Deformations of real rational dynamics
in tropical geometry

Tsuyoshi Kato

1 Introduction

Discrete dynamics defined by a rational function f(zo,...,2z,-1) is a
sequence {zy}¥_, satisfying the relation zy = f(2n_p,...,2n-1) with
initial data (2o, ..., 2,-1). In this paper we study dynamical properties

of orbits {zy}n given by rational functions by use of some comparison
method in tropical geometry. From a dynamical view point, tropical ge-
ometry uses a kind of scale transform, and it provides with a connection
between piecewise linear and rational functions with real coefficients.

A (max, +)-function ¢ is a piecewise linear function of the form:
gp(f) - maX(&l + 313_77 ey Qo + jma_:)a jlf - E?zl]llxz

where T = (z1,...,2,) € R", 51 = (j},...,j") € Z" and o; € R.
Correspondingly the parametrized rational function is given by:

fi(Z) = S ok g =TI 20

where Z = (21,...,2,) € RYy, = {(wy,...,w,) : w; > 0}. These two
functions admit one to one correspondence between their presentations.
In fact the defining equations are transformed by taking conjugates by
log, and by letting ¢ — co. In some cases such f; are ¢t independent.
We say that rational functions of the above form are elementary. For
example f(z) = 2z corresponds to max(x,x) and so is elementary in

our sense, but f(z) = 32 is not the case.

1



These two ¢ and f; are connected passing through some intermediate
functions ¢;, which Maslov inroduced as dequantization of the real line
R ([LM], [Mi]). For t > 1, there is a family of semirings R; which are
all the real number R as sets. The multiplications and the additions
are respectively given by =z @; y = log,(t* +t¥) and z ®; y = x + y. As
t — oo one obtains the equality:

T Do y = max(x,y).

Corresponding to the usual one on real numbers, one has R;-polynomzials
©0+(Z) = B + JxT). © and ; are connected as limy .o ¢; = ¢, and
it satisfies a (max, +) equation .. (Z) = max(ay + 11T, . .., Qm + JmT)-

Notice that all these ¢, ¢; and f; have one to one correspondences
among their presentations. Let us relate ¢; with f;. Let Log, : R%, —
R™ be (z1,...,x,) = (log, 21, ... ,log, z,).

Proposition 1.1 (LM,V). f; = (log,) ™" o ¢ 0 Log, : RZ; — (0,00) is a
parametrized rational function fi(z) = Xt zIk,

As t — o0, Log; becomes ‘very contracting’ maps, while ¢; approaches
to ¢, but limit of Log; degenerates and just the constant. Such fea-
ture causes interesting phenomena from dynamical view points. In this
paper, we study and compare two dynamics {zx}y and {zy}y given
by:
xN:gp(xN_n,...,xN_l), ZN :ft(ZN—n;---azN—l)

with the initial data zy = log; 29, ...,2,-1 = log, z,—1. Notice that any
orbits zy > 0 are given by positive real numbers for elementary f;. In
order to do this, we use the intermediate dynamics:

x?\/ = Spt(xEV—m ce 733{7\7—1)

parametrized by t with the same initial data x = log, 29, ..., 2, | =
log; 2,—1. By the above proposition, two dynamics {zy}y and {2y }n
are conjugate by Log;. Since lim; ., ¢; = ¢ holds, one may expect that

{zn}n and {zx}ny may share some common dynamical properties.

An orbit {zx}y given by f; is recursive, if there is some M > 0 so that
{zn}n is periodic with period M. f; is recursive if any orbits are the
case for any initial values and any ¢ > 1.
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Proposition 1.2. Suppose an elementary rational function f; is recur-
sive of period M. Then the corresponding ¢ is also the same.

But it turns out that the converse is not true in general. Let us see by
examples ([T1],[GKP],[HY]). Let us consider:

p(z,y) = max(0,y) —z

It is immediate to see that this is a recursive function of period 5.
Let us consider the corresponding function f(z,w) = H7w Since oy
approaches to the recursive ¢ as t — oo, one may expect that f also
gives a recursive function, which is true for this case. Now clearly the
estimate p(x,y) = max(0,y) —z > —x holds. So we have the equality
as maps:

,w(xa y) = max(gp(;z:, y)) _x) - QO(I', y)
and in particular ¢ is also recursive. However the different presentation
Y gives rise to another elementary rational function:

24w

g(z,w) = -

By easy calculations, it turns out that this is not recursive (for example
try for the initial value (zo, 21) = (1,2)).

We have another example. Let us consider ¢(z,y) = max(—y,y) — z,

which is a recursive function of period 9. Let us consider the corre-

sponding elementary rational function f(z,w) = lj—u“jz In this case also

the estimate ¢(z,y) = max(—y,y) —x > —x holds, and so we have the

equality as maps ma>2<(gp(x, y), —z) = ¢(z,y). The corresponding func-
14+ w4w

tion g(z,w) = “~2= and f above, both turn out not to be recursive

(I thank to S.Tujimoto for computer calculations).

We would like to give a question that for a recursive (max, +)-function
©, whether one could find ¢ which is the same as ¢ as maps, so that the
corresponding elementary function g; is recursive. D.Takahashi told me

that the answer is not known for the above example f(z,w) = 14;—;;’2

These motivate to ask which dynamical properties are conserved with
respect to two rational functions whose corresponding (max, +) func-
tions are the same as maps.



Let ¢ and ¥ be two (max,+)-functions with n variables. Then
is equivalent to ¢, if they are the same as maps, p(x1,...,z,) =
Y(xy,...,2,) hold for all (z1,...,x,) € R™

Definition 1.1. For two elementary functions f; and g¢, g; 1s a tropical
deformation of f;, if the corresponding (max, +)-functions ¢ and 1 are
equivalent.

If the estimate ¢ > ¢’ holds, then ¢ = max(y, ¢’) and ¢ are equiva-
lent. For example %TW is a tropical deformation of HTW This example
shows that in general tropical deformation does not imply topological
conjugacy.

Tropically equivalent class [ f;] is the set of elementary functions so that
each element is a tropical deformation of f;. In this paper we study
dynamical properties of orbits, which are invariant under tropical de-
formations.

(A) Quasi recursive maps: Let f; be an elementary rational func-
tion and consider the dynamics zy = fi(2n_n,...,2ny_1) With initial
values (2, ...,2n-1) € RZ,. If there are constants C' > 0 and M > 0
independently of ¢ and initial values, so that the estimates:

(M AN Yy <00 N=0,1,...

ZN  RAN+M

max

hold, then we say that f; is a quast recursive map of period M.
Our first result is:

Theorem 1.1. Suppose an elementary rational function f; corresponds
to a (max, +)-function . Then f; is quasi recursive of minimum period
M, if and only if ¢ is recursive of the same minimum period.

The quasi recursive constant C'(f;, M) is given by:

EN+M <N
C(fy, M) =sup sup max( : .
t>1 z9,..,2n-1>0 ZN ZN—I—M

We have additivity of quasi recursive maps. Let f; and f; be two
elementary functions, and assume f; is quasi recursive. If the corre-
sponding (max, +)-functions ¢ and ¢’ satisfy the estimates ¢ > ¢’ for
all points, then f; + f/ is also quasi recursive.
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Theorem 1.1 shows that a property to be quasi recursive is invariant
under tropical deformations. More detailed analysis gives information
on quasi recursive constants. Assume ¢ and 1 are equivalent and re-
cursive. Let f; and ¢; be the corresponding quasi recursive functions
respectively. If 1) has the presentation as max(ay + j1Z, . .., + JimT),
then we say the number of the components of g, is m = my,.

Corollary 1.1. There is a constant C' independent of choice of rep-
resentatives g; in the tropical equivalent class [f;] so that we have a
uniform bound on the quasi recursive constants of g; with respect to
m = mg,:

C(gt,M) S mC.

When ¢ is contracting (2.F) rather than recursive, correspondingly the
rational dynamics by f; show some boundedness for their orbits:

Proposition 1.3. Suppose ¢ is contracting. Then any orbits of f; are
bounded away from both zero and infinity for all t > 1.

Moreover there 1s some constant C' independent of t and initial values,
so that for any orbits {zn}n, there is some Ny and for all N > Ny, the
estimates hold:

Cl'<zy<C

When ¢ is contracting, then the above properties are invariant under
tropical deformations, and so any tropical deformation ¢; of f; also
satisfies the same properties. The constant C' above is also given as
mg and c is independent of choice of representatives g; in the tropical

g
equivalent class [fi].

Proposition 1.3 is used to verify theorem 1.3 below.

Our comparison method works effectively when one of z]j\t,l are suffi-
ciently large and the orbits contract as ¢, while some fluctuation occurs
if they are within some bounded regions.

(B) A characterization of tropical equivalence: We have an ana-
lytic characterization of tropical equivalence by the estimates on orbits.
Let f; and g; be two elementary rational functions, choose any initial



value (2o, ..., 2,-1), and denote the corresponding orbits by {zy}y and
{wn}n for fi and g; respectively, where w; = z; for 0 <i <n — 1. Let
us put m = max(my,, my,).

Theorem 1.2. f; and g; are tropically equivalent, if and only if there
exists a constant C' > 0 independent of initial values and t > 1 so that
the double exponential estimates:

(2L Uy o
WN <N
hold for all N =10,1, ...
(C) Perturbations of real rational dynamics: Let p(z,..., 2, 1)
be a (max, +) function and put zy = (xg,...,x,-1). We regard it as a

map ¢ : R" — R" by o(Zg) = (21, ..., Tn_1,p(Z0)). Let Ly be a segment
connecting T and ¢(Zy) in R", and put the connected piecewise linear
line:

L = U, ¢"(Lo)

We call it as a trace of . Structure of the traces contain some infor-
mations on the iterations by ¢. For example if ¢ is recursive, then any
traces consist of closed piecewise linear lines ([TI]). Suppose p(xg, 1)
has two variables, and is homogeneous so that 0 is a fixed point. Then
degree of ¢ around the origin is given by use of traces and the corre-
sponding return maps.

In this paper we study small perturbations of real rational dynam-
ics in two variables passing through tropical transforms into (max, +)-
functions. Let fi(20,21) be an elementary rational function by two
variables. For ¢+ = 0,1, an ¢;-perturbation is given by the following
equation:

Nyl = 2y fi(zavot, an) = fif(evor, 2n), €6 € R.

Definition 1.2. A dynamics given by f; is stable, if any orbits are
bounded away from both zero and infinity. It is unstable if there is
a constant C independent of t so that for any initial value zy with
|Zo| > C, the orbits are unbounded.

An €;-perturbation is stationary, if it is stable for ¢; > 0 and unstable
for e; <0 for all sufficiently small |¢;| << 1.
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Let us consider a recursive map zyy1 = f(zy_1,2n) = Z—Zflv whose

orbits all have period 5. In this paper we show the following:

Theorem 1.3. Let g; be any tropical deformation of f(z,w) = HTU’
Then €y perturbations g5(z,w) = 2°g:(z,w) are all stationary.
For example, zy 41 = 25 _ (B2 + 1) 1 =10,1,... are all stationary.

ZN-1 ZN-1
Let ¢ correspond to f; and put p“(zg, 1) = w(xg, 1) + €9xo. Then
@ corresponds to f;°. The conclusion follows for any f;° if the cor-
responding ¢ satisfies properties that it is contracting for ¢y > 0 and
is expanding for ¢y < 0. Such properties are obtained by chasing the
traces directly for these perturbed (max, +)-functions. Such dynamical

properties are independent of presentations of the (max, +)-functions.

It has a merit to analyze dynamical properties by replacing rational
dynamics by piecewise linear one, since one has to know only finite set
of points to recover ©*(Lg) above, since they are broken lines.

For ¢y > 0, any orbits for these dynamics are all bounded. On the
other hand the method gives no information about such things when
e = 0. At present I do not know which dynamics of the form zy,; =
Zg—’iff + lﬁ have the property that all orbits are bounded.

So far we have assumed that (max, +) functions are of the form max(a;+
JT, ..., Qm + jmT), which is enough for our purpose. But here we do
not use concavity of (max, +) functions, and most of the results in this
paper hold for functions of the form ¢(z) = max(a; + 11T, ..., Qm +
JmT) — max(By + 1T, ..., 0 + iT).

2 Tropical transform

2.A Estimates for orbits: Let ¢;(z) = ®(ap +7xZ), T € R, j, € Z"
be an R; polynomial, whose limit ¢ — oo gives a (max, +)-function
©(T) = 0oo(T) = max(ay + J1T, ...,y + jmT). We say that m is the
number of the components of ¢. It plays an important role for several
estimates.



Let us denote:

a(t,p) = sup | (z) — ()]
TER™

Lemma 2.1. (1) a(t,¢) < log,m — 0, t — oo.
(2) ¢ is Lipschitz.

Proof: (1) We show the estimates |x) ®; - - - @y, —max(z1, ..., 2y)| <
log, m. Assume x; = max(zy,...,%y,). Then x1®;- - -z, = log, (t +
s ) =log, (FH (1t o 1P = 2y 4 log, (1 + 7277 +
-+ -4 t"m7) . Since x; — x1 < 0 are non positive, the estimates log, (1 +
tr2m 4 P < og, m — 0 hold.

(2) Since ¢ is piecewise linear, the conclusion is clear.

This completes the proof.

Let us consider the orbits given by xy = ¢(zn_p,...,on_1) and &y =

(., ... xy_;) with the same initial value z¢g = (), ..., 2,1 = 2],_;.

Lemma 2.2. Let {xy}y and {zy} N be as above, and c be the Lipschitz
constant of ¢. There are some universal polynomials Py of degree N —n
so that the estimates hold:

[zx — 2y| < Py(c) log, m

where m 1s the number of the components of . In particular for any
small € > 0 and large N >> 0, there is a large ty >> 0 so that for all
t > 1y, the estimates |, — x| < € hold for all 0 <k < N.

Proof: Let us denote Ty = (zn,...,ZN4n-1) € R". Thus zn., =
©(Zy) hold for all N > 0. Similar for zy.
Firstly one has the estimates |2/, — x,| < log, m by lemma 2.1(1).

Now since ¢ is ¢ Lipschitz and z; — ] = (0,...,0,z, — /) holds, the
estimates hold:

|1 — 2| = lo(T1) — (@) (1)
< lo(z1) — o(@)] + lou(T)) — (7)) (2)
< c|z; — 77| +logy;m < (c+ 1) log, m (3)



Next we have estimates:
|0(Z2) — 9(T9)| < c(lzns1 — 2| + |z — 27]) (4)
<c{(c+1)+1}log,m =c(c+2)log,m.  (5)
Thus we have the following:

[ Znso — Thpo| = |@(T2) — @u(T3)
/
2

|
< p(T2) — o(@)] + [0(T2) — @e(T3)| < [e(c+2) + 1] logym (7)

The rest process is similar, and by iterating the same estimates, one
finds some polynomials Py of degree N —n so that the estimates |z —
z'y| < Py(c)log, m hold. This completes the proof.

Remark: One can choose a larger ¢ > 1 so that the estimates Py(c) <
((n + 1)c)¥~" hold for all N > n.

2.B Characterization of tropical equivalences by orbits: Let

¢ be a (max,+)-function and fi(z,...,2,-1) be the corresponding
parametrized rational function. For intial values Zy = (2o, ..., 2,-1),
zi > 0, let {zy}n be the orbits, and denote Zy = (2n,..., ZNin_1) €

R?,. Thus zy+, = fi(Zy) hold for all N > 0.

Let ¢; be the R; polynomials corresponding to ¢, and consider the
orbits 'y, = (2’ ), where x} = log,(z;) for 0 <i <n — 1.

By proposition 1.1, the equalities:

logy(2n4n) = log,(fi(2n)) = pi(Logy(2n))

hold for all N > 0. In particular we have the equality:

zy =log,(zy) €R, N >0.

Let f; and g; be two elementary rational functions. Let us choose an
initial value (zo, ..., 2,_1), and denote the corresponding orbits {zy}x
and {wy}y for fi and g¢; respectively, where we put the same initial
value w; = z; for 0 <i <n —1. Let us put m = max(my,, mg, ), where

my, is the number of the components of f;.



Theorem 2.1. f; and g; are tropically equivalent, if and only if there
exists a constant C' > 0 independent of initial values and t > 1 so that

the double exponential estimates:
z w N
max (2L, ) < mC
WN <N

hold for all N =0,1,...

Proof: Let us take any initial value 2y = wy,...,2,-1 = w,_1. Let @
and v be the (max, 4)-functions corresponding to f; and g; respectively.
For the initial value z; = y; = log, z;, 0 <7 < n — 1, let us denote the
corresponding orbits by {zx}y and {yy}n. We also put 2y = log,(zn)
and yy = log,(wy) respectively. Thus {2y} is the orbit for ¢; and
Lyt is for 1.

Now suppose f; and ¢; are tropically equivalent, and so ¢ and v are
the same as maps. Then by lemma 2.2, the estimates:

lzn — 2], lyv — Yy < Pn(c)log,m

hold. By the assumption, xy = yy hold, and so we have the estimates:

ZN
logt(a)i = | log;(2n) — logi(ww)| = |2y — yy| < 2Py(c) log, m.
One may assume 2Py(c) < C¥ for some C > 0 by the remark at the
end of 2.A. In particular we have the estimates:
z N W

(—N)jE = max(—N, Ay <@

wWN WN <N
Let us verify the converse. Let us choose any initial value x; = y; for
0 <7 < n—1. Then for large ¢t >> 0 we put the initial value by
z;i = w; = t*. The estimates (I”Z—]]VV)jE < m®" imply the ones |2y — yy| <
C¥log, m for all N = 0,1,... By lemma 2.2, one has the estimates:

|25 = yn| < 2Py(c)log, m + C" log, m.

Since t are arbitrarily and the left hand side of the above estimate
is independent of ¢, it follows by letting ¢ — oo that the equalities
xny = yy must hold. This completes the proof.
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2.C Comparison between orbits: Now we consider what happens
for ¢ when f; are recursive of period M, zy.y = zy for all N > 0 and
t > 1. In this case we show that ¢ also satisfies the same property.
Later we will see that the converse is not the case, but still some ‘quasi
recursiveness’ is satisfied. Notice that f; is recursive if for any initial
values, the equalities zj;. 3 = z; hold for all 0 < j <n — 1.

Proposition 2.1. Let ¢ be a (max, +)-function with the corresponding
rational function f;. Assume f; is recursive of period M. Then ¢ is
also the same.

Proof: Let {xy}n and {2y} n be the orbits of ¢ and ¢; with the same
initial value z; for 0 < i < n—1, and put z; = t*. For any small ¢ > 0,
one can choose large ¢t >> 1 so that the estimates |z; — 2| < € hold for
0<t1<n—1+ M by lemma 2.2.

By the assumption, zj; = 2; hold for 0 < j <n—1, and so 2, ;, = )

also hold. Then we have the estimates:
‘xj-FM - xj| < |‘rj+M - x}+M‘ + ’:C;+M - x;‘ + ’x; — :cj\ < 2e.

Since the left hand side is independent of ¢ and € > 0 is arbitrarily
small, this shows that the equalities x;43r = x; must hold. Thus ¢
gives a recursive map of period M. This completes the proof.

Ezample: Let fi(z,w) = t2. Then easy calculations show that it is
recursive of period 6. Then the corresponding (max, -+ )-function is
¢(z,y) = 1+ y — = which is also recursive of the same period.

2.D Uniform rates of orbits: Let ¢ be a (max, +)-function and
fi: be the corresponding rational function. In general the converse of
proposition 2.1 is not true, but we have the following:

Proposition 2.2. Suppose ¢ s recursive of period M. Then there
15 a constant C' > 0 independent of t so that for any initial value
20y - -y 2Zn—1 > 0 and the orbit {zn}n for fi, the uniform estimates:

(ZN—JFM)i = max(zN+M, N )< C

ZN ZN  RN+M

hold for all N > 0.
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Proof: Tt is enough to verify the conclusion for 0 < N <n—1. Let m be
the number of the components of ¢, and {xy}y and {2y} be orbits
for ¢ and ¢; respectively, where we put the intial value z; = x} = log, z;
for 0 <7 <n—1. Then by lemma 2.2, |xy — 2y| < Py(c)log, m hold.
Since ¢ is recursive Ty = xn, thus the estimates hold:

_ t/.’EN )j: — t|‘rlN_I9V+M| < t2PN+JW(C)IOgtm — m2PN+M(C)
ZN—l—M thJrM -

Thus one can put C' = m2n-1+m(0),

This completes the proof.

Now we define the invariant of quasi recursive dynamics. Let f; be a
parametrized rational function and ¢ be the recursive map of period M.
For initial values zy, ..., 2z,_1, let us denote the orbits of f; by {zn}n.

Definition 2.1. If there is a constant C' > 0 and a number M > 0
which are both independent of t and initial values so that the estimates
(ZJZ—;M)i < C hold for all0 < N, then we say that f; is a quast recursive
map of period M. The quasi recursive constant is given by:

EN+M
C(fy,M)=sup sup ( RELAES
t>1 29y2n_1>0 RN

The constant C' in proposition 2.2 depends only on ¢ as a map and the
number of the components m of f;. The above proof gives a bound:

C(ft, M) < mZPn—H—M(C).

Corollary 2.1. Let ¢ be a recursive (max, +)-function of period M,
and f; be the corresponding rational function. Then there is a constant
C > 0 so that for any tropical deformation g; of fi and any orbits
{wy}n for g;, we have the uniform estimates:

w w

max( :
WN+M  WN

for all 0 < N, where m is the number of the components of g;.

Thus among the tropical equivalent class of ¢, the minimum mj, of the
numbers of the components determines the optimal estimate above.

Let us verify additivity of quasi recursive maps.
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Lemma 2.3. Let f; and f] be two elementary functions. Assume that
the corresponding (max, +)-functions ¢ and @' satisfy the estimates
© > ' for all points, and @ is recursive.

Then f; + f] is quasi recursive.

Proof: By the assumption, f; + f; has the corresponding (max,+)-
function max(yp,¢’). On the other hand, by the inequality ¢ > ¢/,
max(p, ¢') = ¢ holds. In particular the former is also recursive. Thus
the conclusion follows by corolalry 2.1. This completes the proof.

Ezample: Let f(z,w) = % The corresponding (max, +) function is
given by ¢(z,y) = max(—y,y) — x, which is recursive of period 9. Let
f'(z,w) = 1, and ¢/(z,y) = —z. Then clearly the pointwise estimate
¢ > ¢ holds, and so by lemma 2.3, (f + f/)(z,w) = H‘Z"—;LM is quasi
recursive. By computer calculation, it can be seen that both f and f+ f’
are not recursive. By the same argument, (f + [f')(z,w) = %
are all quasi recursive for [ = 0,1,... They have the number of the

components m = [ + 2.

Let us charecterize quasi recursive maps with respect to the correspond-
ing recursive (max, +)-functions:

Theorem 2.2. Suppose an elementary f; corresponds to a (max,+)-
function p. Then f; 1s quasi recursive, if and only if p is recursive with
the same minimum period.

Proof: It ¢ is recursive, then f; is quasi recursive by proposition 2.2.

Let us verify the converse, and assume f; is quasi recursive of period
M. Let us choose any initial value (zg,...,z,_1) € R", and consider
the orbit {zx}n for ¢. For large ¢ >> 0, let us put the initial value
2o = t", ..., 2,1 = t"™ ' and consider the orbit {zy}n of fi;. By
the assumption, there is a constant C' > 1 independent of zg, ..., 2,1
so that the estimates (ZJZ—;M)i < C hold for all N > 0. Now put
2’y = log, zy. Then the estimates:

@y — 2] < log, ©
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hold. By lemma 2.2, the estimates:
oy — 2| < Boiim(c)loggm, 0<N<n—-1+M

hold for some constant ¢, where m is the number of the components of
. These two estimates imply that for any small € > 0, there is a large
to so that for all ¢ > t;, the estimates

|33N+M—ZCN|<€, 0<N<n-1
hold. Since € is arbitrary, this implies the equalities xg = xp7, ..., 21 =
Tn_14 0 hold.

Finally we show that they have the same minimum period M. Suppose
the minimum period of f; is M, and assume ¢ has period M’ < M.
Then the above proof shows that f; also must have the period M’,
which cannot happen. The converse also holds by the same argument.

This completes the proof.

Corollary 2.2. Suppose ¢ is recursive of the minimum period M. Then
for the corresponding f; and any 1 < M' < M — 1, the quasi recursive
constants C(fy, M') are all infinity.

Proof: Otherwise, theorem 2.2 shows that ¢ has period M’ < M, which
cannot happen. This completes the proof.

2.E Bounded orbits: Let ¢)(xg,...,z,_1) be a (max, +)-function and
put g = (xg,...,x,_1). We regard it as a map ¢ : R" — R” by
(Zo) = (71, .., Tn-1,¥(T0)).

Let us say that 1 is contracting, if there is some 0 < p < 1 and some
[ > 1 so that for ¢ = 9, the estimates:

(@0 )] < (1= @)|(0, -, Tnr)]
hold for all (xzg,...,z,—1) € R™

Let f; be the corresponding elementary function to ¢». Then the rational
dynamics show boundedness for their orbits, whose property is invariant
under tropical deformations:
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Proposition 2.3. Suppose ¢ is contracting. Then any orbits of f; are
bounded away from both zero and infinity for all t > 1.

Moreover there is some constant C' independent of t and initial values,
so that for any orbits {zn}n, there is some Ny and for all N > Ny, the
estimates hold:

Cl'<zy<C

Proof: For any initial value (zo,...,z,-1), let us consider the orbit
{zn}n for fi. We put the orbits {xy}y and {a/y}n for ¢ and
respectively, where xy = z{, = log, 20,...,Tp-1 = x,_; = log; z,1.

Then ay = log, zy hold for all N > 0. Let us put ¢; = 9! as ¢ = ¢’

Let us denote the components of o by (©°, ..., " 1). ' has the form
T = (2o, ..., 1), 0 <i < n—1, where ¢ are also given by some
compositions by 1. Since compositions of (max, +) functions are also
(max, +)-type, it follows that ¢’ are also (max,+) functions. Notice
the equalities oj(xo, ..., zn-1) = z],;, where ¢y = (¢}, ..., AR)

Let o > 1 be the maximum number of the components among ¢’ and
put m = o". Then by lemma 2.1(1), the estimates | (2o, ..., Tp-1) —
o(xg, ..., Tp-1)|] < log, m hold.

Let us choose a small ¢/ > 0 so that ¢ = u — ¢/ > 0 is still positive.
1

Let us put log, m = au’, t = m= for some o > 0. Then by the above

estimate,

[oe(wo, - -y 1) < (1= p)|(o, - - s 2pa)| + apt
holds.

Let us put py = oY (zo,...,7,_1) € R". Suppose py satisfy [pn| > «
for some N > 0. Then the above implies the estimate:

loe(Pn)] < (1 —€)|pn]

We claim that there is some Ny > 0 and a constant C' independent
of ¢t so that all points py satisfy uniform bounds |py| < Ca for all
N > Ny. By the above contracting property, it is enough to show this
when [py| < a holds. Then let o > 1 be as above. ! are of the forms
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logt(tyi + -4 thJ'), where L;'- are linear functions and o' < o. Suppose
max(Li(pn), ..., L, (pn)) = Li(pn). Then the estimate holds:
G ()] = [Li(py) + log,(1 4+ tHEN=TioN) .| 4Ly (ow)=Lilw)y)
(8)
< |Ly(pw)| + logg o (9)
Since L§ are linear, it is enough to check log, 0 < Ca for some C'. Since

C
t = man hold, one can choose a large C so that o < m# = t“®. This
verifies the claim.

Now ply = 2y;.; hold for py = (P - -, P ). Since the equality

N =tV = me holds, the orbits:
—C

m7§ZNz+i§m%, N>Ny, (0<i<n—-1)
are bounded from both below and above, which are independent of .
If | < n, then we are done.

Suppose [ > n. Then we regard (z,,...,22,-1) as the initial value,
c

and apply the above estimates. Then mw < INIvion < mﬁ hold for
0<i<n—1landall N> N; >> 0. We iterate the same argument for
the initial values (2n, ..., Z(p1m-1), & = 0,1,...,5 = [%], and obtain

the same bounds for all N > N, >> 0.

Finally we put L = max(Nj, ..., Ns). Then the conclusion follows for
all N > L. This completes the proof.

Remark: The above estimates show that on small neighbourhoods of 1,
some fluctuation of orbits {zy}y occurs. They give us no information
on the bahaviour of the orbits near 1, and they will not converge to 1
in general.

For our later purpose, let us generalize proposition 2.3. We consider
two cases. Let ¥ be a (max, +) function. Let us say that v is:

(1) eventually contracting, if there is some 0 < p < 1 and my,l so
that for any initial value (x,...,x,_1), there is some m < my and the
estimates hold for all : = 0,1,2,...:

[ (W (o, - )] < (1= ) 97" (20, -, Tt -
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(2) essentially contracting, if there is some 0 < p < 1 and mg,ngy so
that for any initial value (x,...,%,_1), there are m < mg and indices
lo <ly <lgy--+ — 00, l;11 — l; < ng, such that the estimates hold:

[ @ (@0, @) < (1= ) 17" (20, -+, )]

for all : = 0,1,2,... We will say that it is essentially contracting with
respect to (u, mg, ng). Eventually contracting implies essential one.

Corollary 2.3. Suppose 1 is essentially contracting. Then any orbits
of fi are bounded away from both zero and infinity.

Moreover there 1s some constant C' independent of t and initial values,
so that for any orbits {zn} N, there is some Ny and for all N > Ny, the
estimates hold:

Cl<zy<C

Proof: For the eventually contracting case, one can choose the initial
value )" (xg, ..., x,—1) rather than (zo,...,2,-1). Then the conclusion
follows by proposition 2.3.

Let us consider the essentially contracting case. Again one may replace
the initial value by ¢;"(zo,...,2n—1). Let {xn}n, {2y}~ and {zn}n
be orbits for 1, ¥, and f; respectively. Then by the assumption, there
are indices I} < Iy < --- — 00, liz1 — l; < ng, and [l (zg, ..., 2, 1)| <
(1 — p)'|(zo, ..., xp-1)| hold. Let us denote Ty = (Zy, ..., Ty 1)-

We proceed the same argument as the proof of proposition 2.3. Let
us denote ! = (¢h,..., ¥ ) and denote m} as the number of the
components of wﬁ. Then put o = max{mf 0<1<n—-10<1[<
ng + 1}, and m = 0". As before we put log, m = au’. Then there is
a constant C' and indices Ny < N1 < ..., N;y1 — N; < ng+ 1, so that
|Zn,| < Ca hold for all 4. Since N;y; — NV; are uniformly bounded, it
follows by replacing the constant by a larger C’ > C' if necessarily, that
1Zy| < C’a hold for all N > Ny. Thus uniformity C~! < zy < C hold
for all N > Nj.

This completes the proof.

2.F Unbounded orbits: Let ¢ be a (max, +)-function on R”. Let
us say that it is homogeneous, if p(axg, ..., ax,—1) = ap(xg, ..., T,-1)
hold for all @ € R and (xq,...,z,-1) € R™
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Let us take initial values zy = (xy,...,z,—1) € R" and denote the orbits
by zy defined by . Then for a homogeneous ¢, let us put:
L(N) = inf sup{z;; zn1i = @(Ti,. .., Tppio1) }-
|Zo|=1 <N
Let us say that the dynamics by ¢ is positively unbounded, if there is
some Ny with L(Ny) > 1 holds.

Let f; be the corresponding rational function and z,; = fi(2i, ..., Zntio1)
be the dynamics.

Lemma 2.4. Suppose v is positively unbounded. Then there is a con-
stant C' so that for any g; of tropical deformation of fi, g: have un-
bounded orbits for any initial values Zy with |Zo] > m®, where m is the
number of the components of g;.

Proof: Let us denote the (max, +)-function corresponding to g; by .
Y is also positively unbounded. By the assumption, there is some N
with L(NNy) > 1+ 6 holds for some § > 0. Let us put the number of the
components of g; by m = my,. Let {zy}y and {2y} 5 be the orbits of
Y and 1y with the same initial value 7y = (zo, ..., z,_1) respectively.
Then by lemma 2.2, there is some constant C' independent of choice
of g; so that the corresponding orbit satisfies the estimates |z; — z}| <
C'log, m for 0 <17 < Nj.

Now choose any initial value zy with %|a‘:0\ > ('log, m. By the assump-
tion, there is some ny < Ny so that x,, > |Zg|(1 + §) holds. Then we
have the estimates:

0
ah > |Zo| (14 8) — logym® > |7|(1 + 5)

Now we choose another initial value zo1 = (a7, ,...,2), 4, 1), and de-
note the orbits as x'y; and w1 for ¢ and 9 respectively, N =0,1,....
Then since 9 is homogeneous, there is 0 < n; < Ny so that z,, 1 >

1Zo|(1 4+ 6)(1 + g) holds. Thus the estimate:

)
x%hl > |Zo|(14+9)(1 + 5) — log, m& > |Zo| (1 4 )

= x,, ., lies on the orbits of ¢; with the initial

holds. Notice 7, ;
value (zg,...,Tp_1).
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: = _ !/ /
Let us iterate the same process. Let Zoo = (77, 1,2}, 1, 11) be

nlv]-’
another initial value, and denote the orbits as 2y, and xy o for ¢ and
Y respectively, N = 0,1, .... Then there is 0 < ny < Ny so that z,, 2 >

|Zo|(1 4 0)(1+6), and so z,_, > |To|(1 + 0)* — log, m® > |zo|(1 + %5)

! ) . ’ .
hold, where 7,5 = a7, ., +,,- The same process gives x; , with the

estimates ), , > |Zo|(1 + M), k=0,1,...,and x

1
5 =T

Tk K Xisoni’
Now all points ;, ; lie on the orbits {z7,}, by 1y with the initial value
(20, ..., %p_1). Let us put zy = t*~. Then the bound |Zy| > log, m®
follows if z; > m® hold for some 0 < i < n — 1. Since {zy}y is the
orbit for ¢;, the result follows. This completes the proof.

Remark: When ¢ is homogeneous, the corresponding f; is not necessar-
ily ¢ independent. For example consider ¢(z) = max(2x, —2z, —1 + z).

3 Rational perturbation of dynamics in two vari-
ables

3.A Traces: Let ¢ be a (max, +)-function by two variables. Let Ty =
(xg, 1) € R? be initial values, and denote the orbits of ¢ by {zy}x.
Let us plot the sequence of points (zx,zy_1) € R?, and regard ¢ as a
map:
¢:(xy_1,2n8) — (xy,zN1) N > 1

Let us denote ¢'(zg, z1) = 7; for i = 0,1,... Let Ly be the straight line
which connects Zy and z; in R%2. The trace of ¢ with the initial value
7o is a connected piecewise linear line L in R?:

L= UiEQQOi(Lo) C R2.

L contains all the points U;>0Z; C L.

For later purpose let us explicitly construct traces. Let ¢ be of the form
o(x,y) = max(ai(z,y),...,an(r,y)), where a; are linear functions.

Suppose ¢(Zg) = «a;(Zp) for some 1 < 57 < m. If the equality ¢(z) =
a;(z) hold for any point Z € Ly, then ¢(Ly) is a straight line.
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Otherwise, let [} C Ly be a subline with one end point Ty so that the
equality ¢(Z) = «;(Z) hold for any point z € [}. We choose [} of
maximal length with this property, and denote the other end point by
z5. We put j = jo.

Then there is another j; # jy so that ¢(z}) = «j (z}) holds. Let z2
be another point on Ly so that the equality ¢(z) = a;,(Z) hold for any
points T € I3, where [ is a subline on L\l which connects Z; and 3.
Again we choose [} of maximal length with this property. Then one
finds another j, # ji so that ¢(z2) = «;,(z2) holds, and we seek for z}
by the same way. By iterating this process, finally one divides L into
smaller sublines Ly = [JUI2U--- U} for some k, where one end point
of IF is 7. By the construction, the images I} = gp(lg) are all straight
lines. Then we have a broken line as a union of line segments:

Lo U e(Lo) = Uioly Uiy 1.

We do the same process, by replacing the role of Ly by I, of dividing all
[ into smaller sublines [} = Uﬁ;oli’j . Then again the images I/ = o(1})
are all straight lines, and we have a broken line as a union of line
segments:

Lo U QO(L()) U @2([/0) = Uzlé U j lll"j U l;’j.

By this way one obtains L by continuing this process possibly infinitely
many times.

3.B Return maps for traces: Let L be the trace for ¢ with an
initial point (0,0) # Z € R?, and M be the half infinite straight line
containing the origin and z. The return map for L is an assignment:

r(z)ye MNL

where on the connected subline C' C L along the iteration of ¢, between
7 and r(Z), C'N M consists of only these two end points. r*(z) € C'NL
is another assignment, where on the connected subline C' C L along
the iteration of ¢, between 7(Z) and r?(z), C'N M consists of only these
two end points. 7¥(Z) are similar.

In this paper we usually choose M as the z-axis [0, 00) x {0}.
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Throughout the rest of section 3, we always assume that ¢ are homo-
geneous.

Let L be the trace of ¢ with the end point (1,0), and suppose r*(1,0) #
¢. Then there is some ny > 1 so that 7%(1,0) € ©"(Lg). For two points
T,y € L, let us denote by [(Z,y) C L the broken segment along the
iteration of ¢, connecting these two points.

Let Sy be the straight line connecting (1,0) and 7%(1,0) on the z-axis,
and denote the circle s; = I((1,0),7%(1,0)) U S C R2. Let us say that
sy is non trivial, if it is not contractible in R?\{(0,0)}.

Now ¢"™(Lg) splits as two broken segments:
U™ (1,0),7(1,00) UL(r*(1,0), 0" (1, 0))
and denote the connected broken line:
Cr = 1(r*(1,0),™71(1,0)) Up(l(™ (1, 0),7%(1,0))) C L.
Lemma 3.1. Suppose Cy, # ¢ for some k. Then for any & € Ly, there

is some ¥ € C), and a > 0 so that T = aT’.

Proof: The end points of Cy is 7*(1,0) = (b,0) and ¢(r*(1,0)) = (b, 0)
for some b > 0. Thus it is a broken line connecting (b,0) and ¢(b,0).
Since Lj is a segment connecting (1,0) and ¢(1,0), and since ¢ is
homogeneous, thus the conclusion clearly follows. This completes the
proof.

We say that ¢ is focus, if there is some k£ > 1 so that & € al( hold for
some a > 0, for any points = € C} # ¢.

Any homogeneous and recursive maps are focus.
Let us define the distances:
Dj(p) = inf{ly| —|z| : 7 € Cy, § € Lo}, (10)
D (y) = sup{|y| — |z] : T € Cy, § € Lo}. (11)
We call the degree of ¢ as the minimum k£ > 1 so that (1) ¢ is focus

with respect to k, (2) si is non trivial, and (3) one of D¥ > 0 or D¥ <0
hold.
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If there are no such k, then degree of ¢ is 0.

o(z,y) = max(0,y) — x is recursive of period 5, and its degree is 1.
o(x,y) = max(—y,y) — x is recursive of period 9, and its degree is 2.

Definition 3.1. Let ¢ be focus of degree k > 1.
(1) It is stably focus, if the estimate D¥(p) > 0 is satisfied.
(2) It is unstable focus, if D¥(p) < 0 is satisfied.

Let ¢ be a homogeneous (max, +)-function and f; be the correspond-
ing elementary function. Now we consider tropical correspondence of
dynamics:

Proposition 3.1. Suppose ¢ is stably focus. Then any orbits of f; are
bounded away from both zero and infinity.

Moreover there 1s some constant C' independent of t and initial values,
so that for any orbits {zny}n, there is some Ny and for all N > Ny, the
estimates hold:

c1 <z < C.

Proof: Let k > 1 be the degree of ¢, and C} and ngy be as above.

Let (29, z1) be any initial value, and put z¢ = log, 2y, 1 = log, z;. Then
we have orbits {xn}n, {2y }n, {zn} N for ¢, @1, fi respectively.

By lemma 2.2, there is some constant C' invariant under tropical defor-
mations so that |z; — z}| < log, mC for all 0 < i < ng + 1, where m is
the number of the components of f;.

It follows from homogeneity of ¢ and the above estimates that if initial
values T, satisfy the estimates |Zo| > clog, m® for large ¢ >> 1, then
there is some a > 0, 0 < m < ng+ 1 so that gy = ©"(Z) lies in log, m®
neighbourhood of aly, where alLg is a scale change of Ly by a.

Now we claim that if |Zy| > clog, m® holds, then there is a constant
1 > p > 0 and some ng so that ¢ is essentially contracting with respect
to (u,no + 1,19+ 2).

On the other hand if max(z;, 2, ') > m% hold for one of i = 0,1,
then the estimate |Zo| > clog, m® follows. Combining with these, the
conclusion follows by corollary 2.3.
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Let us verify the claim. Assume |Zy| > clog, m® holds for large ¢ and
choose m and g as above. Then for ng—1 <p <ng+2, g = ¢"(g) €
aC}. Since we have chosen a large ¢, it follows from homogeneity that
there is some 0 < p < 1 so that |g] < (1 — u)|go| holds.

Next by the assumption, y € cLg for some ¢ > 0. Then it follows again
by homogeneity that for p’ = ng or ng + 1, ¥ () = "7 (3) € cCy,
and the estimate [ (70)| < (1 — 1)|¢?(50)| < (1 — 1)[go| holds.

One can iterate the second step to see that ¢ is essentially contracting.
This verifies the claim.

This completes the proof.

Remark: When ¢ is recursive and not contracting, then the above proof
gives no information on boundedness of orbits for the corresponding
rational function.

3.C Perturbation of recursive maps: Let ¢ be a (max, +)-function.
A conserved polygon is a polygon P C R? on which any orbits (z,,_1,z,)
with (xg,21) € P lie.

Conserved polygons satisfy that (1) when ¢ is recursive, then closed
traces are conserved polygons, and (2) if ¢ is homogeneous, then they
are scale invariant, in the sense that if P is a conserved polygon, then
r P are also the same for any r > 0.

Let p(x,y) be a (max, +)-function with two variables, and |¢;| << 1 be
two small numbers, ¢ = 0, 1. ¢; perturbation of ¢ is given by:

Sﬁi(ﬂfoa r1) = (20, 1) + €.

Let fi(z0,21) be a rational function. Correspondingly ¢; perturbation
of f; is given by:

fii(z0,21) = 2" fi(20, 21).

Let (zg,z1) € R? be an initial value, and {z,}, be the orbits for
¢'. Throughout this section, we regard ¢’ as maps ¢' : (z,_1,7,) —
(2, Tny1), and study distributions of the sequences of points (z,,_1, z,) €
R2.
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3.D A recursive map: Let us calculate an example. Let zy,1 =
flzn_1,28) = Z—ZV be the recursive map of period 5. Its tropical
transform is given by:

IN+1 = QD(xN—L 5CN) = max(O, 5UN) — IN-1

whose orbits also have all period 5. Here we study dynamics given by
€0 perturbations of the homogeneous (max, +)-function:

Spe(xo, 371) = max((), xl) — Xy + €.

Let (zg,z1) = (1,0) be the initial value. Then the orbit of ¢ is given
by:

(1,0),(0,—1),(—1,0),(0,1),(1,1)
and the pentagon P; with the vertices above is mapped by ¢ into itself.
Thus P is a conserved pentagon, and since the equation is homogeneous,
any rP are also the case for any r > 0.

Here we show the following:

14w
7 -

Theorem 3.1. Let g; be any tropical deformation of f(z,w) =
Then € perturbations g;(z,w) = 2°g¢(z,w) are stationary.

For example, ¢°(z,w) = zf(HTw + l%), [ =0,1,... are all the cases.
Thus we have the following properties:

(1) If € > 0 is positive, then any iterations {zy}xy of gf are bounded
away from both zero and infinity.

(2) If € < 0 is negative, then any orbits of g with large norms of initial
values are unbounded.

Proof of theorem 3.1: Combinations of lemma 2.4 and proposition 3.1
with the following lemma verifies theorem 3.1. Let |¢|] << 1 be suffi-
ciently small. Let L. be the traces of ¢ with the end point (1,0), and
recall C; C L. in 3.B. Then we have:

Lemma 3.2. For any small €, ©° are focus, and the degrees of ©° are
equal to one.
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(1) If € > 0, then ¢ is stably focus, r(1,0) < 1, and Cy all lie in the
interior of Ps except (1,0).
(2) if € < 0, then it is unstably focus, r(1,0) > 1, and Cy all lie in the
exterior of Ps except (1,0).

Proof: For any signs of €, ¢°(1,0) = (0, —1 + €) hold. Let [ be the
segment connecting the points (1,0) and (0, —1 4+ €), and consider the
trace L. with the initial point (1,0).

The direct calculation gives its orbit as:

po=(1,0),p1 = (0,—1+¢), pp=(=1+¢€0), p3 = (0,(1 —¢)?),
pa=((1=€)? (1 —€)?), ps=((1—e€)e(l—e)?)

for both cases of 4+¢ > 0.
pe depends on signs of €. we have the following:

e {(6(1 — )2, (—=1426)(1—€)?) e>0
(e(1 — €)%, —(1 —¢€)?) e<0

Let S, be the broken lines which differ with respect to signs of € as
follows.

For € > 0, r(1,0) is the intersection between [(ps, pg) and the z-axis,
and so 71(1,0) = ((1 —€)3,0). S, is a broken line connecting the eight
pOthS {p()) <oy D6, 906(701(17 0)) - (07 _(1 _ €>4)}'

For € < 0, r}(1,0) is the intersection between [(py,ps) and the z-axis,
and so r1(1,0) = ((1 — €)2,0). S. is a broken line connecting the seven

points {po, ..., ps, ¢ (r'(1,0)) = (0,—(1 —€)3)}.

In both cases, we claim the inclusions:
Cy CS.C L.

Then it is immediate by drawing S, on the plane to see that it is inside
Ps for € > 0 and outside for € < 0, and the conclusions follow.

Now let us verify the claim. Notice that the bending points are ¢°(x,y)
with y = 0. Firstly for any points on Ly, all y components on the
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line are non positive. Thus ¢(Lg) is a straight line, Ly = 13 and so
Lo U (Ly) = 1§ U1} in 3.A. For any points on [{ = ¢¢(Lg) also, all y
components on the line are non positive. Thus (¢)?(Lg) = 1370 is also
a straight line, where 19 = I'". Next for any points on 15 = (¢)2(Ly),
all 4y components on the line are non negative. Thus (¢)?(Ly) is also a
straight line.

By the same reasoning, (¢°)‘(Lg) are all straight lines for 0 < i < 5
(e >0) and for 0 <i <4 (e <0).

Now for € > 0, I(ps, p°(r*(1,0))) = ©(ps,r1(1,0))) are straight lines,
and for € < 0, I(ps, p(r}(1,0))) = ¢*(ps,71(1,0))) are also the same.

These imply that S, are given by unions of segments, (¢°)'(Lg) (0 <
i <5) with I(ps, o(r1(1,0))) for € > 0, and (¢)"(Lg) (0 < i < 4) with
I(ps, ¢°(r1(1,0))) for € < 0. Thus the inclusion S, C L, hold for both
cases, and so (7 C S, also hold.

This completes the proof.

References

[GKP] R.GRAHAM, D.KNUTH AND O.PATASHNIK, Concrete mathe-
matics, Addison-Wesley (1994).

[HY] R.HIROTA AND H.YAHACGI, Recurrence equations, an integrable
system, Journal of Phys. Soc. Japan 71 pp. 2867-2872 (2002).

[K1] T.KATO, Operator dynamics in molecular biology, in the Proceed-
ings of the first international conference on natural computation,
L.N. in computer science 3611 pp. 974-989 (2005), Springer.

[K2] T.KATO, Pattern formation from projectively dynamical systems
and iterations by families of maps, MPI preprint (2006).

[LM] G.LiTvINOV AND V.MASLOV, The correspondence principle for

tdempotent calculus and some computer applications, Idempotency,
Ed. J.Gunawardena, Cambridge Univ. Press, pp420-443 (1998).

26



[MS] W. DE MELO AND S. VAN STRIEN, One dimensional dynamics,
Springer (1993).

[Mi] G.MIKHALKIN, Amoebas and tropical geoemtry, in Different faces
of geometry eds, S.Donaldson, Y.Eliashberg and M.Gromov,
Kluwer academic plenum publ., (2004).

[R] C.ROBINSON, Dynamical systems, stability, symbolic dynamics,
and chaos, Studies in Adv. Math., CRC press (1999).

[TI] D. TAKAHASHI AND M.IwA0, Geometrical dynamics of an inte-
grable piecewise-linear mapping, Bilinear integrable systems: from
classical to quantum, continuous to discrete, (NATO science series
IT: mathematics, physics and chemistry, eds. L.D.Faddeev, P.V.
Moerbeke, F.Lambert) 201 pp. 291-300 (2005)

[V] O.VIRO, Dequantization of real algebraic geometry on logarithmic
paper, Proc. of the European Congrress of Math., (2000).

(W] S.\WoLrrAM, Cellular automata and complexity, Addison Wesley
(1994).

Tsuyoshi Kato

Department of Mathematics
Faculty of Science

Kyoto University

Kyoto 606-8502

Japan

27



