
Deformations of real rational dynamics
in tropical geometry

Tsuyoshi Kato

1 Introduction

Discrete dynamics defined by a rational function f(z0, . . . , zn−1) is a
sequence {zN}∞N=0 satisfying the relation zN = f(zN−n, . . . , zN−1) with
initial data (z0, . . . , zn−1). In this paper we study dynamical properties
of orbits {zN}N given by rational functions by use of some comparison
method in tropical geometry. From a dynamical view point, tropical ge-
ometry uses a kind of scale transform, and it provides with a connection
between piecewise linear and rational functions with real coefficients.

A (max, +)-function ϕ is a piecewise linear function of the form:

ϕ(x̄) = max(α1 + j̄1x̄, . . . , αm + j̄mx̄), j̄lx̄ = Σn
i=1j

i
lxi

where x̄ = (x1, . . . , xn) ∈ Rn, j̄l = (j1
l , . . . , j

n
l ) ∈ Zn and αi ∈ R.

Correspondingly the parametrized rational function is given by:

ft(z̄) = Σm
k=1t

αk z̄ j̄k, z̄ j̄k = Πn
i=1z

ji
k

i

where z̄ = (z1, . . . , zn) ∈ Rn
>0 = {(w1, . . . , wn) : wi > 0}. These two

functions admit one to one correspondence between their presentations.
In fact the defining equations are transformed by taking conjugates by
logt and by letting t → ∞. In some cases such ft are t independent.
We say that rational functions of the above form are elementary. For
example f(z) = 2z corresponds to max(x, x) and so is elementary in
our sense, but f(z) = 1

2z is not the case.
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These two ϕ and ft are connected passing through some intermediate
functions ϕt, which Maslov inroduced as dequantization of the real line
R ([LM], [Mi]). For t > 1, there is a family of semirings Rt which are
all the real number R as sets. The multiplications and the additions
are respectively given by x ⊕t y = logt(t

x + ty) and x ⊗t y = x + y. As
t → ∞ one obtains the equality:

x ⊕∞ y = max(x, y).

Corresponding to the usual one on real numbers, one has Rt-polynomials
ϕt(x̄) = ⊕t(αk + j̄kx̄). ϕ and ϕt are connected as limt→∞ ϕt = ϕ, and
it satisfies a (max, +) equation ϕ∞(x̄) = max(α1 + j̄1x̄, . . . , αm + j̄mx̄).

Notice that all these ϕ, ϕt and ft have one to one correspondences
among their presentations. Let us relate ϕt with ft. Let Logt : Rn

>0 →
Rn be (x1, . . . , xn) = (logt z1, . . . , logt zn).

Proposition 1.1 (LM,V). ft ≡ (logt)
−1 ◦ϕt ◦ Logt : Rn

>0 → (0,∞) is a
parametrized rational function ft(z̄) = Σm

k=1t
αk z̄ j̄k.

As t → ∞, Logt becomes ‘very contracting’ maps, while ϕt approaches
to ϕ, but limit of Logt degenerates and just the constant. Such fea-
ture causes interesting phenomena from dynamical view points. In this
paper, we study and compare two dynamics {xN}N and {zN}N given
by:

xN = ϕ(xN−n, . . . , xN−1), zN = ft(zN−n, . . . , zN−1)

with the initial data x0 = logt z0, . . . , xn−1 = logt zn−1. Notice that any
orbits zN > 0 are given by positive real numbers for elementary ft. In
order to do this, we use the intermediate dynamics:

x′
N = ϕt(x

′
N−n, . . . , x

′
N−1)

parametrized by t with the same initial data x′
0 = logt z0, . . . , x′

n−1 =
logt zn−1. By the above proposition, two dynamics {zN}N and {x′

N}N

are conjugate by Logt. Since limt→∞ ϕt = ϕ holds, one may expect that
{zN}N and {xN}N may share some common dynamical properties.

An orbit {zN}N given by ft is recursive, if there is some M ≥ 0 so that
{zN}N is periodic with period M . ft is recursive if any orbits are the
case for any initial values and any t > 1.
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Proposition 1.2. Suppose an elementary rational function ft is recur-
sive of period M . Then the corresponding ϕ is also the same.

But it turns out that the converse is not true in general. Let us see by
examples ([TI],[GKP],[HY]). Let us consider:

ϕ(x, y) = max(0, y) − x

It is immediate to see that this is a recursive function of period 5.
Let us consider the corresponding function f(z, w) = 1+w

z . Since ϕt

approaches to the recursive ϕ as t → ∞, one may expect that f also
gives a recursive function, which is true for this case. Now clearly the
estimate ϕ(x, y) = max(0, y) − x ≥ −x holds. So we have the equality
as maps:

ψ(x, y) ≡ max(ϕ(x, y),−x) = ϕ(x, y)

and in particular ψ is also recursive. However the different presentation
ψ gives rise to another elementary rational function:

g(z, w) =
2 + w

z
.

By easy calculations, it turns out that this is not recursive (for example
try for the initial value (z0, z1) = (1, 2)).

We have another example. Let us consider ϕ(x, y) = max(−y, y) − x,
which is a recursive function of period 9. Let us consider the corre-
sponding elementary rational function f(z, w) = 1+w2

zw . In this case also
the estimate ϕ(x, y) = max(−y, y)−x ≥ −x holds, and so we have the
equality as maps max(ϕ(x, y),−x) = ϕ(x, y). The corresponding func-
tion g(z, w) = 1+w+w2

zw and f above, both turn out not to be recursive
(I thank to S.Tujimoto for computer calculations).

We would like to give a question that for a recursive (max, +)-function
ϕ, whether one could find ψ which is the same as ϕ as maps, so that the
corresponding elementary function gt is recursive. D.Takahashi told me
that the answer is not known for the above example f(z, w) = 1+w2

zw .

These motivate to ask which dynamical properties are conserved with
respect to two rational functions whose corresponding (max, +) func-
tions are the same as maps.
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Let ϕ and ψ be two (max, +)-functions with n variables. Then ψ

is equivalent to ϕ, if they are the same as maps, ϕ(x1, . . . , xn) =
ψ(x1, . . . , xn) hold for all (x1, . . . , xn) ∈ Rn.

Definition 1.1. For two elementary functions ft and gt, gt is a tropical
deformation of ft, if the corresponding (max, +)-functions ϕ and ψ are
equivalent.

If the estimate ϕ ≥ ϕ′ holds, then ψ = max(ϕ, ϕ′) and ϕ are equiva-
lent. For example 2+w

z is a tropical deformation of 1+w
z . This example

shows that in general tropical deformation does not imply topological
conjugacy.

Tropically equivalent class [ft] is the set of elementary functions so that
each element is a tropical deformation of ft. In this paper we study
dynamical properties of orbits, which are invariant under tropical de-
formations.

(A) Quasi recursive maps: Let ft be an elementary rational func-
tion and consider the dynamics zN = ft(zN−n, . . . , zN−1) with initial
values (z0, . . . , zN−1) ∈ Rn

>0. If there are constants C ≥ 0 and M ≥ 0
independently of t and initial values, so that the estimates:

max(
zN+M

zN
,

zN

zN+M
) ≤ C, N = 0, 1, . . .

hold, then we say that ft is a quasi recursive map of period M .

Our first result is:

Theorem 1.1. Suppose an elementary rational function ft corresponds
to a (max, +)-function ϕ. Then ft is quasi recursive of minimum period
M , if and only if ϕ is recursive of the same minimum period.

The quasi recursive constant C(ft,M) is given by:

C(ft,M) = sup
t>1

sup
z0,...,zn−1>0

max(
zN+M

zN
,

zN

zN+M
).

We have additivity of quasi recursive maps. Let ft and f ′
t be two

elementary functions, and assume ft is quasi recursive. If the corre-
sponding (max, +)-functions ϕ and ϕ′ satisfy the estimates ϕ ≥ ϕ′ for
all points, then ft + f ′

t is also quasi recursive.
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Theorem 1.1 shows that a property to be quasi recursive is invariant
under tropical deformations. More detailed analysis gives information
on quasi recursive constants. Assume ϕ and ψ are equivalent and re-
cursive. Let ft and gt be the corresponding quasi recursive functions
respectively. If ψ has the presentation as max(α1 + j̄1x̄, . . . , αm + j̄mx̄),
then we say the number of the components of gt is m = mgt

.

Corollary 1.1. There is a constant C independent of choice of rep-
resentatives gt in the tropical equivalent class [ft] so that we have a
uniform bound on the quasi recursive constants of gt with respect to
m = mgt

:
C(gt,M) ≤ mC .

When ϕ is contracting (2.E) rather than recursive, correspondingly the
rational dynamics by ft show some boundedness for their orbits:

Proposition 1.3. Suppose ϕ is contracting. Then any orbits of ft are
bounded away from both zero and infinity for all t > 1.

Moreover there is some constant C independent of t and initial values,
so that for any orbits {zN}N , there is some N0 and for all N ≥ N0, the
estimates hold:

C−1 ≤ zN ≤ C.

When ϕ is contracting, then the above properties are invariant under
tropical deformations, and so any tropical deformation gt of ft also
satisfies the same properties. The constant C above is also given as
mc

gt
and c is independent of choice of representatives gt in the tropical

equivalent class [ft].

Proposition 1.3 is used to verify theorem 1.3 below.

Our comparison method works effectively when one of z±1
N are suffi-

ciently large and the orbits contract as ϕ, while some fluctuation occurs
if they are within some bounded regions.

(B) A characterization of tropical equivalence: We have an ana-
lytic characterization of tropical equivalence by the estimates on orbits.
Let ft and gt be two elementary rational functions, choose any initial
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value (z0, . . . , zn−1), and denote the corresponding orbits by {zN}N and
{wN}N for ft and gt respectively, where wi = zi for 0 ≤ i ≤ n − 1. Let
us put m = max(mft

,mgt
).

Theorem 1.2. ft and gt are tropically equivalent, if and only if there
exists a constant C ≥ 0 independent of initial values and t > 1 so that
the double exponential estimates:

max(
zN

wN
,
wN

zN
) ≤ mCN

hold for all N = 0, 1, . . .

(C) Perturbations of real rational dynamics: Let ϕ(x0, . . . , xn−1)
be a (max, +) function and put x̄0 = (x0, . . . , xn−1). We regard it as a
map ϕ : Rn → Rn by ϕ(x̄0) = (x1, . . . , xn−1, ϕ(x̄0)). Let L0 be a segment
connecting x̄0 and ϕ(x̄0) in Rn, and put the connected piecewise linear
line:

L = ∪∞
k=0 ϕk(L0)

We call it as a trace of ϕ. Structure of the traces contain some infor-
mations on the iterations by ϕ. For example if ϕ is recursive, then any
traces consist of closed piecewise linear lines ([TI]). Suppose ϕ(x0, x1)
has two variables, and is homogeneous so that 0 is a fixed point. Then
degree of ϕ around the origin is given by use of traces and the corre-
sponding return maps.

In this paper we study small perturbations of real rational dynam-
ics in two variables passing through tropical transforms into (max, +)-
functions. Let ft(z0, z1) be an elementary rational function by two
variables. For i = 0, 1, an ϵi-perturbation is given by the following
equation:

zN+1 = zϵi

N−1+ift(zN−1, zN) ≡ f ϵi
t (zN−1, zN), ϵi ∈ R.

Definition 1.2. A dynamics given by ft is stable, if any orbits are
bounded away from both zero and infinity. It is unstable if there is
a constant C independent of t so that for any initial value z̄0 with
|z̄0| ≥ C, the orbits are unbounded.

An ϵi-perturbation is stationary, if it is stable for ϵi > 0 and unstable
for ϵi < 0 for all sufficiently small |ϵi| << 1.
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Let us consider a recursive map zN+1 = f(zN−1, zN) = 1+zN

zN−1
whose

orbits all have period 5. In this paper we show the following:

Theorem 1.3. Let gt be any tropical deformation of f(z, w) = 1+w
z .

Then ϵ0 perturbations gϵ
t(z, w) = zϵgt(z, w) are all stationary.

For example, zN+1 = zϵ
N−1(

1+zN

zN−1
+ l 1

zN−1
), l = 0, 1, . . . are all stationary.

Let ϕ correspond to ft and put ϕϵ0(x0, x1) = ϕ(x0, x1) + ϵ0x0. Then
ϕϵ0 corresponds to f ϵ0

t . The conclusion follows for any f ϵ0
t if the cor-

responding ϕϵ0 satisfies properties that it is contracting for ϵ0 > 0 and
is expanding for ϵ0 < 0. Such properties are obtained by chasing the
traces directly for these perturbed (max, +)-functions. Such dynamical
properties are independent of presentations of the (max, +)-functions.

It has a merit to analyze dynamical properties by replacing rational
dynamics by piecewise linear one, since one has to know only finite set
of points to recover ϕk(L0) above, since they are broken lines.

For ϵ0 > 0, any orbits for these dynamics are all bounded. On the
other hand the method gives no information about such things when
ϵ = 0. At present I do not know which dynamics of the form zN+1 =
1+zN

zN−1
+ l 1

zN−1
have the property that all orbits are bounded.

So far we have assumed that (max, +) functions are of the form max(α1+
j̄1x̄, . . . , αm + j̄mx̄), which is enough for our purpose. But here we do
not use concavity of (max, +) functions, and most of the results in this
paper hold for functions of the form ϕ(x̄) = max(α1 + j̄1x̄, . . . , αm +
j̄mx̄) − max(β1 + ī1x̄, . . . , βl + īlx̄).

2 Tropical transform

2.A Estimates for orbits: Let ϕt(x) = ⊕t(αk + j̄kx̄), x̄ ∈ Rn, j̄k ∈ Zn

be an Rt polynomial, whose limit t → ∞ gives a (max, +)-function
ϕ(x̄) ≡ ϕ∞(x̄) = max(α1 + j̄1x̄, . . . , αm + j̄mx̄). We say that m is the
number of the components of ϕ. It plays an important role for several
estimates.
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Let us denote:
a(t, ϕ) = sup

x̄∈Rn

|ϕt(x̄) − ϕ(x̄)|.

Lemma 2.1. (1) a(t, ϕ) ≤ logt m → 0, t → ∞.

(2) ϕ is Lipschitz.

Proof: (1) We show the estimates |x1⊕t · · ·⊕t xm−max(x1, . . . , xm)| ≤
logt m. Assume x1 = max(x1, . . . , xm). Then x1⊕t · · ·⊕txm = logt(t

x1 +
· · · + txm) = logt(t

x1(1 + tx2−x1 + · · · + txm−x1)) = x1 + logt(1 + tx2−x1 +
· · ·+ txm−x1). Since xi − x1 ≤ 0 are non positive, the estimates logt(1 +
tx2−x1 + · · · + txm−x1) ≤ logt m → 0 hold.

(2) Since ϕ is piecewise linear, the conclusion is clear.

This completes the proof.

Let us consider the orbits given by xN = ϕ(xN−n, . . . , xN−1) and x′
N =

ϕt(x
′
N−n, . . . x

′
N−1) with the same initial value x0 = x′

0, . . . , xn−1 = x′
n−1.

Lemma 2.2. Let {xN}N and {x′
N}N be as above, and c be the Lipschitz

constant of ϕ. There are some universal polynomials PN of degree N−n

so that the estimates hold:

|xN − x′
N | ≤ PN(c) logt m

where m is the number of the components of ϕ. In particular for any
small ϵ > 0 and large N >> 0, there is a large t0 >> 0 so that for all
t ≥ t0, the estimates |xk − x′

k| < ϵ hold for all 0 ≤ k ≤ N .

Proof: Let us denote x̄N = (xN , . . . , xN+n−1) ∈ Rn. Thus xN+n =
ϕ(x̄N) hold for all N ≥ 0. Similar for x̄′

N .

Firstly one has the estimates |x′
n − xn| ≤ logt m by lemma 2.1(1).

Now since ϕ is c Lipschitz and x̄1 − x̄′
1 = (0, . . . , 0, xn − x′

n) holds, the
estimates hold:

|xn+1 − x′
n+1| = |ϕ(x̄1) − ϕt(x̄

′
1)| (1)

≤ |ϕ(x̄1) − ϕ(x̄′
1)| + |ϕt(x̄

′
1) − ϕ(x̄′

1)| (2)

≤ c|x̄1 − x̄′
1| + logt m ≤ (c + 1) logt m (3)
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Next we have estimates:

|ϕ(x̄2) − ϕ(x̄′
2)| ≤ c(|xn+1 − x′

n+1| + |xn − x′
n|) (4)

≤ c{(c + 1) + 1} logt m = c(c + 2) logt m. (5)

Thus we have the following:

|xn+2 − x′
n+2| = |ϕ(x̄2) − ϕt(x̄

′
2)| (6)

≤ |ϕ(x̄2) − ϕ(x̄′
2)| + |ϕ(x̄′

2) − ϕt(x̄
′
2)| ≤ [c(c + 2) + 1] logt m (7)

The rest process is similar, and by iterating the same estimates, one
finds some polynomials PN of degree N −n so that the estimates |xN −
x′

N | ≤ PN(c) logt m hold. This completes the proof.

Remark: One can choose a larger c > 1 so that the estimates PN(c) ≤
((n + 1)c)N−n hold for all N ≥ n.

2.B Characterization of tropical equivalences by orbits: Let
ϕ be a (max, +)-function and ft(z0, . . . , zn−1) be the corresponding
parametrized rational function. For intial values z̄0 = (z0, . . . , zn−1),
zi > 0, let {zN}N be the orbits, and denote z̄N = (zN , . . . , zN+n−1) ∈
Rn

>0. Thus zN+n = ft(z̄N) hold for all N ≥ 0.

Let ϕt be the Rt polynomials corresponding to ϕ, and consider the
orbits x′

N+n = ϕt(x̄
′
N), where x′

i = logt(zi) for 0 ≤ i ≤ n − 1.

By proposition 1.1, the equalities:

logt(zN+n) = logt(ft(z̄N)) = ϕt(Logt(z̄N))

hold for all N ≥ 0. In particular we have the equality:

x′
N = logt(zN) ∈ R, N ≥ 0.

Let ft and gt be two elementary rational functions. Let us choose an
initial value (z0, . . . , zn−1), and denote the corresponding orbits {zN}N

and {wN}N for ft and gt respectively, where we put the same initial
value wi = zi for 0 ≤ i ≤ n − 1. Let us put m = max(mft

,mgt
), where

mft
is the number of the components of ft.
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Theorem 2.1. ft and gt are tropically equivalent, if and only if there
exists a constant C ≥ 0 independent of initial values and t > 1 so that
the double exponential estimates:

max(
zN

wN
,
wN

zN
) ≤ mCN

hold for all N = 0, 1, . . .

Proof: Let us take any initial value z0 = w0, . . . , zn−1 = wn−1. Let ϕ
and ψ be the (max, +)-functions corresponding to ft and gt respectively.
For the initial value xi = yi = logt zi, 0 ≤ i ≤ n − 1, let us denote the
corresponding orbits by {xN}N and {yN}N . We also put x′

N = logt(zN)
and y′N = logt(wN) respectively. Thus {x′

N}N is the orbit for ϕt and
{y′N}N is for ψt.

Now suppose ft and gt are tropically equivalent, and so ϕ and ψ are
the same as maps. Then by lemma 2.2, the estimates:

|xN − x′
N |, |yN − y′N | ≤ PN(c) logt m

hold. By the assumption, xN = yN hold, and so we have the estimates:

logt(
zN

wN
)± ≡ | logt(zN) − logt(wN)| = |x′

N − y′N | ≤ 2PN(c) logt m.

One may assume 2PN(c) ≤ CN for some C ≥ 0 by the remark at the
end of 2.A. In particular we have the estimates:

(
zN

wN
)± ≡ max(

zN

wN
,
wN

zN
) ≤ mCN

.

Let us verify the converse. Let us choose any initial value xi = yi for
0 ≤ i ≤ n − 1. Then for large t >> 0 we put the initial value by
zi = wi = txi. The estimates ( zN

wN
)± ≤ mCN

imply the ones |x′
N − y′N | ≤

CN logt m for all N = 0, 1, . . . By lemma 2.2, one has the estimates:

|xN − yN | ≤ 2PN(c) logt m + CN logt m.

Since t are arbitrarily and the left hand side of the above estimate
is independent of t, it follows by letting t → ∞ that the equalities
xN = yN must hold. This completes the proof.
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2.C Comparison between orbits: Now we consider what happens
for ϕ when ft are recursive of period M , zN+M = zN for all N ≥ 0 and
t > 1. In this case we show that ϕ also satisfies the same property.
Later we will see that the converse is not the case, but still some ‘quasi
recursiveness’ is satisfied. Notice that ft is recursive if for any initial
values, the equalities zj+M = zj hold for all 0 ≤ j ≤ n − 1.

Proposition 2.1. Let ϕ be a (max, +)-function with the corresponding
rational function ft. Assume ft is recursive of period M . Then ϕ is
also the same.

Proof: Let {xN}N and {x′
N}N be the orbits of ϕ and ϕt with the same

initial value xi for 0 ≤ i ≤ n− 1, and put zi = txi. For any small ϵ > 0,
one can choose large t >> 1 so that the estimates |xi − x′

i| ≤ ϵ hold for
0 ≤ i ≤ n − 1 + M by lemma 2.2.

By the assumption, zj+M = zj hold for 0 ≤ j ≤ n−1, and so x′
j+M = x′

j

also hold. Then we have the estimates:

|xj+M − xj| ≤ |xj+M − x′
j+M | + |x′

j+M − x′
j| + |x′

j − xj| ≤ 2ϵ.

Since the left hand side is independent of t and ϵ > 0 is arbitrarily
small, this shows that the equalities xj+M = xj must hold. Thus ϕ
gives a recursive map of period M . This completes the proof.

Example: Let ft(z, w) = tw
z . Then easy calculations show that it is

recursive of period 6. Then the corresponding (max, +)-function is
ϕ(x, y) = 1 + y − x which is also recursive of the same period.

2.D Uniform rates of orbits: Let ϕ be a (max, +)-function and
ft be the corresponding rational function. In general the converse of
proposition 2.1 is not true, but we have the following:

Proposition 2.2. Suppose ϕ is recursive of period M . Then there
is a constant C > 0 independent of t so that for any initial value
z0, . . . , zn−1 > 0 and the orbit {zN}N for ft, the uniform estimates:

(
zN+M

zN
)± ≡ max(

zN+M

zN
,

zN

zN+M
) ≤ C

hold for all N ≥ 0.
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Proof: It is enough to verify the conclusion for 0 ≤ N ≤ n−1. Let m be
the number of the components of ϕ, and {xN}N and {x′

N}N be orbits
for ϕ and ϕt respectively, where we put the intial value xi = x′

i = logt zi

for 0 ≤ i ≤ n − 1. Then by lemma 2.2, |xN − x′
N | ≤ PN(c) logt m hold.

Since ϕ is recursive xN+M = xN , thus the estimates hold:

(
zN

zN+M
)± = (

tx
′
N

tx
′
N+M

)± = t|x
′
N−x′

N+M | ≤ t2PN+M (c) logt m = m2PN+M (c)

Thus one can put C = m2Pn−1+M (c).

This completes the proof.

Now we define the invariant of quasi recursive dynamics. Let ft be a
parametrized rational function and ϕ be the recursive map of period M .
For initial values z0, . . . , zn−1, let us denote the orbits of ft by {zN}N .

Definition 2.1. If there is a constant C ≥ 0 and a number M ≥ 0
which are both independent of t and initial values so that the estimates
(zN+M

zN
)± ≤ C hold for all 0 ≤ N , then we say that ft is a quasi recursive

map of period M . The quasi recursive constant is given by:

C(ft,M) = sup
t>1

sup
z0,...,zn−1>0

(
zN+M

zN
)±.

The constant C in proposition 2.2 depends only on ϕ as a map and the
number of the components m of ft. The above proof gives a bound:

C(ft,M) ≤ m2Pn−1+M (c).

Corollary 2.1. Let ϕ be a recursive (max, +)-function of period M ,
and ft be the corresponding rational function. Then there is a constant
C > 0 so that for any tropical deformation gt of ft and any orbits
{wN}N for gt, we have the uniform estimates:

max(
wN

wN+M
,
wN+M

wN
) ≤ mC

for all 0 ≤ N , where m is the number of the components of gt.

Thus among the tropical equivalent class of ϕ, the minimum m[ϕ] of the
numbers of the components determines the optimal estimate above.

Let us verify additivity of quasi recursive maps.
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Lemma 2.3. Let ft and f ′
t be two elementary functions. Assume that

the corresponding (max, +)-functions ϕ and ϕ′ satisfy the estimates
ϕ ≥ ϕ′ for all points, and ϕ is recursive.

Then ft + f ′
t is quasi recursive.

Proof: By the assumption, ft + f ′
t has the corresponding (max, +)-

function max(ϕ, ϕ′). On the other hand, by the inequality ϕ ≥ ϕ′,
max(ϕ, ϕ′) = ϕ holds. In particular the former is also recursive. Thus
the conclusion follows by corolalry 2.1. This completes the proof.

Example: Let f(z, w) = 1+w2

zw . The corresponding (max, +) function is
given by ϕ(x, y) = max(−y, y) − x, which is recursive of period 9. Let
f ′(z, w) = 1

z , and ϕ′(x, y) = −x. Then clearly the pointwise estimate

ϕ ≥ ϕ′ holds, and so by lemma 2.3, (f + f ′)(z, w) = 1+w+w2

zw is quasi
recursive. By computer calculation, it can be seen that both f and f+f ′

are not recursive. By the same argument, (f + lf ′)(z, w) = 1+lw+w2

zw

are all quasi recursive for l = 0, 1, . . . They have the number of the
components m = l + 2.

Let us charecterize quasi recursive maps with respect to the correspond-
ing recursive (max, +)-functions:

Theorem 2.2. Suppose an elementary ft corresponds to a (max, +)-
function ϕ. Then ft is quasi recursive, if and only if ϕ is recursive with
the same minimum period.

Proof: If ϕ is recursive, then ft is quasi recursive by proposition 2.2.

Let us verify the converse, and assume ft is quasi recursive of period
M . Let us choose any initial value (x0, . . . , xn−1) ∈ Rn, and consider
the orbit {xN}N for ϕ. For large t >> 0, let us put the initial value
z0 = tx0, . . . , zn−1 = txn−1 and consider the orbit {zN}N of ft. By
the assumption, there is a constant C ≥ 1 independent of z0, . . . , zn−1

so that the estimates (zN+M

zN
)± ≤ C hold for all N ≥ 0. Now put

x′
N = logt zN . Then the estimates:

|x′
N+M − x′

N | ≤ logt C

13



hold. By lemma 2.2, the estimates:

|xN − x′
N | ≤ Pn−1+M(c) logt m, 0 ≤ N ≤ n − 1 + M

hold for some constant c, where m is the number of the components of
ϕ. These two estimates imply that for any small ϵ > 0, there is a large
t0 so that for all t ≥ t0, the estimates

|xN+M − xN | < ϵ, 0 ≤ N ≤ n − 1

hold. Since ϵ is arbitrary, this implies the equalities x0 = xM , . . . , xn−1 =
xn−1+M hold.

Finally we show that they have the same minimum period M . Suppose
the minimum period of ft is M , and assume ϕ has period M ′ < M .
Then the above proof shows that ft also must have the period M ′,
which cannot happen. The converse also holds by the same argument.

This completes the proof.

Corollary 2.2. Suppose ϕ is recursive of the minimum period M . Then
for the corresponding ft and any 1 ≤ M ′ ≤ M − 1, the quasi recursive
constants C(ft,M

′) are all infinity.

Proof: Otherwise, theorem 2.2 shows that ϕ has period M ′ < M , which
cannot happen. This completes the proof.

2.E Bounded orbits: Let ψ(x0, . . . , xn−1) be a (max, +)-function and
put x̄0 = (x0, . . . , xn−1). We regard it as a map ψ : Rn → Rn by
ψ(x̄0) = (x1, . . . , xn−1, ψ(x̄0)).

Let us say that ψ is contracting, if there is some 0 < µ < 1 and some
l ≥ 1 so that for ϕ = ψl, the estimates:

|ϕ(x0, . . . , xn−1)| ≤ (1 − µ)|(x0, . . . , xn−1)|

hold for all (x0, . . . , xn−1) ∈ Rn.

Let ft be the corresponding elementary function to ψ. Then the rational
dynamics show boundedness for their orbits, whose property is invariant
under tropical deformations:

14



Proposition 2.3. Suppose ψ is contracting. Then any orbits of ft are
bounded away from both zero and infinity for all t > 1.

Moreover there is some constant C independent of t and initial values,
so that for any orbits {zN}N , there is some N0 and for all N ≥ N0, the
estimates hold:

C−1 ≤ zN ≤ C.

Proof: For any initial value (z0, . . . , zn−1), let us consider the orbit
{zN}N for ft. We put the orbits {xN}N and {x′

N}N for ψ and ψt

respectively, where x0 = x′
0 = logt z0, . . . , xn−1 = x′

n−1 = logt zn−1.
Then x′

N = logt zN hold for all N ≥ 0. Let us put ϕt = ψl
t as ϕ = ψl.

Let us denote the components of ϕ by (ϕ0, . . . , ϕn−1). ϕi has the form
xl+i = ϕi(x0, . . . , xn), 0 ≤ i ≤ n − 1, where ϕi are also given by some
compositions by ψ. Since compositions of (max, +) functions are also
(max, +)-type, it follows that ϕi are also (max, +) functions. Notice
the equalities ϕi

t(x0, . . . , xn−1) = x′
l+i, where ϕt = (ϕ0

t , . . . , ϕ
n−1
t ).

Let o ≥ 1 be the maximum number of the components among ϕi and
put m = on. Then by lemma 2.1(1), the estimates |ϕt(x0, . . . , xn−1) −
ϕ(x0, . . . , xn−1)| ≤ logt m hold.

Let us choose a small µ′ > 0 so that ϵ ≡ µ − µ′ > 0 is still positive.

Let us put logt m = αµ′, t = m
1

αµ′ for some α > 0. Then by the above
estimate,

|ϕt(x0, . . . , xn−1)| ≤ (1 − µ)|(x0, . . . , xn−1)| + αµ′

holds.

Let us put p̄N = ϕN
t (x0, . . . , xn−1) ∈ Rn. Suppose p̄N satisfy |p̄N | > α

for some N ≥ 0. Then the above implies the estimate:

|ϕt(p̄N)| ≤ (1 − ϵ)|p̄N |

We claim that there is some N0 ≥ 0 and a constant C independent
of t so that all points p̄N satisfy uniform bounds |p̄N | ≤ Cα for all
N ≥ N0. By the above contracting property, it is enough to show this
when |p̄N | ≤ α holds. Then let o ≥ 1 be as above. ϕi

t are of the forms

15



logt(t
Li

1 + · · ·+ tL
i
o′), where Li

j are linear functions and o′ ≤ o. Suppose
max(Li

1(p̄N), . . . , Li
o′(p̄N)) = Li

1(p̄N). Then the estimate holds:

|ϕi
t(p̄N)| = |Li

1(p̄N) + logt(1 + tL
i
2(p̄N )−Li

1(p̄N ) + · · · + tL
i
o′(p̄N )−Li

1(p̄N ))|
(8)

≤ |Li
1(p̄N)| + logt o (9)

Since Li
j are linear, it is enough to check logt o ≤ Cα for some C. Since

t = m
1

αµ′ hold, one can choose a large C so that o ≤ m
C
µ′ = tCα. This

verifies the claim.

Now pi
N = x′

Nl+i hold for p̄N = (p0
N , . . . , pn−1

N ). Since the equality

zN = tx
′
N = m

x′N
αµ′ holds, the orbits:

m
−C
µ′ ≤ zNl+i ≤ m

C
µ′ , N ≥ N0, (0 ≤ i ≤ n − 1)

are bounded from both below and above, which are independent of t.

If l ≤ n, then we are done.

Suppose l > n. Then we regard (zn, . . . , z2n−1) as the initial value,

and apply the above estimates. Then m
−C
µ′ ≤ zNl+i+n ≤ m

C
µ′ hold for

0 ≤ i ≤ n− 1 and all N ≥ N1 >> 0. We iterate the same argument for
the initial values (zkn, . . . , z(k+1)n−1), k = 0, 1, . . . , s = [ l

n ], and obtain
the same bounds for all N ≥ Nk >> 0.

Finally we put L = max(N0, . . . , Ns). Then the conclusion follows for
all N ≥ L. This completes the proof.

Remark: The above estimates show that on small neighbourhoods of 1,
some fluctuation of orbits {zN}N occurs. They give us no information
on the bahaviour of the orbits near 1, and they will not converge to 1
in general.

For our later purpose, let us generalize proposition 2.3. We consider
two cases. Let ψ be a (max, +) function. Let us say that ψ is:

(1) eventually contracting, if there is some 0 < µ < 1 and m0, l so
that for any initial value (x0, . . . , xn−1), there is some m ≤ m0 and the
estimates hold for all i = 0, 1, 2, . . . :

|ψli(ψm
t ((x0, . . . , xn−1))| ≤ (1 − µ)i|ψm

t (x0, . . . , xn−1)|.
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(2) essentially contracting, if there is some 0 < µ < 1 and m0, n0 so
that for any initial value (x0, . . . , xn−1), there are m ≤ m0 and indices
l0 < l1 < l2, · · · → ∞, li+1 − li ≤ n0, such that the estimates hold:

|ψli(ψm
t (x0, . . . , xn−1))| ≤ (1 − µ)i|ψm

t (x0, . . . , xn−1)|
for all i = 0, 1, 2, . . . We will say that it is essentially contracting with
respect to (µ,m0, n0). Eventually contracting implies essential one.

Corollary 2.3. Suppose ψ is essentially contracting. Then any orbits
of ft are bounded away from both zero and infinity.

Moreover there is some constant C independent of t and initial values,
so that for any orbits {zN}N , there is some N0 and for all N ≥ N0, the
estimates hold:

C−1 ≤ zN ≤ C.

Proof: For the eventually contracting case, one can choose the initial
value ψm

t (x0, . . . , xn−1) rather than (x0, . . . , xn−1). Then the conclusion
follows by proposition 2.3.

Let us consider the essentially contracting case. Again one may replace
the initial value by ψm

t (x0, . . . , xn−1). Let {xN}N , {x′
N}N and {zN}N

be orbits for ψ, ψt and ft respectively. Then by the assumption, there
are indices l1 < l2 < · · · → ∞, li+1 − li ≤ n0, and |ψli(x0, . . . , xn−1)| ≤
(1 − µ)i|(x0, . . . , xn−1)| hold. Let us denote x̄′

N = (x′
N , . . . , x′

N+n−1).

We proceed the same argument as the proof of proposition 2.3. Let
us denote ψl = (ψl

0, . . . , ψ
l
n−1) and denote mi

l as the number of the
components of ψl

i. Then put o = max{mi
l : 0 ≤ i ≤ n − 1, 0 ≤ l ≤

n0 + 1}, and m = on. As before we put logt m = αµ′. Then there is
a constant C and indices N0 < N1 < . . . , Ni+1 − Ni ≤ n0 + 1, so that
|x̄Ni

| ≤ Cα hold for all i. Since Ni+1 − Ni are uniformly bounded, it
follows by replacing the constant by a larger C ′ ≥ C if necessarily, that
|x̄′

N | ≤ C ′α hold for all N ≥ N0. Thus uniformity C−1 ≤ zN ≤ C hold
for all N ≥ N0.

This completes the proof.

2.F Unbounded orbits: Let ϕ be a (max, +)-function on Rn. Let
us say that it is homogeneous, if ϕ(αx0, . . . , αxn−1) = αϕ(x0, . . . , xn−1)
hold for all α ∈ R and (x0, . . . , xn−1) ∈ Rn.
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Let us take initial values x̄0 = (x0, . . . , xn−1) ∈ Rn and denote the orbits
by xN defined by ϕ. Then for a homogeneous ϕ, let us put:

L(N) = inf
|x̄0|=1

sup
l≤N

{xl; xn+i = ϕ(xi, . . . , xn+i−1)}.

Let us say that the dynamics by ϕ is positively unbounded, if there is
some N0 with L(N0) > 1 holds.

Let ft be the corresponding rational function and zn+i = ft(zi, . . . , zn+i−1)
be the dynamics.

Lemma 2.4. Suppose ϕ is positively unbounded. Then there is a con-
stant C so that for any gt of tropical deformation of ft, gt have un-
bounded orbits for any initial values z̄0 with |z̄0| ≥ mC, where m is the
number of the components of gt.

Proof: Let us denote the (max, +)-function corresponding to gt by ψ.
ψ is also positively unbounded. By the assumption, there is some N0

with L(N0) > 1+ δ holds for some δ > 0. Let us put the number of the
components of gt by m = mgt

. Let {xN}N and {x′
N}N be the orbits of

ψ and ψt with the same initial value x̄0 = (x0, . . . , xn−1) respectively.
Then by lemma 2.2, there is some constant C independent of choice
of gt so that the corresponding orbit satisfies the estimates |xi − x′

i| <
C logt m for 0 ≤ i ≤ N0.

Now choose any initial value x̄0 with δ
2 |x̄0| > C logt m. By the assump-

tion, there is some n0 ≤ N0 so that xn0
≥ |x̄0|(1 + δ) holds. Then we

have the estimates:

x′
n0

> |x̄0|(1 + δ) − logt m
C > |x̄0|(1 +

δ

2
).

Now we choose another initial value x̄0,1 = (x′
n0

, . . . , x′
n0+n−1), and de-

note the orbits as x′
N,1 and xN,1 for ψt and ψ respectively, N = 0, 1, . . . .

Then since ψ is homogeneous, there is 0 ≤ n1 ≤ N0 so that xn1,1 ≥
|x̄0|(1 + δ)(1 + δ

2) holds. Thus the estimate:

x′
n1,1 > |x̄0|(1 + δ)(1 +

δ

2
) − logt m

C > |x̄0|(1 + δ)

holds. Notice x′
n1,1 = x′

n0+n1
lies on the orbits of ψt with the initial

value (x0, . . . , xn−1).
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Let us iterate the same process. Let x̄0,2 = (x′
n1,1, . . . , x

′
n1+n−1,1) be

another initial value, and denote the orbits as x′
N,2 and xN,2 for ψt and

ψ respectively, N = 0, 1, . . . . Then there is 0 ≤ n2 ≤ N0 so that xn2,2 ≥
|x̄0|(1 + δ)(1 + δ), and so x′

n2,2 > |x̄0|(1 + δ)2 − logt m
C > |x̄0|(1 + 3

2δ)
hold, where x′

n2,2 = x′
n0+n1+n2

. The same process gives x′
nk,k with the

estimates x′
nk,k > |x̄0|(1 + (k+1)δ

2 ), k = 0, 1, . . . , and x′
nk,k = x′

Σk
i=0ni

.

Now all points x′
nk,k lie on the orbits {x′

n}n by ψt with the initial value

(x0, . . . , xn−1). Let us put zN = tx
′
N . Then the bound |x̄0| > logt m

C

follows if zi > mC hold for some 0 ≤ i ≤ n − 1. Since {zN}N is the
orbit for gt, the result follows. This completes the proof.

Remark: When ϕ is homogeneous, the corresponding ft is not necessar-
ily t independent. For example consider ϕ(x) = max(2x,−2x,−1 + x).

3 Rational perturbation of dynamics in two vari-

ables

3.A Traces: Let ϕ be a (max, +)-function by two variables. Let x̄0 =
(x0, x1) ∈ R2 be initial values, and denote the orbits of ϕ by {xN}N .
Let us plot the sequence of points (xN , xN−1) ∈ R2, and regard ϕ as a
map:

ϕ : (xN−1, xN) → (xN , xN+1) N ≥ 1.

Let us denote ϕi(x0, x1) ≡ x̄i for i = 0, 1, . . . Let L0 be the straight line
which connects x̄0 and x̄1 in R2. The trace of ϕ with the initial value
x̄0 is a connected piecewise linear line L in R2:

L = ∪i≥0ϕ
i(L0) ⊂ R2.

L contains all the points ∪i≥0x̄i ⊂ L.

For later purpose let us explicitly construct traces. Let ϕ be of the form
ϕ(x, y) = max(α1(x, y), . . . , αm(x, y)), where αj are linear functions.

Suppose ϕ(x̄0) = αj(x̄0) for some 1 ≤ j ≤ m. If the equality ϕ(x̄) =
αj(x̄) hold for any point x̄ ∈ L0, then ϕ(L0) is a straight line.
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Otherwise, let l10 ⊂ L0 be a subline with one end point x̄0 so that the
equality ϕ(x̄) = αj(x̄) hold for any point x̄ ∈ l10. We choose l10 of
maximal length with this property, and denote the other end point by
x̄1

0. We put j = j0.

Then there is another j1 ̸= j0 so that ϕ(x̄1
0) = αj1(x̄

1
0) holds. Let x̄2

0
be another point on L0 so that the equality ϕ(x̄) = αj1(x̄) hold for any
points x̄ ∈ l20, where l20 is a subline on L0\l10 which connects x̄1

0 and x̄2
0.

Again we choose l20 of maximal length with this property. Then one
finds another j2 ̸= j1 so that ϕ(x̄2

0) = αj2(x̄
2
0) holds, and we seek for x̄3

0
by the same way. By iterating this process, finally one divides L0 into
smaller sublines L0 = l10 ∪ l20 ∪ · · · ∪ lk0 for some k, where one end point
of lk0 is x̄1. By the construction, the images lj1 ≡ ϕ(lj0) are all straight
lines. Then we have a broken line as a union of line segments:

L0 ∪ ϕ(L0) = ∪k
i=0l

i
0 ∪k

i=0 li1.

We do the same process, by replacing the role of L0 by li1, of dividing all
li1 into smaller sublines li1 = ∪k′

j=0l
i,j
1 . Then again the images li,j2 ≡ ϕ(li,j1 )

are all straight lines, and we have a broken line as a union of line
segments:

L0 ∪ ϕ(L0) ∪ ϕ2(L0) = ∪il
i
0 ∪i,j li,j1 ∪ li,j2 .

By this way one obtains L by continuing this process possibly infinitely
many times.

3.B Return maps for traces: Let L be the trace for ϕ with an
initial point (0, 0) ̸= x̄ ∈ R2, and M be the half infinite straight line
containing the origin and x̄. The return map for L is an assignment:

r(x̄) ∈ M ∩ L

where on the connected subline C ⊂ L along the iteration of ϕ, between
x̄ and r(x̄), C∩M consists of only these two end points. r2(x̄) ∈ C ′∩L
is another assignment, where on the connected subline C ′ ⊂ L along
the iteration of ϕ, between r(x̄) and r2(x̄), C ′∩M consists of only these
two end points. rk(x̄) are similar.

In this paper we usually choose M as the x-axis [0,∞) × {0}.
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Throughout the rest of section 3, we always assume that ϕ are homo-
geneous.

Let L be the trace of ϕ with the end point (1, 0), and suppose rk(1, 0) ̸=
φ. Then there is some n0 ≥ 1 so that rk(1, 0) ∈ ϕn0(L0). For two points
x̄, ȳ ∈ L, let us denote by l(x̄, ȳ) ⊂ L the broken segment along the
iteration of ϕ, connecting these two points.

Let Sk be the straight line connecting (1, 0) and rk(1, 0) on the x-axis,
and denote the circle sk = l((1, 0), rk(1, 0)) ∪ Sk ⊂ R2. Let us say that
sk is non trivial, if it is not contractible in R2\{(0, 0)}.

Now ϕn0(L0) splits as two broken segments:

l(ϕn0(1, 0), rk(1, 0)) ∪ l(rk(1, 0), ϕn0+1(1, 0))

and denote the connected broken line:

Ck = l(rk(1, 0), ϕn0+1(1, 0)) ∪ ϕ(l(ϕn0(1, 0), rk(1, 0))) ⊂ L.

Lemma 3.1. Suppose Ck ̸= φ for some k. Then for any x̄ ∈ L0, there
is some x̄′ ∈ Ck and a > 0 so that x̄ = ax̄′.

Proof: The end points of Ck is rk(1, 0) = (b, 0) and ϕ(rk(1, 0)) = ϕ(b, 0)
for some b > 0. Thus it is a broken line connecting (b, 0) and ϕ(b, 0).
Since L0 is a segment connecting (1, 0) and ϕ(1, 0), and since ϕ is
homogeneous, thus the conclusion clearly follows. This completes the
proof.

We say that ϕ is focus, if there is some k ≥ 1 so that x̄ ∈ aL0 hold for
some a > 0, for any points x̄ ∈ Ck ̸= φ.

Any homogeneous and recursive maps are focus.

Let us define the distances:

Dk
i (ϕ) = inf{|ȳ| − |x̄| : x̄ ∈ Ck, ȳ ∈ L0}, (10)

Dk
s (ϕ) = sup{|ȳ| − |x̄| : x̄ ∈ Ck, ȳ ∈ L0}. (11)

We call the degree of ϕ as the minimum k ≥ 1 so that (1) ϕ is focus
with respect to k, (2) sk is non trivial, and (3) one of Dk

i ≥ 0 or Dk
s ≤ 0

hold.
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If there are no such k, then degree of ϕ is 0.

ϕ(x, y) = max(0, y) − x is recursive of period 5, and its degree is 1.
ϕ(x, y) = max(−y, y) − x is recursive of period 9, and its degree is 2.

Definition 3.1. Let ϕ be focus of degree k ≥ 1.

(1) It is stably focus, if the estimate Dk
i (ϕ) > 0 is satisfied.

(2) It is unstable focus, if Dk
s (ϕ) < 0 is satisfied.

Let ϕ be a homogeneous (max, +)-function and ft be the correspond-
ing elementary function. Now we consider tropical correspondence of
dynamics:

Proposition 3.1. Suppose ϕ is stably focus. Then any orbits of ft are
bounded away from both zero and infinity.

Moreover there is some constant C independent of t and initial values,
so that for any orbits {zN}N , there is some N0 and for all N ≥ N0, the
estimates hold:

C−1 ≤ zN ≤ C.

Proof: Let k ≥ 1 be the degree of ϕ, and Ck and n0 be as above.

Let (z0, z1) be any initial value, and put x0 = logt z0, x1 = logt z1. Then
we have orbits {xN}N , {x′

N}N , {zN}N for ϕ, ϕt, ft respectively.

By lemma 2.2, there is some constant C invariant under tropical defor-
mations so that |xi − x′

i| ≤ logt m
C for all 0 ≤ i ≤ n0 + 1, where m is

the number of the components of ft.

It follows from homogeneity of ϕ and the above estimates that if initial
values x̄0 satisfy the estimates |x̄0| ≥ c logt m

C for large c >> 1, then
there is some a > 0, 0 ≤ m ≤ n0 +1 so that ȳ0 = ϕm

t (x̄0) lies in logt m
C

neighbourhood of aL0, where aL0 is a scale change of L0 by a.

Now we claim that if |x̄0| ≥ c logt m
C holds, then there is a constant

1 > µ > 0 and some n0 so that ϕ is essentially contracting with respect
to (µ, n0 + 1, n0 + 2).

On the other hand if max(zi, z
−1
i ) ≥ mCc hold for one of i = 0, 1,

then the estimate |x̄0| ≥ c logt m
C follows. Combining with these, the

conclusion follows by corollary 2.3.
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Let us verify the claim. Assume |x̄0| ≥ c logt m
C holds for large c and

choose m and ȳ0 as above. Then for n0 − 1 ≤ p ≤ n0 + 2, ȳ = ϕp(ȳ0) ∈
aCk. Since we have chosen a large c, it follows from homogeneity that
there is some 0 < µ < 1 so that |ȳ| ≤ (1 − µ)|ȳ0| holds.

Next by the assumption, ȳ ∈ cL0 for some c > 0. Then it follows again
by homogeneity that for p′ = n0 or n0 + 1, ϕp′(ȳ) = ϕp+p′(ȳ0) ∈ cCk,
and the estimate |ϕp+p′(ȳ0)| ≤ (1 − µ)|ϕp(ȳ0)| ≤ (1 − µ)2|ȳ0| holds.

One can iterate the second step to see that ϕ is essentially contracting.
This verifies the claim.

This completes the proof.

Remark: When ϕ is recursive and not contracting, then the above proof
gives no information on boundedness of orbits for the corresponding
rational function.

3.C Perturbation of recursive maps: Let ϕ be a (max, +)-function.
A conserved polygon is a polygon P ⊂ R2 on which any orbits (xn−1, xn)
with (x0, x1) ∈ P lie.

Conserved polygons satisfy that (1) when ϕ is recursive, then closed
traces are conserved polygons, and (2) if ϕ is homogeneous, then they
are scale invariant, in the sense that if P is a conserved polygon, then
rP are also the same for any r > 0.

Let ϕ(x, y) be a (max, +)-function with two variables, and |ϵi| << 1 be
two small numbers, i = 0, 1. ϵi perturbation of ϕ is given by:

ϕi(x0, x1) = ϕ(x0, x1) + ϵixi.

Let ft(z0, z1) be a rational function. Correspondingly ϵi perturbation
of ft is given by:

f ϵi
t (z0, z1) = zϵi

i ft(z0, z1).

Let (x0, x1) ∈ R2 be an initial value, and {xn}n be the orbits for
ϕi. Throughout this section, we regard ϕi as maps ϕi : (xn−1, xn) →
(xn, xn+1), and study distributions of the sequences of points (xn−1, xn) ∈
R2.
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3.D A recursive map: Let us calculate an example. Let zN+1 =
f(zN−1, zN) = 1+zN

zN−1
be the recursive map of period 5. Its tropical

transform is given by:

xN+1 = ϕ(xN−1, xN) = max(0, xN) − xN−1

whose orbits also have all period 5. Here we study dynamics given by
ϵ0 perturbations of the homogeneous (max, +)-function:

ϕϵ(x0, x1) = max(0, x1) − x0 + ϵx0.

Let (x0, x1) = (1, 0) be the initial value. Then the orbit of ϕ is given
by:

(1, 0), (0,−1), (−1, 0), (0, 1), (1, 1)

and the pentagon P5 with the vertices above is mapped by ϕ into itself.
Thus P is a conserved pentagon, and since the equation is homogeneous,
any rP are also the case for any r ≥ 0.

Here we show the following:

Theorem 3.1. Let gt be any tropical deformation of f(z, w) = 1+w
z .

Then ϵ0 perturbations gϵ
t(z, w) = zϵgt(z, w) are stationary.

For example, gϵ(z, w) = zϵ(1+w
z + l 1

z), l = 0, 1, . . . are all the cases.

Thus we have the following properties:

(1) If ϵ > 0 is positive, then any iterations {zN}N of gϵ
t are bounded

away from both zero and infinity.

(2) If ϵ < 0 is negative, then any orbits of gϵ
t with large norms of initial

values are unbounded.

Proof of theorem 3.1: Combinations of lemma 2.4 and proposition 3.1
with the following lemma verifies theorem 3.1. Let |ϵ| << 1 be suffi-
ciently small. Let Lϵ be the traces of ϕϵ with the end point (1, 0), and
recall C1 ⊂ Lϵ in 3.B. Then we have:

Lemma 3.2. For any small ϵ, ϕϵ are focus, and the degrees of ϕϵ are
equal to one.

24



(1) If ϵ > 0, then ϕϵ is stably focus, r(1, 0) < 1, and C1 all lie in the
interior of P5 except (1, 0).

(2) if ϵ < 0, then it is unstably focus, r(1, 0) > 1, and C1 all lie in the
exterior of P5 except (1, 0).

Proof: For any signs of ϵ, ϕϵ(1, 0) = (0,−1 + ϵ) hold. Let lϵ be the
segment connecting the points (1, 0) and (0,−1 + ϵ), and consider the
trace Lϵ with the initial point (1, 0).

The direct calculation gives its orbit as:

p0 = (1, 0), p1 = (0,−1 + ϵ), p2 = (−1 + ϵ, 0), p3 = (0, (1 − ϵ)2),
p4 = ((1 − ϵ)2, (1 − ϵ)2), p5 = ((1 − ϵ)2, ϵ(1 − ϵ)2)

for both cases of ±ϵ > 0.

p6 depends on signs of ϵ. we have the following:

p6 =

{
(ϵ(1 − ϵ)2, (−1 + 2ϵ)(1 − ϵ)2) ϵ > 0

(ϵ(1 − ϵ)2,−(1 − ϵ)3) ϵ < 0

Let Sϵ be the broken lines which differ with respect to signs of ϵ as
follows.

For ϵ ≥ 0, r1(1, 0) is the intersection between l(p5, p6) and the x-axis,
and so r1(1, 0) = ((1 − ϵ)3, 0). Sϵ is a broken line connecting the eight
points {p0, . . . , p6, ϕ

ϵ(r1(1, 0)) = (0,−(1 − ϵ)4)}.

For ϵ < 0, r1(1, 0) is the intersection between l(p4, p5) and the x-axis,
and so r1(1, 0) = ((1 − ϵ)2, 0). Sϵ is a broken line connecting the seven
points {p0, . . . , p5, ϕ

ϵ(r1(1, 0)) = (0,−(1 − ϵ)3)}.

In both cases, we claim the inclusions:

C1 ⊂ Sϵ ⊂ Lϵ.

Then it is immediate by drawing Sϵ on the plane to see that it is inside
P5 for ϵ > 0 and outside for ϵ < 0, and the conclusions follow.

Now let us verify the claim. Notice that the bending points are ϕϵ(x, y)
with y = 0. Firstly for any points on L0, all y components on the
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line are non positive. Thus ϕϵ(L0) is a straight line, L0 = l00 and so
L0 ∪ ϕϵ(L0) = l00 ∪ l01 in 3.A. For any points on l01 = ϕϵ(L0) also, all y
components on the line are non positive. Thus (ϕϵ)2(L0) = l0,0

2 is also
a straight line, where l01 = l0,0

1 . Next for any points on l0,0
2 = (ϕϵ)2(L0),

all y components on the line are non negative. Thus (ϕϵ)3(L0) is also a
straight line.

By the same reasoning, (ϕϵ)i(L0) are all straight lines for 0 ≤ i ≤ 5
(ϵ ≥ 0) and for 0 ≤ i ≤ 4 (ϵ < 0).

Now for ϵ ≥ 0, l(p6, ϕ
ϵ(r1(1, 0))) = ϕϵ(p5, r

1(1, 0))) are straight lines,
and for ϵ < 0, l(p5, ϕ

ϵ(r1(1, 0))) = ϕϵ(p4, r
1(1, 0))) are also the same.

These imply that Sϵ are given by unions of segments, (ϕϵ)i(L0) (0 ≤
i ≤ 5) with l(p6, ϕ

ϵ(r1(1, 0))) for ϵ ≥ 0, and (ϕϵ)i(L0) (0 ≤ i ≤ 4) with
l(p5, ϕ

ϵ(r1(1, 0))) for ϵ < 0. Thus the inclusion Sϵ ⊂ Lϵ hold for both
cases, and so C1 ⊂ Sϵ also hold.

This completes the proof.
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