SAMELSON PRODUCTS IN Sp(2)

HIROAKI HAMANAKA, SHIZUO KAJI, AND AKIRA KONO

1. INTRODUCTION

We calculated certain generalized Samelson products of Sp(2) and give two applications.

One is the classification of homotopy types of gauge groups. Let G be a compact Lie group, $\pi: P \to B$ a principal G-bundle over a finite complex B. We denote by $\mathcal{G}(P)$, the group of G-equivariant self maps covering the identity map of B. $\mathcal{G}(P)$ is called the (topological) gauge group of P. In [CS] M.Crabb and W.Sutherland prove as P ranges over all principal G-bundles over B, the number of homotopy types of $\mathcal{G}(P)$ is finite if B is connected and G is a compact connected Lie group. In some situations, exact number of homotopy types are calculated ([K], [HK2]).

In this paper we show the following:

Theorem 1.1. Denote by ϵ'_7 a generator of $\pi_7(Sp(2)) \cong \mathbb{Z}$ and by \mathcal{G}_k the gauge group of principal Sp(2) bundle over S^8 classified by $k\epsilon'_7$. Then $\mathcal{G}_k \simeq \mathcal{G}_{k'}$ if and only if (140, k) = (140, k').

The other application is on the homotopy commutativity of Sp(2) localized at 3.

Theorem 1.2 (cf. [M]). $Sp(2)_{(3)}$ is homotopy commutative.

2. NOTATION

Here we give some notation and facts which we use throughout this note.

We use the same symbol c' for the inclusion $Sp(n) \hookrightarrow U(2n) \hookrightarrow U(2n+1)$, the complexifications $BSp(\infty) \to BU(\infty)$ and $BSp(n) \to BU(2n+1)$.

Let $W_n = U(\infty)/U(n), X_n = Sp(\infty)/Sp(n)$, and $\overline{c}' : X_n \to W_{2n+1}$. Then we have the following commutative diagram of fibration sequences

$$Sp(\infty) \xrightarrow{p'} X_n \xrightarrow{i'} BSp(n) \longrightarrow BSp(\infty)$$

$$\downarrow^{c'} \qquad \downarrow^{\bar{c}'} \qquad \downarrow^{c'} \qquad \downarrow^{c'} \qquad \downarrow^{c'}$$

$$U(\infty) \xrightarrow{p} W_{2n+1} \longrightarrow BU(2n+1) \longrightarrow BU(\infty)$$

Date: May 8, 2007.

Let σ be the cohomology suspension. Those facts listed below are well known:

$$\begin{aligned} H^*(BU(\infty)) &= \mathbb{Z}[c_1, c_2, \ldots] \\ H^*(BSp(\infty)) &= \mathbb{Z}[q_1, q_2, \ldots] \\ H^*(W_{2n+1}) &= \bigwedge (x'_{4n+3}, x'_{4n+5}, \ldots) \\ H^*(X_n) &= \bigwedge (y'_{4n+3}, y'_{4n+7}, \ldots) \\ c'^*(c_{2j}) &= (-1)^j q_j, c'^*(c_{2j+1}) = 0 \\ p^*(x'_{4n+2j-1}) &= \sigma(c_{2n+j}) = x_{4n+2j-1} \\ p'^*(y'_{4n+4j-1}) &= \sigma(q_{n+j}) = y_{4n+4j-1} \\ \bar{c'}^*(x'_{4n+4j-1}) &= (-1)^{n+j} y'_{4n+4j-1}, \quad \bar{c'}^*(x'_{4n+4j-3}) = 0 \\ \end{aligned}$$
Let $a_{4n+2j} = \sigma(x'_{4n+2j+1}), \quad b_{4n+4j-2} = \sigma(y'_{4n+4j-1})$ so that

$$\begin{aligned} H^*(\Omega W_{2n+1}) &= \mathbb{Z}\{a_{4n+2}, \dots, a_{8n+2}\}, \quad (* \le 8n+2) \\ H^*(\Omega X_n) &= \mathbb{Z}\{b_{4n+2}, \dots, b_{8n+3}\}, \quad (* \le 8n+3). \end{aligned}$$

We need the following Lemma which gives information on $\Omega p'$.

Lemma 2.1. For a map $\alpha : \Sigma^2 X \to BSp(\infty)$, we have

$$\left(\Omega\bar{c}'\circ\Omega p'\circ\sigma^{2}\alpha\right)^{*}(a_{4n+4j-2}) = -(2n+2j-1)!\sigma^{2}(ch_{2n+2j}(c'(\alpha)))$$

Proof. Use the equality $(\Omega p)^* \sigma(x_{4n+4j-1}) = (2n+2j-1)!ch_{2n+2j}$ in [HK1]. \Box

Precisely following the method in [HK1], we have the following Lemma [N].

Lemma 2.2. There is a lift $\tilde{\gamma}'$ of the commutator map $\gamma' : Sp(n) \wedge Sp(n) \rightarrow Sp(n)$ such that $\delta' \circ \tilde{\gamma}' = \gamma'$ where $\delta' = \Omega i' : \Omega X_n \rightarrow Sp(n)$ and $\tilde{\gamma'}^*(b_{4n+4k-2}) = \sum_{i+j=n+k} y_{4i-1} \otimes y_{4j-1}$.

Now we specialize to the case when n = 2. Let $A = Sp(2)^{(7)} = S^3 \cup e^7$ and $\hat{\epsilon} : A \hookrightarrow Sp(2)$. Define two maps

$$a: \qquad \Sigma A \subset \Sigma Sp(2) \xrightarrow{Ad(1)} BSp(2) \to BSp(\infty) \text{ and}$$
$$b: \quad \Sigma A \xrightarrow{\pi} S^8 \xrightarrow{Ad(\epsilon_7')} BSp(2) \to BSp(\infty), \text{ where } \pi \text{ is the projection.}$$

Then we have

(1)
$$ch(c'(a)) = \Sigma u_3 - \frac{1}{6}\Sigma u_7$$

(2)
$$ch(c'(b)) = -2\Sigma u_7,$$

where $u_3 = \hat{\epsilon}^*(y_3)$ (resp. $u_7 = \hat{\epsilon}^*(y_7)$) is a generator of $H^3(A; \mathbb{Z}) \simeq \mathbb{Z}$ (resp. $H^7(A; \mathbb{Z}) \simeq \mathbb{Z}$).

Using the short exact sequence

$$0 = \tilde{KSp}^0(S^5) \to \tilde{KSp}^0(S^8) \to \tilde{KSp}^0(\Sigma A) \to \tilde{KSp}^0(S^4) \to \tilde{KSp}^0(S^7) = 0,$$

we have

Lemma 2.3. $\tilde{KSp}^0(\Sigma A) = \mathbb{Z} \oplus \mathbb{Z}$ is generated by a and b.

3. The order of the Samelson product $\langle \epsilon'_7, 1_{Sp(2)} \rangle \in [S^7 \wedge Sp(2), Sp(2)]$

First we consider the order of the Samelson product $\langle \epsilon'_7, \hat{\epsilon} \rangle \in [S^7 \wedge A, Sp(2)].$

Lemma 3.1. $[\Sigma^7 A, \Omega X_2] \simeq \mathbb{Z} \oplus \mathbb{Z}.$

Proof. Recall that $\dim(\Sigma^7 A) = 14, \Omega X_2 = S^{10} \cup e^{14} \cup e^{18} \cdots$. Let F be the homotopy fiber of the inclusion $S^{11} \hookrightarrow X_2$. Then since

$$0 = \pi_{15}(S^{11}) \to \pi_{14}(\Omega X_2) \to \pi_{14}(F) \simeq \mathbb{Z}$$

is exact, we have $\pi_{14}(\Omega X_2) \simeq \mathbb{Z}$. Apply this to the following exact sequence

$$\mathbb{Z}/2 \simeq \pi_{11}(\Omega X_2) \to \pi_{14}(\Omega X_2) \to [\Sigma^7 A, \Omega X_2] \to \pi_{10}(Y) \simeq \mathbb{Z}.$$

Definition 3.2. For $\alpha \in [\Sigma^7 A, \Omega X_2]$, define $\lambda(\alpha) = (\lambda_1(\alpha), \lambda_2(\alpha)) \in \mathbb{Z} \oplus \mathbb{Z}$, where $(\Omega \bar{c'} \circ \alpha)^*(a_{10}) = \lambda_1(\alpha) \Sigma^7 u_3$ and $(\Omega \bar{c'} \circ \alpha)^*(a_{14}) = \lambda_2(\alpha) \Sigma^7 u_7$.

Lemma 3.3. $\lambda : [\Sigma^7 A, \Omega X_2] \to \mathbb{Z} \oplus \mathbb{Z}$ is a homomorphism and monic.

Proof. The map $\xi = y'_{11} \times y'_{15} : X_2 \to K(\mathbb{Z}, 11) \times K(\mathbb{Z}, 15)$ induces a 18 equivalence $\xi_{(0)} : (X_2)_{(0)} \to K(\mathbb{Q}, 11) \times K(\mathbb{Q}, 15)$. Since $\dim \Sigma^7 A = 14$,

$$(\Omega\xi_{(0)})_* : [\Sigma^7 A, (\Omega X_2)_{(0)}] \to H^{10}(\Sigma A; \mathbb{Q}) \oplus H^{14}(\Sigma A; \mathbb{Q})$$

is an isomorphism. By the commutative diagram

we have the lemma since $[\Sigma^7 A, \Omega X_2]$ is free and $\lambda = (\Omega \xi)_*$.

Let $D \in \tilde{KSp}^0(S^8) \simeq \mathbb{Z}$ be a generator. Then we have $ch(c'(D)) = v_8$, where v_8 is a generator of $H^8(S^8; \mathbb{Z})$.

Consider the following diagram

$$\begin{array}{c}\Omega Sp(\infty)\\ & & & \downarrow^{\Omega p'}\\ \Omega X_2 & \xrightarrow{\Omega \bar{c'}} & \Omega W_5\\ & & & \downarrow^{\tilde{\gamma'}} & & \downarrow^{\delta}\\ S^7 \wedge A & \xrightarrow{\epsilon'_7 \wedge \hat{\epsilon}} Sp(2) \wedge Sp(2). & \xrightarrow{\gamma'} & Sp(2) \end{array}$$

Lemma 3.4. $\gamma' \circ (\epsilon'_7 \wedge \hat{\epsilon})$ has order 140.

Proof. Put $\gamma_1 = \tilde{\gamma'} \circ (\epsilon'_7 \wedge \hat{\epsilon})$, $\alpha_1 = (\Omega p')_*(\sigma^2(D \hat{\otimes} a))$ and $\beta_1 = (\Omega p')_*(\sigma^2(D \hat{\otimes} b))$. Recall that

$$\begin{aligned} & \bar{c'}^*(a_{10}) &= -b_{10}, \bar{c'}^*(a_{14}) = b_{14} \\ & \bar{\gamma'}^*(b_{10}) &= y_3 \otimes y_7 + y_7 \otimes y_3 \\ & \bar{\gamma'}^*(b_{14}) &= y_3 \otimes y_{11} + y_7 \otimes y_7 + y_{11} \otimes y_3 \\ & (\epsilon'_7)^*(y_7) &= 12v_7. \end{aligned}$$

 \Box

Hence we have $\lambda(\gamma_1) = (-12, 12)$.

By Lemma 2.1, we have $\lambda(\alpha_1) = (-5!, \frac{7!}{6}), \lambda(\beta_1) = (0, 2 \cdot 7!)$. Since λ is monic and $\lambda(140\gamma_1 - 14\alpha_1 + \beta_1) = 0$ we get $140\gamma_1 = 14\alpha_1 - \beta_1$.

Consider the following exact sequence

$$0 \to \mathbf{Im}(\Omega p')_* \to [\Sigma^7 A, \Omega X_2] \xrightarrow{\delta} [\Sigma^7 A, Sp(2)].$$

This shows that $140\gamma' \circ (\epsilon'_7 \wedge \hat{\epsilon}) = 140\delta \circ \gamma_1 = 14\delta \circ \alpha_1 - \delta \circ \beta_1 = 0.$

Proposition 3.5. The order of the Samelson product $\langle \epsilon'_7, 1_{Sp(2)} \rangle$ is 140.

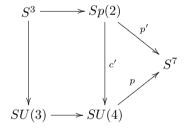
Proof. Since the attaching map of the top cell of Sp(2) become trivial after double suspension, there exists a map $i : S^{17} \to \Sigma^7 Sp(2)$ such that $S^{17} \vee \Sigma^7 A \xrightarrow{i \vee \Sigma^7 \hat{\epsilon}} \Sigma^7 Sp(2)$ is a homotopy equivalence. Hence we only have to show that $140\gamma_2 = 0$, where $\gamma_2 = \gamma' \circ (\epsilon'_7 \wedge 1_{Sp(2)}) \circ i : S^{17} \to Sp(2)$.

Let $\epsilon_7 \in \pi_7(SU(4)) \simeq \mathbb{Z}$ be a generator. Since $c'_*(\epsilon'_7) = 2\epsilon_7$, we have the following commutative diagram

$$Sp(2) \wedge Sp(2) \xrightarrow{\gamma'} Sp(2) \xrightarrow{\epsilon_{7}' \wedge 1} \downarrow^{c' \wedge c'} \downarrow^{c'} \downarrow^{c'} \downarrow^{c'} SU(4) \wedge SU(4) \xrightarrow{\gamma} SU(4)$$

where $\gamma: SU(4) \wedge SU(4) \rightarrow SU(4)$ is the commutator.

Consider the map of fibrations



By the above diagram, we have $p' \circ \gamma_2 = p \circ c' \circ \gamma_2 = 2p \circ \gamma \circ (\epsilon_7 \wedge c')$. Since

$$p'_*: \mathbb{Z}/8 \oplus \mathbb{Z}/5 \simeq \pi_{17}(Sp(2)) \to \pi_{17}(S^7) \simeq \mathbb{Z}/24 \oplus \mathbb{Z}/2$$

induces an injection on 2-primary part by Mimura-Toda [MT], we have $20\gamma_2 = 0$.

Proof of Theorem 1.1. By [AB], the classifying space $B\mathcal{G}(P)$ of the gauge group of a principal *G*-bundle *P* over a finite complex *B*, is homotopy equivalent to $\mathbf{Map}_P(B, BG)$, the connected component of maps from *B* to *BG* containing the classifying map of *P*. Consider the fibre sequence arose from the evaluation fibration

$$\mathcal{G}_k \to Sp(2) \xrightarrow{\alpha_k} \mathbf{Map}^*_{k\epsilon'_7}(S^8, BSp(2)) \to \mathbf{Map}_{k\epsilon'_7}(S^8, BSp(2)) \xrightarrow{e_k} BSp(2).$$

By Lang [L] $\operatorname{Map}_{k\epsilon_{7}}^{*}(S^{8}, BSp(2))$ is homotopy equivalent to $\operatorname{Map}_{0}^{*}(S^{8}, BSp(2))$ and α_{k} can be identified with $\langle 1_{Sp(2)}, k\epsilon_{7} \rangle = k \langle 1_{Sp(2)}, \epsilon_{7} \rangle$ in

$$[Sp(2), \mathbf{Map}_0^*(S^8, BSp(2))] \cong [\Sigma^8 BSp(2), BSp(2)] \cong [\Sigma^7 Sp(2), Sp(2)],$$

where ϵ_7 is the adjoint of ϵ'_7 and \langle,\rangle denotes the Samelson product.

Previous Proposition and the method in [HK2] completes the proof.

4. The order of the Samelson product $\langle 1_{Sp(2)}, 1_{Sp(2)} \rangle$

In [M] McGibbon shows that $Sp(2)_{(3)}$ is homotopy commutative. Here we give another proof of this fact.

Denote the mod 3 reduction of y'_{4j+3} $(j \geq 2)$ by the same symbol. Then we have $H^*(X_2; \mathbb{Z}/3) = \bigwedge (y'_{11}, y'_{15}, y'_{19}, \ldots)$ and $\mathcal{P}^1 y'_{11} = \pm y'_{15}$. Let E be the homotopy fiber of $\rho \beta \mathcal{P}^1 u_{11} : K(\mathbb{Z}_{(3)}, 11) \to K(\mathbb{Z}_{(3)}, 16)$, where ρ is mod 3 reduction and u_{11} is a generator of $H^{11}(K(\mathbb{Z}_{(3)}, 11), \mathbb{Z}/3)$. Since $\mathcal{P}^1 y'_{11} = \pm y'_{15}$ and $\beta \mathcal{P}^1 y'_{11} = 0$, the map $y'_{11} : (\Omega X_2)_{(3)} \to K(\mathbb{Z}_{(3)}, 11)$ lifts to a 17 equivalence $f : (\Omega X_2)_{(3)} \to E$. Since $\dim(A \land A) = 14$,

$$(\Omega f)_* : [A \wedge A, (\Omega X_2)_{(3)}] \to [A \wedge A, \Omega E]$$

is an isomorphism of groups. Consider the following exact sequence: $H^{9}(A \wedge A; \mathbb{Z}_{(3)}) \to H^{14}(A \wedge A; \mathbb{Z}_{(3)}) \to [A \wedge A, \Omega E] \to H^{10}(A \wedge A, \mathbb{Z}_{(3)}) \to H^{15}(A \wedge A; \mathbb{Z}_{(3)}).$ Since $H^{k}(A \wedge A; \mathbb{Z}_{(3)}) = \begin{cases} 0 & k = 9, 15 \\ \mathbb{Z}_{(3)} & k = 10, 14, \end{cases}$ we have $[A \wedge A, \Omega E] \simeq \mathbb{Z}_{(3)} \oplus \mathbb{Z}_{(3)}.$

Define $\tilde{\lambda} : [A \wedge A, (\Omega X_2)_{(3)}] \to (\mathbb{Z}_{(3)})^3$ by $\tilde{\lambda}(\alpha) = (\tilde{\lambda}_1(\alpha), \tilde{\lambda}'_1(\alpha), \tilde{\lambda}_2(\alpha))$ where $\alpha^*(\Omega c')^*(a_{10}) = \tilde{\lambda}_1(\alpha)u_3 \otimes u_7 + \tilde{\lambda}'_1(\alpha)u_7 \otimes u_3$ and $\alpha^*(\Omega c')^*(a_{14}) = \tilde{\lambda}_2(\alpha)u_7 \otimes u_7$ for $\alpha \in [A \wedge A, (\Omega X_2)_{(3)}]$. Since $\tilde{\lambda}_{(0)} : [A \wedge A, (\Omega X_2)_{(3)}] \to (\mathbb{Q})^3$ is an isomorphism (see section 3), $\tilde{\lambda}$ is monic.

It is not hard to show $c' : \tilde{KSp}(\Sigma^2 A \wedge A)_{(3)} \to \tilde{K}(\Sigma^2 A \wedge A)_{(3)}$ is an isomorphism. Therefore we may consider $a \otimes a, a \otimes b + b \otimes a \in \tilde{KSp}(\Sigma^2 A \wedge A)_{(3)}$.

Put $\alpha_1 = \frac{6}{5!}(\Omega p')_*(\sigma^2(a \otimes a))$ and $\alpha_2 = \frac{9}{2 \cdot 6!}(\Omega p')_*(\sigma^2(a \otimes b + b \otimes a))$. Then $\alpha_1, \alpha_2 \in [A \wedge A, \Omega X_2]_{(3)}$. Using equalities $ch(c'(a)) = \Sigma u_3 - \frac{1}{6}\Sigma u_7$ and $ch(c'(b)) = -2\Sigma u_7$, we can easily show

$$\hat{\lambda}(\alpha_1) = (1, 1, -7), \hat{\lambda}(\alpha_2) = (3, 3, -42).$$

By the same method as in the proof of Lemma 3.4, we have

$$\hat{\lambda}(\tilde{\gamma}' \circ (\hat{\epsilon} \wedge \hat{\epsilon})) = (-1, -1, 1).$$

Since $\tilde{\lambda}(\tilde{\gamma}' \circ (\hat{\epsilon} \wedge \hat{\epsilon}) + \alpha_1 + \frac{2}{7}(3\alpha_1 - \alpha_2)) = 0$ and $\tilde{\lambda}$ is monic, we have

Lemma 4.1. $\gamma' \circ (\hat{\epsilon} \wedge \hat{\epsilon}) = 0$ in $[A \wedge A, Sp(2)]_{(3)}$.

Proof of Theorem 1.2. Since $\Sigma A \hookrightarrow \Sigma Sp(2)$ has a retraction. Therefore we have to show that the generalized Whitehead product $\Sigma A \land \Sigma A \to BSp(2)$ vanish. Taking the adjoint, previous Lemma completes the proof.

References

- [AB] M.F.Atiyah and R.Bott, The Yang-Mills equations over Riemann surfaces, Phils. Trans. Ray. Soc. London Ser A., 308 (1982), 523-615.
- [CS] M.C.Crabb and W.A.Sutherland, Counting homotopy types of gauge groups, Proc. London. Math. Soc., (3) 81 (2000), 747-768.
- [H] H.Hamanaka, On [X, U(n)] when dim X = 2n + 1, J. Math. Kyoto Univ. 44 (2004), no. 3, 655–667.
- [HK1] H.Hamanaka and A.Kono, On [X, U(n)] when dim X = 2n, J. Math. Kyoto Univ., 42 (2003) no. 2, 333–348.
- [HK2] H.Hamanaka and A.Kono, Unstable K¹-group and homotopy type of certain gauge groups. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 1, 149–155.
- [K] A.Kono, A note on the homotopy type of certain gauge groups, Proc. Royal Soc. Edinburgh, 117A (1991), 295-297.

- [L] G.E.Lang, The evaluation map and EHP sequence, Pacific J. Math., 44(1973), 201-210.
- [M] C.McGibbon, Homotopy commutativity in localized groups, Amer. J. Math. 106 (1984), 665-687.
- [MT] M.Mimura and H.Toda, Homotopy groups of symplectic groups, J. Math. Kyoto Univ. 3, 251–273.
- [N] T.Nagao, preprint.

Department of Natural Science, Hyogo University of Teacher Education, Kato, Hyogo 673-1494, Japan

E-mail address: hammer@sci.hyogo-u.ac.jp

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN *E-mail address*: kaji@math.kyoto-u.ac.jp

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN *E-mail address*: kono@math.kyoto-u.ac.jp

6