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1 Introduction

Samelson products have been studied extensively for the classical groups ([5], [9], [10]), but few

results are known for exceptional Lie groups. In [13], Oshima determines the Samelson product
T (Ga) X m1(Ga) — Tpi11(Go)

for n = 3,11. Let G(I) be the compact, simply connected, exceptional simple Lie group of rank
[, where [ = 2,4,6,7,8. Define the set of integers N(I) and the prime r(I) as in the following
table.

L | G(I) N(I) (1)
2| G, {2,6} 7

4| Fy {2,6,8,12} 13
6| Eg {2,5,6,8,9,12} 13
7| B, {2,6,8,10,12,14,18} 19
8| Es  {2,8,12,14,18,20,24,30} 31

If p is a prime and p > r(l), then G(I) is p-regular (see [14]), that is, there is a homotopy

HSQJ”G

JEN(D)

equivalence

where —;,) stands for the localization at the prime p in the sense of Bousfield and Kan [3]. For

k € N(I) define egp—1 € mop—1(G(l)(p)) = Z(p) by the composition

SQkIZHSZjlﬁG

JEN(I)

where 7 is the canonical inclusion. The purpose of this paper is to show:
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Theorem 1.1. If ki, ke € N(1) satisfy ki+ko = r(1)+1, then the Samelson product (€gy, 1, €2py—1) F#
0 m 7T2r(l)(G(l>(r(l)))-

Theorem 1.2. If ky and ky € N(I) satisfy kv + ko = r(I) + 1, then the Samelson product
{{€am -1, €2mo-1), €2r)-3) 7# 0 in Tar ) -3(G (D))

Corollary 1.1. The nilpotency class of the localized self homotopy group [G(1),G(1)],q) is

greater than or equal to 3.

In order to prove Theorem 1.1, we use the following lemma which will be proved in §3 and

84. Let p be a prime greater than 5. Then we have
H*(BG(1);Fy) = Fyly;:5 € N, |yos] = 2. (1.1)

Lemma 1.1. Modulo (H*(BG(1);Z/p))?, we have

§1Ya¥e0 + S2y16Yas + E3Y2ava0 + Savasyzs ([, p) = (8,31)
Ply, = E1yayss + E2y12Yas + Esvreles + EaYdo (l,p) = (7,19)
§1YaYoa + S2y12Y16 + E3Y10Y18 (I,p) = (6,13)
§1Yay24 + E2y12Y16 (I,p) = (4,13)

for & € (Z/p)*.

Proof of Theorem 1.1. The proof for [ = 2 is done in [13]. Put [ = 4,6,7. Then we follow the
proof of [8, Theorem 1.1]. Consider the map €}, : S** — BG(l)(, which is the adjoint of eg_;.
Suppose that the Whitehead product [e), , €y,,] = 0 for ki, ky € N(I) and k) + ke =p+1 (p =

r(l)). Then we have a homotopy commutative diagram:

! /
€2k, VEaky

G2k G2k BG(1) )

R e — BG(1) ),

where the left vertical arrow is the inclusion. It is clear that P'6*(y,) = 0. On the other hand,
we have 6*(P'ys) # 0. Then we obtain [}, ,€), ] # 0 and thus, by adjointness of Whitehead

products and Samelson products, we have established (eox, 1, €2x,—1) 7# 0. O

Proof of Theorem 1.2. If p = r(l), G(l) is p-regular and then

Top(G(D) ) = €D 727 ) 2 map(SF)

JEN()



for a dimensional reason (see [15]). If ki, ke € N(I) and ky + ks = p + 1, there is an integer

Ehrky € Z(Xp ) satisfying a homotopy commutative diagram

S2p L 53

6;6 ko €3
1.k2
<€2k1717€2k271> l’

G<l)(p)7

where oy is a generator of the p-primary component of 7,(S?) which is isomorphic to Z/p. In

particular, we have a homotopy commutative diagram:

§2p o1 3

& o
(63,6%\>4 l 21

G(l)(p)

Then there is a homotopy commutative diagram:

a1l qop—3
§2p A G2p—3 s G3 A G283 ——— g2p atl g3
(€2k; —1:€2hg—1)N€2p—3 Ehoy iy €3/\E2p—3 Ehey oy (€3:€2p—3) g )
Ekl,k2£2,p—163

G(1)p) A G(1) ) === G (1)) A G(1) ) — G(1)(p),

where 7 is the commutator map of G(l)(,). Since ay o (ag A lgz-3) # 0 in 7T4p+1(5?p)) (see [14]
and [15]), we have established Theorem 1.2. O

Proof of Corollary 1.1. Define 0; € [G (1)), G(I)] for i € N(I) by the composition

€21 —1
—_—

G(l)(p) 5 5t G(l)(p)’

where ¢ is the projection. If [ > 4, there are ki, ky € N(I) satisfying k; < ko < p = r(l) and
ki + ko = p+ 1. Then it follows from Theorem 1.2 that the commutator [[0k,, 8k,], 0p—1] in
[G(D) ), G(D) () = [G(1), G(1)] () is nontrivial ([3]) and therefore the proof is completed. O
2 W (Ejg)-invariant polynomials
Let p be a prime > 5. Then we have

H*(BG(1); Zw) = Z)[925:5 € N, p(5i) = v,

where p is the modulo p reduction and y; are as in (1.1). Let T' be a maximal torus of G(I) and

let W(G(1)) be the Weyl group of G(I). Consider the fibre sequence:
G(1)/T — BT 2% BG(l)
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Then A/ (72;) is W(G(1))-invariant and the sequence {\;(p(72;)); 7 € N(I)} is a regular sequence.
Let oy (i = 1,...,8) be the simple roots Es. Then, as is well known, the dominant root &

of Eg is given by
d/ = 20[1 —|— 30&2 + 4@3 —|— 6044 —f- 5(1/5 + 40[6 + 30[7 + 20&8.

Recall that the completed Dynkin diagram of Fj is:

aq (0% Oy (67 (875 (0% ag

o O

(&%)

Let e; be the dualof(O,...,O,i,O,...,O)€R8 for i =1,...,8. Then we can put

1 1
ar =g(e1+es) = g(ez+es+eqtes e +er)

Q9 =€ + €9

Q; =€;,_9 — €;,_3 (3 S 1 S 8)

Hence we have & = e7 + eg (see [7]). Put t; = —ej,ts = —eg and t; = ¢; for i = 2,...,7. are
generator of H*(BT'). Let ¢; and @ be the reflections on the hyperplanes a; = 0 and & = 0
respectively. Then it is well known that W (FEjg) is generated by ¢1,...,ps. Let W’ be the
subgroup of W (Eg) generated by s, ..., ¢s, . Namely, W’ is the Weyl group of Ss(16) in Eg
which is a compact connected simple Lie group of type Dg. Put ¢ = ;. Then it is straight
forward to check

p(ti) =ti— Lty + - +tg) (2.1)

fori=1,...,8.
We can regard t1,...,ts are a basis of H*(BT'; Z)). Define polynomials ¢; and p; by

and

respectively. Then since W' is the Weyl group of Ss(16) in Eg as is noted above, we have

H*(BT; Z))"" = Zylpr,. .., pr.cs).



It follows from (2.1) that

D ple) =[]0 +o) = [0 = 2er +t) =D (1= fe)¥ Fan

=0 =1 i=1 k=0

and then we obtain
o(c1) = —c1,p(c2) = e and p(¢;) = ¢; — i(S —k+1)¢i1¢¢ mod (cf) (2.2)

fori = 3,...,8. In particular, we have p(p;) = p; and the ideals (c;), (¢2,p1) = (¢}, c2), (2, p3) =
(c%,c3) are W (Eg)-invariant. Then it follows from (2.2) that

©(p;) = pj + hjer mod (¢7)

forv=2,...,8, where
hy = 3cs, hs = —1(5¢s + c3c2), hy = 3(Ter + 3esca — cacs),
hs = —5(5crcy — 3cges 4 csca), he = —5(5cscs — 3erea + cocs), hr = 5(3cscs — crce).

Summarizing, we have established:

Lemma 2.1. Modulo (c3), we have

1
©(ps) = pa+ 5(0761 + 350201 — cacser),  p(p3) = ps + Beacser + 3escien,

1 2
o(cg) = cg — 107017 ©(psp1) = ps + descacy + cacse,
@(pap?) = pa + Bescier.

Corollary 2.1. If f € H'S(BT; Z,)) satisfies o(f) = f mod (c}), then there exist o, o/ € Zy,
such that

f=afis+ o'pi,
where fig = 120ps + 10p2 + 1680cs — 36p3p1 + pop>.
We also have established:
Lemma 2.2. Modulo (c3,c3) = (c2,p?), we have
¢(po) = ps — 2080361 + 3070401 - %660501;

©(psp1) = psp1 — 3c6C3CaC1 + C5C4C20,



Corollary 2.2. If f € H*(BT;Z,)) satisfies p(f) = f mod (c,p}), there exists 3 € Zy,
such that f = Bfy mod (p?), where

fo1 = 60ps — 5pspr — 5paps + 110csps + 3p3 — papapr + = D5.
Now we make a choice of generators of H*(BEg; Zy)) as follows:
Theorem 2.1. We can choose (16 and §aq such that Ni(g16) = fw and Ai(G24) = f24 mod (p?).

Proof. First of all, we can choose g4 such that A\j(74) = p1. Then since @(A§(916)) = A§(T16), it
follows from Corollary 2.1 that we can choose jjy¢ such that A;(j1s) = a.fig for some a € Zp).
Suppose that (a,p) = p. Then {\;(p(94)), \s(p(916))} is not a regular sequence and this is a

contradiction. Thus we obtain (a, p) = 1. The case of 74 is quite similar. ]

3 Proof of Lemma 1.1 for [ =8

We abbreviate the modulo 31 reduction of ¢;, ¢;, p; by the same t;, ¢;, p; respectively. We write
the modulo 31 reduction of ﬁ by f; for i = 16,24. Put T,, = t3" + - - - + ¢2". Then, by Girard’s

formula ([11]), we have:

i 4 ig — 1)

Al

i, 3.1
il ig) SR (3.1)

(_1>ka =k Z (_1)i1+~~~+z‘g(

11+2i2+4---+8ig

On the other hand, we have \;(y4) = p1 = Ty, P'T; = 216 and then
Ae(Plys) = 2T (3.2)

We denote the subalgebra Fsi[py,...,p7,cs] of H*(BT;F3;) by R. Note that Im\ C R.

Define an algebra homomorphism 7, : R — Fg [z, z5]/(2?) by
7Tl<pi) =0 (Z = 2,3,4, 7)7 7T1(p1) = X1, 7T1(p5) = Ts, 771(176) = 11—2$1$5, 7T1(08) = 0.

Put ¢; = m; o ;. Then we have ¢;(y?) = and, by Theorem 2.1, ¢;(y16) = ¢1(y24) = 0. Hence,
for a degree reason, we can put

Plys = &yayeo +m
for & € Fa3 and v, € Kergy. It follows from (3.1) that 2716 = pip: — pips mod Kerm
and hence we obtain m(2T16) = 152123 # 0. Thus, by (3.2), we have established ¢ (Plys) =
m1(2T16) # 0 which implies & # 0.
Define an algebra homomorphism 75 : R — F3;[z4, 2}] by

772(]92') =0 (Z = 17 27 375767 7)7 7T2(p4) = T4, WQ(CS) = 'ril
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Put ¢y = m 0 Aj. Then we have ¢5(ys) = 0 and, for a degree reason, ¢s(y24) = ¢2(y2s) = 0.

Thus, for a dimensional reason, we can put

Plys = Loyreyas + Eryie + 1o

for &, &, € F31 and 72 € Kerg,. Now, by (3.1), we have 216 = 1p} — pps + 1p2 mod Kerm,
and then m(2Ty6) = 124 — 222 + %xf, where pg = ¢2. This implies that if & = 0, then &, # 0.
On the other hand, it follows from Theorem 2.1 that ¢o(y16) = 120(z4 + 142%). Suppose that
& = 0. Then &, # 0 as above and thus, by (3.2),

G(Plys) = €(120(xy + 14)))* = Lot — 2% + 1o,

This is a contradiction and therefore & # 0.

Define an algebra homomorphism 73 : R — R3 = K|z5, x6] by

m3(pi) =0 (i = 1,2,3,4,7), m3(ps) = x5, m3(ps) = w6, m3(cs) = 0.

Put ¢3 = m3 0 A§. Then it follows that ¢3(ys) = ¢3(y16) = ¢3(y2s) = 0 and hence we can put

Plys = E3y24ya0 + 73
for &3 € F3; and 3 € Kergs. By (3.1), we have 2T} = —p2ps mod Kerns and then 73(2T36) =
—x2z6 # 0 which implies & # 0 by (3.2).
Define 74 : R — Fg1[x3, 27| by
ma(pi) = 0 (i = 1,2,4,5), m4(ps) = 3, ma(ps) = — 5523, ma(pr) = w7, Ta(cs) = 0.
Put ¢4 = m4 0 Ay, Then we have ¢4(y4) = ¢4(y16) = 0 and, by Theorem 2.1, ¢4(y25) = 0. Thus,
for a dimensional reason, we can put
Plys = Eayosyss + 1

for &4 € F3; and 4 € Kerg,. It follows from (3.1) that 276 = —2pspspr + pipr mod Kerm,
and then my(2T16) = Zaixr + adz; = 13adzr # 0. Thus, for (3.2), we obtain & # 0. Now we

have established Lemma 1.1 for [ = 8.

4 Proof of Lemma 1.1 for [ =4,6,7

Let us first recall the construction of G(I) for [ = 4,6,7. Consider the following commutative

diagram of the natural inclusions:

SU(2) —= SU(3) Gy

U T

Spin(4) —— Spin(6) —— Spin(7) —— Spin(16)
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Note that we have the canonical map i : Spin(16) — Ss(16) C Fjg as in the previous section.
Then i(G5),1(SU(3)),i(SU(2)) are the closed subgroups of Eg and we know that Fy, Fg, F; are
the identity component of the centralizers of the image of the above i(G3),i(SU(3)),i(SU(2))
in Eg respectively (see [1]). Consider the natural inclusion Spin(k) x Spin(16 — k) — Spin(16)

for k =4,5,6,7. Then we obtain a commutative diagram of inclusions:

Spin(9) —2~ Spin(10) —2> Spin(11) —= Spin(12)

S

Fy - Es - B =——F;

Next we recall classical results due to [2], [6] and [16] on the cohomology of homogeneous

spaces given by the above inclusions:

Lemma 4.1. The integral cohomology of E¢/Fy, Es/Spin(10) and E7/Es are given as follows.
1. H*(Es/Fy; Z) = Nz, 217), |xj] = 5.
2. H*(Es/Spin(10); Z) = Zlzs]/(x3) @ Az17), |z;] = J.

3. H*(Eq7/Eg;,Z) = Z{1, 210, 218, 237, 245, 255 y DL 2{ 228 }, | 2| = j, where R{ay,aq, ...} stands

for a free module with a basis ay,as, ... over a ring R.

Hereafter, we let p be a prime greater than 5. Then the mod p cohomology of BG(1) is given
by (1.1). Then, by the standard spectral sequence argument together with 4.1, we obtain:

Lemma 4.2. 1. We can choose generators yo; € H*(BEg; F)) such that

. 0 i=5,9
kY (y2i) = .
Yoi 1 E N(4)

2. We can choose generators yy; € H*(BE7; F,,) such that

Yio i =10
k3(y2i) = § viotis @ =14

Recall that we have

H*(BSpin(2l + 1);F,) = F,[p1,...,pl,
H*(BSpin(20); F,) =F,[p1,....pi—1, ¢,



where p; is the i-th universal Pontrjagin class and ¢; is the Euler class. Let T! be the standard
maximal torus of Spin(2l + €) for ¢ = 0,1 and let ¢y,...,t; be the standard generators of
H?*(BT'";F,). Then the canonical map X' : BT' — BSpin(2] + 1) satisfies

l l

DN ) =], (4.1)

7=0 i=1

where py = 1 and ¢ = p; (see [4]). Specializing to our case, we have

jf(pk) = Pk (k = 1727374)7 j;(pk> = Pk (k = 1727374)7 ]T(CE)) = 07 ];(pS) = C?-

It follows from [4, (3) in §19] that we can choose yo; € H*(BFy; F),) for i = 2,6, 8 such as
it (ya) = p1, i1(y12) = —6p3 + papr, i1(y16) = 12ps + p3 — Spipo. (4.2)

4.1 The caseof [ =17

We put [ = 7 and p = 19 in the above observation. Put T}, = t3" + --- + t?". Then we have
Girard’s formula (3.1). By (4.1), we have ify, = p; = 17 and then

i5(Plys) = Plis(ys) = P'Ty = 2T (4.3)

Define an algebra homomorphism ; : Fig[pi, . .., ps] — Figlz1, 7o, z5)/ (23, 23, 22) by

m(pi) = z; (i = 1,2,5), mi(ps) = txax1, m(p1) = — 1525
Then we have 71 (ps1?) = 71 (p1p3) = 0. Put ¢y = 7 045, Then it follows from Lemma 4.2, (4.2)
and a degree reason that ¢1(y2) = ¢1(y12) = ¢(y16) = ¢1(y20) = 0. Hence, for a degree reason,

we can put

Plys = E1vayse + M

for & € Fig and 71 € Ker¢;. On the other hand, by (4.3), we have 2T = 3p1p§p5 — D1PaPs —

papsps mod Kerm; and then m(271) = 32x123x5 # 0. Thus, by (4.3), we have obtained

& # 0.

Define an algebra homomorphism 7y : Fio[pi, . .., ps5] — Fig|ze, 3, z5]/ (23, 23, 2%) by

12

7T2(pz‘) =Z; (Z = 2,3,5)7 Wg(pi) =0 (Z = ]_,4)

Put ¢; = m 0d5. Then it follows from Lemma 4.2, (4.2) and a degree reason that ¢o(ys) =
?2(y16) = P2(y3,) = 0 and hence we can put

P1y4 = &2Y12Y2s + V2



for & € Fig and 2 € Kergy. Now, by (3.1), we have m5(2719) = —x2x3x5 and then, by (4.3),
& # 0.

Define algebra homomorphisms 73 : Fig[p1,...,p5] — Figlze] and w4 : Fig[py,...,p5] —
Fig[zs] by
m3(p2) = w2, m3(pi) = 0 (i # 2), ma(ps) = 0, ma(ps) = x5 (1 # 5).
Put ¢; = m; 0} for i = 3,4. Then it follows from Lemma 4.2, (4.2) and a degree reason that
03(ys) = P3(y12) = P3(y20) = 0 and Pa(ys) = d4(y12) = d4(y16) = 0. Thus we can put

P1y4 = {3Yi6Y2a + V3 = §4y§0 + Va4

for &3,&4 € Fig, 73 € Kergs and 4 € Kerg,. On the other hand, by (3.1), we have 2775 = —%pg
mod Kermy and 2779 = 1p? mod Kerm,. Then 73(2T) = —2x} # 0 and my(2Ty) = 223 # 0
which imply &3 # 0 and &4 # 0. Therefore the proof of Lemma 1.1 for [ = 7 is completed.

4.2 The case of [ =4,6

We first consider the case [ = 4 and p = 13. As in the above sections, we put T), = ¢3" + - - - 3"

Then we have Girard’s formula (3.1) and

it (Plyy) = 2T, (4.4)
Define an algebra homomorphism 71 : Fi3[p1, ..., ps] — Fis[z1, 22]/(23) by
7T1(101) = T, 7T1(p2) = T2, Wl(ps) = %331@, 7T1(p4) = —1—12$§

Put ¢, = m o ¢}. Then it follows from (4.2) that ¢;(y3) = ¢1(y12) = ¢1(y16) = 0 and thus we
can put

73194 = {1Yal2a + 1

for ¢, € Fi3 and vy, € Kerg;. By (3.1), we have 2Ty = —(3p1p3 — 2p1paps — 2paps + paps)
mod Kerm and then m1(77) # 0. Thus, for (4.4), we have obtained &; # 0.
We define an algebra homomorphism 7y : Fi3{p1, ..., ps] — Fiz[xs, z4] by

Wg(pi) =0 (Z = ]., 2), 7T2(pi) = Z; (Z = 3,4)
Put ¢9 = m9 0d}. Then, by (4.2), we have ¢o(y4) = 0 and then we can put

73194 = £2Y12Y16 + V2

for & € Fi3 and v, € Kerg,. It follows from (3.1) that 2779 = —psps mod Kermy, and then
m(277) # 0 which implies & # 0 by (4.4). Thus the proof of Lemma (1.1) for [ = 4 is

completed.
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Next we consider the case | = 6 and p = 13. By Lemma 4.2 and the above result for
[ = 4, we only have to show &3 # 0 in Lemma 1.1. As is seen in [12, Theorem 5.18|, we have
Plo(ys) = &0(ys) in H*(E7; Fy3) for some & # 0 € Fi3, where o denotes the cohomology
suspension. By Lemma 4.2, we have k}(y28) = %10%18 and then we obtain Plyy = &yioyis

mod (Y4, Y12, y16) in H*(BEg; F13). Therefore the proof of Lemma 1.1 is accomplished.
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