SPECTRAL DENSITY FUNCTIONS OF GENERAL MODULES OVER
FINITE VON NEUMANN ALGEBRAS AND THEIR APPLICATIONS

SHIN-ICHI OGUNI

ABSTRACT. We introduce a definition of weakly dilatational equivalence for density functions
and study relations between density functions and their Laplace-Stieltjes transforms. Also we
define spectral density functions of general modules over finite von Neumann algebras up to
weakly dilatational equivalence and their Novikov-Shubin type invariants. By using these, we
give some applications to random walks on discrete groups.

1. INTRODUCTION

In this paper we define spectral density functions of general modules over finite von Neumann
algebras. Why do we define spectral density functions of general modules over finite von Neumann
algebras? We have three motivations at least.

Novikov-Shubin invariants of finitely presented modules over finite von Neumann algebras are
naturally defined by using spectral density functions of the modules. On the other hand Novikov-
Shubin invariants (or capacities) of general modules over finite von Neumann algebras are defined
in [10] by complicated arguments. Our first motivation is giving a conceptual definition of Novikov-
Shubin invariants (or capacities) of general modules over finite von Neumann algebras by using
spectral density functions of the modules.

For projective modules (more generally locally projective modules) over finite von Neumann
algebras, taking their L2-Betti numbers is faithful ([9, Chapter 6]). On the other hand for locally
measurable modules over finite von Neumann algebras, taking their Novikov-Shubin invariants (or
capacities) is not faithful without using a formal symbol co™ different from oo (or 0~ different
from 0). Our second motivation is giving faithful L2-invariants for locally measurable modules.

Our final motivation is dealing with random walks on general discrete groups. In the applications
to random walks, it is important to study relations between density functions, their Laplace-
Stieltjes transforms and so on.

We remark that in [5] and so on they mainly dealt with comparing density functions with
polynomial functions and Novikov-Shubin invariants. On the other hand we deal with more general
functions and Novikov-Shubin type invariants (cf. [13]).

Also we introduce a definition of weakly dilatational equivalence for density functions, which is
easier to deal with than dilatational equivalence.

Here we fix some conventions in this paper. Groups or discrete groups mean countable discrete
groups. A is a finite von Neumann algebra and .4-modules mean right A-modules. We call an
A-module M is locally something if any finitely generated submodule of M is something. For
example M is locally non-projective if any finitely generated submodule of M is not projective.

Here we give explanation about each section.

In section 2 we introduce a definition of weakly dilatational equivalence for density functions,
for their Laplace-Stieltjes transforms and for their discrete Laplace-Stieltjes transforms (Defini-
tion 2.2, Definition 2.4 and Definition 2.7). We remark that their Novikov-Shubin type invariants
like Novikov-Shubin invariants and secondary Novikov-Shubin invariants are invariant under their
weakly dilatational equivalence (Definition 2.1, Proposition 2.3 and Proposition 2.5). Also we
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study relations among (weakly) dilatational equivalence classes of density functions , (weakly) di-
latational equivalence classes of their Laplace-Stieltjes transforms and (weakly) dilatational equiv-
alence classes of their discrete Laplace-Stieltjes transforms. Indeed we give the following (more
generally Theorem 2.18). Also see Theorem 4.7, too.

Theorem 1.1. Let F be a set of all density functions such that their Laplace-Stieltjes transforms
are valued in [0,00) and © be a set of all Laplace-Stieltjes transforms of density functions in F.
Then (weakly) dilatational equivalence classes of F and (weakly) dilatational equivalence classes
of © are one-to-one correspondent. Moreover their Novikov-Shubin type invariants coincide.

Also we give a positive solution to a part of a technical question ([4, (1.15)]).

From section 3 we mainly deal with weakly dilatational equivalence because it is easier to deal
with than dilatational equivalence. However surely we can deal with dilatational equivalence, too.

In section 3 we gather some examples of density functions from [9, Chapter 2] and so on, for
example, we recall the definition of spectral density functions of finitely presented locally non-
projective modules. Also we give a positive solution to a part of a technical question ([9, Remark
3.181]).

In section 4 we generalize the definition of density functions by using directed families of density
functions. More generally we introduce double directed families of density functions. Also we define
their weakly dilatational equivalence. Then we have the following (Lemma 4.3).

Lemma 1.2. A density function is regarded as a directed family of density functions and also a
directed family of density function is regarded as a double directed family of density functions.
Then their weakly dilatational equivalence are compatible.

In this context we have a type of Theorem 1.1, too (Theorem 4.7). Also we can define their
Novikov-Shubin type invariants (or Novikov-Shubin type capacities) which are invariant under
weakly dilatational equivalence.

In section 5 we gather some properties of modules over finite von Neumann algebras from [10],
[17] and so on, for example, we recall the definition of cofinal measurable modules (in this paper
we call them locally measurable modules).

In section 6 we define spectral density functions of general modules over finite von Neumann
algebras by using tools in section 4 and section 5. We have the following (Theorem 6.6 and
Definition 6.7).

Theorem 1.3. Spectral density functions of general modules over finite von Neumann algebras
are well-defined.

Also we can define Novikov-Shubin type invariants (Novikov-Shubin type capacities) of general
modules over finite von Neumann algebras. In particular our Novikov-Shubin capacities coincide
capacities in [10] (Remark 6.9). Also we remark that for locally measurable modules taking their
spectral density functions is faithful (Remark 6.10).

In section 7 we give some applications (Corollary 7.4, Corollary 7.5, Corollary 7.6, Corollary
7.8, Theorem 7.9, Theorem 7.10 and Theorem 7.11) to random walks on groups. We note that we
can deal with not only finitely generated groups but also general discrete groups. In the case of
finitely generated groups, Theorems are known in [14], however our some proofs are different from
theirs and the author thinks our proofs are more conceptual.

In section 8 we refine a result about Novikov-Shubin invariants of groups in [16]. In particular
we use a part of it in section 7.

The author would like to express his gratitude to Professor Tsuyoshi Kato for conversations on
some topics discussed herein.

2. DENSITY FUNCTIONS AND THEIR LAPLACE-STIELTJES TRANSFORMS

First of all we prepare for and introduce some notations (cf. [9] for L2-Betti numbers and
Novikov-Shubin invariants and [13] for secondary Novikov-Shubin invariants).
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Definition 2.1. Let F' : [0,00) — [0,00) be a monotone non-decreasing function. Then we call
b?)(F) := F(0) the L>-Betti number of F and we write F-()\) = F(\) — F(0). Also we write
F(00) := limy_ F(A\). The Novikov-Shubin invariant of F is a(F') := co™ provided that there
exists A > 0 such that F~()\) = 0, and otherwise

e m(F)
a(F) = l%\ﬂ(l)l}_f o)

Also the secondary Novikov-Shubin invariant of F' is 8(F) := oo™ provided that there exists A > 0
such that F+(\) = 0, and otherwise

e —In(=In(F+(\)))
AF) = liminf In(\)

Let 6 : (0,00) — [0,00) be a monotone non-increasing function. Then we call b () :=
0(00) := limy_,o, O(t) the L?-Betti number of § and we write 8 () = 6(t) — 8(c0). Also we write
6(0) := lim;_,04+ 8(t). The Novikov-Shubin invariant of 6 is «(f) := cot provided that there exist
A,B>1and K > 0 such that 6+ (t) < Bexp(—t/A) holds for all ¢ € [K,00), and otherwise

) U O))
Also the secondary Novikov-Shubin invariant of 8 is 3(f) := co™ provided that there exist A, B > 1
and K > 0 such that 1 (¢) < Bexp(—t/A) holds for all ¢ € [K, o), and otherwise
oo In(=In(@* (1)
f):=1 f .
PO =t @ ()
Moreover we define that the lim sup version of the Novikov-Shubin invariant of F is @(F) := oo™
provided that there exists A > 0 such that F()\) = 0, and otherwise
In(F+
a(F) := limsup (£~ (V)
a0t In(A)
Also B(F), a(f) and 3(f) are defined by the same way.

We recall the definition of dilatational equivalence and define weakly dilatational equivalence
for monotone non-decreasing functions.

Definition 2.2. Let F; and F, be two monotone non-decreasing functions on [0, 00). We write
Fy < F; if there exist C' > 1 and € > 0 such that Fy(A) < F5(C)) holds for all A € [0,¢]. We say
that F} and F5 are dilatationally equivalent (denoted by F} ~ F) if F; < Fy and F» < F;. We
write Fy <, Fb if there exists D > 1 such that Fi* < DF;-. We say that F; and F» are weakly
dilatationally equivalent (denoted by Fy ~,, F») if Fi <, F> and F» <, F}.

When F; and F are bounded, F; <, Fb if and only if there exist C, D > 0 such that Fi"*()\) <
DF5-(C)) holds for all A € [0,00). The L2-Betti number of F' is invariant under dilatational
equivalence. The dilatational equivalence between monotone non-decreasing functions induces
certainly weakly dilatational equivalence. We note that weakly dilatational equivalence classes of
monotone non-decreasing functions have no information about their L?-Betti numbers.

The next proposition shows that Novikov-Shubin invariants and so on for monotone non-
decreasing functions are invariant under weakly dilatational equivalence.

Proposition 2.3. Let F': [0,00) — [0,00) be a monotone non-decreasing function. When a(F),
a(F), B(F) or B(F) is not oo™, then we have

a(F) =sup {a|F-(\) =, \*} = sup {a| }l‘igh(k_“FL()\)) = 0}

—0

a(F) = inf {a|]A" <, F-()\)} = inf {a| ;im(A—“FL(A)) = oo}
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() = sup {0 < exp(-3 ")} = sup {bl fim (exp(x ) (0) =0

B(F) = inf {blexp(—A"") 2 F-(\)} = inf {b| lim (exp(A™") F=(X)) = oo}
—
In particular these are invariant under weakly dilatational equivalence.

Proof. Let put o/ = sup {a|F*-()\) <, A"} and o” = sup {a|limy_,o(A"*F+(X)) =0}. Then
since {a|F+(X) 2w A%} D {allimy_,o(A"*F+ (X)) = 0} is clear, we get o' > a'. Also if we have
FL()\) <4 A ¢ for € > 0, then we observe limy_,o(A~ (% 29 FL(})) = 0. Hence we get o' < o'
Surely a(F') = o is proved by using the definition of ‘liminf’ and ‘sup’, too. Moreover the claims
about a(F), f(F) and $(F) are shown by the same way. O

Also we can define other Novikov-Shubin type invariants which are invariant under weakly dilata-
tional equivalence, but we do not deal in this paper (see Section 4, t00).
Next we deal with monotone non-increasing functions.

Definition 2.4. Let 6; and 6> be two monotone non-increasing functions on (0,00). We write
01 =< 605 if there exist A, B,C > 1 and K > 0 such that 6,(t) < 62(t/C) + Bexp(—t/A) holds for
all t € [K,00). We say that 8, and 6, are dilatationally equivalent (denoted by 61 ~ 65) if 6; < 6
and 0y < 0. We write 0; <,, 0> if there exists D > 1 such that §;- < Df5. We say that 6; and
0> are weakly dilatationally equivalent (denoted by 6, ~,, 62) if §; <,, > and 6 <,, 6;. When
a function is defined only on the discrete points, we extend it to the positive real axis by linear
interpolation. We will use the same notation for the original function and its extension.

We note that our definition of dilatationally equivalent about monotone non-increasing functions
are a little different from [5]. In our definition we add an error term Bexp(—t/A4). When 6;
and @> are bounded, #; =<, 6 if and only if there exist 4, B,C,D > 0 such that #;-(t) <
Do5(t/C) + Aexp(—t/B) holds for all ¢ € [0,00). The L?-Betti number of 6 is invariant under
dilatational equivalence. The dilatational equivalence between monotone non-increasing functions
induces certainly weakly dilatational equivalence.

The next proposition shows that Novikov-Shubin invariants and so on for monotone non-
increasing functions are invariant under weakly dilatational equivalence.

Proposition 2.5. Let 6 : (0,00) — [0,00) be a monotone non-increasing function. When a(#),
a(f), p(6) or 5(0) is not oo+, then we have

a(8) = sup {a|f () <.t~} = sup {a| Jim (6% (1)) = o}

a(6) = inf {alt~* <, 0*(1)} = inf {al lim (¢°6* (1)) = o0}

B(8) = sup {l%‘ldw(t) = exp(—nd)} — sup {%d' lim exp(n) (9 (1)) = o}

2 : d d 1 : d : dygL
= — =< = -
B(0) = inf { 1 d| exp(—n®) <y 0 (t)} inf { T d| t%(exp(n )8—(t)) = o0
In particular these are invariant under weakly dilatational equivalence.

Proof. When we put o = sup {a|f"(t) <., t~*}, 8-(t) <. t~(®'~9) for any € > 0. Then there are
D > 1,K > 0 such that for any t > K 6+(t) < Dt~ (@~ by the following lemma. Hence the claim

about a(#) is shown by the same way in the proof of Proposition 2.3. Moreover the claims about
a(f), 5(6) and B(#) are shown by the same way. O
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Lemma 2.6. Let 6; for i = 1,2, 3 be three monotone non-increasing functions on (0, co) such that
0;(c0) = 0 and satisfy that there exist C, D > 1, K > 0 such that for any ¢t > K

01(t) < DOy(t/C) + 05(t).
If there exist A, B > 1, L > 0 such that for any ¢t > L
03(t) < Bb(t/A)
or there exist A > 1, L > 0 such that for any ¢t > L

05(0) < 61 (1),
then there exist C, D > 1, K > 0 such that for any ¢t > K
01(t) < DO:(t/C).
Proof. 1If there exist C', D > 1, K > 0 such that for any t > K
01(t) < DOy(t/C) + 65(t)
and there exist A, B > 1, L > 0 such that for any ¢ > L
05(t) < By (t/A),
then we have for any t > K + L
01(t) < DO:(t/C) + 05(t) < DO2(t/C) + Bb(t/A) < (B + D)b(t/(A+ C)).
If there exist C, D > 1, K > 0 such that for any ¢t > K
01(t) < DOy(t/C) + 605(t)
and there exist A > 1, L > 0 such that for any ¢ > L

1
03(t) < 291 (t),

then we have for any ¢t > K + L
A-1

Do, (t/C) > 01 (t) — 05(¢) > 01 ().
From now on, we can study density functions and their Laplace-Stieltjes transforms.

Definition 2.7. A function F : [0,00) — [0,00) is called a density function if it is monotone
non-decreasing and right-continuous. We define its Laplace-Stieltjes transform by

Op(t) = /[O PN

Also we define a discrete Laplace-Stieltjes transform of F' which is a bounded density function on
[0, 1], that is, F(A) = F(1) < oo for any A > 1 by

ar(t) = /[0 1](1 — N'F ().

We give easily some properties for Laplace-Stieltjes transforms (cf. [9, Lemma 3.139.]).

Lemma 2.8. Let F' be a density function. Then,

(1) If F is bounded, then 8 is bounded.

(2) O is valued in [0, 00) if and only if for any € > 0 there exists C > 0 such that F/(A) < Ccexp(ed)
for any A > 0. Then we have

Or(t) = t/[o )exp(—t/\)F()\)d/\.
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(3) When 6y is valued in [0, 00), then we have for any A € [0,00) and t > 0

exp(~tNFO) <0 (0) < N + [ exp(-tmdF(p)
(A,00)
In particular the L2-Betti number of F and the L?-Betti number of #7 coincide and if F' # 0, then
there exist A > 0 and K > 0 such that 8p(t) > exp(—At) holds for all ¢ € [K, 00).
(4) If F is a bounded density function on [0, 1], then we have for any A € [0,1] and ¢ > 0

1=XN'F) <qr(t) <FQ) + (1= N'F(Q).
In particular the L2-Betti number of F and the L?-Betti number of ¢ coincide and if there exists

A € (0,1) such that F'(\) # 0, there exist A > 0 and K > 0 such that g (t) > exp(—At) holds for
all t € [K, 00).

Proof. (1) is clear. (2) is well known.
When we fix A € [0, 00), then we have for any p € [0, 00)

exp(—=A)X[o, (1) < exp(—p1) < Xjo,x (1) + exp(—=1)X(x,00) (1)
Hence the first part of (3) is clear and the latter part of (3) is shown by using Lebesgue’s Theorem.
When we fix A € [0, 1], then we have for any p € [0,1

]
(1= X)xoa (1) <1 =X < xpon (1) + (1= X)xa (1)

Hence the first part of (4) is clear and the latter part of (4) is shown by using Lebesgue’s Theorem.
a

When we deal with weakly dilatational equivalence about 8 # 0 and qp #Z 0, then we can use
the equivalent condition of Lemma 2.6, that is,

Lemma 2.9. Let F; for ¢ = 1,2 be two density functions and 6; := 8, #Z 0 be valued in [0, c0).
Then 6; =<,, 6 if and only if there exist C, D > 1 such that 67 (t) < D83-(t/C). Also when F; for
i = 1,2 are two bounded density functions on [0, 1] such that ¢; := g, Z 0, then ¢; <4 ¢ if and
only if there exist C, D > 1 such that ¢i (t) < Dqy (t/C).

Proof. We put 03(t) = Bexp(t/A) in lemma 2.6. Then if we have 6; := 0, Z 0 resp. ¢; := qr, Z 0,
the assumption in lemma 2.6 is satisfied by the previous lemma (3) and (4). O

The next lemma shows that Novikov-Shubin invariants and so on are well-behaved under discrete
Laplace-Stieltjes transforms.

Lemma 2.10. If F' is a bounded density function on [0, 1], then we have a(F') = a(qr), a(F) =
a(qr), B(F) = B(gr) and B(F) = B(qr)-

Proof. We can assume that F' is a bounded density function on [0, 1] with F'(0) =0, ¢ = qr(c0) =0
and ¢ Z 0. Then we have for any A € [0,1] and ¢ > 0

(1=N'FQ) <qr(t) <FQ) + (1= N F(1).

When we define a := «(F) — € for any € > 0, then there exist D > 1 such that F(\) < DA®
for any sufficiently large ¢ > 0. Hence we get qp(t) < DA* + (1 — M\)'F(1) by using ¢r(t) <
F(X)+ (1= X)'F(1). When we define A* = 7, then we have qp(t) < Dz— + (1 — A)'F(1). Now
since we have for any sufficiently large ¢ > 0 (1—X)'F(1) < D7, we get gp(t) < 2D L. Hence
we have a(F) < a(g). We can show a(F) > a(qr), B(F) < B(qr) and 3(F) > B(qr) by the same
way in proving a(F) < a(q).

We can show a(F) > a(q) by using (1 — A)*F()) < ¢(t), q(t) < D& where a := a(q) — € and
defining A* = ;L. We can show a(F) < a(qr), B(F) > B(qr) and B(F) < B(gr) by the same way
in proving a(F') > a(q). O

We define some sets of functions.
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Definition 2.11. We denote by F the set of all density functions such that the Laplace-Stieltjes
transforms are valued in [0, 00) and by © the set of the Laplace-Stieltjes transforms of all F' € F.
Moreover we denote by F the set of all bounded density functions and by © the set, of the Laplace-
Stieltjes transforms of all F € F.

Moreover we denote by Fio 1] the set of all bounded density functions on [0, 1], by O 1] the set of
the Laplace-Stieltjes transforms of all F' € }_'[0’1] and by Q the set of the discrete Laplace-Stieltjes
transforms of all F' € ]-_'[0’1].

We denote by F* the set of all density functions such that L?-Betti numbers vanish and by @+
the set of the Laplace-Stieltjes transforms of all F*.

By the same way, we define 7+, O+, ]:'[JO-J], (:)[%)71], and Q.

We have certainly
Fioq) CF CF,
Fioy CFHCFH,
O, C O C O,
Op, C Ot Ccot,

and these inclusions preserve the dilatational equivalence and the weakly dilatational equivalence.
Here we prepare for a convenient notation.

Definition 2.12. Let F be in F. When Ao > 0 is fixed, we define F'(X) := F()) for any A < X
and F'(A) := F(Xg) for any A > Ag, and denote by 6 the Laplace-Stieltjes transform of F'. Then F
is in F and 6 is in ©. In particular when 1 > Ao > 0, F'is in Fjg 13, € is in Opp 1 and 7 := ¢ is in
Q.

We will give the meaning of the above notation.

Lemma 2.13. Let F be in 7. Then for any Ag > 0, 6 and 6 are dilatationally equivalent. Also if
Fis in Fg ), then 6 and ¢ are dilatationally equivalent.

Proof. We may assume that F' Z 0. When we fix A\g > 0 such that F'(\g) # 0, then we have

o(t) == a(t) + / exp(—tNA(F(\) — F(\))

[)‘Uvoo)

= 4(t) + exp(—tho) / exp(—tA — X)) d(F(A) — F(M))

[Xo,00)
= 0(t) + exp(~tXo)0u (1),
where H(p1) := F(X)—F (o) for p = A—Xg. Hence we get 6 =< 6 since O (t) < 1 for any sufficiently
small ¢ > 0. Hence we have 6 ~ 0 since 6§ > 6 is clear. The latter part is proved by the same
way. O

The following shows that Novikov-Shubin invariants and so on are well-behaved under Laplace-
Stieltjes transforms.

Lemma 2.14. Let F be in F and F be inf'[O,l]. Then a(F) = a(fr) = alqp), a(F) = a(fr) =
a(gr), B(F) = B(0r) = B(qr) and B(F) = S(0F) = S(ar)-
Proof. 1t is clear by Lemma 2.10 and Lemma 2.13. O

This is a positive solution to a question in [5, (1.15)].

Now we want to show that seven sets of dilatational equivalence classes Fjg 17/ ~, F/ ~, F/ ~,
Op,1)/ ~, ©/ ~, ©/ ~ and Q/ ~ are one-to-one correspondent and that seven sets of weakly
dilatational equivalence classes Fio11/ ~w, F/ ~uw, F/ ~w, O[0,1]/ Zuw, O/ 2w, O/ = and Q/ =,
are one-to-one correspondent. We need a few lemmas.
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Lemma 2.15. Let Fy and F, be in Fjg1). Then we have Fi ~ Fj only if 61 ~ 65, and Fy ~,, Fj
only if 01 ~w 92.

Proof. When Fy < F3, we can assume that there exist C' > 1 such that F;(A) < F5(C)) for any
A > 0. Then 6, < 65 is clear. The latter is proved by the same way. O

Lemma 2.16. Let F; and F, be in .7:'[071]. Then F} ~ F5 if ) ~ 605, and F} ~,, F; if 6, ~,, 65.

Proof. When 61 =< 05, there exist A, B,C > 1 such that 6;(t) < 62(t/C) + Aexp(—t/B) for any
t > 0 since F1 and F; are in Fjg ;). Then we have

/ exp(—tA)dF(\) < / exp(—tA/C)dF5(X) +/ exp(—t\)dH (X)
[0,00) [0,00)

[0,00)
_ / exp(—t\)d(Fs (CX) + H())
0,00)

for any ¢t > 0 where H(A) := 0 for any A < 1/B and H()) := A for any A > 1/B. We would like
to show Fj(\) < Fy(\) where we define Fy(A) := F5(CA) + H(A). When we put 1 — 2z := X and
Gi(z) := F;(\) for i =0, 1, then we have

/ (1—2)'dG:(z) < / (1 —z)'dGo(z)

[0,1] [0,1]

for any ¢t > 0. Hence we have G (z) < Go(z) for any x by Weierstrass’s approximation theorem.
Thus we get F; (\) < Fp(\), moreover we get Fy < Fy. The latter is proved by the same way. O

Lemma 2.17. Let F; and F5 be in ]-_'[0’1]. Then F| ~ F5 if q1 ~ qo, and Fy ~,, F5 if ¢ >~ ¢2.
Proof. This is proved by the same way in the previous lemma. |
Hence we have

Theorem 2.18. Seven sets of dilatational equivalence classes Fio 1/ ~, F/ ~, F/ ~, O 11/ =,
0/ ~, ©/ ~ and Q/ ~ are one-to-one correspondent. Moreover this correspondence preserve b(2),
a, &, B and 3.

Also seven sets of weakly dilatational equivalence classes Fjo,1)/ ~w, F/ ~uw, F/ ~uw, O[0,1)/ Zw»
0/ ~u, ©/ ~, and Q/ ~,, are one-to-one correspondent. Moreover this correspondence preserve
a, @, f and 3.

3. EXAMPLES OF DENSITY FUNCTIONS

In this section, we recall some examples of density functions (see [9]).

From now on we mainly deal with a and §, but & and 3 can be dealt with by the same way.

A von Neumann algebra A is called finite if 4 has a finite trace, that is, a finite, normal and
faithful trace trgq : A — C. We will recall two examples of finite von Neumann algebras, that is,
the group von Neumann algebra and the von Neumann crossed product.

Let G be a discrete group. The Hilbert space with basis G is denoted by [(G). Then we have
the left and right natural actions of the group algebra CG on [?(G) extending the left and right
natural actions of G by linear. The bounded operators on /2(G) which are equivalent with respect
to the right natural action of CG' on [?(G) form a von Neumann algebra V'(G) = B(I*(G))%, called
the group von Neumann algebra. Equivalently, N'(G) can be defined as the weak closure of left
natural action of CG in B(I?(G)). The group von Neumann algebra N'(G) with its standard trace
tra(q) : N(G) = C given by trpr ) (T) = (T'(e),€)2()- In particular, the trace of an element in
the left natural action of CG is the coefficient of the unit element.

Let X be a standard Borel space equipped with a probability Borel measure y. Then L™ (X) =
L>*(X;p) is a finite von Neumann algebra with the trace trp-(x)(f) = [y fdu. Assume X is
additionally equipped with a u-preserving left G-action. Then there is the von Neumann crossed
product V(X x G) which contains the algebraic crossed product L™ (X) X4, G as a weakly dense
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subalgebra, where L>(X) X4, G is a vector space generated by f,g (f, € L>™(X), g € G) with
convolution product. Further, V(X x G) has a finite trace whose restriction to L>(X) X4, G is
given by trar(xwua) (3, fo9) = [y fedp.

For an n-dimensional square matrix T' € M,, ,,(A), we define

tI“A ((TZJ)ISz,]Sn) = Z tI“A (Tu) .
i=1

The spectral density function of a operator T € My, »(A) is defined as F(T)(A) = traxox2)(T*T)
by using spectral calculus. Here x[p x2] is the characteristic function of the interval [0, A?]. Also
we can write F(T)(\) = traEL7T, where {EZ*T}#E[OM) is the spectral family of the positive
operator T*T'. Also we can write F'(T)(\) = trAE‘)\T‘. Surely we define §(T') := O p(r). Its L>-Betti
number b(? (T) is defined as F(T')(0), its Novikov-Shubin invariant a(T") € [0, 00] U oo™ is defined
as a(F(T)) and its secondary Novikov-Shubin invariant (T € [0, 00]Uoco™ is defined as (F(T)).

In particular when K > ||T|| is fixed, then F(L) is a bounded density function on [0,1],
and F(T) ~, F(%). Thus we have o(T) = a(qF(%)) and B(T) = B(QF(%)). Surely we have
a(T) = d(qF(%)) and 3(T) = ,B(qF(%)). These are positive solutions for a part of a question in [9,
Remark 3.181.].

From now on we will mainly deal with density functions up to weakly dilatational equivalence.
In particular we ignore L2-Betti numbers.

Definition 3.1. Let C, be a finitely generated projective right A-chain complex and ¢, be its p-th
boundary map. Also its p-th Laplacian is defined by A, := cjc, + ¢p1¢541- Then define its p-th
spectral density function F,(C,) as F(c,) up to its L?-Betti number, and its p-th Novikov-Shubin
invariant is a,(Cy) := a(F,(Cy)) and its p-th secondary Novikov-Shubin invariant is defined by
the same way. Also F2(C,) is defined as F(A,) up to its L?-Betti number, and o (C.) is defined
as a(F2(C,)) and B2(C.) is defined by the same way. Also 8,(C.) is defined as fp, (c,) up to its
L?-Betti number and 65*(C.) is defined by the same way.

We remark that weakly dilatational equivalence classes of F},(C.) and F*(C.) are homotopy invari-
ants of C. In particular their Novikov-Shubin invariants and secondary Novikov-Shubin invariants
are homotopy invariants of C\.

Definition 3.2. If X be a free right G-CW-complex of finite type, then C, := C\(X) Qzg N (G)
is a finitely generated free right N (G)-chain complex, where C,(X) is a cellular chain complex.
Hence we define F,(X) as F,(C.) up to weakly dilatational equivalence, a,(X) as a,(Cy) and so
on.

Definition 3.3. Let M be a finitely presented locally non-projective module over A and fix its
projective resolution P, such that Py and P; are finitely generated. Then F'(M) is defined as
F(Py — Py) up to weakly dilatational equivalence. Surely a(M), (M), 6(M) and so on are
defined as a(F(M)), B(F(M)), 8p(M) and so on.

Remark 3.4. M is a locally non-projective module over A if and only if dim 4 M = 0 by definition
of dim 4. We refer [9, Chapter 6.] about dim 4.

Lemma 3.5. Let L and L' be finitely presented locally non-projective modules. If L' is a sub-
module or a quotient module of L, then F(L) =,, F(L').

We refer [10, Lemma 2.3.] about its proof.

Remark 3.6. If C, is a finitely generated projective right A-chain complex and ¢, is its p-th
boundary map, then F(Hy,(C\)) =y Fptr1(C).

Definition 3.7. If G has a finitely generated projective resolution P, over CG-module C, then we
define C, as P, ®ca N(G), F,(G) as F,(C,) up to weakly dilatational equivalence and FpA (G) as
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F2(C.) up to weakly dilatational equivalence. Also a,(G) and 8,(G) is defined by the same way.
Also 62 (G) and 6,(G) are defined up to weakly dilatational equivalence.

Definition 3.8. Let NV be a free proper G cocompact Riemannian manifold without boundary.
Let dj, be the p-th exterior differential and define the p-th Laplacian A} as dydp, +dp—1d;,_,, where
d¥ is the adjoint of d,. Then F(N)()) is defined as tryr(q)X(o,x(dp) up to its L?-Betti number
and FpAa (A) as trarq)X(o,a (A%), up to its L>-Betti number. Also ot (N) is defined as a(Fy | (N))
and f,(NV) is defined by the same way. Also 6 (N) and GPAa (N) are defined by the same way.

Remark 3.9. In above definition N can be regarded as a G-CW-complex. Thus we can define
Fp(N), too. Then F),(N) =~y F_;(N), ap(N) = agy(N) and so on (See [1] and [9, Chapter 2]).

4. A GENERALIZATION OF DENSITY FUNCTIONS
We generalize density functions by two steps. First step is the following.

Definition 4.1. A directed family of density functions F); is defined as a family of density functions
{Fj};c; such that Fj =, Fj if j < j', where J is a directed set. In particular if F; € F for any
j € J, then we call Fy a directed family in F. F' is defined as the set of all directed families in F.

Let Fy and Fj: be directed families of density functions. Fy <,, Fy if for any F}: there exists
F}; such that F; <, Fj:. Fy and Fy are weakly dilatationally equivalent denoted by Fy ~,, Fy if
Fjy <y Fy and Fj <, Fy, where J and J' are directed sets.

Second step is the following.

Definition 4.2. A double directed family of density functions Fj, is defined as a family of directed
families of density functions {Fy, },.; such that Fy, <, Fy, if i <i', where I and J; are directed
sets. In particular if Fj, € F' for any i € I, then we call Fj, a directed family in F'. F” is defined
as the set of all directed families in F'.

Let Fy, and Fy, be double directed families of density functions. Fj, =<, Fy,, if for any Fy,
there exists Fj, such that Fjy, <., Fy,. Fy, and Fy, are weakly dilatationally equivalent denoted
by Fy, ~ Fy,, if Fy, < Fy, and Fy,, =y Fy,, where I, J;, I' and J; are directed sets.

A density function can be naturally regarded as a directed family of density functions and also
a directed family of density functions can be naturally regarded as a double directed family of
density functions. Then each weakly dilatational equivalence is compatible. More precisely we
have the following.

Lemma 4.3. Let F and F’ be density functions. These are weakly dilatationally equivalent as
directed families of density functions if and only if these are weakly dilatationally equivalent as
density functions.

Let F; and Fj be directed families of density functions. These are weakly dilatationally equiv-
alent as double directed families of density functions if and only if these are weakly dilatationally
equivalent as directed families of density functions.

We regard real numbers R as a directed set by using a usual <. Then we consider a directed
family of density functions Fr. Now we define Novikov-Shubin type capacities or the essentially
inverse of Novikov-Shubin type invariants.

Definition 4.4. A Novikov-Shubin type capacity of Fy, based on F, denoted by capp, (Fy,), is
defined by the following. If Fj, ~,, 0, then capg (Fy,;) = 07. Otherwise

1
capp. (Fy,) = inf {— | Fy, = Fr} .
o T

Here we used a formal symbol 0.
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We remark that Novikov-Shubin type capacity of Fj, based on Fgr is invariant under weakly
dilatational equivalence.
We give two concrete examples of Novikov-Shubin type capacities.

Example 4.5. If Fp = {F.(\) = A"}, then A Novikov-Shubin type capacity of F, based on Fg
should be called its capacity because it is the inverse of its Novikov-Shubin invariant if F, is a
density function (cf. [10]).

Example 4.6. If Fg = {F,.(\) = exp(—A"")}, then Novikov-Shubin type capacity of Fj, based
on Fy is the essentially inverse of its secondary Novikov-Shubin invariant.

Surely we can define directed families, double directed families, their weakly dilatational equiv-
alence and their Novikov-Shubin type capacities in © and so on instead of F. Also we define ©'
as the set of all directed families in ©, ©” as the set of all double directed families in © and so on.
We can repeat the arguments in Section 2 about directed families and double directed families.
Then we can prove that the latter of Theorem 2.18 is true in the context of directed families and
double directed families, too. Indeed we have the following which generalize Theorem 2.18.

Theorem 4.7. Seven sets of weakly dilatational equivalence classes Fio 11"/ ~uw, F”/ 2w, F7 [ 2,
(:)[0,1]”/ ~w, 0"/ ~,, 0"/ ~, and Q”/ ~,, are one-to-one correspondent. Moreover these corre-
spondence preserve Novikov-Shubin type capacities.

Also we have F/ ~,C F'/ ~,C F’/ ~4, ©”/ ~,C 0"/ ~,C ©”/ ~,, and so on. Moreover
these injections preserve Novikov-Shubin type capacities.

F| 20 C F'] 2 C F? [ ~, follows Lemma 4.3. This theorem claims that, for example, (double)
directed families of density functions can be dealt with like usual density functions.

Remark 4.8. Also we can use < instead of <, to define directed families and double directed
families. In this definition, in particular we have the information of L?-Betti numbers. Surely the
former of Theorem 2.18 is true in this context. However we do not use this definition in this paper.

5. SOME PROPERTIES OF MODULES OVER VON NEUMANN ALGEBRAS

In this section we deal with a finite von Neumann algebra A and right modules over A. We call
a right module over A4 simply a module. This algebra is semihereditary and has a dimension dim 4
([8], [9, Chapter 6]). In particular it is known that a finitely presented module is locally finitely
presented because A is semihereditary and also a locally non-projective module M if and only if
dim M = 0 by definition of dim 4 ([8], [9, Chapter 6]). We gather some results in [10]. See [17]
about Theorem 5.6.

We recall the definition of measurable modules.

Definition 5.1. Let M be a module. M is a measurable module if there exists a finitely presented
locally non-projective module L and a surjective homomorphism L — M.

In particular a measurable module is a finitely generated locally non-projective module. Also any
measurable module is locally measurable because finitely presented modules are locally finitely
presented.

Lemma 5.2. Let M be a measurable module. Given a finitely generated projective module P and
a surjective homomorphism p : P — M, then there exists a finitely generated submodule K C ker p
such that P/K is a finitely presented locally non-projective module.

Proof. When M is a measurable module and any finitely presented locally non-projective module
L, any surjective homomorphism ¢q : L — M, any finitely generated projective module P and a
surjective homomorphism p : P — M are given, then there exists a homomorphism r : P — L
such that p = ¢r since P is projective. Thus we have L D r(P). Then r(P) is a finitely presented
locally non-projective module and ¢ : r(P) — M is a surjective homomorphism. |
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In [10] they define cofinal measurable modules, however we do no use the name. We use the
name of locally measurable instead of cofinal measurable because we trivially have the following.

Lemma 5.3. Any cofinal measurable module is locally measurable. Here M is a cofinal measurable
module if there exist a directed system of measurable submodules {M;},; such that M = (J,.; M;.

In particular a locally measurable module is a locally non-projective module.
The following is clear by Definition 5.1 and Lemma 5.3

Lemma 5.4. M, is measurable and there exist a surjective homomorphism M; — M, then M, is
measurable, too. M; is locally measurable and there exist a surjective homomorphism M; — M,
then M, is locally measurable, too.

Let M be a module. If M; and M, are measurable submodules of M, then M; + M, is
measurable, too. Thus the set of all measurable submodules I(M) is regarded as a directed set.
Thus we have the following definition.

Definition 5.5. Let M be a module. tM is a directed union by using a directed system of all of
measurable submodules {M;};c; ) and pM := M/tM

In particular ¢tM is locally measurable and pM is locally non-measurable. We call tM the locally
measurable part of M.
The following is proved in [17].

Theorem 5.6. Let A C B be a pair of finite von Neumann algebras with compatible traces. Then
two short exact sequences

02> t(M®aB) > MesB—p(MeyB)—0,

0> (tM)R@aB—>MesB— (pM)@4B8—0

are isomorphic.

6. SPECTRAL DENSITY FUNCTIONS OF GENERAL MODULES

In section 3 spectral density functions of finitely presented locally non-projective modules are
defined up to weakly dilatational equivalence. In this section we define spectral density functions of
locally measurable modules as double directed families of density functions up to weakly dilatational
equivalence. Surely we can define weakly dilatationally equivalence classes of spectral density
functions of general modules as weakly dilatational equivalence classes of spectral density functions
of their locally measurable parts. We note that these generalized spectral density functions are
not functions.

Firstly we deal with measurable modules.

Definition 6.1. Let M be a measurable module and P 5 M be a surjective homomorphism from
a finitely generated projective module. Then J(P & M) is defined as a set of all of P -3 L; LY
M, where L; is a finitely presented locally non-projective module and r; and g; are surjective
homomorphisms such that p = ¢;r;, in particular Ker(p) C Ker(r;).

Lemma 6.2. J(P % M) is a directed set. Hence we have Ker(p)
words, lim L; = M in Definition 6.1.

= UJ(P£>M) Ker(r;), in other

(P25 M)

Proof. Any j',j7 € J(P % M), we can take P SEN L; 24 M such that Kerp O Ker(r;) =
Ker(r;1) + Ker(r;»). O

Let M be a measurable module. Then we fix a surjective homomorphism from a finitely gener-
ated projective module P % M, moreover a finite presentation for any L;, where P N L; Bpe
J(P 5 M). Then we define a family of density functions FJ( P
sity functions F'(L;), where we use a fixed finite presentation for L;. Then F',

as the family of spectral den-
(P2 ) is a directed

family of density functions because J(P % M) is a directed set and Lemma 3.5
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Theorem 6.3. Let M be a measurable module. Then a directed family of density functions

FJ( P2 depend only on M up to weakly dilatational equivalence. Moreover if J is a directed

subset of J(P % M) such that lim; L; = M, then FJ(P 2y Sw Fy.

Proof. For L;, F(L;) is defined up to weakly dilatational equivalence. If we have two surjective

homomorphisms from finitely generated projective modules P 2 M and P' % M, then we have two

directed families of density functions F’ J(prary & and FJI(P/ M)’ For any Lj:, there exists L; C Ly

since the proof of Lemma 5.2. Thus F(L;) <, F(Lj) by Lemma 3.5. The latter part follows
because Ker(r;) is finitely generated and lim; L; = M in other words, |J; Ker(r;) = Ker(p). 0O

Definition 6.4. Let M be a measurable module. Its spectral density function F(M) is defined

as a directed family of density functions FJ( poary UP to weakly dilatational equivalence, where

P % M is a surjective homomorphism from a finitely generate projective module.

Lemma 6.5. Let M and M’ be measurable modules. If M’ is a submodule or a quotient module
of M, then F(M) =, F(M").

Proof. We fix a surjective homomorphism from a finitely generate projective module P 5 M. If
M' c M, then we can restrlct P % M to get a surjective homomorphlsm from a ﬁmtely generate

prOJectlve module P' % M'. Then any P = L; B M e JP B M), we geta P 4 L 4 M' e

J(P' LVE ) such that L% := r;(P') and r}|pr. Then the set of such elements .J' C J(P' r, M')is a
directed subset such that M' =limy Lj Now F(M) = F(M') follows Lemma 3.5 and Theorem
6.3.

The case of quotient follows Lemma 3.5. O

Next we deal with locally measurable modules. Let M be a locally measurable module. Then
I(M) is defined as a directed set of all of measurable submodules M; C M. Then for any measurable
submodule M;, we fix a surjective homomorphism from a ﬁmtely generated projective module

P; % M;, moreover a finite presentation for any L;,, where P; 5 L;, 2 M; € J(Pi & M;).

Then we can define a directed family of density functions F (P M Thus we have a double

directed family of density functions F We have the following

TP ) T {FJz‘(Piﬁ*Mi)}ieI(M)'
because for any measurable submodule M; and M;», M; := M; + M;» is a measurable submodule,
F(My) 2 F(M;) and F(My) <y F(M;) by Lemma 6.5.

Theorem 6.6. Let M be a locally measurable module. Then a double directed family of density

functions F’ TP M) depends only on M up to weakly dilatational equivalence. Moreover if [ is a
~uw Fy,.
Zw I

directed subset of I(M) such that |J; M; = M, then FJ(P "L

Now we can define spectral density functions of general modules.

Definition 6.7. Let M be a locally measurable module. Its spectral density function F(M)

is defined as a double directed family of density functions F' (PP ay WP to weakly dilatational
I I

equivalence, where P; 2% M; is a surjective homomorphism from a finitely generated projective
module.

If M is a general module, then its spectral density function F(M) is defined as F(tM) up to
weakly dilatational equivalence.

We have the following by Lemma 6.5

Lemma 6.8. Let M and M' be locally measurable modules. If M’ is a submodule or a quotient
module of M, then F(M) =, F(M').



14 SHIN-ICHI OGUNI

Remark 6.9. Here we can define Novikov-Shubin capacities of general modules by using Definition
4.4 and Example 4.5. Then we can confirm that this Novikov-Shubin capacities coincide with the
capacities in [10]. Moreover we can define secondary Novikov-Shubin capacities and so on.

Remark 6.10. F(M) measures the size of the locally measurable part of a module M. In par-
ticular taking the weakly dilatational equivalence class of the spectral density function of a locally
measurable module M is faithful, in other words, F (M) ~,, 0 if and only if M = 0. On the other
hand, in order to make capacities (in this paper we call Novikov-Shubin capacities) be faithful, we
have to introduce a formal symbol 0~ different from O.

Here we consider a pair of von Neumann algebras with compatible traces A C B. Then ®4B
is faithful flat functor from a category of .A-modules to a category of B-modules ([9, Theorem
6.29]). Moreover this functor preserves locally measurable modules by Theorem 5.6. We have the
following.

Proposition 6.11. Let M be a module over A. Then F(M) ~,, F(M @4 B).

Proof. 1t is enough to deal with the case that M is a finitely presented locally non-projective
module. However this case follows the proof of [9, Theorem 2.55 (7)]. O

We get the following from the proof of [15, Theorem 4.20].

Proposition 6.12. Let M be a module over A and p be a full projection in A. Then F(M) ~,
F(M ®4 Ap).

Here p is a full projection if p is a projection and A = Ap®p.a, pA. Then a category of A-modules
and a category of pAp-modules are Morita equivalent by ® 4Ap and ®,4ppA. These functors
preserve projective, finitely generated, finitely presented, exact sequences and so on. Thus locally
non-projective, measurable and locally measurable are preserved.

We define spectral density functions of A-chain complexes and groups.

Definition 6.13. Let C, be a right A4-chain complex. Then its p-th spectral density function
F,(C,) is defined as F(Hp_1(Cy)) up to weakly dilatational equivalence.

Let G be a discrete group. Then its p-th spectral density function F),(G) is defined as F(H,_: (G, N(Q)))
up to weakly dilatational equivalence.

We remark that F(G) = F(C ®ce N(G)) because C @cq N(G) = Ho(G, N (G)).
7. SOME APPLICATIONS TO RANDOM WALKS ON DISCRETE GROUPS

In this section results in [14] about symmetric simple random walks on finitely generated groups
are proved by the different way from theirs or generalized on general groups.

Let G be a finitely generated group and S be a finite set of generators of G. The Cayley graph
Cs(Q) of (G, S) is the following connected one-dimensional free right G-CW-complex. (The Cayley
graph is usually a connected one-dimensional free ‘left’ G-CW-complex, but there exist no essential
difference.)

Its O-skeleton is G. For each element s € S we attach free equivalent G-cells G x [—1, 1] by the
attaching map G x {—1,1} — G which sends (g,—1) to g and (g,1) to sg. We can identify the
first boundary map of C,(Cs(GQ)) ®za N (G)

c1: C1(Cs(@)) @76 N(G) = Co(Cs(@)) @z N(G)
with

Pl PNG - N(@G),
sES sES
where [ is the natural left action of CG on N(G) and e is the unit element of G.

Lemma 7.1. Let G be a finitely generated group and let X be a connected free right G-CW-
complex of finite type. Then for any finite set S of generators of G, we have F (X) ~,, F1(Cs(G)).
In particular Fi(G) is defined as F;(Cs(G)) up to weakly dilatational equivalence.
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Proof. This is clear since it is known Fi-(X) and Fi-(Cs(G)) are dilatationally equivalent (]9,
Lemma 2.45, Theorem 2.55. (1)]). O

Remark 7.2. Let G be a finitely generated group with a finite set S of generators. Then we have
Fi(Cs(@)(\) = FL(Cs(@))(A2?). In particular F2(G) is defined as F2(Cs(G)) up to weakly
dilatational equivalence.

We can assume that S is symmetric, that is, s € S implies s~! € S and S does not contain
the unit element of G. We will recall symmetric simple random walk on Cs(G). The probability

distribution is S - g
) - ifges,
pS-G%[Oal]agH{O 1fg¢S

Thus the transition probability operator is
PS—Z|S| G) = I*(G),

in particular, we can confirm

1
Ps =id 2|S|@l” @l” =id— 2|S|A

Then for n € Z>¢
ps(n) = try @) P§
is the probability of return after n steps for the random walk on the Cayley graph. It is clear that
ps(n) onn € 2Z>( is a non-increasing function. we define ¢5(n) := ps(2n) and we extend it to the
positive real axis by linear interpolation. We will use the same notation for the original function
and its extension.
A proof for the following can be found in [14].

Lemma 7.3. Let G be a finitely generated group with a finite symmetric set S of generators.
Then we have ¢g5 ~,, 05 (Cs(G)).

Proof. We denote p := ps, F(\) := F(Cs(G))(2|S|)\), ¢ := ¢s and 0 := 0p. Since p(2n + 1) =
f[o 2](1 — A2 LdF () > 0, we have

o< [ @-NTHaEO < [ (- aPaE) <
(1,2] [0,1]

< / (1= N2 dF(\) < / exp(—2nA)dF(A) < 6(2n).
[0,1] [0,1]
Hence we have

p(n+1)=p2n+2) = /[0 2](1 —\)?"T2dF(N)

- / (1= N224FP () + / (1= N2 24F(N)
[0,1] [1,2]
< / (1—N)*"T2dF(\) — / (1 =N dF(\) < 6(2n +2) +6(2n) < 20(2n).
[0,1] [1,2]

Also we have

0(4n) = /[0 . exp(—4nA\)dF(\) = /[0 U exp(—4nA)dF(\) + /[1/2 ) exp(—4nA\)dF (\)

< / exp(—4n\)dF(\) + exp(—2n)/ dF(\)
[0,1/2] [1/2,2]

< /[0 o exp(—4nX\)dF(\) + exp(—2n)F(2) < ¢(n) + exp(—2n)F(2).
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We get the following by Theorem 2.18.

Corollary 7.4. In particular ¢(G) is defined as ¢g up to weakly dilatational equivalence indepen-
dent of S.

Compare the proof in [14].
By using the above corollaries, we can add the following (5), (6), (7) and so on for [9, Lemma
2.46).

Corollary 7.5. Let G be an infinite finitely generated group. The following are equivalent. (1)
G is a virtually a-nilpotent group. (2) a;(G) = a, (3) G has polynomial growth of volume and
the degree of the growth rate is a, (4) ¢(G) ~u t=%2, (5) Fi(G) ~uw X%, (6) FX(G) ~u A2, (7)
O (G) =y t—/2.

Here the group H is a-nilpotent if H is a nilpotent group with a lower central series H = H; D
Hy D .- D H; = {e} such that a = Ef:_ll id;, where d; is the rank of H;/H; ;.

We note that we can use ~ instead of ~,,. See [13, Theorem 1.1] about secondary Novikov-Shubin
invariants.
Also we get the following by Remark 3.9.

Corollary 7.6. Let G be a finitely generated group with a finite symmetric set S of generators
and N be a free proper G cocompact Riemannian manifold without boundary. Then we have

$(G) = 05 (N).
Compare [14].

Lemma 7.7. Let G be a discrete group and {G, }j € J be a directed set of all of finitely generated
subgroups of G. Then Fi(G) is a directed family of density functions {F1(G;)},c; up to weakly
dilatational equivalence.

Proof. Since Proposition 6.11 and C ®&cg; N(Gj) ®n(a,) N(G) = C &cg; N(G), F(C ®cg,
N(G;)) ~w F(C ®cg, N(G)). Thus we will prove F(C ®ce N(G)) ~u {F(C ®cq, N(G))}J.GJ.
We have a natural surjective homomorphism N(G) — C ®ce N(G). Moreover this factorize
C ®ca; N(G) for any j € J. Thus C ®cq N(G) = limje; C ®cg; N(G). Theorem 6.3 implies
F(C®ce N(G)) ~uw {F(C®cq, N(G))} O

jeJ*
In particular F(G) is defined as a directed family of density functions {FOA (Gj)}jEJ up to weakly

dilatational equivalence.
We get the following by Theorem 4.7.

Corollary 7.8. Let G be a discrete group and {Gj}]. € J be a directed set of all of finitely
generated subgroups of G. Then ¢(G) is defined as a directed family of © {¢(G;)} up to
weakly dilatational equivalence.

Theorem 7.9. Let G and G’ be discrete groups. If G’ is a subgroup of G, then ¢(G) <., ¢(G’).

JjedJ

Proof. We have a natural surjective homomorphism C @cgr N (G) = C ®ce N(G). Then we use
Theorem 4.7 and Lemma 6.5. d

Theorem 7.10. Let G and G’ be discrete groups. If G' is a quotient group of G, then ¢(G) <,
P(G").
Proof. We write this quotient map r. For any finitely generated subgroup G;-, of G', we take a

finitely generated subgroup G of G such that r(G;) = G;-,. Moreover we take a finite symmetric set
S; of generators of G; and write S}, =r(S;). Then Pg = r(Pg; ). Thus we get ps;(n) < pg, (n).

In particular ¢(G;) <w ¢(GY/). Also we have ¢(G) <., ¢(G;). O
We get the following by Theorem 4.7 and Corollary 8.11.
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Theorem 7.11. If G and G’ are quasi-isometric groups, then ¢(G) ~,, ¢(G').

See Definition 8.7 about the definition of quasi-isometric. If G and G' are finitely generated groups,
then these three theorem are known in [14].

8. SPECTRAL DENSITY FUNCTIONS OF GENERAL DISCRETE GROUPS

In this section we give a stronger statement (Corollary 8.9 and Corollary 8.10) than [15, Theorem
4.24]. Hence this section depends on [15] and [16]. We recall the definition of weak orbit equivalence.

Definition 8.1. For ¢ = 1,2 standard actions G; ~ (X;, u;), that is, essentially free measure-
preserving Borel actions of GG; on standard probability spaces (X;, u;) are called weakly orbit
equivalent, if there are Borel subsets A; C X; with positive measure meeting almost every orbit
and a Borel isomorphism f : A; — A, which preserves the normalized measures on A; and satisfies
f(Giz1NAy) = Gaf(xz1)N Ay for almost all z; € A;. The map f is called a weak orbit equivalence.

Remark 8.2. In the above definition two pairs of von Neumann algebras L>(A4;) C xa, N (X1 %
G1)xa, and L (A2) C xa,N (X2 x G2)xa, are isomorphic preserving normalized traces.

We recall the definition of cocycles of a weak orbit equivalence.

Definition 8.3. Let f: A; — A, be a weak orbit equivalence between the standard actions G; ~
X, fori = 1,2. The Borel mapping o from the subset {(g1,a1); 91 € G1,a1 € AlﬂgflAl} C GixA4;
to G2, determined up to null-sets by the condition f(g1a1) = o(g1,a1)f(a1) is called the cocycle
of f. We say that o is essentially bounded, if for each g; € G the restriction U|g1X(Amg;1A1) is
essentially bounded.

We recall the definition of bounded weak orbit equivalence.

Definition 8.4. The standard actions G; ~ X; for i = 1,2 are called boundedly weakly orbit
equivalent if there is a weak orbit equivalence f : A; — A, with the following additional properties:
(1) There are finite subsets F; € G;, satisfying X; = F; A; up to null-sets.

(2) The cocycles of f and f~! are essentially bounded.

Remark 8.5. In the above definition two pairs of algebras L>(A1) C xa, (L™(X1) Xaig G1)x 4,
and L (Az2) C xa,(L®(X2)Xa1gG2)x 4, areisomorphic. Also L™ (X;) X a1,G; and x4, (L™ (X;) Xalg
G;)x 4, is Morita equivalent because x 4, is a full projection in L*(X;) Xq14 Gi.

We recall the definitions of measure equivalence and boundedly measure equivalence.

Definition 8.6. The countable groups G; for ¢ = 1,2 are measure equivalent if there exist standard
actions G; ~ X; that are weakly orbit equivalent. Further, G; are boundedly measure equivalent
if there are boundedly weakly orbit equivalent standard actions G; ~ Xj;.

This definition is equivalent to usual one (see [15, Theorem 2.33, Remark 2.34.]).
We use the next definition of quasi-isometry.

Definition 8.7. Let (G; and G5 be discrete groups. They are quasi-isometric if they have their
topological coupling 2. Here () is their topological coupling if €2 is a locally compact space on
which G; and G2 act commuting continuously and each action is proper and cocompact.

If G; and G» are finitely generated, then this definition is equivalent to the usual definition of
quasi-isometry about word metrics ([4], [15, Theorem 2.14]) Also boundedly measure equivalent
imply quasi-isometric ([15, Lemma 2.25]).

Theorem 8.8. If G; and G5 are boundedly measure equivalent groups, then
H,(G1, N(G1)) @n(a) N (X1 % G1) @n(x,nay) N (X1 X Gr)xa,
= Hp (G2, N(G2)) @) N (X X G2) @pnr(xy0G,) N (X @ Ga)xa,.
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Proof. We take a projective resolution P! of CG;-module C. Then P! ®cg, L°(X;) Xy G;
is a projective resolution of L>(X;) X4, G;-module L>(X;). Moreover P! ®cg, L>(X;) Xaiy
Gi ®Opoo(X)xar,0: L°(Xi) Xatg Gixa;, = = P! ®cq, L=(X;) Xay Gixa, is a projective resolution
of x4,L>®(X;) Nag Gixa,-module L*(A;) since xa,L>*(X;) Xag Gixa, and L>®(X;) X4 G; are
Morita equivalent (Remark 8.5). Hence P! @cg, N (X; ¥ Gi)xa, fori = 1,2 as x4,V (X; X G;)xa,-
chain complexes are homotopy equivalent by Remark 8.2. Hence H,(G1,N(Xi % Gi)xa,) =
H,(Gy,N(X> ><1G2)XA2) Moreover Hence H, (G, N (XixGi)xa;) = Hy(Gi, N(XixGi))®n(x, 161
N(Xi xGi)xa, = Hp(Gi, N(Gi) @n(c) N (Xi ¥ Gi) @pr(x:maa) N (Xi @ Gi)xa, because N'(G;) C
N(X; x G;) are faithfully flat functor ([9, p.253]) and NV (X; x G;) and xa,N(X; X Gi)xa, are
Morita equivalent. |

We have the following by Theorem 5.6, Proposition 6.11 and Proportion 6.12.
Corollary 8.9. If G; and GG are boundedly measure equivalent groups, then
tHy(G1, N(G1)) ®n(ay) N (X1 % G1) @nxyxay) N (X1 % Gr)xa,

= tHy (G2, N(G2)) @n(Ga) N (X2 X G2) Opr(Xs062) N (X2 % Ga)Xa,-
In particular F,(G1) and F,(G>) for all p > 0 are weakly dilatationally equivalent and also their
Novikov-Shubin type capacities coincide.

If G; and G are quasi-isometric amenable groups, then they are boundedly measure equivalent
([15, Theorem 2.38]). Hence we get the following.

Corollary 8.10. Let G; and G2 be quasi-isometric amenable groups. Then F,(G1) ~y Fp(G2)
for any p > 0. In particular their Novikov-Shubin type capacities coincide.

We have the following because G is a non-amenable group if and only if Hy(G, N(G)) =0 (]9,
p.448]).

Corollary 8.11. If G; and G are quasi-isometric groups, then
Ho(G1,N(G1)) @n(ay) N (X1 X G1) On(x, wan) N (X1 X Gi)xa,

= Hy(Go, N(G2)) Onr(as) N (X X Ga) @nr(xauas) N (Xo X Ga)xa,
and
tHo(G1,N(G1)) @nr(ay) N (X1 % G1) @arx,may) N (X1 X Gr)xa,
= tH, (G2, N (G2)) On(ao) N (Xa X Ga) @pr(xanaa) N (X2 ¥ G2)X 4,
In particular Fy (G;) and Fy (G2) are weakly dilatationally equivalent and also their Novikov-Shubin
type capacities coincide.

Gaboriau showed that L(?)-Betti numbers for measure equivalent discrete groups proportionally
coincide (see [2]). On the other hand L(*)-Betti numbers of groups are not invariant under quasi-
isometry. However whether the p-th L(?)-Betti numbers of finite type groups vanish or not is
invariant under quasi-isometry, where a group is finite type if its classifying space BG can be
taken as a CW-complex of finite type. Moreover whether the p-th Novikov-Shubin invariants
of finite type groups are oot or not is invariant under quasi-isometry (see [3, Section 11]).
particular whether a finite type group satisfies a topological version of the zero-in-the-spectrum
conjecture ([12]) or not is quasi-isometric invariant property. Finally we give some questions.

Question 8.12.

(1) Is whether the p-th L()-Betti numbers of general groups vanish or not invariant under quasi-
isometry?

(2) Is whether the p-th Novikov-Shubin type capacities of general groups are 0~ or not invariant
under quasi-isometry?

(3) Is whether a group satisfies an algebraic version of the zero-in-the-spectrum conjecture or not
invariant under quasi-isometry?

(4) Are p-th spectral density functions of general groups invariant under quasi-isometry up to
weakly dilatational equivalence?
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Gromov indicates that Novikov-Shubin invariants of a certain class of groups may be invariant
under quasi-isometry ([4, p.241]), but it is still open for finite type groups and so on.

(1]
2]
(3]
(4]

(10]

(11]
(12]
13]
14]
[15]

[16]
(17]

REFERENCES

A. V. Efremov, Cell decompositions and the Novikov-Shubin invariants. (Russian) Uspekhi Mat. Nauk 46
(1991), no. 3(279), 189-190; translation in Russian Math. Surveys 46 (1991), no. 3, 219-220

D. Gaboriau, Invariants [2 de relations d’equivalence et de groupes. (French) [I2
relations and groups] Publ. Math. Inst. Hautes Etudes Sci. No. 95 (2002), 93-150.
S. M. Gersten, Bounded cohomology and combings of groups, preprint, Univ. of Utah, available at
ftp://ftp.math.utah.edu/u/ma/gersten/bdd.dvi.Z.

M. Gromov, Asymptotic invariants of infinite groups. Geometric group theory, Vol. 2 (Sussex, 1991), 1-295,
London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993.

M. Gromov; M. A. Shubin, von Neumann spectra near zero. Geom. Funct. Anal. 1 (1991), no. 4, 375-404.

J. Lott; W. Liick, L2-topological invariants of 3-manifolds. Invent. Math. 120 (1995), no. 1, 15-60.

W. Liick, L2-torsion and 3-manifolds. Low-dimensional topology (Knoxville, TN, 1992), 75-107, Conf. Proc.
Lecture Notes Geom. Topology, III, Internat. Press, Cambridge, MA, 1994.

W. Liick, Hilbert modules and modules over finite von Neumann algebras and applications to LZ-invariants.
Math. Ann. 309 (1997), no. 2, 247-285.

W. Liick, I2-invariants: theory and applications to geometry and K-theory. Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related
Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 44. Springer-Verlag, Berlin, 2002. xvi+595 pp.
W. Liick; H. Reich; T. Schick, Novikov-Shubin invariants for arbitrary group actions and their positivity. Tel
Aviv Topology Conference: Rothenberg Festschrift (1998), 159-176, Contemp. Math., 231, Amer. Math. Soc.,
Providence, RI, 1999.

W. Liick; T. Schick, L2-torsion of hyperbolic manifolds of finite volume. Geom. Funct. Anal. 9 (1999), no. 3,
518-567.

S. Oguni, The group homology and an algebraic version of the zero-in-the-spectrum conjecture. to appear in
J. Math. Kyoto Univ.

S. Oguni, Secondary Novikov-Shubin invariants of groups and quasi-isometry. J. Math. Soc. Japan 59 (2007),
no. 1, 223-237.

C. Pittet; L. Saloff-Coste, On the stability of the behavior of random walks on groups. J. Geom. Anal. 10
(2000), no. 4, 713-737.

R. Sauer, L2-Invariants of Groups and Discrete Measured Groupoids. Dissertation, Universitit Miinster, 2003.
R. Sauer, Homological invariants and quasi-isometry. Geom. Funct. Anal. 16 (2006), no. 2, 476-515.

L. Va3, Torsion theories for finite von Neumann algebras. Comm. Algebra 33 (2005), no. 3, 663—688.

-invariants of equivalence

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KYOTO UNIVERSITY KYOTO 606-8502 JAPAN
E-mail address: oguni@math.kyoto-u.ac.jp



