduction of f̃i by fi for i = 16, 24. Put Tn = t2n
1 + · · · + t2n

8 . Then, by Girard’s

formula ([11]), we have:

(−1)kTk = k
∑

i1+2i2+···+8i8

(−1)i1+···+i8
(i1 + · · · i8 − 1)!

i1! · · · i8!
pi1

1 · · · pi8
8 . (3.1)

On the other hand, we have λ∗
8(y4) = p1 = T1,P1T1 = 2T16 and then

λ∗
8(P1y4) = 2T16 (3.2)

We denote the subalgebra F31[p1, . . . , p7, c8] of H∗(BT ;F31) by R. Note that Imλ∗
8 ⊂ R.

Define an algebra homomorphism π1 : R → F31[x1, x5]/(x
2
1) by

π1(pi) = 0 (i = 2, 3, 4, 7), π1(p1) = x1, π1(p5) = x5, π1(p6) = 1
12

x1x5, π1(c8) = 0.

Put φ1 = π1 ◦ λ∗
8. Then we have φ1(y

2
4) = and, by Theorem 2.1, φ1(y16) = φ1(y24) = 0. Hence,

for a degree reason, we can put

P1y4 = ξ1y4y60 + γ1

for ξ1 ∈ F31 and γ1 ∈ Kerφ1. It follows from (3.1) that 2T16 ≡ p1p
3
5 − p2

5p6 mod Kerπ1

and hence we obtain π1(2T16) = 11
12

x1x
3
5 6= 0. Thus, by (3.2), we have established φ1(P1y4) =

π1(2T16) 6= 0 which implies ξ1 6= 0.

Define an algebra homomorphism π2 : R → F31[x4, x
′
4] by

π2(pi) = 0 (i = 1, 2, 3, 5, 6, 7), π2(p4) = x4, π2(c8) = x′
4.
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Put φ2 = π2 ◦ λ∗
8. Then we have φ2(y4) = 0 and, for a degree reason, φ2(y24) = φ2(y28) = 0.

Thus, for a dimensional reason, we can put

P1y4 = ξ2y16y48 + ξ′2y
4
16 + γ2

for ξ2, ξ
′
2 ∈ F31 and γ2 ∈ Kerφ2. Now, by (3.1), we have 2T16 = 1

4
p4

4 − p2
4p8 + 1

2
p2

8 mod Kerπ2

and then π2(2T16) = 1
4
x4

4−x′
4
2x2

4 + 1
2
x′

4
4, where p8 = c2

8. This implies that if ξ2 = 0, then ξ′2 6= 0.

On the other hand, it follows from Theorem 2.1 that φ2(y16) = 120(x4 + 14x′
4). Suppose that

ξ2 = 0. Then ξ′2 6= 0 as above and thus, by (3.2),

φ(P1y4) = ξ′2(120(x4 + 14x′
4))

4 = 1
4
x4

4 − x′
4
2
x2

4 + 1
2
x′

4
4
.

This is a contradiction and therefore ξ2 6= 0.

Define an algebra homomorphism π3 : R → R3 = K[x5, x6] by

π3(pi) = 0 (i = 1, 2, 3, 4, 7), π3(p5) = x5, π3(p6) = x6, π3(c8) = 0.

Put φ3 = π3 ◦ λ∗
8. Then it follows that φ3(y4) = φ3(y16) = φ3(y28) = 0 and hence we can put

P1y4 = ξ3y24y40 + γ3

for ξ3 ∈ F31 and γ3 ∈ Kerφ3. By (3.1), we have 2T16 = −p2
5p6 mod Kerπ3 and then π3(2T16) =

−x2
5x6 6= 0 which implies ξ3 6= 0 by (3.2).

Define π4 : R → F31[x3, x7] by

π4(pi) = 0 (i = 1, 2, 4, 5), π4(p3) = x3, π4(p6) = − 1
20

x2
3, π4(p7) = x7, π4(c8) = 0.

Put φ4 = π4 ◦ λ∗
8. Then we have φ4(y4) = φ4(y16) = 0 and, by Theorem 2.1, φ4(y28) = 0. Thus,

for a dimensional reason, we can put

P1y4 = ξ4y28y36 + γ4

for ξ4 ∈ F31 and γ4 ∈ Kerφ4. It follows from (3.1) that 2T16 = −2p3p6p7 + p3
3p7 mod Kerπ4

and then π4(2T16) = 2
20

x3
3x7 + x3

3x7 = 11
10

x3
3x7 6= 0. Thus, for (3.2), we obtain ξ4 6= 0. Now we

have established Lemma 1.1 for l = 8.

4 Proof of Lemma 1.1 for l = 4, 6, 7

Let us first recall the construction of G(l) for l = 4, 6, 7. Consider the following commutative

diagram of the natural inclusions:

SU(2) //

²²

SU(3) //

²²

G2

²²
Spin(4) // Spin(6) // Spin(7) // Spin(16)
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Note that we have the canonical map i : Spin(16) → Ss(16) ⊂ E8 as in the previous section.

Then i(G2), i(SU(3)), i(SU(2)) are the closed subgroups of E8 and we know that F4, E6, E7 are

the identity component of the centralizers of the image of the above i(G2), i(SU(3)), i(SU(2))

in E8 respectively (see [1]). Consider the natural inclusion Spin(k) × Spin(16 − k) → Spin(16)

for k = 4, 5, 6, 7. Then we obtain a commutative diagram of inclusions:

Spin(9)
j1 //

i1
²²

Spin(10)
j2 //

i2
²²

Spin(11) //

i3
²²

Spin(12)

i4
²²

F4
k1 // E6

k2 // E7 E7

Next we recall classical results due to [2], [6] and [16] on the cohomology of homogeneous

spaces given by the above inclusions:

Lemma 4.1. The integral cohomology of E6/F4, E6/Spin(10) and E7/E6 are given as follows.

1. H∗(E6/F4;Z) = Λ(x9, x17), |xj| = j.

2. H∗(E6/Spin(10);Z) = Z[x8]/(x
3
8) ⊗ Λ(x17), |xj| = j.

3. H∗(E7/E6;Z) = Z{1, z10, z18, z37, z45, z55}⊕Z/2{z28}, |zj| = j, where R{a1, a2, . . .} stands

for a free module with a basis a1, a2, . . . over a ring R.

Hereafter, we let p be a prime greater than 5. Then the mod p cohomology of BG(l) is given

by (1.1). Then, by the standard spectral sequence argument together with 4.1, we obtain:

Lemma 4.2. 1. We can choose generators y2i ∈ H∗(BE6;Fp) such that

k∗
1(y2i) =

{
0 i = 5, 9

y2i i ∈ N(4)

2. We can choose generators y2i ∈ H∗(BE7;Fp) such that

k∗
2(y2i) =


y2

10 i = 10

y10y18 i = 14

y2i i ∈ N(4).

Recall that we have

H∗(BSpin(2l + 1);Fp) = Fp[p1, . . . , pl],

H∗(BSpin(2l);Fp) = Fp[p1, . . . , pl−1, cl],
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where pi is the i-th universal Pontrjagin class and cl is the Euler class. Let T l be the standard

maximal torus of Spin(2l + ε) for ε = 0, 1 and let t1, . . . , tl be the standard generators of

H2(BT l;Fp). Then the canonical map λ′ : BT l → BSpin(2l + 1) satisfies

l∑
j=0

(−1)jλ′∗(pj) =
l∏

i=1

(1 − t2i ), (4.1)

where p0 = 1 and c2
l = pl (see [4]). Specializing to our case, we have

j∗1(pk) = pk (k = 1, 2, 3, 4), j∗2(pk) = pk (k = 1, 2, 3, 4), j∗1(c5) = 0, j∗2(p5) = c2
5.

It follows from [4, (3) in §19] that we can choose y2i ∈ H∗(BF4;Fp) for i = 2, 6, 8 such as

i∗1(y4) = p1, i∗1(y12) = −6p3 + p2p1, i∗1(y16) = 12p4 + p2
2 − 1

2
p2

1p2. (4.2)

4.1 The case of l = 7

We put l = 7 and p = 19 in the above observation. Put Tn = t2n
1 + · · · + t2n

5 . Then we have

Girard’s formula (3.1). By (4.1), we have i∗3y4 = p1 = T1 and then

i∗3(P1y4) = P1i∗3(y4) = P1T1 = 2T10. (4.3)

Define an algebra homomorphism π1 : F19[p1, . . . , p5] → F19[x1, x2, x5]/(x
2
1, x

3
2, x

2
5) by

π1(pi) = xi (i = 1, 2, 5), π1(p3) = 1
6
x2x1, π1(p4) = − 1

12
x2

2

Then we have π1(p41
2) = π1(p1p3) = 0. Put φ1 = π1 ◦ i∗3. Then it follows from Lemma 4.2, (4.2)

and a degree reason that φ1(y
2
4) = φ1(y12) = φ(y16) = φ1(y20) = 0. Hence, for a degree reason,

we can put

P1y4 = ξ1y4y36 + γ1

for ξ1 ∈ F19 and γ1 ∈ Kerφ1. On the other hand, by (4.3), we have 2T10 ≡ 3p1p
2
2p5 − p1p4p5 −

p2p3p5 mod Kerπ1 and then π1(2T10) = 35
12

x1x
2
2x5 6= 0. Thus, by (4.3), we have obtained

ξ1 6= 0.

Define an algebra homomorphism π2 : F19[p1, . . . , p5] → F19[x2, x3, x5]/(x
2
2, x

2
3, x

2
5) by

π2(pi) = xi (i = 2, 3, 5), π2(pi) = 0 (i = 1, 4).

Put φ1 = π2 ◦ i∗3. Then it follows from Lemma 4.2, (4.2) and a degree reason that φ2(y4) =

φ2(y16) = φ2(y
2
20) = 0 and hence we can put

P1y4 = ξ2y12y28 + γ2
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for ξ2 ∈ F19 and γ2 ∈ Kerφ2. Now, by (3.1), we have π2(2T10) = −x2x3x5 and then, by (4.3),

ξ2 6= 0.

Define algebra homomorphisms π3 : F19[p1, . . . , p5] → F19[x2] and π4 : F19[p1, . . . , p5] →
F19[x5] by

π3(p2) = x2, π3(pi) = 0 (i 6= 2), π4(pi) = 0, π4(p5) = x5 (i 6= 5).

Put φi = πi ◦ i∗3 for i = 3, 4. Then it follows from Lemma 4.2, (4.2) and a degree reason that

φ3(y4) = φ3(y12) = φ3(y20) = 0 and φ4(y4) = φ4(y12) = φ4(y16) = 0. Thus we can put

P 1y4 = ξ3y16y24 + γ3 = ξ4y
2
20 + γ4

for ξ3, ξ4 ∈ F19, γ3 ∈ Kerφ3 and γ4 ∈ Kerφ4. On the other hand, by (3.1), we have 2T10 = −1
5
p5

2

mod Kerπ3 and 2T10 = 1
2
p2

5 mod Kerπ4. Then π3(2T10) = −1
5
x5

2 6= 0 and π4(2T10) = 1
2
x2

5 6= 0

which imply ξ3 6= 0 and ξ4 6= 0. Therefore the proof of Lemma 1.1 for l = 7 is completed.

4.2 The case of l = 4, 6

We first consider the case l = 4 and p = 13. As in the above sections, we put Tn = t2n
1 + · · · t2n

4 .

Then we have Girard’s formula (3.1) and

i∗1(P1y4) = 2T7. (4.4)

Define an algebra homomorphism π1 : F13[p1, . . . , p4] → F13[x1, x2]/(x
2
1) by

π1(p1) = x1, π1(p2) = x2, π1(p3) = 1
6
x1x2, π1(p4) = − 1

12
x2

2.

Put φ1 = π1 ◦ i∗1. Then it follows from (4.2) that φ1(y
2
4) = φ1(y12) = φ1(y16) = 0 and thus we

can put

P1y4 = ξ1y4y24 + γ1

for ξ1 ∈ F13 and γ1 ∈ Kerφ1. By (3.1), we have 2T7 = −(3p1p
3
2 − 2p1p2p4 − 2p2

2p3 + p3p4)

mod Kerπ1 and then π1(T7) 6= 0. Thus, for (4.4), we have obtained ξ1 6= 0.

We define an algebra homomorphism π1 : F13[p1, . . . , p4] → F13[x3, x4] by

π2(pi) = 0 (i = 1, 2), π2(pi) = xi (i = 3, 4).

Put φ2 = π2 ◦ i∗1. Then, by (4.2), we have φ2(y4) = 0 and then we can put

P1y4 = ξ2y12y16 + γ2

for ξ2 ∈ F13 and γ2 ∈ Kerφ2. It follows from (3.1) that 2T10 = −p3p4 mod Kerπ2 and then

π2(2T7) 6= 0 which implies ξ2 6= 0 by (4.4). Thus the proof of Lemma (1.1) for l = 4 is

completed.
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Next we consider the case l = 6 and p = 13. By Lemma 4.2 and the above result for

l = 4, we only have to show ξ3 6= 0 in Lemma 1.1. As is seen in [12, Theorem 5.18], we have

P1σ(y4) = ξ3σ(y28) in H∗(E7;F13) for some ξ3 6= 0 ∈ F13, where σ denotes the cohomology

suspension. By Lemma 4.2, we have k∗
2(y28) = y10y18 and then we obtain P1y4 ≡ ξ3y10y18

mod (y4, y12, y16) in H∗(BE6;F13). Therefore the proof of Lemma 1.1 is accomplished.
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