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Abstract. For n = 2m+1 − 4 (m ≥ 2), we determine the cup-length of H∗(G̃n,3;Z/2)
by finding a Gröbner basis associated with a certain subring, where G̃n,3 is the oriented
Grassmann manifold SO(n + 3)/SO(n) × SO(3). As its applications, we provide not
only a lower but also an upper bound for the LS-category of G̃n,3. We also study the
immersion problem of G̃n,3.

1. Introduction

Let R be a commutative ring. The cup-length of R is defined by the greatest number
n such that there exist x1, . . . , xn ∈ R \ R× with x1 · · · xn , 0. We denote the cup-length
of R by cup(R). In particular, for a space X and a commutative ring A, the cup-length
of X with the coefficient A, is defined by cup(H̃∗(X; A)). We denote it by cupA(X). It is
well-known that cupA(X) is a lower bound for the LS-category of X.

The aim of this paper is to study cupZ/2(G̃n,3), where G̃n,k is the oriented Grassmann
manifold SO(n + k)/SO(n) × SO(k). Note that G̃n,k is (nk)-dimensional. While the coho-
mology of G̃n,2 is well-known, that of G̃n,3 is in vague. However, Korbaš [Kor06] gave
rough estimations for cupZ/2(G̃n,3) by considering the height of w2 ∈ H∗(G̃n,3;Z/2),
where w2 is the second Stiefel-Whitney class.

The author studies H∗(G̃n,3;Z/2) by considering Gröbner bases associated with a cer-
tain subring of H∗(G̃n,3;Z/2). It seems that, in principle, the method of Gröbner bases
works better in such complicated calculations than that of usual algebraic topology. The
author employs a computer and carries a huge amount of calculations for finding the
above Gröbner bases and then he dares to conjecture:

Conjecture 1.1.

cupZ/2(G̃n,3) =


2m+1 − 3 when 2m+1 − 4 ≤ n ≤ 2m+1 + 2m − 6,

2m+1 − 1 + k when n = 2m+1 + 2m − 5 + k, 0 ≤ k ≤ 2,

2m+1 + 2m + . . . when n = 2m+1 + 2m + · · · + 2 j−1 − 2 + k,

+2 j+1 + 2 j−1 + k 0 ≤ k ≤ 2 j − 1.
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When n = 2m+1 − 4 (m ≥ 2), our method works very well and we obtain:

Theorem A. cupZ/2(G̃n,3) = n + 1 when n = 2m+1 − 4 (m ≥ 2).

By a dimensional reason, we have

cat(X) ≤ 3
2

n,(1)

where cat(X) denotes the LS-category of a space X normalized as cat(∗) = 0. Theorem
A gives not only lower bounds for cat(G̃n,3), but also refines the inequality (1). Actually
we obtain:

Corollary . n + 1 ≤ cat(G̃n,3) < 3
2 n when n = 2m+1 − 4 (m ≥ 2). In particular, we have

cat(G̃4,3) = 5.

We will give applications of Theorem A for the immersion problem of G̃n,3. By the
classical result of Whitney [Whi44], we know that G̃n,3 immerses into R6n−1. We will
show:

Theorem B. The oriented Grassmann manifold G̃n,3 immerses into R6n−3 but not into
R3n+8 when n = 2m+1 − 4 (m ≥ 3) and G̃4,3 immerse into R21 but not into R17.

Remark : Walgenbach [Wal01] obtained better results on the non-immersion of G̃n,3:
G̃n,3 does not immerses into R4n−2m+3. On the other hand, due to R. Cohen [Coh85],
G̃n,3 is known to be immersed into R6n−m+1. Then Theorem B gives a better estimation
when m = 2, 3.

The organization of this paper is as follows. In section 2, we consider the double
covering map pn : G̃n,3 → Gn,3, where Gn,3 is the unoriented Grassmann manifold O(n+
3)/O(n) × O(3). We identify the subring Imp∗n of H∗(G̃n,3;Z/2) with a certain algebra
Z/2[w̄2, w̄3]/Jn, where generators of Jn are given. In section 3, setting n = 2m+1−4 (m ≥
2), we will give an explicit description of generators of the ideal Jn by using the binary
expansion. In section 4, we compute a Gröbner basis of Jn and obtain cup(Imp∗n). In
section 5, we show cup(Imp∗n) determines cupZ/2(G̃n,3) and obtain it. As its applications,
we give some estimations for cat(G̃n,3) and study the immersion problem of G̃n,3.

2. Cohomology of G̃n,3

We consider the double covering

pn : G̃n,3 → Gn,3.(2)

It will be shown that cupZ/2(G̃n,3) can be determined by cup(Imp∗n). Then we shall
investigate cup(Imp∗n).

The mod 2 cohomology of BO(3) is given by

H∗(BO(3);Z/2) = Z/2[w1, w2, w3],
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where wi is the i-th universal Stiefel-Whitney class. It is well-known that the canonical
map i : Gn,3 → BO(3) induces an epimorphism i∗ : H∗(BO(3);Z/2) → H∗(Gn,3;Z/2).
Hereafter we denote i∗(wi) by the same symbol wi ambiguously.

One can easily see that the above double covering (2) induces the Wang sequence as:

· · · −→ Hq−1(Gn,3;Z/2)
·w1−→ Hq(Gn,3;Z/2)

p∗n−→ Hq(G̃n,3;Z/2) −→ · · · .

Then we have
Imp∗n � Z/2[w1, w2, w3]

/
(w1,Keri∗).

Let π : Z/2[w1, w2, w3]→ Z/2[w2, w3] be the abstract ring homomorphism defined by
π(w1) = 0, π(w2) = w2 and π(w3) = w3. Then it induces the isomorphism

Imp∗n � Z/2[w̄2, w̄3]
/
Jn,

where π(Keri∗) = Jn and we denote wi in H∗(G̃n,3;Z/2) by w̄i. Note that the commutative
diagram

G̃n,3

ı̃

²²

pn
// Gn,3

i
²²

BSO(3) p∞
// BO(3)

yields that ı̃∗(wi) = w̄i for i = 2, 3 and p∗∞ : H∗(BO(3);Z/2) → H∗(BSO(3);Z/2) is
expressed by π : Z/2[w1, w2, w3]→ Z/2[w2, w3].

Let us give explicit generators of Jn. Borel [Bor53] showed that Keri∗ is generated
by the homogeneous components of degrees n + 1, n + 2 and n + 3 in

1
1 + w1 + w2 + w3

.

Then it follows that Jn is generated by the homogeneous components of degrees n + 1,
n + 2 and n + 3 in

1
1 + w̄2 + w̄3

.

Let N be the unique integer which satisfies 2N < n ≤ 2N+1. Since dim G̃n,3 < 4n ≤ 2N+3,
we have

(1 + w̄2 + w̄3)2N+3
= 1

in H∗(G̃n,3;Z/2). Then it follows that

1
1 + w̄2 + w̄3

= (1 + w̄2 + w̄3)2N+3−1

and hence Jn is generated by

gr =
∑

r
3≤s≤ r

2

(
s

3s − r

)
w̄3s−r

2 w̄r−2s
3(3)

for r = n + 1, n + 2, n + 3.
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3. Investigating generators of Jn

In this section, we investigate generators gn+1, gn+2 and gn+3 of Jn by exploiting the
binary expansion.

Let us prepare notation for the binary expansion. To a non-negative integer x with
0 ≤ x < 2k, we assign a sequence

εk(x) = (xk−1, . . . , x0) ∈ {0, 1}k

such that

x =
k−1∑
i=0

xi2i.(4)

(4) is, of course, the binary expansion of x. We denote 1 − a by a with a ∈ {0, 1}. For
example, we have

εk(2k − 1) = (1, . . . , 1)

and
εk(2k − 1 − x) = (xk−1, . . . , x0)

for ε(x) = (xk−1, . . . , x0). We often denote (xk, . . . , x0) ∈ {0, 1}k by xk.
To calculate

(
s

3s−r

)
modulo 2, we use the following well-known result from elementary

number theory.

Lemma 3.1. Let n and k be non-negative integers such that k ≤ n ≤ 2l − 1 and εl(n) =
(nl−1, . . . , n0), εl(k) = (kl−1, . . . , k0). Then we have

(
n
k

)
≡ 1 (mod 2) if and only if ki = 1

implies ni = 1 for each i.

In the rest of this paper, we assume that

n = 2m+1 − 4 (m ≥ 2).

Applying Lemma 3.1 to the coefficients of gn+1, we have:

Proposition 3.2.
(

s
3s−(n+1)

)
is even for all integer s with n+1

3 ≤ s ≤ n+1
2 , that is gn+1 = 0.

Proof. Let εm(s) = (sm−1, . . . , s0) for n+1
3 ≤ s ≤ n+1

2 and let εm+1(n+1−2s) = (tm, . . . , t0).
Since s ≤ 2m − 2, there exists an integer i such that si = 0. Let i be the least integer
satisfying si = 0, that is, εm(s) = (sm−1, . . . , si+1, 0, 1, . . . , 1). Then it is easy to show that
ti = 1. Hence it follows from Lemma 3.1 that

(
s

3s−(n+1)

)
=

(
s

n+1−2s

)
≡ 0 (mod 2). �

Next we investigate gn+2. Coefficients of gn+2 are well understood by considering
their binary expansion as in the above case of gn+1. Let

Sk =

{
s ∈ Z

∣∣∣∣n(k)+2
3 ≤ s ≤ n(k)+2

2 , εk(s) = (sk−1, . . . , s0) satisfies that if s j = 0, then s j+1 = 1
}
,

here n(k) = 2k+1 − 4. Note that n(k)+2
3 ≤ s ≤ n(k)+2

2 implies that sk−1 is always equal
to 1 for each s ∈ Sk with εk(s) = (sk−1, . . . , s0). There is a one-to-one correspondence
between non-zero coefficients of gn+2 and Sm as:
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Lemma 3.3. (
s

3s − (n + 2)

)
≡ 1 (mod 2) if and only if s ∈ Sm.

Proof. Let εm(s) = (sm−1, . . . , s0) for n(m)+2
3 ≤ s ≤ n(m)+2

2 . Then we have

εm+1(n + 2 − 2s) = (sm−1, . . . , s0, 0)

and hence Lemma 3.3 follows from Lemma 3.1. �

It is convenient for calculations in section 4 to index coefficients of gn+2 by exponents
of w̄2 in (3), that is, 3s − (n + 2), not by s ∈ Sm. Then we define a set Pk by

Pk = { p ∈ Z| p = 3s − (n(k) + 2), s ∈ Sk} .
Pm is expressed by the binary expansion as:

Proposition 3.4. Let

∆k =
{
(pk−1, . . . , p0) ∈ {0, 1}k |If pl−1 = 1 and pl = pl+1 = · · · = pl+2t = 0, then pl+2t+1 = 0

}
,

here we assume that p−1 = 1. Then we have

Pm = { p ∈ Z| εm(p) ∈ ∆m} .

We list some properties of ∆k which will be useful in the following discussion. The
proof is straightforward.

Proposition 3.5. The set ∆k has the following properties.

(a) pk ∈ ∆k implies (1, pk) ∈ ∆k+1.
(b) pk ∈ ∆k implies (pk, 1) ∈ ∆k+1.
(c) ∆m = { (1, pm−1) ∈ {0, 1}m|pm−1 ∈ ∆m−1} t { (0, 0,pm−2) ∈ {0, 1}m|pm−2 ∈ ∆m−2}.

Proof of Proposition 3.4. Let s ∈ Sm with εm(s) = (sm−1, . . . , s0). If sm−2 = 0, then
one has sm−1 = 1 and sm−3 = 1 by definition of Sm. Then one can easily see that
(sm−2, . . . , s0) ∈ Sm−3. If sm−2 = 1, then one can see that (sm−2, . . . , s0) ∈ Sm−1 as well.
Hence one has obtained

Sm =
{

s + 2m−1
∣∣∣ s ∈ Sm−1

}
t

{
s + 2m−1

∣∣∣ s ∈ Sm−2
}
.(5)

We will show Proposition 3.4 by induction. We suppose that it is true for m − 1 and
m − 2. Let s ∈ Sm−1 and p = 3(s + 2m−1) − (n + 2). By the hypothesis of the induction,
εm−1(3s − (n′ + 2)) = pm−1 ∈ ∆m−1, where n′ = 2m − 4. Since

p = 3(s + 2m−1) − (n + 2) = 3s − 2m + 2 + 2m−1 = 3s − (n′ + 2) + 2m−1,

we have
εm(p) = (1, pm−1) ∈ ∆m.

Similarly, let s ∈ Sm−2 and p = 3(s+2m−1)− (n+2). By the hypothesis of the induction,
εm−2(3s − (n′′ + 2)) = pm−2 ∈ ∆m−2, where n′′ = 2m−1 − 4. Since

p = 3(s + 2m−1) − (n + 2) = 3s − 2m−1 + 2 = 3s − (n′′ + 2),
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we have
εm(p) = (0, 0, pm−2) ∈ ∆m.

Thus, by (5), we obtain

Pm =
{

p + 2m−1
∣∣∣ p ∈ Pm−1

}
t Pm−2

and, by (c) of Proposition 3.5, we have established Proposition 3.4.
�

For the last of this section, we investigate gn+3. Coefficients of gn+3 can be well
understood by using the binary expansion as well as above. Let

S′k =
{
s′ ∈ Z

∣∣∣∣ n(k)+3
3 ≤ s′ ≤ n(k)+3

2 , εk(s′) = (sk−1, . . . , s1, 1) satisfies that if s j = 0, then s j+1 = 1
}
.

Quite similarly to Lemma 3.3, we can see:

Lemma 3.6. (
s′

3s′ − (n + 3)

)
≡ 1 (mod 2) if and only if s′ ∈ S′m.

We give an explicit description of the set

P′k =
{

p′ ∈ Z
∣∣∣ p′ = 3s′ − (n(k) + 3), s′ ∈ S′k

}
as well. Define a map

ι : Sm−1 → S′m
by ι(s) = 2s + 1. Then, obviously, it is bijective. Note that, for s′ = ι(s),

3s′ − (n + 3) = 3ι(s) − 2m+1 + 1 = 6s − 2m+1 + 4 = 2(3s − (n′ + 2))

where n′ = 2m − 4. Then we have p ∈ Pm−1 if and only if p′ ∈ P′m such that εm(p′) =
(pm−1, 0) for εm−1(p) = pm−1. Hence we have obtained:

Proposition 3.7. P′m = { p ∈ Z| εm(p) = (pm−1, 0), pm−1 ∈ ∆m−1} .

4. Gröbner basis and cup-length

In this section, by using the result of the previous section, we search for a Gröbner
basis of Jn in order to determine cup(Imp∗n).

4.1. Gröbner bases. We first recall the definition and some facts of Gröbner bases by
restricting to our specific case. In order to clarify our discussion and to simplify notation,
we shall make a convention of identifying a two variable polynomial ring with a certain
set as follows. Let X = {(p, q) ∈ Z2|p ≥ 0, q ≥ 0} and let P[X] denote the set of
finite subset of X. By assigning F ∈ P[X] to

∑
(p,q)∈F w̄

p
2 w̄

q
3, we can identify P[X]

with a polynomial ring Z/2[w̄2, w̄3] and we shall make this identification throughout this
section. This identification translates the operations in Z/2[w̄2, w̄3] into P[X] as: For
F,G ∈ P[X],

F +G = F ∪G \ F ∩G,
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F ·G =
∑

(p,q)∈F, (r,s)∈G
(p + r, q + s).

This translation of operations enables us to handle the following polynomial calculations
easily.

The order ofX is given by the usual lexicographic order. Namely, for (p, q), (r, s) ∈ X,

(p, q) ≥ (r, s) if and only if p > r or p = r, q ≥ s.

By employing this order, we search for a Gröbner basis of the ideal Jn ⊂ P[X].
In order to define Gröbner bases, we prepare some notation and terminology. The

leading term of a polynomial F ∈ P[X] is the monomial

LT(F) = max{(p, q) ∈ F}.

If there is a monomial (p, q) ∈ X such that (p, q) · LT(G) ∈ F, then the polynomial
F− (p, q) ·LT(G) is called the remainder of F on division by G. We denote the remainder
R = F − (p, q) · LT(G) of F on division by G, by

F
G∗−−→ R.

Choose F1, . . . , Fs ∈ P[X] and give them an arbitrary order. Then it is known that
there is an algorithm to provide the decomposition of F ∈ P[X] as

F = A1F1 + · · · + AsFs + R

such that A1, . . . , As ∈ P[X] and R is a linear combination of monomials, none of which
is divisible by each LT(F1), . . . ,LT(Fs). The above R is called the remainder of F on
division by {F1, . . . , Fs} as well. However, this decomposition depends on the choice of
an order of F1, . . . , Fs and F ∈ (F1, . . . , Fs) does not imply the remainder R = 0. We
can overcome this difficulty of remainders by choosing a Gröbner basis defined as:

Definition 4.1. Let I be an ideal of P[X]. A finite subset G = {G1, . . . ,Gs} is a Gröbner
basis of I if

({LT(F)|F ∈ I}) = (LT(G1), . . . ,LT(Gs)).

Theorem 4.2. Let I be an ideal of P[X] and let {G1, . . . ,Gs} be a Gröbner basis of I.
Then the remainder of F ∈ I on division by {G1, . . . ,Gs} is zero.

Buchberger [CLO97] gave a criterion for a set of polynomials being a Gröbner basis
of the ideal generated by it as follows. For F,G ∈ P[X], the least common multiple of F
and G is the monomial

LCM(F,G) = (max{p, r},max{q, s}),

where LT(F) = (p, q) and LT(G) = (r, s). The S -polynomial of F and G ∈ P[X] is

S (F,G) =
LCM(F,G)

LT(F)
F +

LCM(F,G)
LT(G)

G.
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Theorem 4.3 ([CLO97]). The set of polynomials {G1, . . . ,Gs} ⊂ P[X] is a Gröbner
basis of the ideal (G1, . . . ,Gs) if and only if the remainder of S (Gi,G j) on division by
{G1, . . . ,Gs} is zero for each i , j.

4.2. Search for a Gröbner basis of Jn. The author found the following polynomials
experimentally by a computer calculation. For non-negative integers i, t with t − 2(2m −
2i) ≡ 0 (mod 3), we define a polynomial P(t, i) by

P(t, i) =
{(

p, t−2p
3

)
∈ X

∣∣∣∣∣∣εm(p) = (pm−i,

i︷  ︸︸  ︷
0, . . . , 0), pm−i ∈ ∆m−i

}
,

Pi = P(2i + n + 1, i).

We shall prove that {P0, . . . , Pm} is a Gröbner basis of Jn.
In order to investigate Pi, we define the following sets which will be useful for ex-

pression. Let ∆(i, j, l) and ∆̄(i, l) be

∆(i, j, l) =
{
(pm− j, p j−i−l,

l︷  ︸︸  ︷
1, . . . , 1,

i︷  ︸︸  ︷
0, . . . , 0) ∈ {0, 1}m

∣∣∣∣(pm− j,p j−i−l) ∈ ∆m−i−l, p j−i−l , (1, . . . , 1)
}
,

∆̄(i, l) =
{
(pm−i−l−2, 0, 0,

l︷  ︸︸  ︷
1, . . . , 1,

i︷  ︸︸  ︷
0, . . . , 0) ∈ {0, 1}m

∣∣∣∣pm−i−l−2 ∈ ∆m−i−l
}
.

It is easy to check:

Lemma 4.4.
∆(i, j, l) = ∆̄(i, l) t ∆(i, j, l + 1).

Let us begin investigating Pi. It is easy to verify that

LT(Pi) = (2m − 2i, 2i − 1).(6)

Proposition 4.5. We have P0, . . . , Pm ∈ Jn. In particular P0 = gn+2, P1 = gn+3.

Proof. By Proposition 3.4 and Proposition 3.7, one has P0 = gn+2 and P1 = gn+3. For
i < j, it follows from (6) that

S (Pi, P j) = (0, 2 j − 2i) · Pi + (2 j − 2i, 0) · P j

=

{(
p, qi, j

)
∈ X

∣∣∣∣ εm(p) = (pm− j, p j−i,

i︷  ︸︸  ︷
0, . . . , 0), (pm− j,p j−i) ∈ ∆m−i

}

+

{(
p, qi, j

)
∈ X

∣∣∣∣ εm(p) = (pm− j,

j−i︷  ︸︸  ︷
1, . . . , 1,

i︷  ︸︸  ︷
0, . . . , 0), pm− j ∈ ∆m− j

}
=

{(
p, qi, j(p)

)
∈ X

∣∣∣∣ εm(p) ∈ ∆(i, j, 0)
}
,

where

qi, j(p) =
3 · 2 j − 2 · 2i + n + 1 − 2p

3
.
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By the definition of ∆k, one can easily see that ∆(i, 0, i + 1) = ∆m−i−2. Then it follows
that S (Pi, Pi+1) = Pi+2 and hence we have established Proposition 4.5. �

We calculate the remainders of S (Pi, P j) on division by {P0, . . . , Pm}.

Lemma 4.6. The remainder of Qi, j,l =

{(
p, qi, j(p)

)
∈ X

∣∣∣∣ εm(p) ∈ ∆(i, j, l)
}

on division by
Pi+l+2 is Qi, j,l+1.

Proof. Let p(i, l) be εm(p(i, l)) = (

m−i−l−2︷  ︸︸  ︷
1, . . . , 1, 0, 0,

l︷  ︸︸  ︷
1, . . . , 1,

i︷  ︸︸  ︷
0, . . . , 0). Then it is easy to see

LT(Q(i, j, l)) =
(
p(i, l), qi, j(p(i, l))

)
and it follows from (6) that

LT(Pi+l+2) =
(
p(i + l, 0), qi+ j+2,i+ j+2(p(i + l, 0))

)
.

Hence we have

(2i+l − 2i, 2 j − 2i+l+1) · LT(Pi+l+2) = Q(i, j, l).

On the other hand, one can easily check that

(2i+l − 2i, 2 j − 2i+l+1) · Pi+l+2 =

{(
p, qi, j(p)

)
∈ X

∣∣∣∣ εm(p) ∈ ∆̄(i, l)
}

and then it follows from Lemma 4.4 that

Q(i, j, l)
Pi+l+2∗−−−−−→ Q(i, j, l) + (2i+l − 2i, 2 j − 2i+l+1) · Pi+l+2 = Q(i, j, l + 1).

�

Theorem 4.7. The set {P0, . . . , Pm} is a Gröbner basis of Jn.

Proof. By Proposition 4.5, we have Jn = (P0, . . . , Pm). As in the proof of Proposition
4.5, we have S (Pi, P j) = Q(i, j, 0) and then it follows from Lemma 4.6 that, for i < j,

S (Pi, P j) = Q(i, j, 0)
Pi+2∗−−−−→ Q(i, j, 1)

Pi+3∗−−−−→ · · ·
P j∗−−→ Q(i, j, j − i − 1)

P j+1∗−−−−→ 0.

�

4.3. Cup-length of Imp∗n. In order to determine cup(Imp∗n), let us introduce new poly-
nomials. For non-negative integers i, j, s with s − 2m+1 + 2i+1 ≡ 0 (mod 3), we define a
polynomial P̂(s, i, j) by

P̂(s, i, j) =
{(

p, s−2p
3

)
∈ X

∣∣∣∣ ε(p) ∈ ∆̄(i, j)
}
.

Then we have

LT(Pi) = P(2i + n + 1, i) + P(2i + n + 1, i + 2) +
∑

1≤ j≤m−i−2

P̂(2i + n + 1, i, j).(7)

In order to investigate cup(Imp∗n), we shall calculate min{p|(p, 0) · LT(Pi) ∈ Jn} for
each i as follows.
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Lemma 4.8. Let αi = min{α|(α, 0) · P(t, i) ∈ Jn} for non-negative integers i, t with

2i−2 + n + 1 ≤ t < 2i + n + 1, t − 2(2m − 2i) ≡ 0 (mod 3).

Then we have αi = 2m − 2i−1. In particular, αi is independent from t as above.

Proof. Note that

(2i−1, 0) · P(t, i) =
{(

p, t+2i−2p
3

)
∈ X

∣∣∣∣∣ εm(p) = (pm−i1, 0, . . . , 0) ∈ {0, 1}m, (pm−i, 1) ∈ ∆m−i+1

}
,

(
0, t+2i−1−n−1

3

)
· Pi−1 =

{(
p, t+2i−2p

3

)
∈ X

∣∣∣∣∣ εm(p) = (pm−i+1, 0, . . . , 0) ∈ {0, 1}m, pm−i+1 ∈ ∆m−i+1

}
.

By Proposition 3.5, we have

(2i−1, 0) · P(t, i) +
(
0, t+2i−1−n−1

3

)
· Pi−1 = P(t + 2i, i + 1)

and hence
(2i−1, 0) · P(t, i)

Pi−1∗−−−−→ P(t + 2i, i + 1).

Then we obtain

(2i−1, 0) · P(t, i)
Pi−1∗−−−−→ P(t + 2i, i + 1),

(2i, 0) · P(t + 2i, i + 1)
Pi∗−−→ P(t + 2i + 2i+1, i + 2),
...

(2m−1, 0) · P(t + 2i + · · · + 2m−1,m)
Pm−1∗−−−−→ 0

and this completes the proof of Lemma 4.8. �

Lemma 4.9. Let αi be as in Lemma 4.8. Then we have (αi, 0) · P̂(s, i, j) ∈ Jn.

Proof. Quite similarly to the proof of Lemma 4.8, one has

(2 j+i + 2i, 0) · P̂(s, i, j) +
(
0, s+2i+1+1

3

)
· P j+i+1 = P(s + 2 j+i+1 + 2i+1, j + i + 3).

By Lemma 4.8, we have 2 j+i+2i+α j+i+3 < αi and then Lemma 4.9 is accomplished. �

It follows from Lemma 4.8 and Lemma 4.9 that:

Proposition 4.10. Let αi be as in Lemma 4.8. Then we have αi+1 = min{α|(α, 0) ·
LT(Pi) ∈ Jn}.

Corollary 4.11. Let χ1 be a fixed integer such that 2m+1 − 2i+1 − 2i+2 ≤ χ1 < 2m+1 − 2i −
2i+1 and let χ2 = max{z|(χ1, z) < Jn}. Then we have χ2 = 2i − 1.

Proof. Let (pi, qi) = LT(Pi). Then, by (6) and Lemma 4.8, we have

· · · > pi−1 + αi+1 > pi + αi+2 > pi+1 + αi+3 · · · ,
· · · < qi−1 < qi < qi+1 < · · · .

Hence, by Theorem 4.2 and Theorem 4.7, we have established that, for pi+1 + αi+3 =

2m+1−2i+1−2i+2 ≤ χ1 < 2m+1−2i−2i+1 = pi+αi+2, one has χ2 = qi+1−1 = 2i+1−2. �
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From Corollary 4.11, χ1 +χ2 takes the maximum when (χ1, χ2) = (n, 0) and it is n, of
course, it is equal to cup(Imp∗n). Therefore we have obtained:

Corollary 4.12. cup(Imp∗n) = n. In particular, w̄n
2 , 0.

5. Cup-length of G̃n,3 and its applications

In this section, we determine cupZ/2(G̃n,3) and give its applications to immersion of
G̃n,3 into a Euclidean space.

Proof of Theorem A. By Corollary 4.12, one has w̄n
2 , 0. Then, by Poincaré duality,

there exists x ∈ Hn(G̃n,3;Z/2) such that w̄n
2x , 0 and hence we have cupZ/2(G̃n,3) ≥ n+1.

Note that the canonical map G̃n,3 → BSO(3) is an n-equivalence. Then it follows
that H∗(G̃n,3;Z/2) � Imp∗n in dimensions less than n. Now suppose that there exist
x1, . . . , xn+2 ∈ H̃∗(G̃n,3;Z/2) such that x1 · · · xn+2 , 0. By a dimensional reason, one has
|xi| < n for each i and then this contradicts to Corollary 4.12. Hence we have obtained
Theorem A. �

Proof of Corollary. From Theorem A and the inequality cupZ/2(G̃n,3) ≤ cat(G̃n,3), it
follows that n + 1 ≤ cat(G̃n,3).

Note that w̄2 ∈ H2(G̃n,3;Z/2) is the fundamental class in the sense of James [Jam78].
By Corollary 4.12, we have w̄n+1

2 = 0 and then it follows from Proposition 5.3 in [Jam78]
that cat(G̃n,3) < 3

2 n. Hence we have established Corollary. �

Let us consider the immersion of G̃n,3 into a Euclidean space as applications of Theo-
rem A. Of course, as mentioned in section 1, we know, by the result of Whitney [Whi44],
that G̃n,3 immerses into R6n−1. We shall give a slightly better estimation.

We denote the canonical vector bundle over G̃n,3 by γ and a stable normal bundle of
G̃n,3 by ν. We abbreviate the classifying map G̃n,3 → BSO(∞) of ν by the same symbol
ν. It is well-known that TG̃n,3 = γ ⊗ γ⊥, then we have

TG̃n,3 ⊕ γ ⊗ γ = γ ⊗ γ⊥ ⊕ γ ⊗ γ
= γ ⊗ (γ⊥ ⊕ γ)
= (n + 3)γ.(8)

By Corollary 4.12, we have (1 + w̄2 + w̄3)n+4 = 1. Using the formula for the Stiefel-
Whitney class of a tensor product shows that w(γ ⊗ γ) = 1 + w̄2

2 + w̄
3
3. Since ν ⊕ TG̃n,3 is
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trivial, we have

w(ν) =
w(γ ⊗ γ)
w((n + 3)γ)

=
1 + w̄2

2 + w̄
2
3

(1 + w̄2 + w̄3)n+3

= (1 + w̄2
2 + w̄

2
3)(1 + w̄2 + w̄3)

= 1 + w̄2 + w̄3 + w̄
2
2 + w̄

3
2 + w̄

2
3 + w̄

2
2w̄3 + w̄2w̄

2
3 + w̄

3
3.(9)

Then it immediately follows that G̃n,3 does not immerse into R3n+8 for n = 2m+1−4 m ≥ 3
and G̃4,3 does not immerse into R17.

Now let us consider the modified Postnikov tower of the fibration

BSO(3n − 3)→ BSO(∞)

following Gitler and Mahowald [GM66]. The A2-free resolution of H∗(S O(∞)/S O(3n−
3)) in dimensions less than or equal to 3n is given as follows, where A2 denotes the mod
2 Steenrod algebra.

C2
d2→ C1

d1→ H∗(SO(∞)/SO(3n − 3))→ 0,

C1 = 〈x3n−3, x3n−1〉, C2 = 〈y3n−1〉,
d1(x3n−3) = e3n−3, d1(x3n−1) = e3n−1, d2(y3n−1) = S q2x3n−3, |xi| = i,

where 〈x〉 and ei denote the free A2-module generated by x and a generator of

Hi(SO(∞)/SO(3n − 3)) � Z/2

for i = 3n−3, 3n−1 respectively. Then the modified Postnikov tower of BSO(3n−3)→
BSO(∞) in dimensions less than or equal to 3n is given as:

BSO(3n − 3)

²²
E

²²

k2 // K(Z/2, 3n − 1)

BSO(∞)
w3n−2×w3n // K(Z/2, 3n − 2) × K(Z/2, 3n)

It follows from (9) that w3n−2(ν) = w3n(ν) = 0 and then ν : G̃n,3 → BSO(∞) lifts to
ν̃ : G̃n,3 → E. By Poincaré duality, one has H3n−1(G̃n,3;Z/2) = 0. Then ν̃ : G̃n,3 → E
lifts to ν̄ : G̃n,3 → BSO(3n − 3) and hence we can see from the result of Hirsch [Hir59]
that G̃n,3 immerses into R6n−3. Then we have one obtains Theorem B.
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