APPLICATION OF GRÖBNER BASES TO THE CUP-LENGTH OF ORIENTED GRASSMANN MANIFOLDS

TOMOHIRO FUKAYA

ABSTRACT. For $n = 2^{m+1} - 4$ ($m \ge 2$), we determine the cup-length of $H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2)$ by finding a Gröbner basis associated with a certain subring, where $\widetilde{G}_{n,3}$ is the oriented Grassmann manifold $SO(n + 3)/SO(n) \times SO(3)$. As its applications, we provide not only a lower but also an upper bound for the LS-category of $\widetilde{G}_{n,3}$. We also study the immersion problem of $\widetilde{G}_{n,3}$.

1. INTRODUCTION

Let *R* be a commutative ring. The cup-length of *R* is defined by the greatest number *n* such that there exist $x_1, \ldots, x_n \in R \setminus R^{\times}$ with $x_1 \cdots x_n \neq 0$. We denote the cup-length of *R* by cup(*R*). In particular, for a space *X* and a commutative ring *A*, the cup-length of *X* with the coefficient *A*, is defined by cup($\tilde{H}^*(X; A)$). We denote it by cup_{*A*}(*X*). It is well-known that cup_{*A*}(*X*) is a lower bound for the LS-category of *X*.

The aim of this paper is to study $\operatorname{cup}_{\mathbb{Z}/2}(\overline{G}_{n,3})$, where $\overline{G}_{n,k}$ is the oriented Grassmann manifold $SO(n + k)/SO(n) \times SO(k)$. Note that $\widetilde{G}_{n,k}$ is (nk)-dimensional. While the cohomology of $\widetilde{G}_{n,2}$ is well-known, that of $\widetilde{G}_{n,3}$ is in vague. However, Korbaš [Kor06] gave rough estimations for $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$ by considering the height of $w_2 \in H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2)$, where w_2 is the second Stiefel-Whitney class.

The author studies $H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2)$ by considering Gröbner bases associated with a certain subring of $H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2)$. It seems that, in principle, the method of Gröbner bases works better in such complicated calculations than that of usual algebraic topology. The author employs a computer and carries a huge amount of calculations for finding the above Gröbner bases and then he dares to conjecture:

Conjecture 1.1.

$$\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3}) = \begin{cases} 2^{m+1} - 3 & \text{when } 2^{m+1} - 4 \le n \le 2^{m+1} + 2^m - 6, \\ 2^{m+1} - 1 + k & \text{when } n = 2^{m+1} + 2^m - 5 + k, \ 0 \le k \le 2, \\ 2^{m+1} + 2^m + \dots & \text{when } n = 2^{m+1} + 2^m + \dots + 2^{j-1} - 2 + k, \\ + 2^{j+1} + 2^{j-1} + k & 0 \le k \le 2^j - 1. \end{cases}$$

2000 Mathematics Subject Classification. Primary 55M30, Secondary 57T15,13P10.

Key words and phrases. Cup-length; LS-category; Gröbner bases; Immersion.

The auther is supported by Grant-in-Aid for JSPS Fellows (19 3177) from Japan Society for the Promotion of Science.

TOMOHIRO FUKAYA

When $n = 2^{m+1} - 4$ ($m \ge 2$), our method works very well and we obtain:

Theorem A. $\sup_{\mathbb{Z}/2}(\widetilde{G}_{n,3}) = n + 1$ when $n = 2^{m+1} - 4$ $(m \ge 2)$.

By a dimensional reason, we have

(1)
$$\operatorname{cat}(X) \leq \frac{3}{2}n,$$

where cat(X) denotes the LS-category of a space X normalized as cat(*) = 0. Theorem A gives not only lower bounds for $cat(\tilde{G}_{n,3})$, but also refines the inequality (1). Actually we obtain:

Corollary. $n + 1 \le \operatorname{cat}(\widetilde{G}_{n,3}) < \frac{3}{2}n$ when $n = 2^{m+1} - 4$ ($m \ge 2$). In particular, we have $\operatorname{cat}(\widetilde{G}_{4,3}) = 5$.

We will give applications of Theorem A for the immersion problem of $\widetilde{G}_{n,3}$. By the classical result of Whitney [Whi44], we know that $\widetilde{G}_{n,3}$ immerses into \mathbb{R}^{6n-1} . We will show:

Theorem B. The oriented Grassmann manifold $\widetilde{G}_{n,3}$ immerses into \mathbb{R}^{6n-3} but not into \mathbb{R}^{3n+8} when $n = 2^{m+1} - 4$ ($m \ge 3$) and $\widetilde{G}_{4,3}$ immerse into \mathbb{R}^{21} but not into \mathbb{R}^{17} .

Remark : Walgenbach [Wal01] obtained better results on the non-immersion of $\widetilde{G}_{n,3}$: $\widetilde{G}_{n,3}$ does not immerses into $\mathbb{R}^{4n-2m+3}$. On the other hand, due to R. Cohen [Coh85], $\widetilde{G}_{n,3}$ is known to be immersed into \mathbb{R}^{6n-m+1} . Then Theorem B gives a better estimation when m = 2, 3.

The organization of this paper is as follows. In section 2, we consider the double covering map $p_n: \widetilde{G}_{n,3} \to G_{n,3}$, where $G_{n,3}$ is the unoriented Grassmann manifold $O(n + 3)/O(n) \times O(3)$. We identify the subring $\mathbf{Im}p_n^*$ of $H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2)$ with a certain algebra $\mathbb{Z}/2[\overline{w}_2, \overline{w}_3]/J_n$, where generators of J_n are given. In section 3, setting $n = 2^{m+1} - 4$ ($m \ge 2$), we will give an explicit description of generators of the ideal J_n by using the binary expansion. In section 4, we compute a Gröbner basis of J_n and obtain $\operatorname{cup}(\mathbf{Im}p_n^*)$. In section 5, we show $\operatorname{cup}(\mathbf{Im}p_n^*)$ determines $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$ and obtain it. As its applications, we give some estimations for $\operatorname{cat}(\widetilde{G}_{n,3})$ and study the immersion problem of $\widetilde{G}_{n,3}$.

2. Cohomology of $\widetilde{G}_{n,3}$

We consider the double covering

$$(2) p_n \colon \widetilde{G}_{n,3} \to G_{n,3}.$$

It will be shown that $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$ can be determined by $\operatorname{cup}(\operatorname{Im} p_n^*)$. Then we shall investigate $\operatorname{cup}(\operatorname{Im} p_n^*)$.

The mod 2 cohomology of BO(3) is given by

$$H^*(BO(3); \mathbb{Z}/2) = \mathbb{Z}/2[w_1, w_2, w_3],$$

where w_i is the *i*-th universal Stiefel-Whitney class. It is well-known that the canonical map $i: G_{n,3} \to BO(3)$ induces an epimorphism $i^*: H^*(BO(3); \mathbb{Z}/2) \to H^*(G_{n,3}; \mathbb{Z}/2)$. Hereafter we denote $i^*(w_i)$ by the same symbol w_i ambiguously.

One can easily see that the above double covering (2) induces the Wang sequence as:

$$\cdots \longrightarrow H^{q-1}(G_{n,3}; \mathbb{Z}/2) \xrightarrow{\cdot w_1} H^q(G_{n,3}; \mathbb{Z}/2) \xrightarrow{p_n^*} H^q(\widetilde{G}_{n,3}; \mathbb{Z}/2) \longrightarrow \cdots$$

Then we have

 $\mathbf{Im}p_n^* \cong \mathbb{Z}/2[w_1, w_2, w_3]/(w_1, \mathbf{Ker}i^*).$

Let $\pi: \mathbb{Z}/2[w_1, w_2, w_3] \to \mathbb{Z}/2[w_2, w_3]$ be the abstract ring homomorphism defined by $\pi(w_1) = 0, \pi(w_2) = w_2$ and $\pi(w_3) = w_3$. Then it induces the isomorphism

$$\operatorname{Im} p_n^* \cong \mathbb{Z}/2[\bar{w}_2, \bar{w}_3]/J_n,$$

where $\pi(\operatorname{Ker} i^*) = J_n$ and we denote w_i in $H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2)$ by \overline{w}_i . Note that the commutative diagram

$$\begin{array}{cccc}
\widetilde{G}_{n,3} & & \xrightarrow{p_n} & G_{n,3} \\
\downarrow & & \downarrow & \downarrow \\
BSO(3) & & \xrightarrow{p_\infty} & BO(3)
\end{array}$$

yields that $\tilde{\iota}^*(w_i) = \bar{w}_i$ for i = 2, 3 and $p_{\infty}^* \colon H^*(BO(3); \mathbb{Z}/2) \to H^*(BSO(3); \mathbb{Z}/2)$ is expressed by $\pi \colon \mathbb{Z}/2[w_1, w_2, w_3] \to \mathbb{Z}/2[w_2, w_3]$.

Let us give explicit generators of J_n . Borel [Bor53] showed that **Ker** i^* is generated by the homogeneous components of degrees n + 1, n + 2 and n + 3 in

$$\frac{1}{1+w_1+w_2+w_3}.$$

Then it follows that J_n is generated by the homogeneous components of degrees n + 1, n + 2 and n + 3 in

$$\frac{1}{1+\bar{w}_2+\bar{w}_3}.$$

Let *N* be the unique integer which satisfies $2^N < n \le 2^{N+1}$. Since dim $\widetilde{G}_{n,3} < 4n \le 2^{N+3}$, we have

$$(1 + \bar{w}_2 + \bar{w}_3)^{2^{N+3}} = 1$$

in $H^*(\widetilde{G}_{n,3};\mathbb{Z}/2)$. Then it follows that

$$\frac{1}{1+\bar{w}_2+\bar{w}_3} = (1+\bar{w}_2+\bar{w}_3)^{2^{N+3}-1}$$

and hence J_n is generated by

(3)
$$g_r = \sum_{\frac{r}{3} \le s \le \frac{r}{2}} {s \choose 3s - r} \bar{w}_2^{3s - r} \bar{w}_3^{r - 2s}$$

for r = n + 1, n + 2, n + 3.

TOMOHIRO FUKAYA

3. Investigating generators of J_n

In this section, we investigate generators g_{n+1} , g_{n+2} and g_{n+3} of J_n by exploiting the binary expansion.

Let us prepare notation for the binary expansion. To a non-negative integer x with $0 \le x < 2^k$, we assign a sequence

$$\epsilon_k(x) = (x_{k-1}, \dots, x_0) \in \{0, 1\}^k$$

such that

(4)
$$x = \sum_{i=0}^{k-1} x_i 2^i$$

(4) is, of course, the binary expansion of x. We denote 1 - a by \overline{a} with $a \in \{0, 1\}$. For example, we have

$$\epsilon_k(2^k - 1) = (1, \dots, 1)$$

and

$$\epsilon_k(2^k - 1 - x) = (\overline{x_{k-1}}, \dots, \overline{x_0})$$

for $\epsilon(x) = (x_{k-1}, ..., x_0)$. We often denote $(x_k, ..., x_0) \in \{0, 1\}^k$ by \mathbf{x}_k .

To calculate $\binom{s}{3s-r}$ modulo 2, we use the following well-known result from elementary number theory.

Lemma 3.1. Let *n* and *k* be non-negative integers such that $k \le n \le 2^l - 1$ and $\epsilon_l(n) = (n_{l-1}, \ldots, n_0), \epsilon_l(k) = (k_{l-1}, \ldots, k_0)$. Then we have $\binom{n}{k} \equiv 1 \pmod{2}$ if and only if $k_i = 1$ implies $n_i = 1$ for each *i*.

In the rest of this paper, we assume that

$$n = 2^{m+1} - 4 \ (m \ge 2).$$

Applying Lemma 3.1 to the coefficients of g_{n+1} , we have:

Proposition 3.2. $\binom{s}{3s-(n+1)}$ is even for all integer s with $\frac{n+1}{3} \le s \le \frac{n+1}{2}$, that is $g_{n+1} = 0$.

Proof. Let $\epsilon_m(s) = (s_{m-1}, \ldots, s_0)$ for $\frac{n+1}{3} \le s \le \frac{n+1}{2}$ and let $\epsilon_{m+1}(n+1-2s) = (t_m, \ldots, t_0)$. Since $s \le 2^m - 2$, there exists an integer *i* such that $s_i = 0$. Let *i* be the least integer satisfying $s_i = 0$, that is, $\epsilon_m(s) = (s_{m-1}, \ldots, s_{i+1}, 0, 1, \ldots, 1)$. Then it is easy to show that $t_i = 1$. Hence it follows from Lemma 3.1 that $\binom{s}{3s-(n+1)} = \binom{s}{n+1-2s} \equiv 0 \pmod{2}$.

Next we investigate g_{n+2} . Coefficients of g_{n+2} are well understood by considering their binary expansion as in the above case of g_{n+1} . Let

$$\mathcal{S}_k = \left\{ s \in \mathbb{Z} \left| \frac{n(k)+2}{3} \le s \le \frac{n(k)+2}{2}, \epsilon_k(s) = (s_{k-1}, \dots, s_0) \text{ satisfies that if } s_j = 0, \text{ then } s_{j+1} = 1 \right\},$$

here $n(k) = 2^{k+1} - 4$. Note that $\frac{n(k)+2}{3} \le s \le \frac{n(k)+2}{2}$ implies that s_{k-1} is always equal to 1 for each $s \in S_k$ with $\epsilon_k(s) = (s_{k-1}, \dots, s_0)$. There is a one-to-one correspondence between non-zero coefficients of g_{n+2} and S_m as:

Lemma 3.3.

$$\binom{s}{3s - (n+2)} \equiv 1 \pmod{2}$$
 if and only if $s \in S_m$.

Proof. Let
$$\epsilon_m(s) = (s_{m-1}, \dots, s_0)$$
 for $\frac{n(m)+2}{3} \le s \le \frac{n(m)+2}{2}$. Then we have $\epsilon_{m+1}(n+2-2s) = (\overline{s_{m-1}}, \dots, \overline{s_0}, 0)$

and hence Lemma 3.3 follows from Lemma 3.1.

It is convenient for calculations in section 4 to index coefficients of g_{n+2} by exponents of \bar{w}_2 in (3), that is, 3s - (n+2), not by $s \in S_m$. Then we define a set \mathcal{P}_k by

$$\mathcal{P}_k = \{ p \in \mathbb{Z} | p = 3s - (n(k) + 2), s \in \mathcal{S}_k \}.$$

 \mathcal{P}_m is expressed by the binary expansion as:

Proposition 3.4. Let

 $\Delta_k = \left\{ (p_{k-1}, \dots, p_0) \in \{0, 1\}^k | If p_{l-1} = 1 \text{ and } p_l = p_{l+1} = \dots = p_{l+2t} = 0, \text{ then } p_{l+2t+1} = 0 \right\},$ here we assume that $p_{-1} = 1$. Then we have

$$\mathcal{P}_m = \{ p \in \mathbb{Z} | \epsilon_m(p) \in \Delta_m \}.$$

We list some properties of Δ_k which will be useful in the following discussion. The proof is straightforward.

Proposition 3.5. *The set* Δ_k *has the following properties.*

- (a) $\mathbf{p}_k \in \Delta_k$ implies $(1, \mathbf{p}_k) \in \Delta_{k+1}$.
- (b) $\mathbf{p}_k \in \Delta_k$ implies $(\mathbf{p}_k, 1) \in \Delta_{k+1}$.

(c)
$$\Delta_m = \{ (1, \mathbf{p}_{m-1}) \in \{0, 1\}^m | \mathbf{p}_{m-1} \in \Delta_{m-1} \} \sqcup \{ (0, 0, \mathbf{p}_{m-2}) \in \{0, 1\}^m | \mathbf{p}_{m-2} \in \Delta_{m-2} \}.$$

Proof of Proposition 3.4. Let $s \in S_m$ with $\epsilon_m(s) = (s_{m-1}, \ldots, s_0)$. If $s_{m-2} = 0$, then one has $s_{m-1} = 1$ and $s_{m-3} = 1$ by definition of S_m . Then one can easily see that $(s_{m-2}, \ldots, s_0) \in S_{m-3}$. If $s_{m-2} = 1$, then one can see that $(s_{m-2}, \ldots, s_0) \in S_{m-1}$ as well. Hence one has obtained

(5)
$$S_m = \left\{ s + 2^{m-1} \middle| s \in S_{m-1} \right\} \sqcup \left\{ s + 2^{m-1} \middle| s \in S_{m-2} \right\}.$$

We will show Proposition 3.4 by induction. We suppose that it is true for m - 1 and m - 2. Let $s \in S_{m-1}$ and $p = 3(s + 2^{m-1}) - (n + 2)$. By the hypothesis of the induction, $\epsilon_{m-1}(3s - (n' + 2)) = \mathbf{p}_{m-1} \in \Delta_{m-1}$, where $n' = 2^m - 4$. Since

$$p = 3(s + 2^{m-1}) - (n+2) = 3s - 2^m + 2 + 2^{m-1} = 3s - (n'+2) + 2^{m-1},$$

we have

$$\epsilon_m(p) = (1, \mathbf{p}_{m-1}) \in \Delta_m$$

Similarly, let $s \in S_{m-2}$ and $p = 3(s+2^{m-1}) - (n+2)$. By the hypothesis of the induction, $\epsilon_{m-2}(3s - (n''+2)) = \mathbf{p}_{m-2} \in \Delta_{m-2}$, where $n'' = 2^{m-1} - 4$. Since

$$p = 3(s + 2^{m-1}) - (n+2) = 3s - 2^{m-1} + 2 = 3s - (n'' + 2),$$

we have

$$\epsilon_m(p) = (0, 0, \mathbf{p}_{m-2}) \in \Delta_m.$$

Thus, by (5), we obtain

$$\mathcal{P}_m = \left\{ p + 2^{m-1} \middle| p \in \mathcal{P}_{m-1} \right\} \sqcup \mathcal{P}_{m-2}$$

and, by (c) of Proposition 3.5, we have established Proposition 3.4.

For the last of this section, we investigate g_{n+3} . Coefficients of g_{n+3} can be well understood by using the binary expansion as well as above. Let

$$\mathcal{S}'_{k} = \left\{ s' \in \mathbb{Z} \left| \frac{n(k)+3}{3} \le s' \le \frac{n(k)+3}{2}, \epsilon_{k}(s') = (s_{k-1}, \dots, s_{1}, 1) \text{ satisfies that if } s_{j} = 0, \text{ then } s_{j+1} = 1 \right\}.$$
Oute similarly to Lemma 3.3, we can see:

Quite similarly to Lemma 3.3, we can see:

Lemma 3.6.

$$\binom{s'}{3s' - (n+3)} \equiv 1 \pmod{2} \text{ if and only if } s' \in \mathcal{S}'_m.$$

We give an explicit description of the set

$$\mathcal{P}'_{k} = \left\{ p' \in \mathbb{Z} \middle| p' = 3s' - (n(k) + 3), \ s' \in \mathcal{S}'_{k} \right\}$$

as well. Define a map

$$\iota: \mathcal{S}_{m-1} \to \mathcal{S}'_m$$

by $\iota(s) = 2s + 1$. Then, obviously, it is bijective. Note that, for $s' = \iota(s)$,

$$3s' - (n+3) = 3\iota(s) - 2^{m+1} + 1 = 6s - 2^{m+1} + 4 = 2(3s - (n'+2))$$

where $n' = 2^m - 4$. Then we have $p \in \mathcal{P}_{m-1}$ if and only if $p' \in \mathcal{P}'_m$ such that $\epsilon_m(p') = (\mathbf{p}_{m-1}, 0)$ for $\epsilon_{m-1}(p) = \mathbf{p}_{m-1}$. Hence we have obtained:

Proposition 3.7. $\mathcal{P}'_{m} = \{ p \in \mathbb{Z} | \epsilon_{m}(p) = (\mathbf{p}_{m-1}, 0), \mathbf{p}_{m-1} \in \Delta_{m-1} \}.$

4. Gröbner basis and cup-length

In this section, by using the result of the previous section, we search for a Gröbner basis of J_n in order to determine cup($\mathbf{Im}p_n^*$).

4.1. **Gröbner bases.** We first recall the definition and some facts of Gröbner bases by restricting to our specific case. In order to clarify our discussion and to simplify notation, we shall make a convention of identifying a two variable polynomial ring with a certain set as follows. Let $X = \{(p,q) \in \mathbb{Z}^2 | p \ge 0, q \ge 0\}$ and let P[X] denote the set of finite subset of X. By assigning $F \in P[X]$ to $\sum_{(p,q)\in F} \bar{w}_2^p \bar{w}_3^q$, we can identify P[X] with a polynomial ring $\mathbb{Z}/2[\bar{w}_2, \bar{w}_3]$ and we shall make this identification throughout this section. This identification translates the operations in $\mathbb{Z}/2[\bar{w}_2, \bar{w}_3]$ into P[X] as: For $F, G \in P[X]$,

$$F + G = F \cup G \setminus F \cap G,$$

$$F \cdot G = \sum_{(p,q) \in F, (r,s) \in G} (p+r,q+s)$$

This translation of operations enables us to handle the following polynomial calculations easily.

The order of X is given by the usual lexicographic order. Namely, for $(p, q), (r, s) \in X$,

$$(p,q) \ge (r,s)$$
 if and only if $p > r$ or $p = r, q \ge s$.

By employing this order, we search for a Gröbner basis of the ideal $J_n \subset P[X]$.

In order to define Gröbner bases, we prepare some notation and terminology. The leading term of a polynomial $F \in P[X]$ is the monomial

$$LT(F) = \max\{(p,q) \in F\}.$$

If there is a monomial $(p,q) \in X$ such that $(p,q) \cdot LT(G) \in F$, then the polynomial $F - (p,q) \cdot LT(G)$ is called the remainder of *F* on division by *G*. We denote the remainder $R = F - (p,q) \cdot LT(G)$ of *F* on division by *G*, by

$$F \xrightarrow{G_*} R.$$

Choose $F_1, \ldots, F_s \in P[X]$ and give them an arbitrary order. Then it is known that there is an algorithm to provide the decomposition of $F \in P[X]$ as

$$F = A_1 F_1 + \dots + A_s F_s + R$$

such that $A_1, \ldots, A_s \in P[X]$ and R is a linear combination of monomials, none of which is divisible by each $LT(F_1), \ldots, LT(F_s)$. The above R is called the remainder of F on division by $\{F_1, \ldots, F_s\}$ as well. However, this decomposition depends on the choice of an order of F_1, \ldots, F_s and $F \in (F_1, \ldots, F_s)$ does not imply the remainder R = 0. We can overcome this difficulty of remainders by choosing a Gröbner basis defined as:

Definition 4.1. Let I be an ideal of P[X]. A finite subset $G = \{G_1, \ldots, G_s\}$ is a Gröbner basis of I if

$$(\{\mathrm{LT}(F)|F\in I\})=(\mathrm{LT}(G_1),\ldots,\mathrm{LT}(G_s)).$$

Theorem 4.2. Let I be an ideal of P[X] and let $\{G_1, \ldots, G_s\}$ be a Gröbner basis of I. Then the remainder of $F \in I$ on division by $\{G_1, \ldots, G_s\}$ is zero.

Buchberger [CLO97] gave a criterion for a set of polynomials being a Gröbner basis of the ideal generated by it as follows. For $F, G \in P[X]$, the least common multiple of F and G is the monomial

$$LCM(F,G) = (\max\{p, r\}, \max\{q, s\}),$$

where LT(F) = (p, q) and LT(G) = (r, s). The S-polynomial of F and $G \in P[X]$ is

$$S(F,G) = \frac{\mathrm{LCM}(F,G)}{\mathrm{LT}(F)}F + \frac{\mathrm{LCM}(F,G)}{\mathrm{LT}(G)}G.$$

Theorem 4.3 ([CLO97]). The set of polynomials $\{G_1, \ldots, G_s\} \subset P[X]$ is a Gröbner basis of the ideal (G_1, \ldots, G_s) if and only if the remainder of $S(G_i, G_j)$ on division by $\{G_1, \ldots, G_s\}$ is zero for each $i \neq j$.

4.2. Search for a Gröbner basis of J_n . The author found the following polynomials experimentally by a computer calculation. For non-negative integers *i*, *t* with $t - 2(2^m - 2^i) \equiv 0 \pmod{3}$, we define a polynomial P(t, i) by

$$P(t,i) = \left\{ \left(p, \frac{t-2p}{3}\right) \in \mathcal{X} \middle| \epsilon_m(p) = (\mathbf{p}_{m-i}, \overbrace{0, \dots, 0}^i), \ \mathbf{p}_{m-i} \in \Delta_{m-i} \right\},$$
$$P_i = P(2^i + n + 1, i).$$

We shall prove that $\{P_0, \ldots, P_m\}$ is a Gröbner basis of J_n .

In order to investigate P_i , we define the following sets which will be useful for expression. Let $\Delta(i, j, l)$ and $\overline{\Delta}(i, l)$ be

$$\Delta(i, j, l) = \left\{ (\mathbf{p}_{m-j}, \mathbf{p}_{j-i-l}, \overbrace{1, \dots, 1}^{l}, \overbrace{0, \dots, 0}^{i}) \in \{0, 1\}^{m} \middle| (\mathbf{p}_{m-j}, \mathbf{p}_{j-i-l}) \in \Delta_{m-i-l}, \mathbf{p}_{j-i-l} \neq (1, \dots, 1) \right\},$$

$$\bar{\Delta}(i, l) = \left\{ (\mathbf{p}_{m-i-l-2}, 0, 0, \overbrace{1, \dots, 1}^{l}, \overbrace{0, \dots, 0}^{i}) \in \{0, 1\}^{m} \middle| \mathbf{p}_{m-i-l-2} \in \Delta_{m-i-l} \right\}.$$

It is easy to check:

Lemma 4.4.

$$\Delta(i, j, l) = \overline{\Delta}(i, l) \sqcup \Delta(i, j, l+1).$$

Let us begin investigating P_i . It is easy to verify that

(6)
$$LT(P_i) = (2^m - 2^i, 2^i - 1).$$

Proposition 4.5. We have $P_0, \ldots, P_m \in J_n$. In particular $P_0 = g_{n+2}$, $P_1 = g_{n+3}$.

Proof. By Proposition 3.4 and Proposition 3.7, one has $P_0 = g_{n+2}$ and $P_1 = g_{n+3}$. For i < j, it follows from (6) that

$$S(P_{i}, P_{j}) = (0, 2^{j} - 2^{i}) \cdot P_{i} + (2^{j} - 2^{i}, 0) \cdot P_{j}$$

$$= \left\{ \left(p, q_{i,j} \right) \in \mathcal{X} \middle| \epsilon_{m}(p) = (\mathbf{p}_{m-j}, \mathbf{p}_{j-i}, 0, \dots, 0), (\mathbf{p}_{m-j}, \mathbf{p}_{j-i}) \in \Delta_{m-i} \right\}$$

$$+ \left\{ \left(p, q_{i,j} \right) \in \mathcal{X} \middle| \epsilon_{m}(p) = (\mathbf{p}_{m-j}, 1, \dots, 1, 0, \dots, 0), \mathbf{p}_{m-j} \in \Delta_{m-j} \right\}$$

$$= \left\{ \left(p, q_{i,j}(p) \right) \in \mathcal{X} \middle| \epsilon_{m}(p) \in \Delta(i, j, 0) \right\},$$
re

where

$$q_{i,j}(p) = \frac{3 \cdot 2^j - 2 \cdot 2^i + n + 1 - 2p}{3}$$

By the definition of Δ_k , one can easily see that $\Delta(i, 0, i + 1) = \Delta_{m-i-2}$. Then it follows that $S(P_i, P_{i+1}) = P_{i+2}$ and hence we have established Proposition 4.5.

We calculate the remainders of $S(P_i, P_j)$ on division by $\{P_0, \ldots, P_m\}$.

Lemma 4.6. The remainder of $Q_{i,j,l} = \left\{ \left(p, q_{i,j}(p) \right) \in X \middle| \epsilon_m(p) \in \Delta(i, j, l) \right\}$ on division by P_{i+l+2} is $Q_{i,j,l+1}$.

Proof. Let p(i, l) be $\epsilon_m(p(i, l)) = (\underbrace{1, \dots, 1}_{l, \dots, 1}, 0, 0, \underbrace{1, \dots, 1}_{l, \dots, 1}, \underbrace{0, \dots, 0}_{l, \dots, 0})$. Then it is easy to see $LT(Q(i, j, l)) = (p(i, l), q_{i,j}(p(i, l)))$

and it follows from (6) that

$$LT(P_{i+l+2}) = \left(p(i+l,0), q_{i+j+2,i+j+2}(p(i+l,0)) \right).$$

Hence we have

$$(2^{i+l} - 2^i, 2^j - 2^{i+l+1}) \cdot LT(P_{i+l+2}) = Q(i, j, l).$$

On the other hand, one can easily check that

$$(2^{i+l} - 2^i, 2^j - 2^{i+l+1}) \cdot P_{i+l+2} = \left\{ \left(p, q_{i,j}(p) \right) \in \mathcal{X} \middle| \epsilon_m(p) \in \bar{\Delta}(i, l) \right\}$$

and then it follows from Lemma 4.4 that

$$Q(i, j, l) \xrightarrow{P_{i+l+2*}} Q(i, j, l) + (2^{i+l} - 2^i, 2^j - 2^{i+l+1}) \cdot P_{i+l+2} = Q(i, j, l+1).$$

Theorem 4.7. The set $\{P_0, \ldots, P_m\}$ is a Gröbner basis of J_n .

Proof. By Proposition 4.5, we have $J_n = (P_0, ..., P_m)$. As in the proof of Proposition 4.5, we have $S(P_i, P_j) = Q(i, j, 0)$ and then it follows from Lemma 4.6 that, for i < j,

$$S(P_i, P_j) = Q(i, j, 0) \xrightarrow{P_{i+2*}} Q(i, j, 1) \xrightarrow{P_{i+3*}} \cdots \xrightarrow{P_{j*}} Q(i, j, j-i-1) \xrightarrow{P_{j+1*}} 0.$$

4.3. **Cup-length of Im** p_n^* . In order to determine cup(**Im** p_n^*), let us introduce new polynomials. For non-negative integers *i*, *j*, *s* with $s - 2^{m+1} + 2^{i+1} \equiv 0 \pmod{3}$, we define a polynomial $\hat{P}(s, i, j)$ by

$$\hat{P}(s,i,j) = \left\{ \left(p, \frac{s-2p}{3}\right) \in \mathcal{X} \middle| \epsilon(p) \in \bar{\Delta}(i,j) \right\}.$$

Then we have

(7)
$$\operatorname{LT}(P_i) = P(2^i + n + 1, i) + P(2^i + n + 1, i + 2) + \sum_{1 \le j \le m-i-2} \hat{P}(2^i + n + 1, i, j).$$

In order to investigate $\sup(\mathbf{Im}p_n^*)$, we shall calculate $\min\{p|(p, 0) \cdot \mathrm{LT}(P_i) \in J_n\}$ for each *i* as follows.

Lemma 4.8. Let $\alpha_i = \min\{\alpha | (\alpha, 0) \cdot P(t, i) \in J_n\}$ for non-negative integers *i*, *t* with

$$2^{i-2} + n + 1 \le t < 2^i + n + 1, \ t - 2(2^m - 2^i) \equiv 0 \pmod{3}.$$

Then we have $\alpha_i = 2^m - 2^{i-1}$. In particular, α_i is independent from t as above.

Proof. Note that

$$(2^{i-1}, 0) \cdot P(t, i) = \left\{ \left(p, \frac{t+2^{i}-2p}{3} \right) \in \mathcal{X} \middle| \epsilon_{m}(p) = (\mathbf{p}_{m-i}1, 0, \dots, 0) \in \{0, 1\}^{m}, (\mathbf{p}_{m-i}, 1) \in \Delta_{m-i+1} \right\}$$

$$(0, \frac{t+2^{i-1}-n-1}{3}) \cdot P_{i-1} = \left\{ \left(p, \frac{t+2^{i}-2p}{3} \right) \in \mathcal{X} \middle| \epsilon_{m}(p) = (\mathbf{p}_{m-i+1}, 0, \dots, 0) \in \{0, 1\}^{m}, \mathbf{p}_{m-i+1} \in \Delta_{m-i+1} \right\}.$$

By Proposition 3.5, we have

$$(2^{i-1}, 0) \cdot P(t, i) + \left(0, \frac{t+2^{i-1}-n-1}{3}\right) \cdot P_{i-1} = P(t+2^i, i+1)$$

and hence

$$(2^{i-1},0) \cdot P(t,i) \xrightarrow{P_{i-1*}} P(t+2^i,i+1).$$

Then we obtain

$$\begin{array}{cccc} (2^{i-1},0) \cdot P(t,i) & \xrightarrow{P_{i-1*}} & P(t+2^{i},i+1), \\ (2^{i},0) \cdot P(t+2^{i},i+1) & \xrightarrow{P_{i*}} & P(t+2^{i}+2^{i+1},i+2), \\ & \vdots \\ (2^{m-1},0) \cdot P(t+2^{i}+\dots+2^{m-1},m) & \xrightarrow{P_{m-1*}} & 0 \end{array}$$

and this completes the proof of Lemma 4.8.

Lemma 4.9. Let α_i be as in Lemma 4.8. Then we have $(\alpha_i, 0) \cdot \hat{P}(s, i, j) \in J_n$.

Proof. Quite similarly to the proof of Lemma 4.8, one has

$$(2^{j+i}+2^i,0)\cdot\hat{P}(s,i,j)+\left(0,\tfrac{s+2^{i+1}+1}{3}\right)\cdot P_{j+i+1}=P(s+2^{j+i+1}+2^{i+1},j+i+3).$$

By Lemma 4.8, we have $2^{j+i} + 2^i + \alpha_{j+i+3} < \alpha_i$ and then Lemma 4.9 is accomplished. \Box

It follows from Lemma 4.8 and Lemma 4.9 that:

Proposition 4.10. Let α_i be as in Lemma 4.8. Then we have $\alpha_{i+1} = \min\{\alpha | (\alpha, 0) \cdot LT(P_i) \in J_n\}$.

Corollary 4.11. Let χ_1 be a fixed integer such that $2^{m+1} - 2^{i+1} - 2^{i+2} \le \chi_1 < 2^{m+1} - 2^i - 2^{i+1}$ and let $\chi_2 = \max\{z | (\chi_1, z) \notin J_n\}$. Then we have $\chi_2 = 2^i - 1$.

Proof. Let $(p_i, q_i) = LT(P_i)$. Then, by (6) and Lemma 4.8, we have

$$\dots > p_{i-1} + \alpha_{i+1} > p_i + \alpha_{i+2} > p_{i+1} + \alpha_{i+3} \cdots ,$$

$$\dots < q_{i-1} < q_i < q_{i+1} < \dots .$$

Hence, by Theorem 4.2 and Theorem 4.7, we have established that, for $p_{i+1} + \alpha_{i+3} = 2^{m+1} - 2^{i+1} - 2^{i+2} \le \chi_1 < 2^{m+1} - 2^i - 2^{i+1} = p_i + \alpha_{i+2}$, one has $\chi_2 = q_{i+1} - 1 = 2^{i+1} - 2$. \Box

From Corollary 4.11, $\chi_1 + \chi_2$ takes the maximum when $(\chi_1, \chi_2) = (n, 0)$ and it is *n*, of course, it is equal to cup(**Im** p_n^*). Therefore we have obtained:

Corollary 4.12. $\operatorname{cup}(\operatorname{Im} p_n^*) = n$. In particular, $\overline{w}_2^n \neq 0$.

5. Cup-length of $\widetilde{G}_{n,3}$ and its applications

In this section, we determine $\sup_{\mathbb{Z}/2}(\widetilde{G}_{n,3})$ and give its applications to immersion of $\widetilde{G}_{n,3}$ into a Euclidean space.

Proof of Theorem A. By Corollary 4.12, one has $\overline{w}_2^n \neq 0$. Then, by Poincaré duality, there exists $x \in H^n(\widetilde{G}_{n,3}; \mathbb{Z}/2)$ such that $\overline{w}_2^n x \neq 0$ and hence we have $\operatorname{cup}_{\mathbb{Z}/2}(\widetilde{G}_{n,3}) \geq n+1$.

Note that the canonical map $\widetilde{G}_{n,3} \to BSO(3)$ is an *n*-equivalence. Then it follows that $H^*(\widetilde{G}_{n,3}; \mathbb{Z}/2) \cong \operatorname{Im} p_n^*$ in dimensions less than *n*. Now suppose that there exist $x_1, \ldots, x_{n+2} \in \widetilde{H}^*(\widetilde{G}_{n,3}; \mathbb{Z}/2)$ such that $x_1 \cdots x_{n+2} \neq 0$. By a dimensional reason, one has $|x_i| < n$ for each *i* and then this contradicts to Corollary 4.12. Hence we have obtained Theorem A.

Proof of Corollary. From Theorem A and the inequality $\sup_{\mathbb{Z}/2}(\widetilde{G}_{n,3}) \leq \operatorname{cat}(\widetilde{G}_{n,3})$, it follows that $n + 1 \leq \operatorname{cat}(\widetilde{G}_{n,3})$.

Note that $\bar{w}_2 \in H^2(\widetilde{G}_{n,3}; \mathbb{Z}/2)$ is the fundamental class in the sense of James [Jam78]. By Corollary 4.12, we have $\bar{w}_2^{n+1} = 0$ and then it follows from Proposition 5.3 in [Jam78] that $\operatorname{cat}(\widetilde{G}_{n,3}) < \frac{3}{2}n$. Hence we have established Corollary.

Let us consider the immersion of $\widetilde{G}_{n,3}$ into a Euclidean space as applications of Theorem A. Of course, as mentioned in section 1, we know, by the result of Whitney [Whi44], that $\widetilde{G}_{n,3}$ immerses into \mathbb{R}^{6n-1} . We shall give a slightly better estimation.

We denote the canonical vector bundle over $\widehat{G}_{n,3}$ by γ and a stable normal bundle of $\widetilde{G}_{n,3}$ by ν . We abbreviate the classifying map $\widetilde{G}_{n,3} \to BSO(\infty)$ of ν by the same symbol ν . It is well-known that $T\widetilde{G}_{n,3} = \gamma \otimes \gamma^{\perp}$, then we have

(8)
$$T\widetilde{G}_{n,3} \oplus \gamma \otimes \gamma = \gamma \otimes \gamma^{\perp} \oplus \gamma \otimes \gamma = \gamma \otimes (\gamma^{\perp} \oplus \gamma) = (n+3)\gamma.$$

By Corollary 4.12, we have $(1 + \bar{w}_2 + \bar{w}_3)^{n+4} = 1$. Using the formula for the Stiefel-Whitney class of a tensor product shows that $w(\gamma \otimes \gamma) = 1 + \bar{w}_2^2 + \bar{w}_3^3$. Since $v \oplus T\widetilde{G}_{n,3}$ is

trivial, we have

(9)

$$w(v) = \frac{w(\gamma \otimes \gamma)}{w((n+3)\gamma)}$$

$$= \frac{1 + \bar{w}_2^2 + \bar{w}_3^2}{(1 + \bar{w}_2 + \bar{w}_3)^{n+3}}$$

$$= (1 + \bar{w}_2^2 + \bar{w}_3^2)(1 + \bar{w}_2 + \bar{w}_3)$$

$$= 1 + \bar{w}_2 + \bar{w}_3 + \bar{w}_2^2 + \bar{w}_3^2 + \bar{w}_3^2 + \bar{w}_2^2\bar{w}_3 + \bar{w}_2\bar{w}_3^2 + \bar{w}_3^2$$

Then it immediately follows that $\widetilde{G}_{n,3}$ does not immerse into \mathbb{R}^{3n+8} for $n = 2^{m+1} - 4m \ge 3$ and $\widetilde{G}_{4,3}$ does not immerse into \mathbb{R}^{17} .

Now let us consider the modified Postnikov tower of the fibration

$$BSO(3n-3) \rightarrow BSO(\infty)$$

following Gitler and Mahowald [GM66]. The A_2 -free resolution of $H^*(SO(\infty)/SO(3n-3))$ in dimensions less than or equal to 3n is given as follows, where A_2 denotes the mod 2 Steenrod algebra.

$$C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} H^*(SO(\infty)/SO(3n-3)) \to 0,$$

$$C_1 = \langle x_{3n-3}, x_{3n-1} \rangle, \ C_2 = \langle y_{3n-1} \rangle,$$

$$d_1(x_{3n-3}) = e_{3n-3}, \ d_1(x_{3n-1}) = e_{3n-1}, \ d_2(y_{3n-1}) = S q^2 x_{3n-3}, \ |x_i| = i$$

where $\langle x \rangle$ and e_i denote the free A_2 -module generated by x and a generator of

$$H^i(SO(\infty)/SO(3n-3)) \cong \mathbb{Z}/2$$

for i = 3n - 3, 3n - 1 respectively. Then the modified Postnikov tower of $BSO(3n - 3) \rightarrow BSO(\infty)$ in dimensions less than or equal to 3n is given as:

It follows from (9) that $w_{3n-2}(v) = w_{3n}(v) = 0$ and then $v: \widetilde{G}_{n,3} \to BSO(\infty)$ lifts to $\widetilde{v}: \widetilde{G}_{n,3} \to E$. By Poincaré duality, one has $H^{3n-1}(\widetilde{G}_{n,3}; \mathbb{Z}/2) = 0$. Then $\widetilde{v}: \widetilde{G}_{n,3} \to E$ lifts to $\overline{v}: \widetilde{G}_{n,3} \to BSO(3n-3)$ and hence we can see from the result of Hirsch [Hir59] that $\widetilde{G}_{n,3}$ immerses into \mathbb{R}^{6n-3} . Then we have one obtains Theorem B.

References

- [Bor53] A. Borel, La cohomologie mod 2 de certains espaces homogènes, Comment. Math. Helv. 27 (1953), 165–197.
- [CLO97] David Cox, John Little, and Donal O'Shea, *Ideals, varieties, and algorithms*, second ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997, An introduction to computational algebraic geometry and commutative algebra.
- [Coh85] Ralph L. Cohen, The immersion conjecture for differentiable manifolds, Ann. of Math. (2) 122 (1985), no. 2, 237–328.
- [GM66] S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mexicana (2) 11 (1966), 85–107.
- [Hir59] Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276.
- [Jam78] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348.
- [Kor06] Július Korbaš, Bounds for the cup-length of Poincaré spaces and their applications, Topology Appl. 153 (2006), no. 15, 2976–2986.
- [Wal01] Markus Walgenbach, *Lower bounds for the immersion dimension of homogeneous spaces*, Topology Appl. **112** (2001), no. 1, 71–86.
- [Whi44] Hassler Whitney, *The self-intersections of a smooth n-manifold in 2n-space*, Ann. of Math. (2) **45** (1944), 220–246.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY. KYOTO 606-8502, JAPAN. *E-mail address*: tomo_xi@math.kyoto-u.ac.jp