On the dichotomy in the heat kernel two sided estimates

Alexander Grigor'yan Department of Mathematics University of Bielefeld Postfach 100131 33501 Bielefeld, Germany http://www.math.uni-bielefeld.de/~grigor

Takashi Kumagai Department of Mathematics Faculty of Science Kyoto University Kyoto 606-8502, Japan http://www.math.kyoto-u.ac.jp/~kumagai/

31 July 2007

Contents

1	Preliminaries	1
2	Dirichlet form associated with a heat kernel	3
3	Main result	4

1 Preliminaries

Let (M, d) be a locally compact separable metric space and μ be a Radon measure on M with full support. Assume that there exists a heat kernel $\{p_t\}_{t>0}$ on M:

Definition. A family $\{p_t\}_{t>0}$ of Borel functions $p_t(x, y)$ on $M \times M$ is called a *heat kernel* if the following conditions are satisfied, for all $x, y \in M$ and all s, t > 0:

- (i) Positivity: $p_t(x, y) \ge 0$.
- (ii) The total mass inequality

$$\int_{M} p_t(x, y) d\mu(y) \le 1.$$
(1.1)

- (*iii*) Symmetry: $p_t(x, y) = p_t(y, x)$.
- (iv) Semigroup property:

$$p_{s+t}(x,y) = \int_{M} p_s(x,z) p_t(z,y) d\mu(z).$$
(1.2)

(v) Approximation of identity: for any $u \in L^2(M, \mu)$

$$\int_{M} p_t(x, y) u(y) d\mu(y) \xrightarrow{L^2} u(x) \quad \text{as } t \to 0 + .$$
(1.3)

Any heat kernel gives rise to the *heat semigroup* $\{P_t\}_{t>0}$ where P_t is the operator in L^2 defined by

$$P_t u(x) = \int_M p_t(x, y) u(y) d\mu(y).$$
(1.4)

The semigroup identity (1.2) implies that $P_tP_s = P_{t+s}$, that is, the family $\{P_t\}_{t>0}$ is a *semigroup*. It follows from (1.3) that

$$s-\lim_{t\to 0} P_t = \mathbf{I},$$

where I is the identity operator in L^2 and s-lim stands for strong limit. Hence, $\{P_t\}_{t>0}$ is a strongly continuous, self-adjoint, contraction semigroup in L^2 .

Given the semigroup $\{P_t\}_{t>0}$, define the *infinitesimal generator* \mathcal{L} of the semigroup by

$$\mathcal{L}u := \lim_{t \to 0} \frac{u - P_t u}{t},\tag{1.5}$$

where the limit is understood in the L^2 -norm. The domain dom(\mathcal{L}) of the generator \mathcal{L} is the space of functions $u \in L^2$ for which the limit in (1.5) exists. By the Hille– Yosida theorem, dom(\mathcal{L}) is dense in L^2 . Furthermore, \mathcal{L} is a self-adjoint, positive definite operator, which immediately follows from the fact that the semigroup $\{P_t\}$ is self-adjoint and contractive. Moreover, we have

$$P_t = \exp\left(-t\mathcal{L}\right),\tag{1.6}$$

where the right hand side is understood in the sense of spectral theory.

Let a heat kernel p_t on (M, d, μ) satisfy the following two-sided estimate for all $x, y \in M$ and all $t \in (0, \infty)$:

$$\frac{c_1}{t^{\alpha/\beta}}\Phi\left(c_2\frac{d\left(x,y\right)}{t^{1/\beta}}\right) \le p_t\left(x,y\right) \le \frac{c_3}{t^{\alpha/\beta}}\Phi\left(c_4\frac{d\left(x,y\right)}{t^{1/\beta}}\right)$$
(1.7)

where α, β are positive constants and Φ is a non-negative monotone decreasing function on $[0, \infty)$. There are two very important classes of heat kernels that satisfy (1.7). One is the heat kernel of diffusions on various fractals, where the function Φ is of the form

$$\Phi(s) = \exp(-s^{\gamma}), \tag{1.8}$$

for some $\gamma > 0$ (see [2] and the references therein). The Gauss-Weierstrass heat kernel on \mathbb{R}^d is included in this class, in which case $\alpha = d, \beta = \gamma = 2$. The other is the heat kernel of stable-like processes, where the function Φ is of the form

$$\Phi(s) = (1+s)^{-\alpha-\beta},$$
(1.9)

(see [5] and the references therein). The heat kernel of the symmetric β -stable process on \mathbb{R}^d is included in this class, in which case $\alpha = d, 0 < \beta < 2$.

The nature of the parameters α and β is important. The parameter α turns out to be the Hausdorff dimension of M. The parameter β is called the walk dimension of the heat kernel p_t . This terminology is from the following observation: if the heat kernel p_t is the transition density of a Markov process X_t on M, then under mild assumptions about Φ , (1.7) implies that the average time t needed for the process X_t to move away to a distance r from the origin is of the order r^{β} (see, for example, [2, Lemma 3.9]).

As mentioned above, there are important classes of heat kernels that satisfy (1.7). One can then ask the following natural question:

Is there a heat kernel p_t satisfying (1.7), where Φ is different from (1.8) and (1.9)?

The main purpose of this paper is to answer this question. In Theorem 3.4, we will show under mild assumptions that the shape of Φ for any heat kernel p_t satisfying (1.7) is either (1.8) or (1.9). Our approach is analytic, which does not depend on the existence of the process X_t .

2 Dirichlet form associated with a heat kernel

Let (M, d, μ) be a metric measure space with a heat kernel $\{p_t\}_{t>0}$, and let $\{P_t\}_{t>0}$ be the heat semigroup defined by (1.4). For any t > 0, we define a quadratic form \mathcal{E}_t on L^2 by

$$\mathcal{E}_t\left[u\right] := \left(\frac{u - P_t u}{t}, u\right),\tag{2.10}$$

where (\cdot, \cdot) is the inner product in L^2 . An easy computation shows that \mathcal{E}_t can be equivalently defined by

$$\mathcal{E}_t[u] = \frac{1}{2t} \int_M \int_M |u(x) - u(y)|^2 p_t(x, y) d\mu(y) d\mu(x).$$
(2.11)

In terms of the spectral resolution $\{E_{\lambda}\}$ of the generator $\mathcal{L}, \mathcal{E}_t$ can be expressed as follows

$$\mathcal{E}_t\left[u\right] = \int_0^\infty \frac{1 - e^{-t\lambda}}{t} d\|E_\lambda u\|_2^2,$$

which implies that $\mathcal{E}_t[u]$ is decreasing in t (indeed, this is an elementary exercise to show that the function $t \mapsto \frac{1-e^{-t\lambda}}{t}$ is decreasing).

Let us define a quadratic form \mathcal{E} by

$$\mathcal{E}[u] := \lim_{t \to 0+} \mathcal{E}_t \left[u \right] = \int_0^\infty \lambda \, d \| E_\lambda u \|_2^2 \tag{2.12}$$

(where the limit may be $+\infty$ since $\mathcal{E}[u] \geq \mathcal{E}_t[u]$) and its *domain* $\mathcal{D}(\mathcal{E})$ by

$$\mathcal{D}(\mathcal{E}) := \{ u \in L^2 : \mathcal{E}[u] < \infty \}.$$

It is clear from (2.11) and (2.12) that \mathcal{E}_t and \mathcal{E} are positive definite.

It is easy to see from (2.12) that $\mathcal{D}(\mathcal{E}) = \operatorname{dom}(\mathcal{L}^{1/2})$. The domain $\mathcal{D}(\mathcal{E})$ is dense in L^2 because $\mathcal{D}(\mathcal{E})$ contains dom(\mathcal{L}). Indeed, if $u \in \operatorname{dom}(\mathcal{L})$ then using (1.5) and (2.10), we obtain

$$\mathcal{E}\left[u\right] = \lim_{t \to 0} \mathcal{E}_t\left[u\right] = (\mathcal{L}u, u) < \infty.$$
(2.13)

The quadratic form $\mathcal{E}[u]$ extends to a bilinear form $\mathcal{E}(u, v)$ by the polarization identity

$$\mathcal{E}(u,v) = \frac{1}{2} \left(\mathcal{E}[u+v] - \mathcal{E}[u-v] \right).$$

It follows from (2.13) that $\mathcal{E}(u, v) = (\mathcal{L}u, v)$ for all $u, v \in \text{dom}(\mathcal{L})$. The space $\mathcal{D}(\mathcal{E})$ is naturally endowed with the inner product

$$[u, v] := (u, v) + \mathcal{E}(u, v).$$
(2.14)

It is possible to show that the form \mathcal{E} is *closed*, that is the space $\mathcal{D}(\mathcal{E})$ is *Hilbert*.

It is easy to see from (1.4) and the definition of a heat kernel that the semigroup $\{P_t\}$ is *Markovian*, that is $0 \le u \le 1$ implies $0 \le P_t u \le 1$. This implies that the form \mathcal{E} satisfies the Markov property, that is $u \in \mathcal{D}(\mathcal{E})$ implies $v := \min(u_+, 1) \in \mathcal{D}(\mathcal{E})$ and $\mathcal{E}[v] \le \mathcal{E}[u]$. Hence, \mathcal{E} is a *Dirichlet form*.

We say that \mathcal{E} is *local* if supp u and supp v are disjoint compact sets for $u, v \in \mathcal{D}(\mathcal{E})$, then $\mathcal{E}(u, v) = 0$. \mathcal{E} is called *stochastically complete* if $P_t 1 = 1$ for all t > 0, that is, the equality holds in (1.1).

A Dirichlet form \mathcal{E} is said to be *regular* if there exists a subspace $\mathcal{C} \subset \mathcal{D}(\mathcal{E}) \cap C_0(M)$ such that \mathcal{C} is dense in $\mathcal{D}(\mathcal{E})$ with $[\cdot]$ -norm and dense in $C_0(M)$ with uniform norm. (Here $C_0(M)$ is the space of continuous compactly supported functions on M.) When \mathcal{E} is *regular*, there is a corresponding Markov process X_t which is furthermore a Hunt process. As we mentioned in the first section, we do *not* assume \mathcal{E} to be regular throughout this paper.

3 Main result

Fix two positive parameters α and β and a monotone decreasing function $\Phi : [0, +\infty) \rightarrow [0, +\infty)$ such that $\Phi(c) > 0$ for some c > 0.

Lemma 3.1 Assume that $\{p_t\}$ is a heat kernel on (M, d, μ) such that, for all $x, y \in M$ and t > 0,

$$p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \Phi\left(\frac{d(x,y)}{t^{1/\beta}}\right),\tag{3.1}$$

for some C > 0. Then either the associated Dirichlet form \mathcal{E} is local or

$$\Phi\left(s\right) \ge \frac{c}{\left(1+s\right)^{\alpha+\beta}}\tag{3.2}$$

for some c > 0.

Proof. Consider the form \mathcal{E}_t which is given by

$$\mathcal{E}_{t}(u,v) = \frac{1}{2t} \int_{M} \int_{M} \int_{M} (u(x) - u(y)) \left(v(x) - v(y) \right) p_{t}(x,y) d\mu(y) d\mu(x).$$
(3.3)

Let $u, v \in L^1(M, \mu)$ be two non-negative functions with disjoint supports A = supp u and B = supp v, and set

$$r = d(A, B) > 0.$$
 (3.4)

The integrand in (3.3) vanishes if either both x, y are outside A or both x, y are outside B. Hence, we can restrict the integration to the domain where one of the variables x, y is in A and the other is in B. Hence, we obtain, using the symmetry of the heat kernel,

$$\mathcal{E}_{t}(u,v) = -\frac{1}{2t} \int_{A} \int_{B} u(x)v(y) p_{t}(x,y)d\mu(y)d\mu(x) -\frac{1}{2t} \int_{B} \int_{A} u(y)v(x) p_{t}(x,y)d\mu(y)d\mu(x) = -\frac{1}{t} \int_{A} \int_{B} u(x)v(y) p_{t}(x,y)d\mu(y)d\mu(x).$$
(3.5)

If $x \in A$ and $y \in B$ then $d(x, y) \ge r$ and

$$p_t(x,y) \le \frac{C}{t^{\alpha/\beta}} \Phi\left(\frac{r}{t^{1/\beta}}\right).$$

Therefore, (3.5) implies

$$|\mathcal{E}_t(u,v)| \le \frac{C}{t^{1+\alpha/\beta}} \Phi\left(\frac{r}{t^{1/\beta}}\right) \|u\|_{L^1} \|v\|_{L^1}.$$
(3.6)

If (3.2) fails then there exists a sequence $\{s_k\} \to \infty$ such that

$$s_k^{\alpha+\beta}\Phi(s_k) \to 0 \quad \text{as } k \to \infty.$$

Define a sequence $\{t_k\}$ from the condition

$$s_k = \frac{r}{t_k^{1/\beta}}.$$

Then

$$s_k^{\alpha+\beta}\Phi\left(s_k\right) = \frac{r^{\alpha+\beta}}{t_k^{1+\alpha/\beta}}\Phi\left(\frac{r}{t_k^{1/\beta}}\right) \to 0 \quad \text{as } k \to \infty,$$

and (3.6) implies that

$$\mathcal{E}_{t_k}(u,v) \to 0 \quad \text{as } k \to \infty.$$
 (3.7)

Therefore, if supp u and supp v are disjoint compact sets for $u, v \in \mathcal{D}(\mathcal{E})$, then we can take r > 0 as in (3.4), so by (3.7), $\mathcal{E}(u, v) = \lim_{k \to \infty} \mathcal{E}_{t_k}(u, v) = 0$. Hence the locality of \mathcal{E} follows.

Lemma 3.2 Assume that $\{p_t\}$ is a heat kernel on (M, d, μ) such that, for all $x, y \in M$ and t > 0,

$$p_t(x,y) \ge \frac{c}{t^{\alpha/\beta}} \Phi\left(\frac{d(x,y)}{t^{1/\beta}}\right),$$
(3.8)

for some c > 0. Then

$$\Phi\left(s\right) \le \frac{C}{\left(1+s\right)^{\alpha+\beta}}\tag{3.9}$$

for some C > 0.

Proof. Let u be a non-constant function from $L^2(M, \mu)$. Choose a ball $Q \subset M$ where u is non-constant and let a > b be two real values such that the sets

$$A = \{x \in Q : u(x) \ge a\}$$
 and $B = \{x \in Q : u(x) \le b\}$

have positive measures. If the diameter of Q is D then, by (3.8), we have for all $x, y \in Q$

$$p_t(x,y) \ge \frac{c}{t^{\alpha/\beta}} \Phi\left(\frac{D}{t^{1/\beta}}\right)$$

whence by (3.3)

$$\mathcal{E}(u,u) \geq \mathcal{E}_{t}(u,u) \geq \frac{1}{2t} \int_{A} \int_{B} (u(x) - u(y))^{2} p_{t}(x,y) d\mu(y) d\mu(x)$$

$$\geq (a-b)^{2} \mu(A) \mu(B) \frac{c}{2t^{1+\alpha/\beta}} \Phi\left(\frac{D}{t^{1/\beta}}\right)$$

$$= \frac{c'}{t^{1+\alpha/\beta}} \Phi\left(\frac{D}{t^{1/\beta}}\right)$$
(3.10)

where c' > 0. If (3.9) fails then there exists a sequence $\{s_k\} \to \infty$ such that

$$s_k^{\alpha+\beta}\Phi(s_k) \to \infty \quad \text{as } k \to \infty.$$

Define a sequence $\{t_k\}$ from the condition

$$s_k = \frac{D}{t_k^{1/\beta}}.$$

Then

$$\frac{1}{t_k^{1+\alpha/\beta}}\Phi\left(\frac{D}{t_k^{1/\beta}}\right) = D^{-(\alpha+\beta)}s_k^{\alpha+\beta}\Phi\left(s_k\right) \Longrightarrow \infty \quad \text{as } k \to \infty,$$

and (3.10) yields $\mathcal{E}(u, u) = \infty$. Therefore, the domain of the form \mathcal{E} contains only constants. Note that $L^2(M, \mu)$ does not consist of only constants. (Indeed, since μ is a Radon measure on M with full support, it is enough to check that M consists of more than one point. By (3.8), $p_t(x, x) \to \infty$ as $t \to 0$, so if $M = \{x\}$, this contradicts (1.1).) Thus, the fact that the form \mathcal{E} contains only constants contradicts the fact that this domain is dense in $L^2(M, \mu)$.

We say that (M, d) satisfies the chain condition if there exists a (large) constant C such that for any two points $x, y \in M$ and for any positive integer n, there exists a sequence $\{x_i\}_{i=0}^n$ of points in M such that $x_0 = x, x_n = y$, and

$$d(x_i, x_{i+1}) \le C \frac{d(x, y)}{n}$$
, for all $i = 0, 1, \dots, n-1$.

In the following, we denote $\Phi(s) \simeq f(s)$ if there exist constants $c_1, c_2 > 0$ such that $c_1 f(s) \leq \Phi(s) \leq c_2 f(s)$ for all s > 0. Similarly, we denote $\Phi(s) \simeq f(Cs)g(cs)$ if there exist constants $c_1, \dots, c_4 > 0$ such that $f(c_1s)g(c_2s) \leq \Phi(s) \leq f(c_3s)g(c_4s)$ for all s > 0.

Corollary 3.3 If the following estimate holds for all $x, y \in M$ and t > 0,

$$p_t(x,y) \asymp \frac{C}{t^{\alpha/\beta}} \Phi\left(c\frac{d(x,y)}{t^{1/\beta}}\right)$$
(3.11)

then either the Dirichlet form \mathcal{E} is local or

$$\Phi(s) \simeq \frac{1}{(1+s)^{\alpha+\beta}}.$$
(3.12)

Proof. Indeed, if \mathcal{E} is non-local then Φ satisfies (3.2) and (3.9), whence the claim follows.

Theorem 3.4 Let the metric space (M, d) satisfy the chain condition, the heat kernel be stochastically complete, and (3.11) hold with some $\alpha, \beta > 0$ and Φ . Then $\beta \le \alpha + 1$,

$$\mu\left(B\left(x,r\right)\right)\simeq r^{\alpha},\tag{3.13}$$

and the following dichotomy holds:

- either the Dirichlet form \mathcal{E} is local, $\beta \geq 2$, and $\Phi(s) \asymp C \exp\left(-cs^{\frac{\beta}{\beta-1}}\right)$.
- or the Dirichlet form \mathcal{E} is non-local and $\Phi(s) \simeq (1+s)^{-(\alpha+\beta)}$.

Proof. By Lemma 3.2, we have the upper bound

$$\Phi\left(s\right) \le \frac{C}{\left(1+s\right)^{\alpha+\beta}}.\tag{3.14}$$

In particular, this implies

$$\int_{0}^{\infty} s^{\alpha - 1} \Phi\left(s\right) ds < \infty. \tag{3.15}$$

By [9, Theorem 3.2] (see also [6]), the estimate (3.11) with a function Φ satisfying (3.15) and the stochastic completeness imply (3.13). By [9, Corollary 3.3], we have diam $(M) = \infty$. Furthermore, as it follows from the proof of [9, Theorem 3.2], for any $\varepsilon > 0$ there is $\delta > 0$ such that

$$\int_{B(x,r)^{c}} p_{t}(x,y) d\mu(y) \leq \varepsilon, \qquad (3.16)$$

provided $t \leq (\delta r)^{\beta}$.

Also, (3.11) with (3.15) and the chain condition imply that $\beta \leq \alpha + 1$ (see [9, Theorem 4.8(*ii*)] and [6])

If the form \mathcal{E} is non-local, then by Lemma 3.1 and Lemma 3.2, Φ satisfies (3.12), which finishes the proof in this case. Assume now that \mathcal{E} is local. In this case, we will show that (3.16) implies that $\beta \geq 1$ and, for all t, r > 0 and $x \in M$,

$$\int_{B(x,r)^{c}} p_{t}(x,y) d\mu(y) \leq \begin{cases} C \exp\left(-c\left(\frac{r^{\beta}}{t}\right)^{\frac{1}{\beta-1}}\right), & \text{if } \beta > 1, \\ C \exp\left(-c\left(\frac{r}{t}\right)\right), & \text{if } \beta = 1. \end{cases}$$
(3.17)

Indeed, for each $\beta > 0$, using (4.21) and (4.22) in [8], letting $k \to \infty$ and then replacing 2r by r, we have

$$\int_{B(x,r)^c} p_t(x,y) \, d\mu(y) \le C \exp\left(\lambda t - c_1 \lambda^{1/\beta} r\right), \quad \text{for all } \lambda \ge c_2 r^{-\beta}. \tag{3.18}$$

(Note that the arguments in [8] do not require the regularity of the Dirichlet form.) When $\beta < 1$, take $\lambda = c_3(r/t)^{\beta/(\beta-1)}$, where $c_3 - c_1c_3^{1/\beta} = -1$. Then, $\lambda \ge c_2r^{-\beta}$ is equivalent to $t \ge c_4r^{\beta}$ for some $c_4 > 0$, so we obtain

$$\int_{B(x,r)^{c}} p_{t}(x,y) d\mu(y) \leq C \exp\left(-\left(\frac{t}{r^{\beta}}\right)^{\frac{1}{1-\beta}}\right) \quad \text{for } t \geq c_{4}r^{\beta}.$$
(3.19)

On the other hand, by the lower bound of (3.11), for $t = Mr^{\beta}$ and $y \in B(x, 2r)$, we have

$$p_t(x,y) \ge \frac{C}{t^{\alpha/\beta}} \Phi\left(c\frac{2r}{t^{1/\beta}}\right) = \frac{C}{M^{\alpha/\beta}r^{\alpha}} \Phi\left(\frac{2c}{M^{1/\beta}}\right) \ge \frac{C'}{M^{\alpha/\beta}r^{\alpha}}$$
(3.20)

when M is large enough, since Φ is monotone decreasing and $\Phi(a) > 0$ for some a > 0. Integrating (3.20) over $y \in B(x, 2r) \setminus B(x, r)$ and using (3.13), we have that the left hand side of (3.19) is greater than or equal to $C''M^{-\alpha/\beta}$. This is a contradiction when M is very large, because the right hand side of (3.19) is $C \exp(-M^{1/(1-\beta)})$ for $t = Mr^{\beta}$. So, we obtain $\beta \ge 1$. Now, applying (3.18) with $\lambda = c(r/t)^{\beta/(\beta-1)}$ when $\beta > 1$ and with $\lambda = ct^{-1}$ when $\beta = 1$, we obtain (3.17) for $t \le c'r^{\beta}$. (3.17) is always true for $t \ge c'r^{\beta}$ by adjusting C, so the proof of (3.17) is completed.

Now, $x, y \in M$, t > 0, and for $r = \frac{1}{2}d(x, y)$,

$$p_{t}(x,y) = \int_{M} p_{t/2}(x,z) p_{/2}(z,y) d\mu(z)$$

$$\leq \int_{B(x,r)^{c} \cup B(y,r)^{c}} p_{t/2}(x,z) p_{/2}(z,y) d\mu(z)$$

$$\leq \sup_{z \in M} p_{t/2}(z,y) \int_{B(x,r)^{c}} p_{t/2}(x,z) d\mu(z) + \sup_{z \in M} p_{t/2}(x,z) \int_{B(y,r)^{c}} p_{t/2}(y,z) d\mu(z) + \sum_{z \in M} p_{t/2}(x,z) \int_{B(y,r)^{c}} p_{t/2}(y,z) d\mu(z) d\mu(z) + \sum_{z \in M} p_{t/2}(x,z) \int_{B(y,r)^{c}} p_{t/2}(y,z) d\mu(z) d\mu(z)$$

Since by (3.11) $p_t(x,y) \leq Ct^{-\alpha/\beta}$ for all $x, y \in M$ and t > 0, combining this with (3.17) we obtain,

$$p_t(x,y) \leq \begin{cases} \frac{C}{t^{\alpha/\beta}} \exp\left(-c\left(\frac{d^{\beta}(x,y)}{t}\right)^{\frac{1}{\beta-1}}\right), & \text{if } \beta > 1, \\ \frac{C}{t^{\alpha}} \exp\left(-c\left(\frac{r}{t}\right)\right), & \text{if } \beta = 1. \end{cases}$$
(3.21)

Now, by [9, Theorem 4.8(i)], the estimates (3.11) and (3.21) imply $\beta \geq 2$. (Note that the arguments in [9] do not require the regularity of the Dirichlet form.)

On the other hand, when $\beta \geq 2$ (in fact $\beta > 1$ is enough), the standard chain argument (see [9, Corollary 3.5]) shows that the lower bound in (3.11) implies the lower bounds

$$p_t(x,y) \ge \frac{C}{t^{\alpha/\beta}} \exp\left(-c\left(\frac{d^{\beta}(x,y)}{t}\right)^{\frac{1}{\beta-1}}\right).$$

Combining these estimates with (3.11), we obtain

$$\Phi(s) \asymp C \exp\left(-cs^{\frac{\beta}{\beta-1}}\right),$$

with $\beta \geq 2$, which finishes the proof.

Remark. 1) This theorem excludes discrete cases. Indeed, for the discrete cases, (3.11) does not hold for very small t. For example, continuous time simple random walk on \mathbb{Z}^d satisfies (3.11) with $\alpha = d, \beta = 2$ and $\Phi(s) \approx C \exp(-cs^2)$ for $d(x, y) \lor 1 \leq t$, but (3.11) does not hold for $t \ll 1$.

2) In this theorem, we assume (3.11) for all $x, y \in M$ and t > 0. But if the Dirichlet form \mathcal{E} is regular, then we can relax this part of the assumption and need only to assume (3.11) for μ -a.e. $x, y \in M$ and all t > 0. See [3, Theorem 2.1] and [4].

3) In the case of a local form, we obtain the relations between α and β

$$2 \le \beta \le \alpha + 1. \tag{3.22}$$

By [1], any couple of α , β in this range can be realized for the above heat kernel estimates. In the case of a non-local form, we have instead the range

$$0 < \beta \le \alpha + 1.$$

Any couple in the range $0 < \beta < \alpha + 1$ can be realized. Indeed, if \mathcal{L} is the generator of diffusion with parameters α and β from the range (3.22) then \mathcal{L}^{δ} , $\delta \in (0, 1)$, generated a Hunt process with the walk dimension $\beta' = \delta\beta$ and the same α , so that β' can take any value from $(0, \alpha + 1)$. We do not know whether $\beta = \alpha + 1$ can occur for non-local processes or not.

References

- Barlow M.T., Which values of the volume growth and escape time exponents are possible for graphs?, Rev. Math. Iberoamericana, 20 (2004) 1-31.
- [2] Barlow M.T., Diffusions on fractals, Lectures on Probability Theory and Statistics, Ecole d'Eté de Probabilités de Saint-Flour XXV - 1995. Springer Lecture Notes Math., 1690 (1998) 1-121.
- [3] Barlow M.T., Bass R.F., Chen Z.-Q., Kassmann M., Non-local Dirichlet forms and symmetric jump processes, preprint (2006)
- [4] Barlow M.T., Grigor'yan A., Kumagai T., Heat kernel upper bounds for jump processes and the first exit time, preprint (2006)
- [5] Chen Z.-Q., Kumagai T., Heat kernel estimates for stable-like processes on d-sets, Stochastic Process Appl., 108 (2003) 27-62.

- [6] Grigor'yan A., Heat kernels and function theory on metric measure spaces, in: "Heat kernels and analysis on manifolds, graphs, and metric spaces", Contemporary Mathematics, 338 (2003) 143-172.
- [7] Grigor'yan A., Heat kernel upper bounds on fractal spaces, preprint (2006)
- [8] Grigor'yan A., Hu J., Upper estimates of transition densities for Dirichlet forms on metric spaces, in preparation(2007)
- [9] Grigor'yan A., Hu J., Lau K.S., Heat kernels on metric-measure spaces and an application to semi-linear elliptic equations, Trans. Amer. Math. Soc., 355 (2003) no.5, 2065-2095.