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Abstract

In this paper, we study limit spaces of a sequence of complete n-dimensional
Riemannian manifolds whose Ricci curvatures have definite lower bound. we will
give several measure theoretical properties of such limit spaces.

1 Introduction

In this paper, we study a pointed metric space (Y, y) that is pointed Gromov-Hausdorff

limit of a sequence of complete, pointed, connected n-dimensional Riemannian manifolds,

{(Mi,mi)}i, with RicMi
≥ −(n− 1). (We call a such metric space (Y, y) Ricci limit space

in this paper. See [13].) In the papers [4], [5], [6], J. Cheeger and T. H. Colding studied

such limit spaces, showed many important results. There exists a Borel measure on a

Ricci limit space (Y, y), υ that is called by limit measure. (See Definition 2.3.) They

developed the structure theory by using the limit measure υ and results in [2], [3], [7].

Most of this paper, we will study measure theoretical properties on Ricci limit spaces. In

another paper [12], we will discuss several application of the results in this paper to low

dimensional Ricci limit spaces.

First, we study a cut locus on Ricci limit spaces in section 3. We prove that the

measure of cut locus is equal to zero. (See Theorem 3.2.) We will study cut locus as

geometric approach in [12]. We also give a relationship between “the limit space of cut

locuses” and “cut locus of the limit space”. See Theorem 3.5.

J. Cheeger and T. H. Colding defined the measure of codimension one of υ, υ−1 in [5].

(See Definition 4.1 for the definition of υ−1.) We will give several properties of υ−1. For

example, we will show the Bishop-Gromov type inequality for υ−1;
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Theorem 1.1. Let (Y, y) be a Ricci limit space. Then, there exists a positive constant

C(n) > 0 depending only on n, such that for every positive numbers 0 < s < t < ∞, every

point x ∈ Y and for every Borel set A ⊂ ∂Bt(x),

υ−1(A)

vol∂Bt(p)
≤ C(n)

υ−1(∂Bs(x) ∩ Cx(A))

vol∂Bs(p)

holds.

Here, p is a point in standard n-dimensional hyperbolic space Hn(−1) and Cx(A) =

{z ∈ Y | There exists w ∈ A such that x, z + z, w = x,w holds.}. (x, z is the distance

between x and z on Y .) This is like Laplacian comparison theorem on Riemannian

manifolds. See Theorem 1.2 in [12] for a geometric application of Theorem 1.1 to low

dimensional Ricci limit spaces.

We will also show some finiteness result (Theorem 4.2) and non-zero property for υ−1

(Corollary 4.7). It means that the measure υ−1 is a good measure on the set ∂Br(x) \Cx.

Here, Cx is the cut locus of x ∈ Y . These properties are similar to that on Riemannian

manifolds.

We will give a relationship between the limit measure υ and the measure υ−1 in section

5. Theorem 5.2 is like co-area formula for Lipshictz maps on Euclidean spaces. (See 3.2.12.

Theorem in [8].)

Finally, we also consider the subset of Ricci limit space (Y, y), AY (α) consists of points

x ∈ Y satisfying υ(Br(x)) ∼ rα as r → 0. (See Definition 6.1.) We can regard the limit

measure υ on AY (α) as α-dimensional Hausdorff measure Hα in some sense. We will give

an upper bound of Hausdorff dimension of the set. As a corollary, we will give an easy

proof of Corollary 6.4.

Acknowledgement: The author is grateful to Professor Kenji Fukaya for his numer-

ous suggestions and advices.

2 Notation

In this section, we recall some fundamental notion on metric spaces and the notion of

Ricci limit spaces. (See [4].)

Definition 2.1. We say that a metric space X is proper if every bounded closed set is

compact. A metric space X is said to be geodesic space if for every points x1, x2 ∈ X, there

exists an isometric embedding γ : [0, x1, x2] → X such that γ(0) = x1, γ(x1, x2) = x2.

Here x1, x2 is the distance between x1 and x2 on X. (We say that γ is minimal geodesic

from x1 to x2.)
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For proper geodesic space X, a point x ∈ X, a set A ⊂ X, and for positive numbers

0 < r < R, we use the following notations; Br(x) = {z ∈ X|x, z < r}, Br(x) = {z ∈
X|x, z ≤ r}, Ar,R(x) = BR(x) \ Br(x), ∂Br(x) = {z ∈ X|x, z = r}, Cx(A) = {z ∈ X|
There exists w ∈ A such that x, z + z, w = x, w holds.}. Throughout the paper, we fix a

positive integer n > 0.

Definition 2.2. Let (Y, y) be a pointed proper geodesic space (y ∈ Y ), K ∈ R a

real number. We say that (Y, y) is (n,K)-Ricci limit space if there exists a sequence

of real numbers Ki ∈ R and a sequence of pointed, complete, connected n-dimensional

Riemannian manifolds {(Mi,mi)}i with RicMi
≥ Ki(n− 1), such that Ki converges to K

and that (Mi, mi) converges to (Y, y) as i →∞ in the sense of pointed Gromov-Hausdorff

topology.

Here, for a sequence of pointed proper geodesic space {(Xi, xi)}i, we say that (Xi, xi)

converges to a pointed proper geodesic space (X∞, x∞) in the sense of Gromov-Hausdorff

topology if there exist sequences of positive numbers εi, Ri > 0 and exists a sequence

of maps φi : (BRi
(xi), xi) → (BRi

(x∞), x∞) such that εi converges to 0, Ri converges

to ∞, |zi, wi − φi(zi), φi(wi)| < εi holds for every points zi, wi ∈ BRi
(xi), and that

Bεi
(Image(φi)) ⊃ BRi

(X∞) holds. (We say that φi is εi-Gromov-Hausdorff approxima-

tion.) Then for a sequence of points zi ∈ Xi such that the set {xi, zi|i ∈ N} is bounded

set in R, we say that zi converges to a point z∞ ∈ X∞ in the sense of Gromov-Hausdorff

topology if φi(zi), z∞ < εi. (We denote it by either zi → z∞ or zi, z∞ < εi.)

We remark that for every K 6= 0 and every (n,K)-Ricci limit space (Y, y), there exists

a sequence of complete, connected n-dimensional Riemannian manifolds {(Mi,mi)}i with

RicMi
≥ K(n − 1), such that (Mi,mi) converges to (Y, y) by rescaling. Throughout the

paper, (Y, y) is always (n,−1)-Ricci limit space and is not a single point. More simply,

we say that (Y, y) is Ricci limit space.

We shall give the definition of limit measure. The measure is useful tool for studying

Ricci limit spaces.

Definition 2.3. Let υ be a Borel measure on Y . We say that υ is limit measure

if there exists a sequence of complete, pointed, connected n-dimensional Riemannian

manifolds {(Mi,mi)}i with RicMi
≥ −(n− 1), such that (Mi,mi) converges to (Y, y) and

that for every positive number r > 0 and every points x ∈ Y , m̂j ∈ Mj satisfying m̂j → x

in the sense of pointed Gromov-Hausdorff topology,

vol(Br(m̂j))

volB1(mj)
→ υ(Br(x))

holds. We say that (Mj,mj, vol/volB1(mj)) converges to (Y, y, υ) in the sense of measured

Gromov-Hausdorff topology.
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There exists a limit measure on Y . (See Theorem 1.6, Theorem 1.10 in [4] and see

[9].) It is not an unique in generally. (See Example 1.24 in [4].) Throughout the paper,

υ is always fixed limit measure on Y .

3 Cut Locus

In this section, we study a cut locus on Ricci limit spaces.

3.1 Measure of cut locus

First, we give the definition of cut locus.

Definition 3.1. For proper geodesic space X and every w ∈ X, we put Cw = {x ∈ X|
For every point z ∈ Y \ x, w, x + x, z − w, z > 0 holds.}. (If X is a single point, then

Cx = ∅.) We say that Cw is cut locus of w.

The following theorem is main result in this subsection.

Theorem 3.2. We have υ(Cw) = 0 for every point w ∈ Y .

Proof. We shall give a proof of the case w = y only. There exists a sequence

of complete pointed, connected n-dimensional Riemannian manifolds, {(Mj, mj)}j such

that (Mj,mj, vol/volB1(mj)) converges to (Y, y, υ) in the sense of measured Gromov-

Hausdorff topology. For every positive number r > 0 and every positive integer N ∈ N,

we put Cy(r) = {x ∈ Y | For every z ∈ Y \ Br(x), y, x + x, z − y, z > 0 holds.} and

Cy(r,N) = {x ∈ Y | For every z ∈ Y \ Br(x), y, x + x, z − y, z ≥ N−1 holds.}. By the

definition, Cy(r,N) is compact.

Claim 3.3. We have Cy(r) =
⋃

N∈N Cy(r,N).

It suffices to see that Cy(r) ⊂
⋃

N∈N Cy(r,N). This proof is by contradiction. We

assume that there exists x ∈ Cy(r) \
⋃

N∈N Cy(r,N). Then, for every positive integer N ,

there exists a point yN ∈ Y \Br(x) such that y, x+x, yN−y, yN < N−1 holds. Clearly, for

every positive integer N , there exists a point zN ∈ ∂Br(x) such that x, zN +zN , yN = x, yN

holds. Then, by triangle inequality, we have y, x + x, zN − y, zN < N−1. Since ∂Br(x) is

compact, there exists a subsequence {zk(N)}N and a point z∞ ∈ ∂Br(x) such that zk(N)

converges to z∞ in Y . Therefore, we have y, x + x, z∞ = y, z∞. This contradicts the

assumption. Thus we have the Claim 3.3.

By the definition, we have Cy =
⋂

r>0 Cy(r). We fix a positive number r > 0 and a

positive integer N ∈ N. Let l ∈ N be a positive integer, δ > 0 a sufficiently small positive
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number satisfying 0 < δ << 2−l, r, N−1. Let {xi}k
i=1 be a maximal 100δ-separated set

on the set Cy(r,N) ∩ A2−l,2l(y). For every positive integers i, j > 0 (1 ≤ i ≤ k), we

take xi(j) ∈ Mj such that xi(j) converges to xi as j → ∞ in the sense of pointed

Gromov-Hausdorff topology. In general, for a complete pointed, connected n-dimensional

Riemannian manifold, (M, m), we put SmM = {u ∈ TmM ||u| = 1} and t(u) = sup{t ∈
R>0| expm su ∈ M \ Cm holds for every positive number 0 < s < t} for every u ∈
SmM . For every positive numbers 0 < r1 < r2 and η > 0, we also put X(m, r1, r2, η) =

{expm tu ∈ M |u ∈ SmM, t(u)− η ≤ t < t(u), expm tu ∈ Ar1,r2(m)}.
Claim 3.4. We have

⋃k
i=1 B10δ(xi(j)) \ Cmj

⊂ X(mj, 2
−l−1, 2l+1, 100r) for every suf-

ficiently large j.

We take x ∈ B10δ(xi(j)) \Cmj
. For every point z ∈ Mj \B40r(x), we take w ∈ Y such

that z, w < εj in the sense of pointed Gromov-Hausdorff topology. (εj → 0) Then, we

have

mj, x + x, z −mj, z ≥ mj, xi(j) + xi(j), z −mj, z − 100δ

≥ y, xi + xi, w − y, w − 100δ − 10εj (∗)
and w, xi ≥ z, xi(j) − εj ≥ z, x − x, xi(j) − εj ≥ 40r − 50δ − εj > 30r. By the definition

of xi, we have

(∗) ≥ N−1 − 100δ − 10εj ≥ (2N)−1 > 0.

Thus there exist u ∈ Smj
Mj and positive number t > 0 such that t(u) − 50r ≤ t < t(u)

and x = expmj
tu hold. Since x, xi(j) < 10δ holds, we have x ∈ A2−l−1,2l+1(mj). Therefore,

we have x ∈ X(mj, 2
−l−1, 2l+1, 100r). Hence, we have Claim 3.4.

Since {B10δ(xi(j))}i are pairwise disjoint for every sufficiently large j, we have

k∑
i=1

volB10δ(xi(j)) ≤ volX(mj, 2
−l−1, 2l+1, 100r).

Here, vol = vol/volB1(mj). By the proof of Lemma 2.16 in [4], there exists a positive

constant C = C(l, n) > 0 depending only on l, n, such that volX(mj, 2
−l−1, 2l+1, 100r) ≤

C(l, n)r holds. Thus, we have

υ(Cy(r,N) ∩ A2−l,2l(y)) ≤
k∑

i=1

υ(B1000δ(xi))

≤ C

k∑
i=1

υ(B10δ(xi))

≤ Cr.

Therefore, by letting δ → 0, N →∞, r → 0, and l →∞, we have υ(Cy) = 0.
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We remark that WE0(w) ⊂ Cw holds for every w ∈ Y . (See Definition 2.10 in [4] for

the definition of WE0(w).) Therefore, Theorem 3.2 differs Proposition 2.13 in [4].

3.2 Convergence of cut locuses

In this subsection, we give a relationship between “the limit space of cut locuses” and

“the cut locus of the limit space”. Roughly speaking, we will show “the limit space of

cut locuses” contains “the cut locus of the limit space”. Let {(Mi, mi)}i be a sequence of

complete pointed, connected n-dimensional Riemannian manifolds with RicMi
≥ −(n −

1). For every positive number R > 0, the sequence (B2R(mi) ∩ (Cmi
∪mi),mi)i∈N is

precompact in the sense of pointed Gromov-Hausdorff topology. We assume that there

exist a pointed proper geodesic space (Y, y) and a pointed compact metric space (XR, xR)

such that (B2R(mi) ∩ (Cmi
∪mi),mi) conveges to (XR, xR) and that (Mi,mi) converges

to (Y, y).

Theorem 3.5. Under the notation above, there exists an isometric embedding Φ :

(BR(y) ∩ (Cy ∪ y), y) → (XR, xR).

Proof. First, we shall prove that for every finite points x1, x2, · · · , xN ∈ Cy ∩BR(y),

there exists an isometric embedding φN : ({x1, x2, · · · , xN , y}, y) → (XR, xR). We fix a

finite points x1, x2, · · · , xN ∈ Cy ∩BR(y). For every sufficiently large k ∈ N, there exists

a positive number τ > 0 such that y, xi + xi, x − y, x ≥ τ holds for every 1 ≤ i ≤ N

and every point x ∈ B10R(y) \ Bk−1(xi). We take εi-Gromov-Hausdorff approximations

(εi → 0), φi : (B2R(mi),mi) → (B2R(y), y), φ̂i : (B2R(y), y) → (B2R(mi),mi), ψi :

(B2R(mi) ∩ (Cmi
∪mi),mi) → (XR, xR) and ψ̂i : (XR, xR) → (B2R(mi) ∩ (Cmi

∪mi),mi)

such that φi ◦ φ̂i, id < εi, φ̂i ◦ φi, id < εi, ψi ◦ ψ̂i, id < εi hold and that ψ̂i ◦ ψi, id < εi

holds. Here, the inequality φi ◦ φ̂i, id < εi means that φi ◦ φ̂i(x), x < εi holds for every

x ∈ B2R(y). We have mi, φ̂i(xj) + φ̂i(xj), zi −mi, zi > τ/100 for every sufficiently large

i, every 1 ≤ j ≤ N and every point zi ∈ B2R(mi) \ B100k−1(φ̂i(xj)). Thus, there exists a

point xj(i, k) ∈ Cmi
∩B2R(mj) such that φ̂i(xj), xj(i, k) < 100k−1 holds. Without loss of

generality, we can assume that the sequence {ψi(xj(i, k))}i is a Cauchy sequence in XR

for every 1 ≤ j ≤ N . We put x(j, k) = limi→∞ ψi(xj(i, k)). Similarly, without loss of

generality, we can assume that the sequence {x(j, k)}k is a Cauchy sequence for every j.

We put x(j,∞) = limi→∞ x(j, k) and put φN(xj) = x(j,∞). Then we have an isometric

embedding φN : ({x1, x2, · · · , xN , y}, y) → (XR, xR).

By using φN and diagonal argument, it is not difficult to construct the map Φ.

Clearly, in general, the cut locus of the limit space is not isometric to the limit space

of cut locuses. For example, consider the situation that the flat torus S1(r)×S1 converges

to S1 as r → 0. Here, S1(r) = {x ∈ R2||x| = r}.
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4 The measure of codimension one

In this section, we recall the definition of the measure υ−1 on Ricci limit spaces, and give

several properties of υ−1.

4.1 Definition and finiteness

First, we recall the definition of υ−1. (See (2.1) and (2.2) in [5].)

Definition 4.1. For positive numbers β, δ > 0 and a subset A ⊂ Y , we put

(υ−β)δ(A) = inf{Σi∈Ir
−β
i υ(B(xi))| ]I ≤ ℵ0, A ⊂

⋃
i∈I

Bri
(xi), ri < δ},

υ−β(A) = lim
δ→0

(υ−β)δ(A).

By Caratheodory criterion, υ−β is a Borel measure on Y . We remark that υ−1(x) > 0

holds if and only if lim infr→0 υ(Br(x))/r > 0 holds. The following theorem is main result

in this subsection. (We will give a result where sharpens the conclusion in the following

theorem later. See Corollary 5.5.) This theorem is used in the proof of Theorem 1.1.

Theorem 4.2. There exists a positive constant C(n) > 0 depending only on n such

that for every positive number t > 0 and every point x ∈ Y ,

υ−1(∂Bt(x))

υ(Bt(x))
≤ C(n)

vol(∂Bt(p))

volBt(p)

holds. Here, p is a point in standard n-dimensional hyperbolic space Hn(−1). Especially,

we have υ−1(∂Bt(x)) < ∞.

Proof. We can assume that ∂Bt(x) 6= ∅. There exists a sequence of complete

pointed connected n-dimensional Riemannian manifolds {(Mj,mj)}j with RicMj
≥ −(n−

1) such that (Mj,mj, vol/volB1(mj)) converges to (Y, y, υ) in the sense of measured

Gromov-Hausdorff topology. We fix a sufficiently small positive number 0 < δ <<

t. Let {xi}N
i=1 be a maximal 100δ-separated set on ∂Bt(x). For every positive in-

tegers i, j > 0 (1 ≤ i ≤ N), we take x(j), xi(j) ∈ Mj such that xi(j) converges

to xi as j → ∞ and that x(j) converges to x as j → ∞. We put Si
j = {u ∈

Sx(j)Mj|There exists 0 < s < t(u) such that expx(j) su ∈ Bδ(xi(j)) holds}. We also

put I i
j(u) = {s ∈ (0, t(u))| expx(j) su ∈ Bδ(xi(j))} for u ∈ Sj

i , k(t) = sinh(t) and put

θ(t, u) = tn−1(det(gij|expx(j) tu))
1
2 . Here, gij = g(∂/∂xi, ∂/∂xj) where (x1, x2,··· , xn) is a
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normal coordinate around x(j). Then, we have

volBδ(xi(j)) =

∫

Si
j

∫

Ii
j(u)

θ(s, u)dsdu

≤
∫

Si
j

∫

Ii
j(u)

θ(t− 2δ, u)
kn−1(s)

kn−1(t− 2δ)
dsdu

≤ 2

∫

Si
j

∫

Ii
j(u)

θ(t− 2δ, u)dsdu

≤ 4δ

∫

Si
j

θ(t− 2δ, u)du

≤ 4δvol
(
∂Bt−2δ(x(j)) ∩ Cx(j)(Bδ(xi(j)))

)
.

Since the set {∂Bt−2δ(x(j)) ∩ Cx(Bδ(xi(j)))}i are pairwise disjoint for every sufficiently

large j, we have

N∑
i=1

δ−1volBδ(xi(j)) ≤ 4vol(∂Bt−2δ(x(j)) \ Cx(j)).

By Bishop-Gromov volume comparison theorem, we have

vol(∂Bt−2δ(x(j)) \ Cx(j)) =
volBt−2δ(x(j))

volB1(mj)

vol(∂Bt−2δ(mj) \ Cx(j))

volBt−2δ(x(j))

≤ volBt−2δ(x(j))

volB1(mj)

vol∂Bt−2δ(p)

volBt−2δ(p)
.

Thus, we have

N∑
i=1

δ−1volBδ(xi(j)) ≤ 5
volBt−2δ(x(j))

volB1(mj)

vol∂Bt−2δ(p)

volBt−2δ(p)
.

By letting j →∞, we have

(υ−1)1000δ(∂Bt(x)) ≤
N∑

i=1

(1000δ)−1υ(B1000δ(xi))

≤ C(n)
N∑

i=1

δ−1υ(Bδ(xi))

≤ C(n)υ(Bt(x))
vol∂Bt−2δ(p)

volBt−2δ(p)
.

Therefore, by letting δ → 0, we have

υ−1(∂Bt(x)) ≤ C(n)υ(Bt(x))
vol∂Bt(p)

volBt(p)
.
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We shall state the following proposition. See (4.3) in [6].

Proposition 4.3. We assume that ∂B1(y) 6= ∅. Then for every positive number

R > 0 and every point x ∈ BR(y), we have

υ(Bs(x)) ≤ C(R, n)s

for every positive number 0 < s < 1. Here, C(R, n) > 0 is a positive constant depending

only on R and n.

Proof. By an argument simular to the proof of Proposition 5.2 in [12].

As a corollary of Theorem 4.2 and Proposition 4.3, we have an upper bound for υ−1;

Corollary 4.4. We assume that ∂B1(y) 6= ∅. Then for every positive number R > 0

and every point x ∈ BR(y), we have

υ−1(∂Bs(x)) ≤ C(R, n).

for every positive number 0 < s < 1.

4.2 Bishop-Gromov type inequality

In this subsection, we shall give a proof of Theorem 1.1.

Proof of Theorem 1.1. First, we assume that A is compact. There exists a se-

quence of complete pointed connected n-dimensional Riemannian manifolds {(Mj,mj)}j

with RicMj
≥ −(n − 1) such that (Mj, mj, vol/volB1(mj)) converges to (Y, y, υ) in the

sense of measured Gromov-Hausdorff topology. We fix a sufficiently small positive number

δ > 0 and put Cx(A, s, δ) = {z ∈ ∂Bs(x)| There exists p ∈ ∂Bt−100δ(x) ∩ B1000δ(A) such

that x, z + z, p − x, p ≤ δ holds.}. Clearly, Cx(A, s, δ) is compact and
⋂

δ>0 Cx(A, s, δ) =

∂Bs(x) ∩ Cx(A) holds. Let ε > 0 be a positive number satisfying ε << s, t − s, δ.

There exists a set {Bri
(xi)}N

i=1 such that |υ−1(Cx(A, s, δ)) − ΣN
i=1r

−1
i υ(Bri

(xi))| < ε,

Cx(A, s, δ) ⊂ ⋃N
i=1 Bri

(xi), 0 < ri < min{r, τ, t − s, δ}/1000 hold for every i, and that

Cx(A, s, δ) ∩ Bri
(xi) 6= ∅ holds for every i. We put τ̂ = min1≤i≤N{ri}/1000. For every

positive integer j ∈ N, let x(j), xi(j) be points in Mj satisfying xi(j), xi < εj, x(j), x < εj

in the sense of pointed Gromov-Hausdorff topology (εj → 0). For every positive integer

i, j > 0 (1 ≤ i ≤ N), we put Sj
i = {u ∈ Sx(j)Mj| There exists 0 < t < t(u) such

that expx(j) tu ∈ B4ri
(xi(j)) holds.} and Ŝj

i = {u ∈ Sj
i |t(u) > t − 100δ}. We also put

Ij
i (u) = {t ∈ (0, t(u))| expx(j) tu ∈ B4ri

(xi(j))} and Îj
i (u) = Bri

(Ij
i (u)) (⊂ (0, t(u))) for
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u ∈ Ŝj
i . Then, we have

volB10ri
(xi(j)) ≥

∫

Ŝj
i

∫

Îj
i

θ(r, u)drdu

≥
∫

Ŝj
i

∫

Îj
i

kn−1(r)
θ(t− 100δ, u)

kn−1(t− 100δ)
drdu

≥ kn−1(s− 100δ)

kn−1(t− 100δ)
ri

∫

Ŝj
i

θ(t− 100δ, u)du

=
kn−1(s− 100δ)

kn−1(t− 100δ)
rivol(∂Bt−100δ(x(j)) ∩ Sx(j)(B4ri

(xi(j))) \ Cx(j)).

Here, Sx(j)(B4ri
(xi(j))) = {α ∈ Mj \Cx(j)| There exists β ∈ B4ri

(xi(j)) such that x(j), β+

β, α = x(j), α holds or x(j), α + α, β = x(j), β holds.}. Therefore, we have

N∑
i=1

r−1
i volB10ri

(xi(j)) ≥ kn−1(s− 100δ)

kn−1(t− 100δ)

N∑
i=1

vol(∂Bt−100δ(mj) ∩ Sx(j)(B4ri
(xi(j))) \ Cx(j)).

Let {x̂i}N̂
i=1 be a maximal 10000δ-separated set on A and x̂i(j) ∈ Mj a point satisfying

x̂i(j), x̂i < εj.

Claim 4.5. For every sufficiently large j > 0, every point zj ∈ Bδ/10(x̂i(j)) and every

minimal geodesic from x(j) to zj, γ : [0, x(j), zj] → Mj, we have

Image(γ) ∩ (
N⋃

i=1

B4ri
(xi(j))) 6= ∅.

Let mj(s+ τ̂) ∈ Image(γ) be a point satisfying mj,mj(s + τ̂) = s+ τ̂ . We take points

m̃j(s + τ̂), z̃j ∈ Y such that m̃j(s + τ̂),mj(s + τ̂) < εj holds and that z̃j, zj < εj holds.

Then, we have x, m̃j(s + τ̂) + m̃j(s + τ̂), z̃j − x, z̃j < 10εj. There exists w ∈ Y such

that x,w + w, m̃j(s + τ̃) = x, m̃j(s + τ̃), w, m̃j(s + τ̃) < 2τ̃ hold and that w ∈ ∂Bs(x)

holds. Since εj << τ̃ , we have x, m̃j(s + τ̂) + m̃j(s + τ̂), x̂i − x, x̂i ≤ δ. Hence, we have

w ∈ Cx(A, s, δ). Therefore, there exists 1 ≤ i ≤ N such that w ∈ Bri
(xi) holds. Therefore

we have m̃j(s + τ̃) ∈ B2ri
(xi) and mj(s + τ̃) ∈ B4ri

(xi(j)). Thus, we have Claim 4.5.

For every ball Bδ(x̂i(j)), we put Śj
i = {u ∈ Sx(j)Mj| There exists 0 < t < t(u) such

that expmj
tu ∈ Bδ(x̂i(j)) holds.} and Íj

i (u) = {t ∈ (0, t(u))| expx(j) tu ∈ Bδ(x̂i(j))} for

10



u ∈ Śj
i . Then, we have

volBδ(x̂i(j)) =

∫

Śj
i

∫

Íj
i

θ(r, u)drdu

≤
∫

Śj
i

∫

Íj
i

kn−1(r)
θ(t− 100δ, u)

kn−1(t− 100δ)
drdu

≤ 2
kn−1(t + 100δ)

kn−1(t− 100δ)
δ

∫

Śj
i

θ(t− 100δ, u)du

= 2
kn−1(t + 100δ)

kn−1(t− 100δ)
δvol

(
∂Bt−100δ(X(j)) ∩ Cx(j)(Bδ(x̂i(j)))

)
.

Therefore, we have

N̂∑
i=1

δ−1volBδ(x̂i(j)) ≤ 2
N̂∑

i=1

kn−1(t + 100δ)

kn−1(t− 100δ)
vol

(
∂Bt−100δ(x(j)) ∩ Cx(j)(Bδ(x̂i(j)))

)

= 2
kn−1(t + 100δ)

kn−1(t− 100δ)
vol

(
∂Bt−100δ(x(j)) ∩ Cx(j)(

N̂⊔
i=1

Bδ(x̂i(j)))
)
.

By Claim 4.5, we have

∂Bt−100δ(mj) ∩ Cx(j)(
N̂⊔

i=1

Bδ(x̂i(j))) ⊂ ∂Bt−100δ(x(j)) ∩ Sx(j)(
N⋃

i=1

B4ri
(xi(j))).

Thus, we have

N̂∑
i=1

δ−1volBδ(x̂i(j)) ≤ 3
kn−1(t− 100δ)

kn−1(s− 100δ)

N∑
i=1

r−1
i volB10ri

(xi(j)).

Therefore, by letting j →∞, we have

(υ−1)106δ(A) ≤
N̂∑

i=1

(105δ)−1υ(B105δ(x̂i))

≤ C(n)
N̂∑

i=1

δ−1υ(Bδ(x̂i))

≤ C(n)
kn−1(t− 100δ)

kn−1(s− 100δ)

N∑
i=1

r−1
i υ(B10ri

(xi))

≤ C(n)
kn−1(t− 100δ)

kn−1(s− 100δ)
(υ−1(Cx(A, s, δ)) + ε).

By letting ε → 0 and δ → 0, we have Theorem 1.1 for every compact set A. By standard

argument in measure theory, it is easy to prove Theorem 1.1 for every Borel set A.

There exist several applications to one dimensional Ricci limit spaces as a corollary of

Theorem 1.1. See [12].
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4.3 Non-zero

In this subsection, we give a non-zero property for υ−1. First, we shall prove the following

theorem;

Theorem 4.6. There exists a positive constant C(n) > 0 depending only on n such

that for every positive numbers 0 < s ≤ r < t, every point x ∈ Y and every Borel set

A ⊂ Ar,t(x),
υ(A)

volBt(p)− volBr(p)
≤ C(n)

υ−1(∂Bs(x) ∩ Cx(A))

vol∂Bs(p)

holds. Especially, if υ(A) > 0 holds, then υ−1(∂Bs(x) ∩ Cx(A)) > 0 holds.

Proof. Without loss of generality, we can assume that s < r holds and A is compact.

We fix a sufficiently small positive number δ and put Cx(A, s, δ) = {z ∈ ∂Bs(x)|There

exists α ∈ Y such that α,A ≤ δ and x, z + z, α − x, α ≤ δ hold.}. We remark that

Cx(A, s, δ) is a compact set and that
⋂

δ>0 Cx(A, s, δ) = ∂Bs(x) ∩ Cx(A) holds. Let

ε > 0 be a positive number. There exists {Bri
(xi)}N

i=1 such that |υ−1(Cx(A, s, δ)) −
ΣN

i=1r
−1
i υ(Bri

(xi))| < ε, Cx(A, s, δ) ⊂ ⋃N
i=1 Bri

(xi), 0 < ri < min{r, τ, t − s, δ}/1000 hold

for every i, and that Cx(A, s, δ)∩Bri
(xi) 6= ∅ holds. By taking a maximal 100δ - separated

set on A and by an argument simular to the proof of Theorem 1.1, we have

υ(A) ≤ C(n)
volBt+100δ(p)− volBr−100δ(p)

vol∂Bs−100δ(p)
(υ−1(Cx(A, s, δ)) + ε).

Therefore, by letting ε → 0, δ → 0, we have Theorem 4.6.

Next corollary is a non-zero property for υ−1;

Corollary 4.7. Let x be a point in Y and R > 0 a positive number. We assume

that ∂BR(x) \ Cx 6= ∅. Then for every z ∈ ∂BR(x) \ Cx and every positive number ε > 0,

υ−1(Bε(z) ∩ ∂BR(x) \ Cx) > 0 holds.

Proof. There exist a sufficiently small positive number 0 < τ < ε/1000 and a

point w ∈ Y such that x, z + z, w = x, w and z, w = τ hold. Then, since ∂BR(x) ∩
Cx(Bτ/1000(w)) ⊂ Bε(z) ∩ ∂BR(x) \ Cx, we have Corollary 4.7 by Theorem 4.6.

Finally, we shall give the following theorem.

Corollary 4.8. For every points x, z ∈ Y such that x 6= z, the following conditions

are equivalent:

1. υ(Cx({z})) > 0 holds.

2. υ−1(∂Bt(x) ∩ Cx({z})) > 0 holds for every 0 < t < x, z.
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3. υ−1(∂Bt(x) ∩ Cx({z})) > 0 holds for some 0 < t < x, z.

Proof. First, we assume that υ(Cx({z})) > 0 holds. We put r = x, z > 0. There

exists a positive integer N ∈ N such that υ(Cx({z}) ∩ AN−1r, (N+1)−1r(x)) > 0 holds.

Thus, by Theorem 4.6, we have υ−1(∂Bt(x)∩Cx({z})) > 0 for every 0 < t < (N + 1)−1r.

Since ∂Bs(x)∩Cx({z}) = ∂Br−s(z)∩Cz({x}) holds for every 0 < s < r, by Theorem 1.1,

we have υ−1(∂Bt(x) ∩ Cx({z})) > 0 for every 0 < t < r.

Next, we assume that υ(Cx({z})) = 0. Then, by Corollary 5.5, there exists t ∈ (0, x, z)

such that υ−1(∂Bt(x) ∩ Cx({z})) = 0 holds.

5 Co-area formula for distance function

In this section, we give a relationship between the limit measure υ and the measure υ−1.

Let x be a point in Y and A ⊂ Y a subset. We define ΦA : R≥0 → R≥0 by

ΦA(t) = υ−1(∂Bt(x) ∩ A).

Proposition 5.1. For every Borel set A ⊂ Y , the map ΦA is a Lebesgue measurable

function.

We will give a proof of Proposition 5.1 in Appendix. The following theorem is main

result in this section.

Theorem 5.2. Let x be a point in Y . There exists the non-negative valued function

f ∈ L∞(Y ) and a positive constant C(n) > 0 depending only on n, such that f |U 6≡ 0

holds for every open set U ⊂ Y , |f |L∞ ≤ C(n) holds, and

∫ ∞

0

∫

∂Bt(x)\Cx

gdυ−1dt =

∫

Y

gfdυ

holds for every g ∈ L1(Y ).

Proof. There exists a sequence of complete, pointed, connected n-dimensional Rie-

mannian manifolds {(Mj, mj)}j with RicMj
≥ −(n−1) such that (Mj, mj, vol/volB1(mj))

converges to (Y, y, υ) in the sense of measured Gromov-Hausdorff topology. For every

positive number τ > 0, we put Dτ = {w ∈ Y | There exists z ∈ Y \ Bτ (x) such that

x,w+w, z = x, z holds. }. Clearly, Dτ is a closed set and
⋃

τ>0Dτ = Y \Cx. We fix τ > 0.

Let s, t, r, R, δ > 0 be positive numbers satisfying 0 < δ << τ, s and δ << r < t < R. We

assume that Ar,R(x) 6= ∅. We take a point w ∈ Ar,R(x). Let {xi}N
i=1 be a maximal 100δ-

separated set on ∂Bt(x) ∩ Bs(w). We take a positive number t̂ > 0 such that |t− t̂| ≤ δ

and t̂ ∈ [r, R] hold.
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Claim 5.3. We have ∂Bt̂(x) ∩ Dτ ∩Bs−100δ(w) ⊂ ⋃N
i=1 B300δ(xi).

Let z be a point in ∂Bt̂(x)∩Dτ ∩Bs−100δ(w). First, we assume that t̂ ≥ t. Then there

exists α ∈ ∂Bt(x) ∩ Bs(w) such that x, α + α, z = x, z and α, z ≤ δ hold. Thus, there

exists a positive integer 1 ≤ i ≤ N such that α ∈ B250δ(xi) holds. Therefore, we have

z ∈ B300δ(xi).

Next, we assume that t̂ < t. Since δ << τ , there exists α ∈ ∂Bt(x)∩Bs(w) such that

x, z + z, α = x, α and α, z ≤ δ hold. Thus there exists a positive integer 1 ≤ i ≤ N such

that α ∈ B200δ(xi) holds. Hence, we have z ∈ B300δ(xi). Therefore, we have Claim 5.3.

For every positive integers i, j > 0 (1 ≤ i ≤ N), let xi(j), x(j) ∈ Mj be points

satisfying xi(j), xi < εj and x(j), x < εj (εj → 0). We put Si
j = {u ∈ Sx(j)Mj| There exists

0 < t < t(u) such that expx(j) tu ∈ Bδ(xi(j)) holds.} and Ii(u) = {t ∈ (0, t(u))| expx(j) tu ∈
Bδ(xi(j))} for u ∈ Si

j. Then, we have

volBδ(xi(j)) =

∫

Si
j

∫

Ii(u)

θ(ŝ, u)dŝdu

≤
∫

Si
j

∫

Ii(u)

kn−1(ŝ)
θ(t̂− 10δ, u)

kn−1(t̂− 10δ)
dŝdu

≤ 2

∫

Si
j

∫

Ii(u)

θ(t̂− 10δ, u)dŝdu

≤ 5δ

∫

Si
j

θ(t̂− 10δ, u)du

≤ 5δvol
(
∂Bt̂−10δ(x(j)) ∩ Cx(j)(Bδ(xi(j))) ∩B20δ(xi(j)) \ Cx(j)

)
.

Claim 5.4. For every i1, i2 ∈ {1, 2, · · · , N} such that i1 6= i2, for every sufficiently

large integer j, we have Cx(j)(B2δ(xi1(j))) ∩ Cx(j)(B2δ(xi1(j))) ∩B20δ(xi2(j)) = φ.

Assume that the assertion were false. We take zj ∈ Cx(j)(B2δ(xi1(j)))∩Cx(j)(B2δ(xi2(j)))∩
B20δ(xi2(j)). There exist yi1(j) ∈ B2δ(xi1(j)), yi2(j) ∈ B2δ(xi2(j)) such that x(j), zj +

zj, yi1(j) = x(j), yi1(j), x(j), zj + zj, yi2(j) = x(j), yi2(j) hold. Then, by triangle inequal-

ity, we have

xi1(j), xi2(j) ≤ xi1(j), yi1(j) + yi1(j), zj + zj, yi2(j) + yi2(j), xi2(j)

≤ 2δ + yi1(j), zj + zj, yi2(j) + 2δ

≤ 4δ + t + 5δ − x(j), zj + zj, yi2(j)

≤ 9δ + t− (x(j), yi2(j)− zj, yi2(j)) + zj, yi2(j)

≤ 9δ + t− x(j), yi2(j) + 50δ

≤ 9δ + 5δ + 50δ = 64δ.
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Thus, we have xi1 , xi2 < 70δ. This is contradiction. Therefore, we have Claim 5.4.

Let w(j) ∈ Mj be a point satisfying w(j), w < εj. By Claim 5.4 and B20δ(xi(j)) ⊂
Bs+100δ(w(j)), we have

N∑
i=1

volBδ(xi(j)) ≤ 10δvol
(
∂Bt̂−10δ(x(j)) ∩Bs+100δ(w(j)) \ Cx(j)

)
.

On the other hand, for every sufficiently large j, we have

|
N∑

i=1

υ(Bδ(xi))−
N∑

i=1

volBδ(xi(j))| < δ2.

Therefore, for every sufficiently large j, we have

(υ−1)1000δ(∂Bt̂(x) ∩Bs−100δ(w) ∩ Dτ )

≤
N∑

i=1

(1000δ)−1υ(B1000δ(xi))

≤ C(n)
N∑

i=1

δ−1υ(Bδ(xi))

≤ C(n)(δ +
N∑

i=1

δ−1volBδ(xi(j)))

≤ C(n)δ + C(n)vol(∂Bt̂−10δ(x(j)) ∩Bs+100δ(w(j)) \ Cx(j)). (∗)
Let {ti}k

i=1 ⊂ [r, R] be a subset satisfying [r, R] ⊂ ⋃k
i=1 Bδ/2(ti). For every i = 1, 2, · · · , k,

we have that inequality (∗) holds for every sufficiently large integer j and every t̂ ∈ [r, R]

satisfying |t̂− ti| < δ. Hence, inequality (∗) holds for every sufficiently large j and every

t̂ ∈ [r,R]. Therefore, for such sufficiently large integer j, we have
∫ R

r

(υ−1)1000δ

(
∂Bt̂(x) ∩Bs−τ (w) ∩ Dτ

)
dt̂

≤
∫ R

r

(υ−1)1000δ

(
∂Bt̂(x) ∩Bs−100δ(w) ∩ Dτ

)
dt̂

≤ C(n)(R− r)δ + C(n)

∫ R

r

vol
(
∂Bt̂−10δ(x(j)) ∩Bs+100δ(w(j)) \ Cx(j)

)
dt̂

≤ C(n)(R− r)δ + C(n)

∫ R−10δ

τ−10δ

vol
(
∂Bα(x(j)) ∩Bs+100δ(w(j)) \ Cx(j)

)
dα

≤ C(n)(R− r)δ + C(n)volBs+100δ(w(j)).

By letting j →∞, δ → 0, R →∞, r → 0 and letting τ → 0, we have
∫ ∞

0

υ−1(∂Bt̂(x) ∩Bs(w) \ Cx)dt̂ ≤ C(n)υ(Bs(w)).
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Since the map Ψ̂ : B(Y ) → R ∪ {∞},

Ψ̂(A) =

∫ ∞

0

υ−1(∂Bt(x) ∩ A \ Cx)dt

is an additive set function on B(Y ). Here B(Y ) = {A ∈ 2Y |A is a Borel set of Y }. By

standard argument in measure theory, for every Borel set A ∈ B(Y ), we have

∫ ∞

0

υ−1(∂Bt(x) ∩ A \ Cx)dt ≤ C(n)υ(A).

By Radon-Nikodym theorem, we have Theorem 5.2.

We give next inequality where sharpens the conclusion in Theorem 4.2.

Corollary 5.5. For every positive numbers 0 < r1 < r2 ≤ R, every point x ∈ Y and

every Borel set A ⊂ ∂BR(x),

υ−1(A)

vol∂BR(p)
≤ C(n)

υ(Ar1, r2(x) ∩ Cx(A))

volBr2(p)− volBr1(p)

holds.

Proof. It follows from Theorem 1.1 and Theorem 5.2, immediately.

6 Ahlfors α-regular set and the Hausdorff dimension

We consider a set that on the set, limit measure υ is equivalent to some Hausdorff measure.

Definition 6.1. For positive numbers α ≥ 0, C > 1, we put

AY (α, C) = {x ∈ Y |C−1sα ≤ υ(Bs(x)) ≤ Csα for every 0 < s < 1},

AY (α) =
⋃
C>1

AY (α, C).

We call the set AY (α) Ahlfors α-regular set.

Note that AY (α,C) is a compact set. Next, we shall give a notion of tangent cone.

Definition 6.2. Let (W,w), (Z, z) be pointed proper geodesic spaces. We say that

(W,w) is tangent cone at α ∈ Z if there exists a sequence of positive numbers ri > 0

such that ri converges to 0 and that rescaled pointed proper geodesic spaces (Z, r−1
i dZ , α)

converges to (W,w) in the sence of pointed Gromov-Hausdorff topology. Here, dZ is the

metric (distance function) on Z.

We shall give an upper bound of Hausdorff dimension of Ahlfors α-regular set.
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Theorem 6.3. We have dimHAY (α) ≤ [α] for every positive number α > 0. Here

[α] = sup{k ∈ Z|k ≤ α}.
Proof. This proof is by contradiction. We assume that dimHAY (α) > [α] holds.

Then, there exist a sufficiently small positive number 0 < β < 1 and a positive number

C > 1 such that Hα+β(AY (α, C)) > 0 holds. By density result of Geometric measure

theory, there exist x ∈ Y , a tangent cone at x, (TxY, 0x), and exists a sequence of positive

numbers ri > 0 such that ri converges to 0, limi→0Hα+β
∞ (Bri

(x))/ri
α+β > 0 holds and that

(Y, r−1
i dY , x) converges to (TxY, 0x). (For example, see (1.39) in [5] for the definition of

(α+β)-dimensional spherical Hausdorff content,Hα+β
∞ .) Without loss of generality, we can

assume that there exist a compact metric space Z, a limit measure υ∞ on (TxY, 0x), posi-

tive number Ĉ > 1 and exists an isometric embedding φ : Z → ATxY (α, Ĉ)∩B1(0x) for υ∞
such that Hα+β(Z) > 0 holds and that (Bri

(x) ∩ AY (α, C), r−1
i dY ) converges to Z in the

sense of Gromov-Hausdorff topology. Especially, Hα+β(B1(0x) ∩ ATxY (α, Ĉ)) > 0 holds.

By Proposition 2.5 in [5], we have Hα+β(B1(0x)∩ATxY (α, Ĉ) \WD0(0x)) > 0. (See Defi-

nition 2.10 in [4] for the definition of WD0(x).) We put (Y1, y1) = (TxY, 0x). Then, there

exist a point z ∈ AY1(α, Ĉ)\WD0(y1), a sequence of positive numbers si > 0 and a pointed

proper geodesic space (W,w) such that si converges to 0, limi→0Hα+β
∞ (Bsi

(z))/sα+β
i > 0

and (Y1, s
−1
i dY1 , z) converges to (R×W, (0, w)).

By iterating this argument, there exist an iterated tangent cone of Y , (T, t), a limit

measure υ̃∞ on (T, t), a positive constant C̃ > 1 and a proper geodesic space X such that

Hα+β(B1(t) ∩ AT (α, C̃)) > 0 holds for υ̃∞, and that T is isometric to R[α]+1 ×X holds.

Therefore, there exists a point w ∈ T such that lim infr→0 υ̃∞(Br(w))/rα > 0 holds. This

contradicts Proposition 1.35 in [4].

Next Corollary follows from Theorem 5.5 in [6], immediately. We shall give an alter-

native proof.

Corollary 6.4. We assume that υ(AY (α)) > 0 holds. Then α is an integer.

Proof. By the assumption, we have Hα(A(α)) > 0. Hence, dimHA(α) ≥ α. There-

fore, by Theorem 6.3, we have α = [α].

7 Appendix: A proof of Proposition 5.1

In this section, we shall prove Proposition 5.1. We fix positive numbers 0 < r < R. For

every t ∈ Q>0, let {xt
i}i∈N be a countable dense set of ∂Bt(x). For every positive integer

N ∈ N and every positive number δ > 0, we put B = {Bs(x
t
i)|i ∈ N, s, t ∈ Q>0},

BN
δ = {(Bri

(xi))i=1,2,··· ,N ∈ BN |Bri
(xi) ∈ B, ri < δ} and put Bδ =

⋃
N∈N BN

δ . Clearly,

these are countable sets.
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Lemma 7.1. Let A ⊂ Y be a compact set. Then the function t 7→ (υ−1)δ(∂Bt(x) ∩ A)

is a Borel fuction for every positive number δ > 0. Especially, the map ΦA|[r,R] is a Borel

function.

Proof. For every F = (Bri
(xi))i=1,2,··· ,N ∈ Bδ, we define a map ΨF from [r, R] to

R ∪ {∞} by ΨF (t) =
∑N

i=i r
−1
i υ(Bri

(xi)) if ∂Bt(x) ∩ A ⊂ ⋃N
i=1 Bri

(xi) holds, ΨF (t) = ∞
if otherwise. Since ∂Bt(x) ∩ A is a compact set, ΨF is a Borel function. Therefore, Ψ =

infF∈Bδ
ΨF is a Borel function. By the definition of (υ−1)δ, we have Ψ(t) = (υ−1)δ(∂Bt(x)∩

A).

Therefore, we have the following corollary.

Corollary 7.2. Let O ⊂ Y be a open set. Then the map ΦO|[r,R] is a Borel function.

Here we put σ = {A ∈ B(Y )| For every positive number ε > 0, there exist a sequence

of compact sets Ki ⊂ A, a sequence of open sets A ⊂ Oi and exists a Lebesgue measurable

set Eε ⊂ [r, R] such that H1([r, R] \Eε) < ε holds and that supt∈Eε
υ−1(∂Bt(x)∩A \Ki)

and supt∈Eε
υ−1(∂Bt(x) ∩ Oi \ A) converge to 0 as i → ∞. }. Note that for every sets

Ai ∈ σ, ΦA|[r, R] is a Lebesgue measurable function for every set A =
⋃

i∈N Ai.

Lemma 7.3. σ is σ - algebra.

Proof. It suffices to show
⋃

i∈N Ai ∈ σ for every sets Ai ∈ σ. We take a sequence

Ai ∈ σ. Let ε > 0 be a positive number. For every i ∈ N, there exist a sequence of compact

sets Ki(j) ⊂ Ai, a sequence of open sets Ai ⊂ Oi(j), and exists a Lebesgue measurable

set Eε(i) ⊂ [r, R] such that H1([r,R]\Eε(i)) < 2−iε holds and that supt∈Eε(i) υ−1(∂Bt(x)∩
Oi(j)\Ai) and supt∈Ei(l)

υ−1(∂Bt(x)∩Ai\Ki(j)) converge to 0 as j →∞. Thus, for every

l ∈ N, there exists a sufficiently large integer N(l) ∈ N such that for every 1 ≤ i ≤ l,

supt∈Eε(i) υ−1(∂Bt(x) ∩ Ai \ Ki(N(l))) ≤ l−12−i holds. Since υ−1(∂Bt(x) ∩ (
⋃l

i=1 Ai))

converges to υ−1(∂Bt(x)∩ (
⋃

i∈N Ai)) as l →∞ for every t ∈ [r,R], by Egoroff’s theorem,

there exists a Lebesgue measurable set Eε ⊂ [r, R] such that H1([r, R] \Eε) < ε holds and

that supt∈Eε
υ−1(∂Bt(x) ∩ (

⋃
i∈N Ai \

⋃l
i=1 Ai)) converges to 0 as l → ∞. We put Êε =⋂

i∈N Eε(i)∩Eε. Then, we have, H1([r, R]\Êε) ≤
∑

i∈NH1([r, R]\Eε(i))+H1([r, R]\Eε) <

2ε. We also put a compact set K̂l =
⋃l

i=1 Ki(N(l)). Then, supt∈Êε
υ−1(∂Bt(x)∩(

⋃
i∈N Ai\

K̂l)) converges to 0 as l →∞. For every integers l, i ∈ N, there exists a sufficiently large

j(l, i) ∈ N such that supt∈Eε(i) υ−1(∂Bt(x) ∩ (Oi(j(l, i)) \ Ai)) < l−12−i holds. We put a

open set Ol =
⋃

i∈N Oi(j(l, i)). Then supt∈Êε
υ−1(∂Bt(x) ∩ (Ol \

⋃
i∈N Ai)) converges to 0

as l →∞. Therefore
⋃

i∈N Ai ∈ σ holds.

Lemma 7.4. σ = B(Y ) holds.
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Proof. For every open set O ⊂ Y , there exists a sequence of compact sets Ki ⊂ O

such that
⋃

i∈N Ki = O. By Egoroff’s theorem, for every positive number ε > 0, there

exists a Lebesgue measurable set Eε ⊂ [r, R] such that supt∈Eε
υ−1(∂Bt(x) ∩ O \ Ki))

converges to 0 as i →∞. Thus, O ∈ σ. Therefore we have Lemma 7.4

Proposition 5.1 follows from these lemma above, immediately.
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