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Abstract

We determine homotopy nilpotency of the p-localized SU(n) when p is a quasi-regular
prime in the sense of [9]. As a consequence, we see that it is not a monotonic decreasing
function in p.

1 Introduction

Let G be a compact Lie group and let —(,) stand for the p-localization in the sense of [2]. In

[7], McGibbon asked:
Question 1.1. For which primes p is G,y homotopy commutative?

He answered this question when G is simply connected. For example, he showed that
SU(n)(p) is homotopy commutative if and only if p > 2n. Later, in [8], he studied higher
homotopy commutativity of p-local finite loop spaces and, motivated by this work, Saumell [11]
considered the above question by replacing homotopy commutativity with higher homotopy
commutativity in the sense of Williams [14]. For example, she showed that if p > kn, then
SU(n)(p) is a Cy-space in the sense of Williams [14].

On the contrary, one can ask:
uestion 1.2. How far from homotopy commutative is G or a given prime p?
Py (») g p p

In [5], Kaji and the author approached this question by considering homotopy nilpotency
which is defined as follows, where we treat only group-like spaces (See [15] for a general defini-
tion). Let X be a group-like space, that is, X satisfies all the axioms of groups up to homotopy,
and let v : X x X — X be the commutator map of X. We write the n-iterated commutator
map yo (1 x7y)o---o(lx-+x1x7): X" — X by ~,, where X" is the direct product
of (n + 1)-copies of X. We say that X is homotopy nilpotent of class n, denoted nil X = n,

if v, ~ % and ~,_1 % *. Namely, nil X = n means that X is a nilpotent group of class n up
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to homotopy. Then one can say that nil X tells how far from homotopy commutative X is.
Note that we normalize homotopy nilpotency such that nil X = 1 if and only if X is homotopy

commutative. Then, rewriting the above result of McGibbon, we have
nilSU(n)qy = 1 if and only if p > 2n. (1.1)

In [5], Kaji and the author determined nil X for a p-compact group X when p is a regular
prime, that is, X has the homotopy type of the direct product of localized spheres. For example,

they showed
3
2 sn<p<2n

1.2
3 n<p<in 2

nil SU(n)(p) = {

when p is odd, and nil SU(2) ) = 2.
The aim of this article is to determine nilSU(n)(,) when p is a quasi-regular prime in the
sense of [9], that is, SU(n)(, has the homotopy type of the p-localization of the direct product

of spheres and sphere bundles over spheres. The result is:
Theorem 1.1. Let p be a prime greater than 5. Then we have:

2. nilSU(n)) = 2 Zf% <p<n-—2.

Since the homotopy type of SU(n)(, gets easier as p increases, it is natural to expect that
nil SU(n),) is a monotonic decreasing function in p. Actually, (1.1) and (1.2) give some evidence
for this expectation. However, Theorem 1.1 shows this is faulse in almost all cases as follows.

In [10], it is shown that
x

< m(z) < 1.25506
log = og T

for x > 17, where m(x) is the prime counting function. This implies that there is a prime in

<2n+l

o=, n| if n > 81. Then, together with a case by case analysis for n > 80, we obtain:

Corollary 1.1. Forn =9 orn > 13, nilSU(n),) is not a monotonic decreasing function in p.

In what follows, we will make the conventions: For amap f: X — Y, f.: [4, X] — [A,Y]
and f*: [Y, B] — [X, B] mean the induced maps. If a map f: X — Y7 x Y5 satisfies mj 0 f ~ %,
then we say that f falls into Y5, where 7 is the first projection. We often assume that the
above f is a map from X into Y>. We denote the adjoint congruence [X, QY] = [XX,Y] by
ad. When X is group-like, we always assume that the homotopy set [A, X] is a group by the
pointwise multiplication and we denote by 0 unity of this group which is the constant map. We

denote the order of an element x of a group by ord(x).
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2 Homotopy groups of B,

Hereafter, let p denote an odd prime and put 2 < ¢ < p. Each space and map is always assumed
to be localized at the prime p.

Let us first recall basic results on the p-component of the homotopy groups of spheres.

Theorem 2.1 ([12, Chapter XIII]). 1.

Z/p k=2i(p-1)—-1,i=1,...,p—1
Ton1k(S*" )2 Z/p k=2i(p—1)—2i=n,...,p—1
0 other 1 <k <2p(p—1)—3

2. Let ay(3) be a generator of ma,(S®) and let a;(3) = {a;_1(3),p, a1 (2i(p — 1) + 2)} €
Toip—1)+2(S?) fori=2,...,p—1. Then Topi2i(p-1)-2(S*""1) is generated by o;(2n — 1) =
22"_4ai(3).

8. Toip-1)+1(S?) is generated by a1(3) o a_1(2p) fori=2,...,p— 1.

4. B2 Tons0ip1)—3(S?"1) = Topioip-1)-1(S*"*1) is the zero map fori=mn,...,p—1. In

particular, o;(n) o a;(n+2i(p—1)—1)=0 fori+j <p andn > 5.
Let B,, be the S?~!-bundle over S?"*?P~3 such that
H* (Bn7 Z/p) = A(ZEQn—la leQn—l)7

where |z9,_1| = 2n — 1. Namely, B, is induced from the sphere bundle S**~! — O(2n +
1)/0(2n — 1) — 52" by 14 (2n) as in [9]. Recall that we have a cell decomposition

Bn(p) — SQn—l Ua1(2n+1) 62n+2p—3 U 64n+2p—4.

Let A, denote the (4n + 2p — 5)-skeleton of B, that is, A, = S*' Uy, 2p—1) €773, In
particular, we have

A, =324, (2.1)

It follows from a result of McGibbon [6] that the cofiber sequence S**~! — A, — §%n+2p=3

splits after a suspension, that is,

YB, ~ LA, Vv St (2.2)



Mimura and Toda [9] showed that SU(n) has the homotopy type of the direct product of
odd spheres and By’s if and only if p > §. We shall be concerned with SU(n) for § < p < n,

equivalently, SU(p +¢ — 1) since 2 < t < p. In this case, we have a homotopy equivalence
SU(p+t—1)~ By x---x By x S# x ... x 5271,

We compute the homotopy groups of B,, following Mimura and Toda [9] in a slightly larger
range than [9]. Consider the homotopy exact sequence of the fibration S?"~! — B,, — §2n+2P=3,

Then the connecting homomorphism ¢ : 7, (S?"*2P73) — 1, ;(S**~1) is given by
0(Xx)=o(2n — 1) ox. (2.3)

Then, by Theorem 2.1, we obtain m,(Bs) for * < 2p(p — 1). In particular, each map S™ — By
for 2p + 2 < m < 2p(p — 1) lifts to S* C By. It also follows from Theorem 2.1 that, for n > 3

and 7 = 2,...,p — 1, we have the short exact sequence
0 — m(S* 1) = 7,(B,) — m(S*T#73) - 0

for 2n +2p — 2 < % < 2n+ 2p(p — 1) — 4. Then we have only to consider the case that
* = 2n+2i(p—1)—2fori=2,...,p—1. Leti, : S*» ' — A, and j, : A, — B, be the inclusions
and let g, : A, — S?"*2=3 be the pinch map. Consider the following commutative diagram in

which the lower horizontal sequence is the exact sequence (2) and we put k = 2n+2i(p—1) — 2.

ﬂ.k(SQn—l) e Wk(An) 4%;7Tk<s2n+2p—3)

ljn*

0 s ,ﬂ.k(Sanl) . 7.(.’C(‘Bn) . Wk(SQTH‘QP*S) s O

Note that a coextension a;_1(2n + 2p —4) : §2+2-1)-2 . A = g¥n-1 Uay 2n—1) €723

satisfies

(i1 (2n +2p — 4)) = —;1(2n + 2p — 3)

and

Oéi_1<2n + 2]? - 4) op = _in*({al(?n - ]-)7 ai—l(Zn + 2p - 4)ap}1)
= Zn*(%{azfl(Qn - 1)7p7 a1<2n + 2p - 4>}1)

= —ip(+0;(2n — 1))

(See [12, p.179]). Then (2) does not split for * = 2n 4 2i(p — 1) — 2 and hence we have
obtained that 7o, 9(p-1)—2(Bn) = Z/p®. Moreover, it is generated by jn.(a;_1(2n + 2p — 4)).
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In particular, each map S™ — B,, which is of order p for 2n+2p—2 <m <2n+2p(p—1) —4

lifts to S?"~! C B,. Summarizing, we have calculated:

Z/p k=2(p-1)—-1,i=2,...,p—1
Proposition 2.1. 1. m34k(By) = Zipy k=2p—2
0 other 1 <k <2p(p—1)—3

Z/p k=2(p-1)—-1,i=2,....,.p—1
Z/p k=2ip—-1)—2i=mn,....,p—1
gy k=2p—2

0 other 1 <k <2p(p—1)—3

I

2. Forn >3, mopn_111(Bn)

8. For2p+2 <m < 2p(p—1), each map S™ — By lifts to S* C Bs.

4. Forn>3 and2n+2p—2 <m < 2n+2p(p—1)—4, each map S™ — B, of order p lifts
to St C B,.

By Theorem 2.1 and Proposition 2.1 we can see the homotopy groups of SU(p+¢ —1) in a
range. It will be useful to list up the non-trivial odd homotopy groups of SU(p +t — 1).

Corollary 2.1. Let p>T7 and 2(p+1t) — 1 <k <12p—1. Then m,(SU(p+t — 1)) = 0 unless
k is odd and not in the following table. Moreover, each element of mor—1(SU(p+1t — 1)) can be
compressed into S™ C SU(p +t — 1) for n in the following table.

6p — 3
I 8qp—5 8p—3

10p—7 10p—5 10p—3

12p—9 12p—7 12p—5 12p—3
n 5 7 9 11

3 Homotopy nilpotency and Samelson products

Let X be a group-like space. For a map f : A — X we write by — f the composition A Lxs
X, where ¢ : X — X is the homotopy inversion.

Since the pinch map X"*' — X®*1 induces a monomorphism [X®*+D X] — [X"+! X]
as in [15, Lemma 1.3.5], the n-iterated commutator map of X vanishes if and only if so does
the n-iterated Samelson product (1x, (--- {1y, 1x)---)), where X1 is the smash product of

(n + 1)-copies of X.



Suppose that X = X; x---x X, as spaces, not as group-like spaces. We denote the inclusion
Xr — X and the projection X — X by i, and p, respectively for £ = 1,...,n. Note that
lx = (i1 0p1) - (in © pn), the pointwise multiplication. Kaji and the author [5] showed that
the n-iterated commutator map of X lies in the commutator subgroup of [X"*1, X| and, by an

easy commutator calculus and the above observation, it was obtained:

Proposition 3.1. nil X < k if and only if (61, (- (O, Ok1)---)) = 0 for each by, ..., Opy1 €
(i1, +in).

We produce formulae for Samelson products which will be useful for our purpose.
Proposition 3.2. Let X be a group-like space and let 6; : V; — X fori=1,2,3.

1. If (264, (£05, £03)) = (£0, (£05,16,)) = 0, then (+03, (£01, £05)) = 0.

2. (6h,02) = 0 implies (61, —0) = 0.

3. Let 0 - Vs — X If (01, (02,03)) = (01, (02, 63)) = (03, (6, 05)) = O, then (61, (02, 0365)) =
0.

4. Suppose that X = Xy x ---x X, as spaces and denote by iy and py the inclusion X — X
and the projection X — Xy respectively for k = 1,...,n. Then (01,ix o pr o b3) = 0 for
k=1,...,n implies (61,05) = 0.

Proof. 1. Recall first the Hall-Witt formula of groups. Let G be a group and let [—, —] denote
the commutator of G. Then we have the Hall-Witt formula:

[y, [z 27 1 [, [y, 27 ) [,y 7)) = 1

for z,y,2 € G, where ¥ = yay~!.

Let ¢; : Vi x Vo x V3 — V; be the i-th projection for i = 1,2,3. Put 6; = 6,0¢; fori =1,2,3.
For o € 33, we define o : Vi AVo A Vs — Vo) A Vi) A Vo) by 0(v1,02,v3) = (Vo(1), Va(2); Vo(3))-
Then we have

Oo1), [00(2), Oo(3)]] = 0~ 0 ¢* ({61, (02, 03))),

where [—, —] denotes the commutator in the group [V; x Vi x V3, X] and ¢ : X — X® is
the pinch map. Hence, by hypothesis, we have [0, [+60,, £03]] = [£0,, [£05, £0,]] = 0 and it
follows from the Hall-Witt formula that [£0s, [£6;, +0,]] = 0. Since o~! and ¢* are monic, we
have (+63, (+£60,, £65)) = 0.



2. This follows from the fact 1x = (i1 opy) - - - (i, © pn) and the formula

[z, y2] = [, Y[z, 2]

for x,y € G.
3. This also follows from the above formula.

4. This follow from the formulae

[z, [y, 2w]] = [z, [y, 2]][=, [2, [y, w]]])¥ [z, [y, w]) ¥l

for z,y, z,w € GG respectively. O

We denote the inclusions S*~! — SU(p+t—1), A; — SU(p+t—1) and B; — SU(p+t—1)
by €, A; and 5\j respectively for 2 < i < p and 2 < j <t. We also denote by m; the projections
SU(p+t—1)— Bifor2<i<tand SU(p+1t) — S* ! fort+1<i<p.

Let W=AyV---VAVS?yv...v S landlet j= V- VN Ve V- Ve, W —
SU(p+t—1). By (2.2) there is a homotopy retraction r : XSU(p+¢ — 1) — XW of j and as
in [7] we can see that there is a self-homotopy equivalence f : SU(p+¢—1) — SU(p+t — 1)

such that the following square diagram is homotopy commutative.

SSU(p +t — 1) —L=SSU(p + ¢ — 1)

l ladl

SW—— BSU(p+t— 1)

Then, for any map g : YA — SU(p + ¢ — 1), the Whitehead product [+ad);, g] = 0 if and
only if [£ad);, g] = 0. By adjointness of Whitehead products and Samelson products, we have
established:

Proposition 3.3. For any map f : X — SU(p +t) and each i = 1,...,t the Samelson
product (£);, f) = 0 if and only if (£, f) = 0. In particular, (£, £X) = 0 if and only if
(Mg, £A) = 0.

4 Computing the Samelson products

Let A = {e,..., 65N, ..., Nt and A = {eg, ..., €5, Aay .., A}, and let £A = {Fey, ...+,
+Ag, .., 2N} and £A = {Feo, ..., Fep, Ay, ..., EN . We write the domain of § € £A or
+A by X(0). For example, if § = \;, then X (0) = A;. For § € £A or A, we write |0 = i if
0 = +e;, £\, or £\,



By Proposition 3.1, it is sufficient to calculate the iterated Samelson products (01, (- - (0.,
Opir)--+)) for 61,...,0,41 € £A in determining nilSU(p + ¢ — 1). To do so, we will use the

following result of Hamanaka [3].

Theorem 4.1 (Hamanaka [3]). Let X be a CW-complex with dim X < 2n+2p—4. Then there

1S an exact sequence
p—2 p—3
I S n-+217 1 n+21
K(X) ) = @ H™ (X, Z)) — [X, Un)) — K' (X)) — @ B (X, Zgy)
i=0 i=0
such that:

1. 0(x) = @2 (n + i) chyyi(x) ) for x € K°(X), where chy, is the 2k-dimensional part of

the Chern character.

2. For f,g € [X,U(n)]y), the commutator [f, g] lies in Coker© and represented by

6_9 Z [ (@2i-1) U g™ (225-1),

k=0 i+j—l=n+k

where x;—1 € H* 1 (U(n); Zy)) is the suspension of the Chern class ¢; € H*(BU(n); Z,)).

As an easy consequence of Theorem 4.1, Hamanaka [3] showed:

0 i+j<p+t—1

Proposition 4.1. ord({*e;, +¢;)) = o
(e 26)) {p o

Now let us calculate other Samelson products of ¢, and £A; by applying Theorem 4.1.
We have that H*(B,; Z,)) = A(%on—1, Tont2p—3) such that the mod p reduction of z4,1 and
Toptop—3 are To,—1 and P'To, y respectively. Then H*(A,;Z,)) = Zp)(aon—1, aony2p—3) such
that ji(x;) = a; for i = 2n —1,2n 4 2p — 3, where R(ey, es,...) stands for the free R-module

with a basis eq, es,... and j, : A, — B, is the inclusion.

Lemma 4.1. Forn <p, [N((EAn)(p) = Zp)(&n, ) such that
1
Ch(fn) = Ea?n—l + Hga2n+2p—37 Ch(nn) = Ea2n-i—21o—3'

Proof. Let v be the canonical line bundle of CP? and let € € K(CPP) = [CP?, BU(c0)] be
the composite CP? % 5% % BU(oco) for the pinch map ¢ : CP? — S? and a generator u of
Tap(BU(0)). Note that XCPP ~ Ay vV S°V .-+ Vv S?~1 By using (2.1), we put &, and 7, to
be the pullback of "2y and ¥*"~2¢ by the inclusion A, — ¥?""2CPP. Then Lemma 4.1

follows from an easy calculation of the Chern character of v and e. O
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0 itj<p+l
Proposition 4.2. 1. For (i, §) # (p,1), ord({£e;, £),)) = ord (£ ), e)) = 4 ° 1 SPT
p it+j=2p+2

2. Fori+ j <t, ord({(£\;,£A;)) =0.

3. Let X(i,j) be the (2i + 2j + 4p — 5)-skeleton of A; N A;, that is, A; N A; minus the top

o 0 i+j<p+1
cell. For (1, ,p), ord({E£\;, £\; i) = T
(i,7) # (p,p), ord(( Mxei) b itispao

Proof. Let p; : X1 x X9 — X; be the i-th projection for ¢« = 1,2 and let ¢ : X7 x X5 — X3 A X5
be the pinch map. For f; : X; — U(n), i = 1,2, we have

[fiop1, faopa] = q"({f1, f2)) € [X1 x X, U(n)]

as in the proof of Proposition 3.2. Since ¢* is monic, ord([f; o p1, fo 0 po]) = ord({f1, f2)). Now
if the subcomplex Y C X; x X satisfies dimY < 2n+ 2p — 4, it follows from Theorem 4.1 that
[f1 © p1, f2 0 pa]lq(v) lies in Coker© which is represented by @ itict=nir 9 (7 (T2i-1) ¥
fa(x2j-1)), where g : Y — X; x Xy is the inclusion.

Now we calculate (e;, \;). Note that U(n) ~ SU(n) x S* as H-spaces, here we localize at the
odd prime p. Then we have ord((e;, A;)) = ord({(e},\})), where ¢; and )} is the compositions
S%-1 5% QU(p+t—1) = Up+t—1) and 4; 2% SU(p+t—1) — U(p+t — 1) respectively.
Hence we calculate (e, A”). Apply Theorem 4.1 to X = 5?1 x A;. Then, by Lemma 4.1, the
2(i + 7 + p — 2)-dimensional part of Coker® is

Z(p)(szi_1 X a2j+2p—3>/(wsm—l X a2j+2p—3)a

where s9;_1 is a generator of H*~(S*~"; Z,)). By definition, € (25;_1) = 59,1 and (22 2,-3) =
agjyop-3- Then, by the above observation, ¢*({(€j,\;)) € Coker® is represented by sy 1 X
agjy2p-3- Thus we have calculated ord((e;, A;)). Other Samelson products can be analogously
calculated. ]

In what follows we will often use the argument below implicitly.

Proposition 4.3. Let X — Y — Z be a cofiber sequence and let W be a space such that
[Z, W] =x. Ifamap f:Y — W satisfies flx =0, then f =0.

Proof. Proposition 4.3 follows from the exact sequence [Z, W] — [V, W] — [X, W] induced
from the cofiber sequence X — Y — Z. O



By Theorem 2.1 and Proposition 2.1, the Samelson product (+6,, £60,) for 61,0, € A falls
to a single B; or S¥~1 Cc SU(p+t—1)fori=2,...,tand j =t+1,...,p. We shall consider
the lifting problem of the above (£6;, +605) when it maps to B;.

Let us first consider (+e;, £¢;). Note that we can assume i + j > p + ¢ by Proposition 4.1,
which implies that (+¢;, +¢;) falls to S2H7=P)*L for i + j < 2p — 1 and to B, for i = j = p.
Then it is sufficient to look at the case i = j = p. By Proposition 4.1, ord({=£e,, ¢,)) = p and
then, by Proposition 2.1, (+e,, %¢,) lifts to S C B,. Thus we have obtained:

Proposition 4.4. (te;, +¢;) falls to S?HP+ C SU(p+t—1) ifp+t<i+j<2p—1 and
lifts to S3 C By if i + j = 2p.

Next we consider (%e;, £A;) and (£);, £¢;). In the following calculation, we shall assume
the homotopy set [XX,Y] is a group by the comultiplication of ¥X and the induced map
() [EXY] - [EX,Y] from f: X — X’ as a group homomorphism. Now we have the

, 22
exact sequence induced from the cofiber sequence S2"+2P=5 a2 gon—2 _, Coay(2n—2) for n > 3:

a1(2n—1)*
—

7_[_2”71(521171) 7T-2n+2pf4(s2nil) - [Ca1(2n—2)7 SQnil] - 7T2n72(52n71)

It follows from Theorem 2.1 that a;(2n — 1)* is epic and ma, _o(S?"~!) = 0. Then we obtain:
Proposition 4.5. Forn > 3, [Cy,2n-2), S** 1] = 0.

Corollary 4.1. Forp+2 <i+j < p+t—1, (£, *¢;) and (Fej, £N) lift to SHHI—PI+]

C Bitj—pt1-

Proof. We only give a proof for (¢;, A;) since other ones are analogous. It follows from Proposi-
tion 2.1 that (e;, A;) falls to Biyj_pt1 C SU(p+t—1). Since S* 1A A; = Cy2i42j—2), it follows
from Proposition 4.5 that ¢.((e;,\;)) = 0, where ¢ : Bi1;_p11 — S?)~1 is the projection.
Then (e, \;) lifts to S2+3=P)+1 and the proof is completed. O

Let us describe the above lift f : A; A S¥~1 — S2HI=P)+L of the Samelson product (\;, €;).
Consider the following commutative diagram in which the row and the column sequences are

. _ q _
the exact sequences induced from the cofiber sequence S*" ™2~ — C, (an42p-a) — SZT#70
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and the fiber sequence S*"~! — B, — §?"+2P=3 respectively.

[Ecog (2n+2p—4), S2n+2p73]

|

[Oal (2n+2p—4)> Sanl]

[Oal (2n+2p—4)» Bn]

*

7T2n+4p—6(52n71) d

7T2n+2p—4 <S2n71)

Let p : Co, 2n42p—4) — S 2n+2p—4 he an extension of the degree p self-map of S?"+2P=%, Then, by

(2.3) and [12, Proposition 1.9], we have
d(Xp)=a1(2n—1)op=qg"({aa(2n —1),p,an(2n +2p — 4) })b = ¢"(2(2n — 1)).
On the other hand, it follows from Theorem 2.1 that

Img" = Z/p(q*(e2(2n — 1))).
Then we have established that if f : Cy,2n12p—a) — S*" ! satisfies f|gznt20-4 = 0, then i.(f) =
0. In particular, it follows from Proposition 4.2 that:
Proposition 4.6. Forp+2 <i+j <p+t—1, any lift of (\i, ;) to S2HIPH By
say f, satisfies f|g2i-1pg2i-1 # 0.
Next we consider the lifting problem of (£\;, £);). Recall from [12, Lemma 3.5] that the

cell structure of Cy,(n) A Co,(n) for n > p is given by

Corm) A Cayn) = (Cay2n) V S22y, k=t

n

where

Vp = (ix(a) + (=1)"201(2n)) V aq(2n + 2p — 2) (4.1)

for the inclusion i : S*® — C,,(2n) and some a € Ta,44p—5(S?"). Since n > p, it follows from
the Serre isomorphism 7, (5%") = Y, 1(S* 1) @ 7, (S that « is a multiple of ay(2n).

We shall identify A; A A; with Cy, (i+j-1) A Ca,(i+j—1)- Consider the following commutative
diagram in which the row sequences are the exact sequence induced from the cofiber sequence
A NA; — S+ s gy,

f*

(EX(i,7), S Tt ap—6(S21) [Ai N A, SF]

EQNi E2Nl E2N\L
ON+1v (s o ckteN—1F) k+2N—1 2N k+2N—1
[EX (4, 5), S5 jﬁﬂk+4p—6+21v(5 ) — X (AN Ay), S l,
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where we put & = 2(i + j). When N is large enough, we have XV f = Yy, ny1. Let

D i Coy2(iti—1)) — S~ be an extension of the degree p self-map of S2(F7+N=1_ Then, by

[12, p.179], we have

() (2*p) = {p,ar(2(i +j+ N) = 1),01(2(i +j+ N+ p—2))h
= 30520 +j+N)—1)

as in the proof of Proposition 2.1. On the other hand, it follows from Theorem 2.1 that
SV ot jrap—3) (SPEFDTY) — o inap- s vy (SPEHFN ) s an isomorphism. Thus we have

obtained:

Proposition 4.7. The inclusion X (i, j) — A; A A; induces an injection [A; A A;, SPEFD=1] —
(X (5., 52641

Corollary 4.2. Fori+j <p, (XX, £\;) = 0.

Proof. By Proposition 4.2, it is sufficient to consider the case that t4+1 <745 < p. In this case,

(N, £\;) falls to S2+9)~1 < SU(p +t — 1) and then the proof is completed by Proposition
4.2 and Proposition 4.7. O

Corollary 4.3. Forp+1 < i+ j < 2p—1, (£)\;,£),) can be compressed into SHi+i—p+1
CSU(p+t—1).

Proof. We only show the case of (\;, \;) since other cases are similar. By Proposition 2.1 and
Proposition 2.1, (A;, A;) falls to Biyj_pi1. Put (A, A\j)|xuj) = fVg: X(4,7) = Car2(itg)—2) V
S2i+i+p=2) — B, .. By Proposition 4.5, we have ¢, (f) = 0 for the projection q : Biyj_pi1 —
S2(+7)=1 By Proposition 4.2, f is of order at most p and then, by Proposition 2.1, ¢.(g) = 0.
Thus, by Proposition 4.7, ¢.((\;, A;)) = 0 and this implies that (\;, ;) lifts to S2EHi=P)+L

Biyj—p+1. L

5 Upper bound for nilSU(p+t — 1)

Hereafter, we suppose that p > 7.

The aim of this section is to show:

Theorem 5.1. nilSU(p+¢—1) < 3.

12



First, here is the proof of Theorem 5.1. By Proposition 3.1 and By Proposition 3.3, it is

sufficient to show that
<61, <§2, <9_3, §4>>> =0 for 81 € +A and 6_2,8_3,54 € ZEJ\

Let w; € A and let s, s, w4 € A. It follows from Proposition 3.2 that if (d(+ws, +w,),
(£wg, w1)) = (fwe, (fwy, £(tws, +wy))) = 0, then (Fwy, (E(*ws, +wy), £wq)) = 0. By
Proposition 3.3, this implies (+w, (w9, (w3, £w4))) = 0. On the other hand, by Proposition
3.2, if (fdvg, (Fwy, E(Fwe, w))) = (Fwy, (F(Fwq, wr), £w3)) = 0, then (£(+ws, +wy), (Fws,
+,)) = 0. By Proposition 3.2, this implies (£(£ws, £@w,), (£ws, wi)) = 0. Thus the proof is
completed by the following propositions.

Proposition 5.1. (1, (0, (03,04))) = 0 for 01,0, € £A and 05,04 € £A.

Proposition 5.2. <017 <02, <€3,94>>> = <01, <02, <04,93>>> =0 fOT’ 91,03 S :l:A, 62,94 S :i:]\ and
0] + 16a] # 2p.

Proposition 5.3. (£\,, (&, (01,05))) =0 for 6,,0, € +A.

We will calculate iterated Samelson products in +A from those in +A by using the following

lemma.

Lemma 5.1. Let

ni no ng
X = (\/ Si2np73) U <U e?np*3+2(17*1)> U---U (U einp73+2(k71)(p71))
i=1 =1 i=1

and let f: X — SU(p+t—1). If n+k < p, then f can be compressed into S>*~! C SU(p+t—1)
and X% f = 0.

Proof. If f falls to B,, it follows from Theorem 2.1 that ¢.(f) = 0 for the projection ¢ :
B, — 5?2773 and then f lifts to S?*~! C B,. Thus we assume that f is a map from X to

5?1 Consider the exact sequence induced from the cofiber sequence /i, 5’2”” 3 x4

XV, ST = v
v, SQn—l] (a)* X, 5% 1 @W%p o S2n 1

It follows from Theorem 2.1 that (327)*(X%f) = 0 and then there exists ¢ : 3?Y — S?"*! such
that (X2¢')*(g) = ¥2f. By induction, we obtain ¥2* f = 0. O

13



Corollary 5.1. Let X = S?"! or S2=1ye? 273 forn < 5p—3 and let f : X — SU(p+t—1).
Then (0, f) = (f,0) = 0 for each 6 € A.

Proof. By Corollary 2.1, we only have to consider the case 2n—1 = 6p—3,8p—5,8p—3,10p—7.
Then it follows from Lemma 5.1 that f can be compressed into S® or S” C SU(p+t — 1), and
that ¥4 f = 0. By Proposition 4.2, we assume |f| > p — 2. Since p > 7, X(0) is a 6-suspension
and then 1xg) A f = f AN lxe =0. O

We give candidates for non-zero 2-iterated Samelson products in +A.

Proposition 5.4. Let 0,,0,,05 € £A. If |01] + |0] + 03] # 2p + 1,2p + 2,2p + 3,3p, then
<917 <027 93>> =0.

Proof. Suppose that |61| + |05 + 03] # 2p + 1,2p + 2,2p + 3,3p. By Proposition 3.3, it is
sufficient to show that (6, (05, 05)) = 0 for 6, € £A and 6,05 € £A.

By Corollary 2.1, (04, (02, 03)) = 0 if 0,,05,03 € £A. Then, by Proposition 3.2 and Propo-
sition 3.3, it is sufficient to show that (61, (s, £N;)) = (61, (£, 05)) = 0 for 01,0, € £A.
Since other cases are analogous, we only show (\;, (A\;,A\x)) = 0. When j > 3, 4, is a
suspension by (2.1). Then it follows from (2.2) that (A\j, \x) = (A, M) V f @ A; A By, =
(A; AN Ag) V (A; A SH¥F20=4) — SU(p+t — 1). By Corollary 2.1, we have (\;, (\j, \x)) = 0 and,
by Corollary 5.1, (\;, f) = 0. Then we have established (\;, (\;, \x)) = 0.

When j = 2, we assume kK = p — 1 or p by Proposition 4.2. It follows from Theorem 2.1
and Proposition 2.1 that (A, A, 1) falls to By. By Corollary 4.3 and Theorem 2.1, we have
¢({A2, \p_1)) = 0 for the projection q : By — S?*1. Then (\y, \,_1) lifts to f : A;AB,_ 1 — S5
Hence, by Proposition 4.2, (\;, f) = 0 if i < p — 1 and this shows that (\;, (A\;, \x)) = 0 when
(j,k) = (2,p — 1). One can analogously show that ()\;, (\;, \x)) = 0 when (j, k) = (2, p). O

Proof of Proposition 5.3. As in the above proof of Theorem 5.1, Proposition 5.1 implies that it
is sufficient to prove ((61,6s), (£X,, £),)) = 0.

By Proposition 5.4, we have only to consider the case that |01| + |62 =p+1,p+2,p+ 3 or
2p. When [0] + [0s] = p+ 1, (61,0) falls to By x S° x ST, By x B3 x ST or By x By X By by
Theorem 2.1 and Proposition 2.1. On the other hand, (£, +,) falls to By x S or By x B3
by Theorem 2.1 and Proposition 2.1. Then, by Proposition 3.2, Proposition 4.2 and Corollary
4.2, we have obtained that (£, (£, (61, 62))) = 0. Other cases are quite analogous. O

Now we proceed the calculation to show all 3-iterated Samelson products in A vanish. As a

first step, we show:
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PI‘OpOSitiOIl 5.5. <61, <(92, <93, 94>>> =0 fOT’ 01, . ,64 € +A.

Proof. By Proposition 5.4, we assume that 05| + 03] + |04] = 2p + 1,2p + 2,2p + 3 or 3p. We
only show the case that (6,62,603) = (A, A\j, \g) for i + j + k = 2p + 3 since other cases are

analogous. By Corollary 2.1, there is a homotopy commutative diagram:

A A Ay A A D G g

q
(Vi S U el=5 = SU(p + 1 — 1),
where ¢ pinches the (8p — 4)-skeleton of A; A A; A A. It follows from Lemma 5.1 that f can be
compressed into S” C SU(p +t — 1) and that ¥*f = 0. Then, by Proposition 4.2, we assume
that ¢ > p — 2 and this implies that f is a 6-suspension. Hence we have 14, A f = 0 and this
completes the proof. O

Corollary 5.2. <¢91, <92, <03, 94>>> = <91, <62, <(94, 63>>> =0 fO’f’ 91, 63, 93 € +A and 94 € :I:]\

Proof. By Proposition 5.5, we put 8, = +\,.
We first consider the case that 03 # £X,. Since X (63) is a suspension, we have the following
homotopy commutative diagram by (2.2).

(03,£X;)

(X (Bs) A Ay) V (X (05) A Git2r—a) BT g, g )

Then we have

(01, (02, (03, £X:))) = (01, (02, (05, X)) V (01, (62, f)) -

3 3 3

N\ X0:)ABi~ (\X(0)AA)V(\ X(0) NS = SU(p+t—1)

i=1 i=1 i=1
Thus, by Corollary 5.1 and Proposition 5.5, we have established (0, (6, (5, £);))) = 0. It is
analogous to show (01, (05, (£);,03))) =0

We next consider the case that 63 = +Xo. By Corollary 4.2 and Proposition 5.5, we assume
that 0, = j:S\p_l or ij\p. It follows from Corollary 4.3 that we also assume (£, ;) :
Ay A By — S?+7P)+1 Then, by (2.2), we have a homotopy commutative diagram:

(A2, EN)

Y2(Ay A B;)

zi f

S2(Ay A A) V S2(Ag A Sli+2p—a] AV

§2(2+i—p)+3

§2(2+i—p)+3
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By Proposition 5.4, we also assume that |0s| + |03] + | Ni| = 2p+ 1,2p +2,2p + 3 or 3p and this

implies that X (6;) is a 6-suspension. Then we have

(02, (£Xo, X)) = (B2, (X, X)) V (B2, €315-p) © (Is-2x(0) A S)) :
(X (0) A Ay A A;) V(X (02) A Ay A S2EH=PHY) L SU(p +t — 1).

By Corollary 5.1, we also have 15-2x(,)A f = 0 and then, by Proposition 5.5, we have obtained
(01, (B, (£, £N))) = 0. We can similarly see that (0, (02, (i, £X2))) = 0 O

Proof of Proposition 5.1. By Proposition 5.5 and Corollary 5.2, we put 65 = £\, and 6§, = ij\j.

Applying the homotopy extension property of the inclusion ¥A4; A A; — ¥A; A Bj, we
replace a homotopy retraction ¥A; A B; — ¥ A; A A; with a strict retraction. We also replace
a homotopy retraction ¥A; A B; — £A; A A; with a strict one.

Let Y (i,7) be the (4i + 45 + 4p — 7)-skeleton of B; A B;, that is, Y (4, j) is B; A B; minus
the top cell. Since we have strict retractions X A; A B; — XA; A Aj and XA; A B; — XA; N Aj,
the proof of Corollary 5.2 implies that we can choose contractions of (0y, (02, (£, £\;)))
and (01, (0, (£, £X;))) to coincide on X (6;) A X(62) A A; A A;. Then, by gluing the above
contractions, we obtain

(01, (02, (£, £A) v i) =0 (5.1)

for 91, 0y € £A.
Now we first consider the case 05 # +X5. As in the proof of Corollary 5.2, we have

(62, (i, £X;)) = (02, (FNi, 2Ny i) V f -
X(03) A B; ABj =~ (X(02) NY (i,5)) V (X (03) A SAHHTP72))  SU(p +t — 1).

Then, for (61,6,03) # (£X,, £X,, £X,), we have (01, (02, (E\;, £);))) = 0 by Corollary 5.1 and
(5.1).

By Proposition 2.1, (£\,, £),) falls to By x B3 C SU(p +t — 1). Then, by Proposition
3.2, it is sufficient to show that (6, (£, A; o m; 0 (X, M) = 0 for i = 2,3 for 6, € £A.

Analogously to the above case, we have

(FXp, N 0T 0 (X, £A,)) = (X, A om0 (EX,, EX) [y op)) V fi:
Ay ANB, A B, ~ (A, AY (p,p)) V (A, A S™7®) — SU(p +t — 1).
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By (5.1), it is sufficient to show (6, fi) = 0 for i = 2,3. By [13], we have 4, o(S?) =
T16p—11(S%) = 0 and then 714, o(Bs2) = m1ep_11(B2) = 0 by the homotopy exact sequence of the
fibration S® — By — S%*! and Theorem 2.1. Thus f, = 0. Similarly, we have f3 = 0.
We next consider the case #; = £Xy. By Proposition 5.4, we put (i,7) = (p — 1,p), (p,p —
1), (p,p). When (i, 7) = (p,p), it follows from Proposition 5.4 that |fs| = 2 or 3. By Proposition
1, (£, £A,) falls to By x By C SU(p +t — 1). Then, by Proposition 3.2 and Corollary
4.2, we have (0, (£\,, £),)) = 0. We shall prove the case (i,j) = (p — 1,p). The case
(i,5) = (p,p — 1) is quite analogously proved. By Proposition 2.1, (&\, 1,+),) falls to B,
and then (+Xy, (X, 1, £),)) falls to By x By. Moreover, by Theorem 2.1 and Corollary 4.3,
we can see that m; o (£Xg, (£, 1, £),)) can be compressed into S%~! for ¢ = 3,4. Then, by
Proposition 3.2, we assume |61 > p — 2 and then X () is a 6-suspension. By an analogous

argument as above, we have

Y25 0 (FEXg, (EXp_1, EN)) = T2m; 0 (X, (EXp_1, TN v (po1p)) V f
Y2As A B, 1 A B, = Y2 (Aa AY (p—1,p)) V B2(A% A S12P712) — g2

for i = 3,4. Then as in the proof of Corollary 5.2, we have obtained (6, (&g, (£, 1, £\,))) =
0. O]

In order to calculate other Samelson products, we will use:

Lemma 5.2. Let g:V — Wi VWy and let f; : W; — X fori=1,2. Suppose that fiop;og =0
fori=1,2 and that X is an H-space, where p; : W1V Wy — W, is the i-th projection. Then
(fiVf2)og=0.

Proof. Define f1 - fo: Wiy x Wy — X by f1- fa(z,y) = fi(x)fo(y) for (z,y) € Wi x W;. Then
we have a homotopy commutative diagram

V—>W1\/W2%X

7

where j is the inclusion. This completes the proof. O

v W1><W2f1f2

Proof of Proposition 5.2. We first consider the case 63 # +X,. If 6, = £);, we have

<93, :|:5\Z> = <93, j:)\z> V f :

17



and (4);, 63) has an analogous decomposition. Then, by Corollary 5.1 and Proposition 5.5, it
is sufficient to show that (01, (£\;, (03,64))) = 0 for 6,,603,0, € £A. Since |05 + |04] # 2p, we
have (s, 0,) : X(05) A X (0,) — S?+=P)+1 by Proposition 4.4, Corollary 4.1 and Corollary 4.3.

Since

(X, €irjpi1) = (FNjs €igjprr) V f
Bj A SQ(i+j—p+1)—1 ~ (A] A SQ(i+j—p+1)—1) Vi SQi+6j—3 - SU(p+ +— 1)

Then, by Corollary 5.1, Proposition 5.5 and Lemma 5.2, we have obtained (6, (), (63, 0,))) =
0.

We next consider the case 63 = 4+\y. By Corollary 4.2, 6, = 4\, ; or )\, and then, by
Proposition 5.5, 6y = £, and 6 = \,_; or )\, according as 0, = £\, 1, +)\,. Now we consider
the case §; = £\, 1. By Proposition 2.1, (£, A, 1) falls to B, C SU(p +t — 1). Moreover,
by Theorem 2.1 and Proposition 4.1, (s, £, 1) can be compressed into S® C SU(p+t —1).

Since
(N, €2) = (N, €2) V f: B,AS* = (A, A SV (SPHAS?) — SU(p+t—1).

By Corollary 5.1, we have (61, f) = 0. Then, by Lemma 5.2, it is sufficient to show that
(01, (£, (£Xe, £A,_1))) = 0 and this is done by Corollary 5.2. (8, (£, (X, 1, £A))) = 0
is shown in an analogous way.

Let us consider the case 64 = £),. As above, ()5, +\,) can be compressed into S® x S and
then, by Proposition 3.2, it is sufficient to show that (6, (6, e;0m;0(EAy, £A,))) = 0 for i = 3, 4.
This is done quite analogously to the above case. We can also see that (01, (6, (£, X)) = 0

as well. O

6 Proof of Theorem 1.1
6.1 t=2

We shall show (e,_1, (A2, €,)) # 0 and then, by Theorem 5.1, the proof of Theorem 1.1 is
completed. By Theorem 2.1 and Proposition 2.1, (A, €,) falls to S° C SU(p 4+ 1). Since
(€2,€,) # 0 by Proposition 4.1, we have (A2, €,) = aa;(5) for some integer a such that a # 0

(p), where a1 (5) : Cay(2pr2) = A2 A S?~1 — S is an extension of a;(5). Analogously, we have

(€p—1,€3) = bay (5) for an integer b such that b # 0 (p). Then, by [12, Proposition 1.9],
{ep-1, {2, 6)) = abay (5) o X3y (5) = abq* ({1 (5), 1 (2p + 2), i (4p — 1)}), (6.1)
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where q : S?P73 A\ Ay A S~ — 8573 pinches the bottom cell.

Consider the exact sequence induced from the cofiber sequence S*~3 A A, A S0 2

gor=3 1) g,

7T4p(S5) al(ﬁ))* 7T6p_3(S5) ‘I_i [SQp—{% /\A2 ASQp—l)sS}

By Theorem 2.1, a1 (4p)* = 0 and then ¢* is monic. It is known that {a;(5), a1 (2p+2), a1 (4dp —
1)} # 0 (See, for example, [4, P. 38]) and thus, by (6.1), we have established (€,-1, (A2, €,)) # 0.

6.2 3<t<iH

By Proposition 4.2, possible non-trivial 2-iterated Samelson products in +A are:
1. (tep, (£ep, £€p)).
2. (N, (e, er)), (Fei, (EN, Fer)), (Fei, (Fej, £Ng)) for i+ +k =2p+1,2p+2,2p+3.

We shall show these Samelson products are all trivial and then, by Proposition 3.1, the proof
is completed.

1. By the Jacobi identity of Samelson products, we have 3(=%e,, (£e,, £¢,)) = 0 and then,
for p > 3, (%e,, (£e,, £¢,)) = 0.

2. By Proposition 3.2, it is sufficient to show (d¢;, (£, Fex)) = (Fe;, (Fe;, £Ai)) = 0 for
i+j+k = 2p+1,2p+2,2p+3. Let us consider (*e;, (£);, +e;)) for i+j+k = 2p+1. By (2.2), we
have (£e;, (£, Fex)) = (Fe;, (N, Fex)) Ve, f) for some f: SHHP4ASH-1  SU(p+t—1).
Then, by Corollary 5.1, it is sufficient to show (=%e;, (£}, £ei)) = 0.

Let us consider the case i+j+k = 2p+1. By Proposition 4.3, (£, £¢;) can be compressed
into S2U+k=P)+1 © SU(p + ¢ — 1) and then we have

(Fei, (N, Tex)) = (Feiy €x—pr1) © (Lgzir A f),

where f : A; A SP1 — S20Fk-PIH Gince i+ j+k—p+1=p+2 < p+t— 1, we have
(F€i, €j11pr1) = 0 and then (Fe;, (£}, Fex)) = 0. Analogously, we can see (Fe;, (e, £A;)) =
0.

When i+ j + k = 2p+2,2p + 3, it follows from Corollary 2.1 that (Le;, (£A;, £e;)) = 0.

6.3 Xl <t<p

Put t # p. We shall show (\,—¢11, (M, €,)) # 0 and this completes the proof of Theorem 1.1 by
Theorem 5.1. Let X be the (8p —4)-skeleton of A, ;11 A A; A S~ that is, 4,441 A A ASP!
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minus the top cell. Then, as in section 4, the cofiber sequence S2P=9+F1 A A, A ST — X R
S=3 splits. We denote a homotopy section of ¢ by s. Here, note that the map ¢ is the restriction
of g A g ngzo1 : Ay i1 A Ay A SPTL— §2Cr=0=L A A A S2P7L where ¢ @ Ay 4 — SHEPOL

is the pinch map. Then, by Proposition 4.1, we have a homotopy commutative diagram:

(1Ap t+1/\<)‘t75P>)‘X <)\ €
- 1 QAp—tt1, 1)
X Ap t+1 A S2t+ - B3

ql quS2t+1 \L

32(2p7t)71 A §2t—1 A §2p—1

To2(2p—t)—1 Net,ep)

By Theorem 2.1 and Proposition 4.1, we have 1gap-1-1 A (€, €,) = acy(4p) for some integer a
such that a #Z 0 (p).

Let a;(2p +2) : S% — A3 be a coextension of a;(2p + 2). Then, as in section 2, we have
f = bi.(aq(2p + 2)) for some integer b, where i : A3 — Bj is the inclusion. Suppose that b = b'p.
Then, by [12, Proposition 1.8], we have

f=Vidaa2p+2)op) = ~Vicoji({a1(5),01(2p +2),p}) = —Fix 0 jiu(ax(5)),

where j : S° — Aj is the inclusion. In particular, f lifts to S® C Bs and this contradicts to
Proposition 4.6. Thus we have b Z 0 (p).
On the other hand, it follows from [12, Proposition 1.8] that

a1 (2p +2) o n(2p+2) = —j{an(5), a(2p + 2), aa (4p — 1)}
It is known that {a;(5), a1 (2p+2), a1(4dp—1)} # 0 (See [4, p.38]) and then we have established
fo(Lsee-o-1 A€, 6)) = f o (Lgzer—o-1 A (e, €p)) 0G0 5 = (Apiy1, (Ae, €p)) 05 # 0.

This implies (Ap—t+1, (A, €p)) 7 0.
When t = p, the proof is completed by the homotopy exact sequence induced from the fiber
sequence SU(2p — 2) — SU(2p — 1) — S%—3.
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