On Low Dimensional Ricci Limit Spaces

SHOUHEI HONDA

Abstract

In this paper, we will give a classification of limit spaces, of a sequence of Rie-
mannian manifolds with Ricci curvature bounded below, whose Hausdorff dimension

is strictly smaller than two.

1 Introduction

In this paper, we study a pointed metric space (Y, y) that is pointed Gromov-Hausdorff
limit of a sequence of complete, pointed, connected n-dimensional Riemaniann manifolds,
{(M;,m;) }i, with Ricp, > —(n —1). Here, n is a fixed positive integer. (We call a such
metric space (Y,y) Ricci limit space in this paper. See [13].) The structure theory was
much developed by J. Cheeger and T. H. Colding, and has many important applications
to Riemannian manifolds. (See [4, 5, 6].) Most of this paper, we will study the low
dimensional Ricci limit spaces by using their theory and using several results in [12].

First, we give the classification of one dimensional Ricci limit spaces;

THEOREM 1.1. Let (Y,y) be a Ricci limit space. Then, the following conditions are

equivalent:
1. 1 < dimgY < 2 holds.
2. R; =0 holds for every integer i > 2
3. v(R;) = 0 holds for every integer i > 2

4. Y is isometric either to R, or to Rxq, or to S*(r) = {x € R?||z| = r} for some

positive number r > 0, or to [0,1] for some I > 0.
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Here, R; is the i-dimensional regular set in Y and v is a limit measure on Y. (See
Definition 2.4 and Definition 2.6.) The proof is used several results on regular set. We
will recall them in section 3. In section 4, we will give a necessary and sufficient condition
to exist one dimensional piece and prove Theorem 1.1. As a corollary of Theorem 1.1,
The Hausdorff dimension of a Ricci limit space (Y, %) such that dimyY < 2 holds, is an
integer. Next, we will study the problem when the limit measure v is locally equivalent to
one dimensional Hausdorff measure H'. We will give a necessary and sufficient condition
that v is locally equivalent to H!. See Theorem 5.5 in section 5.

We use the notion of local Hausdorff dimension in several situations of this paper. We
define dimy‘x = lim,_o dimy B, () for every z € Y and put Y (a) = {z € Y|dim}‘r = a}
for & > 0. We also define the notion of Alexandrov point in section 6. (See Definition
6.2.) Alexandrov points on metric space means that there exists a definite lower bound of
sectional curvature around the point in the sence of Alexandrov geometry. We consider
the set Alex(Y) = {z € Y|z is an Alexandrov point } under the assumption Ry # 0);

THEOREM 1.2. Let (Y,y) be a Ricci limit space. We assume that Ry # (0. Then, we
have Alex(Y) =Y (1).

We give a corollary of Theorem 1.2. We fix a sufficiently small positive number
¢ > 0. Let Z be a completion of 5-dimensional Riemannian manifold (Rso x S*, dr? +
(r'*€/2)%gss). Here, ggu is the standard Riemannian metric on 4-dimensional unit sphere.
This space is a Ricci limit space. (See Example 8.77 in [4].) On the other hand, for
positive number 7 > 0, Let Z, be a space obtained by adjoining a segment [—7,0] to Z
at each origins. J. Cheeger and T. H. Colding showed that for every 7 > 0, Z, is not
Ricci limit space. This non-existence result also follows from Theorem 1.2. This is an
alternative proof. We take two copies of Z, denote them by Z;, Z5. (Namely, Z; and
Z, are isometric to Z, respectively.) Let Z be a space obtained by adjoining Z; to Zs
at each origins. We prove that Z is not a Ricci limit space, as a corollary of Theorem
1.2. In section 6, for every positive number 7 > 0 and every complete pointed connected
k-dimensional Riemannian manifold, (M, m), we will prove that (M x Z,,(m,0)) is not
a Ricci limit space. (See Remark 6.7.)

We will also study the problem whether the Hausdorff dimension of the Ricci limit
space is an integer. First, under the condition 2 < dimyY < 3, we will prove that
dimy (Y \ C;) < 2 holds for every x € Y. Here, C, is the cut locus of x. (See Theorem
7.4.) In general situation, J. Cheeger and T. H. Colding gave a sufficient condition to
satisfy dimyY € Z. (See Theorem 1.38 in [5].) This condition is called by polar, we can
rewrite the condition by using cut locus on iterated tangent cones. X. Menguy showed
the existence of non-polar Ricci limit space and the Hausdorff dimension is an integer.

(See [14].) We will give another sufficient condition to satisfy dimyY € Z that is weaker
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condition than polar. (We call the condition weakly polar.) Note that the example by
X. Menguy has weakly polar condition. We also study the limit space satisfying weakly
polar condition. (See Corollary 8.6.)

Acknowledgement: The author is grateful to Professor Takashi Shioya for helpful
discussions and teaching me the ideas of the proof of Proposition 4.1 and Theorem 4.2. The
author would like to express his thanks to Professor Tobias Holck Colding for valuable
suggestions about Theorem 6.6 and Remark 6.7. The author also thanks to Professor

Kenji Fukaya for his numerous suggestions and advices.

2 Notation

We recall some fundamental notion on metric spaces, the notion of Ricci limit spaces and

recall that of regular set on Ricci limit spaces. (See [4].)

DEFINITION 2.1. We say that a metric space X is proper if every bounded closed set is
compact. A metric space X is said to be geodesic space if for every points x1, x9 € X, there
exists an isometric embedding v : [0, Z1, T3] — X such that (0) = 27 and v(Z1, 73) = 22
hold. Here 77,73 is the distance between z; and xs on X. (We say that ~ is minimal

geodesic from xy to xs.)

For proper geodesic space X, a point x € X, a set A C X, and for positive number
r > 0, we use the following notations; B,(z) = {z € X|7,2 <7}, B,(z) = {z € X|7,2 <
r}, 0B.(x) = {z € X|7,Z = r},C,(A) = {z € X| There exists w € A such that

T,z + z,w = T,w holds.}. Throughout the paper, we fix a positive integer n > 0.

DEFINITION 2.2. Let (Y,y) be a pointed proper geodesic space (y € V), K € R
a real number. We say that (Y,y) is (n, K)-Ricci limit space if there exist a sequence
of real numbers K; € R and a sequence of pointed, complete, connected n-dimensional
Riemannian manifolds {(M;, m;)}; with Ricy;, > K;(n — 1), such that K; converges to K
and that (M;, m;) converges to (Y, y) as i — oo in the sense of pointed Gromov-Hausdorff

topology.

Here, for a sequence of pointed proper geodesic space {(X;, z;)};, we say that (X;, z;)
converges to a pointed proper geodesic space (Xoo, Too) in the sense of Gromov-Hausdorff
topology if there exist sequences of positive numbers ¢;, R; > 0 and exists a sequence
of maps ¢; : (Bg,(x;), i) — (Br,(x), %) such that ¢; converges to 0, R; converges
to oo, [Z,W; — ¢i(z), i(w;)| < € hold for every points z,w; € Bg,(z;), and that
B,(Image(¢;)) D Bgr,(Xw) holds. Then for a sequence of points z; € X; such that

the set {7y, z;|i € N} is bounded set in R, we say that z; converges to a point zo € Xoo



in the sense of Gromov-Hausdorff topology if W < €. (We denote it by either
Zi = Zoo OF Z;; Z < €;.)

We remark that for every K # 0 and every (n, K)-Ricci limit space (Y, y), there exists
a sequence of complete, connected n-dimensional Riemannian manifolds {(M;, m;)}; with
Ricy, > K(n — 1), such that (M;, m;) converges to (Y, y) by rescaling. Throughout the
paper, (Y,y) is always (n, —1)-Ricci limit space and is not a single point. More simply,

we say that (Y, y) is Ricci limit space.

DEFINITION 2.3. Let (W, w), (Z,z) be pointed proper geodesic spaces. We say that
(W, w) is tangent cone at o € Z if there exists a sequence of positive numbers r; > 0
such that r; converges to 0 and that rescaled pointed proper geodesic spaces (Z,r; Ydy, )
converges to (W, w) in the sence of pointed Gromov-Hausdorff topology. Here, d is the

metric (distance function) on Z.

We remark that by Gromov’s pre-compactness theorem, for every point z € Y, there
exists a tangent cone at x, (7,Y,0,). In generally, it is not an unique. (See [15].) Note
that for every tangent cone at z, (7,Y,0,), (7Y, 0,) is (n,0)-Ricci limit space. Next, we
shall give a filtration of Ricci limit spaces and the notion of regular set. These are defined
by J. Cheeger and T. H. Colding in [4]. Throughout this paper, for every metric spaces
X1, X, the metric on X7 x X, is always (d%, + d%,)"/>.

DEFINITION 2.4. Let Z be a proper geodesic space. We assume that for every point
a € Z, there exists a tangent cone at «, (1,7, 0,). Then, for non-negative integer k € Zy,

we put

1. WEL(Z) = {x € Z| There exists a tangent cone at x, (T,,Z,0,) and a proper geodesic
space W such that 7,7 is isometric to R¥ x W. },

2. &(Z) = {x € Z| For every tangent cone at z, (1,7,0,), there exists a proper
geodesic space W such that T}, 7 is isometric to R¥ x W. },

3. WE,.(Z) ={x € Z]| There exist a tangent cone at x, (1,,7,0,) and a proper geodesic
space W such that W is not a single point and that T, Z is isometric to R* x W. },

4. Ri(Z) = {x € Z|Every tangent cones at z, (T, Z,0,), is isometric to (R*¥,0) }.

Let € > 0 be a positive number. We also put

5. WEL)(Z) = {x € Z| There exist a positive number 0 < r < € and a proper

geodesic space (W, w) such that dgy((B,(z), ), (B, ((0g, w)), (0k,w))) < er holds
for B,((0,w)) C R¥ x W. }.

Here, dgy is the Gromov-Hausdorff distance between pointed compact metric spaces.
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For simplification, we use the following notations for Ricci limit space (Y,y); WEy =
WEL(Y), & = Er(Y) ete. We call the set Ry, k-dimensional regular set of Y and call the
set R = |J, R regular set of Y.

REMARK 2.5. By the definition and Gromov’s pre-compactness theorem, (WEy). is
open and W&y = Neso(WEK). holds.

We shall give the definition of limit measure. The measure is useful tool for studying

Ricci limit spaces.

DEFINITION 2.6. Let v be a Borel measure on Y. We say that v is limit measure
if there exists a sequence of complete, pointed, connected n-dimensional Riemannian
manifolds {(M;, m;)}; with Ricy;, > —(n — 1), such that (M;, m;) converges to (Y, y) and
that for every positive number r > 0 and every points € Y, m; € M; satisfying m; — x

in the sense of pointed Gromov-Hausdorff topology,

vol(B,(m;))

vol By (m;) — v(By(x))

holds. Then, we say that (M;,m;,vol/volB;(m;)) converges to (Y,y,v) in the sense of

measured Gromov-Hausdorff topology.

There exists a limit measure on Y. (See Theorem 1.6, Theorem 1.10 in [4] and see
[9].) It is not an unique in generally. (See Example 1.24 in [4].) Throughout the paper,

v is always fixed limit measure on Y.

3 Regularity theorem and low dimensinal tangent

cone

In this section, we recall several properties of regular set. One of many important results
of J. Cheeger and T. H. Colding, is v(Y \ R) = 0. (See Theorem 2.1 in [4].) We shall
study that in more detail. Next proposition is a corollary of Lemma 2.5 in [4]. Note that
it does not follow from the result v(Y \ R) = 0 immediately.

PROPOSITION 3.1. There exists a positive number e(n) > 0 depending only on n such
that v(B, ()N (U5, ) > 0 holds for every integer 1 < k < n, every point & € (WE})cm)

and for every positive number r > 0.

PROOF. By Lemma 2.5 in [4], there exist a positive number ¢(n) > 0 such that
v(B,(x) N &) > 0 holds for every integer 1 < k < n, every point € (WE})¢(n) and every
positive number r > 0. If v(B,(z) N Ry) > 0 holds, we have the claim. We assume that
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v(B(x) N Ry) = 0 holds. Then, since v(B,(z) N &) < v(B,(x) N Ry) + v(B,(x) "NWE,),
we have v(B,(z) "WE,) > 0. By the result v(WE, \ WE+1) = 0 (Lemma 2.6 in [4]) and
the result v(WE \ &) = 0 (Lemma 2.5 in [4]), we have v(B,(z) N 1) > 0. Therefore
we have completed the proof of Proposition 3.1 by iterating this argument. [

Next proposition is a corollary of Proposition 3.1 and the proof of Lemma 2.6 in [4].

PROPOSITION 3.2. Let x be a point in WE,,. Then we have v(B,(x) U5, Rj) >0

for every positive number r > 0.

PrOOF. First, we remark that for every positive numbers €,§ > 0 and every point

x € WE,., there exists a positive number 0 < s < € such that

v(Bs(x) \ WEk11)s)
v(Bs())

See (2.42) in [4]. (We remark that this statement does not follow from the result v(WE, \
WEki1) = 0 immediately.) We take 6 = €(n) as in Proposition 3.1. There exists a

sequence z; € (WE k+1)6(n) such that x; converges to x in Y. We take a positive number
s; > 0 such that By, (z;) C B,.(z) holds for every sufficiently large . Then, by Proposition
3.1, we have v(Bs, (i) NU;51 11 Rj) > 0. Especially, v(B,(x) "U;51 Ry) > 0 holds. [

We will use next corollaries many times in following sections.
COROLLARY 3.3. We have WE, C Uisii1 R for every positive integer k > 1.
COROLLARY 3.4. We have the following statements for every integer ¢ > 1.

1. If u(R;) = 0 holds for every j > i, then we have WE; = ¢ for every j > i.
Especially, we have R; =0 for every j > i.

2. If v(R;) = 0 holds for every j > i+ 1, then we have WE; = () for every j > i.

4 One dimensional Ricci limit spaces

In this section, we give a necessary and sufficient condition for appearing one dimensional
piece. (See section 5 in [5] for the definition of one dimensional piece.) As a corollary,
we will give the classification of one dimensional Ricci limit spaces. We say that a point
x € Y is an interior point on a minimal geodesic v : [0,l]] — Y (I > 0) if x € v((0,1))
holds.

PROPOSITION 4.1. Let x be a point in Ry. Then, x is an interior point on some

minimal geodesic.



Proor. This proof is by contradiction. Assume that the assertion were false. Let
r; > 0 be a sequence of positive numbers such that r; converges to 0 and that (Y, r; 1dy, x)
converges to (R, 0). Then, for every positive integer i > 0, there exist points z; ,z] € Y

and a positive number €; > 0 such that ¢; converges to 0, |z; ,z —r;| < 7, |:vj, T—ry <

e;r; hold, and that z; ,x + 2], 2 — z;, 77 < r; holds. We take a minimal geodesic from
x7 to xf, v [0,2;,27] — Y. We put s; = x, Image(7;). Then we have s; > 0 by the
assumption. By triangle inequality, we have s; converges to 0. Without loss of generality,
we can assume that (Y, ,s; 'd) converges to a tangent cone at x, (T,Y,0,).

By the construction, there exist z € 9B;(0,) and an isometric embedding L : R — T, Y
such that z € Image(L) and 0, ¢ Image(L) hold. By applying splitting theorem to
(T.Y, z), there exists a proper geodesic space W such that W is not a single point and
that T, Y is isometric to R x W. This contradicts the assumption = € R;. Il

The following theorem is the geometric necessary and sufficient condition to appear

one dimensional piece;

THEOREM 4.2. Let x € Y\ Uizgﬁi. Then, there exists a positive number € > 0 such
that (Be(x),x) is isometric either to ((—e,€),0) or to ([0,€),0). Here, (—¢,€), [0,€) are
intervals i R.

PRrROOF. 1. The case x € R;.

By Proposition 4.1, there exist a sufficiently small positive number r > 0, points
z_,xy € Y and a minimal geodesic from z_ to x,, 7 : [0,7_,74] — Y such that
T-,7 = 75,7 = 100r, x € Image(y) hold and that Bygo,(z) C Y \ Uj>2R; holds.

We assume that Bio.(z) \ Image(y) # 0. we take z € Big.(x) \ Image(y). Let
w € Image(y) be a point such that Z;w = z, Image(y) > 0. Note that w € Bso, (7).
We take a minimal geodesic from z to w, 71 : [0,Z,w] — Y. For every positive

number 0 < € << z,Image(y), let w(e) € Image(y) be a point in Image(vy;) with

w,w(e) = €, and let be z_(€), 4 (€) € Image(y) points with z_(€), w = x4 (¢),w = e.

By the definition of w, we have x_(€),w(e) = z_(€),w(e) + w(e),z — w(e),z >
Z, W — m = €. Similarly, we have m > ¢e. Therefore, for every tangent
cone at w, (T,,Y,0,), there exists a proper geodesic space W such that W is not a
single point and that 7,,Y is isometric to R x W. Thus, we have w € WE,. By
Corollary 3.3, we have w € J;5, R;. This contradicts Image(y) C Y \ U, Ri-
Therefore Big,(x) \ Image(y) -y holds, we have the assertion. )

2. The case x € Y \ R;.

There exist a sufficiently small positive number r > 0, a point x;, € Y and a

minimal geodesic segment from z to z., v : [0,7Z, 7] — Y such that ;77 = 100r
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and Bigor(z) C Y\ Ujsg R; holds. We assume that By, (z) \ Image(y) # 0. We
take a point z € Blmzx) \ Image(y). Let w € Image(y) be a point satisfying
Z,W = z Image(y) > 0. Note that w € Bsg,(x). If w # z, there exists a positive
number € > 0 such that (B.(w),w) is isometric to ((—e¢,€),0) by the case 1. This
contradicts the fact Z,w = z,ITge(v). Thus, we have w = x. For every positive
number 0 < e << 100r, let 2. (¢) € Image() be a point satisfying z, z, (€) = e. We
take a minimal geodesic segment from z to x4 (€), Y. : [0, 2,24 ()] — Y for every

sufficiently small positive number 0 < € << r.

CLAM 4.3. z € Image(.) holds.

This proof is by contradiction. Assume that the assertion were false. We put
t = inf{z;m | m € Image(.) N Image(v)} > 0. By the definition, we have 7.(t) €
Image(7y) and 7.(s) & Image(y) for every s < t. Clearly, we have ~.(t) € £. By
Ye(t) € WE,, we have v.(t) € Ry. By the case 1, there exists a positive number
7 > 0 such that (B;(7.(t)),7(t)) is isometric to ((—7,7),0). This contradicts the
fact v.(s) & Image(v) for every s < t. Therefore we have Claim 4.3.

We have z € & by Claim 4.3. By v € W&, we have x € R,. This contradicts the
assumption z € Y \ R;.
O

We shall define local Hausdorff dimension.

loc

DEFINITION 4.4. For metric space X and a point x € X, we put dimy;°x = lim, o dimy B, (z).

For non-negative number a > 0, we put X (a) = {z € X|dimy‘r = a}.

The following proposition is the necessary and sufficient condition by using local Haus-

dorff dimension to appear one dimensional piece.

THEOREM 4.5. Let x be a point in Y. Then, 1 < dimﬁcx < 2 holds if and only if
z €Y\ Uy R; holds.

PROOF. By Theorem 4.2, if z € Y\ >, Rs, then 1 < dimy°z < 2 holds. We assume
that there exists an integer ¢ > 2 such that o € Ri;. Then, for every positive number
s > 0, there exists z € Bs(x) N R;. By Corollary 1.36 in [5], we have dimyB;(z) > 2
for every positive number ¢t > 0. Especially, dimyBs(z) > i > 2. Therefore, we have
dimyx > i > 2. O

Theorem 1.1 follows from Corollary 3.4, Theorem 4.2 and Theorem 4.5 immediately.
As a corollary of Theorem 1.1, if dimyY < 2 holds, then dimyY € Z holds. Next, we
consider the Ahlfors one regular set Ay (1) = {z € Y|liminf, ov(B,(z))/r > 0}. (See
section 6 in [12] for the definition of the set Ay («) for real number 1 < a < n.)
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COROLLARY 4.6. We assume that v(Y '\ Ay (1)) = 0 holds. Then we have dimyY = 1.

PROOF. By Theorem 3.23 and Theorem 4.6 in [6], we have v(R; \ (R; N Ay (i))) =0
for every integer 7 > 1. Therefore, by the assumption, we have v(R;) = 0 for every integer
t > 2. Thus we have Corollary 4.6 by Theorem 1.1. O

5 Equivalence between limit measure and one dimen-

sional Hausdorff Measure

In this section, we consider locally equivalence between v and H!. Here, H! is the one
dimensional Hausdorff measure. We shall give next proposition without the proof because
we can prove it by an argument similar to that of construction of limit measure. Note
that for every 0 < r < 1 and every x € Y, the rescaled pointed proper geodesic space

(Y, r~tdy,x) is Ricci limit space.

PROPOSITION 5.1. For every positive number 0 < r < 1 and every point x € Y,
there exists a limit measure v, on (Y,r ‘dy,x) such that UT(B;—ldY (21))v(Bsyr(x2)) =
'Ur(BgldY (22))v(Bs,r (1)) holds for every points x1,x2 € Y and for every positive numbers
s1,89 > 0. Especially, for every tangent cone at x, (T,Y,0,), there exists a limit measure
Uso on T, Y and exists a sequence of positive numbers r; > 0 such that r; converges to 0

and that v(Bs,,(z))/v(By,(x)) converges to v (Bs(0)) for every positive number s > 0.
We will give a proof of next proposition in Appendix.

PROPOSITION 5.2. Let (W, w) be a pointed proper geodesic space and 1 < k < n a
positive integer. We assume that W is not a single point and that (RF x W, (0, w))
is (n,0)-Ricci limit space. Then, for every limit measure v on R* x W, there exists a
Borel measure vy on W such that v = H x vy holds and that lim sups_, vy (Bs(2))/d <
C(n,diam(W), R) < oo holds for every positive number R > 0 and every point z € Br(w).
Here, C'(n,diam(W), R) > 0 is a positive constant depending only on n,diam(W), R.

We remark that for z € Y, liminf, o v(B,(x))/r > 0 holds if and only if v_;(x) > 0
holds. (See [5], [12] for the definition of the measure v_; on Y.) We shall give an example
of a point x € Y satisfying v_;(x) > 0.

PROPOSITION 5.3. Let x be a point in Ry. Then we have liminf, o v(B,(x))/r > 0.

PROOF. Assume that the assertion were false. Hence v_j(z) = 0. Then, by an
argument simular to the proof of Proposition 4.1 and by Theorem 3.7 in [5], there exists

a tangent cone at z, (T,Y;0,), and a proper geodesic space W such that W is not a single



point and that 7T,Y is isometric to R x W. We take a limit measure v,, on 7,Y as in
Proposition 5.1. By Proposition 4.3 in [12] and the assumption, we have (v )_1(0,) > 0.
This contradicts Proposition 5.2. O

We give the definition of locally equivalence between Borel measures.

DEFINITION 5.4. Let X be a topological space and v, 1 be Borel measures on X. We
say that v are locally equivalent p at x € X if there exist a positive number C' > 1 and
an open neighborfood U of z such that C~'u(A) < v(A) < Cu(A) holds for every Borel
set ACU.

Next theorem is the main result in this section.

THEOREM 5.5. Let x be a point in Y. The following conditions are equivalent:
1. The limit measure v is locally equivalent to H' at x.

2. liminf, o v(B,(x))/r > 0 holds and 1 < dim}‘x < 2 holds.

PRrOOF. It suffices to show that if lim inf, o v(B,(z))/r > 0 holds and 1 < dimpyx < 2
holds, then v is locally equivalent to H! at z. We assume that liminf, .o v(B,(z))/r > 0
and 1 < dimgx < 2 hold. Then, by Theorem 4.2 and Theorem 4.5, There exists a positive
number € > 0 such that (B.(z),z) is isometric either to ((—¢,¢€),0) or to ([0,€),0). Note
that liminf, .o v(B,(2)) > v_1(z) holds for every point z € Y. It is not difficult to check
the claim by using Theorem 1.1 in [12]. O

We remark that there exist two limit measures vy, vy on the 2-Ricci limit space [0, 1]
such that v, is locally equivalent to H' at 0 and that v, is not locally equivalent to H*
at 0. See Example 1.24 in [4].

6 The structure of spaces with Ahlfors one regular

points

In this section, we study Ricci limit space (Y, y) satisfying Ay (1) # (0. We give a char-
acterization of one dimensional piece by existence of lower sectional curvature bounds
(Theorem 1.2). As a corollary, we have non-existence of Z, Z in section 1 as Ricei limit
spaces. We also discuss some uniform properties of Hausdorff dimension on Ricci limit

spaces.
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6.1 A proof of Theorem 1.2
First, we give an example of a point = € Y satisfying v_;(z) = 0.
PROPOSITION 6.1. Let x be a point in WE,. Then we have liminf, o v(B,.(z))/r = 0.

PROOF. Assume that the assertion were false. By the definition, there exist a tangent
cone at z, (1,Y,0,) and a proper geodesic space W such that W is not a single point,
T,Y is isometric to R x W. We take a limit measure v, on 7,Y as in Proposition 5.1.
By Proposition 4.3 in [12], we have (v )-1(0;) > 0. This contradicts Proposition 5.2. [

We shall define the notion of Alexandrov point. It means that there exists a lower

sectional curvature bound around the point.

DEFINITION 6.2. Let X be a proper geodesic space, x a point in X. We say that x is
an Alezandrov point if there exist an open neighborhood of z, U, and a negative number

K < 0 staistfying the following properties; For every points z1, x2, x3 € U and every point

1y € X satisfying 7y, T4 + Tq, T3 = Ty, T2, there exist points yy,ys, y3, ys € H2(K) such

that 1,72 = U1, Y2, T2, T3 = V2,Ys, T3, L1 = Y3, Y1, 1,24 = Y1, ya hold and that 73,74 >
U3, 91 holds. Here, H?(K) is complete, two dimensional Riemannian manifold such that
7 (H?*(K)) = 1 holds and that the sectional curvature Kz satisfies Kiz(r) = K.

We put Alex(Y) = {z € Y|z is an Alexandrov point }. By the definition, the set
Alex(Y') is an open set.

THEOREM 6.3. We assume that there exists a point z € Y such that liminf, o v(B,(2))/r >
0 holds. Let x be a point in Y. Then, one of the following statements 1,2 occurs.

1. dim{‘xr = 1 holds.

2. x s not an Alexandrov point.

Proor. This proof is by contradiction. We assume that dimlﬁcx > 1 holds and that
x is an Alexandrov point. We consider the metric ball B,(x) for fixed sufficiently small
positive number r > 0. Since Alex(Y") is open, without loss of generality, we can assume

that x # z. Fix a minimal geodesic from z to z, v : [0,7,z] — Y. We put a = y(r) and
w="(3)
CLAM 6.4. Let 5 : [0,w,z] — Y be a minimal geodesic from w to z. Then, a €

Image(¥) holds.
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Assume that the assertion were false. There exists s € [0,w, z] such that v(s) € 0B, (x)
holds. We put & = 7y(s)(# «). Then, we have

—r,a=T,0+ (w,&+ &, z) — (z,& + &, 2)

[

0 <7 w+ w,

IN

T,W+W, 2 —T,2

Il
I

Therefore, there exists a minimal geodesic from z to &, I' : [0,2,4] — Y such that
w € Image(I") holds. This contradicts the assumption x € Alex(Y'). Thus, we have Claim
6.4.

By Claim 6.4, for every sufficiently small positive number ¢ > 0, there exists a point
a; € Y such that 0B;(w)NC,({z}) = {a:}. By Theorem 1.1 in [12], we have v_;(ay) > 0.
On the other hand, for the tangent cone at «y, (7,,Y,0,,), there exists a proper geodesic
space W such that 7,,Y is isometric to R x W. By the assumption dimﬁcx > 1 and the
uniform properties of the Hausdorff dimension on Alexandrov spaces, W is not a single

point. Therefore, by Proposition 6.1, we have v_j(ca;) = 0. This is contradiction. O]

Theorem 1.2 follows from Theorem 4.2, Theorem 4.5, Proposition 5.3 and Theorem

6.3, immediately. Finally, we shall give the following theorem.

THEOREM 6.5. Let z be a point in' Y. We assume that there exist points w,z € Y \ x
such that w # z, T,W + W, z2 = T, z holds and that v(C,({z})) > 0 holds. Then, one of

the following statements 1,2 occurs.

1. dim%‘fx =1 holds.
2. x is not an Alexandrov point.

PROOF. By an argument simular to the proof of Theorem 6.3 and by using Corollary
4.8 in [12], it is easy to check this assertion. O

6.2 Some uniform properties of Hausdorff dimension

First, we consider an analogous statement to Theorem 1.2 for tangent cones.

THEOREM 6.6. Let (X,x) be a proper geodesic space, k > 0 a nonnegative integer.
We assume that (R¥ x X, (04, 2)) is (n,0)-Ricci limit space and that there exists z € X
loc

such that dimy‘z = 1. Let w be an Alexandrov point in X. Then we have dimy‘w = 1.
FEspecially, we have Alex(X) = X (1).

12



Proor. This proof is by contradiction. We assume that dimﬁcw > 1 holds. By an
argument similar to the proof of Theorem 4.5 and by Corollary 3.3, there exists an open
neighborhood of z, U such that U N WE,(X) = 0. By a similar argument to the proof of
Theorem 4.2, there exists a sufficiently small positive number € > 0 such that (B.(z), 2)
is isometric either to ((—e¢, €),0) or to ([0,€),0). We take a minimal geodesic from z to w,
v :[0,Z;w] — X and take a sufficiently small positive number 0 < 7 << e. We put Z =

v(€/2) and w = y(Z;w — €). We take & € B,(2) and a minimal geodesic from Z to w, v :
[0,%,1] — X. Then, we have v, ([0, 27]) C Image(7). Let (v, %) € B,(04, 2) be a point and
I': 0, (v, ), (0g, )] — R* x X a minimal geodesic from (v, &) to (O, w). We put T'() =
(a(t),”(t)). By simple calculation, we have, the map ®(s) = §((v, Z), (0, w)s/z,w) for

s € [0,z,w], is a minimal geodesic from & to @w on X. We also have |a(t)| < 7 for every ¢.
We put a = y(z;w —2¢) € X. Then, by an argument similar to the proof of Theorem 6.3,
we have Clo, ) (B7(0k, 2)) N (Betr (0, W) \ Be(O, w)) C Bar (0, ). Therefore, by Bishop-
Gromov volume comparison theorem for v (See (A.2.2) in [4]), we have v(B, (0, 2)) <
C(e,n,z,T)v(Bar (0, ). Here, C(e,n,z,Z) > 0 is a positive constant depending only on
€,n,Z,7. By Theorem 4.6 in [6], we have liminf, o v(B,(0y,2))/7""1 > 0. Therefore,
we have liminf, .o v (B, (0, «))/7%™ > 0. Thus, by Proposition 5.1 and Proposition 5.2,
there exists a positive constant C' > 1 such that C~17%t! < v(B, (0}, a)) < C7F*L holds
for every 0 < 7 < 1. Therefore, there exist a pointed proper geodesic space (Z1,21), a
limit measure O on T(o, )(R" x X), a tangent cone at «, (T,X,0,), and exists a Borel
measure on Zi, vz, such that T,X is isometric to R x Zi, T{g, o) (R* x X) is isometric
to RF x Z;, © = H*! x vy, holds and that liminf, o 0(B,(0g, 21))/7% > 0 holds.
On the other hand, by « is an Alexandrov point, Z; is not a single point. Therefore,
by Proposition 5.2, we have liminf, o 0(B;(0x, 21))/7"™ = 0. This is contradiction.
Therefore we have Alex(X) C X(1). Next, we take § € X(1). There exists a positive
number ¢ > 0 such that dimyBs(5) < 2 holds. By using Corollary 1.36 in [5], we have
Ri(X) N Bs(B) = 0 for every i > 2. Therefore, by Corollary 3.3, we have W&, (X) = 0.
Thus, by a similar argument to the proof of Theorem 4.2, there exists a positive number
r > 0 such that (B,(3), () is isometric either to ((—r,7),0) or to ([0,r),0). Especially, we
have 5 € Alex(X). O

REMARK 6.7. Let (X, z) be a proper geodesic space. For an open set U C X, we say
that U has k-dimensional C°°-Riemannian structure if for every point x € U, there exist
a open set V C U and k-dimensional (not complete) Riemannian manifold N such that V'
is isometric to N as metric spaces. We assume that there exist an integer k£ > 2 and open
sets Uy, Uy C X such that U; has one dimensional C*°-Riemannian structure and that U,
has k-dimensional C*°-Riemannian structure. Then, by a similar argument to the proof of

Theorem 6.6, for every [ € N and every [-dimensional complete C'*°-Riemannian manifold
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(M,m), (M x X, (m,z)) is not Ricci limit space. For example, (M x Z,,(m,0)) is not
Ricci limit space. Roughly speaking, a reason of the non-existence is “locally Lipschitz

properties of exponential map from higher dimensional point”.

We say that a proper geodesic space X is non-baranching if for every x € X and every
y € X \ C,, there exists an unique minimal geodesic from z to y. Here, C, is the cut
locus of z, C,, = {z € X| For every w € X \ 2z, 7,2+ Z,w — T,w > 0 holds. }. (If X is a
single point, then C, = (.)

THEOREM 6.8. We assume that Ry # (0 and Y is non-branching. Then we have

PRrROOF. We fix a point « € Y. First, we shall prove Y \ C, C Ay(1). For every
z € Y\ C,, there exists w € Y \ C, such that z # w and 7,z + Z,w = 7, w hold. By

the assumpiton of non-branching, there exists an unique minimal geodesic from z to w,

v :[0,Z;w] — Y such that = € Image(y). By Proposition 5.3 and Theorem 1.1 in [12],
we have v_y(z) > 0. Therefore, we have Y \ C, C Ay (1). Thus, by Theorem 3.2 in [12],
we have v(Y \ Ay (1)) = 0. By Corollary 4.6, we have the assertion. O

7 Two dimensional case

In this section, we study the Hausdorff dimension of the Ricci limit space (Y, y) such that
2 < dimyY < 3 holds.

PROPOSITION 7.1. Let s > 1 be a positive number, U C Y an open set satisfying
dimyU < s, x a point in U, and (T,Y,0,) a tangent cone at x. We assume that there
exists a proper geodesic space W such that T,Y is isometric to RE=1 x W. Then, W
is isometoric either to a single point, or to R, or to Rsg, or to S'(r) for some positive
number r > 0, or to [0,1] for somel > 0. Here, [s] = max{k € Z|k < s} € N.

PROOF. First, we shall prove WE (W) = 0. We assume that WE, (W) # 0. Then
we have WE (T,Y') # (). Thus, by Corollary 3.3, we have WEy1(T,Y) # (). Hence,
(WEg+1)e NU # 0 holds for every positive number € > 0. Thus, by Corollary 3.3, there
exists an integer ¢ > [s] + 1 such that R; N U # ¢ holds. Therefore, by Corollary 1.36
in [5], we have dimyU > i > [s] + 1 > s. This contradicts the assumption. Therefore
we have WE, (W) = ). By using WE, (W) = ) and an argument simular to the proof of
Theorem 4.2, we have Proposition 7.1. O]

We shall apply Proposition 7.1 to estimate of Hausdorff dimension of some subset.
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COROLLARY 7.2. Let s > 1 be a positive number and U C 'Y an open set satisfying
dimyU < s Then, we have dimp&q—1 NU < [s].

PRroOF. First, we shall prove the following claim.

CLAIM 7.3. Let X be a proper geodesic space, A C X a subset and s > 0 a positive
number. We assume that for every point x € X and every sequence of positive numbers
ri > 0 such that r; converges to 0, there exist a subsequence ryn;y > 0 and a tangent cone
at z, (1, X,0,) such that (X, r;(li)dx,x) converges to (1,X,0,). We also assume that for
every point « € A and for every tangent cone at o, (T, X, 0,), dimy T, X < s holds. Then,
dimy A < s holds.

This proof is by contradiction. We assume that dimyA > s holds. There exists a
positive number € > 0 such that dimyA > s + ¢ holds. By density result in Geometric
measure theory, there exist a point a € A and a sequence of positive number r; > 0, such
that r; converges to 0 and lim; .o (H3T¢(A N B,,(a))/r**¢) > 0 holds. (For example, see
(1.39) in [5] for the definition of (s + €)-dimensional spherical Hausdorff content, H21€.)
Without loss of generality, we can assume that there exists a tangent cone at «, (T, X, 04)
such that (X,r; 'dx,a) converges to (T,X,0,). By the construction, it is not difficult
to see that H**<(B1(0,)) > 0 holds. Especially, we have dim»T,X > s+ ¢ > s. This

contradicts the assumption. Therefore, we have Claim 7.3.

By Proposition 7.1, for every point x € £j—1 N U and for every tangent cone at x,
(T,Y,0,), we have dimyT,Y < [s] holds. Therefore we have Corollary 7.2 by Claim
7.3. O

Finally, we consider the condition 2 < dimyY < 3.

COROLLARY T7.4. We assume that 2 < dimyY < 3 holds. Then, dimy (Y \ C,) < 2
holds for every x € Y.

Proor. By Y\ C, C & and Corollary 7.2. O

REMARK 7.5. It seems that for every Ricci limit space (Y, y), dimy (Y \ Cy) = dimyY
holds. If it is true, then for every Ricci limit space (Y,y) such that dimyY < 3 holds,
we have dimyY € Z by Theorem 1.1 and Corollary 7.4. Moreover, if this conjecture is
true, we can prove that for every Ricci limit spaces (Y, y), we have dimyY € Z. See next

section.

15



8 Hausdorff dimension in higher dimensional case

In this section, we study the problem whether the Hausdorff dimension of Y is an integer.
J. Cheeger and T. H. Colding gave a sufficient condition for satisfying dimyY € Z, that
is called by polar. (See Definition 4.1 in [4] for the definition of polar.) We remark that
there exists a non-polar Ricci limit space such that the Hausdorff dimension is an integer.
See [14] for the example. We shall give an another sufficient condition for satisfying

dimyY € Z, that contains polar condition.

DEFINITION 8.1. The pointed proper geodesic space (X, x) is called by iterated tangent
cone of Y if there exists a sequence of pointed proper geodesic spaces {(X;, z;)}Y, such
that X is isometric to Y, (Xy,zx) is isometric to (X, z) and (X;11,2;41) is a tangent

cone at some point in X; for every 1.
We shall prove next theorem.

THEOREM 8.2. We assume that for every iterated tangent cone of Y, (X, x), dimgp (X '\
C,) > dimyC, holds. (This condition is equivalent to dimy (X \ C,) = dimyX.) Then we
have dimyBg(z) € Z for every point z € Y and every positive number R > 0. Especially,
dimyY € Z and dimyz € Z hold.

PRrOOF. First, we take an integer k > 0 such that dimyBgr(z) < k + 1 holds. We
shall prove dimyBg(z) < k. By Claim 7.3, it suffices to see that dimy7,Y < k holds
for every point z € Y and every tangent cone at z, (7,Y,0,). We fix a tangent cone
(T.Y,0,) and put (Y1,71) = (7.Y,0,). By the assumption and Claim 7.3, it suffices to
see that dimyT},Y; < k holds for every point z; € Y7 \ C,, and every tangent cone at 2y,
(T.,Y1,0.,). We also fix a tangent cone (7%,Y},0,,) and put (Y, y2) = (7%,Y1,0.,). By the
construction, there exists a pointed proper geodesic space (Ws, wsy) such that (Ya,ys) is
isometric to (R x Wa, (0,wsy)). Without loss of generality, we can assume that Wj is not

a single point.

CLAIM 8.3. In general, we have C(o, ) = R* x C,, in R¥ x W for every positive integer
k > 0 and every pointed proper geodesic space (W, w).

If W is a single point, then C,, = () holds, especially, we have Claim 8.2. We assume
that I is not a single point. It suffices to see that for every point (tx, x) € R* x W\ C(o, u),
x € W\ Cy, holds. We can assume that = # w. By the definition, there exists a
point (s, z) € RF x W such that (sg,2) # (tx,2) and (O, w), (ty, ) + (tg, 2), (s, 2) =
m hold. We take an isometric embedding {w, =, 2z} — R? We denote

the images by w, Z, Z, respectively. Then we have (0, w), (tx,2) + (t,2), (sk,2) =

(O, ), (sg, 2) in R*2. By simple calculation, we have 0, % + 2,2 = 0, 2 and 2,2 > 0.
Therefore, x € W\ C}, holds. Thus we have Claim 8.3.
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By the assumption and Claim 8.3, we have dimy (W5 \Cy,) > dimyC,,,. Thus, proving
that dimy Y5 < k holds, suffices to see that for every point wy € Wy \ C,, and for every
tangent cone at wy, (T,Wa,04), dimyTz,Wo < k — 1 holds. We fix a tangent cone
(T5,Ws,04) and put (W3, ws) = (T, Wa, 04,). By the construction, there exists a pointed
proper geodesic space (Wy,wy4) such that (W3, ws) is isometric to (R x Wy, (0,w,4)). By
Claim 7.3, without loss of generality, we can assume that W, is not a single point. Since
(R? x Wy, (02,w,4)) is an iterated tangent cone of Y, by the assumption and Claim 8.3,
we have dimy (W, \ Cy,) > dimyC,,. Therefore, it suffices to see that for every point
wy € Wy \ Cy, and every tangent cone at wy, (Tg, Wiy, 04, ), dimp Ty, Wy < k — 2 holds.

We continue this argument and constract pointed proper geodesic space (Way, way,) as
above. Then, it suffices to see that dimy (Way, wer) < 0 holds, i.e. Wy is a single point.
We assume that Wy, is not a single point. Then, there exist an iterated tangent cone
of Br(z), (X, z), and a proper geodesic space L such that X is isometric to R¥™! x L.
Therefore, we have (WE11). N Br(z) # 0 for every positive number € > 0. Thus, by
Corollary 3.3, there exists an integer ¢ > k + 1 such that R; N Br(z) # (. Therefore, by
Corollary 1.36 in [5], we have dimyBgr(z) > i > k + 1. This contradicts the assumption.
Therefore, we have dimyBg(z) < k.

Here, we take an integer k£ > 0 such that & < dimyBg(z) < k + 1 holds. Then, we
have the dimy Bg(z) = k. O

REMARK 8.4. By an argument similar to the proof of Theorem 8.2, if for every iterated
tangent cone of Y, (X, z), dimy(X \ WDy(x)) > dimpWDy(z) holds, then we have the
same conclusion to Theorem 8.2. (See Definition 2.10 in [4] for the definition of WDy (x).)

It is not difficult to see that Y is polar if and only if C, = ¢ for every iterated tangent
cone of Y, (X, z).

THEOREM 8.5. We assume that for every iterated tangent cone of Y, (X, ), dimy (X'\
C,) = dimy X holds. Let R > 0 be a positive number, k > 0 a positive integer and z a point
inY. We also assmue that dimy Bg(2) > k holds. Then, we have v(Br(2) N (U;>; Ri)) >
0.

Proor. We take a sufficiently small positive number € > 0. By the assumption, we
have H* ¢(Bgr(z)) = oo. Hence, by an argument simular to the proof of Claim 7.3, there
exist a point z € Bg(z) and a tangent cone at x, (T,Y,0,) such that H*=<(T,Y) > 0
holds. We fix a tangent cone (7.,Y,0,) and put (Yy,vy;) = (7Y,0,). Since dimyY; >
k—e>k—2 >0 and dimy(Y; \ Cp) = dimyY;, we have H*2(Y; \ C,,) = oo.
Similarly, there exist a point z; € Y; \ Cy, and a tangent cone at z1, (7,,Y1,0,,) such
that H*2¢(T,,Y;) > 0 holds. We put (Ya,v2) = (T,,Y1,0,,). By the construction,
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there exists a pointed proper geodesic space (Xs,z5) such that (Y3, ys) is isometric to
(R x X5, (0,22)). Thus, dimy Xy > k—1—2¢ >k —1— 3¢ > 0 holds. Therefore, since
dimy Xy = dimy(Xy \ Cp,), we have HE173¢(X, \ Cy,) = co. By an argument similar
to that above, there exist a point 3 € X, and a tangent cone at &g, (7%,X2,0z,) such
that H*173¢(T3,X5) > 0 holds. We put (X3,z3) = (T3,X5,0;,). By the construction,
there exists a pointed proper geodesic space (X4, x4) such that (X3, x3) is isometric to
(R x X4, (0,24)). Since (R? x Xy, (0, 24)) is an iterated tangent cone of Bg(z), by the
assumption, we have dimy X, = dimy (X, \ Cy,) and dimy Xy > k — 2 — 3e > k — 2 — 4e.
We continue this argument and construct a pointed proper geodesic space (Xs(x—1), Ta(k—1))
as above. By the construction, (R~ x Xok-1), (O, T2k—1y)) is an iterated tangent cone of
Bg(z). We have dimy Xog—1) > k—(k—1) —2(k—2)e > 1 —2(k —1)e > 0. Since Xp(,_1)
is a geodesic space, we have dimyXp;—1) > 1. Therefore, there exists pointed proper
geodesic space (W, w) such that R* x W is an iterated tangent cone of Bgr(z). Thus,
(WEk). N Br(z) # ¢ holds for every positive number ¢ > 0. Therefore, by Proposition
3.1, we have v(Bgr(2) N (U Ri)) > 0. O

Next corollary is main result in this section.

COROLLARY 8.6. We assume that for every iterated tangent cone of Y, (X, x), dimy (X'\
C,) = dimy X holds. We take an integer k > 0 such that Ry # ¢ and R; = ¢ hold for

every integer © > k. Then we have the following statements:
1. dimyY = k holds.
2. H*(R¥) > 0 holds.
3. v(R*) > 0 holds.

ProoF. By Corollary 1.36 in [5], we have dimy Y > k. We assume that dimyY > k+1
holds. Then, by Theorem 8.5, there exists an integer ¢ > k + 1 such that R; # (). This
contradicts the assumption. Thus we have dimyY < k + 1. By Theorem 8.2, we have
dimyY = k. Next, we assume that v(Ry) = 0 holds. Then v(B.(z) N U;s, Ri) =
v(B,(zr) N Ry) = 0 for every point z € R, and every positive number r > 0. This
contradicts Proposition 3.1. Thus, we have v(Ry) > 0. By Theorem 3.23 and Theorem
4.6 in [6], we have H*(RF) > 0. O

9 Appendix: A proof of Proposition 5.2

In this section, we shall prove Proposition 5.2. First, we give a next lemma without the

proof because it is not difficult to prove by simple calculation.
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LEMMA 9.1. For every positive numbers O < r < R, there exists a positive constant
C(r, R) > 0 satisfying the following properties; Let X be a metric space, x1 a point in X,
k > 0 a positive integer, 6,¢ > 0 positive numbers with & < r/1000, vy, v points in R*
and 4 a point in Br(x1)\B,(z1). We assume that |v,| < 1,|vs| < 1 hold in R¥, To, 75 <
0, %3, %2 < 6 hold in X and that (O, 1), (Va, Ta) + (Va, Ta), (V3, 3) — (O, v8), (vs, 25) < €
holds in R¥ x X. Then, we have (Va,Ta), (v, 25) < C(r, R)(§ + €).

PrROOF OF PROPOSITION 5.2. Without loss of generality, we can assume that w # z.
By the assumption, there exist a sequence of pointed complete connected Riemannian
manifolds {(M;,m;)},; and a sequence of positive numbers €; > 0 such that ¢; converges
to 0, Ricy, > —e; holds and (M;, m;, vol/volBy(m;)) converges to (R x W, (04, w), v) in
the sense of measured Gromov-Hausdorff topology. We take a sufficiently small positive
number § > 0. Let {(¢;, 7;)}, be a maximal J-separated set on [0,1]* x Bs(z). Let
0 < r < 1 be a positive number satisfying z € Bgr(w) \ B.(w). For every positive
integers 7,7 > 0 (1 < i < N), there exists a point y; € M; such that yj- converges
to (t;,z;) as j — oo in the sense of pointed Gromov-Hausdorff topology. Thus, for
sufficiently large j, {E(;/g(y;)}i is pairwise disjoint in M;. We put X; = |, §5/3(y§-),
Sm; My = {u € T, Mjllu| = 1}, t(u) = sup{t € Rsolexp,, su € M; \ Cy,; holds for
every positive number 0 < s < t} for u € S,,,Mj, and put S, M; = {u € S, M|
there exists a positive number 0 < t < ¢(u) such that eXPyy,, tu € X; holds.}. We also put
Aj(u) = {t € (0,%(u))| exp,,, tu € X;} foru € Sijj and 0(t,u) = t”_l(det(gij|expmj )2
Here, g;; = g(0/0x;,0/0x;) where (21, z2,.., x,) is a normal coordinate around m;. Then,

by Laplacian comparison theorem, we have

volX; = / / 0(t,u)dtdu
Amj Mj J Aj(u)
o(r
< / / sinh" (t)L?dtdu
Amj Aj (u)

sinh™™(

IN

o(L
/ G / sinh™ (2R + 10)dtdu
$ ) J A )

cn—1/r
m; M; SIND (3

< C(n,r, R) / 0(=, u)H' (A;(u))du.

Sm; M; 2

Here, C'(n,r,R) > 0 is a postive constant depending only on n,r, R. We put a;(u) =
inf A;(u) and b;(u) = sup A;(u) for u € S'ijj. Then, by Lemma 9.1, we have b;(u) —
aj(u) < C(r,R)d. Thus

volX; < C(r, R)Svol(0B; (mj) \ Crn ).
Here, vol = vol/volB;(m;). By Bishop-Gromov volume comparison theorem, we have
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vol(0Bz (m;) \ Cp,;)/volBr (m;) < voldBz (p)/volBr (p). Thus, we have

N

ZU<B§(%$¢>) < C(n,r, R)0.

i=1
By measured splitting theorem, Proposition 1.35 in [4], there exists a Borel measure on
W, vy such that v = H* x vy holds. Therefore, by Bishop-Gromov volume comparison
theorem for v (See (1.12) in [4]),

N
ow(Bs(w)) = ([0, 1" x Bs(w)) < v(Bs(ti 1))
i=1
N
< Cn) Y o(Bs (1)
i=1
< C(n,r, R)0.
Therefore, we have Proposition 5.2. O]
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