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Abstract. In this paper, we introduce a new invariant called gap of codi-
mension one foliations. Roughly speaking, the gap of a foliation F is the
maximal value of depth(L′)− depth(L), where L and L′ are leaves of F such

that L ⊂ L′ \ L′, and that there does not exist a leaf L′′ with L ⊂ L′′ \ L′′,
and with L′′ ⊂ L′ \ L′. Let Σ(n)(K, 0) be the n-fold cyclic covering space
of S3(K, 0), where S3(K, 0) is the manifold obtained from S3 by performing
0-surgery along the 0-twisted double K of a non-cable knot. By using gap,
we give an estimation of minimal value of the depths of the codimension one
C0 foliations with C∞ leaves on Σ(n)(K, 0), which are transversely oriented
and taut, and each of which has exactly one depth 0 leaf corresponding to a
generator of H2(S3(K, 0)).

1. Introduction

In 1980’s D.Gabai developed the theory of codimension one foliations on three
manifolds. He gave a powerful method which is called sutured manifold theory, for
constructing taut foliations on three dimensional manifolds [4]. Particularly in [5],
he showed that for any knot K in S3, there exists a codimension one, transversely
oriented, taut C0 foliation F of finite depth on the knot exterior E(K) such that
F|∂E(K) is a foliation by circles. (As a consequence of this theorem, Property R
Conjecture, which was one of the most important problems in knot theory, follows
immediately.) Inspired by this result, Cantwell-Conlon introduced invariants of 3-
manifolds by making use of depths of foliations. More precisely, for a given knot
K, they considered the minimal value of the depths of the transversely oriented,
taut Cr foliations on the exterior E(K) of K which is transverse to ∂E(K), and
called it Cr depth of K ([2]). From this viewpoint (, that is, consider the minimal
value of the depths of certain foliations on a given manifold), it is natural to ask:
Question “Does this value changes or not if we pose qualitative conditions on the
foliations?”

In [7], the author studied the question in the case when we pose the condition
that each of the foliation has exactly one depth 0 leaf, and showed the following.
Let K be a 0-twisted double of a non-cable knot, S3(K, 0) the manifold obtained
from S3 by performing 0-surgery along K, and Σ(n)(K, 0) the n-fold cyclic covering
space of S3(K, 0). Let F be a codimension one, transversely oriented, and taut C0

foliation on Σ(n)(K, 0) with exactly one depth 0 leaf representing a generator of
H2(S3(K, 0)). Then we have: depth(F) ≥ 1 + [n

2 ]. Here we note the following. Let
k be the depth of a foliation on E(K) given by Gabai’s construction in [5]. It is easy
to see that for each n, Σ(n)(K, 0) admits a codimension one, transversely oriented,
and taut C0 foliation of depth k with at least n depth 0 leaves. This shows that
the condition (each of the foliation has exactly one depth 0 leaf) is essential. The
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purpose of this paper is, as a sequel to these researches, to propose more delicate
qualitative conditions.

In fact, we introduce a quantity called “gap” of foliation to deal with behaviors
of depths of leaves of foliations of finite depth. The naive idea of the concept “gap”
is as follows. We know by the definition of depth of leaves (see Section 2.2) that
each depth k(≥ 1) leaf of F is adjacent to a depth k − 1 leaf. Note that even if
k does not represent the maximal depth in F , it is not necessary the case that
there exists a depth k + 1 leaf which is adjacent to the leaf. One possibility of this
phenomenon is that k is loccaly maximal and the other is that there is a leaf with
depth greater than k+1 which is adjacent to the depth k leaf. We phrase the latter
situation “There is a gap between the depths of the leaves.” More precisely, for a
leaf L, we consider the minimal value of the differences between the depth of L and
the depths of leaves which are adjacent to L with depth greater than that of L.
Then the gap of the foliation is the maximum of such values among the leaves of the
foliation. For the formal definition of gap, see Section 2.3. By using this invariant,
we give an estimation of depth of foliations on the above manifold Σ(n)(K, 0).

Theorem 1.1. Suppose K is a 0-twisted double of a non-cable knot. Let F be
a codimension one, transversely oriented, taut, C0 foliation with C∞ leaves on
Σ(n)(K, 0) with exactly one depth 0 leaf representing [α], where α is corresponding
to a generator of H2(S3(K, 0)) ∼= Z. Suppose Ĝ(F̂) is a tree. Then for each n, we
have:

depth(F) ≥ n + gap(F̃)
2

.

For the notations Ĝ(F̂) and gap(F̃), see Section 2.3, and for the definition of
0-twisted double and cable knot, see Section 4.

2. Preliminaries

2.1. Codimension one foliations. Let M be a Riemannian manifold of dimen-
sion n. In this subsection, we suppose that M is compact and orientable.

Definition 2.1. A codimension q (or dimension n − q) Cr(0 ≤ r ≤ ∞) foliation
on M is a Cr atlas F on M with the following properties.

1. If (U,ϕ) ∈ F , then ϕ(U) = U1 × U2 ⊂ Rn−q × Rq where U1 (U2 resp.) is an
open disk in Rn−q (Rq resp.).

2. If (U,ϕ) and (V, ψ) ∈ F are such that U ∩ V 6= ∅, then the change of coor-
dinates map ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is of the form ψ ◦ ϕ−1(x, y) =
(h1(x, y), h2(y)).

The charts (U,ϕ) ∈ F will be called foliation charts. We call the pair (M,F) a
foliated manifold.

Definition 2.2. Let (U,ϕ) be a foliation chart. The sets of the form ϕ−1(U1×{c}),
c ∈ U2 are called plaques of U , or else plaques of F .

For the basic terminologies concerning foliations (leaf, holonomy, etc.), see [1]. In
the remainder of this section, let F be a codimension one Cr(0 ≤ r ≤ ∞) foliation
on M .
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Definition 2.3. We say that a leaf of F is proper if its topology as a manifold
coincides with the topology induced from that of M . A foliation F is called proper
if every leaf of F is proper.

Definition 2.4. We say that F is taut if for any leaf L of F , there is a properly
embedded (possibly, closed) transverse curve which meets L.

Definition 2.5. Let F be a Cr foliation. We say that F is a Cr foliation with C∞

leaves on M if each leaf is a C∞ immersed manifold.

By using a partition of unity argument, we can show that any codimension one,
transversely oriented foliation with C∞ leaves has a one dimensional C∞ foliation
which is transverse to F . In the remainder of this section, we fix a one dimensional
C∞ foliation F⊥ which is transverse to F .

Notation 2.6. A subset U of M is called saturated if U is a union of leaves of
F . Let U be an open saturated set, and ι : U → M the inclusion. Then Û
denotes the path-metric completion of U by the Riemannian metric induced from
M , and ι̂ : Û → M denotes the extended isometric immersion. Let F̂ = ι̂−1(F)
and F̂⊥ = ι̂−1(F⊥), the induced foliations on Û .

In the remainder of this section, we suppose F is transversely oriented. The
unit tangent bundle q : M̃ → M of F⊥ is a C∞ double covering of M . Since F
is transversely oriented, for each leaf L of F , q−1(L) consists of two components.
Each component of q−1(L) is called a side of L.

Definition 2.7. A side L̃ of q(L̃) = L is proper if there are a transverse curve
τ : [0, 1] → M starting from L in the direction of L̃ and ε(> 0) such that τ(t) /∈ L
for 0 < t < ε.

Remark 2.8. Any side of a proper leaf is proper.

Definition 2.9. Let L̃ be a proper side of L. The leaf L has unbounded holonomy
on the side L̃ if there are a transverse curve γ : [0, 1] → M starting from L in the
direction of L̃ and a sequence h1, h2, . . . of holonomy pseudogroup elements with
domain containing im(γ) such that

hi(im(γ)) = γ([0, εi]), εi ↘ 0.

The leaf L is semistable on the side L̃ if there is a sequence e1, e2, . . . of C∞

immersions of L̃×[0, 1] (with its manifold structure) into M such that ei(x, 0) = q(x)
for all x and i, ei∗( ∂

∂t )|t=0 points in the direction L̃, ei∗( ∂
∂t ) is always tangent to

F⊥, each ei(L̃× {1}) is a leaf of F , and
⋂

i ei(L̃× [0, 1]) = L.

In [3], Dippolito showed the following.

Theorem 2.10. (Semistability Theorem [3]) Let F be a codimension one foliation
with C∞ leaves on a closed manifold. If L̃ is a proper side of a leaf L of F , then L

either is semistable or has unbounded holonomy on the side L̃.

2.2. Depth of foliations.

Definition 2.11. A leaf L of F is at depth 0 if it is compact. Inductively, when
leaves of at depth less than k are defined, L is at depth k ≥ 1 if L \ L consists of
leaves at depth strictly less than k, and at least one of which is at depth k − 1.
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If L is at depth k, we use the notation depth(L) = k, and call L a depth k leaf.
The foliation F is of depth k < ∞ if every leaf of F is at depth at most k and k
is the least integer for which this is true. If F is of depth k, we use the notation
depth(F) = k. If there is no integer k < ∞ which satisfies the above condition, the
foliation F is of infinite depth.

In the remainder of this section, we suppose F is of finite depth. By Defini-
tion 2.11, we have the following.

Facts 2.12. 1. Let L, L′ be leaves of F . If L \ L ⊂ L′ \ L′, then we have
depth(L) ≤ depth(L′).

2. For any leaf L of F , there exists a depth 0 leaf of F in L.

It is known :

Fact 2.13. Each leaf of any finite depth foliation is proper.

Lemma 2.14. Let L be a leaf of F . Suppose L has unbounded holonomy on the
side L̃ and let γ be as in Definition 2.9. Then for any leaf L′ of F such that
L′ ∩ γ 6= ∅, we have depth(L) < depth(L′).

Proof. Let h1, h2, . . . be as in Definition 2.9. Fix a point x0 ∈ L′ ∩ γ. Let
xi = hi(x0) (i = 1, 2, . . . ). Then xi ∈ L′, and xi converges to the point γ(0) ∈ L.
This shows that L ⊂ L′. Since L 6= L′, this implies depth(L) < depth(L′).

Lemma 2.15. Let L, L′ be leaves of F . Suppose L is semistable on the side L̃ and
let e1, e2, . . . be as in Definition 2.9. Suppose there exists i such that ei(L̃× [0, 1]) ⊃
L′. Then we have depth(L) ≤ depth(L′).

Proof. If L is compact, then obviously the lemma holds. Suppose L is noncom-
pact. Then L \ L 6= ∅. Let L∗ be a leaf contained in L \ L. Fix a point x∗ in
L∗. Let P be a plaque of F⊥ through x∗. Let P ′ be the closure of a component
of P \ x∗ such that x∗ ∈ P ′ ∩ L. Then we can take points x1, x2, . . . in P ′ ∩ L

such that xi monotonously converges to x∗. Let x̃j be the points in L̃ such that
ei(x̃j × {0}) = xj . Let Pj = ei(x̃j × [0, 1]). Then P2, P3, . . . are mutually disjoint
arcs embedded in P ′. Since L′ ⊂ ei(L̃ × [0, 1]), L′ ∩ Pj 6= ∅ (j = 2, 3, . . . ). Fix
a point x′j ∈ L′ ∩ Pj . Then {x′j}j=2,3,... converges to x∗. Hence L∗ ⊂ L′. Since
L∗ 6= L′, this implies that L∗ ⊂ L′ \ L′. Hence L \ L ⊂ L′ \ L′. By Facts 2.12, we
have depth(L) ≤ depth(L′).

Let {L(d)
i } be a set of depth d leaves of F , U a component of M \ ∪L

(d)
i , and F

a component of ∂Û . Let L be the leaf ι̂(F ) of F and x ∈ L. Let P be a plaque of
F⊥ through x. Since x ∈ L = ι̂(F ) ⊂ ι̂(∂Û) and U is open, (Uε(x)∩P )∩U 6= ∅ for
any ε > 0, where Uε(x) denotes the ε-neighborhood of x. Let P1, P2 be the closures
of the components of P \ x. We may suppose (Uε(x) ∩ P2) ∩ U 6= ∅ for any ε > 0.

Lemma 2.16. Under the above notations, there exists a subarc P ′2 in P2 such that
x ∈ ∂P ′2 and P ′2 ⊂ ι̂(Û).

Proof. Assume x ∈ P2 ∩ (∪L
(d)
i ). For a point z in P2, let L(z) be the leaf of

F through z. For a constant c > 0, let N
L(z)
c (z) be a c-neighborhood of z in

L(z). Then, we can take c > 0 such that for each point z ∈ P2, N
L(z)
c (z) is
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homeomorphic to an n − 1 dimensional disk Dn−1. Let Nc =
⋃

z∈P2
N

L(z)
c (z),

and N c
2

=
⋃

z∈P2
N

L(z)
c
2

(z). Let y be a point in ∂Û such that ι̂(y) = x. Since

y ∈ ∂Û , there exists a Cauchy sequence {yi} ⊂ Û \ ∂Û such that yi converges to
y. By retaking subscripts if necessary, we may suppose that ι̂(yi) ∈ N c

2
for each i.

Moreover by taking a subsequence if necessary, we may suppose that if i 6= j, then
ι̂(yi) and ι̂(yj) are contained in different components of N c

2
\ ∪L

(d)
i . Thus we have

d(yi, yj) > c
2 where d is a path metric in U . This contradicts that {yi} is a Cauchy

sequence.

Lemma 2.17. Under the above notations, we have depth(L) ≤ d.

Proof. If there exists a subarc P ′ of P1 with x ∈ ∂P ′ such that P ′ does not
intersect ∪L

(d)
i , since P ′2 ⊂ ι̂(Û) (Lemma 2.16), this implies L ∈ {L(d)

i }, hence
depth(L) = d.

Suppose for any subarc P ′ of P1 with x ∈ ∂P ′, there exists L′ ∈ {L(d)
i } such

that L′ ∩ P ′ 6= ∅. Then the situation is divided into the following two cases.
Case 1 L is semistable on the side L̃ which contains P1.

Let e1, e2, . . . be as in Definition 2.9. Take a subarc P ′′ of P1 with x ∈ ∂P ′′

and P ′′ ⊂ im(e1). Let L′′ be an element of {L(d)
i } such that L′′ ∩ P ′′ 6= ∅. By

Lemma 2.15, we have depth(L) ≤ depth(L′′) = d.

Case 2 L has unbounded holonomy on the side L̃ which contains P1.
Take a subarc γ′′ of P1 with x ∈ ∂γ′′ and satisfies the condition of γ in Defini-

tion 2.9. Let L′′ be an element of {L(d)
i } such that L′′ ∩ γ′′ 6= ∅. By Lemma 2.14,

we have depth(L) < depth(L′) = d.

Lemma 2.18. Suppose there exists a pair of components of ∂Û representing the
same leaf L of F . Then L is an element of {L(d)

i }.
Proof. Note that P1 also satisfies the condition of Lemma 2.16, i.e., there exists a
subarc P ′1 in P1 such that x ∈ ∂P ′1 and P ′1 ⊂ ι̂(Û). Then P ′ = P ′1 ∪ P ′2 is a plaque
of x such that P ′ ∪ L = x. This obviously implies L ∈ {L(d)

i }.
2.3. Gap of foliations.

Definition 2.19. For leaves L1 and L2 of F , we say that L1 is equivalent to L2 if
L1 = L2 or there exisits an embedding φ : L1× [0, 1] −→ M such that the image of
L1×{0} (L1×{1} resp.) coincides with L1 (L2 resp.), and the image of {x}× [0, 1]
is contained in a leaf of F⊥ for each x ∈ L1. Moreover, if L̃ is the side of L such
that φ∗( ∂

∂t )|t=0/‖φ∗( ∂
∂t )|t=0‖ is contained in L̃, then we say that L is equivalent to

L′ through the side L̃.

Lemma 2.20. Let L be a leaf of F . Suppose that L is semistable on the proper
side L̃ and let e1, e2, . . . be as in Definition 2.9. For each i, let L′ be a leaf in
ei(L̃ × [0, 1]) such that depth(L) = depth(L′). Then, L′ is equivalent to L through
the side L̃.

Proof. Let P be a leaf of F⊥ |ei(eL×[0,1]). If L′ ∩ P contains more than one
point, then by considering the holonomy along L, we can show that L′∩P contains
infinitely many points, say xi. Let x∞ be an accumulating point of {xi}. If x∞ ∈ L,
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then L′ \ L′ ⊃ L, this contradicts that depth(L) = depth(L′). Suppose x∞ /∈ L.
Let L∞ be the leaf which contains x∞. By Lemma 2.15, we have depth(L) ≤
depth(L∞), this implies depth(L) < depth(L′), a contradiction. Hence L′ ∩ P
contains exactly one point. Since we can choose P as any leaf of F⊥ |ei(eL×[0,1]),

this implies that L′ is equivalent to L through the side L̃.

Suppose further M is closed. Let F̃ be a codimension one, transversely oriented
Cr foliation of finite depth with C∞ leaves on M which satisfies the following
properties.

Properties 2.21. 1. The number of equivalence classes of the leaves of F̃ is
finite;

2. Let L1, L2 be leaves of F̃ such that L1 is equivalent to L2 through the side L̃1.
Let φ : L × I → M be an embedding giving the equivalence relation between
L1 and L2 through the side L̃1, then F |φ(L1×[0,1]) is a product foliation with
each leaf is homeomorphic to L1.

Let [L0
i ] be the equivalence classes of the depth 0 leaves of F̃ . Let M̂ be the

union of the path-metric completions of the components of M \ (
⋃

i L0
i ). Let F̂ be

the foliation on M̂ induced from F̃ . By the definition of depth, we immediately
have the following.

Lemma 2.22. Under the above notations, we have depth(F̂) = depth(F̃).

Let [Lj ] be the equivalence classes of the leaves of F̂ .

Definition 2.23. The graph of F̂ denoted by Ĝ(F̂) = {V, E} is the directed graph
with the vertex set V = {vj} and the edge set E = {ek`} such that each vj

corresponds to the equivalence class [Lj ] of the leaves of F̂ and there is an edge
ek` from vk to v` if there exists a leaf L′k (L′` resp.) representing vk (v` resp.) such
that L′` ⊂ L′k \ L′k, and there does not exist a leaf L such that L ⊂ L′k \ L′k and
L′` ⊂ L \ L.

By the construction, the foliated manifold (M, F̃) is recovered from (M̂, F̂) by
identifying pairs of depth 0 leaves L0+

i and L0−
i , each corresponding to L0

i . Then
we define the graph of F̃ as follows.

Definition 2.24. The graph of F̃ denoted by G(F̃) is the graph obtained from
Ĝ(F̂) by identifying pairs of vertices corresponding to L0+

i and L0−
i for each depth

0 leaf L0
i of F̃ .

By the definition, we immediately have the following.

Lemma 2.25. The following three conditions are equivalent to each other.
1. Ĝ(F̂) is the graph consisting of exactly one vertex.
2. F̃ is a foliation given by a fiber bundle structure over S1.
3. There exists a leaf L0

i of F̃ such that L0+
i and L0−

i corresponding to the same
vertex of Ĝ(F̂).

Definition 2.26. Let v be a vertex of Ĝ(F̂) or G(F̃). We say that v is at depth k if
v represents a leaf at depth k. If v is at depth k, we use the notation depth(v) = k,
and call v a depth k vertex.
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Definition 2.27. Let e be an edge of Ĝ(F̂) or G(F̃). Let v be the initial point
and v′ the terminal point of e. Then, we define the length of e as follows:

length(e) = depth(v)− depth(v′).

Remark 2.28. Let v be a vertex of Ĝ(F̂) or G(F̃). If depth(v) 6= 0, then by the
definition of the depth, we see that there exists a directed path Γ = e1 ∪ · · · ∪ en

from v to a depth 0 vertex such that length(ei) = 1 (i = 1, . . . , n)

Definition 2.29. We define the gap of the foliation F̃ as follows:

gap(F̃) =

{
0 if G(F̃) has no edges,
maxe:edges of G( eF){length(e)} if G(F̃) has an edge.

3. Modifying foliations

Let M be a closed, connected, oriented n dimensional manifold and F a codi-
mension one, transversely oriented Cr foliation of finite depth with C∞ leaves on
M . We further suppose depth(F) 6= 0. In this section, we show that for any fo-
liation as above, we can modify F to obtain a foliation satisfying Properties 2.21.
Let F⊥ be a one dimensional C∞ foliation on M which is transverse to F .

Definition 3.1. An (F ,F⊥) coordinate atlas is a locally finite collection of Cr

embeddings ϕi : Dn−1 × [0, 1] → M such that the interior of the images cover M ,
and the restriction of ϕi to each Dn−1×{t} (to each {x}× [0, 1] resp.) is a C∞(Cr

resp.) embedding into a leaf of F(F⊥ resp.).

Since M is compact, we can take an (F ,F⊥)-coordinate atlas {ϕi} of m(< ∞)
components.

3.1. First step of Modification. In this subsection, we describe a procedure for
modifying F by using depth 0 leaves of F .

Lemma 3.2. Under the equivalence relation of Definition 2.19, the number of the
equivalence classes represented by the depth 0 leaves is at most 2m+rank H1(M,R)−
1.

Proof. Let {L(0)
j } be representatives of the equivalence classes of the depth 0

leaves of F . We assume that {L(0)
j } has 2m+rank H1(M,R) elements. By slightly

modifying the (F ,F⊥)-coordinate atlas {ϕi} if necessary, we may suppose that
(∪L

(0)
j ) ∩ (

⋃m
i=1 ϕi(Dn−1 × ∂[0, 1])) = ∅. Note that if we take any subset of {L(0)

j }
consisting of at least rank H1(M,R)+1 elements, then the union of them separates
M . Hence the number of the components of M \∪L

(0)
j is at least 2m+1. Hence we

can find U , a component of M \∪L
(0)
j such that U ∩ (

⋃m
i=1 ϕi(Dn−1×∂[0, 1])) = ∅.

Note that U is a saturated set. Hence we use notations in Notation 2.6. For any
point x in ∂Û , let τ̂x be the leaf of F̂⊥ which meets x. Since U ∩ (

⋃m
i=1 ϕi(Dn−1 ×

∂[0, 1])) = ∅, τ̂x is a proper subarc of ϕi(c× [0, 1]) for some i and c ∈ Dn−1. Hence
τ̂x is an arc properly embedded in Û with endpoints x and y, say. Since F is
transversely oriented, x and y are contained in different components of ∂Û . If ι̂(x)
and ι̂(y) are contained in the same leaf of F , this implies that {L(0)

j } consists of

one element, contradicting the assumption that {L(0)
j } has 2m + rank H1(M,R)

elements. Thus ι̂(x) and ι̂(y) are contained in different leaves, say Fx and Fy of F .
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Obviously, we can take an embedding φ : Fx × [0, 1] → M which gives equivalence
relation between Fx and Fy such that φ(Fx × (0, 1)) = U . This contradicts the
assumption that each pair of elements of {L(0)

j } is not mutually equivalent.

For an equivalence class [L] represented by a depth 0 leaf L, ∪Lα denotes the
union of the leaves of F representing [L].

Claim Under the above notations, ∪Lα is closed.

Proof of Claim. Let {xi}i=1,2,... be a Cauchy sequence in M such that each xi

is contained in ∪Lα and converges to x∞. We show that x∞ ∈ ∪Lα. Let L∞ be
the leaf of F which contains x∞. Let P be a plaque of F⊥ through x∞. We may
suppose each xi is contained in P+ or P−, say P+. Let P+, P− be the components of
P \x∞. Then, by retaking xi if necessary, we may suppose that each xi is contained
in P+. Let Li be the leaf of F which contains xi. Since Li is compact, Li intersects
P finitely many times. Thus we may suppose that xi is the nearest to x∞ among
all the points of Li ∩ P . Suppose L∞ has unbounded holonomy. Let γ, h1, h2, . . .
be as in Definition 2.9. Since xi converges to x∞, we may suppose xn ∈ im(γ),
for n À 0. Fix such n. Take δn such that γ([0, δn]) is the subarc of im(γ) with
endpoints x∞, xn. Since xn is the nearest to x∞, hi(im(γ)) /⊂ γ([0, δn]) for any i,
a contradiction. Hence L∞ does not have unbounded holonomy on the side which
contains xi. By Theorem 2.10, L∞ is semistable on the side which contains xi. Let
ei be as in Definition 2.9. For each Li, there exists j such that ej(L̃∞× [0, 1]) ⊃ Li.
Since depth(Li) = 0, L∞ is equivalent to Li (Lemma 2.20). Thus x∞ is contained
in ∪Lα.

Now, we describe how to modify F near L to obtain a new finite depth foliation
F1. The situation is divided into the following two cases.
Case 1 There exist more than one leaves of F representing [L].
Case 2 There exists exactly one leaf of F representing [L].

In Case 1, let {φβ} be the set of all the embeddings which give equivalence
relations between L and the leaves representing [L]. Let U = ∪φβ(L× [0, 1]). The
situation is divided into the following two subcases.
Case 1.1 U 6= M .

In this case, we first show the following claims (Claims 1～3).

Claim 1 U is closed.

Proof of Claim 1. Let {xi}i=1,2,... be a Cauchy sequence in U which converges to
x∞. Assume x∞ /∈ U . This implies that for each β, x∞ /∈ φβ(L× [0, 1]). For each i,
we fix an embedding φi giving an equivalence relation such that xi ∈ φi(L× [0, 1]).
Let L∞ be the leaf of F which contains x∞. Let Li = φi(L×{1}) such that Li 6= L.
Let P be the plaque of F⊥ through x∞. We may suppose each xi is contained in
P . Let P+, P− be the components of P \ x∞. By taking subsequence if necessary,
we may suppose all of the xi’s are contained in P+ or P−, say P+. Let yi be the
point of Li ∩P+ which is the nearest to x∞. Then, by the same argument as in the
proof of Claim given soon after the proof of Lemma 3.2 with regarding the above
yi as xi, L∞ is equivalent to L, hence x∞ ∈ U , a contradiction.

Let τ be a leaf of F⊥|U which meets a component of ∂U , say L0.

Claim 2 The leaf τ is an arc properly embedded in U .
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Proof of Claim 2. Assume not, i.e., τ meets ∂U in one point, say x0. Let
{xi}i=1,2,... be a sequence of points on τ such that dτ (x0, xi) > i, where dτ is the
path metric on τ induced from M . By the above Claim 1, U is compact. Hence
there exists an accumulating point of ∪xi. By taking a subsequence of {xi}i=1,2,...

if necessary, we may suppose that xi converges to x∞. Since U is closed, x∞ ∈ U .
Note that x∞ /∈ ∂U because if x∞ ∈ ∂U , then a plaque of F⊥ through xn for n >> 0
intersects ∂U , contradicting the fact that τ ∩ ∂U = x0. We have the following two
cases.
Case A x∞ ∈ L.

In this case, since x∞ /∈ ∂U , we have L0 6= L. Let φ0 be an embedding which gives
equivalence relation between L and L0. Since xi converges to x∞, and dτ (x0, xi) >
i, we see that τ ∩φ0(L× [0, 1]) is a union of infinitely many leaves of F⊥|φ0(L×[0,1])

contained in τ , contradicting that τ meets ∂U in one point.
Case B x∞ /∈ L.

In this case, there exists φ∞ ∈ {φβ} such that x∞ ∈ φ∞(L × [0, 1]). Let L∞ =
φ∞(L×{1}). On the other hand, since U is closed, L0 ⊂ U . This implies that L0 is
equivalent to L. Suppose L0 = L. Since dτ (x0, xi) > i, we see that τ∩φ∞(L×[0, 1])
is a union of infinitely many leaves of F⊥|φ∞(L×[0,1]) those are contained in τ ,
contradicting that τ meets ∂U in one point.

Suppose L0 6= L. Let φ0 be an embedding which gives equivalence relation
between L and L0. The situation is divided into the following two cases.
Case B.1 φ0(L× [0, 1]) ∩ φ∞(L× [0, 1]) = φ∞(L× [0, 1]).

In this case, since the length of each fiber of F⊥|φ∞(L×[0,1]) is finite, and dτ (x0, xi) >

i, we see that τ∩φ∞(L×[0, 1]) is a union of infinitely many leaves of F⊥|φ∞(L×[0,1]).
Hence τ ∩ φ0(L × [0, 1]) is also a union of infinitely many subarcs of τ which are
properly embedded in φ0(L× [0, 1]), contradicting that τ meets ∂U in one point.
Case B.2 φ0(L× [0, 1]) ∩ φ∞(L× [0, 1]) = L.

In this case, by applying the argument as in Case B.1, we can show that τ ∩
φ∞(L× [0, 1]) is a union of infinitely many leaves of F⊥|φ∞(L×[0,1]). Since each leaf
of F⊥|φ0(L×[0,1]) is adjacent to a leaf of F⊥|φ∞(L×[0,1]), τ ∩ φ0(L × [0, 1]) is also a
union of infinitely many leaves of F⊥|φ0(L×[0,1]). This contradicts the assumption
that τ meets ∂U in one point.

Claim 3 The boundary of U consists of two components.

Proof of Claim 3. Since F is transversely oriented, we see by Claim 2 of Case 1.1
that ∂U consists of at least two components. Suppose L ⊂ ∂U . Let L′′ be another
component of ∂U . Since U is closed, L′′ ⊂ U . Hence L′′ is equivalent to L. Let
φ′′ be an embedding which gives equivalence relation between L and L′′. Then, it
is obvious that U = φ′′(L × [0, 1]), hence ∂U = L ∪ L′′. Suppose L ⊂ int U . Let
L1, L2 be different components of ∂U . Let φ1 (φ2 resp.) be an embedding which
gives equivalence relation between L and L1 (L2 resp.). Then it is obvious that
U = φ1(L× [0, 1]) ∪ φ2(L× [0, 1]). Hence ∂U = L1 ∪ L2. This completes the proof
of the claim.

Let ∂U = L∞ ∪ L−∞. Obviously, L∞ is equivalent to L−∞, i.e., there exists
φ∗ : L∞×[0, 1] → M such that φ∗(L∞×[0, 1]) = U . Now, we modify F by replacing
F|U with the image of the product foliation on L∞ × [0, 1]. The modification near
the depth 0 leaf L is completed.
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Case 1.2 U = M .

Claim 1 For each side of L, there is a leaf L′ to which L is equivalent through the
side.

Proof of Claim 1. Fix a side L. Let P be a plaque of F⊥ through x ∈ L. Let P ′

be the component of P \x corresponding to the side. Let xi be a sequence of points
in P+ which converges to x. Since U = M , for each i, there exists a leaf Li to which
L is equivalent via embedding φi : L× [0, 1] → M such that φi(L× [0, 1]) 3 xi. If
there exists i such that φi(L× [0, 1]) contains a subarc of P ′ with endpoints x and
xi, then the leaf φi(L × {1}) is equivalent to L through the side corresponding to
P ′. Suppose for each i, φi(L× [0, 1]) does not contain a subarc of P ′ with endpoints
x and xi. Let Li = φi(L×{1}). Then Li is a depth 0 leaf such that Li∩P contains
a point yi such that yi = xi or yi is nearer to x than xi in P ′. By applying the
argument as in the proof of Claim given soon after the proof of Lemma 3.2, we see
that L is semistable on the side corresponding to P ′. Hence by Lemma 2.20, there
exists a leaf L′ to which L is equivalent through the side corresponding to P ′, and
this completes the proof of the claim.

Let {φ±β } be the set of all the embeddings which give equivalence relations be-
tween L and the leaves representing [L] through the side L̃±. Let U± = ∪φ±β (L×
[0, 1]).

Remark 3.3. The above Claim 1 implies that U+ 6= ∅ and U− 6= ∅.
Claim 2 Both U+ and U− are closed.

Proof of Claim 2. Since the situation is symmetric, we give the proof for U+. If
U+ = M , then the claim clearly holds. Suppose U+ 6= M . We can apply the same
argument as in the proof of Claim 1 of Case 1.1. to show that U+ is closed.

Remark 3.4. U+ and U− coincide with M or homeomorphic to L× [0, 1].

Claim 3 There exists a point y in M such that y /∈ L and y ∈ U+ ∩ U−.

Proof of Claim 3. If U+ = M , the claim clearly holds. Suppose U+ 6= M . Let
x be a point in L. Let τ+ be the leaf of F⊥ |U+ which meets x. Note that U+ 6= ∅
(Remark 3.3). By Claim 2 of Case 1.1, τ+ is an arc properly embedded in U+. Let
y = ∂τ+ \ x and L+ the leaf containing y. Since U+ ∪ U− = M and M is closed,
for each point y in L+, every neighborhood of y contains a point in U−. Since U−
is closed, this shows y ∈ U−.

Claim 4 There exists a leaf L∗ to which L is equivalent through both sides of L.

Proof of Claim 4. By Claim 3, we can take a point y in U+ ∩U−. Let φ± be an
embedding from L × [0, 1] to M which gives equivalence relation through the side
L̃± such that φ±(L× [0, 1]) contains y. Let L± = φ±(L× {1}). If L+ = L−, then
L is equivalent to L+ = L− through both sides of L. Suppose L+ 6= L−. In this
case, L+ ⊂ intφ−(L × [0, 1]). Since L+ is transverse to F⊥, L is equivalent to L+

through the side L̃−. Thus L+ satisfies the condition of L∗.

By joining the embeddings giving equivalence relation between L and L∗ in the
above Claim 4, we see that there is an immersion φ′ : L× [0, 1] → M such that the
image of {x} × [0, 1] is contained in a leaf of F⊥, φ′(L × {0}) = φ′(L × {1}) = L.
Hence M admits a fiber bundle structure over S1 with each fiber homeomorphic to
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L and transverse to F⊥, and L is a fiber. In this case, we let F1 be the foliation
given by this bundle structure, i.e., each leaf of F1 is a fiber of the fibration.
In Case 2 (the case that there exists exactly one leaf of F representing [L]), let
U = M \ L. Then ∂Û = L+ ∪ L−, where L+ (L− resp.) is homeomorprhic to L.
The situation is divided into the following two subcases.
Case 2.1 There exists a homeomorphism h : L× [0, 1] → Û such that the image of
each x× [0, 1] is a leaf of F̂⊥.

In this case M admits a fiber bundle structure over S1 with each fiber home-
omorphic to L and transverse to F⊥, and L is a fiber. Then, we let F1 be the
foliation given by this bundle structure,
Case 2.2 There does not exist a homeomorphism from L × [0, 1] to Û as in Case
2.1.

In this case F is unchanged by the modification.
In Cases 1.1 and 2.2, we further modify the foliation by using another equiva-

lence class of the depth 0 leaves. By Lemma 3.2, this terminates in finitely many
steps. Let F1 be the foliation which is obtained by repeating the procedure for all
equivalence classes of the depth 0 leaves. Namely, F1 satisfies the following.

Property 3.5. Let L1, L2 be depth 0 leaves of F1. Suppose that L1 is equivalent
to L2 via an embedding φ : L1 × [0, 1] → M , then F1|φ(L1×[0,1]) is a product
foliation.

Note that this modification does not change the transverse foliation F⊥, i.e.,
F1⊥ = F⊥.

3.2. Second step of Modification. Suppose F1 has a depth 1 leaf. In this
subsection, we describe a procedure for modifying F1 obtained in Section 3.1 by
using depth 1 leaves of F1.

Lemma 3.6. For the modified foliation F1, the number of the equivalence classes
represented by the depth 1 leaves is finite.

Proof. Let {L(1)
k } be a set of depth 1 leaves of F1 such that each pair of elements is

not mutually equivalent. We assume that {L(1)
k } has infinitely many elements. By

Theorem 2.10, Lemma 2.14 and Lemma 2.20, we can show that each leaf of {L(1)
k }

is isolated in ∪L
(1)
k . By slightly modifying the (F ,F⊥)-coordinate atlas {ϕi} if

necessary, we may suppose that (∪L
(1)
k )∩ (

⋃m
i=1 ϕi(Dn−1× ∂[0, 1])) = ∅. Hence we

can find U , a component of M \∪L
(1)
k such that U ∩ (

⋃m
i=1 ϕi(Dn−1×∂[0, 1])) = ∅.

For any point x in ∂Û , let τ̂x be the leaf of F̂1⊥(= F̂⊥) which meets x. Since
U ∩ (

⋃m
i=1 ϕi(Dn−1 × ∂[0, 1])) = ∅, τ̂x is a proper subarc of ϕi(c× [0, 1]) for some i

and c ∈ Dn−1. Hence τ̂x is an arc properly embedded in Û with endpoints x and y,
say. Since F is transversely oriented, x and y are contained in different components
of ∂Û . Let Fx (Fy resp.) be the leaf of F1 which meets ι̂(x) (ι̂(y) resp.). Then we
immediately have the following.

Claim 1 Û is homeomorphic to Fx× [0, 1], where each {p}× [0, 1] is correspondig
to a leaf of F̂⊥.

Moreover we have the following.
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Claim 2 If Fx 6= Fy, then F1|U is a product foliation with each leaf is at depth 0.

Proof of Claim 2. By Lemma 2.17, Fx (Fy resp.) is either depth 0 or depth 1. If
Fx or Fy is a depth 1 leaf, then obviously Fx is equivalent to Fy, this contradicts the
assumption that each pair of elements of {L(1)

k } is not mutually equivalent. Hence
Fx, Fy are depth 0 leaves. By Property 3.5, F1|U is a product foliation with each
leaf is at depth 0.

Suppose Fx = Fy. Let Ũ = U ∪ Fx.

Claim 3 Under the above conditions, we have the following:
1. Fx is a depth 1 leaf;
2. ∂Ũ = Fx \ Fx; and
3. Fx is the only element of {L(1)

k } which meets Ũ .

Remark 3.7. By 1 and 2 of the above Claim 3, we see that ∂Ũ consists of depth
0 leaves.

Proof of Claim 3. By Lemma 2.18, we see that 1 of the claim holds. We show
that ∂Ũ ⊃ Fx \Fx. Note that since Fx is a depth 1 leaf, Fx \Fx is a union of depth
0 leaves. Let L0 be a leaf contained in Fx \ Fx. Since U ∼= Fx × (0, 1)(the above
Claim 1), Fx is noncompact, and each leaf of F̂1 is transverse to F̂⊥, every leaf
of F1|U is noncompact. Since L0 is compact, this shows that L0 ∩ U = ∅. Hence

L0 ∩ Ũ = ∅. On the other hand, since L0 ⊂ Fx, we have L0 ⊂ Ũ . These imply
L0 ⊂ ∂Ũ , thus ∂Ũ ⊃ Fx \ Fx. Then we show that ∂Ũ ⊂ Fx \ Fx. Let a be a point
in ∂Ũ and Na a neighborhood of a. Then there exist points b1 and b2 of Na such
that b1 ∈ Ũ and b2 6∈ Ũ . Suppose b1 /∈ Fx. Take an arc b1b2 in Na connecting b1

and b2. Then there is a point b ∈ b1b2 such that b ∈ Fx. This shows that for any
neiborhood Na, there is a point of Fx in Na, which implies a ∈ Fx. Note that Ũ is
homeomorphic to a manifold obtained from Fx × [0, 1] by identifying Fx ×{0} and
Fx×{1} with Fx corresponding to Fx×{0} (= Fx×{1}). This implies Fx ⊂ int Ũ .
This shows that a /∈ Fx. These show ∂Ũ ⊂ Fx \ Fx, and 2 of the claim holds. We
see by Claim 1 that ∂Û consists of two components. Since these are identified in
M , it is clear that 3 holds.

We know that the number of the equivalence classes represented by the depth
0 leaves of F is finite (Lemma 3.2). Since the modification does not change the
number of the equivalence classes represented by the depth 0 leaves, the number of
the equivalence classes represented by the depth 0 leaves of F1 is also finite. This
fact together with the above Claim 2, 3 of the above Claim 3 and Remark 3.7 imply

that there exist at most finitely many components of M \ ∪L
(1)
k which are disjoint

from
⋃m

i=1 ϕ(Dn−1×∂[0, 1]). Since there exist at most 2m components of M \∪L
(1)
k

which intersect
⋃m

i=1 ϕi(Dn−1 × ∂[0, 1]), this shows that {L(1)
k } consists of finitely

many elements, a contradiction.

Now, we modify the foliation F1. Since the number of the equivalence classes
represented by the depth 0 leaves is finite (Lemma 3.2) and F1 satisfies Property 3.5,
M \ ∪(depth 0 leaves) consists of finite number of components, say U1, U2, . . . , Uk.
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Note that there is a depth 1 leaf in each Ui. Let L(⊂ U1) be a depth 1 leaf. The
situation is divided into the following two cases.
Case 1 There exist more than one leaves of F1 representing [L].
Case 2 There exists exactly one leaf of F1 representing [L].

In Case 1, let {φβ} be the set of all the embeddings which give equivalence
relations between L and the leaves representing [L]. Let U (1) = ∪φβ(L × [0, 1]).
The situation is divided into the following two subcases.
Case 1.1 U (1) = U1.

In this case, by applying the argument as in the proof of Claim 4 of Case 1.2 in
Section 3.1, we can show that there exists a depth 1 leaf L′ ⊂ U such that for each
side of L, L is equivalent to L′ through the side. This implies that U1\L ∼= L×(0, 1)
with each x×(0, 1) is contained in a leaf of F⊥. We modify F1 by replacing F1|U(1)

with the image of the product foliation on L × [0, 1]. Note that in this case, the
modification on U1 is completed.
Case 1.2 U (1) 6= U1.

In this case, by applying the argument as in the proof of Claim 1 of Case 1.1 in
Section 3.1, we can show that U (1) is closed, which implies that U (1) ∼= L × [0, 1]
with each x× [0, 1] is contained in a leaf of F⊥. We modify F1 by replacing F1|U(1)

with the image of the product foliation on L× [0, 1].
Case 2 is divided into the following two subcases.

Case 2.1 There exists a homeomorphism h : L × (0, 1) → U1 \ L such that the
image of each x× [0, 1] is contained in a leaf of F⊥.

In this case, we replace F1|U1\L by the image of the product foliation on L×[0, 1].
Note that in this case, the modification on U1 is completed.
Case 2.2 There does not exist a homeomorphism h as in Case 2.1.

In this case F1 is unchanged by the modification.
In Cases 1.2 and 2.2, we further modify the foliation for another equivalence

class of a depth 1 leaf in U1. Then repeat the procedure to modify the foliation
restricted to U1. Since the number of equivalent classes of depth 1 leaf is finite
(Lemma 3.6), this terminates in finitely many steps. Then the desired foliation F2

is obtained by applying the procedure for all Ui’s. Since {Ui} consists of finitely
many components, this terminates in finitely many steps.

Note that this modification does not change the transverse foliation F⊥, i.e.,
F2⊥ = F⊥.

By the construction, we see that F2 satisfies the following.

Property 3.8. Let L1, L2 be depth 0 or depth 1 leaves of F2. Suppose that L1

is equivalent to L2 and L1 6= L2. If φ : L1 × [0, 1] → M is an embedding giving an
equivalence relation, then F2|φ(L1×[0,1]) is a product foliation.

3.3. Completion of modification. It is easy to see that the above arguments
work for depth 2 leaves of F2, to obtain a modified foliation F3, and so on, that
is, we can gradually modify the foliation F by using depth 0 leaves, depth 1 leaves,
. . . . Since depth(F) < ∞, this terminates in finitely many steps to obtain a finite
depth foliation, say F̃ .

Note that once F⊥ is fixed, then F̃ is uniquely determined. Moreover, by the
construction, it is easy to show the following.
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Facts 3.9. 1. The number of the equivalence classes of the leaves of F̃ is finite.
2. Let L1, L2 be leaves of F̃ . Suppose that L1 is equivalent to L2, via an em-

bedding φ : L1 × [0, 1] → M . Then F̃ |φ(L1×[0,1]) is a product foliation.
3. depth(F̃) ≤ depth(F).

Here, we note that 1,2 of Facts 3.9 is exactly Properties 2.21.

4. Theorem 1.1

In this section, we give a proof of Theorem 1.1. Firstly, we give some definitions
of terminologies that appears in the theorem.

Let K ′ be a knot in S3, and V = D2×S1 an unknotted solid torus in S3. Let L
be a link in V such that L is not contained in any 3-ball in V , and h : V → N(K ′) a
homeomorphism. Then the link h(L) is called a satellite for K ′, and K ′ is called a
companion for h(L). Let ` (m resp.) be a longitude (a meridian resp.) of V . If L is a
knot in ∂V representing a homology class p[m]+q[`](∈ H1(∂V,Z)) with |q| ≥ 2 then
h(L) is called a cable of K ′. We say that a knot K is a cable knot if there exists a knot
K ′′ such that K is a cable of K ′′. A knot which is not a cable knot is called a non-
cable knot. Let C be the knot in V as in Figure 4.1 and `′ (m′ resp.) (⊂ ∂N(K ′)) a
longitude (a meridian resp.) of N(K ′). For an integer q, let hq : V → N(K ′) be a
homeomorphism with (hq)∗([m]) = [m′], (hq)∗([`]) = [`′] + q[m′]. Then, we call the
satellite hq(C) a q-twisted double of K ′. Let S be the genus one surface in V , as in
Figure 4.2. Clearly hq(S) is a Seifert surface for hq(C). We often use the notation
Sq for denoting this Seifert surface. Note that if K ′ is a non-trivial knot, then for
any q ∈ Z , hq(C) is a non-trivial knot [8, IV.10]. Since Sq is of genus one, this
implies that if K ′ is a non-trivial knot, then Sq is a minimal genus Seifert surface
for hq(C). We call Sq a standard Seifert surface for hq(C).

V C

`

m

Figure 4.1���������������yyyyyyyyyyyyyyy��yy��yy��yy SV

Figure 4.2

Proof of Theorem 1.1 Recall that S3(K, 0) is the manifold obtained from S3

by performing 0-surgery along K. Let T be a surface in S3(K, 0) obtained from
Sq by capping off its boundary with a meridian disk of the solid torus attached to
E(K). Let MS be the manifold obtained from S3(K, 0) by cutting along T . Recall
that Σ(n)(K, 0) is the n-fold cyclic covering space of S3(K, 0). Note that Σ(n)(K, 0)
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admits a decomposition Σ(n)(K, 0) = M1 ∪ · · · ∪Mn where each Mi (i = 1, . . . , n)
is homeomorphic to MS and M1, . . . ,Mn are arrayed cyclically i.e., Mi ∩Mi+1 =
∂Mi ∩ ∂Mi+1 consists of a torus, say Ti, which is a lift of T (if n > 2) (subscript
is taken in mod n) or M1 ∩M2 = ∂M1 = ∂M2 (= T1 ∪ T2, say)(if n = 2). Let F
be a codimension one, transversely oriented, taut C0 foliation of finite depth, with
C∞ leaves on Σ(n)(K, 0) with exactly one depth 0 leaf T̂ representing α, where
α is corresponding to a generator of H1(S3(K, 0)) ∼= Z. Let F̃ be the foliation
obtained by modifying F as in Section 3, hence F̃ satisfies Properties 2.21. Let S
be a standard Seifert surface for K. Since T̂ is the compact leaf of the taut foliation
F̌ , T̂ is taut, i.e., incompressible and norm minimizing. Note that [T̂ ] = α = ±[Ti]
(1 ≤ i ≤ n) and each Ti is a torus. Hence T̂ is a torus or a 2-sphere. Assume that
T̂ is a 2-sphere. Theorem 3 of [9] implies that Σ(n)(K, 0) ∼= S2×S1. By Theorem 7
of [6] , Σ(n)(K, 0) ∼= S2×S1 implies that S3(K, 0) ∼= S2×S1. However since K is a
non-trivial knot, Corollary 8.3 (and its remark) [5] implies that S3(K, 0) 6∼= S2×S1.
Hence Ť is an incompressible torus.

Then, by applying the argument as in the proof of Claim in Section 4 of [7], we
may assume that the compact leaf of F̃ is isotopic to Tn. Let M (n) be the manifold
obtained from Σ(n)(K, 0) by cutting along Tn. Then, M (n) clearly corresponds to
M̂ which appears in the paragraph preceding Lemma 2.22 in Section 2.3. Then, we
abuse notation Tn for denoting the component of ∂M (n) such that Tn ⊂ Mn and
T0 denotes the other component of ∂M (n). Let F̂ be the foliation on M (n) induced
from F̃ . Let Ĝ(F̂) and G(F̃) be as in Definitions 2.23 and 2.24. Let g = gap(F̃).
Since M (n) is not homeomorphic to (torus)× [0, 1], we see that F̃ is not a foliation
given by a surface bundle structure over S1. Thus G(F̃) has an edge, hence g ≥ 1.
By the construction of F̃ described in Section 3, we see that F̃ contains exactly
one depth 0 leaf. These imply that Ĝ(F̂) contains exactly two vertices at depth 0.

Lemma 4.1. Ĝ(F̂) is connected.

Proof. Assume that Ĝ(F̂) is not connected. Since the union of the compact
leaves of F̂ is T0 ∪ Tn, there are exactly two vertices at depth 0. By Remark 2.28,
any component of Ĝ(F̂) must have a depth 0 vertex. Hence Ĝ(F̂) consists of two
components, say G1 and G2. Let {uj} ({vk} resp.) be the vertices of G1 (G2 resp.).
Let Uj (Vk resp.) be the union of the leaves representing uj (vk resp.). Then we
show that

⋃
j Uj is closed. Let {xi}i=1,2,... be a Cauchy sequence in M̂ such that

each xi is contained in
⋃

j Uj and converges to x∞. We show that x∞ ∈ ⋃
j Uj .

Let L∞ be the leaf of F̂ which contains x∞. Let P be a plaque of F̂⊥ through
x∞. We may suppose each xi is contained in P . Let P+, P− be the components
of P \ x∞. Then, by retaking xi if necessary, we may suppose that each xi is
contained in P+. If there is a leaf L of F̂ which contains infinitely many xi, this
implies that L \ L ⊃ L∞. Thus there exists a path in G1 connecting some uj and
the vertex representing L∞. Hence we have x∞ ∈ ⋃

j Uj . Suppose there does not
exist such L. Let Li be the leaf of F̂ which contains xi. Since Li intersects P
finitely many times, we may suppose that xi is the nearest to x∞ among all the
points of Li ∩ P . By applying the arguments as in the proof of Claim given soon
after the proof of Lemma 3.2, we can show that L∞ is equivalent to Li. This implies
that x∞ ∈ ⋃

j Uj . Hence
⋃

j Uj is closed. By applying the arguments as above, we
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can show that
⋃

k Vk is also closed. Note that M (n) = (
⋃

j Uj) ∪ (
⋃

k Vk) and that
(
⋃

j Uj) ∩ (
⋃

k Vk) = ∅, contradicting the fact that M (n) is connected.

We say that a graph Γ is a tree if Γ is connected and Γ does not contain a cycle.

Lemma 4.2. The following two conditions are equivalent to each other.
1. Ĝ(F̂) is a tree.
2. The number of the cycles of G(F̃) is one.

Proof. We first show that 1 implies 2. Suppose 1 holds. Recall that the number of
the depth 0 vertices of Ĝ(F̂) is two, and G(F̃) is obtained from Ĝ(F̂) by identifying
them. Since Ĝ(F̂) is a tree, Ĝ(F̂) does not have a cycle and there is a unique path
in Ĝ(F̂) connecting the depth 0 vertices, the path becomes a cycle in G(F̃) and
this is the only cycle in G(F̃).

Suppose 2 holds. Since Ĝ(F̂) is connected (Lemma 4.1), we only need to prove
that Ĝ(F̂) does not have a cycle. Assume that Ĝ(F̂) has a cycle. By applying
the argument as above, a path in Ĝ(F̂) connecting the depth 0 vertices become a
cycle in G(F̃) and since the operation obtaining G(F̃) does not remove a cycle, this
implies that the number of the cycles of G(F̃) is two, a contradiction.

In the following, we suppose that Ĝ(F̂) is a tree. Let Γ be the path connecting
the depth 0 vertices of Ĝ(F̂). Then, clearly gap(F̂) = g. Suppose g = 1. Note that
Theorem in [7] implies that depth(F) ≥ 1 +

[
n
2

] ≥ 1+n
2 . Thus Theorem 1.1 holds.

Hence in the remainder of this proof, we suppose g > 1.

Lemma 4.3. There exists exactly one edge, say e, of Ĝ(F̂) with length(e) > 1.
(Hence we have length(e) = g.)

Proof. Let e be an edge of Ĝ(F̂) such that length(e) > 1. Let v, v′ be the
endpoints of e such that depth(v) < depth(v′). Let Γ1 (Γ2 resp.) be a directed
path from v (v′ resp.) to a vertex at depth 0 such that each edge of Γ1 (Γ2 resp.)
has length one (Remark 2.28). Here we regard the vertex v as Γ1 if depth(v) = 0.
Then, since Ĝ(F̂) is a tree and the number of the vertices at depth 0 is two, it is
clear that Γ = Γ1 ∪ e ∪ Γ2. Take any edge e′ of Ĝ(F̂) with length(e′) > 1. By
applying the argument as above, we can show that there exist directed paths Γ′1,
Γ′2 from the endpoints of e′ to the depth 0 vertices, each edge of which has length
one. Moreover we have Γ = Γ′1 ∪ e′ ∪ Γ′2. Since each edge of Γ1, Γ2, Γ′1, Γ′2 has
length one, this shows that e′ = e. Hence e is the only edge of length greater than
one, thus we have length(e) = g.

Let v, v′, Γ1, Γ2 be as in the proof of Lemma 4.3. Since the situation is symmet-
ric, we may suppose Γ1 (Γ2 resp.) contains the vertex representing T0 (Tn resp.).
Let m be the number of edges of Γ1. Since gap(F̂) = g, the number of edges of Γ2 is
m+g. Rename the vertices in Γ1∪Γ2 by v0, v1, . . . , vm, vm+1, . . . , v2m+g+1 so that
vi (0 ≤ i ≤ 2m + g + 1) are on Γ in this order, and that v0 = [T0], v2m+g+1 = [Tn].

Let Lk be a leaf representing vk. Let T =
⋃n−1

i=1 Ti. Let
◦
T 0,

◦
Tn be tori in intM (n)

such that
◦
T 0 (

◦
Tn resp.) is parallel to T0 (Tn resp.), and

◦
T 0 ∩T = ∅ (

◦
Tn ∩T = ∅

resp.). Since F is taut, we can show that by deforming T by ambient isotopy in
M (n), we may suppose that T is transverse to F . Let M (n)′ be the closure of the
component of M (n) \ (

◦
T 0 ∪

◦
Tn) which does not meet ∂M (n). Let M ′

i be the closure
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of the component of M (n)′ \T corresponding to Mi. Note that for i 6= 1, n, we have
M ′

i = Mi.

Claim depth(F) ≥ m + g.

Proof of Claim. It is clear that depth(F̂) ≥ max{depth(vi)}. Note that
vm+1 corresponds to v′ in the proof of Lemma 4.3. Hence max{depth(vi)} =
depth(vm+1). Note that depth(vm+1) = Σε:edges of Γ1 length(ε)+ length(e) (see Fig-
ure 4.3). Since the length of each edge of Γ1 is one, this implies that depth(vm+1) =

e

vm

depth(vi)

v0

vm+1

vm+2

 vm+3      

v2m+g+1

v2m+g

Figure 4.3

(number of edges of Γ1) + g = m + g. Hence we have depth(F̂) ≥ m + g. By
Lemma 2.22 and 3 of Facts 3.9, we see that depth(F) ≥ depth(F̂) ≥ m + g.

Now we estimate the value m + g. If m ≥ n, we have m + g ≥ n + g > n+g
2 .

By the above Claim, this shows that Theorem 1.1 holds. Hence in the remainder
of this section, we suppose m < n.

Lemma 4.4. There is an ambient isotopy ft (0 ≤ t ≤ 1) of M (n) whose support is
contained in

⋃m+1
i=1 Mi satisfying the following two conditions:

1. f1(T)is transverse to F̂ ;
2. for k (1 ≤ k ≤ m), Lk ⊂

⋃k
i=1 M̃i, where M̃i is the closure of the component

of M (n) \ f1(T) corresponding to Mi.

Proof. We consider for k = 1. Since the union of the compact leaves of F is
T0 ∪ Tn, by applying the argument as in the proof of Assertion(i) in the proof of
Lemma 3.3 of [7], we see that L1 ∩M (n)′ = ∅ or L1 ∩M (n)′ is compact. Suppose
L1 ∩M2 6= ∅. Then, by applying the argument as in the proof of Lemma 4.2 of [7],
we can show that there is an ambient isotopy f1

t (0 ≤ t ≤ 1) whose support is
contained in M1∪M2 such that L1 ⊂ M̌1, where M̌i is the closure of the component
of M (n) \ f1

1 (T) corresponding to Mi, and that f1
1 (T) is transverse to F̂ . Suppose

L1 ∩M2 = ∅. Then we let f1
t = idM(n) (0 ≤ t ≤ 1). Then, we consider for k = 2.
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Suppose L2 ∩M (n) \ M̌1 6= ∅. If L2 ∩M (n) \ M̌1 is noncompact, then there exists a
depth 1 leaf L′1 such that L′1 ⊂ L2 and L′1 ∩M (n) \ M̌1 6= ∅. Now, since L1 ⊂ M̌1,
L′1 6= L1. Let v′1 be the vertex representing L′1. We claim that v′1 6= v1. In fact,
if v′1 = v1, then there is an embedding φ : L1 × [0, 1] → M (n) giving equivalence
relation between L1 and L′1. Note that F̂ |φ(L1×[0,1]) is a product foliation, and
L1 ∩ T1 = ∅. These imply that there is a point x in T1 ∩ φ(L1 × [0, 1]) such that
F̂ and T1 are not transverse at x, a contradiction. By Remark 2.28, there exists a
directed path Γ′1 from v′1 to v0 or v2m+g+1. This contradicts the assumption that
Ĝ(F̂) is a tree. Hence L2 ∩M (n) \ M̌1 is compact. Suppose L2 ∩ M̌3 6= ∅. Then
by applying the argument as in the proof of Lemma 3.10 of [7], we can show that
there is an ambient isotopy f2

t whose support is contained in M̌2 ∪ M̌3 such that
L2 ⊂ ˇ̌M1 ∪ ˇ̌M2, where ˇ̌M i is the closure of the component of M (n) \ f2

1 (f1
1 (T))

corresponding to Mi, and f2
1 (f1

1 (T)) is transverse to F̂ . Suppose L2 ∩ M̌3 = ∅.
Then we let f2

t = idM(n) (0 ≤ t ≤ 1). By applying the argument as above, we
can obtain a sequence of ambient isotopies f1

t , f2
t , . . . , fm−1

t , fm
t . Then, the desired

ambient isotopy ft is obtained by applying f1
t , f2

t , . . . , fm
t successively in this order

(with reparametrizing the parameter t).

In the following, we abuse notation T for denoting f1(T) for simplicity, hence
for k (1 ≤ k ≤ m), Lk ⊂

⋃k
i=1 Mi holds. For k (1 ≤ k ≤ m), let jk be the integer

which satisfies Lk ∩Mjk
6= ∅ and Lk ∩Mjk+1 = ∅. We extend the definition of jk

by putting j0 = 0. Since Lk ⊂
⋃k

i=1 Mi, we immediately have the following.

Lemma 4.5. For k (1 ≤ k ≤ m), we have jk ≤ k.

Suppose jm ≥ n−m−g+1. By applying Lemma 4.5 for the case k = m, we have
jm ≤ m. These inequalities imply m ≥ n−m−g +1, hence m+g ≥ n+g+1

2 > n+g
2 .

This together with the claim in this section shows that Theorem 1.1 holds. Hence
in the remainder of this section, we may suppose jm < n − m − g + 1. Note
that Γ2 contains m + g + 1 vertices, vm+1, vm+2, . . . , v2m+g+1. By applying the
argument as in the proof of Lemma 4.4 to leaves corresponding to the m + g − 1
vertices v2m+g, v2m+g−1, . . . , vm+2, we can obtain the following lemma. (Note that
L2m+g+1−k′(Mn+1−k′ resp.) in Lemma 4.6 corresponds to Lk′ (Mk′ resp.) in
Lemma 4.4.)

Lemma 4.6. There is an ambient isotopy f ′t (0 ≤ t ≤ 1) of M (n) whose support is
contained in

⋃m+g
i=1 Mn+1−i satisfying the following two conditions:

1. f ′1(T)is transverse to F̂ ;

2. for k′ (1 ≤ k′ ≤ m + g − 1), L2m+g+1−k′ ⊂
⋃k′

i=1
˜̃
Mn+1−i, where ˜̃

Mn+1−i is
the closure of the component of M (n) \ f ′1(T) corresponding to Mn+1−i.

Note that since jm < n − m − g + 1 = n + 1 − (m + g), f ′t does not change⋃m
i=0 Li. In the following, we abuse notation T for denoting f ′1(T) for simplicity,

i.e., for k′ (1 ≤ k′ ≤ m + g − 1), L2m+g+1−k′ ⊂
⋃k′

i=1 Mn+1−i. For k′ (1 ≤ k′ ≤
m + g − 1), let j′k′ be the integer which satisfies L2m+g+1−k′ ∩Mn−j′

k′+1 6= ∅, and

L2m+g+1−k′ ∩ Mn−j′
k′

= ∅. Since L2m+g+1−k′ ⊂
⋃k′

i=1 Mn+1−i, we immediately
have the following.

Lemma 4.7. For 1 ≤ k′ ≤ m + g − 1, we have j′k′ ≤ k′.
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Then, we have the following.

Lemma 4.8. n− j′m+g−1 ≤ jm + 1.

Proof. Assume that n − j′m+g−1 ≥ jm + 2. By the definition of jk, we see that
(Mjm+1∪Mjm+2)∩Lm = ∅. Note that if k′ = m+g−1, then L2m+g+1−k′ = Lm+2.
Since L2m+g+1−k′ ∩Mn−j′

k′
= ∅, this implies Lm+2 ∩Mn−j′m+g−1

= ∅. Hence the
assumption n − j′m+g−1 ≥ jm + 2 implies (Mjm+1 ∪ Mjm+2) ∩ Lm+2 = ∅. Since
Lm+1 approaches both Lm and Lm+2, Lm+1 intersects both Mjm+1 and Mjm+2.
By applying the argument as in the proof of Lemma 3.10 of [7], we can show that
this implies a contradiction.

By Lemma 4.5, we see that jm ≤ m and by Lemma 4.7, we see that j′m+g−1 ≤
m + g − 1. These together with Lemma 4.8 imply that

n−m− g + 1 ≤ m + 1.

Thus we obtain
m + g ≥ n + g

2
.

This together with the claim of this section shows that Theorem 1.1 holds.
This completes the proof of Theorem 1.1.
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