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1. Introduction

We calculated certain generalized Samelson products of Sp(2) and give two ap-
plications.

One is the classification of homotopy types of gauge groups. Let G be a compact
Lie group, π : P → B a principal G-bundle over a finite complex B. We denote by
G(P ), the group of G-equivariant self maps covering the identity map of B. G(P )
is called the (topological) gauge group of P . In [CS] M.Crabb and W.Sutherland
prove as P ranges over all principal G-bundles over B, the number of homotopy
types of G(P ) is finite if B is connected and G is a compact connected Lie group.
In some situations, exact number of homotopy types are calculated ([K], [HK2]).

In this paper we show the following:

Theorem 1.1. Denote by ε′7 a generator of π7(Sp(2)) ∼= Z and by Gk the gauge
group of principal Sp(2) bundle over S8 classified by kε′7. Then Gk ' Gk′ if and
only if (140, k) = (140, k′).

The other application is on the homotopy commutativity of Sp(2) localized at
3.

Theorem 1.2 (cf. [M]). Sp(2)(3) is homotopy commutative.

2. Notation

Here we give some notation and facts which we use throughout this note.
We use the same symbol c′ for the inclusion Sp(n) ↪→ U(2n) ↪→ U(2n + 1), the

complexifications BSp(∞) → BU(∞) and BSp(n) → BU(2n + 1).
Let Wn = U(∞)/U(n), Xn = Sp(∞)/Sp(n), and c̄′ : Xn → W2n+1. Then we

have the following commutative diagram of fibration sequences

Sp(∞)
p′

//

c′

²²

Xn
i′ //

c̄′

²²

BSp(n) //

c′

²²

BSp(∞)

c′

²²
U(∞)

p // W2n+1
// BU(2n + 1) // BU(∞)
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Let σ be the cohomology suspension. Those facts listed below are well known:

H∗(BU(∞)) = Z[c1, c2, . . .]
H∗(BSp(∞)) = Z[q1, q2, . . .]

H∗(W2n+1) =
∧

(x′
4n+3, x

′
4n+5, . . .)

H∗(Xn) =
∧

(y′
4n+3, y

′
4n+7, . . .)

c′
∗(c2j) = (−1)jqj , c

′∗(c2j+1) = 0
p∗(x′

4n+2j−1) = σ(c2n+j) = x4n+2j−1

p′
∗(y′

4n+4j−1) = σ(qn+j) = y4n+4j−1

c̄′
∗(x′

4n+4j−1) = (−1)n+jy′
4n+4j−1, c̄′

∗(x′
4n+4j−3) = 0

Let a4n+2j = σ(x′
4n+2j+1), b4n+4j−2 = σ(y′

4n+4j−1) so that

H∗(ΩW2n+1) = Z{a4n+2, . . . , a8n+2}, (∗ ≤ 8n + 2)
H∗(ΩXn) = Z{b4n+2, . . . , b8n+3}, (∗ ≤ 8n + 3).

We need the following Lemma which gives information on Ωp′.

Lemma 2.1. For a map α : Σ2X → BSp(∞), we have(
Ωc̄′ ◦ Ωp′ ◦ σ2α

)∗
(a4n+4j−2) = −(2n + 2j − 1)!σ2(ch2n+2j(c′(α)))

Proof. Use the equality (Ωp)∗σ(x4n+4j−1) = (2n + 2j − 1)!ch2n+2j in [HK1]. ¤

Precisely following the method in [HK1], we have the following Lemma [N].

Lemma 2.2. There is a lift γ̃′ of the commutator map γ′ : Sp(n) ∧ Sp(n) →
Sp(n) such that δ′ ◦ γ̃′ = γ′ where δ′ = Ωi′ : ΩXn → Sp(n) and γ̃′∗(b4n+4k−2) =∑

i+j=n+k y4i−1 ⊗ y4j−1.

Now we specialize to the case when n = 2.
Let A = Sp(2)(7) = S3 ∪ e7 and ε̂ : A ↪→ Sp(2). Define two maps

a : ΣA ⊂ ΣSp(2)
Ad(1)−−−−→ BSp(2) → BSp(∞) and

b : ΣA
π−→ S8 Ad(ε′7)−−−−→ BSp(2) → BSp(∞), where π is the projection.

Then we have

ch(c′(a)) = Σu3 −
1
6
Σu7(1)

ch(c′(b)) = −2Σu7,(2)

where u3 = ε̂∗(y3) (resp. u7 = ε̂∗(y7)) is a generator of H3(A; Z) ' Z (resp.
H7(A; Z) ' Z).

Using the short exact sequence

0 = ˜KSp
0
(S5) → ˜KSp

0
(S8) → ˜KSp

0
(ΣA) → ˜KSp

0
(S4) → ˜KSp

0
(S7) = 0,

we have

Lemma 2.3. ˜KSp
0
(ΣA) = Z ⊕ Z is generated by a and b.
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3. The order of the Samelson product
〈
ε′7, 1Sp(2)

〉
∈ [S7 ∧ Sp(2), Sp(2)]

First we consider the order of the Samelson product 〈ε′7, ε̂〉 ∈ [S7 ∧ A,Sp(2)].

Lemma 3.1. [Σ7A,ΩX2] ' Z ⊕ Z.

Proof. Recall that dim(Σ7A) = 14,ΩX2 = S10 ∪ e14 ∪ e18 · · · . Let F be the
homotopy fiber of the inclusion S11 ↪→ X2. Then since

0 = π15(S11) → π14(ΩX2) → π14(F ) ' Z
is exact, we have π14(ΩX2) ' Z. Apply this to the following exact sequence

Z/2 ' π11(ΩX2) → π14(ΩX2) → [Σ7A,ΩX2] → π10(Y ) ' Z.

¤
Definition 3.2. For α ∈ [Σ7A,ΩX2], define λ(α) = (λ1(α), λ2(α)) ∈ Z⊕Z , where
(Ωc̄′ ◦ α)∗(a10) = λ1(α)Σ7u3 and (Ωc̄′ ◦ α)∗(a14) = λ2(α)Σ7u7.

Lemma 3.3. λ : [Σ7A,ΩX2] → Z ⊕ Z is a homomorphism and monic.

Proof. The map ξ = y′
11×y′

15 : X2 → K(Z, 11)×K(Z, 15) induces a 18 equivalence
ξ(0) : (X2)(0) → K(Q, 11) × K(Q, 15). Since dimΣ7A = 14,

(Ωξ(0))∗ : [Σ7A, (ΩX2)(0)] → H10(ΣA; Q) ⊕ H14(ΣA; Q)

is an isomorphism. By the commutative diagram

[Σ7A,ΩX2]
(Ωξ)∗ //

²²

H10(ΣA) ⊕ H14(ΣA)

²²
[Σ7A,ΩX2](0) [Σ7A, (ΩX2)(0)]

(Ωξ(0))∗

// H10(ΣA; Q) ⊕ H14(ΣA; Q),

we have the lemma since [Σ7A,ΩX2] is free and λ = (Ωξ)∗. ¤

Let D ∈ ˜KSp
0
(S8) ' Z be a generator. Then we have ch(c′(D)) = v8, where v8

is a generator of H8(S8; Z).
Consider the following diagram

ΩSp(∞)

Ωp′

²²
ΩX2

Ωc̄′ //

δ

²²

ΩW5

S7 ∧ A
ε′7∧ε̂// Sp(2) ∧ Sp(2).

γ̃′
77oooooooooooo

γ′
// Sp(2)

Lemma 3.4. γ′ ◦ (ε′7 ∧ ε̂) has order 140.

Proof. Put γ1 = γ̃′ ◦ (ε′7 ∧ ε̂), α1 = (Ωp′)∗(σ2(D⊗̂a)) and β1 = (Ωp′)∗(σ2(D⊗̂b)).
Recall that

c̄′
∗(a10) = −b10, c̄′

∗(a14) = b14

γ̄′∗(b10) = y3 ⊗ y7 + y7 ⊗ y3

γ̄′∗(b14) = y3 ⊗ y11 + y7 ⊗ y7 + y11 ⊗ y3

(ε′7)
∗(y7) = 12v7.
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Hence we have λ(γ1) = (−12, 12).
By Lemma 2.1, we have λ(α1) = (−5!, 7!

6 ), λ(β1) = (0, 2 · 7!). Since λ is monic
and λ(140γ1 − 14α1 + β1) = 0 we get 140γ1 = 14α1 − β1.

Consider the following exact sequence

0 → Im(Ωp′)∗ → [Σ7A,ΩX2]
δ−→ [Σ7A, Sp(2)].

This shows that 140γ′ ◦ (ε′7 ∧ ε̂) = 140δ ◦ γ1 = 14δ ◦ α1 − δ ◦ β1 = 0. ¤
Proposition 3.5. The order of the Samelson product

〈
ε′7, 1Sp(2)

〉
is 140.

Proof. Since the attaching map of the top cell of Sp(2) become trivial after double

suspension, there exists a map i : S17 → Σ7Sp(2) such that S17 ∨ Σ7A
i∨Σ7 ε̂−−−−→

Σ7Sp(2) is a homotopy equivalence. Hence we only have to show that 140γ2 = 0,
where γ2 = γ′ ◦ (ε′7 ∧ 1Sp(2)) ◦ i : S17 → Sp(2).

Let ε7 ∈ π7(SU(4)) ' Z be a generator. Since c′∗(ε
′
7) = 2ε7, we have the following

commutative diagram

Sp(2) ∧ Sp(2)
γ′

//

c′∧c′

²²

Sp(2)

c′

²²
S7 ∧ Sp(2)

ε′7∧1
66nnnnnnnnnnnn

2ε7∧c′// SU(4) ∧ SU(4)
γ // SU(4)

,

where γ : SU(4) ∧ SU(4) → SU(4) is the commutator.
Consider the map of fibrations

S3

²²

// Sp(2)

c′

²²

p′

""FFFFFFFF

S7

SU(3) // SU(4)

p
<<xxxxxxxx

By the above diagram, we have p′ ◦ γ2 = p ◦ c′ ◦ γ2 = 2p ◦ γ ◦ (ε7 ∧ c′). Since

p′∗ : Z/8 ⊕ Z/5 ' π17(Sp(2)) → π17(S7) ' Z/24 ⊕ Z/2

induces an injection on 2-primary part by Mimura-Toda [MT], we have 20γ2 =
0. ¤
Proof of Theorem 1.1. By [AB], the classifying space BG(P ) of the gauge group
of a principal G-bundle P over a finite complex B, is homotopy equivalent to
MapP (B,BG), the connected component of maps from B to BG containing the
classifying map of P . Consider the fibre sequence arose from the evaluation fibration

Gk → Sp(2) αk−−→ Map∗
kε′7

(S8, BSp(2)) → Mapkε′7
(S8, BSp(2)) ek−→ BSp(2).

By Lang [L] Map∗
kε′7

(S8, BSp(2)) is homotopy equivalent to Map∗
0(S8, BSp(2))

and αk can be identified with
〈
1Sp(2), kε7

〉
= k

〈
1Sp(2), ε7

〉
in

[Sp(2),Map∗
0(S

8, BSp(2))] ∼= [Σ8BSp(2), BSp(2)] ∼= [Σ7Sp(2), Sp(2)],

where ε7 is the adjoint of ε′7 and 〈, 〉 denotes the Samelson product.
Previous Proposition and the method in [HK2] completes the proof. ¤
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4. The order of the Samelson product
〈
1Sp(2), 1Sp(2)

〉
In [M] McGibbon shows that Sp(2)(3) is homotopy commutative. Here we give

another proof of this fact.
Denote the mod 3 reduction of y′

4j+3 (j ≥ 2) by the same symbol. Then we
have H∗(X2; Z/3) =

∧
(y′

11, y
′
15, y

′
19, . . .) and P1y′

11 = ±y′
15. Let E be the homotopy

fiber of ρβP1u11 : K(Z(3), 11) → K(Z(3), 16), where ρ is mod 3 reduction and u11

is a generator of H11(K(Z(3), 11), Z/3). Since P1y′
11 = ±y′

15 and βP1y′
11 = 0, the

map y′
11 : (ΩX2)(3) → K(Z(3), 11) lifts to a 17 equivalence f : (ΩX2)(3) → E. Since

dim(A ∧ A) = 14,

(Ωf)∗ : [A ∧ A, (ΩX2)(3)] → [A ∧ A,ΩE]

is an isomorphism of groups. Consider the following exact sequence:

H9(A∧A; Z(3)) → H14(A∧A; Z(3)) → [A∧A,ΩE] → H10(A∧A, Z(3)) → H15(A∧A; Z(3)).

Since Hk(A ∧ A; Z(3)) =
{

0 k = 9, 15
Z(3) k = 10, 14,

we have [A ∧ A,ΩE] ' Z(3) ⊕ Z(3).

Define λ̃ : [A ∧ A, (ΩX2)(3)] → (Z(3))3 by λ̃(α) = (λ̃1(α), λ̃′
1(α), λ̃2(α)) where

α∗(Ωc′)∗(a10) = λ̃1(α)u3 ⊗ u7 + λ̃′
1(α)u7 ⊗ u3 and α∗(Ωc′)∗(a14) = λ̃2(α)u7 ⊗ u7

for α ∈ [A ∧ A, (ΩX2)(3)]. Since λ̃(0) : [A ∧ A, (ΩX2)(3)] → (Q)3 is an isomorphism
(see section 3), λ̃ is monic.

It is not hard to show c′ : ˜KSp(Σ2A∧A)(3) → K̃(Σ2A∧A)(3) is an isomorphism.
Therefore we may consider a⊗̂a, a⊗̂b + b⊗̂a ∈ ˜KSp(Σ2A ∧ A)(3).

Put α1 = 6
5! (Ωp′)∗(σ2(a⊗̂a)) and α2 = 9

2·6! (Ωp′)∗(σ2(a⊗̂b+ b⊗̂a)).Then α1, α2 ∈
[A ∧ A,ΩX2](3). Using equalities ch(c′(a)) = Σu3 − 1

6Σu7 and ch(c′(b)) = −2Σu7,
we can easily show

λ̃(α1) = (1, 1,−7), λ̃(α2) = (3, 3,−42).

By the same method as in the proof of Lemma 3.4, we have

λ̃(γ̃′ ◦ (ε̂ ∧ ε̂)) = (−1,−1, 1).

Since λ̃(γ̃′ ◦ (ε̂ ∧ ε̂) + α1 + 2
7 (3α1 − α2)) = 0 and λ̃ is monic, we have

Lemma 4.1. γ′ ◦ (ε̂ ∧ ε̂) = 0 in [A ∧ A,Sp(2)](3).

Proof of Theorem 1.2 . Since ΣA ↪→ ΣSp(2) has a retraction. Therefore we have to
show that the generalized Whitehead product ΣA ∧ ΣA → BSp(2) vanish. Taking
the adjoint, previous Lemma completes the proof. ¤
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