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1 Preliminaries

Let (M, d) be a locally compact separable metric space and µ be a Radon measure on M
with full support. Assume that there exists a heat kernel {pt}t>0 on M :

Definition. A family {pt}t>0 of Borel functions pt(x, y) on M ×M is called a heat kernel
if the following conditions are satisfied, for all x, y ∈ M and all s, t > 0:

(i) Positivity: pt (x, y) ≥ 0.

(ii) The total mass inequality ∫
M

pt(x, y)dµ(y) ≤ 1. (1.1)
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(iii) Symmetry: pt(x, y) = pt(y, x).

(iv) Semigroup property:

ps+t(x, y) =

∫
M

ps(x, z)pt(z, y)dµ(z). (1.2)

(v) Approximation of identity: for any u ∈ L2 (M, µ)∫
M

pt(x, y)u(y)dµ(y)
L2−→u(x) as t → 0 + . (1.3)

Any heat kernel gives rise to the heat semigroup {Pt}t>0 where Pt is the operator in
L2 defined by

Ptu(x) =

∫
M

pt(x, y)u(y)dµ(y). (1.4)

The semigroup identity (1.2) implies that PtPs = Pt+s, that is, the family {Pt}t>0 is a
semigroup. It follows from (1.3) that

s- lim
t→0

Pt = I,

where I is the identity operator in L2 and s-lim stands for strong limit. Hence, {Pt}t>0 is
a strongly continuous, self-adjoint, contraction semigroup in L2.

Given the semigroup {Pt}t>0, define the infinitesimal generator L of the semigroup by

Lu := lim
t→0

u − Ptu

t
, (1.5)

where the limit is understood in the L2-norm. The domain dom(L) of the generator
L is the space of functions u ∈ L2 for which the limit in (1.5) exists. By the Hille–
Yosida theorem, dom(L) is dense in L2. Furthermore, L is a self-adjoint, positive definite
operator, which immediately follows from the fact that the semigroup {Pt} is self-adjoint
and contractive. Moreover, we have

Pt = exp (−tL) , (1.6)

where the right hand side is understood in the sense of spectral theory.
Let a heat kernel pt on (M, d, µ) satisfy the following two-sided estimate for all x, y ∈ M

and all t ∈ (0,∞):

c1

tα/β
Φ

(
c2

d (x, y)

t1/β

)
≤ pt (x, y) ≤ c3

tα/β
Φ

(
c4

d (x, y)

t1/β

)
(1.7)

where α, β are positive constants and Φ is a non-negative monotone decreasing function
on [0,∞). There are two very important classes of heat kernels that satisfy (1.7). One is
the heat kernel of diffusions on various fractals, where the function Φ is of the form

Φ(s) = exp(−sγ), (1.8)
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for some γ > 0 (see [2] and the references therein). The Gauss-Weierstrass heat kernel on
R

d is included in this class, in which case α = d, β = γ = 2. The other is the heat kernel
of stable-like processes, where the function Φ is of the form

Φ(s) = (1 + s)−α−β, (1.9)

(see [5] and the references therein). The heat kernel of the symmetric β-stable process on
R

d is included in this class, in which case α = d, 0 < β < 2.
The nature of the parameters α and β is important. The parameter α turns out to be

the Hausdorff dimension of M . The parameter β is called the walk dimension of the heat
kernel pt. This terminology is from the following observation: if the heat kernel pt is the
transition density of a Markov process Xt on M , then under mild assumptions about Φ,
(1.7) implies that the average time t needed for the process Xt to move away to a distance
r from the origin is of the order rβ (see, for example, [2, Lemma 3.9]).

As mentioned above, there are important classes of heat kernels that satisfy (1.7). One
can then ask the following natural question:

Is there a heat kernel pt satisfying (1.7), where Φ is different from (1.8) and (1.9)?

The main purpose of this paper is to answer this question. In Theorem 3.4, we will show
under mild assumptions that the shape of Φ for any heat kernel pt satisfying (1.7) is either
(1.8) or (1.9). Our approach is analytic, which does not depend on the existence of the
process Xt.

2 Dirichlet form associated with a heat kernel

Let (M, d, µ) be a metric measure space with a heat kernel {pt}t>0, and let {Pt}t>0 be the
heat semigroup defined by (1.4). For any t > 0, we define a quadratic form Et on L2 by

Et [u] :=

(
u − Ptu

t
, u

)
, (2.10)

where (·, ·) is the inner product in L2. An easy computation shows that Et can be equiv-
alently defined by

Et [u] =
1

2t

∫
M

∫
M

|u(x) − u(y)|2 pt(x, y)dµ(y)dµ(x). (2.11)

In terms of the spectral resolution {Eλ} of the generator L, Et can be expressed as follows

Et [u] =

∫ ∞

0

1 − e−tλ

t
d‖Eλu‖2

2,

which implies that Et [u] is decreasing in t (indeed, this is an elementary exercise to show

that the function t �→ 1−e−tλ

t
is decreasing).

Let us define a quadratic form E by

E [u] := lim
t→0+

Et [u] =

∫ ∞

0

λ d‖Eλu‖2
2 (2.12)
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(where the limit may be +∞ since E [u] ≥ Et [u]) and its domain D (E) by

D(E) : = {u ∈ L2 : E [u] < ∞}.
It is clear from (2.11) and (2.12) that Et and E are positive definite.

It is easy to see from (2.12) that D(E) = dom(L1/2). The domain D(E) is dense in L2

because D (E) contains dom(L). Indeed, if u ∈ dom(L) then using (1.5) and (2.10), we
obtain

E [u] = lim
t→0

Et [u] = (Lu, u) < ∞. (2.13)

The quadratic form E [u] extends to a bilinear form E (u, v) by the polarization identity

E (u, v) =
1

2
(E [u + v] − E [u − v]) .

It follows from (2.13) that E(u, v) = (Lu, v) for all u, v ∈ dom(L). The space D (E) is
naturally endowed with the inner product

[u, v] := (u, v) + E (u, v) . (2.14)

It is possible to show that the form E is closed, that is the space D(E) is Hilbert.
It is easy to see from (1.4) and the definition of a heat kernel that the semigroup {Pt}

is Markovian, that is 0 ≤ u ≤ 1 implies 0 ≤ Ptu ≤ 1. This implies that the form E satisfies
the Markov property, that is u ∈ D (E) implies v := min(u+, 1) ∈ D (E) and E [v] ≤ E [u].
Hence, E is a Dirichlet form.

We say that E is local if supp u and supp v are disjoint compact sets for u, v ∈ D(E),
then E(u, v) = 0. E is called stochastically complete if Pt1 = 1 for all t > 0, that is, the
equality holds in (1.1).

A Dirichlet form E is said to be regular if there exists a subspace C ⊂ D(E) ∩ C0(M)
such that C is dense in D(E) with [·]-norm and dense in C0(M) with uniform norm. (Here
C0(M) is the space of continuous compactly supported functions on M .) When E is
regular, there is a corresponding Markov process Xt which is furthermore a Hunt process.
As we mentioned in the first section, we do not assume E to be regular throughout this
paper.

3 Main result

Fix two positive parameters α and β and a monotone decreasing function Φ : [0, +∞) →
[0, +∞) such that Φ(c) > 0 for some c > 0.

Lemma 3.1 Assume that {pt} is a heat kernel on (M, d, µ) such that, for all x, y ∈ M
and t > 0,

pt (x, y) ≤ C

tα/β
Φ

(
d (x, y)

t1/β

)
, (3.1)

for some C > 0. Then either the associated Dirichlet form E is local or

Φ (s) ≥ c

(1 + s)α+β
(3.2)

for some c > 0.
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Proof. Consider the form Et which is given by

Et (u, v) =
1

2t

∫
M

∫
M

(u(x) − u(y)) (v (x) − v (y)) pt(x, y)dµ(y)dµ(x). (3.3)

Let u, v ∈ L1 (M, µ) be two non-negative functions with disjoint supports A = supp u and
B = supp v, and set

r = d (A, B) > 0. (3.4)

The integrand in (3.3) vanishes if either both x, y are outside A or both x, y are outside
B. Hence, we can restrict the integration to the domain where one of the variables x, y is
in A and the other is in B. Hence, we obtain, using the symmetry of the heat kernel,

Et (u, v) = − 1

2t

∫
A

∫
B

u(x)v (y) pt(x, y)dµ(y)dµ(x)

− 1

2t

∫
B

∫
A

u(y)v (x) pt(x, y)dµ(y)dµ(x)

= −1

t

∫
A

∫
B

u(x)v (y) pt(x, y)dµ(y)dµ(x). (3.5)

If x ∈ A and y ∈ B then d (x, y) ≥ r and

pt (x, y) ≤ C

tα/β
Φ
( r

t1/β

)
.

Therefore, (3.5) implies

|Et (u, v)| ≤ C

t1+α/β
Φ
( r

t1/β

)
‖u‖L1‖v‖L1 . (3.6)

If (3.2) fails then there exists a sequence {sk} → ∞ such that

sα+β
k Φ (sk) → 0 as k → ∞.

Define a sequence {tk} from the condition

sk =
r

t
1/β
k

.

Then

sα+β
k Φ (sk) =

rα+β

t
1+α/β
k

Φ

(
r

t
1/β
k

)
→ 0 as k → ∞,

and (3.6) implies that
Etk (u, v) → 0 as k → ∞. (3.7)

Therefore, if supp u and supp v are disjoint compact sets for u, v ∈ D(E), then we can
take r > 0 as in (3.4), so by (3.7), E (u, v) = limk→∞ Etk (u, v) = 0. Hence the locality of
E follows.
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Lemma 3.2 Assume that {pt} is a heat kernel on (M, d, µ) such that, for all x, y ∈ M
and t > 0,

pt (x, y) ≥ c

tα/β
Φ

(
d (x, y)

t1/β

)
, (3.8)

for some c > 0. Then

Φ (s) ≤ C

(1 + s)α+β
(3.9)

for some C > 0.

Proof. Let u be a non-constant function from L2 (M, µ). Choose a ball Q ⊂ M where
u is non-constant and let a > b be two real values such that the sets

A = {x ∈ Q : u (x) ≥ a} and B = {x ∈ Q : u (x) ≤ b}

have positive measures. If the diameter of Q is D then, by (3.8), we have for all x, y ∈ Q

pt (x, y) ≥ c

tα/β
Φ

(
D

t1/β

)

whence by (3.3)

E (u, u) ≥ Et (u, u) ≥ 1

2t

∫
A

∫
B

(u(x) − u (y))2 pt(x, y)dµ(y)dµ(x)

≥ (a − b)2 µ (A) µ (B)
c

2t1+α/β
Φ

(
D

t1/β

)

=
c′

t1+α/β
Φ

(
D

t1/β

)
(3.10)

where c′ > 0. If (3.9) fails then there exists a sequence {sk} → ∞ such that

sα+β
k Φ (sk) → ∞ as k → ∞.

Define a sequence {tk} from the condition

sk =
D

t
1/β
k

.

Then
1

t
1+α/β
k

Φ

(
D

t
1/β
k

)
= D−(α+β)sα+β

k Φ (sk) =→ ∞ as k → ∞,

and (3.10) yields E (u, u) = ∞. Therefore, the domain of the form E contains only
constants. Note that L2 (M, µ) does not consist of only constants. (Indeed, since µ is a
Radon measure on M with full support, it is enough to check that M consists of more than
one point. By (3.8), pt(x, x) → ∞ as t → 0, so if M = {x}, this contradicts (1.1).) Thus,
the fact that the form E contains only constants contradicts the fact that this domain is
dense in L2 (M, µ).
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We say that (M, d) satisfies the chain condition if there exists a (large) constant C such
that for any two points x, y ∈ M and for any positive integer n, there exists a sequence
{xi}n

i=0 of points in M such that x0 = x, xn = y, and

d(xi, xi+1) ≤ C
d(x, y)

n
, for all i = 0, 1, · · · , n − 1.

In the following, we denote Φ(s) 
 f(s) if there exist constants c1, c2 > 0 such that
c1f(s) ≤ Φ(s) ≤ c2f(s) for all s > 0. Similarly, we denote Φ(s) � f(Cs)g(cs) if there
exist constants c1, · · · , c4 > 0 such that f(c1s)g(c2s) ≤ Φ(s) ≤ f(c3s)g(c4s) for all s > 0.

Corollary 3.3 If the following estimate holds for all x, y ∈ M and t > 0,

pt (x, y) � C

tα/β
Φ

(
c
d (x, y)

t1/β

)
(3.11)

then either the Dirichlet form E is local or

Φ (s) 
 1

(1 + s)α+β
. (3.12)

Proof. Indeed, if E is non-local then Φ satisfies (3.2) and (3.9), whence the claim
follows.

Theorem 3.4 Let the metric space (M, d) satisfy the chain condition, the heat kernel be
stochastically complete, and (3.11) hold with some α, β > 0 and Φ. Then β ≤ α + 1,

µ (B (x, r)) 
 rα, (3.13)

and the following dichotomy holds:

• either the Dirichlet form E is local, β ≥ 2, and Φ (s) � C exp
(
−cs

β
β−1

)
.

• or the Dirichlet form E is non-local and Φ (s) 
 (1 + s)−(α+β).

Proof. By Lemma 3.2, we have the upper bound

Φ (s) ≤ C

(1 + s)α+β
. (3.14)

In particular, this implies ∫ ∞

0

sα−1Φ (s) ds < ∞. (3.15)

By [9, Theorem 3.2] (see also [6]), the estimate (3.11) with a function Φ satisfying (3.15)
and the stochastic completeness imply (3.13). By [9, Corollary 3.3], we have diam (M) =
∞. Furthermore, as it follows from the proof of [9, Theorem 3.2], for any ε > 0 there is
δ > 0 such that ∫

B(x,r)c
pt (x, y) dµ (y) ≤ ε, (3.16)

provided t ≤ (δr)β.
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Also, (3.11) with (3.15) and the chain condition imply that β ≤ α+1 (see [9, Theorem
4.8(ii)] and [6])

If the form E is non-local, then by Lemma 3.1 and Lemma 3.2, Φ satisfies (3.12), which
finishes the proof in this case. Assume now that E is local. In this case, we will show that
(3.16) implies that β ≥ 1 and, for all t, r > 0 and x ∈ M ,

∫
B(x,r)c

pt (x, y) dµ (y) ≤

 C exp

(
−c
(

rβ

t

) 1
β−1

)
, if β > 1,

C exp
(−c

(
r
t

))
, if β = 1.

(3.17)

Indeed, for each β > 0, using (4.21) and (4.22) in [8], letting k → ∞ and then replacing
2r by r, we have∫

B(x,r)c
pt (x, y) dµ (y) ≤ C exp

(
λt − c1λ

1/βr
)

, for all λ ≥ c2r
−β. (3.18)

(Note that the arguments in [8] do not require the regularity of the Dirichlet form.) When

β < 1, take λ = c3(r/t)
β/(β−1), where c3 − c1c

1/β
3 = −1. Then, λ ≥ c2r

−β is equivalent to
t ≥ c4r

β for some c4 > 0, so we obtain

∫
B(x,r)c

pt (x, y) dµ (y) ≤ C exp

(
−
(

t

rβ

) 1
1−β

)
for t ≥ c4r

β. (3.19)

On the other hand, by the lower bound of (3.11), for t = Mrβ and y ∈ B(x, 2r), we have

pt (x, y) ≥ C

tα/β
Φ

(
c

2r

t1/β

)
=

C

Mα/βrα
Φ

(
2c

M1/β

)
≥ C ′

Mα/βrα
(3.20)

when M is large enough, since Φ is monotone decreasing and Φ(a) > 0 for some a > 0.
Integrating (3.20) over y ∈ B(x, 2r) \B(x, r) and using (3.13), we have that the left hand
side of (3.19) is greater than or equal to C ′′M−α/β . This is a contradiction when M is
very large, because the right hand side of (3.19) is C exp(−M1/(1−β)) for t = Mrβ . So, we
obtain β ≥ 1. Now, applying (3.18) with λ = c(r/t)β/(β−1) when β > 1 and with λ = ct−1

when β = 1, we obtain (3.17) for t ≤ c′rβ. (3.17) is always true for t ≥ c′rβ by adjusting
C, so the proof of (3.17) is completed.

Now, x, y ∈ M , t > 0, and for r = 1
2
d (x, y),

pt (x, y) =

∫
M

pt/2 (x, z) p/2 (z, y) dµ (z)

≤
∫

B(x,r)c∪B(y,r)c
pt/2 (x, z) p/2 (z, y) dµ (z)

≤ sup
z∈M

pt/2 (z, y)

∫
B(x,r)c

pt/2 (x, z) dµ (z) + sup
z∈M

pt/2 (x, z)

∫
B(y,r)c

pt/2 (y, z) dµ (z) .

Since by (3.11) pt (x, y) ≤ Ct−α/β for all x, y ∈ M and t > 0, combining this with (3.17)
we obtain,

pt (x, y) ≤



C
tα/β exp

(
−c
(

dβ(x,y)
t

) 1
β−1

)
, if β > 1,

C
tα

exp
(−c

(
r
t

))
, if β = 1.

(3.21)
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Now, by [9, Theorem 4.8(i)], the estimates (3.11) and (3.21) imply β ≥ 2. (Note that the
arguments in [9] do not require the regularity of the Dirichlet form.)

On the other hand, when β ≥ 2 (in fact β > 1 is enough), the standard chain argument
(see [9, Corollary 3.5]) shows that the lower bound in (3.11) implies the lower bounds

pt (x, y) ≥ C

tα/β
exp

(
−c

(
dβ (x, y)

t

) 1
β−1

)
.

Combining these estimates with (3.11), we obtain

Φ (s) � C exp
(
−cs

β
β−1

)
,

with β ≥ 2, which finishes the proof.

Remark. 1) This theorem excludes discrete cases. Indeed, for the discrete cases, (3.11)
does not hold for very small t. For example, continuous time simple random walk on Z

d

satisfies (3.11) with α = d, β = 2 and Φ(s) � C exp(−cs2) for d(x, y) ∨ 1 ≤ t, but (3.11)
does not hold for t << 1.
2) In this theorem, we assume (3.11) for all x, y ∈ M and t > 0. But if the Dirichlet
form E is regular, then we can relax this part of the assumption and need only to assume
(3.11) for µ-a.e. x, y ∈ M and all t > 0. See [3, Theorem 2.1] and [4].
3) In the case of a local form, we obtain the relations between α and β

2 ≤ β ≤ α + 1. (3.22)

By [1], any couple of α, β in this range can be realized for the above heat kernel estimates.
In the case of a non-local form, we have instead the range

0 < β ≤ α + 1.

Any couple in the range 0 < β < α + 1 can be realized. Indeed, if L is the generator of
diffusion with parameters α and β from the range (3.22) then Lδ, δ ∈ (0, 1), generated
a Hunt process with the walk dimension β ′ = δβ and the same α, so that β′ can take
any value from (0, α + 1). We do not know whether β = α + 1 can occur for non-local
processes or not.
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de Probabilités de Saint-Flour XXV - 1995. Springer Lecture Notes Math., 1690 (1998) 1-121.

[3] Barlow M.T., Bass R.F., Chen Z.-Q., Kassmann M., Non-local Dirichlet forms and symmetric
jump processes, preprint (2006)

[4] Barlow M.T., Grigor’yan A., Kumagai T., Heat kernel upper bounds for jump processes and
the first exit time, preprint (2006)

[5] Chen Z.-Q., Kumagai T., Heat kernel estimates for stable-like processes on d-sets, Stochastic
Process Appl., 108 (2003) 27-62.

9



[6] Grigor’yan A., Heat kernels and function theory on metric measure spaces, in: “Heat kernels
and analysis on manifolds, graphs, and metric spaces”, Contemporary Mathematics, 338 (2003)
143-172.

[7] Grigor’yan A., Heat kernel upper bounds on fractal spaces, preprint (2006)

[8] Grigor’yan A., Hu J., Upper estimates of transition densities for Dirichlet forms on metric spaces,
in preparation(2007)

[9] Grigor’yan A., Hu J., Lau K.S., Heat kernels on metric-measure spaces and an application to
semi-linear elliptic equations, Trans. Amer. Math. Soc., 355 (2003) no.5, 2065-2095.

10


