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Abstract

We prove that, if a geodesic metric space has Markov type 2 with constant
1, then it is an Alexandrov space of nonnegative curvature. The same technique
provides a lower bound of the Markov type 2 constant of a space containing a tripod
or a branching point.

1 Introduction

Rademacher type and cotype are fundamental and significant tools in the investigation of
the local theory of Banach spaces. In recent years, there has been an increasing interest in
their nonlinearizations. Enflo [En] first gave a generalized notion of type for general metric
spaces which is now called Enflo type. After that, Ball [Ba] introduced another kind of
nonlinear type, called Markov type, based on a different idea. Markov type has found
deep applications in the extension problem of Lipschitz maps ([Ba], [NPSS], [MN1]) as
well as in the theory of bi-Lipschitz embeddings of finite metric spaces or graphs ([LMN],
[BLMN], [NPSS], [MN1]). We also refer to [MN2] for recent striking progress on nonlinear
cotype and its applications.

A metric space X has Enflo type 2 if there is a constant K ≥ 1 such that the inequality∑
ε∈{−1,1}N

d(xε, x−ε)
2 ≤ K2

∑
ε∼ε′

d(xε, xε′)
2

holds for N ∈ N and (xε)ε∈{−1,1}N ∈ X2N
, where ε ∼ ε′ if

∑N
i=1 |εi − ε′i| = 2. In the

meantime, Markov type 2 is defined by the inequality

E[d(Z0, Zl)
2] ≤ K2lE[d(Z0, Z1)

2],
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where {Zl}l∈N∪{0} is a reversible, stationary Markov chain on the N -point state space
identified with (xi)

N
i=1 ∈ XN . Markov type seems stronger than Enflo type because

it concerns general Markov chains, and it is indeed the case if we admit a constant
multiplication of K. However, if we also care about the value of K, then a difference
between them arises. We clarify such a difference by comparing these nonlinear types
with curvature conditions in metric (Riemannian) geometry.

Our main result (Theorem 2.5) asserts that, if a geodesic metric space has Markov
type 2 with K = 1, then it is an Alexandrov space of nonnegative curvature. The converse
is also true in a certain weak sense. This result makes an interesting contrast to the fact
that a geodesic metric space has Enflo type 2 with K = 1 if and only if it is a CAT(0)-
space (Proposition 2.2). The proof of Theorem 2.5 relies on Sturm’s characterization of
Alexandrov spaces in [St]. Theorem 2.5 implicitly means that the negative curvature
makes the Markov type 2 constant K worse. Actually, our technique also gives a lower
bound of the Markov type 2 constant of a space containing an N -pod or a branching point
(Theorem 3.1).

The article is organized as follows. We start with the study of nonlinear types and
curvature bounds, and prove our main theorem in Section 2. Then we use the same
technique to obtain lower bounds of the Markov type 2 constants of certain spaces in
Section 3. In Section 4, we provide a method for constructing spaces having Markov type,
for instance, non-geodesic metric spaces having Markov type 2 with K = 1.

Acknowledgements. Most of this work was done while we were visiting Bonn. We are
grateful to Universität Bonn and Max-Planck-Institut für Mathematik for their hospital-
ity. The first author also thanks Thomas Foertsch and Alexander Lytchak for informing
him of Berg and Nikolaev’s paper [BN].

2 Nonlinear types and curvature bounds

A Banach space (V, ‖ · ‖) is said to have Rademacher type 2 if there is a constant K ≥ 1
such that, for any N ∈ N and (vi)

N
i=1 ∈ V N , it holds that

1

2N

∑
(εi)∈{−1,1}N

∥∥∥∥ N∑
i=1

εivi

∥∥∥∥2

≤ K2

N∑
i=1

‖vi‖2. (2.1)

The parallelogram identity shows that Hilbert spaces have Rademacher type 2 with K =
1. Conversely, if (V, ‖ · ‖) has Rademacher type 2 with K = 1, then (2.1) yields the
parallelogram identity and hence (V, ‖ · ‖) is a Hilbert space. We will study a similar
problem in a nonlinear setting.

Before it, we recall two curvature conditions (see [BH] and [BBI]). A metric space
(X, d) is said to be geodesic if every two points x, y ∈ X can be joined by a rectifiable
curve whose length coincides with d(x, y). A rectifiable curve γ : [0, 1] −→ X is called a
minimal geodesic if it is globally minimizing and has a constant speed. A geodesic metric
space is called a CAT(0)-space if we have

d
(
x, γ(1/2)

)2 ≤ 1

2
d(x, y)2 +

1

2
d(x, z)2 − 1

4
d(y, z)2
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for any x, y, z ∈ X and any minimal geodesic γ : [0, 1] −→ X from y to z. If the reverse
inequality

d
(
x, γ(1/2)

)2 ≥ 1

2
d(x, y)2 +

1

2
d(x, z)2 − 1

4
d(y, z)2

holds for any x, y, z and γ, then we say that (X, d) is an Alexandrov space of nonnegative
curvature. A simply-connected Riemannian manifold is a CAT(0)-space if and only if
its sectional curvature is nonpositive everywhere. Similarly, a Riemannian manifold is
an Alexandrov space of nonnegative curvature if and only if its sectional curvature is
nonnegative.

2.1 Enflo type and nonpositive curvature

We proceed to compare the above curvature bounds with nonlinear notions of type.

Definition 2.1 (Enflo type, [En]) A metric space (X, d) is said to have Enflo type 2 if
there is a constant K ≥ 1 such that, for any N ∈ N and (xε)ε∈{−1,1}N ∈ X2N

, we have∑
ε∈{−1,1}N

d(xε, x−ε)
2 ≤ K2

∑
ε∼ε′

d(xε, xε′)
2,

where ε = (εi)
N
i=1 and ε ∼ ε′ holds if

∑N
i=1 |εi − ε′i| = 2.

By choosing xε =
∑N

i=1 εivi in a Banach space, we find that Enflo type 2 implies
Rademacher type 2 with the same constant K. The converse is only partially known (see
[NS]). Fundamental examples of spaces with Enflo type 2 are 2-uniformly smooth Banach
spaces and their nonlinearizations (see [Oh]). Combining known results, we observe the
following.

Proposition 2.2 For a metric space (X, d), the following are equivalent:

(i) (X, d) has Enflo type 2 with K = 1.

(ii) For any four points w, x, y, z ∈ X, it holds that

d(w, y)2 + d(x, z)2 ≤ d(w, x)2 + d(x, y)2 + d(y, z)2 + d(z, w)2.

If (X, d) is geodesic, then (i) and (ii) are also equivalent to:

(iii) (X, d) is a CAT(0)-space.

Proof. The implication from (i) to (ii) is trivial and the converse follows by induction
(see, e.g., [Oh]). The equivalence between (ii) and (iii) in a geodesic metric space is
established in [BN]. 2

The condition (ii) is also called the roundness 2 (cf. [BL, Chapter 17]). We refer to
[FLS] for another interesting characterization of CAT(0)-spaces in terms of Busemann’s
nonpositive curvature together with the Ptolemy inequality.
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2.2 Markov type and nonnegative curvature

Next we are concerned with Markov type introduced by Ball. Given N ∈ N, we consider
a stationary, reversible Markov chain on the state space {1, 2, . . . , N} with stationary
distribution (πi)

N
i=1 and transition matrix A = (aij)

N
i,j=1. That is to say, we require

0 ≤ πi, aij ≤ 1,
N∑

i=1

πi = 1,
N∑

j=1

aij = 1, πiaij = πjaji (2.2)

for all i, j = 1, 2, . . . , N . The third and fourth inequalities guarantee the stationariness
and reversibility of the Markov chain. We identify the state space {1, 2, . . . , N} with a

sequence (xi) ∈ XN in a metric space. For l ∈ N, we set Al = (a
(l)
ij )N

i,j=1 and

E(l) :=
N∑

i,j=1

πia
(l)
ij d(xi, xj)

2.

Definition 2.3 (Markov type, [Ba]) A metric space (X, d) is said to have Markov type
2 if there is a constant K ≥ 1 such that, given any N ∈ N, (xi) ∈ XN , (πi)

N
i=1 and

A = (aij)
N
i,j=1 satisfying (2.2), we have E(l) ≤ K2lE(1) for all l ∈ N. The least such a

constant K is denoted by M2(X) and we call it the Markov type 2 constant of X.

To be more precise, the above definition (which can be found in [NPSS]) is slightly
stronger than Ball’s original. Ball treats only uniformly distributed Markov chains (i.e.,
πi = 1/N) and it is sufficient for his Lipschitz extension theorem [Ba, Theorem 1.7].
As straightforward consequences of the definition, Markov type is preserved under some
deformations.

Example 2.4 (a) (`2-products) Let X be the `2-product of two metric spaces X1 and
X2. Then we find M2(X) ≤ max{M2(X1),M2(X2)}.

(b) (Bi-Lipschitz embeddings) If there is a bi-Lipschitz embedding f : X −→ Y , then
we have M2(X) ≤ Lip(f)Lip(f−1)M2(Y ). Here Lip(f) stands for the Lipschitz constant
of f and the quantity Lip(f)Lip(f−1) is called the distortion of f . In particular, for any
subset X ⊂ Y , it holds that M2(X) ≤ M2(Y ).

(c) (Gromov-Hausdorff limits) If a sequence of (pointed) metric spaces {Xi}i∈N con-
verges to a (pointed) metric space X in the sense of the (pointed) Gromov-Hausdorff
convergence, then we have M2(X) ≤ lim infi→∞ M2(Xi).

It is known that Markov type implies Enflo type up to a constant multiplication
of K ([NS, Proposition 1]). Naor, Peres, Schramm and Sheffield [NPSS] provide many
important examples of spaces having Markov type 2, such as 2-uniformly smooth Banach
spaces, trees and hyperbolic spaces. In [Oh], the first author shows that Alexandrov
spaces of nonnegative curvature have Markov type 2. The following theorem asserts that
the converse is also true in a certain sense.

Theorem 2.5 For a metric space (X, d), the following are equivalent:
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(i) For any N ∈ N, (xi) ∈ XN , (πi)
N
i=1 and A = (aij)

N
i,j=1 satisfying (2.2), we have

E(2) ≤ 2E(1).

(ii) For any N ∈ N, (xi) ∈ XN , y ∈ X and (λi) ∈ [0, 1]N with
∑N

i=1 λi = 1, we have

N∑
i,j=1

λiλjd(xi, xj)
2 ≤ 2

N∑
i=1

λid(xi, y)2.

If (X, d) is geodesic, then (i) and (ii) are also equivalent to:

(iii) (X, d) is an Alexandrov space of nonnegative curvature.

In particular, if a geodesic metric space (X, d) has Markov type 2 with M2(X) = 1,
then it is an Alexandrov space of nonnegative curvature.

Proof. The equivalence between (ii) and (iii) in a geodesic metric space is shown in [St].
The implication from (ii) to (i) is due to [Oh].

Assume (i) and take (xi) ∈ XN , y ∈ X and (λi) ∈ [0, 1]N with
∑N

i=1 λi = 1. Given
n ∈ N, we consider a Markov chain on {0, 1, . . . , nN} defined by

πk = 1/(nN + 1) for 0 ≤ k ≤ nN,

a00 = 0, a0k = ak0 = λi/n for n(i − 1) + 1 ≤ k ≤ ni,

akm =

{
1 − λi/n for k = m ≥ 1,

0 for k,m ≥ 1, k 6= m.

Note that this Markov chain is reversible, stationary and uniformly distributed. We put
z0 = y and zk = xi for n(i − 1) + 1 ≤ k ≤ ni, and calculate

(nN + 1)E(1) =
N∑

i=1

ni∑
k=n(i−1)+1

λi

n

{
d(z0, zk)

2 + d(zk, z0)
2
}

= 2
N∑

i=1

λid(xi, y)2,

(nN + 1)E(2) =
N∑

i=1

ni∑
k=n(i−1)+1

λi

n

(
1 − λi

n

){
d(z0, zk)

2 + d(zk, z0)
2
}

+
N∑

i,j=1

ni∑
k=n(i−1)+1

nj∑
m=n(j−1)+1

λi

n

λj

n
d(zk, zm)2

= 2
N∑

i=1

λi

(
1 − λi

n

)
d(xi, y)2 +

N∑
i,j=1

λiλjd(xi, xj)
2.

Then we apply (i) and find that

N∑
i,j=1

λiλjd(xi, xj)
2 ≤ 2

N∑
i=1

λi

(
1 +

λi

n

)
d(xi, y)2.

Letting n go to infinity, we obtain (ii) and complete the proof. 2
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Remark 2.6 (a) By comparing Proposition 2.2 and Theorem 2.5, it seems that Enflo
and Markov types behave like opposite curvature bounds. Nevertheless, as we mentioned,
Markov type implies Enflo type up to a constant multiplication of K. One interpretation
of this phenomenon is to think of both curvature bounds as kinds of nonlinear 2-uniform
smoothness (see [Oh] for more details).

(b) It is still unclear whether E(2) ≤ 2E(1) implies M2 = 1. We know only that a
simple inductive argument due to Naor and Peres gives M2 ≤ 1 +

√
2 (see [Oh]).

(c) We can construct many non-geodesic metric spaces with M2 = 1 by gluing. See
the paragraph following Proposition 4.1 below.

Since a Banach space is a CAT(0)-space or an Alexandrov space of nonnegative cur-
vature if and only if it is a Hilbert space, we immediately observe the following.

Corollary 2.7 Let (V, ‖ · ‖) be a Banach space. Then the following are equivalent:

(i) (V, ‖ · ‖) has Enflo type 2 with K = 1.

(ii) (V, ‖ · ‖) has Markov type 2 with K = 1.

(iii) (V, ‖ · ‖) is a Hilbert space.

Proof. We deduce from Proposition 2.2 the equivalence between (i) and (iii). The impli-
cation from (ii) to (iii) follows from Theorem 2.5.

Let (V, ‖ · ‖) be a Hilbert space. Then M2(V ) = 1 can be seen as follows. As we treat
only Markov chains on finite state spaces in Definition 2.3, it suffices to show M2(Rn) = 1
for all n ∈ N. Moreover, M2(Rn) = 1 is a consequence of M2(R) = 1 because Markov type
descends to `2-products (see Example 2.4(a)). We can prove M2(R) = 1 by fundamental
functional analysis as in [NPSS, Section 4] (see also [Ba, Proposition 1.4]). 2

3 Lower bounds for N-pods

By using the Markov chain considered in the proof of Theorem 2.5, we observe that
embedded N -pods or, more generally, branching points make the Markov type 2 constant
worse. It should be compared with a lower bound M2(Γ3) ≥

√
3 for the 3-regular tree Γ3

obtained in [NPSS, Section 5.1].

Theorem 3.1 Let (X, d) be a metric space.

(i) Assume that, for some N ≥ 3 and ε > 0, there are {xi}N
i=1 ⊂ X and y ∈ X satisfying

d(y, xi) = ε for 1 ≤ i ≤ N and d(xi, xj) = 2ε for 1 ≤ i < j ≤ N . Then we have

M2(X) ≥
√

(3N − 2)/2N .

(ii) If there are {xi}3
i=1 ⊂ X, y ∈ X and ε, δ > 0 such that d(y, xi) = ε for 1 ≤

i ≤ 3, d(x1, x2) = d(x1, x3) = 2ε and that d(x2, x3) ≥ εδ, then we have M2(X) ≥√
1 + δ2/32.
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Proof. (i) Given n ∈ N, define a Markov chain on {0, 1, . . . , nN} just as in the proof of
Theorem 2.5 with λi = 1/N , and put z0 = y and zk = xi for n(i− 1) + 1 ≤ k ≤ ni. Then
the same calculation yields that

(nN + 1)E(1) =
2

N

N∑
i=1

d(xi, y)2 = 2ε2,

(nN + 1)E(2) =
2

N

(
1 − 1

nN

) N∑
i=1

d(xi, y)2 +
1

N2

N∑
i,j=1

d(xi, xj)
2

= 2

(
1 − 1

nN

)
ε2 +

N − 1

N
(2ε)2 =

(
6N − 4

N
− 2

nN

)
ε2.

Hence we have

M2(X)2 ≥ E(2)

2E(1)
=

3N − 2

2N
− 1

2nN
.

Letting n diverge to infinity, we obtain the required estimate.
(ii) We again consider the Markov chain as in the proof of Theorem 2.5 with N = 3,

λ1 = 1/2 and λ2 = λ3 = 1/4. Then we see that (3n + 1)E(1) = 2ε2 and

(3n + 1)E(2) =

{(
1 − 1

2n

)
+

(
1 − 1

4n

)}
ε2 +

4

8
(2ε)2 +

2

16
(εδ)2

=

(
4 +

δ2

8
− 3

4n

)
ε2.

Therefore we obtain M2(X)2 ≥ 1 + δ2/32. 2

Denote by Hn(κ) the n-dimensional hyperbolic space of constant sectional curvature
κ < 0. Then we deduce from Theorem 3.1(i) that M2(Hn(κ)) ≥

√
3/2, for Hn(κ) contains

an arbitrarily good bi-Lipschitz copy of an N -pod in terms of the distortion (see Example
2.4(b)).

4 Gluing constructions

We finally discuss how to construct spaces with Markov type by gluing.

Proposition 4.1 Let {(Xm, dm)}M
m=0 be a family of metric spaces with maxm M2(Xm) ≤

K for some K ≥ 1. Fix (x′
m) ∈ (X0)

M and xm ∈ Xm for 1 ≤ m ≤ M , and consider the
space Y = (

⊔M
m=0 Xm)/ ∼, where x′

m ∼ xm for 1 ≤ m ≤ M . Define the distance dY on Y
by

dY := dm on Xm, 0 ≤ m ≤ M,

dY (y, z) := d0(y, x′
m) + dm(xm, z) for y ∈ X0, z ∈ Xm, m ≥ 1,

dY (y, z) := dm(y, xm) + d0(x
′
m, x′

n) + dn(xn, z)

for y ∈ Xm, z ∈ Xn, m, n ≥ 1, m 6= n.

Then (Y, dY ) has Markov type 2 with M2(Y ) ≤
√

3K.
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Proof. Take N ∈ N, (πi)
N
i=1 and A = (aij)

N
i,j=1 as in (2.2), and choose (yi) ∈ Y N with

yi ∈ Xm for im−1 + 1 ≤ i ≤ im (where we put i−1 = 0). Then we find, by the definition
of dY ,

E(l) =
N∑

i,j=1

πia
(l)
ij dY (yi, yj)

2

=
M∑

m=0

im∑
i,j=im−1+1

πia
(l)
ij dm(yi, yj)

2

+ 2

i0∑
i=1

M∑
m=1

im∑
j=im−1+1

πia
(l)
ij

{
d0(yi, x

′
m) + dm(xm, yj)

}2

+
M∑

m=1

im∑
i=im−1+1

∑
n6=0,m

in∑
j=in−1+1

πia
(l)
ij

{
dm(yi, xm) + d0(x

′
m, x′

n) + dn(xn, yj)
}2

≤ 3

[ i0∑
i,j=1

πia
(l)
ij d0(yi, yj)

2 + 2

i0∑
i=1

M∑
m=1

im∑
j=im−1+1

πia
(l)
ij d0(yi, x

′
m)2

+
M∑

m=1

im∑
i=im−1+1

M∑
n=1

in∑
j=in−1+1

πia
(l)
ij d0(x

′
m, x′

n)2

]

+ 3
M∑

m=1

[ im∑
i,j=im−1+1

πia
(l)
ij dm(yi, yj)

2 + 2
im∑

i=im−1+1

∑
n6=m

in∑
j=in−1+1

πia
(l)
ij dm(yi, xm)2

]
.

We denote the right-hand side of the above inequality by 3F (l) and deduce from our
hypothesis maxm M2(Xm) ≤ K that F (l) ≤ K2lF (1). Therefore we have

E(l) ≤ 3F (l) ≤ 3K2lF (1) ≤ 3K2lE(1).

2

We remark that dY is geodesic if every dm is geodesic. If we exchange the distance dY

with d′
Y given by

d′
Y = dm on Xm, 0 ≤ m ≤ M,

d′
Y (y, z)2 = d0(y, x′

m)2 + dm(xm, z)2 for y ∈ X0, z ∈ Xm, m ≥ 1,

d′
Y (y, z)2 = dm(y, xm)2 + d0(x

′
m, x′

n)2 + dn(xn, z)2

for y ∈ Xm, z ∈ Xn, m, n ≥ 1, m 6= n,

then we have M2(Y, d′
Y ) ≤ K. In particular, we can construct metric spaces with M2 = 1

by gluing (subsets of) Euclidean spaces. However, (Y, d′
Y ) is not geodesic even if every dm

is geodesic.
The Markov type 2 constant M2(Y, dY ) can be larger than maxm M2(Xm) in accordance

with Theorem 3.1. For instance, (Rn+1, d) with

d
(
(x, y), (x′, y′)

)
:=

{
|y − y′| if x = x′ (∈ Rn),

|y| + ‖x − x′‖ + |y′| if x 6= x′

8



(where ‖ · ‖ stands for the standard Euclidean norm on Rn) satisfies M2(Rn+1, d) ≤
√

3
by Proposition 4.1 with K = 1, and M2(Rn+1, d) ≥

√
5/4 by Theorem 3.1 with N = 4.
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