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Abstract

In this paper, we will give a classification of limit spaces, of a sequence of Rie-
mannian manifolds with Ricci curvature bounded below, whose Hausdorff dimension
is strictly smaller than two.

1 Introduction

In this paper, we study a pointed metric space (Y, y) that is pointed Gromov-Hausdorff

limit of a sequence of complete, pointed, connected n-dimensional Riemaniann manifolds,

{(Mi,mi)}i, with RicMi
≥ −(n − 1). Here, n is a fixed positive integer. (We call a such

metric space (Y, y) Ricci limit space in this paper. See [13].) The structure theory was

much developed by J. Cheeger and T. H. Colding, and has many important applications

to Riemannian manifolds. (See [4, 5, 6].) Most of this paper, we will study the low

dimensional Ricci limit spaces by using their theory and using several results in [12].

First, we give the classification of one dimensional Ricci limit spaces;

Theorem 1.1. Let (Y, y) be a Ricci limit space. Then, the following conditions are

equivalent:

1. 1 ≤ dimHY < 2 holds.

2. Ri = ∅ holds for every integer i ≥ 2

3. υ(Ri) = 0 holds for every integer i ≥ 2

4. Y is isometric either to R, or to R≥0, or to S1(r) = {x ∈ R2||x| = r} for some

positive number r > 0, or to [0, l] for some l > 0.

Key words and phrases. Ricci curvature, Gromov-Hausdorff convergence, Geometric measure theory.
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Here, Ri is the i-dimensional regular set in Y and υ is a limit measure on Y . (See

Definition 2.4 and Definition 2.6.) The proof is used several results on regular set. We

will recall them in section 3. In section 4, we will give a necessary and sufficient condition

to exist one dimensional piece and prove Theorem 1.1. As a corollary of Theorem 1.1,

The Hausdorff dimension of a Ricci limit space (Y, y) such that dimHY ≤ 2 holds, is an

integer. Next, we will study the problem when the limit measure υ is locally equivalent to

one dimensional Hausdorff measure H1. We will give a necessary and sufficient condition

that υ is locally equivalent to H1. See Theorem 5.5 in section 5.

We use the notion of local Hausdorff dimension in several situations of this paper. We

define dimloc
H x = limr→0 dimHBr(x) for every x ∈ Y and put Y (α) = {x ∈ Y |dimloc

H x = α}
for α ≥ 0. We also define the notion of Alexandrov point in section 6. (See Definition

6.2.) Alexandrov points on metric space means that there exists a definite lower bound of

sectional curvature around the point in the sence of Alexandrov geometry. We consider

the set Alex(Y ) = {x ∈ Y |x is an Alexandrov point } under the assumption R1 6= ∅;
Theorem 1.2. Let (Y, y) be a Ricci limit space. We assume that R1 6= ∅. Then, we

have Alex(Y ) = Y (1).

We give a corollary of Theorem 1.2. We fix a sufficiently small positive number

ε > 0. Let Z be a completion of 5-dimensional Riemannian manifold (R>0 × S4, dr2 +

(r1+ε/2)2gS4). Here, gS4 is the standard Riemannian metric on 4-dimensional unit sphere.

This space is a Ricci limit space. (See Example 8.77 in [4].) On the other hand, for

positive number τ > 0, Let Zτ be a space obtained by adjoining a segment [−τ, 0] to Z

at each origins. J. Cheeger and T. H. Colding showed that for every τ > 0, Zτ is not

Ricci limit space. This non-existence result also follows from Theorem 1.2. This is an

alternative proof. We take two copies of Z, denote them by Z1, Z2. (Namely, Z1 and

Z2 are isometric to Z, respectively.) Let Ẑ be a space obtained by adjoining Z1 to Z2

at each origins. We prove that Ẑ is not a Ricci limit space, as a corollary of Theorem

1.2. In section 6, for every positive number τ > 0 and every complete pointed connected

k-dimensional Riemannian manifold, (M, m), we will prove that (M × Zτ , (m, 0)) is not

a Ricci limit space. (See Remark 6.7.)

We will also study the problem whether the Hausdorff dimension of the Ricci limit

space is an integer. First, under the condition 2 ≤ dimHY < 3, we will prove that

dimH(Y \ Cx) ≤ 2 holds for every x ∈ Y . Here, Cx is the cut locus of x. (See Theorem

7.4.) In general situation, J. Cheeger and T. H. Colding gave a sufficient condition to

satisfy dimHY ∈ Z. (See Theorem 1.38 in [5].) This condition is called by polar, we can

rewrite the condition by using cut locus on iterated tangent cones. X. Menguy showed

the existence of non-polar Ricci limit space and the Hausdorff dimension is an integer.

(See [14].) We will give another sufficient condition to satisfy dimHY ∈ Z that is weaker
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condition than polar. (We call the condition weakly polar.) Note that the example by

X. Menguy has weakly polar condition. We also study the limit space satisfying weakly

polar condition. (See Corollary 8.6.)

Acknowledgement: The author is grateful to Professor Takashi Shioya for helpful

discussions and teaching me the ideas of the proof of Proposition 4.1 and Theorem 4.2. The

author would like to express his thanks to Professor Tobias Holck Colding for valuable

suggestions about Theorem 6.6 and Remark 6.7. The author also thanks to Professor

Kenji Fukaya for his numerous suggestions and advices.

2 Notation

We recall some fundamental notion on metric spaces, the notion of Ricci limit spaces and

recall that of regular set on Ricci limit spaces. (See [4].)

Definition 2.1. We say that a metric space X is proper if every bounded closed set is

compact. A metric space X is said to be geodesic space if for every points x1, x2 ∈ X, there

exists an isometric embedding γ : [0, x1, x2] → X such that γ(0) = x1 and γ(x1, x2) = x2

hold. Here x1, x2 is the distance between x1 and x2 on X. (We say that γ is minimal

geodesic from x1 to x2.)

For proper geodesic space X, a point x ∈ X, a set A ⊂ X, and for positive number

r > 0, we use the following notations; Br(x) = {z ∈ X|x, z < r}, Br(x) = {z ∈ X|x, z ≤
r}, ∂Br(x) = {z ∈ X|x, z = r}, Cx(A) = {z ∈ X| There exists w ∈ A such that

x, z + z, w = x,w holds.}. Throughout the paper, we fix a positive integer n > 0.

Definition 2.2. Let (Y, y) be a pointed proper geodesic space (y ∈ Y ), K ∈ R

a real number. We say that (Y, y) is (n,K)-Ricci limit space if there exist a sequence

of real numbers Ki ∈ R and a sequence of pointed, complete, connected n-dimensional

Riemannian manifolds {(Mi,mi)}i with RicMi
≥ Ki(n− 1), such that Ki converges to K

and that (Mi, mi) converges to (Y, y) as i →∞ in the sense of pointed Gromov-Hausdorff

topology.

Here, for a sequence of pointed proper geodesic space {(Xi, xi)}i, we say that (Xi, xi)

converges to a pointed proper geodesic space (X∞, x∞) in the sense of Gromov-Hausdorff

topology if there exist sequences of positive numbers εi, Ri > 0 and exists a sequence

of maps φi : (BRi
(xi), xi) → (BRi

(x∞), x∞) such that εi converges to 0, Ri converges

to ∞, |zi, wi − φi(zi), φi(wi)| < εi hold for every points zi, wi ∈ BRi
(xi), and that

Bεi
(Image(φi)) ⊃ BRi

(X∞) holds. Then for a sequence of points zi ∈ Xi such that

the set {xi, zi|i ∈ N} is bounded set in R, we say that zi converges to a point z∞ ∈ X∞
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in the sense of Gromov-Hausdorff topology if φi(zi), z∞ < εi. (We denote it by either

zi → z∞ or zi, z < εi.)

We remark that for every K 6= 0 and every (n,K)-Ricci limit space (Y, y), there exists

a sequence of complete, connected n-dimensional Riemannian manifolds {(Mi,mi)}i with

RicMi
≥ K(n − 1), such that (Mi,mi) converges to (Y, y) by rescaling. Throughout the

paper, (Y, y) is always (n,−1)-Ricci limit space and is not a single point. More simply,

we say that (Y, y) is Ricci limit space.

Definition 2.3. Let (W,w), (Z, z) be pointed proper geodesic spaces. We say that

(W,w) is tangent cone at α ∈ Z if there exists a sequence of positive numbers ri > 0

such that ri converges to 0 and that rescaled pointed proper geodesic spaces (Z, r−1
i dZ , α)

converges to (W,w) in the sence of pointed Gromov-Hausdorff topology. Here, dZ is the

metric (distance function) on Z.

We remark that by Gromov’s pre-compactness theorem, for every point x ∈ Y , there

exists a tangent cone at x, (TxY, 0x). In generally, it is not an unique. (See [15].) Note

that for every tangent cone at x, (TxY, 0x), (TxY, 0x) is (n, 0)-Ricci limit space. Next, we

shall give a filtration of Ricci limit spaces and the notion of regular set. These are defined

by J. Cheeger and T. H. Colding in [4]. Throughout this paper, for every metric spaces

X1, X2, the metric on X1 ×X2 is always (d2
X1

+ d2
X2

)1/2.

Definition 2.4. Let Z be a proper geodesic space. We assume that for every point

α ∈ Z, there exists a tangent cone at α, (TαZ, 0α). Then, for non-negative integer k ∈ Z≥0,

we put

1. WEk(Z) = {x ∈ Z| There exists a tangent cone at x, (TxZ, 0x) and a proper geodesic

space W such that TxZ is isometric to Rk ×W . },

2. Ek(Z) = {x ∈ Z| For every tangent cone at x, (TxZ, 0x), there exists a proper

geodesic space W such that TxZ is isometric to Rk ×W . },

3. WEk(Z) = {x ∈ Z| There exist a tangent cone at x, (TxZ, 0x) and a proper geodesic

space W such that W is not a single point and that TxZ is isometric to Rk×W . },

4. Rk(Z) = {x ∈ Z|Every tangent cones at x, (TxZ, 0x), is isometric to (Rk, 0k) }.
Let ε > 0 be a positive number. We also put

5. (WEk)ε(Z) = {x ∈ Z| There exist a positive number 0 < r < ε and a proper

geodesic space (W,w) such that dGH((Br(x), x), (Br((0k, w)), (0k, w))) < εr holds

for Br((0k, w)) ⊂ Rk ×W . }.
Here, dGH is the Gromov-Hausdorff distance between pointed compact metric spaces.
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For simplification, we use the following notations for Ricci limit space (Y, y); WEk =

WEk(Y ), Ek = Ek(Y ) etc. We call the set Rk k-dimensional regular set of Y and call the

set R =
⋃

kRk regular set of Y .

Remark 2.5. By the definition and Gromov’s pre-compactness theorem, (WEk)ε is

open and WEk = ∩ε>0(WEk)ε holds.

We shall give the definition of limit measure. The measure is useful tool for studying

Ricci limit spaces.

Definition 2.6. Let υ be a Borel measure on Y . We say that υ is limit measure

if there exists a sequence of complete, pointed, connected n-dimensional Riemannian

manifolds {(Mi,mi)}i with RicMi
≥ −(n− 1), such that (Mi,mi) converges to (Y, y) and

that for every positive number r > 0 and every points x ∈ Y , m̂j ∈ Mj satisfying m̂j → x

in the sense of pointed Gromov-Hausdorff topology,

vol(Br(m̂j))

volB1(mj)
→ υ(Br(x))

holds. Then, we say that (Mj,mj, vol/volB1(mj)) converges to (Y, y, υ) in the sense of

measured Gromov-Hausdorff topology.

There exists a limit measure on Y . (See Theorem 1.6, Theorem 1.10 in [4] and see

[9].) It is not an unique in generally. (See Example 1.24 in [4].) Throughout the paper,

υ is always fixed limit measure on Y .

3 Regularity theorem and low dimensinal tangent

cone

In this section, we recall several properties of regular set. One of many important results

of J. Cheeger and T. H. Colding, is υ(Y \ R) = 0. (See Theorem 2.1 in [4].) We shall

study that in more detail. Next proposition is a corollary of Lemma 2.5 in [4]. Note that

it does not follow from the result υ(Y \ R) = 0 immediately.

Proposition 3.1. There exists a positive number ε(n) > 0 depending only on n such

that υ(Br(x)∩(
⋃

j≥k Rj)) > 0 holds for every integer 1 ≤ k ≤ n, every point x ∈ (WEk)ε(n)

and for every positive number r > 0.

Proof. By Lemma 2.5 in [4], there exist a positive number ε(n) > 0 such that

υ(Br(x)∩Ek) > 0 holds for every integer 1 ≤ k ≤ n, every point x ∈ (WEk)ε(n) and every

positive number r > 0. If υ(Br(x) ∩ Rk) > 0 holds, we have the claim. We assume that
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υ(Br(x)∩Rk) = 0 holds. Then, since υ(Br(x)∩ Ek) ≤ υ(Br(x)∩Rk) + υ(Br(x)∩WEk),

we have υ(Br(x)∩WEk) > 0. By the result υ(WEk \WEk+1) = 0 (Lemma 2.6 in [4]) and

the result υ(WEk \ Ek) = 0 (Lemma 2.5 in [4]), we have υ(Br(x) ∩ Ek+1) > 0. Therefore

we have completed the proof of Proposition 3.1 by iterating this argument.

Next proposition is a corollary of Proposition 3.1 and the proof of Lemma 2.6 in [4].

Proposition 3.2. Let x be a point in WEk. Then we have υ(Br(x)∩⋃
j≥k+1Rj) > 0

for every positive number r > 0.

Proof. First, we remark that for every positive numbers ε, δ > 0 and every point

x ∈ WEk, there exists a positive number 0 < s < ε such that

υ(Bs(x) \ (WEk+1)δ)

υ(Bs(x))
< ε.

See (2.42) in [4]. (We remark that this statement does not follow from the result υ(WEk \
WEk+1) = 0 immediately.) We take δ = ε(n) as in Proposition 3.1. There exists a

sequence xi ∈ (WEk+1)ε(n) such that xi converges to x in Y . We take a positive number

si > 0 such that Bsi
(xi) ⊂ Br(x) holds for every sufficiently large i. Then, by Proposition

3.1, we have υ(Bsi
(xi)∩

⋃
j≥k+1Rj) > 0. Especially, υ(Br(x)∩⋃

j≥k+1Rj) > 0 holds.

We will use next corollaries many times in following sections.

Corollary 3.3. We have WEk ⊂ ∪i≥k+1Ri for every positive integer k ≥ 1.

Corollary 3.4. We have the following statements for every integer i ≥ 1.

1. If υ(Rj) = 0 holds for every j ≥ i, then we have WE j = φ for every j ≥ i.

Especially, we have Rj = ∅ for every j ≥ i.

2. If υ(Rj) = 0 holds for every j ≥ i + 1, then we have WE j = ∅ for every j ≥ i.

4 One dimensional Ricci limit spaces

In this section, we give a necessary and sufficient condition for appearing one dimensional

piece. (See section 5 in [5] for the definition of one dimensional piece.) As a corollary,

we will give the classification of one dimensional Ricci limit spaces. We say that a point

x ∈ Y is an interior point on a minimal geodesic γ : [0, l] → Y (l > 0) if x ∈ γ((0, l))

holds.

Proposition 4.1. Let x be a point in R1. Then, x is an interior point on some

minimal geodesic.
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Proof. This proof is by contradiction. Assume that the assertion were false. Let

ri > 0 be a sequence of positive numbers such that ri converges to 0 and that (Y, r−1
i dy, x)

converges to (R, 0). Then, for every positive integer i > 0, there exist points x−i , x+
i ∈ Y

and a positive number εi > 0 such that εi converges to 0, |x−i , x− ri| < εiri, |x+
i , x− ri| <

εiri hold, and that x−i , x + x+
i , x− x−i , x+

i < εiri holds. We take a minimal geodesic from

x−i to x+
i , γi : [0, x−i , x+

i ] → Y . We put si = x, Image(γi). Then we have si > 0 by the

assumption. By triangle inequality, we have si converges to 0. Without loss of generality,

we can assume that (Y, x, s−1
i d) converges to a tangent cone at x, (TxY, 0x).

By the construction, there exist z ∈ ∂B1(0x) and an isometric embedding L : R → TxY

such that z ∈ Image(L) and 0x 6∈ Image(L) hold. By applying splitting theorem to

(TxY, z), there exists a proper geodesic space W such that W is not a single point and

that TxY is isometric to R×W . This contradicts the assumption x ∈ R1.

The following theorem is the geometric necessary and sufficient condition to appear

one dimensional piece;

Theorem 4.2. Let x ∈ Y \ ∪i≥2Ri. Then, there exists a positive number ε > 0 such

that (Bε(x), x) is isometric either to ((−ε, ε), 0) or to ([0, ε), 0). Here, (−ε, ε), [0, ε) are

intervals in R.

Proof. 1. The case x ∈ R1.

By Proposition 4.1, there exist a sufficiently small positive number r > 0, points

x−, x+ ∈ Y and a minimal geodesic from x− to x+, γ : [0, x−, x+] → Y such that

x−, x = x+, x = 100r, x ∈ Image(γ) hold and that B100r(x) ⊂ Y \ ∪i≥2Ri holds.

We assume that B10r(x) \ Image(γ) 6= ∅. we take z ∈ B10r(x) \ Image(γ). Let

w ∈ Image(γ) be a point such that z, w = z, Image(γ) > 0. Note that w ∈ B50r(x).

We take a minimal geodesic from z to w, γ1 : [0, z, w] → Y . For every positive

number 0 < ε << z, Image(γ), let w(ε) ∈ Image(γ) be a point in Image(γ1) with

w, w(ε) = ε, and let be x−(ε), x+(ε) ∈ Image(γ) points with x−(ε), w = x+(ε), w = ε.

By the definition of w, we have x−(ε), w(ε) = x−(ε), w(ε) + w(ε), z − w(ε), z ≥
z, w − w(ε), z = ε. Similarly, we have x+(ε), w(ε) ≥ ε. Therefore, for every tangent

cone at w, (TwY, 0w), there exists a proper geodesic space W such that W is not a

single point and that TwY is isometric to R × W . Thus, we have w ∈ WE1. By

Corollary 3.3, we have w ∈ ⋃
i≥2Ri. This contradicts Image(γ) ⊂ Y \ ⋃

i≥2Ri.

Therefore B10r(x) \ Image(γ) = ∅ holds, we have the assertion.

2. The case x ∈ Y \ R1.

There exist a sufficiently small positive number r > 0, a point x+ ∈ Y and a

minimal geodesic segment from x to x+, γ : [0, x, x+] → Y such that x, x+ = 100r

7



and B100r(x) ⊂ Y \ ⋃
i≥2Ri holds. We assume that B10r(x) \ Image(γ) 6= ∅. We

take a point z ∈ B10r(x) \ Image(γ). Let w ∈ Image(γ) be a point satisfying

z, w = z, Image(γ) > 0. Note that w ∈ B50r(x). If w 6= x, there exists a positive

number ε > 0 such that (Bε(w), w) is isometric to ((−ε, ε), 0) by the case 1. This

contradicts the fact z, w = z, Image(γ). Thus, we have w = x. For every positive

number 0 ≤ ε << 100r, let x+(ε) ∈ Image(γ) be a point satisfying x, x+(ε) = ε. We

take a minimal geodesic segment from z to x+(ε), γε : [0, z, x+(ε)] → Y for every

sufficiently small positive number 0 < ε << r.

Claim 4.3. x ∈ Image(γε) holds.

This proof is by contradiction. Assume that the assertion were false. We put

t = inf{z, m | m ∈ Image(γε) ∩ Image(γ)} > 0. By the definition, we have γε(t) ∈
Image(γ) and γε(s) 6∈ Image(γ) for every s < t. Clearly, we have γε(t) ∈ E1. By

γε(t) 6∈ WE1, we have γε(t) ∈ R1. By the case 1, there exists a positive number

τ > 0 such that (Bτ (γε(t)), γε(t)) is isometric to ((−τ, τ), 0). This contradicts the

fact γε(s) 6∈ Image(γ) for every s < t. Therefore we have Claim 4.3.

We have x ∈ E1 by Claim 4.3. By x 6∈ WE1, we have x ∈ R1. This contradicts the

assumption x ∈ Y \ R1.

We shall define local Hausdorff dimension.

Definition 4.4. For metric space X and a point x ∈ X, we put dimloc
H x = limr→0 dimHBr(x).

For non-negative number α ≥ 0, we put X(α) = {x ∈ X|dimloc
H x = α}.

The following proposition is the necessary and sufficient condition by using local Haus-

dorff dimension to appear one dimensional piece.

Theorem 4.5. Let x be a point in Y . Then, 1 ≤ dimloc
H x < 2 holds if and only if

x ∈ Y \⋃
i≥2Ri holds.

Proof. By Theorem 4.2, if x ∈ Y \⋃
i≥2Ri, then 1 ≤ dimloc

H x < 2 holds. We assume

that there exists an integer i ≥ 2 such that x ∈ Ri. Then, for every positive number

s > 0, there exists z ∈ Bs(x) ∩ Ri. By Corollary 1.36 in [5], we have dimHBt(z) ≥ 2

for every positive number t > 0. Especially, dimHBs(x) ≥ i ≥ 2. Therefore, we have

dimloc
H x ≥ i ≥ 2.

Theorem 1.1 follows from Corollary 3.4, Theorem 4.2 and Theorem 4.5 immediately.

As a corollary of Theorem 1.1, if dimHY ≤ 2 holds, then dimHY ∈ Z holds. Next, we

consider the Ahlfors one regular set AY (1) = {x ∈ Y | lim infr→0 υ(Br(x))/r > 0}. (See

section 6 in [12] for the definition of the set AY (α) for real number 1 ≤ α ≤ n.)
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Corollary 4.6. We assume that υ(Y \AY (1)) = 0 holds. Then we have dimHY = 1.

Proof. By Theorem 3.23 and Theorem 4.6 in [6], we have υ(Ri \ (Ri ∩ AY (i))) = 0

for every integer i ≥ 1. Therefore, by the assumption, we have υ(Ri) = 0 for every integer

i ≥ 2. Thus we have Corollary 4.6 by Theorem 1.1.

5 Equivalence between limit measure and one dimen-

sional Hausdorff Measure

In this section, we consider locally equivalence between υ and H1. Here, H1 is the one

dimensional Hausdorff measure. We shall give next proposition without the proof because

we can prove it by an argument similar to that of construction of limit measure. Note

that for every 0 < r < 1 and every x ∈ Y , the rescaled pointed proper geodesic space

(Y, r−1dY , x) is Ricci limit space.

Proposition 5.1. For every positive number 0 < r < 1 and every point x ∈ Y ,

there exists a limit measure υr on (Y, r−1dY , x) such that υr(B
r−1dY
s1

(x1))υ(Bs2r(x2)) =

υr(B
r−1dY
s2

(x2))υ(Bs1r(x1)) holds for every points x1, x2 ∈ Y and for every positive numbers

s1, s2 > 0. Especially, for every tangent cone at x, (TxY, 0x), there exists a limit measure

υ∞ on TxY and exists a sequence of positive numbers ri > 0 such that ri converges to 0

and that υ(Bsri
(x))/υ(Bri

(x)) converges to υ∞(Bs(0x)) for every positive number s > 0.

We will give a proof of next proposition in Appendix.

Proposition 5.2. Let (W,w) be a pointed proper geodesic space and 1 ≤ k < n a

positive integer. We assume that W is not a single point and that (Rk × W, (0k, w))

is (n, 0)-Ricci limit space. Then, for every limit measure υ on Rk × W , there exists a

Borel measure υW on W such that υ = Hk×υW holds and that lim supδ→0 υW (Bδ(z))/δ ≤
C(n, diam(W ), R) < ∞ holds for every positive number R > 0 and every point z ∈ BR(w).

Here, C(n, diam(W ), R) > 0 is a positive constant depending only on n, diam(W ), R.

We remark that for x ∈ Y , lim infr→0 υ(Br(x))/r > 0 holds if and only if υ−1(x) > 0

holds. (See [5], [12] for the definition of the measure υ−1 on Y .) We shall give an example

of a point x ∈ Y satisfying υ−1(x) > 0.

Proposition 5.3. Let x be a point in R1. Then we have lim infr→0 υ(Br(x))/r > 0.

Proof. Assume that the assertion were false. Hence υ−1(x) = 0. Then, by an

argument simular to the proof of Proposition 4.1 and by Theorem 3.7 in [5], there exists

a tangent cone at x, (TxY, 0x), and a proper geodesic space W such that W is not a single
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point and that TxY is isometric to R × W . We take a limit measure υ∞ on TxY as in

Proposition 5.1. By Proposition 4.3 in [12] and the assumption, we have (υ∞)−1(0x) > 0.

This contradicts Proposition 5.2.

We give the definition of locally equivalence between Borel measures.

Definition 5.4. Let X be a topological space and υ, µ be Borel measures on X. We

say that υ are locally equivalent µ at x ∈ X if there exist a positive number C > 1 and

an open neighborfood U of x such that C−1µ(A) ≤ υ(A) ≤ Cµ(A) holds for every Borel

set A ⊂ U .

Next theorem is the main result in this section.

Theorem 5.5. Let x be a point in Y . The following conditions are equivalent:

1. The limit measure υ is locally equivalent to H1 at x.

2. lim infr→0 υ(Br(x))/r > 0 holds and 1 ≤ dimloc
H x < 2 holds.

Proof. It suffices to show that if lim infr→0 υ(Br(x))/r > 0 holds and 1 ≤ dimHx < 2

holds, then υ is locally equivalent to H1 at x. We assume that lim infr→0 υ(Br(x))/r > 0

and 1 ≤ dimHx < 2 hold. Then, by Theorem 4.2 and Theorem 4.5, There exists a positive

number ε > 0 such that (Bε(x), x) is isometric either to ((−ε, ε), 0) or to ([0, ε), 0). Note

that lim infr→0 υ(Br(z)) ≥ υ−1(z) holds for every point z ∈ Y . It is not difficult to check

the claim by using Theorem 1.1 in [12].

We remark that there exist two limit measures υ1, υ2 on the 2-Ricci limit space [0, 1]

such that υ1 is locally equivalent to H1 at 0 and that υ2 is not locally equivalent to H1

at 0. See Example 1.24 in [4].

6 The structure of spaces with Ahlfors one regular

points

In this section, we study Ricci limit space (Y, y) satisfying AY (1) 6= ∅. We give a char-

acterization of one dimensional piece by existence of lower sectional curvature bounds

(Theorem 1.2). As a corollary, we have non-existence of Zτ , Ẑ in section 1 as Ricci limit

spaces. We also discuss some uniform properties of Hausdorff dimension on Ricci limit

spaces.
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6.1 A proof of Theorem 1.2

First, we give an example of a point x ∈ Y satisfying υ−1(x) = 0.

Proposition 6.1. Let x be a point in WE1. Then we have lim infr→0 υ(Br(x))/r = 0.

Proof. Assume that the assertion were false. By the definition, there exist a tangent

cone at x, (TxY, 0x) and a proper geodesic space W such that W is not a single point,

TxY is isometric to R ×W . We take a limit measure υ∞ on TxY as in Proposition 5.1.

By Proposition 4.3 in [12], we have (υ∞)−1(0x) > 0. This contradicts Proposition 5.2.

We shall define the notion of Alexandrov point. It means that there exists a lower

sectional curvature bound around the point.

Definition 6.2. Let X be a proper geodesic space, x a point in X. We say that x is

an Alexandrov point if there exist an open neighborhood of x, U , and a negative number

K < 0 staisfying the following properties; For every points x1, x2, x3 ∈ U and every point

x4 ∈ X satisfying x1, x4 + x4, x2 = x1, x2, there exist points y1, y2, y3, y4 ∈ H2(K) such

that x1, x2 = y1, y2, x2, x3 = y2, y3, x3, x1 = y3, y1, x1, x4 = y1, y4 hold and that x3, x4 ≥
y3, y4 holds. Here, H2(K) is complete, two dimensional Riemannian manifold such that

π1(H
2(K)) = 1 holds and that the sectional curvature KH2(K) satisfies KH2(K) ≡ K.

We put Alex(Y ) = {x ∈ Y |x is an Alexandrov point }. By the definition, the set

Alex(Y ) is an open set.

Theorem 6.3. We assume that there exists a point z ∈ Y such that lim infr→0 υ(Br(z))/r >

0 holds. Let x be a point in Y . Then, one of the following statements 1, 2 occurs.

1. dimloc
H x = 1 holds.

2. x is not an Alexandrov point.

Proof. This proof is by contradiction. We assume that dimloc
H x > 1 holds and that

x is an Alexandrov point. We consider the metric ball Br(x) for fixed sufficiently small

positive number r > 0. Since Alex(Y ) is open, without loss of generality, we can assume

that x 6= z. Fix a minimal geodesic from x to z, γ : [0, x, z] → Y . We put α = γ(r) and

w = γ( r
2
).

Claim 6.4. Let γ̂ : [0, w, z] → Y be a minimal geodesic from w to z. Then, α ∈
Image(γ̂) holds.
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Assume that the assertion were false. There exists s ∈ [0, w, z] such that γ(s) ∈ ∂Br(x)

holds. We put α̂ = γ(s)( 6= α). Then, we have

0 ≤ x,w + w, α̂− x, α̂ = x,w + (w, α̂ + α̂, z)− (x, α̂ + α̂, z)

≤ x,w + w, z − x, z

= 0.

Therefore, there exists a minimal geodesic from x to α̂, Γ : [0, x, α̂] → Y such that

w ∈ Image(Γ) holds. This contradicts the assumption x ∈ Alex(Y ). Thus, we have Claim

6.4.

By Claim 6.4, for every sufficiently small positive number t > 0, there exists a point

αt ∈ Y such that ∂Bt(w)∩Cw({z}) = {αt}. By Theorem 1.1 in [12], we have υ−1(αt) > 0.

On the other hand, for the tangent cone at αt, (TαtY, 0αt), there exists a proper geodesic

space W such that TαtY is isometric to R×W . By the assumption dimloc
H x > 1 and the

uniform properties of the Hausdorff dimension on Alexandrov spaces, W is not a single

point. Therefore, by Proposition 6.1, we have υ−1(αt) = 0. This is contradiction.

Theorem 1.2 follows from Theorem 4.2, Theorem 4.5, Proposition 5.3 and Theorem

6.3, immediately. Finally, we shall give the following theorem.

Theorem 6.5. Let x be a point in Y . We assume that there exist points w, z ∈ Y \ x

such that w 6= z, x,w + w, z = x, z holds and that υ(Cw({z})) > 0 holds. Then, one of

the following statements 1, 2 occurs.

1. dimloc
H x = 1 holds.

2. x is not an Alexandrov point.

Proof. By an argument simular to the proof of Theorem 6.3 and by using Corollary

4.8 in [12], it is easy to check this assertion.

6.2 Some uniform properties of Hausdorff dimension

First, we consider an analogous statement to Theorem 1.2 for tangent cones.

Theorem 6.6. Let (X, x) be a proper geodesic space, k ≥ 0 a nonnegative integer.

We assume that (Rk × X, (0k, x)) is (n, 0)-Ricci limit space and that there exists z ∈ X

such that dimloc
H z = 1. Let w be an Alexandrov point in X. Then we have dimloc

H w = 1.

Especially, we have Alex(X) = X(1).
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Proof. This proof is by contradiction. We assume that dimloc
H w > 1 holds. By an

argument similar to the proof of Theorem 4.5 and by Corollary 3.3, there exists an open

neighborhood of z, U such that U ∩WE1(X) = ∅. By a similar argument to the proof of

Theorem 4.2, there exists a sufficiently small positive number ε > 0 such that (Bε(z), z)

is isometric either to ((−ε, ε), 0) or to ([0, ε), 0). We take a minimal geodesic from z to w,

γ : [0, z, w] → X and take a sufficiently small positive number 0 < τ << ε. We put ẑ =

γ(ε/2) and ŵ = γ(z, w− ε). We take x̂ ∈ Bτ (ẑ) and a minimal geodesic from x̂ to ŵ, γ1 :

[0, x̂, ŵ] → X. Then, we have γ1([0, 2τ ]) ⊂ Image(γ). Let (v, x̂) ∈ Bτ (0k, ẑ) be a point and

Γ : [0, (v, x̂), (0k, ŵ)] → Rk ×X a minimal geodesic from (v, x̂) to (0k, ŵ). We put Γ(t) =

(a(t), γ̂(t)). By simple calculation, we have, the map Φ(s) = γ̂((v, x̂), (0k, ŵ)s/x̂, ŵ) for

s ∈ [0, x̂, ŵ], is a minimal geodesic from x̂ to ŵ on X. We also have |a(t)| ≤ τ for every t.

We put α = γ(z, w−2ε) ∈ X. Then, by an argument similar to the proof of Theorem 6.3,

we have C(0k,ŵ)(Bτ (0k, ẑ))∩ (Bε+τ (0k, ŵ) \Bε(0k, ŵ)) ⊂ B2τ (0k, α). Therefore, by Bishop-

Gromov volume comparison theorem for υ (See (A.2.2) in [4]), we have υ(Bτ (0k, ẑ)) ≤
C(ε, n, z, x)υ(B2τ (0k, α)). Here, C(ε, n, z, x) > 0 is a positive constant depending only on

ε, n, z, x. By Theorem 4.6 in [6], we have lim infτ→0 υ(Bτ (0k, ẑ))/τ k+1 > 0. Therefore,

we have lim infτ→0 υ(Bτ (0k, α))/τ k+1 > 0. Thus, by Proposition 5.1 and Proposition 5.2,

there exists a positive constant C > 1 such that C−1τ k+1 ≤ υ(Bτ (0k, α)) ≤ Cτ k+1 holds

for every 0 < τ < 1. Therefore, there exist a pointed proper geodesic space (Z1, z1), a

limit measure υ̂ on T(0k,α)(R
k × X), a tangent cone at α, (TαX, 0α), and exists a Borel

measure on Z1, υZ1 such that TαX is isometric to R × Z1, T(0k,α)(R
k × X) is isometric

to Rk+1 × Z1, υ̂ = Hk+1 × υZ1 holds and that lim infτ→0 υ̂(Bτ (0k, z1))/τ
k+1 > 0 holds.

On the other hand, by α is an Alexandrov point, Z1 is not a single point. Therefore,

by Proposition 5.2, we have lim infτ→0 υ̂(Bτ (0k, z1))/τ
k+1 = 0. This is contradiction.

Therefore we have Alex(X) ⊂ X(1). Next, we take β ∈ X(1). There exists a positive

number δ > 0 such that dimHBδ(β) < 2 holds. By using Corollary 1.36 in [5], we have

Ri(X) ∩ Bδ(β) = ∅ for every i ≥ 2. Therefore, by Corollary 3.3, we have WE1(X) = ∅.
Thus, by a similar argument to the proof of Theorem 4.2, there exists a positive number

r > 0 such that (Br(β), β) is isometric either to ((−r, r), 0) or to ([0, r), 0). Especially, we

have β ∈ Alex(X).

Remark 6.7. Let (X, x) be a proper geodesic space. For an open set U ⊂ X, we say

that U has k-dimensional C∞-Riemannian structure if for every point x ∈ U , there exist

a open set V ⊂ U and k-dimensional (not complete) Riemannian manifold N such that V

is isometric to N as metric spaces. We assume that there exist an integer k ≥ 2 and open

sets U1, U2 ⊂ X such that U1 has one dimensional C∞-Riemannian structure and that U2

has k-dimensional C∞-Riemannian structure. Then, by a similar argument to the proof of

Theorem 6.6, for every l ∈ N and every l-dimensional complete C∞-Riemannian manifold
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(M,m), (M × X, (m,x)) is not Ricci limit space. For example, (M × Zτ , (m, 0)) is not

Ricci limit space. Roughly speaking, a reason of the non-existence is “locally Lipschitz

properties of exponential map from higher dimensional point”.

We say that a proper geodesic space X is non-baranching if for every x ∈ X and every

y ∈ X \ Cx, there exists an unique minimal geodesic from x to y. Here, Cx is the cut

locus of x, Cx = {z ∈ X| For every w ∈ X \ z, x, z + z, w − x,w > 0 holds. }. (If X is a

single point, then Cx = ∅.)

Theorem 6.8. We assume that R1 6= ∅ and Y is non-branching. Then we have

dimHY = 1.

Proof. We fix a point x ∈ Y . First, we shall prove Y \ Cx ⊂ AY (1). For every

z ∈ Y \ Cx, there exists w ∈ Y \ Cx such that z 6= w and x, z + z, w = x,w hold. By

the assumpiton of non-branching, there exists an unique minimal geodesic from x to w,

γ : [0, x, w] → Y such that x ∈ Image(γ). By Proposition 5.3 and Theorem 1.1 in [12],

we have υ−1(x) > 0. Therefore, we have Y \ Cx ⊂ AY (1). Thus, by Theorem 3.2 in [12],

we have υ(Y \ AY (1)) = 0. By Corollary 4.6, we have the assertion.

7 Two dimensional case

In this section, we study the Hausdorff dimension of the Ricci limit space (Y, y) such that

2 ≤ dimHY < 3 holds.

Proposition 7.1. Let s ≥ 1 be a positive number, U ⊂ Y an open set satisfying

dimHU ≤ s, x a point in U , and (TxY, 0x) a tangent cone at x. We assume that there

exists a proper geodesic space W such that TxY is isometric to R[s]−1 × W . Then, W

is isometoric either to a single point, or to R, or to R≥0, or to S1(r) for some positive

number r > 0, or to [0, l] for some l > 0. Here, [s] = max{k ∈ Z|k ≤ s} ∈ N.

Proof. First, we shall prove WE1(W ) = ∅. We assume that WE1(W ) 6= ∅. Then

we have WE [s](TxY ) 6= ∅. Thus, by Corollary 3.3, we have WE [s]+1(TxY ) 6= ∅. Hence,

(WE [s]+1)ε ∩ U 6= ∅ holds for every positive number ε > 0. Thus, by Corollary 3.3, there

exists an integer i ≥ [s] + 1 such that Ri ∩ U 6= φ holds. Therefore, by Corollary 1.36

in [5], we have dimHU ≥ i ≥ [s] + 1 > s. This contradicts the assumption. Therefore

we have WE1(W ) = ∅. By using WE1(W ) = ∅ and an argument simular to the proof of

Theorem 4.2, we have Proposition 7.1.

We shall apply Proposition 7.1 to estimate of Hausdorff dimension of some subset.
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Corollary 7.2. Let s ≥ 1 be a positive number and U ⊂ Y an open set satisfying

dimHU ≤ s Then, we have dimHE[s]−1 ∩ U ≤ [s].

Proof. First, we shall prove the following claim.

Claim 7.3. Let X be a proper geodesic space, A ⊂ X a subset and s > 0 a positive

number. We assume that for every point x ∈ X and every sequence of positive numbers

ri > 0 such that ri converges to 0, there exist a subsequence rn(i) > 0 and a tangent cone

at x, (TxX, 0x) such that (X, r−1
n(i)dX , x) converges to (TxX, 0x). We also assume that for

every point α ∈ A and for every tangent cone at α, (TαX, 0α), dimHTαX ≤ s holds. Then,

dimHA ≤ s holds.

This proof is by contradiction. We assume that dimHA > s holds. There exists a

positive number ε > 0 such that dimHA > s + ε holds. By density result in Geometric

measure theory, there exist a point α ∈ A and a sequence of positive number ri > 0, such

that ri converges to 0 and limi→∞(Hs+ε
∞ (A ∩ Bri

(α))/ri
s+ε) > 0 holds. (For example, see

(1.39) in [5] for the definition of (s + ε)-dimensional spherical Hausdorff content, Hs+ε
∞ .)

Without loss of generality, we can assume that there exists a tangent cone at α, (TαX, 0α)

such that (X, r−1
i dX , α) converges to (TαX, 0a). By the construction, it is not difficult

to see that Hs+ε(B1(0α)) > 0 holds. Especially, we have dimHTαX ≥ s + ε > s. This

contradicts the assumption. Therefore, we have Claim 7.3.

By Proposition 7.1, for every point x ∈ E[s]−1 ∩ U and for every tangent cone at x,

(TxY, 0x), we have dimHTxY ≤ [s] holds. Therefore we have Corollary 7.2 by Claim

7.3.

Finally, we consider the condition 2 ≤ dimHY < 3.

Corollary 7.4. We assume that 2 ≤ dimHY < 3 holds. Then, dimH(Y \ Cx) ≤ 2

holds for every x ∈ Y .

Proof. By Y \ Cx ⊂ E1 and Corollary 7.2.

Remark 7.5. It seems that for every Ricci limit space (Y, y), dimH(Y \Cy) = dimHY

holds. If it is true, then for every Ricci limit space (Y, y) such that dimHY ≤ 3 holds,

we have dimHY ∈ Z by Theorem 1.1 and Corollary 7.4. Moreover, if this conjecture is

true, we can prove that for every Ricci limit spaces (Y, y), we have dimHY ∈ Z. See next

section.
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8 Hausdorff dimension in higher dimensional case

In this section, we study the problem whether the Hausdorff dimension of Y is an integer.

J. Cheeger and T. H. Colding gave a sufficient condition for satisfying dimHY ∈ Z, that

is called by polar. (See Definition 4.1 in [4] for the definition of polar.) We remark that

there exists a non-polar Ricci limit space such that the Hausdorff dimension is an integer.

See [14] for the example. We shall give an another sufficient condition for satisfying

dimHY ∈ Z, that contains polar condition.

Definition 8.1. The pointed proper geodesic space (X, x) is called by iterated tangent

cone of Y if there exists a sequence of pointed proper geodesic spaces {(Xi, xi)}N
i=0 such

that X0 is isometric to Y , (XN , xN) is isometric to (X, x) and (Xi+1, xi+1) is a tangent

cone at some point in Xi for every i.

We shall prove next theorem.

Theorem 8.2. We assume that for every iterated tangent cone of Y , (X, x), dimH(X\
Cx) ≥ dimHCx holds. (This condition is equivalent to dimH(X \Cx) = dimHX.) Then we

have dimHBR(z) ∈ Z for every point z ∈ Y and every positive number R > 0. Especially,

dimHY ∈ Z and dimloc
H z ∈ Z hold.

Proof. First, we take an integer k > 0 such that dimHBR(z) < k + 1 holds. We

shall prove dimHBR(z) ≤ k. By Claim 7.3, it suffices to see that dimHTzY ≤ k holds

for every point z ∈ Y and every tangent cone at z, (TzY, 0z). We fix a tangent cone

(TzY, 0z) and put (Y1, y1) = (TzY, 0z). By the assumption and Claim 7.3, it suffices to

see that dimHTz1Y1 ≤ k holds for every point z1 ∈ Y1 \ Cy1 and every tangent cone at z1,

(Tz1Y1, 0z1). We also fix a tangent cone (Tz1Y1, 0z1) and put (Y2, y2) = (Tz1Y1, 0z1). By the

construction, there exists a pointed proper geodesic space (W2, w2) such that (Y2, y2) is

isometric to (R×W2, (0, w2)). Without loss of generality, we can assume that W2 is not

a single point.

Claim 8.3. In general, we have C(0k,w) = Rk×Cw in Rk×W for every positive integer

k > 0 and every pointed proper geodesic space (W,w).

If W is a single point, then Cw = ∅ holds, especially, we have Claim 8.2. We assume

that W is not a single point. It suffices to see that for every point (tk, x) ∈ Rk×W \C(0k,w),

x ∈ W \ Cw holds. We can assume that x 6= w. By the definition, there exists a

point (sk, z) ∈ Rk × W such that (sk, z) 6= (tk, x) and (0k, w), (tk, x) + (tk, x), (sk, z) =

(0k, w), (sk, z) hold. We take an isometric embedding {w, x, z} → R2. We denote

the images by ŵ, x̂, ẑ, respectively. Then we have (0k, ŵ), (tk, x̂) + (tk, x̂), (sk, ẑ) =

(0k, ŵ), (sk, ẑ) in Rk+2. By simple calculation, we have ŵ, x̂ + x̂, ẑ = ŵ, ẑ and ẑ, x̂ > 0.

Therefore, x ∈ W \ Cw holds. Thus we have Claim 8.3.
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By the assumption and Claim 8.3, we have dimH(W2\Cw2) ≥ dimHCw2 . Thus, proving

that dimHY2 ≤ k holds, suffices to see that for every point ŵ2 ∈ W2 \ Cw2 and for every

tangent cone at ŵ2, (Tŵ2W2, 0ŵ), dimHTŵ2W2 ≤ k − 1 holds. We fix a tangent cone

(Tŵ2W2, 0ŵ) and put (W3, w3) = (Tŵ2W2, 0ŵ2). By the construction, there exists a pointed

proper geodesic space (W4, w4) such that (W3, w3) is isometric to (R ×W4, (0, w4)). By

Claim 7.3, without loss of generality, we can assume that W4 is not a single point. Since

(R2 ×W4, (02, w4)) is an iterated tangent cone of Y , by the assumption and Claim 8.3,

we have dimH(W4 \ Cw4) ≥ dimHCw4 . Therefore, it suffices to see that for every point

ŵ4 ∈ W4 \ Cw4 and every tangent cone at ŵ4, (Tŵ4W4, 0ŵ4), dimHTŵ4W4 ≤ k − 2 holds.

We continue this argument and constract pointed proper geodesic space (W2k, w2k) as

above. Then, it suffices to see that dimH(W2k, w2k) ≤ 0 holds, i.e. W2k is a single point.

We assume that W2k is not a single point. Then, there exist an iterated tangent cone

of BR(z), (X, x), and a proper geodesic space L such that X is isometric to Rk+1 × L.

Therefore, we have (WEk+1)ε ∩ BR(z) 6= ∅ for every positive number ε > 0. Thus, by

Corollary 3.3, there exists an integer i ≥ k + 1 such that Ri ∩ BR(z) 6= ∅. Therefore, by

Corollary 1.36 in [5], we have dimHBR(z) ≥ i ≥ k + 1. This contradicts the assumption.

Therefore, we have dimHBR(z) ≤ k.

Here, we take an integer k > 0 such that k ≤ dimHBR(z) < k + 1 holds. Then, we

have the dimHBR(z) = k.

Remark 8.4. By an argument similar to the proof of Theorem 8.2, if for every iterated

tangent cone of Y , (X, x), dimH(X \ WD0(x)) ≥ dimHWD0(x) holds, then we have the

same conclusion to Theorem 8.2. (See Definition 2.10 in [4] for the definition of WD0(x).)

It is not difficult to see that Y is polar if and only if Cx = φ for every iterated tangent

cone of Y , (X, x).

Theorem 8.5. We assume that for every iterated tangent cone of Y , (X, x), dimH(X\
Cx) = dimHX holds. Let R > 0 be a positive number, k > 0 a positive integer and z a point

in Y . We also assmue that dimHBR(z) ≥ k holds. Then, we have υ(BR(z)∩(
⋃

i≥kRi)) >

0.

Proof. We take a sufficiently small positive number ε > 0. By the assumption, we

have Hk−ε(BR(z)) = ∞. Hence, by an argument simular to the proof of Claim 7.3, there

exist a point x ∈ BR(z) and a tangent cone at x, (TxY, 0x) such that Hk−ε(TxY ) > 0

holds. We fix a tangent cone (TxY, 0x) and put (Y1, y1) = (TxY, 0x). Since dimHY1 ≥
k − ε > k − 2ε > 0 and dimH(Y1 \ Cy1) = dimHY1, we have Hk−2ε(Y1 \ Cy1) = ∞.

Similarly, there exist a point x1 ∈ Y1 \ Cy1 and a tangent cone at x1, (Tx1Y1, 0x1) such

that Hk−2ε(Tx1Y1) > 0 holds. We put (Y2, y2) = (Tx1Y1, 0x1). By the construction,
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there exists a pointed proper geodesic space (X2, x2) such that (Y2, y2) is isometric to

(R ×X2, (0, x2)). Thus, dimHX2 ≥ k − 1 − 2ε > k − 1 − 3ε > 0 holds. Therefore, since

dimHX2 = dimH(X2 \ Cx2), we have Hk−1−3ε(X2 \ Cx2) = ∞. By an argument similar

to that above, there exist a point x̂2 ∈ X2 and a tangent cone at x̂2, (Tx̂2X2, 0x̂2) such

that Hk−1−3ε(Tx̂2X2) > 0 holds. We put (X3, x3) = (Tx̂2X2, 0x̂2). By the construction,

there exists a pointed proper geodesic space (X4, x4) such that (X3, x3) is isometric to

(R × X4, (0, x4)). Since (R2 × X4, (02, x4)) is an iterated tangent cone of BR(z), by the

assumption, we have dimHX4 = dimH(X4 \ Cx4) and dimHX4 ≥ k − 2− 3ε > k − 2− 4ε.

We continue this argument and construct a pointed proper geodesic space (X2(k−1), x2(k−1))

as above. By the construction, (Rk−1×X2(k−1), (0k, x2(k−1))) is an iterated tangent cone of

BR(z). We have dimHX2(k−1) ≥ k− (k− 1)− 2(k− 2)ε > 1− 2(k− 1)ε > 0. Since X2(k−1)

is a geodesic space, we have dimHX2(k−1) ≥ 1. Therefore, there exists pointed proper

geodesic space (W,w) such that Rk × W is an iterated tangent cone of BR(z). Thus,

(WEk)ε ∩ BR(z) 6= φ holds for every positive number ε > 0. Therefore, by Proposition

3.1, we have υ(BR(z) ∩ (
⋃

i≥kRi)) > 0.

Next corollary is main result in this section.

Corollary 8.6. We assume that for every iterated tangent cone of Y , (X, x), dimH(X\
Cx) = dimHX holds. We take an integer k > 0 such that Rk 6= φ and Ri = φ hold for

every integer i > k. Then we have the following statements:

1. dimHY = k holds.

2. Hk(Rk) > 0 holds.

3. υ(Rk) > 0 holds.

Proof. By Corollary 1.36 in [5], we have dimHY ≥ k. We assume that dimHY ≥ k+1

holds. Then, by Theorem 8.5, there exists an integer i ≥ k + 1 such that Ri 6= ∅. This

contradicts the assumption. Thus we have dimHY < k + 1. By Theorem 8.2, we have

dimHY = k. Next, we assume that υ(Rk) = 0 holds. Then υ(Br(x) ∩ ⋃
i≥kRi) =

υ(Br(x) ∩ Rk) = 0 for every point x ∈ Rk and every positive number r > 0. This

contradicts Proposition 3.1. Thus, we have υ(Rk) > 0. By Theorem 3.23 and Theorem

4.6 in [6], we have Hk(Rk) > 0.

9 Appendix: A proof of Proposition 5.2

In this section, we shall prove Proposition 5.2. First, we give a next lemma without the

proof because it is not difficult to prove by simple calculation.
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Lemma 9.1. For every positive numbers 0 < r < R, there exists a positive constant

C(r, R) > 0 satisfying the following properties; Let X be a metric space, x1 a point in X,

k > 0 a positive integer, δ, ε > 0 positive numbers with δ < r/1000, vα, vβ points in Rk

and x2 a point in BR(x1)\Br(x1). We assume that |vα| ≤ 1, |vβ| ≤ 1 hold in Rk, xα, x2 ≤
δ, xβ, x2 ≤ δ hold in X and that (0k, x1), (vα, xα) + (vα, xα), (vβ, xβ)− (0k, vβ), (vβ, xβ) ≤ ε

holds in Rk ×X. Then, we have (vα, xα), (vβ, xβ) ≤ C(r, R)(δ + ε).

Proof of Proposition 5.2. Without loss of generality, we can assume that w 6= z.

By the assumption, there exist a sequence of pointed complete connected Riemannian

manifolds {(Mj,mj)}j and a sequence of positive numbers εj > 0 such that εj converges

to 0, RicMj
≥ −εj holds and (Mj,mj, vol/volB1(mj)) converges to (Rk×W, (0k, w), υ) in

the sense of measured Gromov-Hausdorff topology. We take a sufficiently small positive

number δ > 0. Let {(ti, xi)}N
i=1 be a maximal δ-separated set on [0, 1]k × Bδ(z). Let

0 < r < 1 be a positive number satisfying z ∈ BR(w) \ Br(w). For every positive

integers i, j > 0 (1 ≤ i ≤ N), there exists a point yi
j ∈ Mj such that yi

j converges

to (ti, xi) as j → ∞ in the sense of pointed Gromov-Hausdorff topology. Thus, for

sufficiently large j, {Bδ/3(y
i
j)}i is pairwise disjoint in Mj. We put Xj =

⋃
i Bδ/3(y

i
j),

Smj
Mj = {u ∈ Tmj

Mj||u| = 1}, t(u) = sup{t ∈ R>0| expmj
su ∈ Mj \ Cmj

holds for

every positive number 0 < s < t} for u ∈ Smj
Mj, and put Ŝmj

Mj = {u ∈ Smj
Mj|

there exists a positive number 0 < t < t(u) such that expmj
tu ∈ Xj holds.}. We also put

Aj(u) = {t ∈ (0, t(u))| expmj
tu ∈ Xj} for u ∈ Ŝmj

Mj and θ(t, u) = tn−1(det(gij|expmj
tu))

1
2 .

Here, gij = g(∂/∂xi, ∂/∂xj) where (x1, x2,··· , xn) is a normal coordinate around mj. Then,

by Laplacian comparison theorem, we have

volXj =

∫

Ŝmj Mj

∫

Aj(u)

θ(t, u)dtdu

≤
∫

Ŝmj

∫

Aj(u)

sinhn−1(t)
θ( r

2
, u)

sinhn−1( r
2
)
dtdu

≤
∫

Ŝmj Mj

θ( r
2
, u)

sinhn−1( r
2
)

∫

Aj(u)

sinhn−1(2R + 10)dtdu

≤ C(n, r, R)

∫

Ŝmj Mj

θ(
r

2
, u)H1(Aj(u))du.

Here, C(n, r, R) > 0 is a postive constant depending only on n, r, R. We put aj(u) =

inf Aj(u) and bj(u) = sup Aj(u) for u ∈ Ŝmj
Mj. Then, by Lemma 9.1, we have bj(u) −

aj(u) ≤ C(r,R)δ. Thus

volXj ≤ C(r, R)δvol(∂B r
2
(mj) \ Cmj

).

Here, vol = vol/volB1(mj). By Bishop-Gromov volume comparison theorem, we have
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vol(∂B r
2
(mj) \ Cmj

)/volB r
2
(mj) ≤ vol∂B r

2
(p)/volB r

2
(p). Thus, we have

N∑
i=1

υ(B δ
3
(ti, xi)) ≤ C(n, r, R)δ.

By measured splitting theorem, Proposition 1.35 in [4], there exists a Borel measure on

W , υW such that υ = Hk × υW holds. Therefore, by Bishop-Gromov volume comparison

theorem for υ (See (1.12) in [4]),

υW (Bδ(w)) = υ([0, 1]k ×Bδ(w)) ≤
N∑

i=1

υ(Bδ(ti, xi))

≤ C(n)
N∑

i=1

υ(B δ
3
(ti, xi))

≤ C(n, r, R)δ.

Therefore, we have Proposition 5.2.
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