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Abstract

We give a short alternative proof of Berg and Nikolaev’s recent theorem on a
characterization of CAT(0)-spaces via quadrilateral inequality.

1 Introduction

The aim of this article is to present a short alternative proof of Berg and Nikolaev’s recent
striking theorem:

Theorem 1.1 ([BN, Theorem 6]) Let (X, d) be a geodesic space. Then the following are
equivalent:

(i) (X, d) is a CAT(0)-space.

(ii) Any four points w, x, y, z ∈ X satisfy the quadrilateral inequality

d(w, y)2 + d(x, z)2 ≤ d(w, x)2 + d(x, y)2 + d(y, z)2 + d(z, w)2. (1.1)

This theorem gives an appropriate answer to the long-standing question (cf. [Gr]): how
to characterize CAT(0)-spaces in such a way that it makes sense in discrete (non-geodesic)
spaces? We also mention that there is a connection with the geometry of Banach spaces
as (1.1) is what Enflo called the roundness 2 (see [BL] and [OP]). We refer to [BN] for
more details and histrical background.

Example 1.2 Besides CAT(0)-spaces, there are further simple examples satisfying (1.1).
(a) Ultrametric spaces (X, d) (i.e., d(x, y) ≤ max{d(x, z), d(z, y)} holds for all x, y, z ∈

X).
(b) The metric space (X, d1/2) for given any metric space (X, d).
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Our proof of Theorem 1.1 is based on simple calculations which have a somewhat
similar flavor to Berg and Nikolaev’s original proof, but much shorter and clearer. The
point is to compare the original triangle with the subdivided ones (see Lemma 2.2(ii)).

2 Proof of Theorem 1.1

Let (X, d) be a metric space. A rectifiable curve γ : [0, 1] −→ X is called a geodesic if it is
locally minimizing and parametrized proportionally to the arclength. If in addition γ is
globally minimizing, then we call it a minimal geodesic. We say that (X, d) is a geodesic
space if any two points x, y ∈ X can be joined by a minimal geodesic. A geodesic space
(X, d) is called a CAT(0)-space if we have, for any x, y, z ∈ X and any minimal geodesic
γ : [0, 1] −→ X from y to z,

d
(
x, γ(1/2)

)2 ≤ 1

2
d(x, y)2 +

1

2
d(x, z)2 − 1

4
d(y, z)2. (2.1)

We refer to [BH] and [BBI] for the fundamentals of CAT(0)-spaces. It is easy to see
that any CAT(0)-space satisfies the quadrilateral inequality (1.1), we just apply (2.1) to
two triangles (w, x, z) and (y, x, z). Thus the remainder of the paper is devoted to the
derivation of (i) from (ii) in Theorem 1.1.

Assume that a geodesic space (X, d) satisfies (1.1). Then any two points x, y ∈ X
are connected by a unique minimal geodesic. Indeed, given two minimal geodesics γ, η :
[0, 1] −→ X from x to y, applying (1.1) to (x, γ(1/2), y, η(1/2)) immediately implies
γ(1/2) = η(1/2). Hence γ(m/2n) = η(m/2n) for any m = 0, 1, . . . , 2n and finally γ = η
on [0, 1]. Henceforce, we denote by γxy : [0, 1] −→ X the unique minimal geodesic from x
to y.

Lemma 2.1 For any x, y, z ∈ X, we have d(γxy(1/2), γxz(1/2)) ≤ d(y, z).

Proof. Put y′ := γxy(1/2) and z′ := γxz(1/2). Applying (1.1) to (x, y′, y, z′) yields

d(x, y)2 + d(y′, z′)2 ≤ 1

2
d(x, y)2 + d(y, z′)2 +

1

4
d(x, z)2.

We similarly obtain

d(x, z)2 + d(y′, z′)2 ≤ 1

2
d(x, z)2 + d(y′, z)2 +

1

4
d(x, y)2

and hence

2d(y′, z′)2 +
1

4
d(x, y)2 +

1

4
d(x, z)2 ≤ d(y, z′)2 + d(y′, z)2. (2.2)

We next apply (1.1) to (y, z, z′, y′) and find

d(y, z′)2 + d(y′, z)2 ≤ d(y, z)2 +
1

4
d(x, y)2 +

1

4
d(x, z)2 + d(y′, z′)2. (2.3)

Combining (2.2) and (2.3) completes the proof. 2
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Lemma 2.2 (i) For any w, x, y, z ∈ X, we have

d(w, y)2 + d(x, z)2 ≤ 2d(w, x)2 + d(x, y)2 +
1

2
d(y, z)2 + d(z, w)2.

(ii) For any x, y, z ∈ X, it holds that

2d(x, y)2 + 2d(x, z)2 − d(y, z)2 − 4d
(
x, γyz(1/2)

)2

≥ 2
{
2d(y′, y)2 + 2d(y′, z)2 − d(y, z)2 − 4d

(
y′, γyz(1/2)

)2}
,

where we put y′ := γxy(1/2).

Proof. (i) Put v := γyz(1/2). Then the claim immediately follows from (1.1) applied to
(w, x, y, v) as well as (w, x, v, z). (ii) Apply (i) to (γyz(1/2), y′, x, z). 2

Given arbitrary x, y, z ∈ X, put w := γyz(1/2) and yn := γyx(2
−n) for each n ∈ N.

Then our goal is to show

2d(x, y)2 + 2d(x, z)2 − d(y, z)2 − 4d(x,w)2 ≥ 0. (2.4)

We first apply Lemma 2.2(ii) repeatedly to see

2d(x, y)2 + 2d(x, z)2 − d(y, z)2 − 4d(x,w)2

≥ 2n{2d(yn, y)2 + 2d(yn, z)2 − d(y, z)2 − 4d(yn, w)2}. (2.5)

Then we apply Lemma 2.2(ii) in the other direction and find, putting vn := γynz(1/2),

2d(yn, y)2 + 2d(yn, z)2 − d(y, z)2 − 4d(yn, w)2

≥ 2{2d(vn, y)2 + 2d(vn, z)2 − d(y, z)2 − 4d(vn, w)2}. (2.6)

Now, it follows from (1.1) for (vn, y, w, z) that

d(vn, w)2 + d(y, z)2 ≤ d(vn, y)2 + d(vn, z)2 +
1

2
d(y, z)2.

Combining this with (2.5), (2.6) and Lemma 2.1 implies

2d(x, y)2 + 2d(x, z)2 − d(y, z)2 − 4d(x,w)2

≥ −2n+2d(vn, w)2 ≥ −2n+2d(yn, y)2 = −22−nd(x, y)2.

Letting n go to infinity shows (2.4) and completes the proof of Theorem 1.1.
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