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Abstract

We establish a variety of properties of the discrete time simple random walk on
a Galton-Watson tree conditioned to survive when the offspring distribution, Z say,
is in the domain of attraction of a stable law with index α ∈ (1, 2]. In particular, we
are able to prove that the spectral dimension of the random walk is almost-surely
2α/(2α−1), which demonstrates that the famous Alexander-Orbach conjecture does
not hold when α 6= 2. Furthermore, we demonstrate that when α ∈ (1, 2) there are
logarithmic fluctuations in the quenched transition density of the simple random
walk, which contrasts with the log-logarithmic fluctuations seen when α = 2. In
the course of our arguments, we obtain tail bounds for the distribution of the nth
generation size of a Galton-Watson branching process with offspring distribution
Z conditioned to survive, as well as tail bounds for the distribution of the total
number of individuals born up to the nth generation, that are uniform in n.

MSC: Primary 60K37; Secondary 60J80, 60J35.
Keywords: Random walk, branching process, stable distribution, transition den-
sity.

1 Introduction

This article contains an investigation of simple random walks on Galton-Watson trees
conditioned to survive, and we will start by introducing some relevant branching process
and random walk notation. Let Z be a critical (EZ = 1) offspring distribution in the
domain of attraction of a stable law with index α ∈ (1, 2], by which we mean that there
exists a sequence an ↑ ∞ such that

Z[n] − n

an

d
→ X, (1)

where Z[n] is the sum of n i.i.d. copies of Z and E(e−λX) = e−λα

. Note that, by [10],
Theorem 2.6.5, this is equivalent to Z satisfying

E(sZ) = s + (1 − s)αL(1 − s), ∀s ∈ (0, 1), (2)

∗Dept of Statistics, University of Warwick, Coventry CV4 7AL, UK; d.a.croydon@warwick.ac.uk.
†Dept of Mathematics, Kyoto University, Kyoto 606-8502, Japan; kumagai@math.kyoto-u.ac.jp.

1



where L(x) is slowly varying as x → 0+, and the non-triviality condition P(Z = 1) 6= 1
holding. Denote by (Zn)n≥0 the corresponding Galton-Watson process, started from
Z0 = 1. It has been established ([19], Lemma 2) that if pn := P(Zn > 0), then

pα−1
n L(pn) ∼

1

(α − 1)n
, (3)

as n → ∞, where L is the function appearing in (2). It is also well known that the
branching process (Zn)n≥0 can be obtained as the generation size process of a Galton-
Watson tree, T say, with offspring distribution Z. In particular, to construct the random
rooted graph tree T , start with an single ancestor (or root), and then suppose that
individuals in a given generation have offspring independently of the past and each other
according to the distribution of Z, see [15], Section 3, for details. The vertex set of T is
the entire collection of individuals, edges are the parent-offspring bonds, and Zn is the
number of individuals in the nth generation of T . By (3), it is clear that T will be a
finite graph P-a.s. However, in [12], Kesten showed that it is possible to make sense of
conditioning T to survive or “grow to infinity”. More specifically, there exists a unique
(in law) random infinite rooted locally-finite graph tree T ∗ that satisfies, for any n ∈ Z+,

E (φ(T ∗|n)) = lim
m→∞

E (φ(T |n)|Zm+n > 0) , (4)

where φ is a bounded function on finite rooted graph trees of n generations, and T |n,
T ∗|n are the first n generations of T , T ∗ respectively. By [12], Lemma 2.2, the tree T ∗

has a unique infinite line of descent, or backbone, which we will denote throughout by
B. Furthermore, from the above characterisation of T ∗, it is clear that the generation
size process (Z∗

n)n≥0 of T ∗ is precisely the Q-process associated with (Zn)n≥0 (see [2],
Section I.14), which is commonly referred to as the Galton-Watson process conditioned
to survive.

Given a particular realisation of T ∗, let X = ((Xm)m≥0, P
T ∗

x , x ∈ T ∗) be the discrete
time simple random walk on T ∗. Define a measure µT ∗

on T ∗ by setting µT ∗
(A) =

∑

x∈A degT ∗(x), where degT ∗(x) is the graph degree of the vertex x in T ∗. The measure
µT ∗

is invariant for X, and the transition density of X with respect to µT ∗
is given by

pT ∗

m (x, y) :=
P T ∗

x (Xm = y)

µT ∗({y})
, ∀x, y ∈ T ∗, m ∈ Z+.

Throughout this article, we use the notation

τR := min{m : dT ∗(X0, Xm) = R},

to represent the first time that X has traveled a distance R ∈ N from its starting point.
The behaviour of X, started from the root ρ of T ∗, and (τR)R≥1 was first considered

in [12], where Kesten showed that, under the annealed law

P := P ◦ P T ∗

ρ ,

if the offspring distribution has finite variance, then the rescaled height-process defined
by (n−1/3dT ∗(ρ, Xbntc))t≥0 converges weakly as n → ∞ to a non-trivial continuous process
(the full proof of this result appeared in [11]). In [12], it was also noted that

lim
λ→∞

inf
R≥1

P

(

λ−1R
2α−1
α−1 ≤ τR ≤ λR

2α−1
α−1

)

= 1, (5)
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whenever the offspring distribution is in the domain of normal attraction of a stable law
with index α ∈ (1, 2], by which we mean that there exists a constant c ∈ (0,∞) such that

(1) occurs with an = cn
1
α (the full proof was given in the case α = 2 only). More recently,

in the special case when Z is a binomial random variable, a detailed investigation of X
was undertaken in [5], where a variety of bounds describing the quenched (almost-sure)
and expected behaviour of the transition density and displacement, dT ∗(ρ, Xm), were
established. Many of these results have since been extended to the general finite variance
offspring distribution case, see [9].

In this article, we continue the above work by proving distributional, annealed and
quenched bounds for the exit times, transition density and displacement of the random
walk on T ∗ for general offspring distributions satisfying (1). Similarly to the arguments
of [5] and [9], to deduce properties of the random walk, it will be important to estimate
geometric properties of the graph T ∗ such as the volume growth and resistance across
annuli (when T ∗ is considered as an electrical network with a unit resistor placed on each
edge). In particular, once we have established suitable volume growth and resistance
bounds, we can apply the results proved for general random graphs in [13] to obtain
many of our random walk conclusions. It should be noted that the techniques applied in
[13] are simple extensions of those developed in [4], which apply in our case when α = 2.

In terms of the branching process, we are required to derive suitably sharp estimates
on the tails of the distributions of Z∗

n and
∑n

m=0 Z∗
m, which we do in Section 2. In [9],

bounds for these quantities were obtained in the finite variance offspring distribution case
using moment estimates which fail in the more general case that we consider here. We
are able to overcome this problem using a more technical argument, which involves an
analysis of the generating functions of the relevant random variables. The statement of
our results depends on the non-extinction probabilities of the branching process (pn)n≥0

via a “volume growth function” (see Section 3 for a justification of this title), v : R+ →
R+, which is defined to satisfy v(0) = 0,

v(R) := Rp−1
R , ∀R ∈ N, (6)

and is linear in-between integers. Our first result yields the tightness of the distributions of
(τR)R≥1, (ET ∗

ρ τR)R≥1, (pT ∗

2m(ρ, ρ))m≥1 and (dT ∗(ρ, Xm))m≥1 with respect to the appropriate
measures; along with all the subsequent theorems of this section, it is proved in Section
3.

Theorem 1.1. The random walk on T ∗ satisfies

lim
λ→∞

inf
R∈N

P
(

λ−1h(R) ≤ τR ≤ λh(R)
)

= 1, (7)

lim
λ→∞

inf
R∈N

P
(

λ−1h(R) ≤ ET ∗

ρ τR ≤ λh(R)
)

= 1,

lim
λ→∞

inf
m∈N

P
(

λ−1 ≤ v(I((m))pT ∗

2m(ρ, ρ) ≤ λ
)

= 1,

lim
λ→∞

inf
m∈N

P
(

λ−1I(m) ≤ 1 + dT ∗(ρ, Xm)
)

= 1, lim
λ→∞

inf
m∈N

P (dT ∗(ρ, Xm) ≤ λI(m)) = 1, (8)

where h(R) := Rv(R) and I(m) := h−1(m).
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We remark that, from (3), we have that v(R) = R
α

α−1 `(R) for some function ` which
is slowly varying as R → ∞ (see Lemma 2.4 below). Thus the functions bounding the
exit time, transition density and displacement in the above result are of the form:

h(R) = R
2α−1
α−1 `1(R), v(I(m)) = m

α
2α−1 `2(m), I(m) = m

α−1
2α−1 `3(m),

where `1, `2 and `3 are slowly varying at infinity. In particular, when Z is in the domain

of normal attraction of a stable law with index α, then we have that pn ∼ cn− 1
α−1 for

some constant c, and hence (7) verifies the result of Kesten’s stated at (5). We highlight
the fact that the α of Kesten’s article corresponds to our α − 1.

The annealed bounds that we are able to obtain include the following. Further off-
diagonal estimates for the transition density, which extend the estimate at (10) are pre-
sented in Section 4.

Theorem 1.2. For every β ∈ (0, α − 1), γ ∈ (0, 1 − α−1) and δ ∈ (0, α−1), there exist
constants c1, . . . , c6 ∈ (0,∞) such that

c1h(R)β ≤ E
(

(

ET ∗

ρ τR

)β
)

≤ c2h(R)β, ∀R ∈ N, (9)

c3v(I(m))−γ ≤ E
(

pT ∗

2m(ρ, ρ)γ
)

≤ c4v(I(m))−γ , ∀m ∈ N, (10)

c5I(m)δ ≤ E
(

dT ∗(ρ, Xm)δ
)

≤ E

(

max
0≤k≤m

dT ∗(ρ, Xk)
δ

)

≤ c6I(m)δ, ∀m ∈ N. (11)

In the finite variance case, it is known that (9) and (10) hold with β, γ = 1 (see [9],
Theorem 1.1). Furthermore, in [5], it was established that when the offspring distribution
is binomial, then (11) holds with δ = 1. The proofs of (9) and the corresponding results
in [5] and [9] all rely on the bound ET ∗

ρ τR ≤ 2(R+1)
∑R+1

m=0 Z∗
m. However, the right-hand

side of this expression has infinite expectation under P when α ∈ (1, 2), and so we can
not use the same technique to deduce the result for β = 1 in general. A similar problem
occurs in the proof of (10), where, to establish the result for γ = 1, we need an estimate
on the negative moments of

∑R
m=0 Z∗

m of orders larger than we can prove. We cannot
prove if (9) and (10) actually fail to hold or not in general when β = γ = 1. We also
do not know whether, when δ = 1, the expectations in (11) can be bounded above by a
multiple of I(m) uniformly in m in general.

In addition to the above annealed bounds, we will also establish quenched bounds for
the random walk on T ∗ as follows. Note that part (b) implies that for P-a.e. realisation
of T ∗, the random walk on T ∗ is recurrent.

Theorem 1.3. There exist constants a1, . . . , a4 ∈ (0,∞) such that for P-a.e. realisation
of T ∗ the following properties are satisfied.
(a) If x ∈ T ∗, then P T ∗

x -a.s.,

h(R)(log R)−a1 ≤ τR ≤ h(R)(log R)a1 , for large R.

Moreover,
h(R)(log R)−a2 ≤ ET ∗

x τR ≤ h(R)(log R)a2 , for large R.
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(b) If x ∈ T ∗, then

v(I(m))−1(log m)−a3 ≤ pT ∗

2m(x, x) ≤ v(I(m))−1(log m)a3 , for large m.

(c) If x ∈ T ∗, then P T ∗

x -a.s.,

I(m)(log m)−a4 ≤ max
0≤k≤m

dT ∗(x, Xk) ≤ I(m)(log m)a4 , for large m.

From the preceding theorem we are easily able to calculate the exponents of the leading
order polynomial terms governing the exit time, transition density decay and maximum
displacement. We are also able to determine the exponent according to which the size of
the range of the simple random walk grows.

Theorem 1.4. For P-a.e. realisation of T ∗ , we have that

lim
R→∞

log τR

log R
= lim

R→∞

log ET ∗

x (τR)

log R
=

2α − 1

α − 1
, P T ∗

x -a.s. for every x ∈ T ∗, (12)

ds(T
∗) := lim

m→∞

−2 log pT ∗

2m(ρ, ρ)

log m
=

2α

2α − 1
, (13)

lim
m→∞

log max0≤k≤m dT ∗(x, Xk)

log m
=

α − 1

2α − 1
, P T ∗

x -a.s. for every x ∈ T ∗, (14)

and if the range W = (Wm)m≥0 of the simple random walk is defined by setting Wm :=
{X0, . . . , Xm}, then

lim
m→∞

log µT ∗
(Wm)

log m
= lim

m→∞

log #Wm

log m
=

α

2α − 1
, P T ∗

x -a.s. for every x ∈ T ∗.

We remark that the quantity ds(T
∗) introduced in the above result is often taken

as a definition of the spectral dimension of (the random walk on) T ∗. Famously, in
[1], Alexander and Orbach conjectured that, for a particular class of graphs, there is a
relationship between the volume growth on the graph and the behaviour of the associated
simple random walk. For the Alexander-Orbach conjecture to hold in our setting, we
would require that ds(T

∗) = 4/3. As noted in [12], this is the case if and only if α = 2.
Finally, in Section 5, we investigate the fluctuations in the volume growth and the

quenched transition density of the simple random walk on T ∗. In particular, when α ∈
(1, 2) we show that the volume of a ball of radius R, centered at ρ, has logarithmic
fluctuations about the function v(R), P-a.s., and when α = 2 there are log-logarithmic
fluctuations, P-a.s. It follows from estimates in Section 2 and [5] that these results are
sharp up to exponents. We also note that these asymptotic results are analogous to the
results proved for the related stable trees in [7], where it is shown that the Hausdorff
measure of a stable tree with index α ∈ (1, 2) has logarithmic corrections, in contrast to
the log-logarithmic corrections seen when α = 2. Furthermore, by standard arguments,
it follows that, with positive probability, the quenched transition density of the simple
random walk on T ∗ has logarithmic fluctuations when α ∈ (1, 2), and log-logarithmic
fluctuations when α = 2. In general, these results are also sharp up to exponents in the
fluctuation terms.
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2 Branching process properties

That (pnZ
∗
n)n≥0 converges in distribution to a non-zero random variable was proved as

[17], Theorem 4. Furthermore, if we define (Y ∗
n )n≥0 by setting

Y ∗
n =

n
∑

m=0

Z∗
m,

then it is possible to deduce that (n−1pnY ∗
n )n≥0 converges in distribution to a non-zero

random variable by applying Theorem 1.5 of [6], (in fact, [6], Theorem 1.5 also provides
an alternative description of the limit random variable of (pnZ∗

n)n≥0). However, although
these results are enough to demonstrate that Theorem 1.1 is true, to deduce the remaining
results for the simple random walk on T ∗ that are stated in the introduction, we need to
establish tail estimates for Z∗

n and Y ∗
n that are uniform in n, and that is the aim of this

section. We start by stating a moment estimate for the unconditioned Galton-Watson
process (Zn)n≥0.

Lemma 2.1 ([8], Lemma 11). For β ∈ (0, α − 1), there exists a finite constant c such
that

E
(

Z1+β
n

)

≤ cp−β
n , ∀n ∈ N.

A polynomial upper bound for the tail of the distribution of Z∗
n near infinity is an

easy consequence of this result. When α ∈ (1, 2), we are also able to deduce a polynomial
lower bound.

Proposition 2.2. For β1 ∈ (0, α − 1), there exists a finite constant c1 such that

P
(

Z∗
n ≥ λp−1

n

)

≤ c1λ
−β1, ∀n ∈ N, λ > 0. (15)

Moreover, for α ∈ (1, 2), β2 > (α − 1)/(2− α), there exists a strictly positive constant c2

and integer n0 such that

P
(

Z∗
n ≥ λp−1

n

)

≥ c2λ
−β2 , ∀n ≥ n0, λ ≥ 1. (16)

Proof. Fix β1 ∈ (0, α − 1). The transition probabilities of the Markov process (Z∗
n)n≥0

can be expressed in terms of the transition probabilities of the unconditioned process
(Zn)n≥0, see [2], Section 14, for example. In particular, it is possible to deduce that

P
(

Z∗
n ≥ λp−1

n

)

=
∑

m≥λp−1
n

mP (Zn = m) = E
(

Zn1{Zn≥λp−1
n }

)

≤ λ−β1pβ1
n E

(

Z1+β1
n

)

.

Combining this bound and Lemma 2.1 yields the upper bound at (15).
To prove (16), we start by demonstrating that for each ε > 0 there exists a constant

c1 and integer n0 such that

E
(

e−λpnZ∗
n
)

≤ 1 − c1λ
α−1+ε, ∀n ≥ n0, λ ∈ [0, 1]. (17)

6



Let f(s) = E(sZ) and denote by fn the n-fold composition of f , then the following holds
(see [16])

E
(

sZ∗
n
)

= s

n−1
∏

m=0

f ′(fm(s)). (18)

The generating function of the stationary measure of the branching process Z is given by
(see [19], Lemmas 3 and 4)

U(s) = lim
n→∞

fn(s) − fn(0)

fn(0) − fn−1(0)
, ∀s ∈ [0, 1). (19)

Let g be the inverse of U(1 − ·), and define

Θ(t) := −

∫ t

0

log f ′(1 − g(s))ds, ∀t ≥ 1.

Then, by (18) and arguments of [17], we have that

E
(

sZ∗
n
)

= s∆n(s) exp {Θ(U(s)) − Θ(n + U(s))} , ∀s ∈ [0, 1),

where ∆n(s) ≤ 1. Furthermore, as computed in [17], Θ(t) = α(α−1)−1 log t+r(t), where
the remainder term satisfies r′(t) = o(t−1) as t → ∞. In particular, it follows that

E
(

sZ∗
n
)

≤

(

1 +
n

U(s)

)−
α

α−1

exp {r(U(s)) − r(n + U(s))} , ∀s ∈ [0, 1). (20)

By definition, U is an increasing function and therefore if λ ∈ [0, 1], then U(e−λpn) ≥
U(e−pn) ≥ U(1− pn) = n, where the final equality is easily checked by applying (19) and
the fact that pn = 1 − fn(0). Consequently, given η ∈ (0, 1), since r′(t) = o(t−1), there
exists an integer n0 such that

r(U(e−λpn)) − r(n + U(e−λpn)) ≤ ηan(λ), ∀n ≥ n0, λ ∈ [0, 1],

where we define an(λ) := n/U(e−λpn). Letting c2 be a constant such that ex ≤ 1 + c2x
for x ∈ [0, 1], then the above inequality and the bound at (20) imply that

E
(

e−λpnZ∗
n
)

≤
1 + c2ηan(λ)

(1 + an(λ))
α

α−1

, ∀n ≥ n0, λ ∈ [0, 1].

Since c2 is independent of the choice of η, if we are given ε′ ∈ (0, α
α−1

), then for small

enough η, we have that 1 + c2ηx ≤ (1 + x)ε′ for every x ∈ [0, 1], and therefore

E
(

e−λpnZ∗
n
)

≤ (1 + an(λ))
−

“

α
α−1

−ε′
”

≤ 1 − c3an(λ), ∀n ≥ n0, λ ∈ [0, 1],

for some constant c3. Thus, to complete the proof of (17), it remains to obtain a suitable
lower bound for an(λ). It is known ([19]) that U(s)−1 = (α−1)(1−s)α−1M(1−s), where
M(x) is slowly varying as x → 0+. By the monotonicity of U , it follows that

an(λ) =
n

U(e−λpn)
≥

U(1 − pn)

U(1 − c4λpn)
= c5λ

α−1 M(c4λpn)

M(pn)
≥ c6λ

α−1+ε, ∀n ≥ n0, λ ∈ [0, 1],

7



for suitably chosen constants c4, c5, c6, where to deduce the final inequality we use the
representation theorem for slowly varying functions (see [18], Theorem 1.2, for example).
This completes the proof of (17).

For any non-negative random variable ξ we have that

1 − E
(

e−θξ
)

=

∫ ∞

0

P(ξ ≥ x)θe−θxdx, ∀θ > 0,

from which it easily follows that

1 − E
(

e−θξ
)

≤ x + P(ξ ≥ x/θ), ∀θ, x > 0.

For β ∈ (0, 1), taking ξ = pnZ
∗
n, θ = λ−1/(1−β) and x = λθ in the above inequality, we

obtain from (17) that

P
(

Z∗
n ≥ λp−1

n

)

≥ c1λ
−(α−1+ε)/(1−β) − λ−β/(1−β), ∀n ≥ n0, λ ≥ 1.

Now, assume that α ∈ (1, 2) and β2 > (α − 1)/(2 − α). By setting β = α − 1 + 2ε for ε
chosen suitably small, the result follows.

To prove a similar polynomial upper bound for the tail of the distribution of Y ∗
n near

infinity, we require that (pn)n≥0 is slowly varying in the additive sense as n → ∞, which
is the conclusion of the following lemma.

Lemma 2.3. For any integer n, we have

lim
m→∞

pm+np−1
m = 1.

Proof. In the proof of [19], Theorem 1, it is observed that

pm+1p
−1
m ≥ 1 − cm−1, ∀m ∈ N, (21)

for some finite constant c, which implies the result for n = 1. The general result is an
elementary consequence of this.

To ascertain a polynomial lower bound for the tail of the distribution of Y ∗
n near

infinity, we will use the fact that (pn)n≥0 is regularly varying (in the usual multiplicative
sense) as n → ∞, which follows from (3).

Lemma 2.4. We can write pn = n− 1
α−1 `(n), where `(n) is a slowly varying function as

n → ∞. Moreover, if ε > 0, then there exist constants c1, c2 ∈ (0,∞) such that

c1

( n

m

)−ε

≤
`(n)

`(m)
≤ c2

( n

m

)ε

,

whenever 1 ≤ m ≤ n.

Proof. That pn = n− 1
α−1 `(n), where `(n) is a slowly varying function as n → ∞, follows

from (3) by applying 5o of [18], Section 1.5. The remaining claim can be proved using the
representation theorem for slowly varying functions (see [18], Theorem 1.2, for example).
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We will also apply the subsequent adaptation of [5], Lemma 2.3(a), which establishes
the result in the case when the offspring distribution is binomial.

Lemma 2.5. There exist strictly positive constants c1 and c2 such that

P
(

Y2n ≥ c1np−1
n

)

≥ c2pn, ∀n ∈ N.

Proof. First observe that

1 + 2n = E(Y2n) = E(Y2n1{Zn=0}) + E(Y2n1{Zn>0})

≤ E(Yn) + pnE(Y2n|Zn > 0)

= n + 1 + pnE(Y2n|Zn > 0).

In particular, this implies that

np−1
n ≤ E(Y2n|Zn > 0).

Furthermore, if β ∈ (0, α − 1), then

E(Y 1+β
2n |Zn > 0) ≤ p−1

n E(Y 1+β
2n ) ≤ p−1

n (2n + 1)1+βE

(

max
m≤2n

Z1+β
m

)

Since (Zn)n≥0 is a martingale, we can apply Doob’s martingale norm inequality to obtain
from this that

E(Y 1+β
2n |Zn > 0) ≤

(

1 + β

β

)1+β

p−1
n (2n + 1)1+βE

(

Z1+β
2n

)

≤ c1

(

np−1
n

)1+β
,

for some finite constant c1, where we apply Lemmas 2.1 and 2.4 to deduce the final
inequality.

Now, let ε ∈ (0, 1) and ξ be a non-negative random variable, then by Hölder’s in-
equality we have that

(1 − ε)E(ξ) ≤ E
(

ξ1{ξ≥εE(ξ)}

)

≤ E
(

ξ1+β
)1/(1+β)

P (ξ ≥ εE(ξ))β/(1+β) , (22)

assuming that the appropriate moments are finite. Applying this bound to Y2n with
respect to the conditioned measure P(·|Zn > 0), the above estimates yield

P
(

Y2n ≥ εnp−1
n |Zn > 0

)

≥ c2 > 0, ∀n ∈ N,

for some constant c2. Hence, we have that

P
(

Y2n ≥ εnp−1
n

)

≥ pnP
(

Y2n ≥ εnp−1
n |Zn > 0

)

≥ c2pn, ∀n ∈ N,

which completes the proof.

We can now prove our first tail bounds for Y ∗
n . Henceforth, we will use the notation

Bin(N, p) to represent a binomial random variable with parameters N and p.
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Proposition 2.6. For β1 ∈ (0, α − 1), there exists a finite constant c1 such that

P
(

Y ∗
n ≥ λnp−1

n

)

≤ c1λ
−β1, ∀n ∈ N, λ > 0. (23)

Moreover, for α ∈ (1, 2), β2 > (α − 1)/(2− α), there exists a strictly positive constant c2

and integer n0 such that

P
(

Y ∗
n ≥ λnp−1

n

)

≥ c2λ
−β2, ∀n ≥ n0, λ ≥ 1. (24)

Proof. Fix β1 ∈ (0, α − 1). By (4), we have that, for any fixed y > 0,

E
(

min{y, Y ∗
n

β1}
)

= lim
m→∞

E
(

min{y, Yn
β1}|Zm+n > 0

)

≤ lim
m→∞

E
(

Y β1
n 1{Zm+n>0}

)

p−1
m+n

= lim
m→∞

E
(

Y β1
n

(

1 − (1 − pm)Zn
))

p−1
m+n,

where we apply the Markov property of (Zn)n≥0 for the final equality. Since (1 − x)n ≥
1 − nx for every x ∈ [0, 1] and n ∈ N, it follows that

E
(

Y ∗
n

β1

)

≤ E
(

Y β1
n Zn

)

lim
m→∞

pmp−1
m+n.

Note that we have applied the monotone convergence theorem to replace min{y, Y ∗
n

β1}
by Y ∗

n
β1 here. By Lemma 2.3, the limit in the above expression is precisely equal to 1.

Furthermore,

E
(

Y β1
n Zn

)

≤ (n + 1)β1E

(

max
m≤n

Z1+β1
m

)

.

Applying Doob’s martingale norm inequality and Lemma 2.1 as in the proof of the pre-
vious lemma, we consequently obtain that there exists a finite constant c1 such that

E
(

Y ∗
n

β1

)

≤ c1(np−1
n )β1. (25)

The result at (23) is readily deduced from this bound.
Now assume that α ∈ (1, 2), β2 > (α − 1)/(2− α), and let c1 and c2 be the constants

of Lemma 2.5. Clearly, we have that

P
(

Y ∗
3n ≥ λnp−1

n

)

≥ P
(

Y ∗
3n ≥ λnp−1

n |Z∗
n ≥ c3λp−1

n

)

P
(

Z∗
n ≥ c3λp−1

n

)

, ∀n ∈ N, λ ≥ 1,

for an arbitrary constant c3 ≥ 2. To bound the first factor below, we observe that the
descendants of the individuals in the nth generation of T ∗ which are not on the backbone
have the same distribution as the unconditioned T , independently of each other (see [12],
Lemma 2.2); hence the first factor is bounded below by P(Y2n[bc3λp−1

n c − 1] ≥ λnp−1
n ),

where Y2n[m] is the sum of m independent copies of Y2n. Thus, applying Lemma 2.5, we
obtain

P
(

Y ∗
3n ≥ λnp−1

n |Z∗
n ≥ c3λp−1

n

)

≥ P
(

Bin
(

bc3λp−1
n c − 1, c2pn

)

≥ c−1
1 λ
)

.

10



Taking c3 large enough, the “reverse Hölder” inequality of (22) implies that the right-
hand side is bounded below by a strictly positive constant c4 uniformly in n ∈ N and
λ ≥ 1. Consequently, by (16),

P
(

Y ∗
3n ≥ λnp−1

n

)

≥ c4P
(

Z∗
n ≥ c3λp−1

n

)

≥ c5λ
−β2, ∀n ≥ n0, λ ≥ 1.

From this we can deduce (24) by applying the monotonicity of (Y ∗
n )n≥0 and Lemma

2.4.

We now consider the tail near 0 of the distributions of the random variables Z∗
n.

Proposition 2.7. For β ∈ (0, α − 1), there exists a finite constant c such that

P
(

Z∗
n ≤ λp−1

n

)

≤ cλβ, ∀n ∈ N, λ > 0.

Proof. Fix β ∈ (0, α − 1). We will start by showing that there exists a finite constant c1

such that
E
(

e−λpnZn |Zn > 0
)

≤ c1λ
−β, ∀n ∈ N, λ ∈ [1, p−1

n ]. (26)

Clearly, we have that

E
(

e−λpnZn|Zn > 0
)

= 1 −
1 − E

(

e−λpnZn
)

pn

.

Choose an integer k = k(n, λ) ≥ 0 as in the proof of [19], Theorem 1, to satisfy pk ≥
1 − e−λpn > pk+1, then, by the Markov property of (Zn)n≥0,

E
(

e−λpnZn
)

≤ E
(

(1 − pk+1)
Zn
)

= 1 − pn+k+1.

Hence,

E
(

e−λpnZn |Zn > 0
)

≤ 1 −
pn+k+1

pn
.

Using the bound at (21) and again applying the inequality (1 − x)n ≥ 1 − nx for every
x ∈ [0, 1] and n ∈ N, it is possible to deduce the existence of a finite constant c2 such
that

E
(

e−λpnZn|Zn > 0
)

≤ c2(k + 1)n−1,

for every n ∈ N and λ ≥ 1. To estimate (k+1)n−1, we first choose c3 small enough so that
e−x ≤ 1 − c3x for x ∈ [0, 1], which implies pk ≥ c3λpn for every n ∈ N and λ ∈ [1, p−1

n ].
This inequality allows us to apply Lemma 2.4 to demonstrate that there exists a finite
constant c4 such that k + 1 ≤ c4λ

−βn for every n ∈ N and λ ∈ [1, p−1
n ], which completes

the proof of (26).
Before continuing, note that we can proceed as in the proof of [14], Theorem 5.1, to

obtain that
P (Zn ≤ λ|Zm+n > 0) ≤ P (Zn ≤ λ|Zn > 0) ,

11



for any m, n ∈ N and λ > 0. Thus,

P
(

Z∗
n ≤ λp−1

n

)

= lim
m→∞

P
(

Zn ≤ λp−1
n |Zm+n > 0

)

≤ P
(

Zn ≤ λp−1
n |Zn > 0

)

≤ E
(

e1−λ−1pnZn |Zn > 0
)

≤ c5λ
β,

whenever n ∈ N and λ ∈ [pn, 1]. Since the claim of the proposition is trivial for λ < pn

and λ > 1, the proof is complete.

This result allows us to prove a tail bound near 0 for Y ∗
n that is uniform in n.

Proposition 2.8. For γ ∈ (0, 1 − α−1), there exists a finite constant c such that

P
(

Y ∗
n ≤ λnp−1

n

)

≤ cλγ , ∀n ∈ N, λ > 0.

Proof. Fix γ ∈ (0, 1−α−1) and choose β ∈ (0, α−1) large enough so that γ ′ = γ/β < α−1.
Let c1 and c2 be the constants of Lemma 2.5. We will prove the result for λ ∈ [pn, c1],
from which the result for any λ > 0 follows easily. We can write

P
(

Y ∗
3n ≤ λnp−1

n

)

≤ P
(

Z∗
n ≤ λγ′

p−1
n

)

+ P
(

Y ∗
3n ≤ λnp−1

n , Z∗
n > λγ′

p−1
n

)

.

By Proposition 2.7, there exists a finite constant c3 such that the first term here is
bounded above by c3λ

γ for any n ∈ N and λ > 0. By applying the decomposition of T ∗

described in the proof of Proposition 2.6, we have that the second term is bounded above
by P(Y2n[bλγ′

p−1
n c] ≤ λnp−1

n ), where Y2n[m] is the sum of m independent copies of Y2n.
If we choose m = m(n, λ) to be the smallest integer such that λnp−1

n < c1mp−1
m , then

m ≤ n and, applying Lemma 2.5, we obtain that

P
(

Y ∗
3n ≤ λnp−1

n , Z∗
n > λγ′

p−1
n

)

≤ P
(

c1mp−1
m Bin(bλγ′

p−1
n c, c2pm) ≤ λnp−1

n

)

≤ P
(

Bin(bλγ′

p−1
n c, c2pm) < 1

)

= (1 − c2pm)bλ
γ′p−1

n c

≤ e−c2pmbλγ′p−1
n c.

It is an elementary exercise to apply Lemma 2.4 to deduce that our choice of m implies
that if γ′′ ∈ (γ′, α−1), then there exists a constant c4 > 0 such that pmp−1

n ≥ c4λ
−γ′′

for
every n ∈ N and λ ∈ [pn, c1]. Consequently,

P
(

Y ∗
3n ≤ λnp−1

n

)

≤ c3λ
γ + e−c5λ(γ′−γ′′)

≤ c6λ
γ, ∀n ∈ N, λ ∈ [pn, c1],

from which the result follows by applying the monotonicity of (Y ∗
n )n≥0 and Lemma 2.4.

Finally, we prove a tail bound for the number of individuals in the nth generation of
T ∗ that have descendants in the 2nth generation, which we denote by M 2n

n .

12



Lemma 2.9. For every β ∈ (0, α − 1), there exists a finite constant c such that

P
(

M2n
n ≥ λ

)

≤ cλ−β, ∀n ∈ N, λ > 0.

Proof. Fix β ∈ (0, α − 1). If we condition on the first n generations of T ∗, denoted by
T ∗|n, and the backbone B, then [12], Lemma 2.2 implies that

P
(

M2n
n ≥ λ|T ∗|n, B

)

= P (Bin(N, pn) ≥ λ − 1) |N=Z∗
n−1.

Consequently,

P
(

M2n
n ≥ λ

)

≤ P (pnZ∗
n ≥ λ/2) + P

(

Bin(d λ
2pn

e, pn) ≥ λ − 1
)

.

Thus, Proposition 2.2 and Chebyshev’s inequality imply that there exists a finite constant
c such that

P
(

M2n
n ≥ λ

)

≤ cλ−β +
d λ

2pn
epn

(λ − 1 − d λ
2pn

epn)2
.

The result follows.

3 Proof of initial random walk results

In this section we complete the proofs of Theorems 1.1, 1.2, 1.3 and 1.4, though we first
introduce some further notation that we will apply. The volume of a ball of radius R
about the root of T ∗ is given by

V (R) := µT ∗

(B(R)),

where B(R) := {x ∈ T ∗ : dT ∗(ρ, x) ≤ R} and µT ∗
is the invariant measure of X defined

in the introduction. Let E be a quadratic form on R
T ∗

that satisfies

E(f, g) =
1

2

∑

x,y∈T ∗

x∼y

(f(x) − f(y))(g(x) − g(y)),

where x ∼ y if and only if {x, y} is an edge of T ∗. The quantity E(f, f) represents the
energy dissipation when we suppose that T ∗ is an electrical network with a unit resistor
placed along each edge and vertices are held at the potential f . The associated effective
resistance operator can be defined by

Reff (A, B)−1 := inf{E(f, f) : f |A = 1, f |B = 0},

for disjoint subsets A, B ⊆ T ∗.
Recall the volume growth function v defined at (6), and let r : R+ → R+ be the

identity function on R+. By applying Lemma 2.4, we can check that the conditions
required on v and r in [13] are fulfilled. Consequently, to deduce many of the results
about the random walk on T ∗ stated in the introduction, it will suffice to check that the

13



relevant parts of [13], Assumption 1.2 are satisfied. More specifically, we will check that,
if we denote by

J(λ) := {R ∈ [1,∞] : λ−1v(R) ≤ V (R) ≤ λv(R), Reff({ρ}, B(R)c) ≥ λ−1r(R)},

for λ ≥ 1, then the probability that R ∈ J(λ) is bounded below, uniformly in R, by a
function of λ that increases to 1 polynomially. This result explains why v can be thought
of as a volume growth function for T ∗. Note that, in [13], J(λ) has the extra restriction
that Reff(ρ, x) ≤ λr(dT ∗(ρ, x)) for every x ∈ B(R). However, since T ∗ is a tree, this
condition always holds, and so we omit it.

Lemma 3.1. T ∗ satisfies Assumptions 1.2(1) and 1.2(3) of [13]. In particular, for every
γ ∈ (0, 1 − α−1), there exists a finite constant c such that

inf
R≥1

P (R ∈ J(λ)) ≥ 1 − cλ−γ, ∀λ ≥ 1.

Proof. Fix γ ∈ (0, 1 − α−1). First note that, since T ∗ is a tree, we have that (cf. [5],
(2.15))

Y ∗
R ≤ V (R) ≤ 2Y ∗

R+1, ∀R ∈ N. (27)

Therefore it will be adequate to prove the result for R ∈ N and V (R) replaced by Y ∗
R.

That
inf
R∈N

P
(

λ−1v(R) ≤ Y ∗
R ≤ λv(R)

)

≥ 1 − c1λ
−γ, ∀λ ≥ 1,

for some finite constant c1 is an easy consequence of Propositions 2.6 and 2.8. By imitating
the proof of [5], Lemma 4.4, it is possible to prove that

Reff (ρ, B(2R)c) ≥
R

M2R
R

,

for every R ∈ N. Thus, applying Lemma 2.9, we have that

inf
R≥1

P
(

Reff (ρ, B(R)c) ≥ λ−1r(R)
)

≥ 1 − c2λ
−γ, ∀λ ≥ 1,

for some finite constant c2, and the lemma holds as claimed.

Proof of Theorem 1.1. Apart from (7), the limits can all be obtained using [13], Propo-
sition 1.3. Since dT ∗(ρ, Xm) ≥ R implies that τR ≤ m, the right-hand inequality of (7)
follows from the left-hand limit of (8). Consequently it remains to show that

lim
λ→∞

inf
R∈N

P
(

λ−1h(R) ≤ τR

)

= 1.

By [13], Proposition 3.5(a), there exist constants c1, c2, c3, c4 ∈ (0,∞) that depend only
λ such that, if ε < c1 and R, εR, c2εR ∈ J(λ), then

P T ∗

ρ

(

τR ≤ c3ε
βh(R)

)

≤ c4ε,

14



for some deterministic constant β > 0. Hence, for any λ > 0,

lim
ε→0

lim sup
R→∞

P (τR ≤ εh(R)) = lim
ε→0

lim sup
R→∞

P
(

τR ≤ c3ε
βh(R)

)

≤ lim
ε→0

lim sup
R→∞

{c4ε + 1 − P (R, εR, c2εR ∈ J(λ))}

≤ 3 sup
R≥1

P (R 6∈ J(λ)) .

Since λ is arbitrary, we can make this upper bound as small as we choose by applying
Lemma 3.1, and so limε→0 lim supR→∞ P(τR ≤ εh(R)) = 0. The desired conclusion is
readily deduced from this limit.

Proof of Theorem 1.2. The proofs of the lower bounds at (9), (10) and (11) require only
straightforward adaptations of the proofs of the lower bounds in [13], Proposition 1.4,
and are omitted. As in [5], Lemma 4.5, for example, we have that ET ∗

ρ τR ≤ (R+1)V (R).
Since V (R) ≤ 2Y ∗

R+1 (see (27)), it follows that

E
(

(

ET ∗

ρ τR

)β
)

≤ 2β(R + 1)βE
(

Y ∗
R+1

β
)

, ∀R ∈ N.

Thus the upper bound at (9) follows from the estimate of the β-moments of (Y ∗
n )n≥0 that

appears at (25).
Similarly to the proof of [13], Remark 1.6.1, it is possible to deduce that there exists

a finite constant c1 such that

E
(

pT ∗

2m(ρ, ρ)γ
)

≤
c1

v(I(m))γ
E

(

1 +
v(R)γ

Y ∗
R

γ

)

, ∀m ∈ N,

where R = R(m) is chosen to satisfy 1
2
h(R) ≤ m ≤ h(R), and we have again applied

(27). By the tail bound of Proposition 2.8, if γ is in the range (0, 1 − α−1), then we can
bound the expectation on the right-hand side of the above expression uniformly in R by
a constant. This completes the proof of (10).

It remains to prove the upper bound at (11). First, let τ̃R be the first hitting time of
the vertex on the backbone at a distance R from the origin, i.e.

τ̃R := min{n : Xn ∈ B, dT ∗(ρ, Xn) = R}, (28)

where B ⊆ T ∗ is the backbone of T ∗ (the unique non-intersecting infinite path in T ∗

which starts at the root ρ). By (7), it is clear that ε > 0 can be chosen small enough so
that P (τ̃R ≤ εh(R)) ≤ P (τR ≤ εh(R)) ≤ 1

2
for every R ∈ N, which implies that

P (τ̃R ≤ t) ≤
1

2
+

t

εh(R)
, ∀R ∈ N, t > 0.

Now observe that if we define, for i, R ∈ N,

τ̃ i
R := #{n ∈ [τ̃(i−1)R, τ̃iR) : Xn, Xn+1 equal b(i−1)R or are descendents of b(i−1)R},

where b(i−1)R is the vertex on the backbone at a distance (i − 1)R from ρ, then with
respect to the annealed measure P the elements of the sequence (τ̃ i

R)i≥1 are independent
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and have the same distribution as τ̃R (this follows from the description of T ∗ given in
Lemma 2.2 of [12]). Thus, since τ̃nR ≥

∑n
i=1 τ̃ i

R, we can apply Lemma 1.1 of [3] to obtain
that

log P (τ̃nR ≤ t) ≤ 2

(

2nt

εh(R)

)1/2

− n log 2, ∀n, R ∈ N, t > 0.

In particular, by setting t = c2nh(R) for constant c2 chosen suitably small, it follows that

P (τ̃nR ≤ c2nh(R)) ≤ e−c3n, ∀n, R ∈ N, (29)

where c3 is a strictly positive constant.
For m ∈ N, write R = bI(m)c, then, for every λ ∈ N, ε ∈ [0, 1] and η > 0,

P

(

max
0≤k≤m

dT ∗(ρ, Xk) ≥ λI(m)

)

≤ P (τλR ≤ m)

≤ P
(

τλR ≤ m, MλR
bελRc = 1

)

+P
(

MλR
bελRc > 1, Z∗

bελRc ≤ ηp−1
bελRc + 1

)

+P
(

Z∗
bελRc > ηp−1

bελRc + 1
)

, (30)

where, generalising the notation of the previous section, Mm+n
n is the number of indi-

viduals in the nth generation of T ∗ that have descendants in the (m + n)th generation.
On the event {MλR

bελRc = 1}, of the vertices in generation bελRc, only the one on the
backbone has descendants in generation λR; thus if X has reached generation λR no
later than time m, then X must have already visited the vertex on the backbone at a
distance bελRc from the root. Hence, if c2ελ ≥ 1, then it is possible to check that

P
(

τλR ≤ m, MλR
bελRc = 1

)

≤ P
(

τ̃bελRc ≤ m
)

≤ P
(

τ̃bελRc ≤ c2ελm
)

≤ e−c4ελ,

for some constant c4 > 0, where we apply the bound at (29) to deduce the final inequality.
For the second term at (30), we proceed similarly to the proof of Lemma 2.9 to obtain
that

P
(

MλR
bελRc > 1, Z∗

bελRc ≤ ηp−1
bελRc + 1

)

≤ P
(

Bin(dηp−1
bελRce, pλR−bελRc) > 0

)

= 1 −
(

1 − pλR−bελRc

)dηp−1
bελRc

e

≤ pλR−bελRcdηp−1
bελRce.

For β ∈ (0, α − 1), we can bound the third term of (30) by c5η
−β by Proposition 2.2.

Combining these bounds, we have that

P

(

max
0≤k≤m

dT ∗(ρ, Xk) ≥ λI(m)

)

≤ e−c4ελ + pλR−bελRcdηp−1
bελRce + c5η

−β,

whenever c2ελ ≥ 1.
Finally, fix δ ∈ (0, α−1) and let δ′ ∈ (δ, α−1). Choose θ1 ∈ (0, 1) and β ∈ (0, α − 1)

large enough so that θ1β(1−β)−1(α−1)−1 ∈ (δ′, α−1), and set θ2 = θ1(1−β)−1(α−1)−1.
In the above argument, if we let ε = λ−θ1 and η = λθ2 , then we see that, for every m ∈ N,

P

(

max
0≤k≤m

dT ∗(ρ, Xk) ≥ λI(m)

)

≤ e−c4λ1−θ1
+ c6λ

θ2−
θ1

α−1
`(bλ1−θ1Rc)

`(λR)
+ c5λ

−θ2β,

≤ c7λ
−δ′ ,
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whenever c2λ
1−θ1 ≥ 1, for some finite constant c7. Note that, to deduce the inequalities

above, we have applied the description of the non-extinction probabilities provided by
Lemma 2.4. Clearly, by increasing c7 if necessary, we can extend this bound to hold for
any λ > 0. The upper bound at (11) is an easy consequence of this result.

Remark 1. We note that the upper bound for P (max0≤k≤m dT ∗(ρ, Xk) ≥ λI(m)) ob-
tained in the above proof also implies that (8) holds when dT ∗(ρ, Xm) is replaced by
max0≤k≤m dT ∗(ρ, Xk).

Proof of Theorem 1.3. This is an immediate application of Lemma 3.1 and [13], Theorem
1.5.

Proof of Theorem 1.4. Since for a slowly varying function `, we have that log `(n)/ log n
converges to 0 as n → ∞ (see [18], Section 1.5, for example), the claims at (12), (13) and
(14) follow from Theorem 1.3 and Lemma 2.4. Furthermore, that log µT ∗

(Wm)/ log m
converges to α/(2α − 1), P T ∗

x -a.s. for every x ∈ T ∗, for P-a.e. realisation of T ∗ is also
proved in [13], Theorem 1.5. Since we know from (27) that Y ∗

R ≤ V (R) ≤ 2Y ∗
R+1, the proof

of the remaining limit involving #Wm can be obtained by making only minor changes to
the proof of the previous result, and so is omitted.

4 Annealed off-diagonal transition density

We now consider the annealed off-diagonal transition density behaviour, starting with an
upper bound along the backbone of T ∗. Throughout this section, we denote the backbone
B by {ρ = b0, b1, b2, . . . }, where br is the vertex on the backbone satisfying dT ∗(ρ, br) = r.

Proposition 4.1. If γ ∈ (0, 1−α−1), then there exist constants c1, c2 ∈ (0,∞) such that

E
(

pT ∗

2m(ρ, b2r)
γ
)

1
γ ≤ c1v(I(m))−1 exp

{

−
c2r

v−1(m/r)

}

, ∀m, r ∈ N.

Proof. For any m, r ∈ N, a standard argument (see proof of [5], Theorem 4.10, for
example) yields

pT ∗

2m(ρ, b2r) ≤
P T ∗

ρ (X2m = b2r, τ̃r ≤ m)

µT ∗({b2r})
+

P T ∗

b2r
(X2m = ρ, τ̃r−1 ≤ m)

µT ∗({ρ})
, (31)

where τ̃r is the stopping time for the random walk defined at (28). Applying the Markov
property of X, we can bound the first of these terms as follows:

µT ∗

({b2r})
−1P T ∗

ρ (X2m = b2r, τ̃r ≤ m)

≤ µT ∗

({b2r})
−1ET ∗

ρ

(

1{τ̃r≤m}P
T ∗

br
(X2m−τ̃r

= b2r)
)

≤ P T ∗

ρ (τ̃r ≤ m) sup
m′∈[m,2m]

pT ∗

m′(br, b2r)

≤ P T ∗

ρ (τ̃r ≤ m)
(

pT ∗

2bm/2c(br, br)p
T ∗

2bm/2c(b2r, b2r)
)

1
2 ,
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where we use the Cauchy-Schwarz inequality to deduce the third inequality. Now, if
γ ∈ (0, 1 − α−1), we can choose β > 1 large enough so that γ(1 + β) > 1 and also
γ′ := γ(1 + β)β−1 < 1− α−1. Consequently, from Hölder’s inequality (applied twice), we
have that

E
(

µT ∗

({b2r})
−γP T ∗

ρ (X2m = b2r, τ̃r ≤ m)γ)

≤ P (τ̃r ≤ m)
1

1+β sup
r′∈N

E
(

pT ∗

2bm/2c(br′, br′)
γ′
)

β
1+β

, (32)

where we also have used the fact that P T ∗

ρ (τ̃r ≤ m)γ(1+β) ≤ P T ∗

ρ (τ̃r ≤ m). To bound the
expectations in this expression, it is possible to proceed as in the proof of Theorem 1.2
to obtain the existence of a constant c1 such that

E
(

pT ∗

2m(br, br)
γ′
)

≤
c1

v(I(m))γ′ E

(

1 +
v(R)γ′

V (br, R)γ′

)

, ∀m, r ∈ N,

where V (br, R) := {x ∈ T ∗ : dT ∗(br, x) ≤ R} and R = R(m) is chosen to satisfy
1
2
h(R) ≤ m ≤ h(R). By considering only the descendants of br, it is clear that V (br, R)

stochastically dominates Y ∗
R for every r ∈ N. Thus, adjusting c1 as necessary, it follows

that

sup
r∈N

E
(

pT ∗

2bm/2c(br, br)
γ′
)

β
1+β

≤
c1

v(I(m))γ
, ∀m ∈ N.

We now look to bound the first factor of the upper bound at (32). Recall the bound
on the distribution of τ̃r from (29) and let c2, c3 be the constants of this inequality. If
c2h(r) ≤ m, then it is easy to check that exp(−r/v−1(m/r)) ≥ c−1

4 > 0, thus

P(τ̃r ≤ m) ≤ c4 exp(−r/v−1(m/r))

in this case. We now assume that c2h(r) > m, choose n to be the largest integer such
that c2nh(b r

n
c) ≥ m, and set R = b r

n
c, so that (29) implies that

P(τ̃r ≤ m) ≤ P(τ̃nR ≤ c2nh(R)) ≤ e−c3n.

Applying this and the previous bound, it is elementary to check that there exist constants
c5, c6 such that

P(τ̃r ≤ m)
1

1+β ≤ c5 exp(−c6r/v
−1(m/r)), ∀m, r ∈ N. (33)

Thus we have so far demonstrated that

E
(

µT ∗

({b2r})
−γP T ∗

ρ (X2m = b2r, τ̃r ≤ m)γ) ≤
c7

v(I(m))γ
exp(−c6r/v

−1(m/r)),

for every m, r ∈ N, for some finite constant c7. To complete the proof, it remains to
obtain a similar bound for the second term at (31), which can be done by following a
similar argument to the one above. The one point that requires checking is that (33)
holds when P(τ̃r ≤ m) is replaced by Pb2r

(τ̃r−1 ≤ m), where Pb2r
:= P ◦ P T ∗

b2r
. Clearly, we
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have that Pb2r
(τ̃r−1 ≤ m) = Pbr+1(τ̃0 ≤ m), and so it will suffice to estimate the right-hand

side of this inequality. Now define, for each r ∈ N, the subset

T ∗
r := {x ∈ T ∗ : x is br or a descendant of br},

and set T ∗(r) = T ∗\T ∗
r+1. By the description of T ∗ in [12], Lemma 2.2, it is an elementary

exercise to check that the law of τ̃0 under P ◦ P
T ∗(r)
br

is the same as the law of τ̃r under

P ◦ P
T ∗(r)
ρ , which in turn is the same as the law of τ̃r under P. In particular, we have

that P ◦ P
T ∗(r)
br

(τ̃0 ≤ m) = P(τ̃r ≤ m) for every m, r ∈ N. Furthermore, by construction,
we have that the left-hand side of this identity is equal to Pbr

(τ̃ ′
0 ≤ m), where

τ̃ ′
0 := #{n ∈ [0, τ̃0) : Xn, Xn+1 ∈ T ∗(r)}.

Since τ̃0 ≥ τ̃ ′
0, it follows that Pbr

(τ̃0 ≤ m) ≤ Pbr
(τ̃ ′

0 ≤ m) = P(τ̃r ≤ m), and the result
follows.

In the case when the offspring distribution is binomial, it is straightforward to check
that the upper bound deduced in the above proposition is sharp up to constants by
applying estimates of [5]. In general, however, we are only able to prove the corresponding
lower bound holds near the diagonal. That we can not extend the chaining argument of
[5] to obtain the full off-diagonal lower bound (even along the backbone) results from the
fact that we only have a polynomial tail bound for the probability that T ∗ admits “bad”
subsets, whereas, in the binomial case, proving an exponential tail bound is possible.

Proposition 4.2. If γ > 0, then there exist constants c1, c2 ∈ (0,∞) such that

E
(

pT ∗

2m(ρ, b2r)
γ
)

1
γ ≥ c1v(I(m))−1,

whenever 1 ≤ r ≤ c2I(m).

Proof. By a standard argument (cf. [5], Proposition 4.6), there exists a deterministic
constant c1 such that if T ∗ satisfies, for some R ≥ 2, λ ≥ 8,

V (λR) ∈ [λ−1v(λR), λv(λR)], V (R) ≥ λ−1v(R), Reff (B(R), B(λR)c) ≥ 4R, (34)

then, for m ∈ [1
2
λ−1h(R − 1), 1

2
λ−1h(R)],

pT ∗

2m(x, x) ≥ c1λ
−θ1v(I(m))−1, ∀x ∈ B(R).

where θ1 := 19/(α − 1). This is easily extended (cf. [5], Theorem 4.7(c)) to the result
that

pT ∗

2m(ρ, b2r) ≥ c2λ
−θ1v(I(m))−1.

for every 1 ≤ r ≤ c3λ
−θ1I(m), for some constants c2 and c3. A straightforward adaptation

of the proof of Lemma 3.1 allows it to be proved that the conditions at (34) hold with
probability greater than 1

2
for some λ ≥ max{8, v(1)}, uniformly in R ≥ 2. Using this

choice of λ, if m ∈ N, we can choose R ≥ 2 that satisfies m ∈ [ 1
2
λ−1h(R − 1), 1

2
λ−1h(R)],

and applying the lower bound above, it follows that

E
(

pT ∗

2m(ρ, b2r)
γ
)

1
γ ≥ c4v(I(m))−1,

for 1 ≤ r ≤ c5I(m), which completes the proof.
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Summarising the two previous results using the expressions for v and I presented in
the introduction, we have the following bounds for the transition density of the simple
random walk on T ∗.

Corollary 4.3. If γ ∈ (0, 1 − α−1), then there exist constants c1, c2 ∈ (0,∞) and slowly
varying functions `1, `2 and `3 such that

E
(

pT ∗

2m(ρ, b2r)
γ
)

1
γ ≤ c1m

−
α

2α−1 `1(m) exp















−





r
2α−1
α−1

m





α−1
α

`2

(m

r

)















,

for every m, r ∈ N, and also

E
(

pT ∗

2m(ρ, b2r)
γ
)

1
γ ≥ c2m

−
α

2α−1 `1(m),

whenever 1 ≤ r ≤ m
−

α
2α−1 `3(m).

5 Volume and transition density fluctuations

To establish that the transition density of X exhibits logarithmic fluctuations when α ∈
(1, 2), and at least log-logarithmic fluctuations when α = 2, we start by showing that the
same is true of the volume growth on the tree T ∗.

Lemma 5.1. (a) If β1 ∈ (0, α − 1), then P-a.s. realisation of T ∗ satisfies

lim sup
R→∞

V (R)

v(R)(log R)1/β1
= 0.

(b) If α ∈ (1, 2) and β2 > (α − 1)/(2 − α), then P-a.s. realisation of T ∗ satisfies

lim sup
R→∞

V (R)

v(R)(log R)1/β2
= ∞.

If α = 2 and ε > 0, then P-a.s. realisation of T ∗ satisfies

lim sup
R→∞

V (R)

v(R)(log log R)1−ε
= ∞.

Proof. Clearly, by (27), it will suffice to prove the result with Y ∗
R in place of V (R). By

the Borel-Cantelli lemma, part (a) is an easy consequence of Proposition 2.6. To prove
(b), we consider the sequence of subsets (An)n≥0 of T ∗ defined by

An := {x ∈ T ∗ : dT ∗(ρ, x) ∈ [2n, 2n+1), x is b2n or a descendant of b2n},

where b2n is the point on the backbone at a distance 2n from the root. By [12], Lemma 2.2,
(#An)n≥0 is a sequence of independent random variables, and #An is equal in distribution
to Y ∗

2n+1−2n−1. Thus, if α ∈ (1, 2) and β2 > (α − 1)/(2 − α), we can apply the second
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Borel-Cantelli lemma and (24) to obtain that Y ∗
2n+3 ≥ #An+2 ≥ v(2n)n1/β2 infinitely

often, P-a.s., and the first claim follows. In the case when α = 2, note that Proposition
2.7 allows us to choose strictly positive constants c1 and c2 such that P(Z∗

n > c1p
−1
n ) ≥ c2

for every n ∈ N. By considering a decomposition of T ∗ similar to the one applied in the
proof of Proposition 2.6, it follows that, for every n ∈ N, λ > 0,

P
(

Y ∗
2n ≥ λnp−1

n

)

≥ c2P
(

Y ∗
2n ≥ λnp−1

n |Z∗
n > c1p

−1
n

)

≥ c2P
(

Bin(bc1p
−1
n c, c3pn) ≥ c4λ

)

,

for suitably chosen c3, c4. Straightforward estimates (cf. [5], (2.18)) subsequently imply
that

P
(

Y ∗
2n+1 ≥ v(2n)(log n)1−ε

)

≥ c5n
−1, ∀n ∈ N,

for some c5 > 0. This estimate allows us to apply the second Borel-Cantelli lemma, as in
the case α ∈ (1, 2), to complete the proof.

In addition to the above lemma, note that Fatou’s Lemma and the moment estimate
for Y ∗

R at (25) implies that lim infR→∞ V (R)/v(r) < ∞, P-a.s. Hence there are P-a.s.
non-trivial fluctuations about v(R) in the volume growth on T ∗. Furthermore, from the
previous lemma we are immediately able to determine the following asymptotic result for
the transition density of X, which can be proved in the same way as [5], Lemma 5.1. In
conjunction with (10), these results demonstrate that with positive probability there are
fluctuations in the transition density about v(I(m))−1.

Corollary 5.2. If α ∈ (1, 2), then there exists an ε1 > 0 such that, P-a.s., the transition
density of X satisfies

lim inf
m→∞

v(I(m))(log m)ε1pT ∗

2m(ρ, ρ) = 0.

If α = 2, then there exists an ε2 > 0 such that, P-a.s., the transition density of X satisfies

lim inf
m→∞

v(I(m))(log log m)ε2pT ∗

2m(ρ, ρ) = 0.
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