
MEAN DIMENSION OF THE UNIT BALL IN `p
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Abstract. We prove that the mean dimension of the unit ball in `p(Γ) is zero (1 ≤
p < ∞ and Γ is a finitely generated infinite amenable group). This is the answer to a
question proposed by M. Gromov.

1. Main result

In this note we give a solution to a problem proposed by M. Gromov in [1, p. 340].

Let Γ be a finitely generated amenable group (cf. Gromov [1, p. 335]). In this paper we

always assume that Γ is an infinite group. Let V be a finite dimensional R-vector space

with a norm ||·||. Let p be a real number such that 1 ≤ p < ∞, and set

`p(Γ, V ) := {x = (xγ)γ∈Γ ∈ V Γ| ||x||p :=

(∑
γ∈Γ

||xγ||p
)1/p

< ∞}.

We consider the natural right action of Γ on `p(Γ, V ):

(x · δ)γ := xδγ for x = (xγ)γ∈Γ ∈ `p(Γ, V ) and δ ∈ Γ.

Let B(`p(Γ, V )) be the unit ball in `p(Γ, V ):

B(`p(Γ, V )) := {x ∈ `p(Γ, V )| ||x||p ≤ 1}.

We give the product topology to V Γ, and we consider the restriction of this topology to

B(`p(Γ, V )) ⊂ V Γ. Then B(`p(Γ, V )) becomes a compact topological space (and it is

metrizable). If p > 1, then this topology is equal to the restriction of the weak topology

of `p(Γ, V ). In this paper we always consider this topology on B(`p(Γ, V )). B(`p(Γ, V ))

is Γ-invariant, and the action of Γ on B(`p(Γ, V )) is continuous. Then we can consider

the mean dimension dim(B(`p(Γ, V )) : Γ) (cf. Gromov [1]). Our main result determines

this value:

Theorem 1.1.

dim(B(`p(Γ, V )) : Γ) = 0.
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This is the answer to the question of Gromov proposed in [1, p. 340]. It makes a

sharp contrast with the following (cf. Gromov [1, p. 340] and Lindenstrauss-Weiss [3,

Proposition 3.3]):

dim(B(`∞(Γ, V )) : Γ) = dim V.

Remark 1.2. Actually the argument in Section 3 shows the following more general result:

Let Γ be a countable infinite group (not necessarily finitely generated nor amenable),

and let {Ωi}i≥1 be a sequence of finite sets in Γ such that |Ωi| → ∞. Then we have

dim(B(`p(Γ, V )) : {Ωi}) = 0.

For the definition of dim(B(`p(Γ, V )) : {Ωi}), see Gromov [1, p. 338].

2. Preliminary constructions

Let n be a positive integer, and let d∞(·, ·) be the sup-distance on Rn:

d∞(x, y) := max
1≤i≤n

|xi − yi| for x = (x1, · · · , xn) and y := (y1, · · · , yn).

Let Sn be the n-th symmetric group. We define the group G by

G := {±1}n o Sn.

The multiplication in G is given by

((ε1, · · · , εn), σ) · ((ε′1, · · · , ε′n), σ′) := ((ε1ε
′
σ−1(1), · · · , εnε

′
σ−1(n)), σσ′)

where ε1, · · · , εn, ε
′
1 · · · , ε′n ∈ {±1} and σ, σ′ ∈ Sn. G acts on Rn by

((ε1, · · · , εn), σ) · (x1, · · · , xn) := (ε1xσ−1(1), · · · , εnxσ−1(n))

where ((ε1, · · · , εn), σ) ∈ G and (x1, · · · , xn) ∈ Rn. The action of G on Rn preserves the

sup-distance d∞(·, ·).
We define Rn

≥0 and ∆n by

Rn
≥0 := {(x1, · · · , xn) ∈ Rn|xi ≥ 0 (1 ≤ i ≤ n)},

∆n := {(x1, · · · , xn) ∈ Rn|x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}.

The following can be easily checked:

Lemma 2.1. For ε ∈ {±1}n and x ∈ Rn
≥0, if εx ∈ Rn

≥0, then εx = x. For σ ∈ Sn and

x ∈ ∆n, if σx ∈ ∆n, then σx = x. For g = (ε, σ) ∈ G and x ∈ ∆n, if gx ∈ ∆n, then

gx = ε(σx) = σx = x.

Let m, n be positive integers such that 1 ≤ m < n. We define the continuous map

f0 : ∆n → ∆n by

f0(x1, · · · , xn) := (x1 − xm+1, x2 − xm+1, · · · , xm − xm+1, 0, 0, · · · , 0︸ ︷︷ ︸
n−m

).

The following is the key fact for our construction:



MEAN DIMENSION OF THE UNIT BALL IN `p 3

Lemma 2.2. For g ∈ G and x ∈ ∆n, if gx ∈ ∆n (⇒ gx = x), then we have

f0(gx) = gf0(x).

Proof. First we consider the case of g = ε = (ε1, · · · , εn) ∈ {±1}n. If xm+1 = 0, then

f0(εx) = (ε1x1, · · · , εmxm, 0, · · · , 0) = εf0(x).

If xm+1 > 0, then εi = 1 (1 ≤ i ≤ m + 1) because εixi = xi ≥ xm+1 > 0 (1 ≤ i ≤ m + 1).

Hence

f0(εx) = (x1 − xm+1, · · · , xm − xm+1, 0, · · · , 0) = f0(x) = εf0(x).

Next we consider the case of g = σ ∈ Sn. gx ∈ ∆n implies xσ(i) = xi (1 ≤ i ≤ n). Set

y := f0(x). Let r (1 ≤ r ≤ m + 1) be the integer such that

xr−1 > xr = xr+1 = · · · = xm+1.

From xσ(i) = xi (1 ≤ i ≤ n), we have

1 ≤ i < r ⇒ 1 ≤ σ(i) < r ⇒ yσ(i) = xσ(i) − xm+1 = yi,

r ≤ i ⇒ r ≤ σ(i) ⇒ yσ(i) = 0 = yi.

Hence we have f0(σx) = f0(x) = σf0(x).

Finally we consider the case of g = (ε, σ) ∈ G. Since gx ∈ ∆n, we have gx = ε(σx) =

σx = x ∈ ∆n (see Lemma 2.1). Hence

f0(gx) = f0(ε(σx)) = εf0(σx) = εσf0(x) = gf0(x).

�

We define a continuous map f : Rn → Rn as follows; For any x ∈ Rn, there is a g ∈ G

such that gx ∈ ∆n. Then we define

f(x) := g−1f0(gx).

From Lemma 2.2, this definition is well-defined. Since Rn =
⋃

g∈G g∆n and f |g∆n =

gf0g
−1 (g ∈ G) is continuous on g∆n, f is continuous on Rn. Moreover f is G-equivariant.

Let p be a real number such that 1 ≤ p < ∞, and define the `p-norm ||·||p by

||x||p := (|x1|p + · · ·+ |xn|p)1/p for x = (x1, · · · , xn) ∈ Rn.

Let B`p(Rn) be the `p-unit ball:

B`p(Rn) := {x ∈ Rn| ||x||p ≤ 1}.

B`p(Rn) is G-invariant.

Lemma 2.3. For any x ∈ B`p(Rn), we have

d∞(x, f(x)) ≤
(

1

m + 1

)1/p

.

Note that the right-hand side does not depend on n.
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Proof. Since f is G-equivariant and d∞ is G-invariant, we can suppose x ∈ B`p(Rn)∩∆n,

i.e. x = (x1, x2, · · · , xn) with x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. We have

f(x) = (x1 − xm+1, · · · , xm − xm+1, 0, · · · , 0).

Hence

d∞(x, f(x)) = max(xm+1, xm+2, · · · , xn) = xm+1.

From ||x||p ≤ 1,

(m + 1)xp
m+1 ≤ xp

1 + · · ·+ xp
m+1 ≤ 1.

Thus

d∞(x, f(x)) = xm+1 ≤
(

1

m + 1

)1/p

.

�

Proposition 2.4. For any positive number ε, let m be a positive integer satisfying

2

(
1

m + 1

)1/p

< ε.

Then we have

Widimε(B`p(Rn), d∞) ≤ m for any n ≥ 1.

For the definition of Widimε, see Gromov [1, p. 332].

Proof. If n ≤ m, then the statement is trivial. Hence we suppose m < n. We have

f(Rn) =
⋃
g∈G

gf(∆n).

Note that f(∆n) ⊂ Rm := {(x1, · · · , xm, 0, · · · , 0) ∈ Rn}. Lemma 2.3 implies that

f |B`p (Rn) : (B`p(Rn), d∞) →
⋃
g∈G

g · Rm is a 2

(
1

m + 1

)1/p

-embedding.

Thus we get the conclusion. �

3. Proof of Theorem 1.1

First we consider the case of V = R with the natural norm. Set `p(Γ) := `p(Γ, R) and

X := B(`p(Γ)). Let w : Γ → R>0 be a positive function satisfying

(1)
∑
γ∈Γ

w(γ) ≤ 1.

We define the distance d(·, ·) on X by

d(x, y) :=
∑
γ∈Γ

w(γ)|xγ − yγ| for x = (xγ)γ∈Γ and y = (yγ)γ∈Γ in X.
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This distance gives the topology introduced in Section 1. For a finite set Ω ⊂ Γ we define

the distance dΩ(·, ·) on X by

dΩ(x, y) := max
γ∈Ω

d(xγ, yγ).

Let ε be a positive number. We want to evaluate Widimε(X, dΩ).

For each δ ∈ Γ, there is a finite set Ωδ ⊂ Γ such that∑
γ∈Γ\Ωδ

w(δ−1γ) ≤ ε/4.

Set Ω′ :=
⋃

δ∈Ω Ωδ. Ω′ is a finite set satisfying∑
γ∈Γ\Ω′

w(δ−1γ) ≤ ε/4 for any δ ∈ Ω.

Let π : X → B`p(RΩ′
) = {x ∈ RΩ′| ||x||p ≤ 1} be the natural projection. Let m = m(ε)

be a positive integer satisfying

2

(
1

m + 1

)1/p

< ε/2.

From Proposition 2.4, there are an m-dimensional polyhedron K and an ε/2-embedding

f : (B`p(RΩ′
), d∞) → K. Then F := f ◦ π : (X, dΩ) → K becomes an ε-embedding; If

F (x) = F (y), then d∞(π(x), π(y)) ≤ ε/2 and for each δ ∈ Ω

d(xδ, yδ) =
∑
γ∈Ω′

w(δ−1γ)|xγ − yγ|+
∑

γ∈Γ\Ω′

w(δ−1γ)|xγ − yγ|,

≤ ε

2

∑
γ∈Ω′

w(δ−1γ) + 2
∑

γ∈Γ\Ω′

w(δ−1γ),

≤ ε/2 + ε/2 = ε.

Hence dΩ(x, y) ≤ ε. This shows the following proposition (we don’t need the amenability

of Γ for this proposition):

Proposition 3.1. For any positive number ε, there is a positive integer m = m(ε) such

that

Widimε(X, dΩ) ≤ m for any finite set Ω ⊂ Γ.

Theorem 3.2.

dim(X : Γ) = 0.

Proof. Let Ω1, Ω2, · · · (|Ωn| → ∞ as n →∞) be an amenable sequence in Γ (cf. Gromov

[1, p. 335]). For any ε > 0, we have

1

|Ωn|
Widimε(X, dΩn) ≤ m(ε)

|Ωn|
→ 0 (n →∞).

Hence Widimε(X : Γ) = 0 for all ε > 0. Thus dim(X : Γ) = 0. �
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Proof of Theorem 1.1. Set s := dim V and take a basis e1, · · · , es on V . Let ||·||∞ be the

sup-norm on V :

||t1e1 + · · ·+ tses||∞ := max(|t1|, · · · .|ts|) for t1, · · · , ts ∈ R.

There is a positive constant c such that

c ||v||∞ ≤ ||v|| for all v ∈ V ,

where ||·|| is the given norm on V (see Section 1). Let Bc(`
p(Γ, V )) be the ball of radius c:

Bc(`
p(Γ, V )) := {x ∈ `p(Γ, V )| ||x||p ≤ c}.

Bc(`
p(Γ, V )) is Γ-equivariantly homeomorphic to B(`p(Γ, V )). Hence

dim(B(`p(Γ, V )) : Γ) = dim(Bc(`
p(Γ, V )) : Γ).

The isomorphism V ∼= Rs (t1e1 + · · · + tses 7→ (t1, · · · , ts)) defines a Γ-equivariant linear

isomorphism:

V Γ ∼= RΓ × · · · × RΓ︸ ︷︷ ︸
s

.

This defines the following Γ-equivariant topological embedding:

Bc(`
p(Γ, V )) ↪→ B(`p(Γ))s.

Using Theorem 3.2, we get

dim(B(`p(Γ, V )) : Γ) = dim(Bc(`
p(Γ, V )) : Γ) ≤ s dim(B(`p(Γ)) : Γ) = 0.

�
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