
Finsler interpolation inequalities∗†

Shin-ichi OHTA‡

Department of Mathematics, Faculty of Science, Kyoto University,

Kyoto 606-8502, JAPAN (e-mail: sohta@math.kyoto-u.ac.jp)

Abstract

We extend Cordero-Erausquin, McCann and Schmuckenschläger’s Riemannian
Borell-Brascamp-Lieb inequality to Finsler manifolds. Among applications, we es-
tablish the equivalence between Sturm, Lott and Villani’s curvature-dimension con-
dition and a certain lower Ricci curvature bound. We also prove a new volume
comparison theorem for Finsler manifolds which is of independent interest.

1 Introduction

Optimal transport theory is making rapid and breathtaking progress in recent years as it
finds a large number of connections with various fields. Villani’s massive lecture notes [Vi2]
provide the global picture, and a great deal of new insight as well. One of the milestones
of the theory is a Riemannian Borell-Brascamp-Lieb inequality due to Cordero-Erausquin,
McCann and Schmuckenschläger [CMS1] that we will extend to Finsler manifolds. Their
work offers deep inspiration as well as a technical breakthrough in the investigation of
optimal transport in curved spaces. Furthermore, the Riemannian Borell-Brascamp-Lieb
inequality has many meaningful applications from its ancestors (the Prékopa-Leindler
inequality and the Brunn-Minkowski inequality) to the attractive curvature-dimension
condition. We will also extend them to Finsler manifolds.

Our generalization is twofold. We consider a Finsler manifold where one naturally
encounters a nonsymmetric distance function, and we equip it with an arbitrary measure.
Then the main difficulty arises from the lack of a good notion of the Hessian, and we always
have to take care on the nonsymmetric distance. Nevertheless, surprisingly enough, the
conclusion is completely the same as the Riemannian case (see Corollary 8.3 for a variant
derived from Theorem 1.2).

Theorem 1.1 (A Finsler Borell-Brascamp-Lieb inequality) Let (M,F ) be a connected,
forward geodesically complete, n-dimensional C∞-Finsler manifold, c(x, y) := d(x, y)2/2
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and let m be an arbitrary positive C∞-measure on M . Take three nonnegative measurable
functions f, g, h : M −→ [0,∞) and measurable sets A,B ⊂ M with

∫
A

f dm =
∫

B
g dm =

1. If there is t ∈ (0, 1) such that

1

h(z)1/n
≤ (1 − t)

(
v>

t (x, y)

f(x)

)1/n

+ t

(
v<

t (x, y)

g(y)

)1/n

(1.1)

holds for all x ∈ A, y ∈ B and z ∈ Zt(x, y), then we have
∫

M
h dm ≥ 1.

Here Zt(A,B) of A,B ⊂ M denotes the set consisting of points γ(t) such that γ :
[0, 1] −→ M is a minimal geodesic with γ(0) ∈ A and γ(1) ∈ B. In addition, v<

t and v>
t

are the volume distortion coefficients defined by

v<
t (x, y) := lim

r→0

m(Zt(x,B+(y, r)))

m(B+(y, tr))
, v>

t (x, y) := lim
r→0

m(Zt(B
−(x, r), y))

m(B−(x, (1 − t)r))
(1.2)

(< and > represent shapes of cones we have in mind), where B+(x, r) and B−(x, r) are
forward and backward open balls with center x and radius r (see (2.4)).

In order to obtain more concrete statements, we need to control the volume distortion
coefficients by means of geometric quantities of (M,F, m). Shen’s volume comparison
theorem ([Sh1], Theorem 7.1, see also [Sh2] for applications) is usable, whereas we also
give a new, sharper comparison theorem (Theorem 7.3) inspired by the theory of weighted
Riemannian manifolds. This theorem would be even more significant than Theorem 1.1
from the geometric viewpoint and there are a lot of analytic and geometric applications,
though we do not pursue that direction in this article.

One of the most sophisticated applications of the technique developed in the proof
of Theorems 1.1 and 7.3 is Theorem 1.2 below in which we successfully generalize the
curvature-dimension condition (also called the N -Ricci curvature bound) recently remark-
bly developed by Sturm [St2], [St3] and Lott and Villani [LV1], [LV2]. Again it is surprising
that the statement is completely similar to the weighted Riemannian situation.

Theorem 1.2 (The curvature-dimension condition) Let (M,F, m) be as in Theorem 1.1
with n ≥ 2 and take K ∈ R.

(i) For N ∈ (n,∞), (M,F, m) has N-Ricci curvature bounded below by K if and only
if we have

Ric(v) + ∂2
vV − 1

N − n
(∂vV)2 ≥ K (1.3)

for every unit vector v ∈ TM .

(ii) (M,F, m) has n-Ricci curvature bounded below by K if and only if Ric(v) ≥ K and
∂vV = 0 hold for every unit vector v ∈ TM .

(iii) (M,F, m) has ∞-Ricci curvature bounded below by K if and only if Ric(v)+∂2
vV ≥ K

holds for every unit vector v ∈ TM .
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Here we set, given a unit vector v ∈ TxM ,

V(v) := log

(
volgv(B

+
TxM(0, 1))

mx(B
+
TxM(0, 1))

)
, (1.4)

where volgv and mx stand for Lebesgue measures on TxM induced from gv and m, re-
spectively (see (2.2) for the definition of gv). We can rewrite this as mx(B

+
TxM(0, 1)) =

e−V(v) volgv(B
+
TxM(0, 1)). Then we define

∂vV :=
d

dt

∣∣∣
t=0

V
(
η̇(t)

)
, ∂2

vV :=
d2

dt2

∣∣∣
t=0

V
(
η̇(t)

)
, (1.5)

where η : (−ε, ε) −→ M is the geodesic with η̇(0) = v. We remark that constant
multiplication Cm does not affect ∂vV nor ∂2

vV, it just turns V into V − log C. Theorem
1.2 guarantees that our curvature bound (with weight) is not artificial, for the curvature-
dimension condition involves only the distance and the measure (see Definition 8.1).

It is known that Banach spaces have nonnegative Ricci curvature in terms of the
curvature-dimension condition (see [Vi2]). This means that the curvature-dimension
condition does not characterize Riemannian spaces. From a different viewpoint, the
curvature-dimension condition can be a powerful tool also in the investigation of Finsler
spaces. This is what we have done in this article. In fact, some of standard applica-
tions of our theorems, such as the Lichnerowicz inequality (Corollary 8.5) and normal
concentration of measures (Proposition 9.6), seem new for general Finsler manifolds.

We explain an outline of the proof of Theorem 1.1. We first establish a Finsler analogue
of the Brenier-McCann solution to the Monge-Kantorovich problem (Theorem 4.10). That
is to say, a unique optimal way of transporting one probability measure to another is doing
along the gradient vector field of some c-concave function φ. Although we will give a self-
contained proof along the same lines as McCann’s [Mc], this part follows also from Villani’s
[Vi2]. He treats quite general Lagrangian cost functions on Riemannian manifolds, while
the underlying Riemannian structure plays only a subsidiary role.

We next analyze the c-concave function φ to prove Theorem 1.1. The point is to give
up trying to formulate a Finsler Hessian and use the second order differential d(dφ) :
TM −→ T (T ∗M). Even more important from the technical viewpoint is to take out
vertical terms of d(dφ) (see Lemma 3.2, Proposition 5.1). Our argument makes it clear
what the Hessian is implicitly doing in [CMS1]. Once we realize this method, it turns
out that we can closely follow the proof in [CMS1]. Moreover, by virtue of our arbitrarily
fixed underlying measure m, Theorem 1.1 includes a weighted version studied in [CMS2].

The article is organized as follows. We start with a review of Finsler geometry in
Section 2, and show technical lemmas in Section 3. Then we study the Brenier-McCann
solution to the Monge-Kantorovich problem in Section 4. Sections 5 and 6 are devoted
to a proof of Theorem 1.1. A volume comparison theorem is established in Section 7.
We discuss the curvature-dimension condition in Section 8. We finally present selected
applications in Section 9.

Throughout the article, unless otherwise indicated, (M,F ) is a connected, forward
geodesically complete, n-dimensional C∞-Finsler manifold, c(x, y) := d(x, y)2/2 is the
quadratic cost function and m is an arbitrary positive C∞-measure on M . We emphasis
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that F is merely positively homogeneous, therefore c is generally nonsymmetric. Every
geodesic will have a constant speed.

Acknowledgements. I would like to thank Karl-Theodor Sturm for discussions and en-
couragement. This work was done while I was visiting Institut für Angewandte Mathe-
matik, Universität Bonn. I am also grateful to the institute for its hospitality.

2 Preliminaries for Finsler geometry

In this section, we review the fundamentals of Finsler geometry. Basic references are
[BCS] and [Sh2].

2.1 Finsler structures and the Legendre transform

Let M be a connected, n-dimensional C∞-manifold. For x ∈ M , denote by TxM the
tangent space at x, put TM :=

∪
x∈M TxM and let π : TM −→ M be the natural

projection. Given a local coordinate system (xi)n
i=1 : U −→ Rn on an open set U ⊂ M ,

we will always denote by (xi, vi)n
i=1 the local coordinate system on π−1(U) ⊂ TM given

by, for v ∈ π−1(U),

v =
n∑

i=1

vi ∂

∂xi

∣∣∣
π(v)

.

Definition 2.1 (Finsler structures) A C∞-Finsler structure of a C∞-manifold M is a
function F : TM −→ [0,∞) satisfying the following conditions:

(1) (Regularity) The function F is C∞ on TM \ 0, where 0 stands for the zero section.

(2) (Positive homogeneity of degree 1) For any v ∈ TM and positive number λ > 0, we
have F (λv) = λF (v).

(3) (Strong convexity) Given a local coordinate system (xi)n
i=1 on U ⊂ M , the n × n

matrix (
gij(v)

)
:=

(
1

2

∂2(F 2)

∂vi∂vj
(v)

)
is positive-definite at every v ∈ π−1(U) \ 0.

In other words, each tangent space (TxM,F ) is a Minkowski space and F varies C∞ in
the horizontal direction. The above definition has collected as few conditions as possible,
other expected properties follow from them (e.g., F > 0 on TM \ 0, strict convexity
of F etc.). We emphasis that, however, F is not necessarily absolutely homogeneous,
namely F (v) 6= F (−v) may happen. It is sometimes helpful to consider the reverse of F ,
F̄ (v) := F (−v), which turns everything around (e.g., distance and geodesics).

The Legendre transform L : T ∗M −→ TM associates each co-vector α ∈ T ∗
xM with a

unique vector v = Lx(α) ∈ TxM such that F (v) = F ∗(α) and α(v) = F ∗(α)2, where F ∗

4



denotes the dual Minkowski norm of F on T ∗
xM . (This L is the inverse of that in [BCS,

§14.8].) The transform L is a C∞-diffeomorphism from T ∗M \ 0 to TM \ 0, and C0 on
T ∗M as well. For a C1-function f : M −→ R, we define the gradient vector of f at x ∈ M
as the Legendre transform of its differential, i.e., ∇f(x) := Lx(dfx) ∈ TxM .

Let f : M −→ R be a C2-function. We do not have a good notion of a Finsler Hessian
(it is usually just the second order differentiation along geodesics), so that we will use the
differentiation of df : M −→ T ∗M instead, namely d(df)x : TxM −→ Tdfx(T

∗M). In a
local coordinate system, it is written as

d(df)x =
n∑

i,j=1

(
δi

j
∂

∂xi

∣∣∣
dfx

+
∂2f

∂xi∂xj
(x)

∂

∂vi

∣∣∣
dfx

)
dxj|x. (2.1)

We remark that the vertical part

n∑
i,j=1

∂2f

∂xi∂xj
(x)

∂

∂vi

∣∣∣
dfx

dxj|x

is coordinate-free only when dfx = 0. Note also that the coodinate transform on Tdfx(T
∗M)

between (xi, vi) and (yj, wj) is

∂

∂xi
=

n∑
j=1

{
∂yj

∂xi

∂

∂yj
+

n∑
k=1

∂f

∂xk

∂2xk

∂xi∂yj

∂

∂wj

}
,

∂

∂vi
=

n∑
j=1

∂xi

∂yj

∂

∂wj
.

Therefore the vertical part behaves well and can be identified with Tdfx(T
∗
xM), whereas the

horizontal part is cumbersome. These observations underlie Lemma 3.2 and Proposition
5.1.

2.2 The Chern connection and covariant derivatives

Given v ∈ TxM \0, the n×n matrix (gij(v)) in Definition 2.1 defines a useful Riemannian
structure of TxM and we denote it by gv, that is,

gv

( n∑
i=1

wi
1

∂

∂xi

∣∣∣
x
,

n∑
j=1

wj
2

∂

∂xj

∣∣∣
x

)
:=

n∑
i,j=1

gij(v)wi
1w

j
2. (2.2)

Note that gv(v, v) = F (v)2 follows from Euler’s theorem. Moreover, gv is linked to the
Legendre transform through the formula L−1

x (v)(w) = gv(v, w) for w ∈ TxM . We call
gij(v) the fundamental tensor and further define the Cartan tensor by, for v ∈ TM \ 0,

Aijk(v) :=
F (v)

2

∂gij

∂vk
(v) =

F (v)

4

∂3(F 2)

∂vi∂vj∂vk
(v).

If F is coming from a Riemannian structure, then gv coincides with the original Rieman-
nian structure for all v ∈ TM \ 0, and hence the Cartan tensors vanish everywhere. In
fact, the converse is also true, therefore F is Riemannian if and only if the Cartan tensors
vanish everywhere on TM \ 0.
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We define the formal Christoffel symbol by

γi
jk(v) :=

1

2

n∑
l=1

gil(v)

{
∂glj

∂xk
(v) − ∂gjk

∂xl
(v) +

∂gkl

∂xj
(v)

}
for v ∈ TM \ 0, and also define

N i
j(v) :=

n∑
k=1

γi
jk(v)vk − 1

F (v)

n∑
k,l,m=1

Ai
jk(v)γk

lm(v)vlvm,

where (gij) stands for the inverse matrix of (gij) and Ai
jk :=

∑
l g

ilAljk.
Given a connection ∇ on the pulled-back tangent bundle π∗TM , we denote its con-

nection one-forms by ωj
i, that is,

∇v
∂

∂xj
=

n∑
i=1

ωj
i(v)

∂

∂xi
, ∇vdxi = −

n∑
j=1

ωj
i(v) dxj.

Different from the Riemannian situation, there are several connections (due to Cartan,
Chern, Berwald and so on) each of which is canonical in its own way. We use only one of
them in this article.

Definition 2.2 (The Chern connection) Let (M,F ) be a C∞-Finsler manifold. Then
there exists a unique connection ∇ on the pulled-back tangent bundle π∗TM , called the
Chern connection, whose connection one-forms ωj

i satisfy the following conditions:
Fix a local coordinate system (xi)n

i=1 on U ⊂ M .

(1) (Torsion-freeness) For any i = 1, 2, . . . , n, we have

n∑
j=1

dxj ∧ ωj
i = 0.

(2) (Almost g-compatibility) For any i, j = 1, 2, . . . , n, we have

dgij −
n∑

k=1

(gkjωi
k + gikωj

k) =
2

F

n∑
k=1

Aijk δvk,

where we set δvk := dvk +
∑

l N
k
l dxl.

In the remainder of this section, ∇ always stands for the Chern connection on π∗TM .
The torsion-freeness says that the connection one-form ωj

i does not have any dvk-term,
so that we can write ωj

i =
∑

k Γi
jk dxk. Together with the almost g-compatibility, we

find the explicit formula

Γi
jk = γi

jk −
1

F

n∑
l,m=1

gil(AljmNm
k − AjkmNm

l + AklmNm
j).
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If (M,F ) is Riemannian, then the almost g-compatibility reduces to the g-compatibility
dgij =

∑
k(gkjωi

k +gikωj
k), therefore the Chern connection is nothing but the Levi-Civita

connection. We say that a Finsler manifold (M,F ) is Berwald type if Γi
jk(v) depends only

on x = π(v) (i.e., Γi
jk is fiber-wise constant). For instance, Riemannian manifolds and

Minkowski spaces are Berwald type. Roughly speaking, a Finsler manifold of Berwald
type is modeled on a single Minkowski space. Finsler manifolds of Berwald type have
already provided a rich family of non-Riemannian spaces.

For a C∞-vector field X on M and two nonzero vectors v, w ∈ TxM \ 0, we define the
covariant derivative Dw

v X with reference vector w as

(Dw
v X)(x) :=

n∑
i,j=1

{
vj ∂X i

∂xj
(x) +

n∑
k=1

Γi
jk(w)vjXk(x)

}
∂

∂xi

∣∣∣
x
,

where X(x) =
∑

i X
i(x)(∂/∂xi)|x. We usually choose w = v or X(x).

2.3 Flag and Ricci curvatures

The Chern connection ∇ derives the corresponding curvature two-form

Ωj
i(v) := dωj

i −
n∑

k=1

ωj
k ∧ ωk

i,

where we put ω ∧ τ := ω ⊗ τ − τ ⊗ ω. It can be rewritten as

Ωj
i(v) =

1

2

n∑
k,l=1

Rj
i
kl(v) dxk ∧ dxl +

1

F (v)

n∑
k,l=1

Pj
i
kl(v) dxk ∧ δvl,

where we impose Rj
i
kl = −Rj

i
lk.

Given two linearly independent vectors v, w ∈ TxM \ 0, we define the flag curvature
by

K(v, w) :=
gv(R

v(w, v)v, w)

gv(v, v)gv(w,w) − gv(v, w)2
,

where we set, for v =
∑

i v
i(∂/∂xi)|x and w =

∑
i w

i(∂/∂xi)|x,

Rv(w, v)v :=
n∑

i,j,k,l=1

vjRj
i
kl(v)wkvl ∂

∂xi

∣∣∣
x
.

See [Sh2, §6] for a nice geometric interpretation of K. For later convenience, we recall
from [BCS, (3.4.7), Exercise 3.4.4(c)] that, given v ∈ TxM \ 0 and w,w′ ∈ TxM ,

gv

(
Rv(w, v)v, w′) = gv

(
Rv(w′, v)v, w

)
, Rv(v, v) = 0. (2.3)

Unlike the Riemannian case, the flag curvature K(v, w) depends not only on the flag
{λv + µw |λ, µ ∈ R}, but also on the flag pole {λv |λ > 0}. One merit of the flag
curvature is its independence of the choice of connections.
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For v ∈ TxM \ 0, the Ricci curvature of v is defined by

Ric(v) :=
n−1∑
i=1

K(v, ei),

where e1, e2, . . . , en−1, v/F (v) form an orthonormal basis of TxM with respect to gv.

2.4 Geodesics, the exponential map and cut loci

For a C1-curve η : [0, r] −→ M , we define its arclength in a natural way by

L(η) :=

∫ r

0

F
(
η̇(t)

)
dt, η̇(t) :=

dη

dt
(t).

Then the corresponding distance function d : M × M −→ [0,∞) is given by d(x, y) :=
infη L(η), where the infimum is taken over all C1-curves η from x to y. We emphasis that
d is not necessarily symmetric (i.e., d(x, y) 6= d(y, x) may happen) because F is merely
positively homogeneous. Nonetheless, d is positive outside the diagonal set and satisfies
the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). We define the forward and backward
open balls of center x ∈ M and radius r > 0 by

B+(x, r) := {y ∈ M | d(x, y) < r}, B−(x, r) := {y ∈ M | d(y, x) < r}. (2.4)

We also define open balls in TxM by

B+
TxM(0, r) := {v ∈ TxM |F (v) < r}, B−

TxM(0, r) := {v ∈ TxM |F (−v) < r}.

A C∞-curve η : [0, r] −→ M is called a geodesic (of constant speed) if it satisfies
Dη̇

η̇ η̇ = 0 on (0, r). We remark that the reverse curve η̄(t) := η(r − t) may not be a

geodesic (η̄ is a geodesic with respect to the reverse Finsler structure F̄ (v) = F (−v)). For
C∞-vector fields V,W along a nonconstant geodesic η : [0, r] −→ M , it holds that

d

dt

[
gη̇(t)(V,W )

]
= gη̇(t)(D

η̇
η̇V,W ) + gη̇(t)(V,Dη̇

η̇W ). (2.5)

We define the exponential map by exp v = expπ(v) v := η(1) for v ∈ TM if there is
a geodesic η : [0, 1] −→ M with η̇(0) = v. The exponential map is only C1 at the zero
section, and is C2 at the zero section if and only if (M,F ) is Berwald type. Moreover,
the squared distance function d(x, ·)2 from a point x ∈ M is C2 at x for all x ∈ M if
and only if (M,F ) is Riemannian ([Sh1, Proposition 2.2]). The lack of C2-smoothness is
troublesome and we need some extra discussions in later sections which are unnecessary
in the Riemannian case.

A Finsler manifold (M,F ) is said to be forward geodesically complete if the exponential
map is defined on the entire TM , in other words, if there is a geodesic η : [0,∞) −→ M
with η̇(0) = v for any given v ∈ TM . Then any two points in M can be connected by
a minimal geodesic, i.e., a geodesic whose arclength coincides with the distance from the
initial point to the terminal point.
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Fix x ∈ M . For a unit vector v ∈ TxM , let r(v) ∈ (0,∞] be the supremum of r > 0
such that the geodesic t 7−→ expx tv is minimal on [0, r]. If r(v) < ∞, then expx(r(v)v) is
called a cut point of x, and the cut locus Cut(x) of x is defined as the set of all cut points
of x. The exponential map expx is a C∞-diffeomorphism from {tv | v ∈ TxM,F (v) =
1, t ∈ (0, r(v))} to M \ (Cut(x)∪ {x}). We remark that y is a cut point of x with respect
to F if and only if x is a cut point of y with respect to the reverse Finsler structure F̄ of
F .

2.5 Jacobi fields and variational formulas for arclength

A C∞-vector field J along a geodesic η : [0, r] −→ M is called a Jacobi field if it satisfies

Dη̇
η̇D

η̇
η̇J + Rη̇(J, η̇)η̇ = 0

on (0, r). Any Jacobi field is represented as the variational vector field of a geodesic
variation and vice versa. For C∞-vector fields V,W along a nonconstant geodesic η :
[0, r] −→ M , we define the index form by

I(V,W ) :=
1

F (η̇)

∫ r

0

{
gη̇(t)(D

η̇
η̇V,Dη̇

η̇W ) − gη̇(t)

(
Rη̇(V, η̇)η̇,W

)}
dt.

Note that I(V,W ) = I(W,V ) holds by (2.3). We deduce from (2.5) that, if V is a Jacobi
field,

I(V,W ) = F (η̇)−1
[
gη̇(t)(D

η̇
η̇V,W )

]r

t=0
. (2.6)

We consider a C∞-variation σ : [0, r] × (−ε, ε) −→ M and set

T (t, s) := ∂tσ(t, s) =
∂σ

∂t
(t, s), U(t, s) := ∂sσ(t, s) =

∂σ

∂s
(t, s).

Then the first variation of arclength is written as

∂L(σs)

∂s
=

[
gT (t,s)(U, T )

F (T (t, s))

]r

t=0

−
∫ r

0

gT (t,s)

(
U,DT

T

[
T

F (T )

])
dt, (2.7)

where we put σs(t) := σ(t, s). For a C∞-variation σ : [0, r] × (−ε, ε) −→ M such that σ0

is a geodesic, its second variation of arclength is written by using the index form as

∂2L(σs)

∂s2

∣∣∣
s=0

= I(U,U) +

[
gT (t)(D

T
UU, T )

F (T (t))

]r

t=0

−
∫ r

0

1

F (T (t))

{
∂F (∂tσ)

∂s
(t)

}2

dt. (2.8)

We omitted s = 0 in the right-hand side for brevity.

2.6 A word for the underlying measure m

Different from Riemannian manifolds, there is a variety of canonical measures on Finsler
manifolds, such as the Busemann-Hausdorff measure, the Holmes-Thompson measure and
so forth (see [AT]). On the other hand, as we have weighted measures in our sights, we
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shall eventually treat all measures. Therefore it is natural to consider an arbitrarily chosen
positive C∞-measure on M in the first place, and we will denote it by m. (To be precise,
in any local coordinate system (xi)n

i=1, we can write m = ϕdx1 · · · dxn using some positive
C∞-function ϕ.) See Section 7 for a further convincing discussion.

An advantage of this presentation is that, as we mentioned above, it is a priori covering
the weighted version. Take a C∞-function V : M −→ R and consider m̂ = e−V m. For
f , g and h as in Theorem 1.1, we set f̂ = feV , ĝ = geV and ĥ = heV . Note that∫

A
f̂ dm̂ =

∫
B

ĝ dm̂ = 1. Then the corresponding volume distortion coefficients of m̂ are

v̂<
t (x, y) = eV (y)−V (z)v<

t (x, y), v̂>
t (x, y) = eV (x)−V (z)v>

t (x, y)

if Zt(x, y) consists of a single point z (this situation will turn out essential). Thus the
hypothesis (1.1) is rewritten as

1

ĥ(z)1/n
≤ (1 − t)

(
v̂>

t (x, y)

f̂(x)

)1/n

+ t

(
v̂<

t (x, y)

ĝ(y)

)1/n

,

and the conclusion is
∫

M
ĥ dm̂ =

∫
M

h dm ≥ 1.

3 Technical ingredients

Before beginning to study optimal transport, we prove two rather technical lemmas in
Finsler geometry for later use.

3.1 A characterization of cut loci

We will use the following lemma in the proof of Proposition 5.1.

Lemma 3.1 If y is a cut point of x, then the function f(z) := d(z, y)2/2 satisfies

lim inf
v→0∈TxM

f(ξv(1)) + f(ξv(−1)) − 2f(x)

F (v)2
= −∞,

where ξv : [−1, 1] −→ M is the geodesic with ξ̇v(0) = v.

Proof. First of all, y is a cut point of x if either there are two minimal geodesics from x
to y, or y is the first conjugate point of x along a unique minimal geodesic η from x to
y, namely there is a Jacobi field J along η vanishing only at x and y (cf. [BCS, Corollary
8.2.2]).

We first assume that there are two distinct minimal geodesics η, ζ : [0, d(x, y)] −→ M
from x to y. Put v = ζ̇(0), w = η̇(0) and yε = η(d(x, y) − ε) for fixed small ε > 0, and
note that yε 6∈ Cut(x). Then the first variation formula (2.7) shows that, for t > 0,

f
(
ξv(−t)

)
− f(x) ≤

{
d
(
ξv(−t), yε

)
+ ε

}2
/2 −

{
d(x, yε) + ε

}2
/2

= t{d(x, yε) + ε}gη̇(0)

(
v, η̇(0)

)
+ O(t2)

= d(x, y)gw(tv, w) + O(t2).
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Here the error term O(t2) is ensured by the smoothness of the geodesic ξv. However, we
find

f
(
ξv(t)

)
− f(x) = {d(x, y) − t}2/2 − d(x, y)2/2 = −td(x, y) + t2/2.

Therefore we have

f(ξv(t)) + f(ξv(−t)) − 2f(x)

t2
≤ −1 − gw(v, w)

t
d(x, y) + t−2O(t2) → −∞

as t tends to zero, for gw(v, w) = L−1
x (w)(v) < 1.

We next treat the case where y is the first conjugate point along a unique minimal
geodesic η : [0, 1] −→ M from x to y. Take a Jacobi field J along η vanishing only at
0 and 1. Put v = Dη̇

η̇J(0) ∈ TxM \ 0 and let V1 be the parallel vector field along η

(i.e., Dη̇
η̇V1 ≡ 0) with V1(0) = v. We further define V (t) := (1 − t)V1(t) for t ∈ [0, 1]

and Jε := J + εV for small ε > 0. Note that Jε(0) = εv and Jε(1) = 0. In addition,
d[gη̇(t)(J, V1)]/dt|t=0 = gη̇(0)(v, v) > 0 ensures that Jε 6= 0 on [0, 1) for sufficiently small
ε > 0.

Consider the variation σ : [0, 1] × [−1, 1] −→ M given by σ(t, s) = σs(t) := ξJε(t)(s).
We remark that σ is C∞ on (0, 1) × (−1, 1) since Jε 6= 0 on [0, 1). Then the second
variation formula (2.8) shows that

∂2L(σs)

∂s2

∣∣∣
s=0

= I(Jε, Jε) −
gη̇(0)(D

η̇
Jε

Jε, η̇)

d(x, y)
− 1

d(x, y)

∫ 1

0

{
∂F (∂tσ)

∂s
(t)

}2

dt.

We put

Tη̇(0)(v) := gη̇(0)(D
v
vv − Dη̇

vv, η̇) = ε−2gη̇(0)(D
Jε
Jε

Jε − Dη̇
Jε

Jε, η̇) = −ε−2gη̇(0)(D
η̇
Jε

Jε, η̇)

(this quantity is called the tangent curvature). The last equality follows from the con-
struction that σ(0, ·) = ξJε(0) is a geodesic. These together yield, using (2.6),

∂2L(σs)

∂s2

∣∣∣
s=0

≤ I(J, J) + 2εI(J, V ) + ε2I(V, V ) + ε2Tη̇(0)(v)/d(x, y)

=
{[

gη̇(D
η̇
η̇J, J)

]1

t=0
+ 2ε

[
gη̇(D

η̇
η̇J, V )

]1

t=0
+ ε2Tη̇(0)(v)

}
/d(x, y) + ε2I(V, V )

= {−2εgη̇(0)(v, v) + ε2Tη̇(0)(v)}/d(x, y) + ε2I(V, V ).

Therefore we obtain

lim inf
s→0

f(ξv(εs)) + f(ξv(−εs)) − 2f(x)

ε2s2

≤ lim inf
s→0

L(σs)
2 + L(σ−s)

2 − 2L(η)2

2ε2s2
=

1

2ε2

∂2L(σs)

∂s2

∣∣∣
s=0

≤ −ε−1gη̇(0)(v, v)/d(x, y) + Tη̇(0)(v)/2d(x, y) + I(V, V )/2.

Letting ε go to zero completes the proof. 2
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3.2 Volume distortion coefficients

The next lemma plays a key role in the proof of Proposition 5.3. Recall (1.2) for the
definition of volume distortion coefficients v<

t and v>
t . For a linear operator Q : TxM −→

TyM , we define D[Q] := my(Q(A))/mx(A), where mx and my stand for Lebesgue measures
on TxM and TyM induced from m, and A ⊂ TxM is an arbitrary nonempty open set.

Lemma 3.2 Fix distinct points x, y ∈ M with y 6∈ Cut(x) and let η : [0, 1] −→ M be the
unique minimal geodesic from x to y. For t ∈ (0, 1], we define f̄t(z) := −d(z, η(t))2/2.
Then we have, for any t ∈ (0, 1),

v<
t (x, y) = D

[
d(expx)∇f̄t(x) ◦ [d(expx)∇f̄1(x)]

−1
]
,

v>
t (x, y) = (1 − t)−nD

[
d(expx ◦Lx)d(f̄t)x

◦
[
d
(
d(tf̄1)

)
x
− d(df̄t)x

]]
.

In the first equation, we identify T∇f̄t(x)(TxM) and T∇f̄1(x)(TxM). In the second, the
vertical part of Td(f̄t)x

(T ∗M) is identified with Td(f̄t)x
(T ∗

xM).

Proof. For small r > 0, we define τ<
t := expx ◦(t exp−1

x ) : B+(y, r) −→ M . Then we have

v<
t (x, y) = lim

r→0

m(τ<
t (B+(y, r)))

m(B+(y, tr))
= t−nD[d(τ<

t )y] = D
[
d(expx)∇f̄t(x) ◦ [d(expx)∇f̄1(x)]

−1
]
.

We similarly define τ>
t := expF̄

y ◦((1 − t)(expF̄
y )−1) : B−(x, r) −→ M , where expF̄

denotes the exponential map with respect to the reverse Finsler structure F̄ of F . We
can rewrite this as τ>

t (z) = expz ◦Lz(t · d(f̄1)z), and hence

v>
t (x, y) = lim

r→0

m(τ>
t (B−(x, r)))

m(B−(x, (1 − t)r))
= (1 − t)−nD[d(τ>

t )x]

= (1 − t)−nD
[
d(exp ◦L)d(tf̄1)x

◦ d
(
d(tf̄1)

)
x

]
.

In order to synchronize with the assertion of the lemma, we remark that expz ◦Lz(d(f̄t)z) =
η(t) for all z ∈ B−(x, r), so that d(exp ◦L)d(f̄t)x

◦ d(df̄t)x = 0. Since d(f̄t)x = d(tf̄1)x, we
obtain

v>
t (x, y) = (1 − t)−nD

[
d(exp ◦L)d(f̄t)x

◦
[
d
(
d(tf̄1)

)
x
− d(df̄t)x

]]
.

Furthermore, as the image of d(d(tf̄1))x − d(df̄t)x : TxM −→ Td(f̄t)x
(T ∗M) is contained in

the vertical part (see (2.1)), we can replace d(exp ◦L)d(f̄t)x
with d(expx ◦Lx)d(f̄t)x

. 2

We remark that the function h(z) := tf̄1(z)−f̄t(z) = d(z, η(t))2/2−td(z, y)2/2 satisfies(
∂2h

∂xi∂xj
(x)

)
≥ 0 (3.1)

in any local coordinate system around x. In fact, we have

2h(z) ≥ d
(
z, η(t)

)2 − t
{
d
(
z, η(t)

)
+ d

(
η(t), y

)}2

= (1 − t)d
(
z, η(t)

)2 − td
(
η(t), y

)2 − 2
√

1 − t
t√

1 − t
d
(
z, η(t)

)
d
(
η(t), y

)
≥ −

(
t2

1 − t
+ t

)
d
(
η(t), y

)2
= −(1 − t)td(x, y)2 = 2h(x).
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4 Optimal transport via c-concave functions

In this section, as the first step toward Theorem 1.1, we study how optimal transport
between two measures is described using a c-concave function. Our discussion closely fol-
lows McCann’s [Mc] concerning Riemannian manifolds. See [Br] for the case of Euclidean
spaces and [Be] for Alexandrov spaces. We also refer to [AGS], [RR], [Vi1] and [Vi2] for
background information and further developments. In this and the following sections, c
always stands for the quadratic cost function c(x, y) := d(x, y)2/2 on a Finsler manifold
(M,F ).

4.1 c-concave functions

Let X,Y ⊂ M be two compact sets. Given an arbitrary function φ : X −→ R ∪ {−∞},
we define its c-transform φc : Y −→ R ∪ {−∞} relative to (X,Y ) by

φc(y) := inf
x∈X

{c(x, y) − φ(x)}.

Similarly, we define the c-transform of a function ψ : Y −→ R∪ {−∞} relative to (X,Y )
by ψc(x) := infy∈Y {c(x, y) − ψ(y)} for x ∈ X. (Be careful of the order of x and y in c.)

Definition 4.1 (c-concave functions) Let X,Y ⊂ M be two compact sets. Then a func-
tion φ : X −→ R ∪ {−∞} is said to be c-concave relative to (X,Y ) if it is not identically
−∞ and if there is a function ψ : Y −→ R ∪ {−∞} whose c-transform ψc relative to
(X,Y ) coincides with φ.

We also say that ψ : Y −→ R ∪ {−∞} is c-concave relative to (X,Y ) if it is not
identically −∞ and if there is a function φ : X −→ R ∪ {−∞} for which φc = ψ holds.
(We hope that this convention is more reasonable than introducing c̄(y, x) := c(x, y) and
saying that ψ is c̄-concave relative to (Y,X).) We will always fix the order (X,Y ) for
avoiding confusion. We summarize basic facts of the c-transform and c-concave functions
in the next lemma.

Lemma 4.2 Take two compact sets X,Y ⊂ M and a function φ : X −→ R ∪ {−∞}.
Then the following properties hold:

(i) We have φ ≤ φcc and φc = φccc.

(ii) Assume that φ is not identically −∞. Then φ is c-concave if and only if φ = φcc.

(iii) If φ is c-concave, then it is Lipschitz continuous and its Lipschitz constant is bounded
above by a constant depending only on X and Y .

In particular, given a c-concave function φ : X −→ R and x ∈ X, we can choose a
point y ∈ Y which attains infy∈Y {c(x, y) − φc(y)} (= φcc(x) = φ(x)).

Definition 4.3 (c-superdifferentials) Let X,Y ⊂ M be compact sets and φ : X −→ R
be a c-concave function relative to (X,Y ). Then the c-superdifferential of φ at a point
x ∈ X is the nonempty set

∂cφ(x) := {y ∈ Y |φ(x) = c(x, y) − φc(y)}.
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For a c-concave function ψ : Y −→ R relative to (X,Y ) and y ∈ Y , we similarly define

∂cψ(y) := {x ∈ X |ψ(y) = c(x, y) − ψc(x)}.

We record two straightforward properties for later convenience.

Lemma 4.4 Take two compact sets X,Y ⊂ M and a c-concave function φ : X −→ R
relative to (X,Y ). Then the following properties hold:

(i) It holds that y ∈ ∂cφ(x) if and only if x ∈ ∂cφc(y).

(ii) We have y ∈ ∂cφ(∂cφc(y)).

Proof. (i) Note that both y ∈ ∂cφ(x) and x ∈ ∂cφc(y) are equivalent to φ(x) + φc(y) =
c(x, y). (ii) Take x ∈ ∂cφc(y) and observe that (i) implies y ∈ ∂cφ(x) ⊂ ∂cφ(∂cφc(y)). 2

Since a c-concave function φ is Lipschitz continuous, it is differentiable almost every-
where. At a differentiable point, we find a nice description of ∂cφ(x).

Lemma 4.5 Take two compact sets X,Y ⊂ M and a c-concave function φ : X −→ R rel-
ative to (X,Y ). If φ is differentiable at x ∈ X, then we have ∂cφ(x) = {expx(∇(−φ)(x))}.
Moreover, the curve η(t) := expx(t∇(−φ)(x)), t ∈ [0, 1], is a unique minimal geodesic
from x to expx(∇(−φ)(x)).

Proof. Fix arbitrary y ∈ ∂cφ(x) and define f(z) := c(z, y) = d(z, y)2/2. For any v ∈
TxM , the definition of ∂cφ(x) yields that

f(expx v) ≥ φc(y) + φ(expx v) = f(x) − φ(x) + φ(expx v) = f(x) + dφx(v) + o
(
F (v)

)
.

(Thus dφx ∈ ∂∗f(x) in the sense of Definition 4.6 below.) Take a minimal geodesic
η : [0, d(x, y)] −→ M from x to y. Given ε > 0, put yε = η(d(x, y) − ε) and note that
η|[0,d(x,y)−ε] does not cross the cut locus of x. Then we observe from the first varition
formula (2.7) that, as in the proof of Lemma 3.1,

f(expx v) − f(x) ≤ {d(expx v, yε) + ε}2/2 − {d(x, yε) + ε}2/2

= −{d(x, yε) + ε}gη̇(0)

(
v, η̇(0)

)
+ o

(
F (v)

)
= −d(x, y)L−1

x

(
η̇(0)

)
(v) + o

(
F (v)

)
.

This implies dφx(v) ≤ −d(x, y)L−1
x (η̇(0))(v) for all v ∈ TxM , and hence ∇(−φ)(x) =

d(x, y) · η̇(0). Therefore we obtain y = η(d(x, y)) = expx(∇(−φ)(x)) and η is the unique
minimal geodesic from x to y. 2

The above lemma will be sharpend up in Proposition 5.1 using the almost everywhere
second order differentiability of c-concave functions. Such differentiability was established
in [Oh4] along with a generalized Alexandrov-Bangert theorem. To state it, we recall some
terminologies in non-smooth analysis.
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Definition 4.6 (Subdifferentials) Take a function f : M −→ R and a point x ∈ M .
Then a co-vector α ∈ T ∗

xM is called a subgradient of f at x if we have

f(expx v) ≥ f(x) + α(v) + o
(
F (v)

)
for v ∈ TxM . The set of all subgradients at x is called the subdifferential of f at x and
denoted by ∂∗f(x) ⊂ T ∗

xM .

Any c-concave function admits a (not necessarily unique) subgradient everywhere. In
Euclidean spaces and Riemannian manifolds, the dual of α in Definition 4.6 is usually
called the subgradient, and the corresponding subdifferential ∂f(x) is a subset of TxM .
Also in Finsler manifolds, it is possible to define a subgradient as an element of TxM
through the Legendre transform. It actually coincides with the gradient vector of f if f
is differentiable at x, for we have ∂∗f(x) = {dfx} and ∂f(x) = {∇f(x)}.

Definition 4.7 (Second order differentials) Take a function f : M −→ R and let Φ :
U −→ Rn be a local coordinate system on an open set U ⊂ M with Φ(x) = 0. Then f is
said to be second order differentiable at x if f is differentiable at x and if there is a linear
map H : Rn −→ Rn such that

sup
α(z)∈∂∗f(z)

∥∥∥[
d(Φ−1)u

]∗(
α(z)

)
−

[
d(Φ−1)0

]∗
(dfx) − Hu

∥∥∥ = o(‖u‖)

for u = Φ(z) ∈ Rn, where we identify T ∗
uRn, T ∗

0 Rn and Rn in the left-hand side.

At the level of the local coordinate system Φ = (xi)n
i=1, we can write

H =

(
∂2f

∂xi∂xj
(x)

)
.

Hence we are able to define d(df)x : TxM −→ Tdfx(T
∗M) as in (2.1).

Theorem 4.8 ([Oh4]) Take a compact set Y ⊂ M and an open set U ⊂ M whose closure
X := U is compact. Then any c-concave function φ : X −→ R relative to (X,Y ) is second
order differentiable m-a.e. on U .

In particular, dφ : U −→ T ∗M is continuous on the domain consisting of second order
differentiable points of φ.

4.2 The Brenier-McCann solution to the Monge-Kantorovich
problem

We define P(M) as the set of Borel probability meaures on M and Pc(M) ⊂ P(M) as
the subset consisting of compactly supported measures. Given µ, ν ∈ Pc(M), the Monge
problem is to find (and characterize) a map F : M −→ M which attains the infimum
of

∫
M

c(x,F(x)) dµ(x) among all maps pushing µ forward to ν (we write it F#µ = ν).
Kantorovich reformulated the problem using the set

Π(µ, ν) := {π ∈ P(M × M) | (p1)#π = µ, (p2)#π = ν},
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where p1 and p2 are projections to the first and second entries. Each π ∈ Π(µ, ν) is
called a coupling of (µ, ν) and the Monge-Kantorovich problem is to find an optimal
coupling attaining infπ∈Π(µ,ν)

∫
M×M

c dπ. This infimum is not larger than that in the
Monge problem, for (IdM ×F)#µ ∈ Π(µ, ν). We will see that two infimums coincide in
our setting.

Brenier [Br] showed that a unique solution to the Monge-Kantorovich problem (and
simultaneously to the Monge problem) in a Euclidean space is reprensented as the gradient
of a convex function, and McCann [Mc] successfully extended it to Riemannian manifolds
using c-concave functions. McCann’s technique is applicable to Finsler manifolds, and it
is more or less equivalent to proving the Kantorovich duality:

inf
π∈Π(µ,ν)

∫
M×M

c(x, y) dπ(x, y) = sup
(φ,ψ)∈Lipc(X,Y )

{ ∫
M

φ dµ +

∫
M

ψ dν

}
. (4.1)

Here X ⊃ supp µ, Y ⊃ supp ν and Lipc(X,Y ) stands for the set of pairs of Lipschitz
continuous functions (φ, ψ) ∈ Lip(X) × Lip(Y ) satisfying φ(x) + ψ(y) ≤ c(x, y) for all
(x, y) ∈ X × Y . Thus the inequality ≥ is clear in (4.1). The duality itself is known to
hold true in much more general situations (see [AGS], [Vi2]).

We first observe that a c-concave function naturally appears as a maximizer of the
right-hand side of (4.1).

Lemma 4.9 Let µ, ν ∈ Pc(M) and take compact sets X ⊃ supp µ and Y ⊃ supp ν.
Then there exists a c-concave function φ : X −→ R relative to (X,Y ) such that (φ, φc) ∈
Lipc(X,Y ) and it attains the supremum in the right-hand side of (4.1). Moreover, if µ is
absolutely continuous, then (φ, φc) is a unique maximizer up to an additive constant.

Proof. Note that, given (φ, ψ) ∈ Lipc(X,Y ), it holds that φc(y) ≥ ψ(y). Thus we have
ψ ≤ φc, while (φ, φc) ∈ Lipc(X,Y ). We similarly obtain (φcc, φc) ∈ Lipc(X,Y ) and
φ ≤ φcc.

Take a maximizing sequence {(φi, ψi)}i∈N ⊂ Lipc(X,Y ) and a point x0 ∈ X. Then the
sequence {(φ̂i, ψ̂i)} := {(φcc

i −φcc
i (x0), φ

c
i +φcc

i (x0))} ⊂ Lipc(X,Y ) is also maximizing and
φ̂i is c-concave. Since φ̂i(x0) = 0 and φ̂i is Lipschitz continuous with a uniformly bounded
Lipschitz constant (Lemma 4.2(iii)), the Ascoli-Arzelà theorem provides a subsequence of
{φ̂i} which converges uniformly to a Lipschitz function φ : X −→ R. We also find that
the corresponding subsequence of {ψ̂i} converges to φc and φcc = limi→∞(φ̂i)

cc = φ. Thus
φ is c-concave and (φ, φc) attains the supremum in (4.1) by construction.

In order to prove the uniqueness, we take two maximizing pairs (φ1, ψ1), (φ2, ψ2) ∈
Lipc(X,Y ). Then we deduce that φi is c-concave and ψi = φc

i by the discussion in the
first paragraph in the proof. Put φ = (φ1 + φ2)/2 and note that, for any y ∈ Y ,

φc(y) = inf
x∈X

{c(x, y) − φ(x)} ≥ 1

2

2∑
i=1

inf
x∈X

{c(x, y) − φi(x)} =
1

2
φc

1(y) +
1

2
φc

2(y).

As (φ, φc) ∈ Lipc(X,Y ), this implies that φc = (φc
1 + φc

2)/2 and φ is c-concave. Moreover,
if y ∈ ∂cφ(x), then we find

c(x, y) = φ(x) + φc(y) =
1

2

2∑
i=1

{φi(x) + φc
i(y)} ≤ c(x, y).
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Thus y ∈ ∂cφ1(x) ∩ ∂cφ2(x) and it follows from Lemma 4.5 together with the absolute
continuity of µ that ∇(−φ1)(x) = ∇(−φ2)(x) = ∇(−φ)(x) for µ-a.e. x ∈ X. Therefore
d(φ1 − φ2) = 0 µ-a.e. on X, so that φ1 = φ2 + C for some constant C ∈ R. 2

Now we give a precise description of a unique solution to the Monge and the Monge-
Kantorovich problems.

Theorem 4.10 Given µ, ν ∈ Pc(M) such that µ is absolutely continuous with respect to
m, take a compact set Y ⊃ supp ν and an open set U ⊃ supp µ whose closure X := U
is compact. Then there exists a c-concave function φ : X −→ R relative to (X,Y ) such
that π := (IdM ×F)#µ is a unique optimal coupling of (µ, ν), where we define F(x) :=
expx(∇(−φ)(x)). Moreover, such φ is unique up to an additive constant.

Proof. By Lemma 4.9, there exists a unique (up to an additive constant) c-concave
function φ : X −→ R for which (φ, φc) attains the supremum in (4.1). We define F(x) :=
expx(∇(−φ)(x)) for x ∈ X at where φ is differentiable, and remark that the domain has
µ-full measure since µ is absolutely continuous. Recall also that F is continuous on an
m-full measure subset of U (Theorem 4.8), so that F is measurable on X.

We shall show that F#µ = ν. Take a continuous function h ∈ C(M) and put ψε =
φc + εh for ε ∈ R close to 0. Given x ∈ X, we find a point yε ∈ Y such that c(x, yε) −
ψε(yε) = (ψε)

c(x). It follows from Lemma 4.5 that, if φ is differentiable at x, then yε

tends to y0 = F(x) as ε goes to zero. Combining this with

φ(x) − εh(yε) ≤ c(x, yε) − φc(yε) − εh(yε) = (ψε)
c(x)

≤ c
(
x,F(x)

)
− ψε

(
F(x)

)
= φ(x) − εh

(
F(x)

)
,

we deduce that (ψε)
c(x) = φ(x) − εh(F(x)) + o(|ε|) as well as |o(|ε|)| ≤ 2ε‖h|Y ‖∞. We

put J(ε) =
∫

M
(ψε)

c dµ +
∫

M
ψε dν and then the maximality of (φ, φc) implies that

0 ≥ lim
ε↓0

J(ε) − J(0)

ε
= lim

ε↓0

∫
M

(ψε)
c − φ

ε
dµ +

∫
M

h dν

= −
∫

M

h
(
F(x)

)
dµ(x) +

∫
M

h dν = −
∫

M

h d[F#µ] +

∫
M

h dν.

We similarly obtain

0 ≤ lim
ε↑0

J(ε) − J(0)

ε
= −

∫
M

h d[F#µ] +

∫
M

h dν,

and hence F#µ = ν.
Define πφ := (IdM ×F)#µ ∈ Π(µ, ν) and observe that c(x, y) = φ(x) + φc(y) holds

πφ-a.e. by Lemma 4.5. Thus
∫

M×M
c dπφ =

∫
M

φ dµ +
∫

M
φc dν, so that πφ is an optimal

coupling. (Now we finish the proof of the Kantorovich duality (4.1).) Conversely, thanks
to (4.1), any optimal coupling π ∈ Π(µ, ν) must satisfy c(x, y) = φ(x) + φc(y) π-a.e. It
means that π(

∪
x∈X(x,F(x)) = 1, therefore we conclude that π = (IdM ×F)#µ = πφ. 2

The above proof has several implicit corollaries. We extract one for later convenience.
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Corollary 4.11 Take a compact set Y ⊂ M and an open set U ⊂ M whose closure
X := U is compact. Then, for any c-concave function φ : X −→ R relative to (X,Y )
and any absolutely continuous measure µ ∈ Pc(M) with supp µ ⊂ U , the map F(x) :=
expx(∇(−φ)(x)) is the unique optimal transport map from µ to F#µ.

Proof. Put ν = F#µ and take the unique optimal coupling π ∈ Π(µ, ν) given by Theorem
4.10. Then, as in the proof of Theorem 4.10, we deduce from Lemma 4.5 that∫

M×M

c dπ ≥
∫

M

φ dµ +

∫
M

φc dν =

∫
M×M

c d[(IdM ×F)#µ] ≥
∫

M×M

c dπ.

Thus we have c(x, y) = φ(x) + φc(y) π-a.e., and hence π = (IdM ×F)#µ. 2

4.3 Wasserstein spaces

We briefly explain a geometric conception behind Theorem 4.10. For µ, ν ∈ Pc(M), the
L2-Wasserstein distance is defined by

dW
2 (µ, ν) := inf

π∈Π(µ,ν)

( ∫
M×M

d(x, y)2dπ(x, y)

)1/2

. (4.2)

Note that dW
2 (µ, ν)2/2 is the left-hand side of (4.1). If µ is absolutely continuous, then

Theorem 4.10 provides the unique optimal coupling (IdM ×F)#µ. Moreover, the curve
µt := (Ft)#µ with Ft(x) := expx(∇(−tφ)(x)), t ∈ [0, 1], turns out a unique minimal
geodesic in (Pc(M), dW

2 ) from µ to ν. Indeed, it is clear by construction that∫
M×M

d(x, y)2 d[(Fs ×Ft)#µ](x, y) = (t − s)2

∫
M

d
(
x,F(x)

)2
dµ(x) = (t − s)2dW

2 (µ, ν)2

for any 0 ≤ s < t ≤ 1, so that (µt)t∈[0,1] is minimal. Uniqueness can be seen as follows.
Denote by Γ(M) ⊂ Lip([0, 1],M) the space of minimal geodesics γ : [0, 1] −→ M equipped
with the uniform topology, and define et : Γ(M) −→ M by et(γ) := γ(t) for t ∈ [0, 1].
Given a minimal geodesic α : [0, 1] −→ Pc(M) from µ to ν, there is a Borel probability
measure Ξ on Γ(M) such that (et)#Ξ = α(t) for all t ∈ [0, 1] and that (e0 × e1)#Ξ is an
optimal coulping of (µ, ν) (see [LV1]). Hence we have (e0×e1)#Ξ = (IdM ×F)#µ. This to-
gether with Lemma 4.5 shows that Ξ = [∇(−φ)]#µ, where we abbreviated [∇(−φ)](x) :=
(Ft(x))t∈[0,1] ∈ Γ(M). Therefore we obtain α(t) = µt.

5 The Jacobian equation

As the second step toward Theorem 1.1, we analyze the optimal transport map F in The-
orem 4.10. The present and the next sections are based on and generalize a Riemannian
discussion in [CMS1].
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5.1 Differentiating optimal transport maps

By virtue of Theorem 4.8, a c-concave function is almost everywhere second order differ-
entiable. At such a nice point x, we can differentiate the map F and its differential is
represented using the second order differentials of φ and the distance function from F(x).

Proposition 5.1 Take a compact set Y ⊂ M and an open set U ⊂ M whose closure
X := U is compact, and let φ : X −→ R be a c-concave function relative to (X,Y ).
Define F(z) := expz(∇(−φ)(z)) and fix x ∈ U at where φ is second order differentiable
and dφx 6= 0. Then we have the following:

(i) The point y := F(x) is not a cut point of x.

(ii) The function h(z) := c(z, y) − φ(z) satisfies dhx = 0 and(
∂2h

∂xi∂xj
(x)

)
≥ 0

in any local coordinate system (xi)n
i=1 around x.

(iii) Define f̄(z) := −c(z, y) and

dFx := d(expx ◦Lx)d(−φ)x ◦
[
d
(
d(−φ)

)
x
− d(df̄)x

]
: TxM −→ TyM.

Then we have, for v ∈ TxM ,

sup
{
F

(
u − dFx(v)

) ∣∣ expy u ∈ ∂cφ(expx v), F (u) = d(y, expy u)
}

= o
(
F (v)

)
.

Proof. (i) First of all, it follows from Lemma 4.5 that ∂cφ(x) = {y}. Hence we have, for
any unit vector v ∈ TxM and small t > 0,

c(x, y) − φ(x) = φc(y) ≤ c
(
ξv(±t), y

)
− φ

(
ξv(±t)

)
, (5.1)

where ξv : (−ε, ε) −→ M is the geodesic with ξ̇v(0) = v. Thus we put f(z) = c(z, y) and
observe

φ(ξv(t)) + φ(ξv(−t)) − 2φ(x)

t2
≤ f(ξv(t)) + f(ξv(−t)) − 2f(x)

t2
.

As φ is second order differentiable at x, this implies

∂2(φ ◦ ξv)

∂t2
(0) ≤ lim inf

t→0

f(ξv(t)) + f(ξv(−t)) − 2f(x)

t2
.

The left-hand side admits a uniform lower bound in v, and hence y is not a cut point of
x by Lemma 3.1.

(ii) This is clear because f̄ = −c(·, y) is C∞ at x (recall y 6= x), ∇f̄(x) = ∇(−φ)(x)
and because (5.1) shows that h takes a minimum at x.

(iii) We first remark that dhx = 0 in (ii) ensures that d(−φ)x = df̄x, and hence the
difference d(d(−φ))x − d(df̄)x makes sense. Fix a unit vector v ∈ TxM , put xt = expx tv

19



for small t ≥ 0 and take ut ∈ TyM such that yt := expy ut ∈ ∂cφ(xt) as well as d(y, yt) =
F (ut). We define f̄t(z) := −c(z, yt) and see that d(f̄t)xt ∈ ∂∗(−φ)(xt), for yt ∈ ∂cφ(xt)
implies that, as in (5.1),

−φ(expxt
w) ≥ −φ(xt) − f̄t(xt) + f̄t(expxt

w) = −φ(xt) + d(f̄t)xt(w) + o
(
F (w)

)
for w ∈ TxtM . Hence differentiating yt = exp ◦L(d(f̄t)xt) at t = 0 gives (recall Definition
4.7)

∂yt

∂t

∣∣∣
t=0

= d(exp ◦L)d(−φ)x ◦ d
(
d(−φ)

)
x
(v).

Moreover, it follows from exp ◦L(df̄xt) ≡ y that d(exp ◦L)df̄x
◦ [d(df̄)x](v) = 0. Therefore

we have

∂yt

∂t

∣∣∣
t=0

= d(exp ◦L)d(−φ)x ◦
[
d
(
d(−φ)

)
x
− d(df̄)x

]
(v) = dFx(v).

In the last equality, as in Lemma 3.2, the image of d(d(−φ))x − d(df̄)x contains only
vertical terms (see (5.2) below), thus we could regard it as living in Td(−φ)x(T

∗
xM) and

replace d(exp ◦L)d(−φ)x with d(expx ◦Lx)d(−φ)x . We consequently obtain expy ut = yt =
expy(dFx(tv) + o(t)) and the error term o(t) is uniform in v because of the second order
differentiability of φ at x. This completes the proof. 2

We excluded the case of dφx = 0 from the above proposition for the fact that the
function c(·, x) is only C1 at x unless F is Riemannian. At the level of a local coordinate
system (see (2.1)), we can write

d
(
d(−φ)

)
x
− d(df̄)x =

n∑
i,j=1

∂2h

∂xi∂xj
(x)

∂

∂vi

∣∣∣
d(−φ)x

dxj|x. (5.2)

We can check that (5.2) is indeed independent of the choice of a local coordinate system
taking dhx = 0 into account.

5.2 The Jacobian equation and concavity

We are next concerned with quantitative behavior of dF . We shall see that the Jacobian
equation holds, that is to say, the ratio of density functions of µ and F#µ coincides with
D[dF ] (defined as in the paragraph preceding Lemma 3.2).

Theorem 5.2 Given two absolutely continuous measures µ = fm, ν = gm ∈ Pc(M),
take open sets U ⊃ supp µ,W ⊃ supp ν whose closures X := U, Y := W are compact.
Denote by φ : X −→ R a c-concave function as in Theorem 4.10 and define F(x) :=
expx(∇(−φ)(x)). Then F is injective on a µ-full measure set and we have the following
for µ-a.e. x ∈ U \ (dφ)−1(0).

(i) The function h(z) := c(z,F(x)) − φ(z) satisfies(
∂2h

∂xi∂xj
(x)

)
> 0
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in any local coordinate system (xi)n
i=1 around x. In other words, D[dFx] > 0 holds

for dFx : TxM −→ TF(x)M defined as in Proposition 5.1.

(ii) We have limr→0 m(∂cφ(B+(x, r)))/m(B+(x, r)) = D[dFx].

(iii) It holds that f(x) = g(F(x))D[dFx].

Proof. Define ΩX ⊂ U as the set of points x ∈ X such that φ is second order differentiable
at x as well as x is a Lebesgue point of f . Similarly, we define ΩY ⊂ W as the set of
Lebesgue points y ∈ Y of g at where φc is second order differentiable. We find µ(ΩX) =
ν(ΩY ) = 1 by Theorem 4.8 together with the absolute continuity of µ and ν. Thus we
define Ω := ΩX ∩ F−1(ΩY ) and observe µ(Ω) = 1. It follows from Theorem 4.10 that
F∗(y) := expF̄

y (∇F̄ (−φc)(y)) is the unique optimal transport map pushing ν forward to

µ in the sense that (F∗ × IdM)#ν is the unique optimal coupling of (µ, ν). Here expF̄ is
the exponential map with respect to the reverse F̄ of F . Moreover, F∗ ◦ F = IdX holds
on Ω because {F∗ ◦ F(x)} = ∂cφc(F(x)) 3 x (see Lemmas 4.4(i), 4.5). In particular, F
is injective on Ω.

We will show (i)–(iii) for x ∈ Ω with dφx 6= 0. We observe from F∗ ◦ F = IdX that
dφx 6= 0 is equivalent to dφc

F(x) 6= 0. We put y = F(x) in the following for simplicity.

(i) This follows from dF∗
y ◦ dFx = IdTxM combined with Proposition 5.1(ii) (see also

(5.2)). Given a unit vector v ∈ TxM and small t > 0, we choose ut ∈ TyM so as to
satisfy expy ut ∈ ∂cφ(expx tv) and d(y, expy ut) = F (ut). Note that this implies expx tv ∈
∂cφc(expy ut) by Lemma 4.4(i). Then applying Proposition 5.1(iii) twice shows that

tv = dF∗
y (ut) + o(t) = dF∗

y ◦ dFx(tv) + o(t).

Thus v = dF∗
y ◦ dFx(v).

(ii) We deduce from Proposition 5.1(iii) for v ∈ B+
TxM(0, r) along with the invertibility

of dFx that

∂cφ
(
B+(x, r)

)
⊂ expy

[
dFx

(
B+

TxM(0, r)
)

+ B+
TyM

(
0, o(r)

)]
⊂ expy

[
dFx

(
B+

TxM

(
0, r + o(r)

))]
.

Moreover, the same discussion for v ∈ dFx(B
+
TxM(0, r)) and φc yields that

∂cφc
(

expy

[
dFx

(
B+

TxM(0, r)
)])

⊂ expx

[
B+

TxM(0, r) + B+
TxM

(
0, o(r)

)]
⊂ B+

(
x, r + o(r)

)
.

Combining this with Lemma 4.4(ii) shows

∂cφ
(
B+

(
x, r + o(r)

))
⊂ expy

[
dFx

(
B+

TxM(0, r)
)]

⊂ ∂cφ
(
B+

(
x, r + o(r)

))
. (5.3)

Therefore we conclude that

lim
r→0

m(∂cφ(B+(x, r)))

m(B+(x, r))
= lim

r→0

my(dFx(B
+
TxM(0, r)))

mx(B
+
TxM(0, r))

= D[dFx].
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(iii) As x is a Lebesgue point of f , we find f(x) = limr→0 µ(B+(x, r))/m(B+(x, r)).
Moreover, (5.3), Lemma 4.5 and the injectivity of F imply

g(y) = lim
r→0

ν(∂cφ(B+(x, r)))

m(∂cφ(B+(x, r)))
= lim

r→0

ν(F(B+(x, r)))

m(∂cφ(B+(x, r)))
= lim

r→0

µ(B+(x, r))

m(∂cφ(B+(x, r)))
.

We consequently obtain

f(x) = lim
r→0

{
µ(B+(x, r))

m(∂cφ(B+(x, r)))

m(∂cφ(B+(x, r)))

m(B+(x, r))

}
= g(y)D[dFx].

2

We next prove the concavity of D[dF ]1/n along the optimal transport from µ to ν.
This is a key estimate in the proof of Theorem 1.1. Although it was not emphasized in
[CMS1], the use of the classical (linear) Brunn-Minkowski inequality in the proof seems
interesting. Compare this with generalized (nonlinear) Brunn-Minkowski inequalities in
Corollaries 9.3, 9.4(iii) and 9.5(ii).

Proposition 5.3 Take a compact set Y ⊂ M and an open set U ⊂ M whose closure
X := U is compact, and let φ : X −→ R be a c-concave function relative to (X,Y ). Fix
x ∈ U at where φ is second order differentiable with dφx 6= 0 and, for t ∈ (0, 1], define
yt := expx(∇(−tφ))(x), f̄t(z) := −c(z, yt) and Jt(x) := D[d(Ft)x], where

d(Ft)x := d(expx ◦Lx)d(−tφ)x ◦
[
d
(
d(−tφ)

)
x
− d(df̄t)x

]
: TxM −→ TytM.

Then we have, for any t ∈ (0, 1),

Jt(x)1/n ≥ (1 − t)v>
t (x, y1)

1/n + tv<
t (x, y1)

1/nJ1(x)1/n.

Proof. We start with

d
(
d(−tφ)

)
x
− d(df̄t)x =

{
d
(
d(−tφ)

)
x
− d

(
d(tf̄1)

)
x

}
+

{
d
(
d(tf̄1)

)
x
− d(df̄t)x

}
.

Note that d(f̄t)x = d(−tφ)x = d(tf̄1)x. We introduce the operator τs : T ∗M −→ T ∗M as
τs(α) = sα for s > 0, and observe

d(expx ◦Lx)d(−tφ)x ◦
[
d
(
d(−tφ)

)
x
− d

(
d(tf̄1)

)
x

]
= d(expx ◦Lx)d(−tφ)x ◦ d(τt)d(−φ)x ◦

[
d
(
d(−φ)

)
x
− d(df̄1)x

]
= d(expx ◦Lx)d(−tφ)x ◦ d(τt)d(−φ)x ◦ [d(expx ◦Lx)d(−φ)x ]

−1 ◦ d(F1)x

= d(expx)∇(−tφ)(x) ◦ d(Lx ◦ τt ◦ L−1
x )∇(−φ)(x) ◦ [d(expx)∇(−φ)(x)]

−1 ◦ d(F1)x

= t · d(expx)∇(−tφ)(x) ◦ [d(expx)∇(−φ)(x)]
−1 ◦ d(F1)x.

In the last line, we identified T∇(−tφ)(x)(TxM) with T∇(−φ)(x)(TxM). Therefore the classical
Brunn-Minkowski inequality in TytM and Lemma 3.2 show that

Jt(x)1/n = D[d(Ft)x]
1/n

≥ (1 − t)D
[
(1 − t)−1d(expx ◦Lx)d(−tφ)x ◦

[
d
(
d(tf̄1)

)
x
− d(df̄t)x

]]1/n

+ tD
[
d(expx)∇(−tφ)(x) ◦ [d(expx)∇(−φ)(x)]

−1 ◦ d(F1)x

]1/n

= (1 − t)v>
t (x, y1)

1/n + tv<
t (x, y1)

1/nJ1(x)1/n.

2
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6 A Finsler Borell-Brascamp-Lieb inequality

This section contains a proof of Theorem 1.1.

6.1 Absolute continuity of intermediate measures

We first discuss two qualitative properties of optimal transport maps. See [Vi2] for more
comprehensive treatment.

Lemma 6.1 Take a compact set Y ⊂ M and an open set U ⊂ M whose closure X := U
is compact, and let φ : X −→ R be a c-concave function relative to (X,Y ). Define
Ft(x) := expx(∇(−tφ)(x)) for t ∈ [0, 1] and fix t ∈ (0, 1). Then Ft is injective on an
m-full measure subset of U .

Proof. Let Ω ⊂ U be the set of second order differentiable points of φ. Then Theorem
4.8 ensures that m(Ω) = m(U) and Fs is continuous on Ω for every s ∈ [0, 1]. We will
prove that Ft is injective on Ω. Assume that there are two distinct points x, x′ ∈ Ω such
that Ft(x) = Ft(x

′), and put z = Ft(x) = Ft(x
′), y = F1(x) and y′ = F1(x

′). Then we
have

d(x, y′)2 + d(x′, y)2 ≤ {d(x, z) + d(z, y′)}2 + {d(x′, z) + d(z, y)}2

= {d(x, z) + d(z, y)}2 + {d(x′, z) + d(z, y′)}2

+ 2{d(x, z)d(z, y′) + d(x′, z)d(z, y) − d(x, z)d(z, y) − d(x′, z)d(z, y′)}
= d(x, y)2 + d(x′, y′)2 − 2(1 − t)t{d(x, y) − d(x′, y′)}2

≤ d(x, y)2 + d(x′, y′)2.

If strict inequality

d(x, y′)2 + d(x′, y)2 < d(x, y)2 + d(x′, y′)2 (6.1)

holds, then the continuity of F1 shows that F1 is not an optimal transport map from
µ := m(B+(x, r)∪B+(x′, r))−1m|B+(x,r)∪B+(x′,r) to ν := (F1)#µ for sufficiently small r > 0.
In fact, (6.1) implies y 6= y′, and it is more efficient to transport µ|B+(x,r) to ν|F1(B+(x′r))

as well as µ|B+(x′,r) to ν|F1(B+(x,r)) because of (6.1). This contradicts Corollary 4.11 and
hence we have

d(x, y′)2 + d(x′, y)2 = d(x, y)2 + d(x′, y′)2.

Therefore equality holds in the above inequality, thus we see that d(x, y) = d(x′, y′) and
all points x, x′, z, y, y′ lie on one minimal geodesic. As z is the common t : (1− t)-fraction
point, we also deduce that x = x′ and y = y′ which contradict our choice x 6= x′. 2

Lemma 6.2 Given two absolutely continuous measures µ = fm, ν = gm ∈ Pc(M), take
open sets U ⊃ supp µ,W ⊃ supp ν whose closures X := U, Y := W are compact. De-
note by φ : X −→ R a c-concave function as in Theorem 4.10 and define Ft(x) :=
expx(∇(−tφ)(x)) for t ∈ [0, 1]. Then, for any t ∈ (0, 1), the measure µt := (Ft)#µ is
absolutely continuous with respect to m.
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Proof. We first recall that Ft is injective on a µ-full measure set by Lemma 6.1 along with
the absolute continuity of µ. Denote by U ′ ⊂ U the set of points x with dφx = 0. Note
that µt|U ′ = (Ft)#(µ|U ′) = µ|U ′ is clearly absolutely continuous. Combining Theorems
4.8 and 5.2(i), we find Ω ⊂ U \ U ′ such that µ(Ω) = µ(U \ U ′), D[d(F1)x] > 0 for x ∈ Ω
and that Ft is continuous on Ω. Here d(Ft)x : TxM −→ TFt(x)M is defined by, as in
Proposition 5.3,

d(Ft)x := d(expx ◦Lx)d(−tφ)x ◦
[
d
(
d(−tφ)

)
x
− d(df̄t)x

]
,

where f̄s(z) := −c(z,Fs(x)) for s ∈ (0, 1]. Given x ∈ Ω, note that

d
(
d(−tφ)

)
x
− d(df̄t)x =

{
d
(
d(−tφ)

)
x
− d

(
d(tf̄1)

)
x

}
+

{
d
(
d(tf̄1)

)
x
− d(df̄t)x

}
.

Thus we have D[d(Ft)x] > 0 by D[d(F1)x] > 0 and (3.1).
For each x ∈ Ω, the invertibility of d(Ft)x and the Taylor expansion in Proposi-

tion 5.1(iii) imply that d(Ft(x),Ft(z)) ≥ axd(x, z) holds for some ax, rx > 0 and all
z ∈ B+(x, rx) ∩ Ω. Since Ft is continuous, ax and rx can be taken continuously in Ω.
Therefore, for each x ∈ Ω, there exist a′

x, r
′
x > 0 such that (Ft)

−1 is (a′
x)

−1-Lipschitz
continuous on Ft(B

+(x, r′x)∩Ω). Combining this with the absolute continuity of µ shows
that µt|Ft(B+(x,r′x)∩Ω) = (Ft)#(µ|B+(x,r′x)∩Ω) is absolutely continuous. Thus we obtain the
absolute continuity of µt|Ft(Ω) and complete the proof. 2

Now we are ready to finish proving Theorem 1.1.

6.2 Proof of Theorem 1.1

We first discuss the case where both A and B are bounded. We put µ = f |Am, ν = g|Bm
and take open sets U ⊃ A, W ⊃ B whose closures X := U , Y := W are compact.
By virtue of Theorem 4.10, we find a c-concave function φ : X −→ R such that the
map Fs(x) := expx(∇(−sφ)(x)), s ∈ [0, 1], gives the unique optimal transport from µ
to ν. Lemma 6.2 ensures that (Ft)#µ is absolutely continuous, so that we can write
(Ft)#µ = ρtm. Define U ′ ⊂ U as the set of points x at where dφx is defined and dφx = 0.
We further choose Ωt, Ω1 ⊂ U \ U ′ such that µ(Ωt) = µ(Ω1) = µ(U \ U ′), f is positive on
Ω1 and that all conclusions in Theorem 5.2 hold true for F = Ft,F1, respectively. We
finally set Ω = Ωt ∩Ω1 ∩A∩F−1

1 (B). Recall that both Ft and F1 are injective by Lemma
6.1 and Theorem 5.2.

We deduce from Theorem 5.2(iii) that

f(x) = ρt

(
Ft(x)

)
D[d(Ft)x] = g

(
F1(x)

)
D[d(F1)x] > 0

for x ∈ Ω. Thus it follows from Proposition 5.3 that

1

ρt(Ft(x))1/n
≥ (1 − t)

(
v>

t (x,F1(x))

f(x)

)1/n

+ t

(
v<

t (x,F1(x))

g(F1(x))

)1/n

.

Combining this with the hypothesis on h, we obtain h(Ft(x)) ≥ ρt(Ft(x)) for x ∈ Ω.
Therefore we have ∫

Ft(Ω)

h dm ≥
∫
Ft(Ω)

ρt dm =

∫
Ω

dµ = µ(Ω).
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For x ∈ Ω′ := U ′ ∩ A ∩ B, we observe F1(x) = x and f |Ω′m = (F1)#(f |Ω′m) = g|Ω′m.
Hence we find, for a Lebesgue point x ∈ Ω′ of both f |Ω′ and g|Ω′ such that f(x) > 0,

1

h(x)1/n
≤ 1 − t

f(x)1/n
+

t

g(x)1/n
=

1

f(x)1/n
.

We used the fact that v>
t (x, x) = v<

t (x, x) = 1. This shows
∫

Ω′ h dm ≥
∫

Ω′ dµ = µ(Ω′). As
m(Ft(Ω) ∩ Ω′) = 0 by Lemma 6.1, we conclude that∫

M

h dm ≥
∫
Ft(Ω)

h dm +

∫
Ω′

h dm ≥ µ(Ω ∪ Ω′) = 1.

If either A or B is unbounded, then we choose bounded subsets Aε ⊂ A and Bε ⊂ B
such that

∫
Aε

f dm =
∫

Bε
g dm = 1 − ε for ε > 0. Applying the above discussion to

f/(1− ε) and g/(1− ε) yields
∫

M
h/(1− ε) dm ≥ 1. As ε > 0 was arbitrary, we eventually

obtain
∫

M
h dm ≥ 1 and complete the proof. 2

7 Volume comparison theorems

We proceed to the second main part, volume comparison theorems under Ricci curvature
bounds. We first define two families of functions used to describe the theorems. For
K ∈ R, N ∈ (1,∞) and r ∈ (0,∞) (r ∈ (0, π

√
(N − 1)/K) if K > 0), we define

sK,N(r) :=


√

(N − 1)/K sin(r
√

K/(N − 1)) if K > 0,

r if K = 0,√
−(N − 1)/K sinh(r

√
−K/(N − 1)) if K < 0.

In addition, for t ∈ (0, 1), we define

βt
K,N(r) :=

(
sK,N(tr)

tsK,N(r)

)N−1

, βt
K,∞(r) := eK(1−t2)r2/6. (7.1)

Here the infinite dimensional case (N = ∞) is derived as the limit and will be necessary
in the next section. By computation, we also observe (see [vRS, §2])

log
[
β1−t

K,N(r)1−t · βt
K,N(r)t

]
≥ K

2
(1 − t)tr2 (7.2)

for all N ∈ (1,∞] (equality holds if N = ∞).
Recall (1.2) for the definition of volume distortion coefficients v<

t and v>
t , and (1.4)

and (1.5) for the definition of V , ∂vV and ∂2
vV . In this context, Shen’s volume comparison

theorem is stated as follows. It generalizes the Bishop and the Bishop-Gromov comparison
theorems in Riemannian geometry.

Theorem 7.1 ([Sh1, Theorem 1.1], [Sh2, Theorem 16.1.1]) Assume that n ≥ 2 and there
are constants K ∈ R and H ≥ 0 such that

Ric(v) ≥ K, ∂vV ≥ −H
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holds for all unit vectors v ∈ TM . Then we have, for any x ∈ M , y ∈ M \ Cut(x) and
t ∈ (0, 1),

v<
t (x, y) ≥ etHd(x,y)

eHd(x,y)
βt

K,n

(
d(x, y)

)
, v>

t (x, y) ≥ e(1−t)Hd(x,y)

eHd(x,y)
β1−t

K,n

(
d(x, y)

)
.

In particular, for any 0 < r < R (≤ π
√

(n − 1)/K if K > 0), it holds that

max

{
m(B+(x,R))

m(B+(x, r))
,
m(B−(x,R))

m(B−(x, r))

}
≤

∫ R

0
etHsK,n(t)n−1 dt∫ r

0
etHsK,n(t)n−1 dt

.

We remark that, by virtue of a generalized Bonnet-Myers theorem due to Auslander
[Au], we know that Ric(v) ≥ K > 0 implies diam M ≤ π

√
(n − 1)/K (see also [BCS,

Theorem 7.7.1]).
Now we present a different volume comparison theorem inspired by the theory of

weighted Riemannian manifolds. See [BE], [Qi] and [Lo] for related analytic, geometric
and topological work on weighted Riemannian manifolds. Our discussion is based on
a strategy used in [LV1] for proving N -Ricci curvature bounds of weighted Riemannian
manifolds (see also [Qi]).

Lemma 7.2 Fix a unit speed geodesic η : [0, l) −→ M which does not cross the cut
locus Cut(η(0)). Take an orthonormal basis {ei}n

i=1 of TxM with respect to gη̇(0) such that
en = η̇(0), and define Ei(r) := d(expη(0))rη̇(0)(rei) ∈ Tη(r)M for r ∈ [0, l). Then we have,
for any r ∈ (0, l),

h′′(r)

h(r)
≤ −Ric(η̇(r))

n − 1
, where h(r) :=

{
det

[(
gη̇(r)(Ei, Ej)

)n−1

i,j=1

]}1/2(n−1)

.

Proof. We first remark that every Ei is a Jacobi field by construction. Throughout the
proof, we denote Dη̇

η̇Ei(r) by E ′
i(r) and put gr = gη̇(r) for brevity. Define an (n−1)×(n−1)-

matrix A(r) = (aij(r)) by aij(r) := gr(Ei, Ej). Thanks to the Finsler version of the
Gauss lemma (cf. [BCS, Lemma 6.6.1]), we have gr(Ei, η̇) ≡ 0 which with (2.5) implies
gr(E

′
i, η̇) ≡ 0 for all i = 1, 2, . . . , n − 1. Since η(r) 6∈ Cut(η(0)), for each r ∈ (0, l), we

find an (n−1)× (n−1)-matrix B(r) = (bij(r)) such that E ′
i(r) =

∑n−1
j=1 bij(r)Ej(r). Note

that A′ = BA + ABt.
It follows from (2.3) that

d

dr

[
gr(E

′
i, Ej) − gr(Ei, E

′
j)

]
= −gr

(
Rη̇(Ei, η̇)η̇, Ej

)
+ gr

(
Ei, R

η̇(Ej, η̇)η̇
)

= 0,

so that gr(E
′
i, Ej) = gr(Ei, E

′
j). Thus we see that BA = ABt as well as A′ = 2BA. Note

also that

a′′
ij(r) = −gr

(
Rη̇(Ei, η̇)η̇, Ej

)
− gr

(
Ei, R

η̇(Ej, η̇)η̇
)

+ 2gr(E
′
i, E

′
j),

and hence A′′ = −2 Ricη̇(r) +2BABt = −2 Ricη̇(r) +2B2A, where we set

(Ricη̇(r))ij := gr

(
Rη̇(Ei, η̇)η̇, Ej

)
.
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We observe h(r) = {det A(r)}1/2(n−1) and

(n − 1)h′ =
1

2
(det A)′(det A)1/2(n−1)−1 =

h

2
trace(A′A−1),

(n − 1)h′′ = h′ trace B +
h

2
trace

(
A′′A−1 − (A′A−1)2

)
=

h

n − 1
(trace B)2 − h trace(Ricη̇(r) A−1) − h trace(B2).

Take another (n− 1)× (n− 1)-matrix C(r) = (cij(r)) for which {
∑n−1

j=1 cij(r)Ej(r)}n−1
i=1 ∪

{η̇(r)} forms an orthonormal basis of Tη(r)M with respect to gr. Then we find CACt =
In−1 and hence trace(Ricη̇(r) A−1) = trace(C Ricη̇(r) Ct) = Ric(η̇(r)). Moreover, plugging
A−1 = CtC into BA = ABt shows that CBC−1 = (CBC−1)t. This implies that

(trace B)2 = {trace(CBC−1)}2 ≤ (n − 1) trace
(
(CBC−1)2

)
= (n − 1) trace(B2).

Therefore we obtain (n − 1)h′′(r) ≤ −h(r) Ric(η̇(r)) as required. 2

Theorem 7.3 (A volume comparison theorem) Assume that n ≥ 2 and there are con-
stants K ∈ R and N ∈ (n,∞) such that

Ric(v) + ∂2
vV − 1

N − n
(∂vV)2 ≥ K

holds for all unit vectors v ∈ TM . Then we have, for any x ∈ M , y ∈ M \ Cut(x) and
t ∈ (0, 1) (provided that d(x, y) < π

√
(N − 1)/K if K > 0),

v<
t (x, y) ≥ tN−nβt

K,N

(
d(x, y)

)
, v>

t (x, y) ≥ (1 − t)N−nβ1−t
K,N

(
d(x, y)

)
.

In particular, we have diam M ≤ π
√

(N − 1)/K if K > 0 and, for any 0 < r < R

(≤ π
√

(N − 1)/K if K > 0), it holds that

max

{
m(B+(x,R))

m(B+(x, r))
,
m(B−(x,R))

m(B−(x, r))

}
≤

∫ R

0
sK,N(t)N−1 dt∫ r

0
sK,N(t)N−1 dt

.

Proof. As proof is common, we will treat only v<
t and B+. Fix a unit vector v ∈ TxM

and let η : [0, l) −→ M be the geodesic with η̇(0) = v which does not cross Cut(x).
Define f(r) := rnD[d(expx)rv] for r ∈ [0, l) by identifying Trv(TxM) with TxM . Then the
first assertion of the theorem is equivalent to that the function r 7−→ f(r)/rsK,N(r)N−1

is nonincreasing. For simplicity, we set V(r) = V(η̇(r)) and gr = gη̇(r) in the following.
We first remark that

f(r) = rn D[d(expx)rv]

Dg[d(expx)rv]
Dg[d(expx)rv] = eV(0)−V(r)rnDg[d(expx)rv],

where Dg is taken with respect to g0 and gr. Take an orthonormal basis {ei}n
i=1 of

TxM with respect to gv such that en = v. We extend these to vector fields Ei(r) :=
d(expx)rv(rei) along η. Note that En(r) = rη̇(r). We put

h(r) :=

(
f(r)

reV(0)

)1/(N−1)

= e−V(r)/(N−1)
{

det
[(

gr(Ei, Ej)
)n−1

i,j=1

]}1/2(N−1)

.
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We used the Gauss lemma in the second equality as in the proof of Lemma 7.2. We divide
h into two parts, that is,

h1(r) := e−V(r)/(N−n), h2(r) :=
{

det
[(

gr(Ei, Ej)
)n−1

i,j=1

]}1/2(n−1)

.

Note that h = h
(N−n)/(N−1)
1 h

(n−1)/(N−1)
2 . We calculate, using Lemma 7.2,

(N − 1)h−1h′′ = (N − n)h−1
1 h′′

1 + (n − 1)h−1
2 h′′

2 −
(N − n)(n − 1)

N − 1
(h−1

1 h′
1 − h−1

2 h′
2)

2

≤ −∂2
η̇(r)V +

1

N − n
(∂η̇(r)V)2 − Ric

(
η̇(r)

)
.

Thus the hypothesis implies h−1h′′ ≤ −K/(N − 1). Comparing this with s−1
K,Ns′′K,N =

−K/(N − 1) shows that h(r)/sK,N(r) = {f(r)/reV(0)sK,N(r)N−1}1/(N−1) is nonincreasing.
The second assertion follows from the first because any minimal geodesic of length

π
√

(N − 1)/K must contain a conjugate point. The third assertion follows by integration
in a standard manner (see, e.g., [Ch, Lemma III.4.1]). 2

On a Riemannian manifold (M, g), a weighted measure usually has the form e−V volg,
where V is a function on M and the reference measure volg is the Riemannian volume
element. In contrast, our reference measure in the above proof is the measure induced
from gη̇(r) and it depends on v. If (M,F ) is Berwald type, then the Busemann-Hausdorff
measure mBH satisfies ∂vV ≡ 0 ([Sh1, Propositions 2.6, 2.7]), and hence mBH can be
thought of as a reference measure. However, it seems impossible to find such a measure in
general. In this sense, every measure is weighted, and it is natural to consider an arbitrary
measure m in the first place.

Theorem 7.3 is regarded as the measure contraction property in the sense of [Oh1],
[Oh2] and [St3], and it is a corollary to the curvature-dimension condition (Theorem
1.2(i)), though we have presented above a simpler, direct proof.

8 The curvature-dimension condition

Inspired by [CMS1] and [OV] as well, von Renesse and Sturm [vRS] showed that the
K-convexity of the relative entropy is equivalent to Ric ≥ K for Riemannian mani-
folds. Sturm [St1], [St2], [St3] and Lott and Villani [LV1], [LV2] independently developed
this theory introducing the curvature-dimension condition and the N -Ricci curvature
bound, respectively. They proved that these (essentially equivalent) conditions char-
acterize Ricci curvature bounds of Riemannian manifolds, as we will extend to Finsler
manifolds. Furthermore, general (symmetric) metric measure spaces satisfying these con-
ditions are known to behave like spaces with lower Ricci curvature bounds (see Corollaries
8.4, 8.5 for instance). We refer to [Oh1], [Oh2], [vR] for related work based on the measure
contraction property, [Ol1], [Ol2] for another approach using the contraction of Markov
chains, and to [Vi2] for further developments.
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8.1 Definition

In order to define the N -Ricci curvature bound, we introduce important classes of func-
tions (see [LV1], [LV2] for details). For N ∈ [1,∞), denote by DCN the set of con-
tinuous convex functions U : [0,∞) −→ R such that U(0) = 0 and that the function
ϕ(s) := sNU(s−N) is convex on (0,∞). We remark that the convexity of U and U(0) = 0
imply that, for 0 < s < t,

ϕ(t) ≤ tN
{

s−N − t−N

s−N
U(0) +

t−N

s−N
U(s−N)

}
= ϕ(s).

Thus ϕ is nonincreasing. We similarly define DC∞ as the set of continuous convex func-
tions U : [0,∞) −→ R such that U(0) = 0 and that ϕ(s) := esU(e−s) is convex on R.
This ϕ is also nonincreasing. For an absolutely continuous measure µ = ρm ∈ P(M), we
define Um(µ) :=

∫
M

U(ρ) dm. We remark that DCN ′ ⊂ DCN if N < N ′.

The most important element of DCN is U(r) = Nr(1−r−1/N) which derives the Rényi
entropy Um(ρm) = N−N

∫
M

ρ1−1/N dm. Letting N go to infinity provides U(r) = r log r ∈
DC∞ as well as the relative entropy Entm(ρm) := Um(ρm) =

∫
M

ρ log ρ dm.
By Theorem 4.10, for any two absolutely continuous measures µ0, µ1 ∈ Pc(M), there is

a unique minimal geodesic (µt)t∈[0,1] from µ0 to µ1 in the Wasserstein space (P2(M), dW
2 )

(see (4.2)). Moreover, each µt is absolutely continuous (Lemma 6.2). Recall (7.1) for the
definition of the function βt

K,N .

Definition 8.1 (N -Ricci curvature bounds, [LV1], [LV2]) For K ∈ R and N ∈ (1,∞], we
say that (M,F, m) has N -Ricci curvature bounded below by K if, for any two absolutely
continuous probability measures µ0 = ρ0m, µ1 = ρ1m ∈ Pc(M), U ∈ DCN and for any
t ∈ (0, 1), it holds that

Um(µt) ≤ (1 − t)

∫
M×M

β1−t
K,N(d(x, y))

ρ0(x)
U

(
ρ0(x)

β1−t
K,N(d(x, y))

)
dπ(x, y)

+ t

∫
M×M

βt
K,N(d(x, y))

ρ1(y)
U

(
ρ1(y)

βt
K,N(d(x, y))

)
dπ(x, y),

where (µt)t∈[0,1] is the unique minimal geodesic from µ0 to µ1 and π is the unique optimal
coupling of (µ0, µ1).

We usually require only the existence of a minimal geodesic (µt)t∈[0,1] satisfying the
above inequality in order to ensure the stability under the convergence of spaces. Thus
we implicitly took advantage of the unique existence of minimal geodesics in the above
definition. In addition, it is more consistent to include singular measures, whereas it is
konwn by [LV1] that the above definition is sufficient to imply the corresponding general-
ized condition concerning possibly singular measures. Furthermore, as βt

K,N(r) is defined

only for r < π
√

(N − 1)/K if K > 0, we apparently need to restrict ourselves to µ0 and

µ1 such that diam(supp µ0 ∪ supp µ1) ≤ π
√

(N − 1)/K. Nonetheless, this local version is

enough to imply a generalized Bonnet-Myers theorem diam M ≤ π
√

(N − 1)/K, so that
the restriction on supp µ0 ∪ supp µ1 turns out unnecessary.
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Sturm’s curvature-dimension condition CD(K,N) uses the same inequality as Defini-
tion 8.1, but only for the Rényi and the relative entropies. These cases are indeed essential
in the sense that an n-dimensional Riemannian manifold (M, g, volg) equipped with the
Riemannian volume element satisfies CD(K,N) if and only if Ric ≥ K and n ≤ N . The
K-convexity of the relative entropy considered in [vRS] is nothing but CD(K,∞). Indeed,
applying Definition 8.1 with N = ∞ to the relative entropy yields

Entm(µt) ≤ (1 − t) Entm(µ0) + t Entm(µ1) −
K

2
(1 − t)tdW

2 (µ0, µ1)
2. (8.1)

Now we give a proof of Theorem 1.2. This extends Sturm’s and Lott and Villani’s
results concerning weighted Riemannian manifolds ([St1], [St2], [St3], [LV1], [LV2]).

8.2 Proof of Theorem 1.2

Take two absolutely continuous measures µ0 = ρ0m, µ1 = ρ1m ∈ Pc(M). Let φ be a
c-concave function such that Ft(x) := expx(∇(−tφ)(x)), t ∈ [0, 1], provides the unique
optimal transport map from µ0 to µ1 (Theorem 4.10). Then µt := (Ft)#µ0, t ∈ [0, 1], is
the unique minimal geodesic from µ0 to µ1, and π := (IdM ×F1)#µ0 is the unique optimal
coupling of (µ0, µ1). Fix t ∈ (0, 1). As µt is absolutely continuous, we can write µt = ρtm.
We deduce from Theorem 5.2(iii) that

ρ0(x) = Jt(x)ρt

(
Ft(x)

)
= J1(x)ρ1

(
F1(x)

)
(8.2)

holds for µ0-a.e. x with dφx 6= 0, where we put Jt(x) := D[d(Ft)x] as in Proposition 5.3.
(i) Assume that (1.3) holds. We follow the proof of [St3, Theorem 1.7] using somewhat

similar calculations to Lemma 7.2 and Theorem 7.3. Fix x ∈ M at where ρ0(x) > 0,
dφx 6= 0 and (8.2) holds. Put v = ∇(−φ)(x) and let η : [0, 1] −→ M be the geodesic
with η̇(0) = v. Take an orthonormal basis {ei}n

i=1 of TxM with respect to gv such that
en = v/F (v). We extend them to Ei(t) := d(Ft)x(ei) for t ∈ [0, 1] and remark that
every Ei is a Jacobi field, for Ft is a transport map along geodesics. We set gt = gη̇(t),

V(t) = V(η̇(t)/F (v)) and E ′
i(t) = Dη̇

η̇Ei(t) for brevity.
As in Lemma 7.2, we define n × n-matrices A(t) and B(t) by aij(t) = gt(Ei, Ej)

and E ′
i(t) =

∑n
j=1 bij(t)Ej(t). We remark that {Ei(t)}n

i=1 is a basis of Tη(t)M because

(det A(t))1/2 = eV(t)−V(0)Jt(x) > 0. We also define Pi as the parallel vector field along
η (i.e., Dη̇

η̇Pi ≡ 0) with Pi(0) = ei, and take the n × n-matrix C(t) with Pi(t) =∑n
j=1 cij(t)Ej(t). Note that Pn(t) = η̇(t)/F (v). Put D = CBC−1 and recall that this is

symmetric. Then C ′ = −CB and calculations in Lemma 7.2 yield that

B′ = −Ricη̇ A−1 − B2, D′ = CB′C−1 = −C Ricη̇ A−1C−1 − D2.

In particular, it follows from (2.3) that

d′
nn = −

n∑
i=1

d2
in ≤ −d2

nn. (8.3)
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Now we consider functions

h(t) :=
(
e−V(0)Jt(x)

)1/N
= e−V(t)/N

(
det A(t)

)1/2N
, h1(t) := e−V(t)/(N−n),

h2(t) :=
(
det A(t)

)1/2n
, f(t) := log

[(
det A(t)

)1/2]
= n log h2(t).

Again we calculate as in Lemma 7.2 and observe f ′ = trace D and f ′′ = −Ric(η̇) −
trace(D2). We further define β(t) := 1 +

∫ t

0
dnn ds and α := f − β. Then we see

α′′ = f ′′ − β′′ = −Ric(η̇) − trace(D2) − d′
nn = −Ric(η̇) −

n∑
i,j=1

d2
ij +

n∑
i=1

d2
in

≤ −Ric(η̇) −
n−1∑
i,j=1

d2
ij ≤ −Ric(η̇) − 1

n − 1

( n−1∑
i=1

dii

)2

= −Ric(η̇) − (α′)2

n − 1
.

Hence we have [eα/(n−1)]′′e−α/(n−1) ≤ −Ric(η̇)/(n− 1). We put h3 = h
(N−n)/(N−1)
1 eα/(N−1)

and obtain, as in Theorem 7.3,

h′′
3h

−1
3 ≤ F (v)2

N − 1

{
− ∂2

Pn
V +

(∂PnV)2

N − n
− Ric(Pn)

}
≤ −F (v)2K

N − 1
.

This implies that {h3(t) − s′K,N(tr)h3(0)}/sK,N(tr) is nonincreasing in t, where we set
r = F (v) = d(x,F1(x)). Therefore we find

h3(t) ≥
sK,N((1 − t)r)

sK,N(r)
h3(0) +

sK,N(tr)

sK,N(r)
h3(1). (8.4)

On the other hand, (8.3) yields that (eβ)′′ ≤ 0, so that eβ(t) ≥ (1 − t)eβ(0) + teβ(1).
Combining this with (8.4) and the Hölder inequality shows that

h(t) = h1(t)
(N−n)/Nh2(t)

n/N = h1(t)
(N−n)/N(ef(t))1/N = h3(t)

(N−1)/N(eβ(t))1/N

≥ {(1 − t)eβ(0) + teβ(1)}1/N

{
sK,N((1 − t)r)

sK,N(r)
h3(0) +

sK,N(tr)

sK,N(r)
h3(1)

}(N−1)/N

≥ {(1 − t)eβ(0)}1/N

{
sK,N((1 − t)r)

sK,N(r)
h3(0)

}(N−1)/N

+ {teβ(1)}1/N

{
sK,N(tr)

sK,N(r)
h3(1)

}(N−1)/N

= (1 − t)β1−t
K,N(r)1/Nh(0) + tβt

K,N(r)1/Nh(1).

We consequently obtain

Jt(x)1/N ≥ (1 − t)β1−t
K,N

(
d
(
x,F1(x)

))1/N

+ tβt
K,N

(
d
(
x,F1(x)

))1/N

J1(x)1/N . (8.5)

For any U ∈ DCN , as ϕ is nonincreasing and convex, we deduce from (8.2) and (8.5)
that

Um(µt) =

∫
M

U(ρt) dm =

∫
M

ϕ(ρ
−1/N
t )ρt dm =

∫
M

ϕ

(
J

1/N
t

ρ
1/N
0

)
dµ0

≤
∫

M

ϕ

(
(1 − t)

β1−t
K,N(d(x,F1(x)))1/N

ρ0(x)1/N
+ t

βt
K,N(d(x,F1(x)))1/N

ρ1(F1(x))1/N

)
dµ0(x)

≤ (1 − t)

∫
M

ϕ

(
β1−t

K,N(d(x,F1(x)))1/N

ρ0(x)1/N

)
dµ0(x) + t

∫
M

ϕ

(
βt

K,N(d(x,F1(x)))1/N

ρ1(F1(x))1/N

)
dµ0(x).
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Plugging ϕ(s) = sNU(s−N) and π = (IdM ×F1)#µ0 into this shows the desired N -Ricci
curvature bound. More precisely, we need to separately treat x with dφx = 0, whereas
then we find ρ0(x) = ρt(x) = ρ1(x) by Lemma 6.1 and Theorem 5.2, and hence

ϕ
(
ρt(x)−1/N

)
= ϕ

(
(1 − t)ρ0(x)−1/N + tρ1(x)−1/N

)
≤ (1 − t)ϕ

(
ρ0(x)−1/N

)
+ tϕ

(
ρ1(x)−1/N

)
.

To see the converse, assume that (M,F, m) has N -Ricci curvature bounded below
by K. We shall modify a discussion in [St3, Theorem 1.7] taking [LV1] into accout.
Fix a unit vector v ∈ TxM and put a = (∂vV)/(N − n). Take the short geodesic η :
(−δ, δ) −→ M with η̇(0) = v and extend v to the C∞-vector field V := ∇[d(η(−δ), ·)]
on U := B+(η(−δ), 2δ) \ {η(−δ)}. We introduce the Riemannian structure g := gV of U ,
and remark that η is also a geodesic with respect to g ([Sh2, Lemma 6.2.1]). Moreover,
Ric(v) with respect to F coincides with the Ricci curvature of v with respect to g ([Sh2,
Proposition 6.2.2]).

Given 0 < ε ¿ r ¿ δ, we consider two open balls with respect to g

A+ := Bg
(
η(r), ε(1 − ar)

)
, A− := Bg

(
η(−r), ε(1 + ar)

)
.

Note that

m(A+) = e−V(η̇(r))cnε
n(1 − ar)n + O(εn+1), m(A−) = e−V(η̇(−r))cnεn(1 + ar)n + O(εn+1),

where cn denotes the volume of the standard unit ball in Rn. Applying (1.3) with U(r) =
Nr(1−r−1/N) to µ0 = m(A−)−1m|A− , µ1 = m(A+)−1m|A+ and t = 1/2 shows the following
Brunn-Minkowski inequality ([St3, Proposition 2.1], Corollary 9.4(iii))

m
(
Z1/2(A−, A+)

)1/N ≥ 1

2
β

1/2
K,N

(
2r + O(ε)

)1/N{m(A−)1/N + m(A+)1/N}.

We also observe

β
1/2
K,N(2r) =

(
2sK,N(r)

sK,N(2r)

)N−1

= 1 +
K

2
r2 + O(r4).

In addition, we deduce from a = (∂vV)/(N − n) that

∂2

∂r2

[
e−V(η̇(r))/N(1 − ar)n/N

]∣∣∣
r=0

=

{
n

N

(
n

N
− 1

)
a2 +

2n

N2
a∂vV +

1

N2
(∂vV)2 − 1

N
∂2

vV
}

e−V(v)/N

=

{
(∂vV)2

N(N − n)
− 1

N
∂2

vV
}

e−V(v)/N .
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Thus it follows that

m(Z1/2(A−, A+))

cnεn

≥ 1

2N

(
1 +

K

2
r2 + O(r4)

){
2e−V(v)/N +

(
(∂vV)2

N(N − n)
− ∂2

vV
N

)
e−V(v)/Nr2 + O(r4)

}N

=

(
1 +

K

2
r2

)
e−V(v)

{
1 +

1

2

(
(∂vV)2

N − n
− ∂2

vV
)

r2

}
+ O(r4)

= e−V(v)

{
1 +

1

2

(
K − ∂2

vV +
(∂vV)2

N − n

)
r2

}
+ O(r4).

On the other hand, if we choose an orthonormal basis {ei}n
i=1 of TxM with respect to

g with en = v, and denote by ki the sectional curvature (with respect to g) of the plane
spanned by ei and en, then

m(Z1/2(A−, A+))

cnεn
= e−V(v)

n−1∏
i=1

(
1 +

ki

2
r2 + O(r3)

)
= e−V(v)

(
1 +

Ric(v)

2
r2

)
+ O(r3).

Therefore we conclude that Ric(v) + ∂2
vV − (∂vV)2/(N − n) ≥ K.

(ii) Assume Ric(v) ≥ K and ∂vV = 0. In this case, (8.5) with N = n directly follows
from Proposition 5.3 and Theorem 7.1 with H = 0, and then we discuss as in (i).

If (M,F, m) has n-Ricci curvature bounded below by K, then it also has N -Ricci
curvature bounded below by K for any N ∈ (n,∞). Hence (i) yields Ric(v) + ∂2

vV −
(∂vV)2/(N − n) ≥ K. Letting N tend to n shows that ∂vV ≡ 0 and then Ric(v) ≥ K.

(iii) It costs no generality to assume that (M,F ) is compact. If Ric(v) + ∂2
vV ≥ K,

then we have

Ric(v) + ∂2
vV − (∂vV)2

N − n
≥ K − 1

N − n
sup

v∈TM,F (v)=1

(∂vV)2

for any N ∈ (n,∞). Thus (i) shows that (M,F, m) has ∞-Ricci curvature bounded below
by K − supv∈TM,F (v)=1(∂vV)2/(N −n), and letting N diverge to infinity yields the desired
curvature bound K.

The direction from ∞-Ricci curvature bounded below by K to Ric(v) + ∂2
vV ≥ K is

the special case (a = 0) of the latter half of the proof of (i) (see [vR, Theorem 1.1]).
Indeed, (8.1) applied to µ0 = m(A−)−1m|A− , µ1 = m(A+)−1m|A+ and t = 1/2 yields (see
Corollary 9.5(ii))

log m
(
Z1/2(A−, A+)

)
≥ 1

2
log m(A−) +

1

2
log m(A+) +

K

8
dW

2 (µ0, µ1)
2.

Hence we have

m(Z1/2(A−, A+))

cnεn
≥ e−{V(η̇(−r))+V(η̇(r))}/2eKr2/2 + O(ε)

= e−V(v)

(
1 − ∂2

vV
2

r2

)(
1 +

K

2
r2

)
+ O(r4) = e−V(v)

{
1 +

K − ∂2
vV

2
r2

}
+ O(r4).

Therefore we obtain Ric(v) + ∂2
vV ≥ K. 2
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8.3 Remarks and corollaries

We close this section with selected remarks and corollaries.

Remark 8.2 (a) Let us briefly comment on the reason why the same characterization
as Theorem 1.2(i) does not work for the measure contraction property (i.e., the converse
of Theorem 7.3 fails, compare with [Oh1], [St3]). In the proof of Theorem 1.2(i), we
considered a part of a cone bounded by A+ and A−. If one could find the origin of this
cone (in B+(x, π

√
(N − 1)/K) or B−(x, π

√
(N − 1)/K) if K > 0), then the measure

contraction property is applied. The origin is, however, η(a−1) by construction, so that
we need the infinite extendability of minimal geodesics even if K ≤ 0, and η(a−1) is
nonsense typically when K > 0 and ∂vV = 0. We actually know that a sufficiently small
ball in Rn has positive curvature in terms of the measure contraction property with N > n
([St3, Remark 5.6]).

(b) The most restricted situation (ii) in Theorem 1.2 still admits a number of non-
Riemannian spaces. As we mentioned at the end of Section 7, if (M,F ) is Berwald type,
then the Busemann-Hausdorff measure satisfies ∂vV ≡ 0. In particular, Minkowski spaces
have nonnegative n-Ricci curvature.

It is possible to use (8.5) instead of Proposition 5.3 in the proof of Theorem 1.1, and
then we obtain the following variant. We remark that this corollary does not follow from
the combination of Theorems 1.1 and 7.3 (see also Remark 8.2(a) above).

Corollary 8.3 Assume that n ≥ 2 and there are constants K ∈ R and N ∈ (n,∞) such
that Ric(v) + ∂2

vV − (∂vV)2/(N − n) ≥ K holds for all unit vectors v ∈ TM . Take three
nonnegative measurable functions f, g, h : M −→ [0,∞) and measurable sets A,B ⊂ M
with

∫
A

f dm =
∫

B
g dm = 1. If there is t ∈ (0, 1) such that

1

h(z)1/N
≤ (1 − t)

(
β1−t

K,N(d(x, y))

f(x)

)1/N

+ t

(
βt

K,N(d(x, y))

g(y)

)1/N

holds for all x ∈ A, y ∈ B and z ∈ Zt(x, y), then we have
∫

M
h dm ≥ 1.

As we have already mentioned, applying Theorem 1.2(iii) to the relative entropy yields
the K-convexity (8.1). Moreover, Theorem 1.2 contains the following weighted version.
Take a C∞-function V : M −→ R and suppose that

Ric(v) + ∂2
vV + ∂2

vV ≥ K

holds for every unit vector v ∈ TM , where we put ∂2
vV = (V ◦ η)′′(0) using the geodesic

η : (−ε, ε) −→ M with η̇(0) = v. Then (M,F, e−V m) has ∞-Ricci curvature bounded
below by K. In particular, the corresponding free energy

Ente−V m(ρm) = Entm(ρm) +

∫
M

V ρ dm

is K-convex. The K-convexity of the relative entropy as well as the free energy plays an
essential role in the investigation of gradient flows on Wasserstein spaces. It has been
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developed in [JKO], [AGS], [Oh3] and [Sa] in the cases where underlying spaces are Eu-
clidean spaces, Hilbert spaces, Riemannian manifolds and Alexandrov spaces. Meanwhile,
in the Finsler setting, even gradient flows on Finsler manifolds are not yet studied well.

We finally recall functional inequalities following from Theorem 1.2, they are related
to concentration of measures studied in the next section.

Corollary 8.4 ([LV1], see also [CMS2]) Let (M,F, m) be a compact Finsler manifold
satisfying n ≥ 2, m(M) = 1 and Ric(v) + ∂2

vV ≥ K for some K ∈ R and all unit vectors
v ∈ TM . Then the following hold.

(i) (Talagrand inequality/Transport cost inequality) For any absolutely continuous mea-
sure µ ∈ P(M), we have

Entm(µ) ≥ K

2
max

{
dW

2 (m, µ)2, dW
2 (µ, m)2

}
.

(ii) (Logarithmic Sobolev inequality) For any Lipschitz continuous function f : M −→
R with

∫
M

f 2 dm = 1, we have

Entm(µ) ≤ min
d=dW

2 (m,µ),dW
2 (µ,m)

{
2

( ∫
M

F (∇f)2 dm

)1/2

d − K

2
d2

}
,

where we set µ = f 2m. In particular, if K > 0, then it holds that

Entm(µ) ≤ 2

K

∫
M

F (∇f)2 dm.

(iii) (Global Poincaré inequality) If K > 0, then we have, for any Lipschitz continuous
function f : M −→ R with

∫
M

f dm = 0,∫
M

f2 dm ≤ 1

K

∫
M

F (∇f)2 dm.

Corollary 8.5 (A generalized Lichnerowicz inequality, [LV2, Theorem 5.34]) Suppose
that n ≥ 2 and there are constants K > 0 and N ∈ (n,∞) such that Ric(v) + ∂2

vV −
(∂vV)2/(N − n) ≥ K holds for all unit vectors v ∈ TM . Then we have, for any Lipschitz
continuous function f : M −→ R with

∫
M

f dm = 0,∫
M

f 2 dm ≤ N − 1

KN

∫
M

F (∇f)2 dm.

9 Applications

This final section is devoted to applications of the Finsler Borell-Brascamp-Lieb inequality
(Theorem 1.1) and the volume comparison theorems (Theorems 7.1, 7.3).
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9.1 Further interpolation inequalities

We first treat interpolation inequalities closely related to the Borell-Brascamp-Lieb in-
equality. See [Ga] and [CMS1] for their correlation and historical background.

For p ∈ R \ 0, t ∈ (0, 1) and a, b ∈ [0,∞), we define

Mp
t (a, b) := {(1 − t)ap + tbp}1/p.

We set Mp
t (a, b) := 0 if p < 0 and ab = 0. We also define, as the limits,

M0
t (a, b) := a1−tbt, M∞

t (a, b) := max{a, b}, M−∞
t (a, b) := min{a, b}.

By convention, we set Mp
t (0,∞) := 0 if p ∈ [−∞, 0], Mp

t (0,∞) := ∞ if p ∈ (0,∞], and
Mp

t (∞,∞) := ∞ for p ∈ [−∞,∞].
We will use the following type of Hölder inequality. For a, b, c, d ∈ [0,∞), p, q ∈

(−∞,∞] and r ∈ [−∞,∞] with p + q ≥ 0 as well as p−1 + q−1 = r−1, it holds that

Mr
t (ac, bd) ≤ Mp

t (a, b)Mq
t (c, d). (9.1)

Here r = −∞ if p = −q 6= 0, r = 0 if p = 0 or q = 0, and r = ∞ if p = q = ∞. If
p, q ∈ (0,∞), then this is the usual Hölder inequality. By taking the limits, we obtain
(9.1) for p, q, r ∈ [0,∞]. If 0 < −q < p < ∞ and a, b, c, d ∈ (0,∞), then r ∈ (−∞, q)
and we see that M−q

t (c−1, d−1) ≤ Mp
t (a, b)M−r

t ((ac)−1, (bd)−1). This is indeed (9.1)
by taking Mq

t (c, d) = M−q
t (c−1, d−1)−1 into account. Taking the limits shows (9.1) for

0 < −q < p < ∞ and a, b, c, d ∈ [0,∞). Finally, taking the limits again yields (9.1) for
0 < −q ≤ p ≤ ∞ and r ∈ [−∞, q].

Corollary 9.1 (p-mean inequality) Take t ∈ (0, 1), p ∈ [−1/n,∞], three nonnegative
measurable functions f, g, h : M −→ [0,∞) and nonempty measurable sets A,B ⊂ M
with

∫
A

f dm =
∫

M
f dm and

∫
B

g dm =
∫

M
g dm. If we have

h(z) ≥ Mp
t

(
f(x)

v>
t (x, y)

,
g(y)

v<
t (x, y)

)
for all x ∈ A, y ∈ B and z ∈ Zt(x, y), then

∫
M

h dm ≥ Mp/(1+np)
t (

∫
M

f dm,
∫

M
g dm)

holds. Here p/(1 + np) = −∞ if p = −1/n and p/(1 + np) = 1/n if p = ∞.

Proof. If ‖f‖1, ‖g‖1 ∈ (0,∞), then we put ĥ = Mp/(1+np)
t (‖f‖1, ‖g‖1)

−1h and shall see
that (f/‖f‖1, g/‖g‖1, ĥ) satisfies the assumption (1.1) of Theorem 1.1. Fix x ∈ A and
y ∈ B. If f(x)g(y) = 0, then (1.1) is clearly satisfied. In case of f(x)g(y) > 0, we deduce
from the hypothesis on h and (9.1) that, for any z ∈ Zt(x, y),

ĥ(z) ≥ Mp/(1+np)
t (‖f‖1, ‖g‖1)

−1Mp
t

(
f(x)

v>
t (x, y)

,
g(y)

v<
t (x, y)

)
≥ M1/n

t

(
v>

t (x, y)‖f‖1

f(x)
,
v<

t (x, y)‖g‖1

g(y)

)−1

.

Thus Theorem 1.1 yields ‖ĥ‖1 ≥ 1 as required.
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If ‖f‖1 = 0, then the conclusion is obvious (‖h‖1 ≥ 0) unless ‖g‖1 > 0 and p > 0.
For p ∈ (0,∞], the assumption on h means that h(z) ≥ t1/pg(y)/v<

t (x, y). Fix x ∈ A and
define the map τ<

t : B \ Cut(x) −→ M by τ<
t (y) := η(t), where η : [0, 1] −→ M is the

unique minimal geodesic from x to y. Then τ<
t (y) ∈ Zt(x, y) and we have

‖h‖1 ≥
∫

τ<
t (B\Cut(x))

h dm =

∫
B

(h ◦ τ<
t )D[dτ<

t ] dm ≥
∫

B

t1/pg(y)

v<
t (x, y)

tnv<
t (x, y) dm(y)

= t(1+np)/p

∫
B

g dm = Mp/(1+np)
t (0, ‖g‖1).

The case ‖f‖1 + ‖g‖1 = ∞ is deduced by approximating f and g from below. 2

The least case p = −1/n is Theorem 1.1 and we have seen that it is the strongest. As
the particular case of p = 0, we obtain the following.

Corollary 9.2 (Prékopa-Leindler inequality) Take t ∈ (0, 1), three nonnegative measur-
able functions f, g, h : M −→ [0,∞) and nonempty measurable sets A,B ⊂ M with∫

A
f dm =

∫
M

f dm and
∫

B
g dm =

∫
M

g dm. If we have

h(z) ≥
(

f(x)

v>
t (x, y)

)1−t(
g(y)

v<
t (x, y)

)t

for all x ∈ A, y ∈ B and z ∈ Zt(x, y), then
∫

M
h dm ≥ (

∫
M

f dm)1−t(
∫

M
g dm)t holds.

Corollary 9.3 (Brunn-Minkowski inequality) For any nonempty measurable sets A,B ⊂
M and t ∈ (0, 1), we have

m
(
Zt(A,B)

)1/n ≥ (1 − t) inf
x∈A,y∈B

v>
t (x, y)1/n · m(A)1/n + t inf

x∈A,y∈B
v<

t (x, y)1/n · m(B)1/n.

Proof. If m(A), m(B) ∈ (0,∞), then we get this by applying Theorem 1.1 to normalized
characteristic functions f = m(A)−11A, g = m(B)−11B and

h =
[
(1 − t)

{
inf

x∈A,y∈B
v>

t (x, y) · m(A)
}1/n

+ t
{

inf
x∈A,y∈B

v<
t (x, y) · m(B)

}1/n
]−n

1Zt(A,B).

If m(A) = 0 and m(B) ∈ (0,∞), then we argue as in the proof of Corollary 9.1. The case
m(A) = m(B) = 0 is trivial and the case m(A) + m(B) = ∞ follows by approximating A
and B by increasing subsets. 2

We can derive variants of the above inequalities using Corollary 8.3 (and Theorem
7.3) instead of Theorem 1.1.

Corollary 9.4 Suppose that n ≥ 2 and there are constants K ∈ R and N ∈ (n,∞) such
that Ric(v) + ∂2

vV − (∂vV)2/(N − n) ≥ K holds for all unit vectors v ∈ TM . Then the
following hold.
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(i) Take t ∈ (0, 1), p ∈ [−1/N,∞], three nonnegative measurable functions f, g, h :
M −→ [0,∞) and nonempty measurable sets A,B ⊂ M with

∫
A

f dm =
∫

M
f dm

and
∫

B
g dm =

∫
M

g dm. If we have

h(z) ≥ Mp
t

(
f(x)

β1−t
K,N(d(x, y))

,
g(y)

βt
K,N(d(x, y))

)
for all x ∈ A, y ∈ B and z ∈ Zt(x, y), then

∫
M

h dm ≥ Mp/(1+Np)
t (

∫
M

f dm,
∫

M
g dm)

holds. Here p/(1 + Np) = −∞ if p = −1/N and p/(1 + Np) = 1/N if p = ∞.

(ii) Take t ∈ (0, 1), three nonnegative measurable functions f, g, h : M −→ [0,∞)
and nonempty measurable sets A,B ⊂ M with

∫
A

f dm =
∫

M
f dm and

∫
B

g dm =∫
M

g dm. If we have

h(z) ≥
(

f(x)

β1−t
K,N(d(x, y))

)1−t(
g(y)

βt
K,N(d(x, y))

)t

for all x ∈ A, y ∈ B and z ∈ Zt(x, y), then
∫

M
h dm ≥ (

∫
M

f dm)1−t(
∫

M
g dm)t holds.

(iii) For any nonempty measurable sets A, B ⊂ M and t ∈ (0, 1), we have

m
(
Zt(A,B)

)1/N ≥ (1 − t) inf
x∈A,y∈B

β1−t
K,N

(
d(x, y)

)1/N · m(A)1/N

+ t inf
x∈A,y∈B

βt
K,N

(
d(x, y)

)1/N · m(B)1/N .

We further obtain the following infinite dimensional version by letting N diverge to
infinity in (ii) above, and by (8.1) along with Jensen’s inequality.

Corollary 9.5 Suppose that n ≥ 2 and there is a constant K ∈ R such that Ric(v) +
∂2

vV ≥ K holds for all unit vectors v ∈ TM . Then the following hold.

(i) Take t ∈ (0, 1), three nonnegative measurable functions f, g, h : M −→ [0,∞)
and nonempty measurable sets A,B ⊂ M with

∫
A

f dm =
∫

M
f dm and

∫
B

g dm =∫
M

g dm. If we have

h(z) ≥
(

f(x)

β1−t
K,∞(d(x, y))

)1−t(
g(y)

βt
K,∞(d(x, y))

)t

for all x ∈ A, y ∈ B and z ∈ Zt(x, y), then
∫

M
h dm ≥ (

∫
M

f dm)1−t(
∫

M
g dm)t holds.

(ii) For any bounded measurable sets A,B ⊂ M with m(A), m(B) > 0 and t ∈ (0, 1), we
have

log m
(
Zt(A,B)

)
≥ (1 − t) log m(A) + t log m(B) +

K

2
(1 − t)tdW

2 (µ, ν)2,

where µ = m(A)−1m|A and ν = m(B)−1m|B.
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9.2 Concentration of measures

We finally discuss the concentration of measure phenomenon along the lines of [Le, §1.6]
(as well as [CMS1], [CMS2]). See [Sh2, §4] for related work. In this topic, it turns out
that both Ric(v) + ∂2

vV ≥ K and Ric(v) ≥ K with ∂vV ≥ −H give the same rate of
concentration.

We suppose that Ric(v) ≥ K > 0 and ∂vV ≥ −H hold for every unit vector v ∈ TM .
Given a function f : M −→ (−∞,∞] which is not identically ∞, define

Qf(y) := inf
x∈M

{
f(x) +

K

4
d(x, y)2 − Hd(x, y)

}
.

Then it follows from (7.2) and Theorem 7.1 with t = 1/2 that, for any x, y ∈ M with
f(x) < ∞,

e−f(x)eQf(y) ≤ eKd(x,y)2/4e−Hd(x,y) ≤ e−Hd(x,y)β
1/2
K,n

(
d(x, y)

)2 ≤ v>
1/2(x, y)v<

1/2(x, y).

Hence we can apply Corollary 9.2 to (f, g, h) = (e−f , eQf , 1) and t = 1/2 to obtain the
infimum-convolution inequality∫

M

e−f dm

∫
M

eQf dm ≤ m(M)2. (9.2)

Proposition 9.6 If n ≥ 2 and there are constants K > 0 and H ≥ 0 such that Ric(v) ≥
K and ∂vV ≥ −H hold for all unit vectors v ∈ TM , then we have the following:

(i) For any measurable set A ⊂ M with m(A) > 0 and r > 0, it holds that

1

m(M)
m

(
{y ∈ M | d(A, y) ≥ r}

)
≤ m(M)

m(A)
e2H2/Ke−Kr2/8.

(ii) For any 1-Lipschitz function f : M −→ R and r > 0, it holds that

1

m(M)
m

({
x ∈ M

∣∣∣f(x) ≥ m(M)−1

∫
M

f dm + r
})

≤ e2H2/Ke−Kr2/8.

(iii) If we assume Ric(v) + ∂2
vV ≥ K > 0 instead of Ric(v) ≥ K and ∂vV ≥ −H, then

we can replace e2H2/Ke−Kr2/8 with e−Kr2/4 in both (i) and (ii).

Proof. (i) Define a function f on M by 0 on A and ∞ on M \ A. Then we find, if
d(A, y) ≥ r,

Qf(y) = inf
x∈A

{
K

4
d(x, y)2 − Hd(x, y)

}
≥ K

8
inf
x∈A

d(x, y)2 +
K

8
inf
x∈A

{
d(x, y)2 − 8H

K
d(x, y)

}
≥ K

8
r2 − K

8

(
4H

K

)2

=
K

8
r2 − 2H2

K
.
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Thus applying (9.2) to f after Chebyshev’s inequality yields

m
(
{y ∈ M | d(A, y) ≥ r}

)
≤ e−Kr2/8+2H2/K

∫
M

eQf dm ≤ m(M)2

m(A)
e2H2/Ke−Kr2/8.

(ii) We first remark that the assertion is obvious if r ≤ 4H/K, so that we assume
r > 4H/K. For simplicity, we put a := m(M) in the following. Jensen’s inequality
combined with (9.2) shows∫

M

eQf dm ≤ a2

( ∫
M

e−f dm

)−1

≤ aea−1
R

M f dm.

If f is λ-Lipschitz, then we have, for any y ∈ M ,

Qf(y) ≥ f(y) + inf
x∈M

{
− λd(x, y) +

K

4
d(x, y)2 − Hd(x, y)

}
= f(y) +

K

4
inf
x∈M

{
d(x, y)2 − 4(λ + H)

K
d(x, y)

}
≥ f(y) − K

4

4(λ + H)2

K2
= f(y) − (λ + H)2

K
.

Hence we have ∫
M

ef dm ≤ e(λ+H)2/K

∫
M

eQf dm ≤ ae(λ+H)2/Kea−1
R

M f dm.

This implies, for a 1-Lipschitz function f and any λ > 0,∫
M

eλf−a−1
R

M λf dm dm ≤ ae(λ+H)2/K .

Therefore we obtain

m

({
x ∈ M

∣∣∣f(x) ≥ a−1

∫
M

f dm + r
})

≤ inf
λ>0

e−λr

∫
M

eλf−a−1
R

M λf dm dm ≤ a inf
λ>0

e−λr+(λ+H)2/K .

Choosing λ = (2 +
√

2)(Kr − 2
√

2H)/4 > 0 completes the proof.
(iii) We know that Ric(v)+∂2

vV ≥ K > 0 ensures m(M) < ∞ by [St2, Theorem 4.26].
Then a similar discussion to (i) and (ii) using Corollary 9.5(i) and

Qf(y) := inf
x∈M

{
f(x) +

K

4
d(x, y)2

}
enables us to replace e2H2/Ke−Kr2/8 with e−Kr2/4 in both (i) and (ii). 2
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Note that (iii) above recovers Riemannian normal concentration in [GM] derived from
the Lévy-Gromov isoperimetric inequality (see [Le] for more information).

As an immediate corollary to Proposition 9.6, we find a new exmaple of Lévy family.
For a (symmetric or nonsymmetric) metric space (X, d) equipped with a Borel probability
measure µ on X, we define the concentration function by

α(X,d,µ)(r) := sup
{
1 − µ

(
B+(A, r)

)
|A ⊂ X, µ(A) ≥ 1/2

}
for r > 0, where B+(A, r) := {y ∈ X | d(A, y) < r}. Then a family of metric measure
spaces {(Xk, dk, µk)}k∈N is called a Lévy family if we have

lim
k→∞

α(Xk,dk,µk)(diam Xk · r) = 0

for all r > 0. This concept was introduced in [GM] and has rich geometric and topological
applications (see [Le] and the references therein).

Corollary 9.7 Let {(Mk, Fk, µk)}k∈N be a sequence of Finsler manifolds of finite total
volume equipped with normalized measures µk = mk(Mk)

−1mk. Assume that diam Mk ≥ 1
and that either of the following holds.

(a) There are constants Kk > 0 and Hk ≥ 0 such that RicMk
(v) ≥ Kk and ∂vVMk

≥ −Hk

hold for all unit vectors v ∈ TMk, while limk→∞ Kk = ∞ and lim supk→∞ H2
k/Kk <

∞.

(b) There is a constant Kk > 0 such that RicMk
(v)+∂2

vVMk
≥ Kk holds for all unit vectors

v ∈ TMk, while limk→∞ Kk = ∞.

Then {(Mk, Fk, µk)}k∈N is a Lévy family.

Proof. We assume (a) and observe that Proposition 9.6(i) combined with the assumption
diam Mk ≥ 1 says that

α(Mk,Fk,µk)(diam Mk · r) ≤ α(Mk,Fk,µk)(r) ≤ 2e2H2
k/Kke−Kkr2/8.

This completes the proof of (a), and (b) is similar. 2
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