MEAN DIMENSION OF THE UNIT BALL IN ¢

MASAKI TSUKAMOTO*

ABSTRACT. We prove that the mean dimension of the unit ball in ¢(T") is zero (1 <
p < oo and T is a finitely generated infinite amenable group). This is the answer to a

question proposed by M. Gromov.

1. MAIN RESULT

In this note we give a solution to a problem proposed by M. Gromov in [1, p. 340].
Let ' be a finitely generated amenable group (cf. Gromov [1, p. 335]). In this paper we
always assume that I' is an infinite group. Let V be a finite dimensional R-vector space
with a norm |-|. Let p be a real number such that 1 < p < 0o, and set

1/p
#@,V) = {o = (@) € VY Jol, = (Z r\x7||p) < oo},

yel

We consider the natural right action of I" on 2(I", V):
(x-98)y =5, forx = (2y)yer € P(I',V)and § €T
Let B(¢*(I",V)) be the unit ball in #(I",V):
BT, V) = {z € #(T, V)| ], <1},

We give the product topology to VI, and we consider the restriction of this topology to
B(¢r(T,V)) c VE. Then B(f?(I',V)) becomes a compact topological space (and it is
metrizable). If p > 1, then this topology is equal to the restriction of the weak topology
of 7(I", V). In this paper we always consider this topology on B((I',V)). B(¢*(I',V))
is [-invariant, and the action of I' on B(¢*(I',V')) is continuous. Then we can consider
the mean dimension dim(B(/(I',V)) : I') (cf. Gromov [1]). Our main result determines

this value:

Theorem 1.1.
dim(B(¢?(I',V)) : T') = 0.
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This is the answer to the question of Gromov proposed in [1, p. 340]. It makes a
sharp contrast with the following (cf. Gromov [1, p. 340] and Lindenstrauss-Weiss [3,
Proposition 3.3]):

dim(B(¢>(I",V)) : I') = dim V.

Remark 1.2. Actually the argument in Section 3 shows the following more general result:
Let T" be a countable infinite group (not necessarily finitely generated nor amenable),

and let {€2;};>1 be a sequence of finite sets in I" such that |2;| — oco. Then we have
dim(B(¢P(T, V) : {}) = 0.
For the definition of dim(B(P(I', V) : {€}), see Gromov [1, p. 338].
2. PRELIMINARY CONSTRUCTIONS
Let n be a positive integer, and let d..(+,-) be the sup-distance on R":
doo(,y) = max |z; —y;| for o= (21, 2n) and y := (1, -+, Yn).
Let S, be the n-th Syrr_m_letric group. We define the group G by
G:={£1}" % S,.

The multiplication in G is given by

((517 T aen)7 0) ’ ((Ella e 75;1)7 OJ) = ((515:7*1(1)? Y >5n€;*1(n))’ UU,)
where 1, -+ ey, -+ e, € {1} and 0,0’ € S,,. G acts on R™ by
((517 U a€n>a U) . (xla U 7xn) = (51{[‘071(1)7 o 76711.0*1(71))
where ((e1,--- ,€n),0) € G and (x1,--- ,x,) € R". The action of G on R"™ preserves the

sup-distance du(+, ).
We define R%, and A,, by

Ry = {(21, - ,2n) ER"|2; 20 (1 <i <n)},
Ay = {(z1,- 7)) €ER"| 2y > 20 > -+ > 2, > 0},
The following can be easily checked:
Lemma 2.1. For e € {£1}" and v € RY, if ex € RY,, then ex = z. For o € S, and

x €A, ifox € A, then ox = x. For g = (¢,0) € G and v € A, if gx € A, then

gr =¢(ox) = ox = x.
Let m,n be positive integers such that 1 < m < n. We define the continuous map

fo: Ay — Ay by

fO('rh"' ,l‘n) = (xl —Tm+1,L2 — Tm41," " , Ty, _xm+170707"' 70)
——
n—m

The following is the key fact for our construction:
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Lemma 2.2. For g € G and x € A, if gt € A, (= gx = x), then we have
folgz) = gfo(x).
Proof. First we consider the case of g = ¢ = (1, -+ ,&,) € {£1}". If 2,11 = 0, then
folex) = (€121, -+, €m@m, 0,- -+ ,0) = e fo(x).
If 2,01 >0, theng; =1 (1 <i<m+1) because g;z; = x; > Tpy1 >0 (1 <i <m—+1).
Hence
fO(sx) = (xl —Tm4+15" " 5 Tm — Tm+1, Oa U vO) = fo(ﬂ?) = €f0($).
Next we consider the case of g =0 € S,,. gz € A, implies z,;) = z; (1 < i < n). Set
y = fo(z). Let r (1 <7 < m+ 1) be the integer such that
Tyr—1 > Ty = Trq1 =+ = Tyl
From z,¢;) = z; (1 <7 < n), we have
1<i<r=1<0(i) <7 = Yol) = Toli) — Tm+1 = Yis
r§z’z>r§a(z’):>yg(i):O:yl-.
Hence we have fy(ox) = fo(x) = o fo(z).

Finally we consider the case of g = (¢,0) € G. Since gx € A, we have gx = ¢(ox) =

or =x € A, (see Lemma 2.1). Hence
folgz) = fol(e(ox)) = efolox) = eafo(z) = gfo(x).
O

We define a continuous map f : R®” — R" as follows; For any z € R", thereisa g € G
such that gz € A,,. Then we define

f(@) =g~ folg).
From Lemma 2.2, this definition is well-defined. Since R" = | cq9A, and flga, =

gfog™! (g € G) is continuous on gA,,, f is continuous on R™. Moreover f is G-equivariant.
Let p be a real number such that 1 < p < oo, and define the (*-norm ||, by

|l = (JzafP + - + \xn‘P)l/P for = (xq1,-+ ,2,) € R™.
Let B (R™) be the fP-unit ball:
Bp(R") :=={z € R"| |z], < 1}.
By (R™) is G-invariant.

Lemma 2.3. For any x € Bp(R™), we have
1 1/p
doo (1, < | — .
@) < (o)
Note that the right-hand side does not depend on n.
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Proof. Since f is G-equivariant and d,, is G-invariant, we can suppose € Bp(R") N A,

ie. x = (x1,m9, - ,x,) With 1 > 29 > -+ > x, > 0. We have
f(iL‘) = (x1_$m+17"' axm—merlaOa"' 70)
Hence
doo(xa f(.’L’)) = max(a:m+1, Tm42, 7$n) = Tm+1-

From |z, <1,

Thus
1 1/p
doo(, = Tm —
(o 0) = s < (7 )
O
Proposition 2.4. For any positive number €, let m be a positive integer satisfying
1 1/p
2 <—) <e.
m+ 1
Then we have
Widim, (B (R"),dw) <m  for any n > 1.
For the definition of Widim,, see Gromov [1, p. 332].
Proof. If n < m, then the statement is trivial. Hence we suppose m < n. We have
FR™) =] gf(An).
geCG
Note that f(A,) CR™:={(z1, -+ ,2m,0,---,0) € R"}. Lemma 2.3 implies that
1 1/p
flBp@r) : (Bew(R"),ds) — U g-R™isa?2 (m—+1> -embedding.
geG
Thus we get the conclusion. O

3. PROOF OF THEOREM 1.1

First we consider the case of V' = R with the natural norm. Set ¢*(I") := ¢(I', R) and
X :=B(fP(I')). Let w: T" — R be a positive function satisfying

(1) > w(y) <L
~yel
We define the distance d(-,-) on X by

d(z,y) = Zw(v)pc7 —y,| for x = (,)yer and y = (yy ) er in X.
~yel’
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This distance gives the topology introduced in Section 1. For a finite set {2 C I we define
the distance dg(-,-) on X by
do(z,y) == maxd(zy,y7).
YEQ

Let € be a positive number. We want to evaluate Widim. (X, dq).
For each 6 € I, there is a finite set )5 C I' such that

Z w(0™ty) < e/4.
v€M\Qs
Set ' := Jscq 5. €' is a finite set satisfying
Z w(6~'y) <e/4 for any § € Q.

yET\QY

Let 7 : X — Bw(RY) = {z € RY| |z], < 1} be the natural projection. Let m = m(e)

be a positive integer satisfying
1 1/p
2 —— < g/2.
(m + 1> /

From Proposition 2.4, there are an m-dimensional polyhedron K and an e/2-embedding
f: (Bp(RY),dy) — K. Then F := form: (X,dg) — K becomes an s-embedding; If
F(z) = F(y), then dw(m(x), 7(y)) < ¢/2 and for each § € Q

d(xd,yd) = Z w(5717)|x'y — Y|+ Z w(5*17)|x7 — Yyl

NEQY ~ED\Q
€ -1 -1
<52 wld )42 Y w0y,
~e ~ED\Q

<eg/2+¢e/2=c¢.

Hence dg(z,y) < €. This shows the following proposition (we don’t need the amenability
of T" for this proposition):

Proposition 3.1. For any positive number e, there is a positive integer m = m(e) such

that
Widim, (X, dg) < m  for any finite set Q C T
Theorem 3.2.
dim(X : T') = 0.
Proof. Let 1,9, (|| — 00 as n — 00) be an amenable sequence in I' (cf. Gromov

[1, p. 335]). For any € > 0, we have

1
e lWidimE(X, do,) <

Hence Widim.(X : I') =0 for all € > 0. Thus dim(X : I") = 0. O

—0 (n— o0).
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Proof of Theorem 1.1. Set s := dimV and take a basis e,--- ,e; on V. Let |-| be the

sup-norm on V:
ltier + - - - + tses| o, = max(|te],--- .|ts|) for ty,--- ,t; € R
There is a positive constant ¢ such that
clv|, < v| forallveV,
where || is the given norm on V' (see Section 1). Let B.(¢?(I", V')) be the ball of radius ¢:
B(£*(L,V)) = {w € (I, V)] 2], < ¢}
B.(¢?(T',V)) is T-equivariantly homeomorphic to B(¢?(I", V')). Hence
dim(B(P(I',V)) : I') = dim(B.(¢*(I', V) : T).
The isomorphism V' = R® (t1eq + - -+ + tses +— (t1,- -+ ,ts)) defines a I'-equivariant linear

isomorphism:

ViR ... x R,
—_—

S

This defines the following I'-equivariant topological embedding:
B.(&(D,V)) = B("(D))".
Using Theorem 3.2, we get
dim(B(P(I', V) : T') = dim(B.(¢*(T',V)) : T') < sdim(B(¢*(T")) : T') = 0.
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